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ABSTRACT

Three dimensional video (3DV') and multi-view imaging technologies may be the next step in the
evolution of motion picture formats, as we presently witness the appearance of 3D displays, multi-
camera systems with dense or sparse camera configuration, coding systems. Going with the demand
of entertainment and progressive development of digital devices, developing 3D processing
algorithms, related applications and systems have been attracted extensive attentions in the industrial
and research communities. Depth inference from stereo and multi-view images is one of the most
fundamental techniques in 3D digital imaging applications since it provides the perception and

visualization of the real word environment in 3DV as well as a useful cue for other applications.

This thesis devotes to firstly study depth estimation from multi-view images and then use this useful
information for three applications including: one of the key applications in 3DTV , namely free
viewpoint synthesis, and other two applications object segmentation and multiple moving object

tracking.

The first part (Chapter 3) of this thesis addresses the problem of depth estimation from multiple
views. The depth information disappears after taking an 2D image from a 3D scene. To recover
this missing information, the depth can be estimated from two or more images by finding the
correspondence pairs among them. Initially, we introduce the basic geometric model that enables the
triangulation of corresponding pixel points across the views. While the basic physics and geometry
relating visual disparity to scene structure are well understood automatically measuring this disparity
by establishing dense and accurate inter image correspondence is a challenging task. Some
difficulties such as the unable setting the identical internal cameras’ parameters, the change of
illumination across the views, texture-less regions and occlusion can result in an unreliable
identification of the point-correspondences and thus in inaccurate depth values. Next, we review the
previous works on estimation of depth image using a single image/mono video, two views and
multiple views. Finally, we have proposed a method that allows the use of several un-rectified

images simultaneously to estimate a consistency and reliability depth image. We have introduced
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Abstract

three constraints, i.e. intra-line, inter-line and inter-view smoothness constraint, which enforce
smooth variations of depth value in the scanline, across scanline and consistent depth value across the
views. The proposed algorithm combines two stages: the first stage serves as a calculation of initial
depth images and the second stage enhances the depth initial depth images in the first step by
enforcing consistent depth across the views. The three smooth constraints can be efficiently
integrated into one dimensional optimization dynamic program algorithm. Experiments have shown

that the proposed method yields reasonably depth image quality for various multi-view data sets.

After investigating and presenting the depth estimation algorithm, the next part (Chapter 4) of this
thesis focuses on the depth based image rendering for 3D video and 3DTV systems. In
3DV /3DTV , the viewer can ideally navigate through the 3D domain and selects his own
viewpoint. The chosen viewpoint may not only be selected from available multi-view camera views,
but also any viewpoint between these cameras. Obviously, this feature requires a smart synthesis
algorithm that allows free-viewpoint view rendering. In chapter 4, we have reviewed the recent
advancements in viewpoint synthesis for 3DTV and then proposed a novel method and showed its
performance. Our contribution is a novel synthesis method that enables to render a free-viewpoint
from multiple existing cameras. The proposed method solves the main problems of depth based
synthesis by applying forward depth map following with inverse warping texture, performing pixel
classification to generate an initial new view from stable pixels and using Graph cut to select the best
candidate for unstable pixels. By defining the types of pixels and using Graph cuts, the color is
consistent and the pixels wrapped incorrectly because of inaccuracy depth maps are removed. The
remained disoccluded pixels are inpainted by using depth and texture neighboring pixel value.
Considering depth information for inpainting, blurring between foreground and background textures
are reduced. Experimental results show that the proposed method has strength in artifact reduction.
Objective evaluation has shown that our method get a significant gain in Peak Signal Noise Ratio (
PSNR) and Structure Similarity Index ( SSIM ) comparing to some other existing methods. Another
advantage of our method is that we can use a set of un-rectified images in multi-view system to

create a new view with higher quality
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As the estimated depth information available, our concern is to apply the usefully estimated 3D
information for the object segmentation method (Chapter 5). Even though image segmentation has
been addressed in extensive literatures, the results are not satisfactory in many situations. A major
difficulty lies in the fact that semantic objects are not homogeneous with respect to the low-level
features in single image, such as color or texture properties. Fortunately, depth information recovered
from multi-view serves as an important cue for segmentation. We have proposed a method using both
depth and color cues, which requires no interactive operation, to segment human object from multi-
view video. Our method consist of two stages: for initial frame of the video sequence, the interested
object is automatically extracted based on saliency model and iterated Graph cut. After having
segmented object in first frame, from the second frame we have proposed a method combining
Bayesian estimation and minimizing energy function using Graph cut to segment object. We use
Gaussian Mixture Model (GMM ) in RGB space for the color cue and histogram model for depth
cue. Based on these probabilistic models, the probability of each pixel to be in foreground is
computed based on Bayesian estimation and the results are used to create the tri-map including
foreground (F), background (B) and uncertain region (U). Graph cut is then performed on the
uncertain region. In the energy function for Graph cut optimization, the color, depth and spatial-
temporal coherence are integrated in data term and the penalty cost of the neighboring pixels with
different labels is encoded in smoothness term. Experiment results on test sequences are encouraging

and showed that our method is more effective than the case using only color cue.

The final work in this thesis is to using the estimated depth information for object tracking (Chapter
6). Detection and tracking of objects is very importance research area of computer vision and has a
wide range of application. Many researchers have investigated object tracking and different
approaches have been presented. Some of approaches can achieve good results in some cases, such as
when the target object has distinct color distribution from the background. However, multi objects
tracking is still a difficult task due to various aspects, including inaccurate motion vector estimation,
variation of the non-rigid object appearance and confusions in multiple targets’ identities when their

projections in the image are close. Moreover, object regions with various tracking issues such as
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appearance and disappearance, splitting and merging, without and with occlusion should be dealt
with in the tracking algorithm. We have proposed a novel tracking method aiming at detecting
objects and maintaining their label/identification over the time. The main key factors of this method
are to use depth information and different strategies to track objects under various occlusion
scenarios. The foreground objects are detected and refined by background subtraction and shadow
cancellation. The occlusion detection is based on information of foreground blobs in successive
frames. The occlusion regions are projected to the projection plane XZ (ground plane) to analysis
occlusion situations. According to the occlusion analysis results, different objects correspondence
strategies are introduced to track object under various occlusion scenarios including tracking
occluded objects in similar depth layer and in different depth layers. The experimental results show
that our proposed method can track the moving objects under the most typical and challenging

occlusion scenarios.
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1
INTRODUCTION

1.1 MOTIVATION AND OBJECTIVE OF THESIS

The conventional two-dimensional (2D) images captured by a traditional single camera lose three-
dimensional (3D ) information especially the depth information of the 3D scene, which is a useful
and important cue for perception and visualization of the real word environment. In the recent years,
with the fast improvement of the capability of personal computers and digital equipment, more and
more multi-camera systems with dense or sparse, wide-baseline or narrow-baseline camera
configuration become available, which significantly broaden the multi-view applications and enhance
the user experience. Going with the demand of entertainment and progressive development of digital
devices, developing 3D processing algorithms, related applications and systems have been attracted

extensive attentions in the industrial and research communities.

Recently, multi-view imaging technologies are becoming importation with the ongoing convergence
of extensive visualizations, and greatly influent our life in the area of surveillance for environmental
security, entertainment, and virtual view synthesis for three dimensional television (3D7V ") and free
viewpoint television (F7V") system. Additionally, content-based applications enable analysis and
interpretation of data by accessing and manipulating semantic objects, offering user flexibility for
data exploitation in the object level. This popularity and flexibility are the motivation of our efforts to
learn some key technologies and applications in a multi-view system such as multi-view acquisition,
depth estimation, depth based view synthesis for 3DTV , depth assisted object segmentation and
tracking. We focus on learning to estimate depth from multi-view images and to use this useful
information for some importance applications that are view synthesis for 3DTV , object segmentation

and tracking.

In this thesis, firstly we study about estimate depth from multi view images. Depth inference from

stereo and multi-view images is one of the most fundamental techniques in 3D digital imaging
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1.1. Motivation and Objective of Thesis

applications. The depth information disappears after taking an 2D image from a 3D scene. To
recover this missing information, the depth can be estimated from two or more images by finding the
correspondence pairs among them. From the earliest inquiries into visual perception, it was know that
we perceive depth based on the different in appearance between left eye and right eye. When viewing
a scene with both eyes, the observers can use information derived from the different projection of
objects onto each retina to judge depth. Thus, stereo or disparity measured by using two images of
the same scene from different angles is the binocular cue to determine the depth information, which
is negatively correlated to the distance between camera and the object. While the basic physics and
geometry relating visual disparity to scene structure are well understood automatically measuring this
disparity by establishing dense and accurate inter image correspondence is a challenging task. Depth
estimation from a set of multiple views or images has been widely studied in the computer-vision
research community. However, depth estimation still remains an open research topic since this is an
ill-posed problem in many situations. For example, the following aspects is illustrated some
difficulties. First, due to the unable setting the identical internal cameras’ parameters and/or the
change of illumination across the views, multi-view images may not conform to the photo-
consistency rule. The projections of the same 3D point into different views can have different
intensity/color values. This results in an unreliable identification of the point-correspondences and
thus in inaccurate depth values. Second, object surfaces appear differently depending on the
viewpoint. The third, it may occur the appearance of texture-less regions and repeated patterns in the
scene. This will increases the ambiguity while finding reliable corresponding points, thereby
resulting in inaccurate depth values. The fourth, in some cases, particular background regions may be
visible from a given camera viewpoint but may not be visible from a different camera view point, so
that, it is not possible to identify point-correspondences across the views. In this thesis, first we
review the existing methods and then propose the algorithm which uses simultaneously multiple

images/views to estimate depth.

An important application of depth maps is the depth based image rendering for 3D video and

3DTV systems. In the near future, most video content will be available in 3D . 3D does not only
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mean stereo video, but also multi-view video, where a user can navigate around and change its
viewpoint in a similar way as it is already known from today’s video games. Multi-view video is
recorded using arrays of cameras, which are capturing the same scene from different viewpoints. This
technique especially enables applications such as 3DTV and FTV . Comparing with the 2DTV ",
the most impressive progress of 3DTV and FTV is to offer the users a 3D depth feeling of the
observed scene and the flexibility of interactively selecting the freedom viewpoint of the real
environment. The chosen free viewpoint may not only be selected from available multi-view
cameras, but also any viewpoint between these cameras. It requires a smart rendering algorithm that
allows free viewpoint view synthesis. In this thesis, we concern such multi view synthesis algorithm
and aims at proposing best synthesis algorithm when using multi-view texture and depth images of

the scene.

As the estimated depth information available, our next concern is to apply the usefully estimated 3D
information for the object segmentation method. Even though image segmentation has been
addressed in extensive literature, the results are not satisfactory. A major difficulty lies in the fact that
semantic objects are not homogeneous with respect to the low-level features in single image, such as
color or texture properties. Fortunately, depth information recovered from multi-view serves as an
important cue for segmentation. However, due to ill-posed nature of depth estimation, errors may
occur in the depth map. To obtain more robust segmentation results for object-level manipulation, we

consider to integration of depth, color, and other image cues in our algorithms.

The final work in this thesis is to using the estimated depth information for object tracking. Detection
and tracking of objects is very importance research area of computer vision and has a wide range of
application. Many researchers have investigated object tracking and different approaches have been
presented. Some of approaches can achieve good results in some cases, such as when the target
object has distinct color distribution from the background. However, multi objects tracking is still a
difficult task due to various aspects, including inaccurate motion vector estimation, variation of the
non-rigid object appearance and confusions in multiple targets’ identities when their projections in

the image are close. Moreover, object regions with various tracking issues such as appearance and
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disappearance, splitting and merging, without and with occlusion should be dealt with in the tracking
algorithm. Depth information will be used in our tracking method. This information is employed to

analysis occlusion and help to track objects under various occlusion scenarios.

1.2 STRUCTURE OF THESIS

This thesis addresses the following topics: depth estimation from multi-view images, depth based
view synthesis, depth assisted object segmentation and depth aided moving object tracking. Figure

1-1 shows the organization and relationship between the chapters.

Background Chapter 2
y
Depth estimation Chapter 3
\ 4 A\ 4 v v
Depih based view Depih assisied Depih aided object
synthesis object segmentation tracking
e Chapter 5 Chapter 6 ——
——

!

Conclusions and
future works

L Chapter7 —
Figure 1-1. Organization of this Thesis.

Chapter 2: Background

e Providing the summary of geometry of multiple views; the relationship of 3D points and 2D

point in image plane;

e Describing a method for computing the internal and external parameters of the cameras,

which is known as camera calibration;
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e Describing a stereo rectification process which is correcting the individual images so that they
appear as if they had been taken by two cameras with row-aligned image planes. This help to

reduce the search of point correspondences when depth is estimated;

e Introducing a very short summary of Graph Cuts, which is use to minimize our energy

functions in the in later chapters.
Chapter 3: Depth Estimation

e Providing the comprehensive review the previous works on estimation of depth image using a

single image/mono video, two views and multiple views;

e Presenting the proposed depth estimation method and experimental results. The proposed
method is utilizing simultaneously all views and using one dimensional optimization

strategy;
Chapter 4: Depth Image Based Synthesis
e Briefly introducing the advances in three-dimensional video/television (3DV /3DTV ),
e Providing the review the previous works on estimation of depth based image synthesis;

e Presenting a novel view synthesis algorithm and its performance assuming that the depth

maps, textures of multi-view cameras and their parameters are available;
Chapter S: Depth Assisted Object Segmentation
e Briefly introducing the object segmentation topic;
e Providing the current research on depth based object segmentation;

e Presenting the proposed object segmentation algorithm, in which depth is fused with color
and spatial-temporal coherence in an energy function. This function is optimizing by Graph

Cuts.
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Chapter 6: Depth Aided Object Tracking

e Providing the current research on depth based object tracking;

e Presenting the proposed tracking method, in which depth information and different strategies

are used to track objects under various occlusion scenarios.

Chapter 7: Conclusion and Outlook

e Providing a summary, some conclusions as well as an outlook on future work.



2
BACKGROUND

2.1 CAMERA MODELS AND CALIBRATION

2.1.1 Projective Geometry

Projective geometry serves as a mathematical model for how images of the 3D world are formed. It
is used to model the image formation process, generate synthetic images, or reconstruct 3D objects
from multiple images. To model lines, planes or points in a 3D space, usually the Euclidean
geometry is employed. In Euclidean space, a point defined in three dimensions is represented by a 3-
element vector (X,Y,Z)"; the sides of objects have lengths, intersecting lines determine angles

between them, and two lines are said to be parallel if they lie in the same plane and never meet.
Moreover, these properties do not change when the Euclidean transformations (translation and
rotation) are applied. However, when we consider the imaging process of a camera, it becomes clear
that Euclidean geometry is insufficient: lengths and angles are no longer preserved, and parallel lines

may intersect.

Projective geometry establishes an attractive framework to circumvent the above disadvantages of

the Euclidean geometry. In the projective space, the same point is described using a 4-element vector

(X, X,,X;,X,)" such that

X=X/, Y=X,/X, Z=X,/X, (2-1)
where, X, # 0. Generally, the coordinates (X,Y,Z)" and (X,,X,,X;,X,) are called
inhomogeneous coordinates and homogeneous coordinates [1], respectively.

As a generalization, the mapping from a point in the n-dimensional Euclidean space to a (n+1)

dimensional projective space can be written as
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(X, Xy X)) > (AX,,AX,,.., AX,, AT,

Euclidean space

where A # 0 corresponds to a free scaling parameter. This free scaling parameter A is often called

the homogeneous scaling factor.

Projective geometry models well the imaging process of a camera because it allows a much larger

class of transformations than just translations and rotations, a class which includes perspective

Projectivespace

projections. Table 2-1 shows the relationships between two different geometries.

Table 2-1. The two different geometries, the transformations allowed in each, and the measures

that remains invariant under those transformations.

Euclidean Projective
Transformations:
rotation X
translation X
reflection X
uniform scaling
non-uniform scaling
perspective projection
Invariants:
length X
angle X
ration of lengths X
parallelism X
Cross ratio X

2.1.2 Pinhole Camera Model

Pinhole camera is a simple camera without a lens and with a single small aperture, effectively a light-

proof box with a small hole in one side. Light from a scene passes through this single point and
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projects an inverted image on the opposite side of the box. The simplest form of real camera
comprises a pinhole and an imaging plane (or screen). Because the pinhole lies between the imaging
plane and the observed 3D world scene, any ray of light that is emitted or reflected from a surface
patch in the scene is constrained to travel through the pinhole before reaching the imaging plane.
Therefore, there is a correspondence between each 2D area on imaging plane and the area in 3D

world as observed through the pinhole from the imaging screen. The ideal pinhole camera model

describes the relationship between a 3D point P =(X,Y,Z)" and its corresponding 2D projection
point p = (u,v)” onto the image plane. Figure 2-1 illustrates the ideal model of pinhole camera.

When using a pinhole camera model, this geometric mapping from 3D to 2D is called a perspective

projection.

S

“P(X,Y,Z)

/ optical axis

principle point o

camera optical image plane 1

= &

~focal length

Figure 2-1. The ideal pinhole camera model.

We denote the center of the perspective projection (the point in which all the rays intersect) as the
optical center or camera center and the line perpendicular to the image plane passing through the
optical center as the optical axis. Additionally, the intersection point of the image plane with the
optical axis is called the principal pointo = (o, oy)T . The distance from the image plane to optical
center point is known as the focal length f . The mathematical model of pinhole camera that

describes a perspective projection of 3D points onto the image plane can be described as follows.
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Let us simplify by consider camera with the optical axis being collinear to the Z_, axis and the
optical center being located at the origin of a 3D 3D coordinate system, as shown in Figure 2-1. The
projection of a 3D world point P =(X,Y,Z)" onto the image plane at pixel position p = (u,v)"

can be written as

uzﬁ, v=£. (2-3)

Avoiding such a non-linear division operation, the Equation (2-3) can be reformulated using the

projective geometry framework, as

Gat, v, )T = (fX, Y, Z)" . (2-4)

This relation can be the expressed in matrix notation by

" fooo)Y(
ﬂ,v=0fOOZ, (2_5)
1) o o1 0)7

where A = Z is the homogenous scaling factor.

Equation (2-5) constitutes a foundation of the pinhole camera. The pinhole camera model can be

defined by two sets of parameters: intrinsic parameters and extrinsic parameter.

2.1.2.1 Intrinsic Camera Parameters
image coordinate X d
system nt
vY _ T
principal point
o(o,, 0,
Y
image plane 1

image sensor

Figure 2-2. Image coordinate system (right side); Non ideal image sensor with non-square
and skewed pixels (left side).
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To formulate above relation described in Equation (2-5), we have assumed that the origin of the pixel

coordinate system corresponds to the principal point o = (0 ,0,)", located at the center of the

image. However, most of the current imaging systems define the origin of the pixel coordinate
system at the top-left pixel of the image. A conversion of coordinate systems is thus necessary. Using
homogeneous coordinates, the principal point position can be readily integrated into the projection

matrix. Now the perspective projection equation becomes

X f00x0§(
ﬂyzOfoyOZ. (2-6)
1) loo 1 0)]

We have assumed that the pixels of image sensor are square, i.e. aspect ratio is 1:1 and pixels are not
skewed to derive the relation (2-6). However, both assumptions may not always be valid. In practice,
the pixel aspect ratio is often provided by the image-sensor manufacturer. The individual pixel on
typical low cost camera is rectangular rather than square. For example, an NTSC TV system defines
non-square pixels with an aspect ratio of 10: 11. Moreover, pixels can potentially be skewed,
especially in the case that the image is acquired by a frame grabber due to an inaccurate

synchronization of the pixel-sampling process. Two parameter 77 and 7 are used to model the pixel

aspect ratio and skew of the pixel respectively as shown in Figure 2-2. The Equation (2-7) can be

update as

X f. © o 0 );
Ay|=| 0 f, o, 0], |=[Kl0]P, 2-7)
1 0 0 1 0)\]

with P=(X,Y,Z,1)" being a 3D point defined with homogenous coordinates and f, =nf,. The

intrinsic parameters are denoted as K, and 0, is denoted by 0, =[0,0,0]" . With nowadays digital

cameras, it can be assumed that pixels are non-skewed (7 = 0).
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2.1.2.2 Lens Distortion

In theory, it is possible to define a lens that will introduce no distortions. However, in practice, no
lens is perfect. Distortions encountered in real optical systems arise mostly from the nonlinearity of
physical elements, as well as from the dependence of the optical parameters on the wavelength of the
incident light. Here we briefly describe the two main lens distortions and a standard technique to

model them.

 p—— Square object

\mage pone

Figure 2-3. Radial distortion: rays farther from the center of a simple lens are bent to much
compared to the rays that pass closer to the center resulting the sides of a square appear to
bow out of the image plane .

The largest distortion is radial distortions. In practice, radial lens distortion causes straight lines to be
mapped as curved lines, this is also known as barrel distortion. The lens of real cameras often
noticeably distorts the location of pixels near the edges image as shown in Figure 2-3. With some
lens, particularly in cheap webcam, rays father from the center of the lens are bent more than those
closer in. For the radial distortions, the distortion is O at the center of image and increase as we move
toward the periphery. This distortion is small and can be characterized by the few term of Taylor

series expansion. For the cheap web cameras, we usually use first three such terms, which is

conventionally called k,,k,and k,. In general, the radical location of a point on the image will be
rescaled according to equation [2]:

— 2 4 6
X corrected = X(l + klr + k2r + k3r )

ycorrected = y(l—i_klr2 +k27"4 +k3r6)a (2-8)

where, (x,y) is original location of distorted point on the image and (x is the new

corrected ® ycnrrected)

location as the result of correction.
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The second largest common distortion is tangential distortion. This distortion is due to manufacturing

defects resulting from the lens not being exactly parallel to the imaging plane. Tangential distortion is

minimally characterized by two parameters p,and p, [2], such that:

xcorrecled =x+ Itzpply + pZ (r2 + 2x2 )]] (2-9)

ycorrecled = y + l(r2 + 2y2 )+ 2p2x
There are many kinds of distortions that occur in imaging systems, but they are lesser effect than

radial and tangential distortions. Hence almost research will not deal with them.

We have five distortion coefficients that model the influence of the radial and tangential distortions

of the optical system. These coefficients are the new intrinsic parameters of the camera model. In

OpenCV|[2], they are typically bundled into one distortion vector 5 by 1, which is containing & ,k,,

P, P,,and k;.

2.1.2.3 Extrinsic Parameter
So far, we assume that 3D points are expressed in the camera coordinate system. In practice, they
can be expressed in any 3D coordinate system. In order to understand how points in the real world
are related mathematically to the points in the images plane, two coordinate systems (see the Figure
2-4) are of particular interest:

1. The world coordinate system at O, (denoted here with a subscript ‘W’ for ‘world”), which

is independent of placement and parameter of the camera.
2. The camera coordinate system at the optical center C (denoted by * C ’ for ‘camera’).

The two coordinate system are related by translation expressed by vector T and rotation represented

by matrix R . The translation vector 7' describes a change in position of the coordinate center C

and O,, T =C-0,,. The rotation, in turn, changes the corresponding axes of each system. This

change is described by the orthogonal matrix R of dimension 3x3 (RR” =1)[3].
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world coordinate
rotation R

system

camera coordinate
system 3.

p\\'
. T
P

Figure 2-4. The relationship between the camera and world coordinate system.

For a given point P, its coordinate related to camera and external coordinate related to world

coordinate are connected by following formula:
P =RP +T=R(P,-C)

ol 1L T

where P, expresses placement of a point P in the camera coordinate system, P, is its placement in

(2-10)

the external coordinate system, R stands for the rotation matrix and 7 is the translation matrix
between origins of those two coordinate systems, C is position of camera optical center. The

matrices R and 7 can be specified as follows:

Rl] R12 R13 7—1
R=|R), R, Ry , T'=-RC= T, (2-11)
R31 R32 R33 33 T3 3x1
Substituting (2-10) into (2-7) we obtain the linear equation of the pinhole camera:
Ap=[K |0, Lﬁ B fc}P = MP, (2-12)
3
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where p =(x,y)" is an image point of P =(X,Y,Z,1)" under transformation M performed by

pinhole camera. The matrix M is called a projection matrix. Equation (2-12) defines a

transformation of the projecting a 3D point onto the image plane.

2.1.3 Projection of 2D Point to 3D Points
In the previous section, the process of projecting a 3D point onto the 2D image plane was
described. This part will present how a 2D point can be back-projected to the 3D space and derive

the corresponding coordinates. Considering a 2D point p in an image, there exists a collection of
3D points that are mapped and projected onto the same point p . This collection of 3D points

constitutes a ray connecting the camera center C = (C,,C,,C.) and p = (x,y,1)".

The Equation (2-12) can rewrite as

X
Ap = KR[ Y} — KRC. (2-13)
V4

From Equation (2-13) the ray P(A) associated to a pixel p = (x, y,1) can be defined as

X C, i
Y |=C+AR'K'p=|C, |+ A1, (2-14)
Z ray P(1) C }"3

z

where A is the positive scaling factor defining the position of the 3D point on the ray.

If Z is known, from Equation (2-14) it is possible to obtain the coordinates X and Y by calculating

A using the following relation

A= =, (2-15)
where r, is computed by Equation (2-14).

The back-projection of 2D point to 3D points is important for depth estimation and image

rendering, which will be used later chapters in this Thesis.
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2.1.4 Camera Calibration

Camera calibration is a process of finding the intrinsic and extrinsic parameter of a camera or subset
of these. This topic has attracted great attention among researchers resulting an ample literature, for
instance [4-10]. An evaluation of the three common calibration method of Tsai [5], Heikkila [6] and
Zhang [10] can be found in the paper [11]. In this section, we do not present a new calibration

algorithm but instead shortly describe the method proposed by Zhang [10].

X
>

Figure 2-5. A planar chessboard pattern with 3D world coordinate system.

The estimation of camera parameters is based on a calibration rig with known geometry. In principle,
any appropriately characterized object could be used as a calibration object, yet the practical choice is

a regular pattern, such as a planar chessboard pattern (see Figure 2-5).

The first stage of the camera calibration procedure is to establish correspondences between 2D points
in the image and 3D points on the chessboard, i.e., so-called point-correspondences. Because each
3D feature point belongs to the board plane Z = 0, the projection of each 2D point onto the image

plane can be written as

X
X
R -RC| Y
{ =S[K|03][0§ ) }Z:O’ (2-16)
1

which can be rewrite to
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X )}f X X hy hy, hs (X
y|= sK[r1 nrtl,_ol= SK[V1 rnt\Y |=H|Y |=|\hy h, hy|Y]| (2-17)
1 1 1 1 hs, h 1

where, 7, corresponds to the i” column of the rotation matrix R and ¢ =—RC .

The homography matrix H that map a planer object’s point on the imager is then described by
H =sK [’”1 r, t]. Note that / is now a 3-by-3 matrix. The calculation of the camera parameters
requires the estimation of the homography matrix H . The homography matrix H related to the
positions of the points on the source image plane (model plane) to the points on the destination image
plane (imager plane). Given an image of model plane, an homography can be estimated (more detail
in [10]).

Assuming that the homography H is calculated, we will write H out as column vector,

H= [hl h, h, ] , where each H is a 3-by-1 vector. From Equation (2-17), we get:

H = [h1 h, h3]= sK[r1 r, t} (2-18)
Reading off these equations, we have:
sKr, or r, =K 'h,

h,
hy, = sKr, or r, =K~ 1h (2-19)
hy, = sKr, or r, =K'h,,

where, A =1/s.

The rotation vectors are orthogonal to each other (that means the rotation vector’s dot product is 0

and the vector’s magnitudes are equal), so:

i =0 (2-20)
lrill= Il o n'n =rlr.
For any vector a and b we have (ab)” =b"a” , from equations (2-19) and (2-20) we have:
hI(K) Khy, =0
1 ( ) 2 (2_21)

AT (K'Y Kby =hI (K) Kb,
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Setting B = (K -1 )T K, we have

1 -0

I 2

. B, B, B, 1 -0,
B=(K')K"'=|By, B, By|=| 0 — : (2-22)

B, B, B, i )

)

1 32
-0 -0 o o
(—=+—=+1)

R T

Because B is symmetric, it can be written as a reduced vector b with only 6 terms, thus

b=[B,,,B,,,B,,,B,;,B,;,B;;]". The two constrains in Equation (2-21) have the general form

h! Bh , as:

hilhjl WT_ ]
hilhﬂ +hi2h1‘1

hi2hj2
hiShjl +hi1hj3
hi3hj2 +hi2hj3

hahyy | LBs ]

—_
S

hT Bh, =v[b = (2-23)

o=
= W

o o % W

[

Using this definition for vl.jT. the two constrains in (2-21) can be written as:

v _
|:(v11 . )r :lb =0. (2-24)

Note that the vector b which summarizes the intrinsic parameters is a 6 element vector so that 6
equations are necessary to recover all camera parameters. Therefore, since each homography
provides 2 linear equations, at least 3 homographies or captured images are sufficient. Assuming
that we collect N images of chessboards together, the linear system composed of N instances of

Equation (2-24) can be written as

Vb =0, (2-25)
where Nis 2 N -by-6 matrix. If N >3, this linear can be solved by employing the standard

technique of Singular Value Decomposition (SVD).
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Using the computed solution vector b, the intrinsic parameters can be derived as follows:

e The camera intrinsic parameters:

fx = \/’VBU

fy = \/’1311/(311322 _3122)

¢, ==B, [/ (2-26)
¢, = (312313 _BnBzz )/(311322 _BIZZ)

with A = By,-(Bj + cy(BIZBB-BllBB )/B,,.

e The camera extrinsic parameters:

The rotation matrix and translation vector can be recovered from the Equation (2-19):

rn=AK"h,

r, =AK'h, (2:27)
Py =1 X,

t=AK"h,,

where x denote a cross product. The scaling parameters are determined by 4 =1/ "K “h, || .

To refined the obtained camera parameters, it may perform an nonlinear minimization of a projection
function, which is solved with the Levenberg-Marquardt Algorithm [12]. This function is projecting
the 3D points onto the image plane and accumulating the differences between corresponding points
as following:

N n 2
> , (2-28)
J i

where j is the image index and i denotes to the point correspondence index.

Py _([K | 03]{% _R{Cj }Py‘)

The recommended calibration procedure can be summarized as follows.
1. Print a chessboard pattern and attach it to a planar surface;

2. Take N (at least 3) images of the model plane under different orientations by moving either

the plane or the camera;

3. Detect the feature points in the images and calculate the N homography transforms;
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4. using the N homography transforms, calculate the intrinsic and extrinsic parameters;
5. Refine the calculated camera parameters.

2.2 TWO-VIEW GEOMETRY

In the previous section, we have introduced the geometry of a single camera. We now describe the
case of two camera geometry. The two-view geometry is the intrinsic geometry of two different
perspective views of the same 3D scene (see Figure 2-6). The two perspective views may be
acquired simultaneously, for example in a stereo rig, or sequentially, for example by a moving
camera. From the geometric viewpoint, the two situations are equivalent, but notice that the scene

might change between successive snapshots.

Most 3D scene points must be visible in both views simultaneously. This is not true in the case of
occlusions, i.e., points visible in only one camera. Any unoccluded 3D scene point
P=(X,Y,Z1)" is projected to the left and right view as p, = (x;, y,,1)” and p, = (x,,y,,])7,
respectively (see the Figure 2-6). Image points p, and p, are called corresponding points as they

represent projections of the same 3D scene point P .

I

Ci C

Figure 2-6. Two perspective views of the same 3D scene.

Algebraically, each perspective view has an associated 3-by-4 camera projection matrix M which
represents the mapping between the 3D world and an 2D image. We will refer to the camera
projection matrix of the left view as M, and of the right view as M, . Based on Equation (2-12), we

have:
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Ap =MP,

Ahp, =M,P. (2-29)

Geometrically, the position of the image point p, in the left image plane /, can be found by
drawing the optical ray through the left camera projection center C, and the scene point P . The ray
intersects the left image plane I, at p,. Similarly, the optical ray connecting C, and P intersects the
right image plane /, at p, .

The knowledge of image correspondences enables scene reconstruction from images. The position of
P is calculated by triangulation of the two corresponding points, using the geometry of the two
cameras. The geometry of the two cameras relates to the respective position and orientation and

internal geometry of each individual camera. The underlying geometry that describes the relationship

between both cameras is known as the epipolar geometry. This is discussed in Section 2.2.1.

2.2.1 Epipolar Geometry

epipolar

epipolar line [ plane 7

epipolar line [,

G \?il baseline T

> ]) 5
epipole e; epipote

Figure 2-7. The epipolar and epipolar constraint.
The epipolar geometry describes the geometric relationship between two perspective views of the

same 3D scene. The key finding is that corresponding image points must lie on particular image

lines, which can be computed without the information on the camera calibration. This implies that,
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given a point in one image, one can search for the corresponding point in the other image along a line

and not in a 2D region, a significant reduction in complexity.

Figure 2-7 illustrates the rules of the epipolar geometry. Any 3D point P and the camera
projection center C, and C, define a plane that is called the epipolar plane. The projections of the
point P, image points p, and p,, also lie in the epipolar plane since they lie on the rays connecting
the corresponding camera projection center and point P . The corresponding epipolar lines, I, and
[, , are the intersections of the epipolar plane with the image planes. The line connecting the camera
projection centers C, and C, is called the baseline. The baseline intersects each image plane in a
point called epipole. By construction, the left epipole e, is the image of the right camera projection
center C, in the left image plane. Similarly, the right epipole e, is the image of the left camera
projection center C, in the right image plane. All epipolar lines in the left image go through e, and

all epipolar lines in the right image go throughe, . Therefore, the search of point-correspondences
can be limited to a search along the epipolar line instead of an exhaustive search in the image. An
example of two views with the computed epipolar lines superimposed onto the images is given in

Figure 2-8.

Figure 2-8. Two views of scene with 4 epipolar lines.

We’ll now summarize some facts about stereo camera epipolar geometry:

e Every 3D point in view of the cameras is contained in an epipolar plane that intersects each

image in an epipolar line;

-0



Chapter 2: Background

e Given a feature in one image, its matching view in the other image must lie along the

corresponding epipolar line. This is known as the epipolar constraint;
e The baseline is the line going through the two cameras centers;

e  The epipole is the image-point determined by the intersection of the image plane with the

baseline;

e The epipolar constraint means that the possible two-dimensional search for matching features
across two imagers becomes a one-dimensional search along the epipolar lines once we
know the epipolar geometry of the stereo rig. This is not only a vast computational savings, it

also allows us to reject a lot of points that could otherwise lead to spurious correspondences;

e  Order is preserved. If points 4 and B are visible in both images and occur horizontally in

that order in one imager, then they occur horizontally in that order in the other imager.

As we pointed out in previous part, each camera is described by a set of extrinsic parameter. They
determine placement of a camera in respect to external coordinate system. With each of the cameras
of the stereo systems we associate a separate coordinate system with its center coinciding with the
central point of the camera. The Z axis of such coordinate system is collinear with the optical axis
of the camera. In both coordinate systems, P, =(X,,Y,,Z,) and P, =(X,,Y,,Z,) represents the

same 3D point P. On the other hand, on the respective image planes, p, =(x,,»,,2z,) and

p, =(x,,5,,2,) determine two difference images of the 3D point P . We note that z, = f, and
z,= />

The information about translation T and rotation R, which describes the changing of the second
camera (right camera) to the first (left camera) in world coordinates, is contained in essential matrix

E (see Figure 2-9). The essential matrix £ obeys the following constraint:

(F,)"EP, =0 or (p,)"Ep, =0. (2-30)
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Rotation: R

\ \‘\e1 62,"/,
C1 \ / C2
Figure 2-9. The essential matrix E contains all of the information about translation T and

rotation R, which describes the location of the second camera relative to the first in world
coordinates.

The matrix £ contains all of the information about the geometry of the two cameras related to each
other but no information about the cameras themselves. In practice, we are usually interested in pixel
coordinates. In order to find a relationship between a pixel in one image and the corresponding
epipolar line in the other image, we will have to introduce intrinsic information about the two

camera. For the pixel coordinate p we substitute q and camera intrinsic matrix that relates them, that

means ¢ = Kp or equivalent p = K 'q . Hence, the Equation (2-30) for E becomes:

qi(K;') EK['q, = 0. (2-31)

Finally we obtain
9, Fq, =0, (2-32)

where the matrix
F=(K'"Y EK", (2-33)

is called the fundamental matrix. It describes the epipolar geometry in term of pixel coordinates.

By providing a number of known correspondences, we can compute the fundamental matrix F', and

then we can compute the epipolar lines.

2.2.2 Stereo Calibration

The problem of stereo calibration consists of determination of the parameters of the two cameras and

the geometrical relationship between the two cameras in space.
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The parameters of the two cameras can be computed based on the single-camera calibration method
in the previous section 2.1.4. Now we concern how to find the rotation matrix R and translation
vector T between the two cameras, as depicted in Figure 2-9. The rotation matrix R describes a
relative rotation between coordinate system of the two cameras and the vector 7 describes a

translation of the two camera centers.

Let us assume that the extrinsic parameters are already known for the two camera of stereo system

(this can be done by single-camera calibration method in the previous section 2.1.4). There are given

by four matrices: R, and 7, for the left camera (left camera center C;), R, and T, for the right
camera (right camera center C, ). Using the relation in Equation (2-10), which connects coordinate of

a certain 3D point P, from world coordinate system with the camera coordinate system, we obtain

A =R1(PW_C1)

2-34
P, =R,(P,-C,), @39

where, P, and P, are the location of the 3D point P, from the coordinate system of the left and

right cameras respectively.

After factoring out P, from the Equation (2-34), we get

P, =R,RTP, +R,(C, —C,). (2-35)

On the other hand, it is evident from Figure 2-9 that the two matrices £, and P, are related by

P, =RP +T. (2-36)

Comparing two Equation (2-35) and (2-36), the following relations can obtains:

R=R,R!,

T=R,(C,~C,)=T, —RT, (2-37)

where, R and T are the sought calibration matrices of the stereo system, 7, = —R,C; with i € {1,2}.
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2.2.3 Stereo Rectification

As discussing in previously parts, the three-dimensional structure can be extracted by determining the
correspondences in the two views and that the point-correspondences can be searched along the
epipolar line only. To simplify the search, people try to capture images such that all epipolar lines are
parallel and horizontal. In the perfect case, the search of point correspondences can be performed
along the horizontal raster lines of both images. Unfortunately, it is difficult to accurately align and
orient the two cameras such that epipolar lines are parallel and horizontal. Instead of physically
stereo setups, an alternative approach will be to mathematically align the two cameras into one
viewing plane so that pixel rows between the cameras are exactly aligned with each other, as

illustrated in Figure 2-10. This process is called image rectification.

p

Original configuration

Figure 2-10. Stereo image rectification. The epipolar lines become collinear and parallel to
the image scan-line.

Some algorithms have been introduced to do image rectification. For example, in [13], authors have
introduced an algorithm which performs rectification given a weekly calibrated stereo rig, i.e., a rig
for which only point correspondence between image are given (or equivalently for which the
fundamental matrix could be computed). In case the stereo rig is calibrated, i.e., the cameras’
parameters, mutual position and orientation are known, Bouguest’s algorithm [14] is one of the most

well-known method. Given the rotation matrix I and translation vector (7') between the stereo

images, Bouguest’s algorithm for stereo rectification simply attempts to minimize the amount of
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change re-projection produces for each of the two images while maximizing the viewing area. This

method can be described as following.

To minimize image re-projection distortion, the rotation matrix R that rotates the right camera image

plane into the left’s plane is split in half between the two cameras. We get the two result rotation
matrix 7, and 7, for the left and right camera, respectively. Each camera rotates half a rotation, so
their principal rays each end up parallel to the vector sum of where their original principal rays have
been pointing. However, this rotation just puts the cameras into coplanar alignment but not into row
alignment.

Now we build the rotation matrix that will take the left camera’s epipole to infinity and align the

epipolar lines horizontally. This rotation is described by a matrix R which consists of three

rect ?

mutually orthogonal unit vectors: e, e, and e;. Taking the principal point 0 = (0,,0,) as the left

image origin, the vector e, is directly along the translation vector between two cameras and is given

as:

€ = L (2-38)
-l
The vector e, is orthogonal to the ¢,. Since,
[-7,,7.0}[r.7,.7.] =0, (2-39)

the e, take the form

[-7,.7.0f
e, = —’T;ZTTVZ (2—40)

The third vector e, has to be simultaneously orthogonal to the vector e, and e, . Therefore, it can be

found by using the cross product:
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e, =e Xe,. (2-41)
The rotation matrix is now:
e/
Rrect‘ = eZT . (2_42)
e

3x3

This matrix rotates the left camera so that the epipolar lines become horizontal and the epipoles are at
infinity. The row alignment of the two cameras is then obtained by:

R =R, 1

rect*
R, =R

. (2-43)

()

rect*

The matrices R, and R, are the rectification transform (rotation matrix) for the left and right cameras,

respectively, which we want to find.

The resulting rectified image is employed in a lot of stereo camera setups and stereo algorithms as

shown in the next chapter.

2.3 BACKGROUND OF GRAPTH CUTS THEORY

In this thesis, we use graph cut to minimize the energy function in depth estimation (in Chapter 3),
depth based view synthesis application (in Chapter 4) and depth assisted object segmentation (in

Chapter 5). Thus, in the next parts, let’s us introduce briefly graph cuts theory.

Energy minimization is a natural framework for many vision applications. It has several advantages.
It allows a clean specification of the problem to be solved, as distinct from the algorithm used to
solve it. In addition, energy minimization naturally allows the use of soft constraints, such as spatial

coherence. Finally, energy minimization avoids being trapped by early hard decisions.

Solving a problem via an energy minimization consists of two major steps. First, an objective
function is formulated. It maps all possible solutions to real numbers, and it shows how good (or bad)
a candidate solution is. An objective function is usually a sum of terms corresponding to different

constraints of the problem, either soft or hard. The second step of the approach is to minimize the
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energy function. This is often a very hard task. Energy functions that arise in vision usually have

thousands of dimensions and many local minima.

Recently, new fast energy minimization techniques based on graph cuts have emerged. These
techniques can be applied to a restricted class of energy functions of discrete variables. An advantage
of these methods is that in certain cases they can produce a global minimum of the energy or in other

cases a local minimum with some strong properties.

Graph cut theory was first applied in the field of computer vision at the end of 1980s’ by Greig et.
AL[15]. In [15], they showed that a certain important energy function in vision can be efficient
solved by powerful min-cut/max flow algorithm. Image restoration was taken as an example by
obtaining the maximum a posterior (MAP) estimation of a binary image using the graph cut
technique. Unfortunately, the graph cut technique in [15] remained unnoticed for almost 10 years
mainly because binary image restoration looked very limited as an application. In the late 90’s new
computer vision techniques appeared that figured how to use min-cut/max-flow algorithms on graphs
for more interesting non-binary problems. The results in [16] showed that iteratively running min-
cut/max-flow algorithms on appropriate graphs can be used to find provably good approximate
solutions for even more general multi-label case when interaction penalties are metrics. A growing
number of publications in vision use graph based energy minimization techniques for applications
like image segmentation [17], stereo reconstruction [18], object detection and tracking [19],

augmented reality and others.
Graph cut based methods construct a graph topology to minimize the specified energy function
activated by the max-flow/min-cut algorithm [20], so that the min-cut on the graph is of minimal

energy among all the cuts separating the terminals. Theoretically, G = <V,E> is a graph which

consists of a set of nodes V" and a set of edges £ that connect them. The node set V = {s,t} U P

contains two special terminal nodes, which are called the source s, and the sink #, and a set of non-
terminal nodes P . Figure 2-11(a) shows a simple example of a graph with the terminals sand?.

Generally, non-terminal nodes represent pixels (or voxels), and source and sink correspond to the
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labels assigned to the non-terminal nodes. Each graph edge is assigned some nonnegative weight or
cost w(p,q). A cost of a directed edge (p,q) may differ from the cost of the reverse edge (g, p).
An edge is called a ¢ —link if it connects a non-terminal node in P with a terminal. An edge is
called a n—link if it connects two non-terminal nodes. A set of all (directed) n —links will be
denoted by N . The set of all graph edges E consists of n—linksin N and t—links
{(s, p), ( p,t)} for non-terminal nodes p € P . In Figure 2-11, ¢ —[inks are shown in red and blue,

while n — links are shown in yellow.

source source

cuf..

(a) A graph G (b) A cut on graph G

Figure 2-11. An example of graph construction in [15] (Edge cost are reflected by the
thickness).

An s/t cut C (sometimes it is called a cut) is a partitioning of the nodes in the graph into two
disjoint subsets S and T such that the source s is in S and the sink ¢ is in 7" . Figure 2-11(b)
shows one example of a cut. The cost of a cut C = {S,T} is the sum of costs/weights of “boundary”
edges (p,q) suchthat p e Pand g €T . If (p,q) is a boundary edge, then sometimes it is said that
cut C severs edge (p,q). The minimum cut problem is to find a cut that has the minimum cost
among all cuts. One of the fundamental results in combinatorial optimization is that the minimum
s/t cut problem can be solved by finding a maximum flow from the source § to the sink #. For
informal example, maximum flow is the maximum “amount of water” that can be sent from the
source to the sink by interpreting graph edges as directed “pipes” with capacities equal to edge
weights. The theorem of Ford and Fulkerson [20] shows that a maximum flow from sto ¢ saturates a

set of edges in the graph dividing the nodes into two disjoint parts {S,7} corresponding to a
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minimum cut. Thus, min-cut and max-flow problems are equivalent. In fact, the maximum flow

value is equal to the cost of the minimum cut.

The min-cut/max-flow algorithm aims to minimize the energy function over the image labeling. How
to define the energy function for efficiently representing the properties of the image becomes the key
problem in the graph cut theory as well as its applications. The energies addressed by Greig et. Al.
and by most later graph based methods can be represented as a posterior energy in the well-known
maximum a maximum a posteriori estimation of a Markov Random Field (MAP-MRF) framework:
E(f):ZI;E,,(f,,) + /%Z):K/p,q(fp,fq) (2-44)
pPe P.q)€

where, f = {fp| pE P} is the labeling of image, P is the set of pixels, and N is the pixel’s

neighborhood system. An example of image labeling is shown in Figure 2-12. The first term,

D,(f,), is called the data term and corresponds to the t—link in the graph. It measures the
likelihood of a certain pixel p assigned to the label /) and how well the label f fits the pixel p
given the observed data. The second term, V', (f,,f,) (called smoothness term) is represented by

the n—/link in the graph. It evaluates the penalty of discontinuities between p and g which are

assigned with f° and f, respectively. A is a parameter to weigh the importance of these two terms.

EEEENETO
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EECI[]NE
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(a) An image (b) A labeling

Figure 2-12. An example image labeling.

In Figure 2-12(a), an image is a set of pixels P with observed intensity /, for each p e P. A

labeling f shown in Figure 2-12(b) assigns some label f, € {0,1,2} to each pixel p € P. Such
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label can represent depth (in stereo), object index (in segmentation), original intensity (in image
restoration) or other pixel properties. Normally, the set of possible labels at each pixel is finite. The

thick lines in Figure 2-12(b) show labeling discontinuities between neighboring pixels.

Graph cut is not limited to solving the regular binary-label segmentation problem, but is also
applicable to multi-label energy minimization. In [16], a multi-way cut based on expansion move ( &
expansion or @ — ffswap ) is proposed to handle the multi-value labeling by repeatedly minimizing
the energy function containing three or fewer binary variables. A fast algorithm for graph-cut
optimization including expansion move with source code is implemented and public in [21], which
drives the extensive application of graph cut technique in various optimization problems.

24 SUMMARY

In this chapter, the projective geometry has been introduced firstly which uses homogenous
coordinates to describe the position of 2D and 3D points. Employing the homogenous coordinates,
we show that the projection of 3D points onto the 2D image plane can be defined by a linear
projection matrix. This projection matrix can be decomposed into intrinsic and extrinsic camera
parameters. The intrinsic matrix K comprises the internal parameters of camera such as focal length
principal point and skew parameter. The extrinsic matrix [R | T'] indicates the external position and
the orientation of the camera in the 3D world coordinate. We also present how a 2D point can be
back projected to the 3D space, which is important for depth estimation and view synthesis in later
chapter in this thesis. Then, the calibration technique using a planar chessboard pattern that enable
the estimation of these camera parameters has been presented. After introducing the geometry of a
single camera, we have introduced the case of the two view geometry which describes the geometry
relationship between two images. The key relationship is that corresponding image points must lie on
particular image lines, i.e. epipolar lines. To simplify the search of point correspondences in the two
views, we have described the stereo calibration and stereo rectification which are particularly useful
to estimate the 3D structure of a scene addressing in the next chapter. The stereo calibration consists

of determination of the parameters of the two cameras and the geometrical relationship between the
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two cameras in space. In contrast, stereo rectification is the process of correcting the individual
images so that they appear as if they had been taken by two cameras with row-aligned image planes.
Finally, the graph cut is briefly introduced which is used to minimize our energy functions in the in

later chapters.
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3
DEPTH ESTIMATION

3.1 INTRODUCTION

From the earliest inquiries into visual perception, it was know that we perceive depth based on the
different in appearance between left eye and right eye. Under simple imaging configuration (both
eyes or cameras looking straight ahead), the amount of horizontal motion or disparity is inversely
proportional to distance from the observer (as we will see in later section). While the basic physics
and geometry relating visual disparity to scene structure are well understood (section 2.2.1),
automatically measuring this disparity by establishing dense and accurate inter image correspondence

is a challenging task.

An 2D image captured by a traditional single camera loses depth information of the 3D scene,
which is a useful and important cue for perception and visualization of the real word environment.
Since depth information provides the users with 3D feeling of the scene, depth acquisition and
reconstruction have been attracted extensive attentions in the industrial and research communities. In
general, depth of the scene can be obtained by two approaches: active methods by measuring depth
directly from digital device such depth camera and time flight (70F ) camera; passive methods by

estimating depth from the captured images in a computational way.

Recently, with the demand of entertainment and progressive development of digital device, camera
capable of generating 3D models has been emerged. 3D depth camera capturing video with the
depth information in real-time is being widely used in 3D broadcasting and virtual reality system to
provide the user with interactive and realistic experience of 3D world. Many kinds of 3D camera
products currently are available on the market, especially a new class of active depth sensing system
based on the time-of-flight (7oF ) principle such as SR4000 designed by MESA [22]. ToF
cameras are active sensors that determine the per-pixel depth value by measuring the time taken by

infrared light to travel to the object and back to camera. PrimeSense’s 3D Sensors [23] is a digital
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device manufactured by a fables semiconductor company. It works by coding the scene with near-IR
light, which is invisible to the human eye. The solution then used a standard off the shelf CMOS
image sensor to read the coded light back from the scene. This is the process that enables depth
acquisition and makes PrimeSense’s solutions accurate. Figure 3-1 shows an example of 3D depth

camera products.

ohae (V| broge

(a) SR4000 designed by MESA [22] (b) PrimeSense’s 3D Sensors
Figure 3-1. An example of 3D depth camera products.

Even though the depth camera provide a convenient and straightforward way for acquisition of depth
dimension, the cost of system increases by introducing depth camera with additional price. However,

their accuracy use to be much higher and some of them are used to obtain the ground truth.

In this chapter, we mainly focus on passive methods, which will reconstruct depth from multiple
images/views of the same scene using computational algorithms. A comprehensive review and our
depth estimation algorithm will be discussed in the following sections.

3.2 THE FORMULATION DEPTH FROM STEREO

Assume that we have a perfectly undistorted, aligned and measured stereo rig as shown in Figure 3-
2: two cameras whose image plane are exactly coplanar with each other, with exactly parallel optical

axes that are a known distance part and with equal focal length f, = f,. Also, assume that the
principle point O, and O, have been calibrated to have same pixel coordinate in their respective

left and right image. Let’s further assume that images are row aligned and that every pixel row of one
camera aligns exactly with the corresponding row in the other camera (remembering that the process

of rectification (in section 2.2.3) is how we get things done mathematically when these assumptions
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are not physically true). We will also assume that we can find a pint P in the physical world in the left
and the right image at p, and p,, which will have the respective horizontal coordinate x, andx, .

In this simplified case as shown in Figure 3-2(a), we can derive the depth Z by using similar

triangles as:

T—(x-x) T ST _E

Z-f z - d G-1

The Equation (3-1) shows that the depth is inversely proportional to the disparity between these

views, where the disparity is defined simply by d = x, —x,.

A A ,%)P(X,Y,Z)T

2"
ll’ 2 X I, / 4 ) I,
‘ ,’ Z \\ ‘ e
0g] ° 1 S 0; P1 P
’ -\ A
g > A R :
Y - C 1 C 2
C] C.’ 4 caniy cam,
Weesssassnsncs o= > 4-romeemecmeoseeosneon. >
T T
(a) with a perfectly undistorted, aligned stereo rig (b) two aligned camera capturing rectified images

Figure 3-2. The restricted case of depth estimation.

In the previous chapter, we have introduced the fundamentals of multi-view geometry that model the
projection of a 3D point onto the 2D image plane. Now, we employ the geometry of multiple views
to solve the inverse problem of estimating the 3D position (depth) of a point using multiple 2D
images. The previous assumptions can be considering as the restricted case of two rectified views

(see Figure 3-2(b)). Without loss of generality, the world coordinate system is selected such that it

coincides with the coordinate system of camera 1. In such a case, it can be deduced that C; =0, and

R =1

, = 1,,,. Since images are rectified, both rotation matrices are equal: R, =R, =/, ,. Camera 2 is

located on the X axis so C, =(7,0,0). Finally, both cameras are identical, so that the internal

camera parameter matrices are equal, leading to
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/0 o
K=K =K,=|0 f 0, (3-2)
0 0
According to the Equation (2-13), we have
X X X, X T
Ay, |=K|Y | and 4, y, |=K| Y |-K| 0| (3-3)
1 Z 1 Z 0
By combining both previous relations, it can be derived that
(XZ ) =M % (3-4)
Y2

Again the Equation (3-4) provides the relationship between two corresponding pixels and depth Z
of the 3D point for the case of two rectified views. It is the identical the relationship we obtained in

Equation (3-1).

Left Center Right
27586 020 503 303
Search ||, 5 , 5 5 37 3 3045 020
Image . .
8 4 6 8 5 1 1 3 311 1 3 4
25 s SAD> . -
i =20 =25 =17
Window {f? } > =
§ 3 9 Right part of search image is most similar to window

Figure 3-3. An example of Sum of Absolute Different (SAD).

According to the above described restricted case, a simple depth estimation algorithm can be shown

as follows. The left and right rectified images are denoted by /, and I,, respectively. To estimate
depth, it is necessary to find the correspondence point (p,, p,) for each pixel. Selecting the pixel p,
as a reference, we can find the pixel p, that corresponds to pixel p, along the epipolar line (as
shown in Chapter 2). Since the images are rectified, we can search the point p, along the same row

(same y coordinate) as the point p, in the left image. The similarity between pixels p, and p, is
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measured using the matching window block (W) surrounding pixels. Block matching works by
using the Sum of Absolute Different (SAD) (see an example in Figure 3-3). To limiting the length

of a search, the minimum disparity d_. (the search should start) and the maximum disparity d

min max

are defined (usually d . =0). The disparity d of a pixel p, = (x,y) in the left view /, can be find
by
d(x,y)= argmin Z ‘Il(x+i,y+j)—Iz(x+i—c7,y+j)‘. (3-5)
oin <A <d o (i- 12

Repeating the process shown in Equation (3-5) for each pixel in /,, a dense disparity maps is
obtained. From the obtained disparity map, we can get the depth image by using the relationship in
Equation (3-1). This is a very simple estimation depth algorithm, however the estimated disparity
values is inaccurately. For example, when capturing two images with two different cameras, the
contrast settings and illumination may differ. This results in different intensity levels across the views

yielding unreliable matches.

The estimation of depth using correspondence point is challenging problems in many situations such
as in texture-less region, in occluded regions or change of illumination across views. In the next

section, we are review the state of art work on depth estimation from literature.

3.3 PREVIOUS WORKS ON DEPTH ESTIMATION

3.3.1 Single Image/Video Depth Estimation

With the recent explosive for 3D media contents, converting existing single still images or
monocular videos to 3D contents is a problem of considerable practical interest. In the following
part, we will briefly review the research works of this topic including depth estimation from a single

still image and depth estimation algorithms used in 2D to 3D video conversion.

Depth estimation from a single still image is a difficult task, since depth typically remains ambiguous
given only local image features. Some works try to solve this problem by using single using
monocular cues such as texture variations, texture gradients, occlusion, haze, defocus [24, 25]. For

example, many objects’ texture will look different at different distances from the viewer. Texture
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gradients, which capture the distribution of the direction of edges, also help to indicate depth. Haze is
another depth cue, and is caused by atmospheric light scattering. There are some algorithms that can
perform depth reconstruction from single images in very specific settings. For example, in [26]
authors performed surface reconstruction from single images for known, fixed, objects such as hands
and faces. Methods such as shape from shading [27] and shape from texture [28] generally assume
uniform color and/or texture, and hence would perform poorly on the complex, unconstrained, highly
textured images that we consider. In [29], authors reconstructed high quality 3D models from several
images, but they required that the images also contain “assistant” objects of known shapes next to the
target object. In some recent works [30, 31], they have presented the algorithms from monocular
image features. For example, in [31], they use a hierarchical, multi-scale Markov Random Field
(MREF) that incorporates multi-scale local and global image features, and models the depths and the
relation between depths at different points in the image. They divide the image into small rectangular
patches, and estimate a single depth value for each patch. They use two types of features: absolute
depth features — used to estimate the absolute depth at a particular patch — and relative features,
which we use to estimate relative depths (magnitude of the difference in depth between two patches).
These features try to capture two processes in the human visual system: local feature processing
(absolute features), such as that the sky is far away; and continuity features (relative features), a
process by which humans understand whether two adjacent patches are physically connected in 3D
and thus have similar depths. They chose features that capture three types of local cues: texture

variations, texture gradients, and color.

Figure 3-4 shows an example of depth estimated from single still image by algorithm [31].
Although, there are many studies trying to study depth from a single image, it still remains a

challenging problem.
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(a) Single image (b) Ground truth ¢) Depth estimated by [31]
Figure 3-4. An example of depth estimated from single still image [31].

The 3D stereo contents are not rich enough but there are still large numbers of 2D videos exist in
different compressed formats. If they are converted to 3D videos, this will offer a more realistic
sense of the scene to the viewer. That is motivation for research in converting 2D to 3D video. The
main purpose of the 2D -to-3D video conversion is to generate the second view video based on the
content of the 2D video, which involve two processes: (1) Depth Estimation and (2) Depth Image
Based Rendering (DIBR) (see detail in Chapter 4). There are three commonly used depth estimation
methods from 2D to 3D conversion applications. “Depth from blur” [32] using the focuses
information of the capture camera to generate the depth map. The depth information is estimated
based on the amount of blur of the object. “Vanishing Point based Depth Estimation” [33] based on
the vanishing point that is the farthest point of the whole image to get the depth map. “Depth from
Motion Parallax™ [34] is based on the fact that objects with different motions usually have different
depths. For example, near objects move faster than far objects and so relative motion can be used to
estimate the depth map. This method is widely used for the depth estimation in 2D -to-3D video
conversion. The motion information can be obtained by block matching algorithm between two

consecutive frames. The relative depth information is calculated by

D(i, j) =AMV (i, j)2 + MV (i, )3, (3-6)
where, MV (i, j),, MV (i, j), are the motion vectors corresponding to the X and Y axis direction.

D(i, j) is the depth information at pixel p(i7, j) and A is a scale factor.
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3.3.2 Stereo Depth Estimation

In computer vision, the topic of stereo matching has been one of the most widely studies and
fundament problems and continues to be the most active research areas. Most stereo matching
algorithms today focus on dense correspondence, since this is requires for application such as depth
image based synthesis (detail in Chapter 4), modeling and some other depth based applications
(object segmentation in Chapter 5, multiple objects tracking in Chapter 6). Now, we review the
dense correspondence algorithms based on the taxonomy and categorization scheme proposed by
Scharstein and Szeliski [35]. In [35], the authors has introduced a set of algorithmic blocks from
which a large set of algorithms can be constructed. It is based on the observation that most of stereo

algorithms perform some subset of following components:
1. matching cost computation or cost function;
2. support of cost aggregation;
3. disparity calculation and optimization;
4. Post processing for refining disparity map.
For example, the introduced simple algorithm in section 3.2 can be broken down into step 1, 2, 3 as:
1. the matching cost is the absolute different of intensity values at a given disparity;

2. the support of the matching function is done by summing of matching cost over square

window with constant disparity;

3. Disparity is calculated by selecting the minimal aggregated value at each pixel.

3.3.2.1 Matching Cost

The first component of any dense stereo matching algorithms is matching cost or cost function that
measures correlation or similarity between pixels in order to determine how likely they are to be in

COI'I'eSpOIldCIlCC.
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The most common pixel based matching costs include, among others, absolute intensity different
(Sum of Absolute Different —SAD, example in Figure 3-3), squared intensity different (Sum of

Squared Different — SSD), Cross Correlation (CC), Normalized Cross Correlation (NCC).

3.3.2.2 Support of the Cost Aggregation

The second component of dense stereo matching algorithms is the support of the matching cost
function. These include single-pixel windows [36], square windows, adaptive windows [37],
shiftable windows [38-40]. Typically, to obtain a reliable matching metric, a large region support
should be used. However, whereas using a large window provides a reliable matching support at an
object surface with smoothly varying depth, an unreliable support is obtained at object boundaries.
To solve this problem, a segment-based approach [41, 42] decomposes the image into a sufficiently
large number of object segments (using for example a color segmentation technique) and assumes
that a single depth value is computed for each segment. Therefore, as the segmentation would follow
the shape of objects, an advantage of such a segment-based approach is that the depth is more

accurately estimated at the boundaries of objects.

3.3.2.3 Disparity Calculation and Optimization
The most important component is the disparity calculation and optimization strategy. Accordingly

the stereo matching algorithms can be categorized into local and global methods.

Local approaches calculate independently the disparity of each pixel using the single matching cost
of the selected pixel, and implicitly make smoothness assumptions by aggregating support. The local
methods emphasize the matching cost definition and cost aggregation steps. The final disparities are
computed by simply choosing the disparity at each pixel associated with the minimum cost value.
Thus, these methods perform a local “winner-take-all” (WTA) optimization at each pixel. Local
optimizations typically yield accurate disparity estimates in textured regions. However, large texture-

less regions tend to produce fuzzy disparity estimates.

In contrast, global approaches explicitly enforce the smoothness assumptions of disparity field and

determine all the disparities simultaneously by applying global cost minimization using various
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optimization techniques. Global methods perform almost all of their work during the disparity
computation phase and often skip the aggregation step. For most of global methods, firstly the global
energy needs to be defined. The objective is to find a disparity function d that minimizes a global

energy. The general global energy is defined as

E(d)=E,

ata

(d) + //”Esmoath(d)' (3_7)
The data term, E,  (d), measures how well the disparity function d agrees with the input image

pair. The smoothness term, £ (d) encodes the smoothness assumptions made by the algorithm.

smooth
To make the optimization computationally tractable, the smoothness term is often restricted to only

measuring the differences between neighboring pixels’ disparities.

Once the global energy has been defined, a variety of algorithms can be used to find a minimum such
as simulated annealing [43], dynamic programming [44], belief propagation [45] or graph-cut [18,
46]. The objective is to find a disparity function that minimizes a global energy, where various

constraints are applied to reduce the uncertainties of disparity map.

Since new stereo matching algorithms continue to be introduced, however according to recent
advances [47], region-based stereo methods are more favored due to their better disparity smoothness
regularization. For optimization strategies, global approaches in general produce more accurate
disparity map, while local approaches have slightly poor results, and tend to produce outliers in the
homogenous area, blur disparity at discontinuous boundary and match failure in occlusion, but is

superior with respect to computational complexity.

3.3.3 Multi- view Depth Estimation
3.3.3.1 Multi-camera System
In the recent years, with the fast improvement of the capability of personal computers and digital
equipment, more and more multi-camera systems with dense or sparse, wide-baseline or narrow-

baseline camera configuration become available, which significantly broaden the multi-view
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applications and enhance the user experience. In this part, we introduce some of among multi-

camera, which have been developed by researchers so far.

9 cameras on the ceiling

10 cameras on each wall (40 in total)

(a) 3D Dome (b) 3D Room
Figure 3-5. Multi-view system in Virtualized Reality Project developed by CMU [48].

The Virtualized Reality Project, started and developed by the Carnegie Mellon University (CMU)
Robotics Institution in 1994, is considered to be the pioneering work in this field. Their virtualization
setup, called the 3D-Dome [48], is probably the first integration of synchronized cameras at multiple
viewpoints. The 3D-Dome (as shown in Figure 3-5(a)), consists of 51 cameras mounted on a 5 meter
diameter geodesic dome. The cameras looked at the center of the dome and had a volume of
intersection close to 3m x 3m x 2m. It uses consumer V'CRs to record the synchronized video from
each monochrome, analog charge-coupled device (CCD ) camera. The system used lenses with 3.6
mm focal length for a field of view close to 90 degrees. The resolution of each camera is 512 x 512
and the capture rate is 30 frames per second ( fps). In 1998, they have constructed the second
generation, called the 3D — Room [49]. The 3D — Room 1is 6.1(L)*6.1(W)*2.7(H) meters. As
shown in Figure 3-5(b), 49 cameras are distributed inside the room: 10 cameras are mounted on each
of the four walls, and 9 cameras on the ceiling. It makes use of 49 synchronized color S-Video
cameras to capture the 640x480 video at 30 fps. The computing system of the 3D — Room is
composed of a control PC and 17 digital PCs . By now, this project has been developed to the third

generation, 3D — Cage . It has 48 cameras controlled by 25 PCs mounted on the gird of all walls.

It can continuously capture full color images with 640x480 resolution at 30 fps for over 2 hours.

In [50], they presented a self-reconfigurable camera array system that can interactively capture and

render 3D virtual scene. This camera system, as shown Figure 3-6, is composed of 48 (8x6) Axis
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205 network cameras located on 6 linear guides. It can capture 640x480 videos at up to 30 fps. The
cameras have built-in HTTP servers to respond to HTTP request and send out motion JEPG
sequences. The most distinguishing characteristic of the system is its reconfiguration because the

cameras are mounted on a mobile platform.

Figure 3-6. A self-reconfigurable camera array system with 48 cameras [50].

3DTV and Free viewpoint Television (F7TV') are the new forms of media communication
representing very important multi-view applications. An example of the multi-view image capturing
system for FTV application developed at Nagoya University [51] is shown in Figure 3-7. The
system consists of one host server PC and 100 client PCs (called ‘nodes’) that are equipped with
JAI PULNiX TM-1400CL cameras. The interface between camera and PC is Camera-Link. The
system has one sync-generator that generates a synchronization signal and the sync signal is
distributed to all the nodes. The system is able to capture 100 synchronized high-resolution video
signals at 30fps. They captured video sequences with different camera arrangements. The first
configuration is a 1-D line arrangement (see the Figure 3-7(a)), in which 100 cameras are
aligned in a line with the camera interval 5cm. Hence, the viewing zone is 5 meters in length.
The orientation of camera is set so that the optical axis of each camera is converged to one
reference point near object. The second system configuration is a half-round camera
arrangement (see the Figure 3-7(b)), in which 100 cameras are set in half-circle shape with
radius 450cm. In this case, the camera interval is 15.7cm. Camera orientation is set to

‘converged’ in a same way as the 1-D line arrangement. The third system configuration is 2-
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D array camera arrangement (see the Figure 3-7(c)), in which 100 cameras are aligned in
20(H) x 5(V) in camera interval S5cm and 20cm, respectively. The optical axes were set to

parallel in this case.

(a) 1-D line (b) 1-D arc (c) 2-D array

Figure 3-7. “100-camera system” at Nagoya University with different camera arrangement:
1-D line, 1-D arc, and 2-D array [51].

Apart from these large camera arrays with tens of cameras, some multi-view capturing systems adopt
sparse configuration with small number of cameras to capture the images for certain applications.
The multi-camera system [52] developed by Interactive Visual Media Group in Microsoft Research

uses an 8-camera array to capture the videos off-line. Eight cameras are placed along a 1D arc

spanning about 30° from one end to the other as shown in Figure 3-8. The images are captured with
high resolution 1024x768 at 15 fps by high-quality PtGrey color cameras with 8mm lenses. To
handle real-time storage of all the input videos, they commissioned PtGrey to build us two
concentrator units. Each concentrator synchronizes four cameras and pipes the four uncompressed
video streams into a bank of hard disks through a fiber optic cable. The two concentrators are

synchronized via a FireWire cable.

cameras

Figure 3-8. A configuration of MSR with 8 cameras [52].
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3.3.3.2 Literature Review for Multi-view Depth Estimation
As introducing in the above sub-section (3.3.3.1), with the growing capability of capturing devices,
multi-view capture system with dense or sparse camera array can be built with ease, which motivates

the development of multi-view techniques and its related applications.

Multi-view depth map estimation has received more attention so far and resulted in a number of
methods with different accuracy and complexity. In [46], a graph model of multi-view stereo images
was proposed with the visibility constraint. The graph model used all the pixels of the multi-view
images as nodes in the graph. Because the graph model exploited all possible interactions among all
the pixels of the multi-view images, it made huge improvement. However, the graph was getting
bigger as the number of multi-view images increased. Because of the property, computational times of
the graph increased as proportional to the number of multi-view images. In [53], depth map for each
view is estimated by conventional algorithm and then the total error minimization process using the
graph cut algorithm is used to obtain simultaneously the depth images at three viewpoints. This
method gives good results but needs to use conventional algorithm to estimate depth map for each
view and long computation time because of graph cut algorithm. Some people use belief propagation
to estimate depth maps. In [54], depth maps are obtained by segmentation and then belief
propagation is used for refining step. Belief propagation and camera optical flow are used in [55],
where depth maps are de-noised. Although depth estimation based on graph model and belief
propagation yields an accurate depth map, they are computationally complex and difficulty in real
time implementation. In [52] multiple images are also utilizing for the estimation of depth map of
each view. Multi stage segmentation method is used to estimate the depth maps. Each independently
segmented color texture image was followed by computing and iteratively refining the disparity
space distribution for each segment and, finally, image matting is used by computing the alpha values
for pixels along the disparity discontinuities. In [56], pairs of images among multiple views are used
to estimate depth map by stereo algorithms and then the depth maps are regularized in a filtering step
and merged for the final depth map. Because depth image are estimated pairwise, the consistency of

depth estimates across the views is not enforced. Another depth estimation method proposed in [57]
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is based on stereo matching. The bi-directional disparity search method and regularization to a spatial
neighborhood of pixels are applied. And the energy function is minimized by graph cuts algorithm.
The resulting computation is less complexity. However, the generated depth maps can be inconsistent
across viewpoints since the inter-view is not fully exploited. Another point is that all above papers

are working with rectified images.

3.4 EXPERIMENTAL EXAMPLE: STEREO CALIBRATION, RECTIFICATION
AND STEREO CORRESPONDENCE

In the previous sections, we have introduced the mathematic relationship behind the camera
calibration and stereo rectification process. In this section, we will show our experimental results of

these processes.

We use the low-cost Minoru 3D webcam [58] for our experiment. The specifications of this webcam

are provided in Table 3-1. Our implementation use C++ and the OpenCV’s Libraries [59].

Table 3-1. Minoru 3D webcam specification.

Interface: USB 2.0
Max Resolution: | 800x600

Maximum frame rate: | 30 fps

Horizontal FOV 42°

Manual focus from 10cm to infinity

VGA CMOS Sensor |

Indoor use only since the
aperture is always open

e Stereo calibration

To calibrate a camera, OpenCV proposed to use a chessboard pattern to generate the set of 3D scene
points. This pattern creates points at the corner of each square and since this pattern is flat we can
assume that the chessboard is located at Z = 0 with the X and Y axes well aligned with the grid.

The performing calibration includes two steps: chessboard image capture and calibration calculation
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(c) right camera image (b) located chessboard pattern of (c)

Figure 3-9. An example of our Chessboard calibration Technique.

Printed of the chessboard pattern onto a flat surface, our implementation includes follows steps:

Providing details about chessboard pattern: number of inner vertical and horizontal squares and

the size of a square.

Holding the chessboard pattern in front of the webcam so that the chessboard is visible in both

views (see the Figure 3-9(a) and Figure 3-9(c)).

Detecting the corners of showed chessboard pattern (see the Figure 3-9(b) and Figure 3-9(d)).
It is nice that OpenCV has functions to do this work automatically with sub-pixel accuracy
(findChessboardCorners() and cornerSubPix()). When a set of chessboard corners has been

successfully detected, these points are added to our vector of image and scene points.

Once a sufficient number of chessboard images have been processed, we can initiate the
computation the calibrate parameters by using OpenCV’s function stereoCalibrate(). In [2],
authors suggest that using enough number of chessboard image so that 2NK > 6K + 4 holds,
where N = number of corners and K = number of images, should be sufficient to get an accurate
calibration as long as the chessboards are taken from different viewpoints at different depths. In

practice, 10 to 20 chessboard images are sufficient. In our implementation, we took 20 images
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and the spatial configuration of the two cameras and the calibration planes are being displayed in

a form of a 3D plot in Figure 3-10.

Extrinsic parameters

Calibration images

(a) Calibration images (b) Captured calibration planes in a form of a 3D plot
Figure 3-10. The spatial configuration of the two cameras and the calibration planes.

The outputs of our calibration process are the intrinsic parameters, distortion coefficients of the left
and right cameras, respectively. We also find out the rotation matrix and translation vectors relating

the right camera to the left camera. These outputs are shown in Table 3-2.

Table 3-2. Calibration parameters of Minoru 3D webcam.

Left camera Right camera
853.493 0.0 336.82 853.493 0.0  346.534
Klzf/i = Kright =

0.0 853493 212.342 0.0 853493 219.953

Intrinsic parameters
0.0 0.0 1.0 0.0 0.0 1.0

. D, =[-0.0786 —0.6181 0.0 0.0 0.0]| D,, =[-0.1567 1.2356 0.0 0.0 0.0]
Distortion ‘

Extrinsic parameters

(position of right 1.0 0.0 0.0 0.9999 —0.0028 0.013
camera with respect R, =100 1.0 0.0 R, =| 0.0025 0.9997 0.0219
to left camera) ' 0.0 0.0 1.0 -0.013 -0.0219 0.9997
0.0 -5.3977
Translation vector T, =00 Ty =| —0.0432
0.0 —-0.3967
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e Stereo Rectification

(a) Original left and right images pair

(b) Rectified left and right image pair

Figure 3-11. Stereo rectification: (a) original pair; (b) rectified pair; note that the barrel
distortion (in (a)) has been corrected and the scan lines are aligned in the rectified images.

As discussed in previously, it is easiest to compute the stereo disparity when the two image planes
align exactly. However, a perfectly aligned configuration is rare with a real stereo system, since the
two cameras almost never have exactly coplanar and row-aligned image planes. Instead of physically
stereo setups, an image rectification approach will be to mathematically align the two cameras into
one viewing plane so that pixel rows between the cameras are exactly aligned with each other. We
have introduced the Bouguest’s rectification algorithm in section 2.2.3 and it is luckily that this

algorithm was implemented in OpenCV.

Applying the Bouguest rectification method, we obtain the results of stereo undistortion and

rectification of a stereo pair of images as shown in Figure 3-11.
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e Generation of Disparity Image

Once the calibration and rectification of the camera system is done, the generation of disparity image
can be performed. Here we show the implemental results of three correspondence: Block Matching
(BM) based on the research in [60], Semi Global Block Matching (SGBM) based on research in [61]
and Graph cuts proposed by [62]. According to the research community evaluation on Middlebury
stereo images test, Graph cuts is most accuracy of correspondence algorithms and performs slowest;
Block Matching is the worst accuracy but it takes a shortest time. SGBM method yields average

accuracy and performs rather fast.

Figure 3-12 shows the estimated disparity from stereo images captured by Minoru 3D webcam.

(a) Color image (left camera) (b) Disparity map estimated by BM method

(c) Disparity map estimated by SGBM (d) Disparity map estimated by Graph cuts [62]

Figure 3-12. Estimated disparity maps from stereo images captured by Minoru 3D
webcam.

In our implementation, we also estimate the disparity maps using some stereo images given by

Middlebury Stereo Datasets [63]. Figure 3-13 shows our implementation results.
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(c1) “Tsukuba” disparity map
estimated by BM method

(al) “Tsukuba” image (left
camera)

(bl) “Tsukuba” ground truth

(d1) “Tsukuba” disparity map (f1) “Tsukuba” disparity map
estimated by SGBM estimated by Graph cuts

(c2) “Teddy” disparity map

(a2) “Teddy” image (left camera) (b2) “Teddy” ground truth estimated by BM method

o RPN : g
_— S — _
(d2) “Teddy” disparity map (f2) “Teddy” disparity map
estimated by SGBM estimated by Graph cuts

(c3) “Cones” disparity map

(a3) “Cones” image (left camera) estimated by BM method

7
</ ?

@

A A
(d3) “Cones” disparity map (f3) “Cones” disparity map
estimated by SGBM estimated by Graph cuts

Figure 3-13. Estimated disparity maps using stereo images from Middlebury Stereo
Datasets [63].
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3.5 PROPOSED DEPTH ESTIMATION ALGORITHM

This section presents a multi-view depth estimation algorithm that utilizes all views simultaneously,
enforces a smooth variation of depth pixels within the image and consistent depth images across the
views. The proposal algorithm is based on three constraints, i.e. intra-line, inter-line and inter-view
smoothness costs which make the smooth variation of depth values in scanline, between scanline and
consistent depth among views. These smooth costs are integrated into the one dimension
optimization dynamic programming algorithm which helps in finding a global optimum.

Experimental results on several multi-view data sets are encouraging.

3.5.1 Introduction

This proposal method deals with the problem of estimation depth of objects in the scene from a set of
multiple views or images. Depth information recovered from multi-view image/video serves as an
important cue for many applications such as virtual view synthesis, multi-view video coding, multi-
view object segmentation and others. However, estimating an accurate depth map is a complex

process, which makes real-time implementation challenging.

In section 3.3, we already introduced the previous works on depth estimation. Most of the introduced
methods estimate depth using rectified views. As we known in the rectification image section, the
rectification process can lead to excessive and unwanted image distortion. Moreover, multiple pre-
processing (image rectification) and post processing (image de-rectification) procedures may be
necessary. In multi-view system, multiple images are available so that an efficient depth estimation
algorithm should employ all views available. Many algorithms estimate depth map from multiple
views are reviewed in section 3.3.3. In the following parts, we will propose the algorithm that utilizes
multiple un-rectified images simultaneously to estimate depth. Three smooth costs, i.e. intra-line,
inter-line and inter-view smooth costs are used to enforce a smooth variation of depth pixels within
the image and among the images. These smooth costs can be integrated into the one dimension
optimization dynamic programming algorithm which helps in finding a global optimum with

polynomial complexity.
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3.5.2 Proposal Depth Estimation from Multiple Images

It should be noted that there exists a relation between the depth of an object and its corresponding in
the image. For instance, the near and far objects are seen as large and small in the image,
respectively. Thus, a near object can be observed with higher resolution than a far object so that the
depth resolution of a near object should be higher than that of a far object. To dealing with depth

sampling, we use the plenoptic sampling method presented in [64]. In [64], they employ a non-linear

quantization of depth between a minimum and maximum depth Z , and Z . Since the depth

image is usually the gray image with intensity with the range between 0 and 255, i.e.0 < d <255,

the relation among depth Z, nearest Z_ . , and farthest Z__ can be expressed as:

1.0

7= .
d ( 1.0 1.0 ] 1.0 (3-8)
- +

2550 \ 2. Z Z

max max

In such a depth image, pixel value d . = 0 represents the farthest 3D point with depth being Z

max *

and the pixel value d_, = 255 represents the nearest 3D point with depth being Z,, .

We propose an algorithm which is based on one-dimensional optimization to estimate depth images.

A vector of depth pixel value D={d_ ,d,,.,d (or equivalent the vector of

max }

Z={Z 2,2, }) along a scanline is computed to minimizes the energy function E(D),
defined by

E(D) = Edata (D) + Esmoolh (D)’ (3_9)
where, £, (D)and E_ (D) are the matching cost and smoothness cost, respectively. These

costs are defined as follows.

3.5.2.1 Matching Cost E,, (D)

Our approach employs multiple views and estimates the depth using a correlation table C(x, y,Z,)
similar to the Disparity Space Image (DSI) in [65]. The C(x, y,Z_) structure is a 2D table of size
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Z .. X w that contains the matching cost of all pixels along a scanline at all possible candidate depth

values Z, € [Z min s Z ] Here, Z, .. and w correspond to the number of possible depth values and
the column of image (image width), respectively. The objective of the algorithm is then to calculate

the depth sequence that minimizes the total cost associated with the path through the correlation

table. This minimum-cost path can be calculated using a dynamic programming algorithm.

0o 1 , . . . w «
e I e N e I B O
gU 0 O O e O
ziJO oo - o
vz N 000 - 00

Z matching cost

Figure 3-14. Correlation table with all matching cost for all depth value a long scanline.

In our algorithm, an entry in the correlation table C(x,y,Z,) is calculated using the sum of the
correlation measures over all image views [ , specified by

Couy.Z)=2, Dl (x=i,y= ) =1, (x, =iy, = )| (3-10)

ke, (i)W

Given selected pixel from the reference view p, =(x, ,y, ,])" and candidate depth value Z,, the

candidate pixel positions p, =(x,,y,,1)” in neighboring views are calculated as follows.

In the first step, for each pixel p, =(x, ,y, ,1)” in the reference image and a candidate depth value

Z,el{Z,,Z,,.,Z,}, we need to find the 3D world point P = (X,Y,Z,)" . The 3D world point P

can be computed using the back-projection relation which is based on internal and external camera
parameters that indicate the location and orientation of cameras according to Equation (2-14) and can

be written as:
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(X,Y,Z)" =/1k,R1:,.]K/:,.]Pk,. —R,;“Tkr, (3-11)
where K, is an 3 x 3intrinsic matrix describing internal parameters of the reference camera £, .
R, is a 3 x 3rotation matrix indicating the external orientation of the reference camera and 7, is a

3x1 translation vector describing the external position the reference camera. To compute the
intrinsic parameter K and extrinsic parameters, i.e. R and T of a camera, people usually use the

calibration technique as discussing in section 2.1.4 and section 2.2.2. J, is a positive scaling factor

defining the position of the 3D point.
If we know the scaling factor A, , we can obtain the value of X and Y of the 3D point. Since we

know Z  thus 4, is calculated by:

Z +C
ﬂ'k — c 3 ,

’ Z, (3-12)
where (z,,2,,z,) = R,;’_IK;_‘pkr,(Cl,Cz,Q) =-R'T,,.

r

In the second step, the candidate pixel positions in neighboring views are calculated by projecting the

calculated 3D point P =(X,Y,Z.)" onto each neighboring view k according to the Equation

- , providing a correspondin 1XE1 correspondin 1X€l (X, ,1 Or each view 10r whicn:
(2-13), providing ponding pixel ponding pixel (x;,y;.1)" fi h view for which

Ax,y ) =K,R (X, Y, Z) +K,T,, (3-13)
where, K, , R, and 7, are representing the intrinsic matrix, rotation matrix and translation vector of
the neighboring camera k, respectively. These two steps are repeated for depth candidates Z,_, so

that a corresponding similarity can be measured.

By exploiting camera parameters, multiple views can be employed simultaneously so a reliable
similarity value can be obtained. The similarity measure among the selected pixel and the pixels in

neighboring views is measured using the SAD and the matching cost is stored in a correlation table

C(x,y,Z,) . This idea is illustrated by Figure 3-15.
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k2 37 ka

K3
Reference view

Figure 3-15. Given a pixel p(x,y) in the reference view, the algorithm test the vector of depth
candidate Z.. For example, candidate Z; yields the consistent color across views, it should
be selected as the final depth value.

The term £, (D) in Equation (3-9) represents the matching cost of all pixels along the scanline

data

defined as:

Edata(D):ZC(xayazc)a (3—14)
x=0

where C(x, y,Z_) represents the cost of matching function computed by Equation (3-10).

3.5.2.2 Smoothness Cost E, (D)

To enforce a smooth variation of depth pixels within the image and among the images, we introduce

three constraints:

1) Smooth variation of depth values intra scanline between two58neighboring pixels in the

reference image (namely intra-line penalty cost);
2) Smooth variation of depth values between two scanlines (inter-line penalty cost);
3) And consistent depth values across views (inter-view penalty cost).

A depth image is estimated by minimizing two objective functions which are combined above

constraints with dynamic programming algorithm in two following steps.
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Step 1: Initial Depth Map for Each View

In this step, we wish to enforce the constraints that consecutive image scanlines should have smooth
depth variations along and across the lines. We denote the objective function for one view at the first

step as:

EI(D)ZE (D)+Esmooth] . (3'15)

data

Depth image for each view is estimated with the intra-line and inter-line constraints, so we define the

smoothness cost for this step as:

E smoothl — E intra—line (D) + Einter—line (D) (3'1 6)

The term E.

intra—line

(D) in Equation (3-16) is designed to make it more likely that a pair of adjacent
pixels p(x—1,y)and ¢(x,y) along a scanline in the reference image with similar intensity would
end up with similar disparity. For example, if the neighbor pixel p and g have the similar intensity,
the intra-line penalty cost is low if they have similar depth value and the cost is high if they have

different depth value.

Practically, the cost function integrating the intra-line penalty cost can be written as:

£ pyBuns @ i d, (xy)—d, (c—1y)|<T, G17)
intra-tine Eitra 2 (D) otherwise '
The two functions £, ., (D)and E, ., (D) are defined as following
YAld, y)-d, =Ly i | @ - 1, (-Ly)| <T,
E. D)=<2 5
1 (D) Z a, A ‘dk’_ (xy)—d, (x- l,y)‘ otherwise
(3-18)
Z AT, if ‘]k,. (x.y)— I, (x-Ly)|<T.
E. D)=1 .
2 (D) > a AT, otherwise

Here, D is the vector of depth pixel values d, (x,y)along a scanline, d, (x, ) the estimated depth

at position (x, y)in the reference image with index k,, k, varies between 1 < k, <N, for the N
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views. A, and o, > I (typical scalar factor) are control parameters used to penalty variations along
the scanline. 7, is a different depth threshold and 7, is threshold of intensity variation (in our

experiment, weset A, =1, o, =3, T, =3and 7, =10).

Since one-dimension dynamic programming optimization is performed independently for each

scanline, which has led to horizontal line based streaking artifacts in the depth image. Voiding this

artifact, we introduce an inter-line penalty cost E (D) to enforce smooth variations of depth

inter—line
values across scanlines. In practice, the inter-line penalty cost can be defined as:

Yl ) -d (y-D| i |d Gy —d, xy-1)|<T,
E; -line D)= * s '1
inter-1 ( ) z azj.sz (3 9)

otherwise

where, similar to intra-line cost A,, and «, (typical scalar factor) are control parameters used to
penalty variations between two the scanlines. 7, is a different depth threshold (in our experiment,

weset 4, =1, a,=1and T, =3).

Step 2: Depth Image Refinement

The aim of this second step is to refine the initialization depth images from the first step such that the
final depth images are consistent across the views. In this step, we wish to enforcer the constraint that
objects should have consistent world depth values in all depth images. We encode the inter-view

constraint using the following objective function:

E2 (D) = El (D) + Einter—view (D) (3'20)

The inter-view penalty costs can be written as

w N
Eintcrﬁvicws (D) = Z Z ﬂ’v

x k+#k,

dk,. (e, ) —d (X, p,)

, (3-21)

where, A, is control parameters used to penalty variations among views. The depth d, (x,y) and

d,(x,,y,)correspond to the depth of pixel (x,y) in the reference view with index k,and the depth
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of pixel (x,,y,)neighboring views k, respectively. The value of the depth d,(x,,y,) is
determined by projecting pixel (x,)) in the reference view k,onto the neighboring views & which

provides the pixel position (x,,y,)and the corresponding depth d, (x,,y,) was computed in the

first step.

3.5.2.3 Noise Reduction Based on Plane Fitting

The goal of this optional processing is to improve the quality of depth images for each view by
applying a noise reduction algorithm. The most challenge is filter noisy pixels whereas preserving the
accuracy of depth pixels along object borders. To solving this problem, we propose noise-reduction

algorithm proceeds based on plane fitting as following steps:
Step 1: the color texture image corresponding to the considered depth image is segmented.

The aim of this step is to segment the color image into regions correspond to a piece of the object
surfaces. Because the object surfaces are likely smooth regions in the depth image so the
corresponding depth image segments can be approximated by plane. Any algorithm that
decompresses an image into homogeneous color region will work for our purpose such as watershed
segmentation algorithm [66], mean shift segmentation [67]. For our implementation, we used mean

shift segmentation algorithm [67], an example is shown in Figure 3-16.

Figure 3-16. Original “Break-dancers” image (on the left) and the corresponding segmented
image using mean shift segmentation algorithm (on the right).

Step 2: plane fitting within each segmented region by means of 3D planar surfaces according to:
ax+by+c=27

b (3-22)
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where (x,y) is an image point p and corresponding depth value Z . a,band care the linear

function parameters of each segmentation.

Ala,b,c]" = B, (3-23)

where each row of 4 is [x,y,l]vector for a pixel and each row of B is its corresponding Z .

To estimate unknown parameters (a,b,c), we using the random sample consensus (RANSAC)

algorithm [68]. The RANSAC calculate the plane parameters as follows:

1. In each segmented region, first we randomly select three pixels denoted by (x;,y,) and their

corresponding depth value Z,, with i =1,2,3. A test plane from the three selected points is

created by:

xo » 1a Z
x, vy, l|b|=|Z,| (3-24)
x; oy, 1jL€ Z,

2. The candidate parameters (a, b, c) are computed by solving the linear equations system.

3. Test the remaining points in the segmented region against this fitted plane and counts the
number of pixels (inliers) that support for this model with in a given error threshold. The

equation used to determining if a given point is a inliers is

|axl. + by, +c—Z,|
Ja? +b% +1

. 1 D x': i’Zi ST
]nlzer(x,-,y,-’Zi):{() Dlgxl i Z;>TD’
i i) 2“0 D

Di(xi’yi’Zi):
(3-25)

where D, (x,,y,;,Z,)is the distance from point (x;,y,,Z;)to the fitted plane and 7, is a

distance threshold.

4. Repeat steps 2 and 3 until stopping criteria is reached. Usually iteration until the maximum

number of inliers is greater than a set threshold, or reaches the maximum iteration number.
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The parameters with biggest support are selected as the planar parameters of segmented

region.

This technique is performed for all image segments and we obtain the refined depth map.

3.5.3 Experimental Results

In this section, we evaluate the accuracy of our depth estimation algorithm describing in previous
section. The proposed depth estimation algorithm has been tested on some multi-view data sets such
as “Break-dancers” and “Ballet” [69], which is utilized in multi-view coding, rendering and depth
estimation research. In the following parts, we first provide an objective evaluation and, second,

subjective evaluation of depth image quality.

For objective evaluation, basically we have two approaches. The first approach is a direct method
which is based on the comparison with ground-trust depth image. However, the ground truth multi-
view depth images are not usually available. The second approach is an indirect method which is
based on rendering quality evaluation. This technique is based on the notion that the quality of the
rendered image depends on the accuracy of the estimated depth image. Generally, the more accurate
a depth image is, the higher the rendering quality becomes. In this experiment, the synthesis of

virtual image is carried out using the simply 3D warping synthesis algorithm, which is presented in

the next Chapter 4. The synthesis image (/) is rendered at the same position and orientation of a

selected view (), i.e. virtual camera has the same external and internal parameters as selected

camera. In this method, the quality of calculated depth image is measured objectively by calculating
the Peak Signal Noise Ratio (PSNR) of the synthesis image /, and the captured image /_. This

idea is shown in Figure 3-17.

Before computing PSNR , the image is converted from RGB color space to YUV color space, and Y

channel is used for calculation. Y channel is defined by

Y(i,j)=0299R(ij)+ 0.587G(i,j)+ 0114B(ij). (3-26)

The PSNR can be calculated by
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PSNR =101o (ﬁ) (3-27)
8108y 1sE”

and Mean Square Error ( MSE ) is computed by

w

I T o N
MSE = Z Z Ycaptured (lﬂ J) - Ysynthesis (lﬂ ]) ° (3'28)
w-h T3
where w and A are the width and the height of the images, respectively.
Depth
based view
synthesis
Reference view 3 with its Reference view 5 with its
estimated depth map estimated depth map

Synthesized view 4 (/)

PSNR, SSIM

t

Captured view 4 (1)

Figure 3-17. The idea to objectively evaluate the quality of depth map via view synthesis.
The PSNR values which measure the quality of synthesized image resulting of two different depth
images are summarized in Table 3-3. Here, we evaluation in two scenarios: two views and multi-

views depth estimation based on one dimension dynamic programming optimization. It can be seen
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that our proposed algorithm that uses multi-views to compute depth images consistently and yields
better results comparing with two-view depth estimation, for example improvement of 3.3 dB for the

“Break-dancer” and 2.7 dB for “Ballet”, respectively.

Table 3-3. The quality of synthesized image resulting of two different depth estimation
algorithms

Two views Multi-views (8 views)

“Break-dancers” 28.6 dB 31.9dB

“Ballet” 26.1 dB 28.7dB

It should be noted that the higher PSNR values can be obtained via other better image rendering
algorithms, whereas in this work, our simple algorithm is utilized during the rendering stage. It also
note that the PSNR might not match the subjective visual quality, i.e. human subjective perception,

however this is simple image quality metric that has been widely accepted in research community.

Next we show the subjective quality of the estimated depth using the proposed algorithm. The
estimated depth images for the reference view of different data sets are presented in Figure 3-18 and
Figure 3-19, where the whiter intensities indicate the regions closer to the camera. It can be seen
that the estimated depth map have consistent depth value across the lines so that the streaking
artifacts are reduced. Second, the result shows that the depth discontinuity between the foreground
objects and background wall is accurately estimated. It can be noted that the depth of colorless and
texture-less can be accurately estimated. For instance, the texture-less walls in Figure 3-19 are

correctly estimated.

Up till now, as our knowledge there is a few contribution exist which employ the complex “Break-
dancer” and “Ballet” multi-view sequences. We have found two papers that use either both
sequences [52] or “Break-sequence” only [70]. In [52], authors proposed method which perform an
over segmentation of the color image and compute the depth of each segment using a belief
propagation algorithm. In [70], the proposal is based on modified plane sweeping algorithm. In
Figure 3-20 shows the estimated depth images by the proposed method comparing with the results in

these two papers.
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(a) Color view 4 (b) Estimated depth view 4

Figure 3-18. An estimated depth image for “Break-dancers”.

(a) Color view 1 (b) Estimated depth view 1

Figure 3-19. An estimated depth image for “Ballet”.

3.6  SUMMARY AND CONCLUSIONS

In the previous chapter, we have introduced the multi-view geometry that model the projection of a
3D point onto the 2D image plane. Based on this framework, in this chapter we describe algorithms

for estimating the depth of pixels.

In the first part of this chapter, we focus on a comprehensive review the previous works on
estimation of depth image using a single image/mono video, two views and multiple views. With the
recent explosive for 3D media contents, converting existing single still images or monocular videos
to 3D contents is a problem of considerable practical interest. Depth estimation from a single image
is a difficult task, since depth typically remains ambiguous given only local image features. Most of

algorithms try to explore the monocular cues, image features and human visual features to estimate
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depth. Until now, there are three commonly used depth estimation methods from 2D to 3D video
conversion applications. “Depth from Motion Parallax” method, which is based on the fact that
objects with different motions usually have different depths, is most widely used for the depth
estimation in 2D-to-3D video conversion. Depth estimation from two views is one of the most
widely studies and fundament problem and continues to be the active research areas. We have
reviewed the two-view depth estimation algorithms based on the taxonomy and categorization
scheme proposed by [35], which comprises a set of algorithmic blocks from which a large set of
algorithms can be constructed. Next, we have introduced the multi-view system which significantly
broaden the multi-view applications and enhance the user experience. Then we also review the

previous works on multi-view depth estimation.

In the second part of this chapter, a novel algorithm is proposed for the estimation depth from multi-
view images utilizing calibration parameters to provide consistency and reliability. We have
introduce three constraints, i.e. intra-line, inter-line and inter-view smoothness constraint, which
enforce smooth variations of depth value in the scanline, across scanline and consistent depth value
across the views. The proposed algorithm combines two steps: the first steps serves as a calculation
of initial depth images and the second step enhance the depth initial depth images in the first step by
enforcing consistent depth across the views. The three smooth constraints can be efficiently
integrated into one dimensional optimization dynamic program algorithm. Experiments have shown
that the proposed smooth constrains yield reasonably depth image quality for various multi-view data

sets.

One important application of depth image is a depth based view synthesis for free-viewpoint video

and 3D-TV systems, which are detail described in the next chapter.
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(b) Depth image computed by the proposed method.

(c) Depth image computed by [52].

(d) Depth image computed by [70].

Figure 3-20. Comparing the proposed method with others.
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DEPTH IMAGE BASED SYNTHESIS

41 INTRODUCTION

There is an increasing interest in three-dimensional video/television (3DV/3DTV) systems since the
technology advances rapidly in 3D scene capturing, processing, transmission and displaying. With
the growing capability of capturing devices, multi-view capture system with dense or sparse camera
array can be built with ease, Free-viewpoint television (FTV) [71] system has attracted increasing
attention. In FTV system, user can freely select the viewpoint of any dynamic real world scene. The
chosen free-viewpoint cannot only be selected from available multi-view camera views, but also any

viewpoint between these cameras.

Creating 3D depth impression requires that a viewer looking at 3D display see a different view with
each eye. There are roughly two categories of such 3D display: stereoscopic displays with glasses
and autostereoscopic displays without wearing glasses. For stereoscopic displays that require the
viewer to wear glasses, two views are emitted at the display while the accompany glasses allow only
one view to go through each eyeglasses. There are some typical glassed including anaglyph glasses,
polarized glasses, and shutter glasses. The necessity to wear glasses is considered as a main obstacle
for success of 3DV in home user environment. The invention of autostereoscopic display gives us an
opportunity to overcome this problem. Several images are emitted at the same time but the
technology ensures that users only see a stereo pair from a specific viewpoint. For example, the high
resolution LCD screens with slanted lenticular lens technology as commercially available from
Phillips [72] are capable of displaying 9 and more simultaneous views, of which only a stereo pair is
visible from a specific viewpoint. With this, multiuser 3D sensation without glasses is enable, for
example in a living room. This principle is shown in Figure 4-1. For example, at position 1, a user
sees only view 1 and view 2 with right eye and left eye, respectively. At another position 3, a user
sees only view 6 and view 7, hence multi-user 3D viewing is supported. All views are properly

arranged such that views 1 and 2, then view 2 and 3 and so on are stereo pairs with proper human eye
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distance baseline, thus a user moving in front of such 3D display system will perceive a 3D

impression with head motion parallax.

To provide input for 3D displays, one approach is to store/transmit video of multiple views.
Comparing to normal 2D video, this is an extreme increase of store/transmission cost. To compress
such contents, the potential solutions include simulcast of each view, multi-view video coding
(MVQC) [73] as an amendment to H.264/AVC. However, when the number of views is pretty large,
the cost in bit rate may be too expensive. It has been shown in [74] that the total bit rate of MVC
increase linearly with the number of views N. Therefore, future display with more views would
require even total higher bit rate. Further, even with a very large number of video views, it is still not

capable of covering any arbitrary viewpoint.

Pos2 ('::)Oa)
4: ‘

(- [
[\ | | MV 3D Display
VI V2 V3 V4 V5 V6 V7 V8 V9

DIBR DIBR
L] t L] t
V1 V5 V9
A L] —
D1 D5 D9

Decoded MVD Data

Figure 4-1. Example of advanced 3DTV concept based on Multiple View plus Depth (MVD)
(9 outputs views out of 3 input views plus depth); Pos: viewpoint, R: right eye, L: left eye,
V: view/image, D: Depth, DIBR: Depth image based rendering.

To overcome these disadvantages, an alternative 3D video format that is the multiview video plus
depth (MVD) is being explored [75]. A corresponding standard known as MPEG-C Part 3 has been
released by MPEG. Instead of using a large number of views, video and depth from a sparse camera
arrangement are utilized while intermediate views are synthesized. When using the MVD format only
a subset M of the N display views is transmitted. Figure 4-1 illustrates a typical of MVD example, in
which three views plus their corresponding depth are transmitted to decoder at a receiver. From the
decoded video plus depth, additional views can be synthesized using the depth based image rendering

technique [76], which involves the 3D-projection or 2D-warping from a viewpoint into another view.

- 70 -



Chapter 4: Depth Image Based Synthesis

The rendering may be a built-in function of displays or be implemented outside a display such as in a

set-up box.

Figure 4-2 shows an example of 3DTV system with MVD format [56]. It consist of the main
components such as 3D video capture and content production, 3D content encoder,
transmission/storage, decoder, depth image based synthesis and display. The success of the 3DTV
system in Figure 4-2 depends a lot on the quality of view synthesis at receiver. However, high
quality with DIBR is a challenging task especially when the depth map is noisy and no extra scene
information such as 3D surface properties is known. To render a high quality image at arbitrary view
point, one has to manage three main challenges as pointed out in [52]. First, empty pixels and holes
due to sampling of the reference image have to be closed. Secondly, pixels at borders of high
discontinuities cause contour artifacts. The third challenge involves inpainting disocclusions that

remain after blending the projected images (these are invisible from any of the surrounding cameras).

- Display Configuration
[ User Preferences
A4
R
am > .
Seeweo = 2D Display
Camera - N x Video + Depth S
5] < [
((rem —31 = g — Q
Camera "g —] e O
O .
vE £ _{J Multi-View | 2 ‘0
am e Coding a
| 7] : > t o M-View
—» = DVB 2 3D Display
=3 = Transmission |~~~ g
amera - i
e a s
e 8
o e a
2D/3D ____ L Head-Tracked
Conversion Stereo Display

—Video ---Depth o Meta Data
Figure 4-2. An example of 3DTYV system with multiple view plus depth format [56].

In this chapter, we will discuss the view synthesis techniques for 3D video. The next section, we will
review image rendering techniques. Afterward, we present a novel view synthesis algorithm

assuming that the depth maps, textures of multi-view cameras and their parameters are available.
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4.2 CURRENT RESEARCH ON DEPTH IMAGE BASED SYNTHESIS

4.2.1 Basic Principle: 3D Image Warping
The basic idea of most depth image based synthesis method is to perform 3D warping to the virtual
viewpoint using texture and depth information of the reference camera [77]. Let us specify this in

some more detail.

P\\-(X\\-.Y\\"Z\\')

“synthetic image I,

'reference image;  ——"* C,

T T=RaC

Figure 4-3. The two projection point p, and p; of a point P,

LetP, =/X,Y,,Z 1]" be the world point, which are captured by both cameras; p, =[x,, y,,1]"
and p, =[x,,y,,1]" be its projection onto reference and synthetic image planes, respectively. This
is illustrated in Figure 4-3. According to the Equation (2-13), the two pixel positions p, and p, are

related with the point P by the cameras’ parameters as following relationship:

Ap =K R|Y, |-KRC,, 4-1)
Zy
X,

L, =K,R,| Y, |-K,R,C,, (4-2)
Zy

where, K is a 3x3 upper triangular matrix representing the intrinsic parameter matrix of the camera

i, with i € {1,2} . The 3x3 orthogonal matrix R, and C, represent the orientation and the position

of the camera 1, respectively.
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Rearranging Equation (4-1) we can derive 3D coordinate of the scene point P, :

(Xw’le

W9

ZW)T = (KIRI)_I “(4p, + KR C)). (4-3)

Substituting Equation (4-3) into Equation (4-2), we obtain the synthetic pixel position p, :

A,p, =K,R,(K,R)™"-(4p, +K,RC)—-K,R,C,. (4-4)
Assuming that the world coordinate system is the same as the reference camera coordinate system
and looks at along Z —direction, ie.,C, =(0,0,0), R =1, andA, =Z , Equation (4-4) can

w?

rewrite as following:

Ap, = KszKfl -Z,p,—K,R,C,, (4-5)

where, Z  is defined by the pixel value at coordinate point p, in the reference image.

The relationship (4-5) constitutes the 3D image warping equation that enables the synthesis of the

virtual view from a reference texture and a corresponding depth map. Given a pixel point

p, =[x, ,,1]" from the reference image and its corresponding depth value Z,, we can calculate a
pixel point p, on the synthesis image. This equation specifies the computation for one pixel only so

that it has to be performed for the entire image.

4.2.2 Previous Works

In this paragraph, we describe some recent research on free-viewpoint DIBR algorithm. In [52],
author has developed a free-viewpoint rendering algorithm which is based on layered representation.
For texture mapping, 3D meshes are created and the rendering is implemented on a GPU. Although
the results look good, the method is complex and requires a considerable amount of pre- and post-
processing operations. This work is extended in [78] where the depth map is decomposed into three
layers and these layers are warped separately. The warp results are obtained for each layer and
merged. To deal with artifacts, they have introduced three post-processing algorithms. In [79], a new
viewpoint is rendered by some steps. First, the depth maps of the reference cameras are warped to the

new viewpoint. Then the empty pixels are filled with a median filter. Afterwards, the depth maps are
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processed with a bilateral filter. Then, the textures are retrieved by performing an inverse warping
from the projected depth maps back to the reference cameras. Ghost contours are removed by dilating
the disocclusions. Finally, the texture images are blended and the remaining disocclusions are
inpainted using the method proposed by Telea [80]. Although, the results look good, this method is
remaining some issues such as not removing all holes by median filter, assigning a none-zero value
for some pixels in disocclusion regions. This work is improving in [81] by introducing three
enhancing techniques. First, re-sampling artifacts are filled in by a combination of median filtering
and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high
discontinuities. Third, disocclusion regions are inpainted with depth information. The quality of this
method is higher than the work in [79], but still having disadvantages. For example, they have to
define the label of pixel at high discontinuities. The color consistency during blending is not verified
to avoid jagged edges at straight line after blending. The work in [82] combines depth based hole
filling and inpainting to restore the disoccluded pixels more accurately compared to inpainting
method without using depth information. This method produces a notable blur and can be

computationally inefficient when disoccluded region is larger in new view. .

4.3 PROPOSED ALGORIMTH AND ITS PERFORMANCE

4.3.1 Algorithm Overview

In this section, we introduce a new free-viewpoint rendering algorithm from multiple color and depth
images. First, the depth maps for the virtual views are created by warping the depth maps of
reference cameras. We process the wrapped depth maps with median filter. Depth maps consist of
smooth regions with sharp edges, so filtering with a median will not degrade the quality. Then, the
textures are retrieved by performing an inverse warping from the warped depth maps to the reference
cameras. This allows a simple and accurate re-sampling of synthetic pixel. After that, all warped
depth and warped texture images are used to classify pixel as stable, unstable and disoccluded
regions. An initial virtual view is created based on weighted interpolation of stable pixels. To refine
the synthetic view, best candidates for unstable pixels are optimally selected by Graph cuts. By

defining the types of pixels and using Graph cuts, the color is consistent and the incorrectly wrapped
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pixels because of inaccuracy depth maps are removed in the refined view. The remaining disoccluded
pixels are inpainted by using depth and texture neighboring pixel values. Considering depth

information for inpainting, blurring between foreground and background textures is reduced.
color refer. i
3D Warp Median\ _|Inverse warp
depth map Filter color refer. i
Depth I Disoccluded pixels| Refinin J'new oW
refer.j| 3D Warp Median) | Inverse warp using Grgph cuts to
depth map Filter color refer. j find best candidate for
\ smmtabda mwivals /

Depth
refer. i
e

Classifying Pixels Generating new viewJ

- Stable pixels : .
| Finetabs prcels using stable pixels

uiisiavie pixeis

inpainting disoccluded pixel

color refer. j +
lor ref I=.)
( with deptl infor.

Syn. view

Figure 4-4. Proposed new view synthesis algorithm.

4.3.2 Proposed Depth Image Based Synthesis using Graph Cuts

Our proposal is shown in Figure 4-4 and it consists of six steps. These steps are explained below.

4.3.2.1 3D Warping the Depth Maps
3D warping projects an image to another image plane. As described in Equation (4-5), given a pixel

point p, =[x,,y,,1]" from the reference image and its corresponding depth value Z,, we can

calculate a pixel point p, on the synthesis image.

In this step, the problem that several points can be projected to the same point in virtual image is

solved by using simple z —buffering technique. Another issue of this process is that a pixel p, of
reference view is not usually projected on to a point p, at integer pixel position. To obtain an integer

pixel position, we map the sub-pixel p, to the nearest integer pixel p, as follows equation:

Py = (&, %1 = (Lx, + 0.5 [y, + 0.5 ]1). (4-6)
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In our method, only depth maps of reference cameras are projected to virtual image plane. The

warping is specified by:

[Zsyn’ﬁ2] = 3D_Warp (Zref’p] )’ (4_7)

where, Z, , is depth map of a reference camera, 3D _Warp is warping operation as above describing

(see section 4.2.1). The projected depth maps from two reference cameras for an arbitrary scene are

shown in Figure 4-5.

Figure 4-5. The projected depth maps from two reference cameras (from the left side and
from the right side).

4.3.2.2 Median Filter the Warped Depth Map

In this step, we consider the blank points that appeared in projected depth map. The reasons for the
appearance of these blank points are round off errors of the image coordinate by Equation (4-6) and
depth discontinuities. It can cause one pixel wide blank region to appear. This blank region can be
filled by median filter with a window of 3x 3 pixels. Depth maps consist of smooth regions with

sharp edges, so filtering with a median will not degrade the quality.

This step can describe as:

Zsyn _ filtered = Median (Zsyn )’ (4_8)

where, Median is a median filter with a window 3x3 pixels, Z,, .., is output of median filter.

syn

The image in Figure 4-5 can be processed by using median filter to obtained images in Figure 4-6.
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Figure 4-6. Median filter depth maps.

4.3.2.3 Retrieve Texture Image by Inverse Warping
In this step, the textures are retrieved by performing inverse warping from filtered projected depth

maps back to the reference cameras. Figure 4-7 illustrates the image rendering process using inverse

warping.

PZW(XZW,YZW’ZZW)T

step 3: projection P», on the
reference image to retrieve

the color of pixel p, (X))
B [= G+ ARIKS' D,
\Zow )
=K,RK5'Z,, p, —K,RC,
APy = Sl e step 2: back projection p>
/ to 3D point P,

G N\

P1(X1,y1) P2(X2,Y2)
Zl Zz
\\ ,f
\
RN \Median_ﬁlter{3D_Wa1p(D1’)}-, 7

-~ -

-

step 1: forward mapping of depth +median filter

Figure 4-7. Image synthesis process using inverse warping.

For each pixel p, of the filtered projected depth image, a 3D world point

P, =(X,,.Y,,,2Z,,) is calculated based on the Equation (4-3). Z,,, is defined by the depth value at

2w
coordinate p, in the filtered projected depth image. Then, the calculated 3D point P, is projected

onto respective reference textures image by employing the Equation (4-5) . Finally, the color of the
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synthetic destination pixel p, is interpolated from the surrounding pixel p, in the reference color

image. An example of interpolating color of the destination pixel from the four neighboring pixels in

the source image is shown in Figure 4-8.
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Figure 4-8. An example of interpolating color of the synthetic pixel from the four
neighboring pixels in the reference image.

This step can be specified by:

[Isyn ,P,]=3D _Warp_l(Zsyn _ filtered s D>)- (4-9)
The advantage of an inverse warping operation is that all pixels of the destination image are

correctly defined and the color disoccluded pixels can be inferred by back projected 3D point P

onto multiple source image planes, covering all regions of video scene. Figure 4-9 shows the

retrieved color images by inverse warping using depth maps in Figure 4-6.

Figure 4-9. Obtained color images by inverse warping.
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4.3.2.4 Pixel Classification and Initial New View Creation

Formally, suppose that we have a set of N texture images / = {/,,/,,...,/, } and N depth images
Z={Z,2,,.,Zy}.Let I (p) and Z, (p) be the color and depth value at position of m —th

image.

In this step, we describe the type of pixels in the synthetic view. We go through each pixel p € P of
all N input images and classify as stable, unstable and disoccluded pixels. To detect the types of
pixel, we set the thresholds (depth threshold ¢, and color threshold ¢.) and examine the color and
depth values for pixel p € P . For each color channel, the color threshold ¢, is set to be 15 in our
case. Depth threshold is the brightness in the depth map. In our experiments, ¢, is set to 5 for the 8
bits depth quantization.

A pixel is classified as:

+ if the depth value of a pixel p € P at all N input depth images is less than depth threshold ¢, ,
we classify the pixel p as the disoccluded pixel. The color and depth values of the pixel p at synthetic

view are set temporally to zero.

I..(0)=02, (=0, ifZ,(p)<t, Vk=12,.N. (4-10)

+ if the depth value of a pixel p € P at only one input image is higher than the depth threshold ¢,

and at all remaining (/N —1) images is less than 7, , we classify the pixel p as the stable pixel. This is
case the pixel p is visible in only one view. The values of the pixel p at synthetic view are just

copied from the values of the pixel p in the visible view.

Inew(l?) = Ik(l?)’ Znew(p) = Zk(l?)ﬂ lf‘Zk(l?) > zLZ’ Zm(p) < zLZ’v’n = 1’2""]\]’m * k' (4_11)

+ If the depth value of a pixel p € P is higher than the depth threshold ¢, in more than one view,

we examine both the color and depth values of the pixel p to detect the types of pixel.
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First step, for each viewk ,k =1,2,.., N , we examine pixel p . If the depth value of the pixel p is
higher than the depth threshold?, , then we check other views j, j =1,2,.., N, j # k . If the view j
has both a depth value of the pixel p higher than the depth threshold ¢, and has color similarity at p

of view jandk, I,(p)and I,(p)are called consistent color (the color similarity at pixel p of two
input images j and k is defined based on the absolute color differences between / ;(p)and 1,(p)
of R ,G and B channels, |Ij(p) — [k(p)| < t.). We count the total number of view j, j = 12,..,N
having the consistent color with view k£ (k =1,2,.., N, j # k) at pixel p. Assuming that for each
view k =1,2,.., N, this total number is S, .

Second step, we find the biggest number of S, , assuming that the biggest number is M .

ItM Z\_N / 2+O.5J, we classify the pixel p as the stable pixel. Otherwise, the pixel p is

classified as the unstable pixel. The value of unstable pixel can set to be -1 so that they can be easily

identified.

The color and depth values of stable pixel p at synthetic view are rendered by blending M pixels

as following weighted interpolation:

Lo(p) = (Z w *L-(p)] 2 Wi
Znew(ly) = [Z Wi *Zz(ly)] Zwi 2

i=1 i=1

(4-12)

where, w, is the weight factor assigned to viewi, I,(p)and Z,(p)are color value and depth value
of pixel p at view i. The weight assigned to each view should reflect its proximity with the view

being synthesized. The views that are closer to the synthetic view should have a bigger weight. In

general, case, the weight w, can be set based on baseline spacing. However, for more precise

weighting, we use the angle distance determined by the point in 3D and camera positions as shown

in Figure 4-10. The weight factor w; is calculated by
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" :{ecai ifa, <m/2 (4-13)

i 0 otherwise,
where, i is view index, «;is the angular distance of view [ and w;,is weight for the view at that
pixel. The constant ccontrols the fall off as the angular distance increases. Input views for which
o, 2 /2 are eliminated as they view the scene the other side. In practice, ¢ =1 or 2 has been

found to work well.

Ly (X, Xy Zy )

) . CZ(X27Y2’ZZ)
GXLYN.2) oo (x..v.,7)

Figure 4-10. Weighted interpolation based on angular distances.

The new view is specified by

1,02 ,..] = InitialView({1,,1,,...1, }{Z,,Z,,.. 2\ }) (4-14)

where, InitialView is the procedure of pixel classification and initial new view creation as above

described.

Figure 4-11. Initial synthesized view with 3 types of pixels: the white color pixels are
unstable pixels, the red color pixels are disoccluded pixels and the remaining pixels are
stable pixels.
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4.3.2.5 Find the Best Candidate for Unstable Pixel by Graph Cuts
In this step, we focus on refining initial synthetic view with unstable pixels. Unstable pixels have
multiple pixel candidates and we want to predict the best candidate that minimizes the energy

function described in following part.

We denote L as labeling space with L = {1,2,..,N }, representing the image index and let U be the
set of unstable pixels. Let f, be the label of unstable pixel p and f, € L. A labeling f* is to assign
a particular label f to a pixel p € U . With this definition, our problem is to find the labeling f~ to

fill the unstable region, such that the labeling /™ has minimum cost.

We define our energy function based on the MRF formulation:

E(f)=2.D,(f,) + 22V, ([ ) (4-15)

peU (p.9)eN

where, f is the labeling field, U is the set of unstable pixels, and NV is the pixel’s neighborhood

system. D (f,)is called the data term, which defines the cost of assigning label f, to pixel p .
V,,(f,.f,) denotes the smoothness term that evaluates the cost of disagreement between p and ¢
which is assigned with ' and f, respectively. A is a parameter to weigh the importance of these two

terms.

Data term D ( f,) is defined by

D,(f,)=0Z, @)Y, (1=0 M, ()~ 1.@)|+ B, () =10}, (4-16)

where N is neighboring pixels of p, Z s, (p) is the depth value of pixel p at candidate Sy
1, (q)and O , (0 or 1) are the color value and disoccluded indicator of pixel g, respectively. & and
p are weight factors. /,(p) is color value of pixel p at input image 7 . |I (p)-1,; (q)| represents the

sum of absolute color differences between /,(¢q) and 7, (¢) of R, G and B channels.
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The first part of data term enforces the candidate pixel selected to agree with its neighboring pixels.
In addition, the neighboring pixel that is disocclusion does not influence the candidate selection
process. It is also penalized less cost for the selecting a candidate pixel which has smaller depth value

Z because the pixel with smallest depth value is closer to the camera and more likely defined the

color of synthetic pixel p, .

The second part of Equation (4-16) is stationary cost, which defined based on color similarity at pixel

p of all the input images. If the pixel p has similar color at more input images, the stationary cost is

smaller.

Smoothness termV, (f,,f,): measures the penalty of two neighboring pixel p and g with

different labels and is defined as follow:

1, o) -1, )|+ |1, @-1, @)
. ,

Voo fy f)) = @17

where, *” denotes the Euclidean distance in RGB color spaces. The smoothness term gives a higher

costif f and f, do not match well.

By incorporating such the smoothness term, we can achieve visually smooth in the synthetic image.

We apply graph cuts optimization that is public available in [83] to minimize our energy function

E(f).More detail about energy minimization with graph cuts can be found in [16, 21].

This step is specified by

LoU)=1, Z,, (U=Z,., wihf" = arg;nin(E(ﬂ). 4-18)

The refinement of image in Figure 4-11 by using graph cut to select the best candidate for unstable

pixel is shown in Figure 4-12.
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Figure 4-12. Refinement of initial synthesized image (image in Figure 4-11) by using Graph
cut (the red color pixels are disoccluded pixels).

4.3.2.6 Inpainting Disocclusion Pixels Based on the Depth and Color Values of
Neighboring Pixels

Until this step, only the disocclusion regions are remaining. To deal with these disoccluded pixels,
many papers such as [79, 82] have developed algorithms based on the inpainting method proposed by
Telea [80]. Inpainting is a process of reconstructing lost or corrupted parts of images using the values
of neighborhood pixels. Although, these algorithms work sufficiently well, the resulting inpainted
regions contain a notable blur because of the mixture background and foreground colors at the edge
of disoccluded regions. In this paper, we develop a technique based on inpainting method with depth
information. We assume that the disoccluded pixels belong only to background, and we employ
depth information to select accurately background pixels at the edges of disoccluded regions so that

the blur can be avoided. Our method consists of several steps as follow.

First, for reducing processing time we find the small disoccluded regions by defining a window with

the size of 3x 3 centered at p and counting the unstable pixel inside this window. If the number of

visible pixels M inside this window is higher than 50%, then the disoccluded pixels is inpainted by a

weighted interpolation from visible pixels, which is specified by
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i=1

M M
[new(l?ncc) = (z di_l * Inew(l?i)J/z di_l 4
M o (4-19)
Znew(pacc) = [Zdi_l * Znew(l?i)J/z di_l 4 vpacc < O’
i=1

i=1

where, M is number of visible pixels inside the window. O is disoccluded region, and d, is distance

from disoccluded pixel p,.to visible pixel p,./,, (p,)and Z, , (p,)are color and depth values of

new new

the visible pixel p;, .

Second, for each pixel p, in remaining disoccluded regions we search in eight directions to find the
pixel p, , which has the smallest depth value Z  at the edge of disoccluded region and the distance
d  from this point to p, . We define a window with the size of (d, + A)x(d, +A) centered at p, (at

<5. If there

first, A =0), and we count the visible pixels which have depth value Z with|Z ~Z .

are not enough 50% of visible pixels inside the window, we increase the size of window by
increasing A . Finally, disoccluded pixels are inpainted by a weighted interpolation from visible pixels

according to (4-19).

With inpainting procedure describing above, this step can summarized by

[I ﬁnal’Zﬁnal] = Inpalnt([ new’Znew ) (4_20)

4.3.3 Experimental Results

We quantify the proposal method performance based on Peak Signal Noise Ratio ( PSNR ) and the
Structural SIMilarity (SSIM) index [84] between a reference image I, and a synthetic image /. The
system for measurement the quality of synthesized view is illustrated in Figure 3-17.

We have adopted the PSNR as the quality metric for comparison for two reasons. First, an
advantages of PSNR is that errors are measured on pixel basis so that errors resulting from the

projection and synthesis will also to contribute to the measured PSNR . Second, it is the most proven

and commonly used method to measure quality different by the research community. As describing
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in section 3.5.3, before computing PSNR , the images are converted from RGB color space to YUV
color space, and Y channel is used for calculation. Y channel is defined by Equation (3-26) and

PSNR is calculated by using Equation (3-27).

SSIM index is a method for measuring the similarity between two images [84]. The difference with
respect to PSNR is that PSNR estimates perceived errors; on the other hand, SSIM considers image
degradation as perceived change in structural information. Structural information is the idea that the
pixels have strong inter-dependencies especially when they are spatially close. These dependencies
carry important information about the structure of the objects in the visual scene. The SSIM index

between two image signal x and y within the window N x N is calculated as following:

2u. C 12 C
SSIM(x,y)z( s, + € Jao, +C,) (4-21)

2 2 2 2 ’
M+ +C1x0'x +o,; +C2)

where:
* p, and p arethe average of x and y, respectively;
e oland o, are the variance of x and y, respectively;
* o, is the covariance of x and y;

X

o ¢ =(kL)* and c, =(k,L)*are two variables to stabilize the division with weak

denominator; L is the dynamic range of the pixel-values (typically L = 2#irerpixe 1,
k, =0.01 and k, = 0.03 by default).

For image quality assessment, the local statistic &, o2 and o, are typically computed within a

local window 8 x 8 square window, which moves pixel by pixel over the entire image. In practice,
one usually requires a single overall quality measure of the entire image. We use the mean SSIM

index to evaluate the overall image quality:

1 M
SSIM(R,S) =~ D SSIM(R,,S ), (4-22)

J=1
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where, R and S are the reference and synthesized image, respectively; R ;and S are the image

contents at the j—th local window. More detail is available online at [85].

The SSIM index value 1 is only reachable when two images are identical and the higher PSNR

normally indicates that it is higher quality synthetic image.

The proposed new view synthesis has been tested on “Break-dancer” and “Ballet” sequence
which are generated and distribution by Interactive Visual Group at Microsoft Research [86]. These
datasets include a sequence of 100 images of 1024 x 768 pixels captured from 8 cameras with the
calibration parameters. Figure 4-13 shows the camera arrangement of these two sequences. Depth
maps for each view are also provided. For more detail about these depth maps generation, please

refer to [52].

Figure 4-13. A configuration of “Break-dancer” and “Ballet” sequences with 8 cameras
[52].

In our experiment, the synthetic view is set to be the same as the actual camera. View 3 and 5 are
used with depth maps to synthesize view 4. This experimental scenario is illustrated in Figure 4-14

and the idea to objectively evaluate the quality of a synthesized image is shown in Figure 3-17.
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Virtual

Figure 4-14. Experimental scenario: view 3 and 5 are used to synthesize view 4.

The example of view synthesis results is shown in Figure 4-15. The experimental results show
that the proposed method achieved on average over 34 dB in PSNR and 0.93 index value in SSIM on

the two sequence “Break-dancer “and “Ballet”.

(a) Original view image. (b) Synthesized image (PSNR = 34.7 dB; SSIM= 0.94).

(c) Original view image. (d) Synthesized image (PSNR = 34.6dB; SSIM= 0.95).

Figure 4-15. Example of the synthetic view.
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4.3.3.1 PSNR and SSIM
Figure 4-16 shows our PSNR and SSIM comparison with those of Sohl et al. [87] over 100

frames for the “Break-dancer” and “Ballet” sequences.
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Figure 4-16. PSNR and SSIM comparison: (a) PSNR for “Break-dancer”, (b) SSIM for
“Break-dancer”, (c) PSNR for “Ballet” , (d) SSIM for “Ballet”.

The measured synthetic image qualities are compared with other methods and summarized in
Table 4-1. From the results, the average PSNR of proposal is superior to that of other methods such
as Mori et al [79], Sohl et al. [87] with a gain of 3.0dB. The structure similarity (SSIM) of our

method is higher than that of Sohl et al. method.

Moreover, in multi-view configuration, we have N cameras, which capture the scene at
difference positions. For our experimental case, there are 8 cameras. Thus, instead of using only two

camera views as above conventional methods, we can use more than two images to synthesize a new
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view. Our proposal can extend to use as many views as necessary, simply by adding a processing
path for supplementary view before pixel classification step (see Figure 4-4). Our experiment shows
that using four reference views (two views on both left side and right side) to synthesis a new view, a

higher PSNR (about 0.5 +1dB ) and SSIM are obtained than the case of using two reference views.

Table 4-1. The measured synthetic image qualities are compared with other methods.

Method “Break-dancer” “Ballet”
PSNR(dB) SSIM PSNR(dB) SSIM
Sohl et al. [87] 30.8 0.68 30.7 0.66
Mori et al. [79] 314 Not Reported | 30.1 Not Reported
Proposed method 34.5 0.93 343 0.94
4.3.3.2 PSNR versus Distance between References Cameras

Because usually the number of cameras is limited, the camera arrangement is very importance for
obtaining a good quality of synthesized view. Here, we investigate the quality of synthesis with

varying the distance between the two reference cameras. Figure 4-17 shows our experimental setup.

Syn. Cam Ref. Cam

Ref.l Cam

[ Bt
< »

distance

Figure 4-17. Varying the distance between the two reference cameras.

Figure 4-18 shows our quality of synthesis with varying the distance between the two reference
cameras comparing the method presented by Mori et al in [79], where our measurements correspond

to an average over 100 frames.
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PSNR [dB]

Distance between two reference cameras

(a) “Break-dancer” sequence.

PSNR [dB]

Distance between two reference cameras

(b) “Ballet” sequence.

Figure 4-18. PSNR versus distance between cameras for: (a) “Break-dancer” sequence,
(b) “Ballet” sequence.

4.3.3.3 Timing Cost for Synthesis One View

Our experiments were performed on a PC with Intel Core 17, 3.2GHz and 8GB memory. We use C++

and OpenCV and no optimizing coding. The calculation time for one frame is the average time over

100 frames. We investigate the time for one synthesized frame with varying number of unstable

pixels. Figure 4-19 shows the number of unstable pixels in % comparing with image size.

1024

768

(a) Number of unstable pixels: 6.7%

(a) Number of unstable pixels: 30.5%

Figure 4-19. Number of unstable pixels (%) comparing to image size.

Our result is shown in Table xxx. We can see that if the numbers of unstable pixels increase, the

time for Graph Cut step is also increase. If the number of unstable pixels is 30% then the time for

Graph cut is about 20% of the time for processing 1 frame.
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Table 4-2. Calculation time for one frame with varying numbers of unstable pixels.

Number of Unstable Pixels Time of Graph Cut | Time of synthesis one frame
(%) (%0) (s)
6.74 11.3 8.43
15.63 14.7 8.22
23.93 17.9 8.11
30.55 20.6 7.99

44 SUMMARY AND CONCLUSIONS

In 3D-TV, the viewer can ideally navigate through the 3D domain and select his own viewpoint. The
chosen viewpoint may not only be selected from available multi-view camera views, but also any
viewpoint between these cameras. Obviously, this feature requires a smart synthesis algorithm that
allows free-viewpoint view rendering. In this chapter, we have reviewed the recent advancements in

viewpoint synthesis for 3D-TV and then proposed a novel method and showed its performance.

As discussing, an accurate manner for obtaining such a free viewpoint synthetic image is to employ a
depth image based rendering method (DIBR). Such method assumes that the availability of a depth
map for each camera image. The depth map encodes the distance to the viewer/camera for the
content of each pixel in the camera image. More detail how to get the depth map is described in early
Chapter 3. The basic idea of DIBR method is to perform 3D warping to the virtual viewpoint using
texture image and depth map of the reference cameras. Most recent algorithms employ 3D warping
from the two reference views to generate a virtual one, following the post processing procedure to

enhance the quality of synthetic views.

In the second part of this chapter, we describe a novel synthesis method that enables to render a free-
viewpoint from multiple existing cameras. The proposed method solves the main problems of depth
based synthesis by performing pixel classification to generate an initial new view from stable pixels
and using Graph cut to select the best candidate for unstable pixels. By defining the types of pixels
and using Graph cuts, the color is consistent and the pixels wrapped incorrectly because of

inaccuracy depth maps are removed. The remained disoccluded pixels are inpainted by using depth
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and texture neighboring pixel value. Considering depth information for inpainting, blurring between
foreground and background textures are reduced. Experimental results show that the proposed
method has strength in artifact reduction. In addition, our smooth term makes the result visually
smooth. Objective evaluation has shown that our method get a significant gain in PSNR and SSIM
comparing to some other existing methods. Another advantage of our method is that we can use a set
of un-rectified images in multi-view system to create a new view with higher quality. The drawback
of our method is using Graph Cuts, which is time consuming. However, we just only apply Graph
Cuts for unstable pixels, which are a small amount of pixels comparing to whole image, so the time

for Graph Cuts can be reduced.
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5
DEPTH ASSISTED OBJECT SEGMENTATION

5.1 INTRODUCTION

In general, image segmentation can be defined as the process of finding groups of pixels that have
similar characteristics. Image segmentation is one of the most common and active research topic in
image processing image processing, computer vision for recently decades. The goal of image
segmentation is very application- oriented, which emerges in many fields such as object recognition,

video monitoring, video indexing, digital entertainment, etc.

Image/video segmentation can be classified into region-based segmentation and object-based
segmentation. Region-based segmentation aims to cluster the perceptually similar pixels in the image
scene into homogenous regions while object-based segmentation tries to extract the meaningful
object and separate foreground from background. Region-based segmentation focuses on the
interpreting and understanding of the whole scene which is represented by semantically and
geometrically consistent partitions as shown in Figure 5-1(a). On the contrary, object-based
segmentation pays more attention to access and manipulate the object-of-interests (OOls), and the

extracted objects are highlighted in the foreground mask as shown in Figure 5-1(b).

\\_/’
W

(a) Region-based segmentation (b) Object-based segmentation

Figure 5-1. An example of region-based and object-based image segmentation.

Partitioning the image into semantically multi-class regions is a challenging task due to various
visual concepts involved. In certain applications, the users are more interested in accessing a specific
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object rather than the whole scene, which motivates the development of object-based segmentation.
The segmented semantic objects can provide the users with flexibility of object-level manipulation
and access, and facilitate many content-related applications such as object recognition and retrieval,
object-based entertainment and surveillance. In this chapter, we focus on the techniques of objects

based segmentation.

Based on the type of source data, object based segmentation can be classified into image
segmentation or video segmentation. Video segmentation may incorporate image segmentation
technique to segment each frame into lots of homogenous regions. However, temporal coherence
constraint in the sequences results in the difference between video segmentation and the
segmentation of series of its single frame. Temporal coherence constraint addresses strong
correlation of segmentations overtime, but the results can be quite unstable if segmenting them

independently using image segmentation algorithm.

According to the different camera configuration, semantic objects can be segmented from single or
multiple views of image/video. Most of interest has been focused on the research of mono-view
segmentation leading to many advanced algorithms, theories and technologies. Especially object-
based segmentation has drawn great attention from the research and industrial community, resulting
in many commercial products with image cutout tools or user interface, such as Video SnapCut [88],
Lazy Snapping [89], Ratio cut [90] and GrabCut [91]. These interactive object segmentation tools
requires user intervention to provide foreground/background hints by brush stokes or bounding box,

which can obtain high accuracy object regions.

On the other hand, multi-view segmentation had not attracted much attention due to the limitation of
capture technology. With the recent growing capability of capturing devices, multi-view capture
system with dense or sparse camera array can be built with ease, which motivates the development of
multi-view techniques and its related applications. Based on the different methodologies involved,
the existing algorithms of object detection and extraction from multi-view images can be grouped

into three categories: background subtraction, visual hull-based and depth-based. According to the
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assumption that the depth values over one object vary smoothly and continuously, the depth
information recovered from multi-view images serves as an important cue for segmentation.
However, due to ill-posed nature of depth estimation, errors may occur in the depth map. To obtain
more robust segmentation results for object-level manipulation, integration of depth, color, and other

image cues should be considered.

From the perspective of this study, we address the topic of depth-based object segmentation. A
review the existing depth based algorithms for image/video segmentation and our proposed algorithm
will be discussed in the following sections.

5.2 CURRENT RESEARCH ON DEPTH BASED OBJECT SEGMENTATION
Depth information reconstructed from multi-view images (MVI) usually serves as a valuable source
in various related techniques such as 3D reconstruction [18], free-viewpoint synthesis (as described
detail in Chapter 4), object tracking (will be described in next chapter) and object segmentation as
showing in this chapter. Comparing with the 2D analysis and processing, the recovered depth
information from the multi-view images assists in understanding and visualizing the 3D world in
more efficient way. Accurate object segmentation in the clutter scene and complicated scenario is
almost impossible or error-prone without any semantic knowledge about the scene or only relying on
the 2D information (color, texture, and spatial location) from single-view images, since the semantic
object is not always homogenous with these low-level features. By assuming that object locates in the
different depth layer in the 3D scene and the depth value over one object forms smooth and
consistent distributions, semantic objects can be extracted with known depth and segmentation
performance using 2D features can be improved. However, object segmentation only exploiting the
depth data is problematic due to the inaccuracy of the depth reconstruction resulting from the
inherent difficulties of stereo matching such as the lack of textures and occlusion. Thus, to obtain
more precise and robust segmentation for object-level manipulation, intelligent fusion of depth with

other features should be taken into account.

In almost public papers, depth estimation and object segmentation from multi-view images are

generally addressed in sequential [92], joint [93] [94] or iterative [95] [96] approaches.
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The most straightforward approach for depth-based segmentation is to perform depth estimation
beforehand, and then incorporate the depth information into the segmentation framework. In [92],
authors described models and algorithms for bi-layer segmentation of stereoscopic frames. Stereo
disparity is obtained by dynamic programming in Layered Dynamic Programming algorithm, and
stereo match likelihood is then probabilistically fused with contrast-sensitive color model to segment

each frame by ternary graph cut.

To avoid the propagation of error from depth estimation to foreground extraction in the sequential
approaches, depth reconstruction and object segmentation problems can be simultaneously solved by
joint optimization. For example, in [93], authors proposed a flexible and homogenous approach to
simultaneous depth estimation and background subtraction in a multi-view setting, assisted by a static
background image with known depth for each camera. The results of depth reconstruction and
background separations algorithm is obtained as minimization of energy functional, to generation a
dense depth map and foreground map. In [94], multi-view scene reconstruction and segmentation are
dealt with by joint graph-cut optimization for the challenging outdoor environments with moving
cameras, such as rugby and soccer scenes. Segmentation and depth labeling field are formulated into
the unified energy function, which involves color and contrast term for segmentation, as well as the

match and smoothness term for reconstruction.

The iterative depth-based segmentation receives the segmentation feedback from current estimation
to improve the depth reconstruction and vice versa. In [95], the estimated depth map and
segmentation mask are iteratively computed using an Expectation-Maximization (EM) algorithm. In
[96], an iterative algorithm is developed to create the intermediate synthesized view using depth and
segmentation information, which continuously performance the disparity estimation and the image

segmentation in the iterative circle, and improve the result of each other.

In next section, we propose a method which is an approach in straightforward way. First, depth is

estimated and then the depth information is incorporated into the segmentation framework.
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5.3 PROPOSED SEGMENTATION ALGORITHM USING DEPTH INFORMATION

In this part, we propose a method, which requires no interactive operation, to segment human object
from multi-view video. Our method consist of two stages: for initial frame of the video sequence, we
automatically extract object based on saliency model and iterated Graph cut. After having segmented
object in first frame, we propose the algorithm combining Bayesian estimation and minimizing
energy function using Graph cut to segment object. In our energy function, the color, depth and
spatial-temporal coherence are integrated in data term. Smooth term is encoded the penalty cost of

the neighboring pixels with different labels.

The following section is organized as: section 5.3.1 will briefly introduce our method; section 5.3.2
emphasizes on our proposal segmentation algorithm; and finally experiments are presented in section

5.3.3.

5.3.1 Alogrithm Overview

Here, we focus on depth-based multi-view object segmentation. Depth information recovered from
multi-view image/video serves as an important cue for our segmentation algorithm. We approach in
straightforward way. First, depth is estimated and then the depth information is incorporated into the
segmentation framework. This approach is reasonable because depth maps are becoming a readily
available commodity of the multi-view pipeline. Depth information recovered from multi-view
image/video serves as an important cue for our segmentation algorithm. The purpose of this research
is to fuse color, with depth to robust object segmentation. The contribution point of our research is
automatically created tri-map by Bayesian estimation. Created trimap is initial value to speed-up

graph cut optimization algorithm.

In our framework, depth is estimated based on algorithms in [18], detail in section 5.3.2. But in many
cases, depths are free given with multi-view colors images. For the starting step, if the input is first
frames in sequences, we apply the novel method to segment object based Saliency model [97] and

GrabCut [91]. From the second frame, we propose a probabilistic model combining Bayesian
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estimation and Graph cut algorithm to segment the interested object, discussing in sub section

5.3.2.3.
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Figure 5-2. The illustration of proposal algorithm.

Figure 5-2 shows the entire algorithm. Our algorithm takes the color image of key view, depth image

which is estimated from the multi-views as the inputs, and the segmentation result of the foreground

region as the outputs.
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5.3.2 Segmentation Algorithm

5.3.2.1 Depth Estimation from Multi-view Images

Depth estimation aims at calculating the structure and depth of objects in a scene from a set of
multiple views or images. This topic has been introduced in Chapter 3. In this chapter, depth is
estimated by using graph cut approaches. More detail about depth estimation using graph cut can be

found in series of papers [16,18,21].
Here, depth is estimated based on algorithms proposal in [18]. In [18], the data term enforces photo-
consistency. Let I be a set of pair of “nearby” 3D points. These points will come from different

view, but they will share the same depth (i.e., the points are of the form < D> fp>, <q, fq>where

S, =/, and p ,q are pixels from different views). Then the data term is:

ZD(p’q)'T[fp :fq =] (5-1)
((p0)la0)en)}

The smooth term, on the other hand, involves a single camera at a time. It is defined to be:

ZDp,q(fp’fq) (5-2)

{p.qleN

where, N is a neighborhood system on pixels in a single view.

The energy function in [18] is minimizing by expansion move algorithm [16], which is efficient

approximation graph cut algorithms. Figure 5-3 shows on example of our depth estimation results.

Y
WP

(a) Left image (b) Right image (d) Estimated Depth image

Figure 5-3 Stereo depth image.
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Depth map provides vital information for scene interpretation; therefore, depth maps are becoming a
readily available commodity of the multi-view pipeline. We can make use of this new free

information to our algorithm.

5.3.2.2 Saliency Cut in the First Frame

Most of graph cut based object segmentation algorithm need user’s intervention to specify the initial
foreground and background regions as the hard constraints such as in [89], [91] and [17]. User’
interaction is helpful to obtained good segmentation results, but the initialization itself may be

annoying the user especially when much guidance is needed.

In our proposal algorithm, the object will be automatically segmented but requiring only the object
mask in the first frame in video sequence. To obtain the first frame object mask, we have two ways:
manually or automatically locating and extracting object. For manually extracting objects, user can
use some tools such as Lazy Snapping [89], GrabCut [91], or using simple background subtraction

method with having background of the first frame.

In this section, our purpose is automatically locating and extracting object in the first frame. Visual
attention concept gives us with smart mechanism to perceptually attract human’s attention toward the
location of interesting objects in a complicated scene. Saliency model in [98] is one of the earliest
works. Give a static image, this model employs color, intensity and orientation to compute Saliency
Map (SM), which encodes the obviousness at each location in the visual input. Until now, there are

many saliency models have proposed such as in [97, 99-101].

In this work, we apply the ideal given in [97] and [99] to compute the saliency map. The process is

demonstrated in Figure 5-4.

After having saliency map, we consider the use of this map to assist in salient object segmentation.
Saliency maps have been previously employed for unsupervised object segmentation such as in [102,

103].
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Input Saliency || Threshold | GrabCut Seg.
image Map [97] &CCL [91] result

Figure 5-4. Object segment based on SM and GrabCut.

In our approach, we iteratively apply GrabCut [91] to refine the segmentation result initially obtained
by threshold, dilation and erosion operating and Connected Component Labeling (CCL) on the
saliency map (see Figure 5-4). Instead of manually selecting a rectangular region to initialize the
process, as in classical GrabCut, we automatically define the bounding region based on the result of

threshold and CCL on SM.

Once initialized, we iteratively run GrabCut to improve the saliency cut result. We apply dilation and
erosion operations on the current segmentation result to get a new “seed” for the next GrabCut

iteration. Our experiments need 3 or 4 iterations to obtain good result.

Our approach can be the semi-automatic object segment by given some guidance to GrabCut as in

classical one when saliency model have failed to locate the desire object.

5.3.2.3 Probabilistic Model Combining Bayesian Estimation and Graph Cut
5.3.2.3.1 Color and Depth Data Models

This session, we briefly explain the color and depth probability model using in our algorithm.
Color Data Model

Gaussian Mixture Model (GMM) in RGB color space is used for color data model. We use two
GMM models with K component, one for background and one for foreground. The likelihood of

pixel p with color C (7, g,b) (r,g,b: color values) belongs to the foreground or background can be

written as:
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K
P(Cp|f) = Zwk,fG(Cp ;,Uf,kazf,k )> (5-3)
k=1
where, f € {F ,B }representing foreground and background; w, . is a mixture weighting

coefficient; and G(C ,; 1, ;2 ) is the k™ Gaussian component as:

1 T -1
G(Cp sHyrgs Zf,k )= W eXP(—(Cp “Hpy 'z fik ) (C,, —Hyi ). (5-4)

Given the GMM model ¢ = {wf,k Mg 2 f = (F,B), k=1,.., K} (i.e. the weight w, means u
, covariance 2., and 2K Gaussian component for background and foreground), we can calculate the
likelihood P(C, |f) with [ = {F, B} by using Equation (5-3) .

Depth Data Model

Depth image is an array of gray values. Here we use histogram of gray values for depth data model

h(p; f). The same as color model, we need two histograms, one for foreground and another for

background. Histograms are normalized to sum to 1 over gray level range J. h(p; f)=1and we get
P

likelihood of pixel p with depth value D, as:

P(D,|f)=h(p;f) with f={F,B}. (5-5)
5.3.2.3.2 Bayesian Estimation and Trimap Creation
This section computes the probability of each pixel to be in foreground base on Bayesian estimation
and the results are used to create the tri-map, which is used for segmentation object via graph cut.
Let’s C;, D are color and depth value of pixel p on color and depth images at time f. The
probability of pixel p belongs to foreground is calculated based on Bayes’ formula as:

P'(C,.D, | F)P'(F)

PUF|C,,D,)=—; , t N
P'(C,.D, | F)P'(F)+P'(C,.D, | B)P'(B)

(5-6)
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where, P(x) is probability of x, F and B stand for Foreground and Background in which pixel p

belongs to.

We assume that color and depth are independent, so the likelihood:

P'(C,.D,|F) = P'(C,|F)P(D,|F),
P'(C,.D,IB) = P'(C,|B) PD,|B).

(5-7)
The likelihood P*(C, | F)and P'(C, | B) are calculated from foreground and background Gaussian
Mixed Model (GMM) which are constructed from the previous segment result of color frame at
(t-1).

Similarly, the likelihood P'(D, |F) and P'(D, |B) are calculated from gray-level histogram

which also constructed from previous segment result of depth image at (¢ —1).

Because of successive frames in the temporal domain would have strong correlations, so the prior

probability P* (F') and P’(B)of frame at ¢ are calculated from the previous image frame at (r —1).
In order to get more accurate result, P'(F’) and P’(B) can inferred from smooth map the 2D mask

of segmentation results in previous frame at (¢ —1) by performing Gaussian filter.

Based on computed prior probability and likelihood probability, the posterior probability

P'(F|C,,D,)and P'(B|C,,D,) are calculated by Equation (5-6).

Applying this process for whole image pixel p, we get the probability image / , (p). Based on

prob

probability value of pixelp, 7,,(p) the tri-map 7 {F: Foreground; B: Background; U :

Uncertainly region} can be created by:

T(p)=B if 1,,,,(p)<threshold
T(p)=F if 1,.,,(p)>1~threshold . (5-8)
T(p)=U otherwise

Here, threshold can be very small real value; in our experiment we choose threshold is 0.005. To

remove the noise in trimap T, a filter to applied to foreground region and background regions.
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Figure 5-5. Tri-map (black color: background region; white color: foreground region; grey
color: uncertainly region).

5.3.2.3.3 Object Segmentation by Graph Cut
In this part, we focus on setting the data term and smooth term for our algorithm.
Data term E () : measures the agreement between the segmentation labels and observer data. We

define this term as the weighted sum in following equation:

E) =@ R log(P(C, If, ))-log(P(D, If,)) | +(1-)Y ~logl,,..(P)) 59

peU peU

where, the likelihood P(C, | f,)and P(D, | f,)can be obtained from GMM for color cue and

histogram for depth cues as describing in section 5.3.2.3.1. Different from others previous related

works, we add new term /, , (p) as in the second row of Equation (5-9). This term encodes spatial
temporal coherence to improve the segmentation result and can be reused the probability image in the
creating tri-map step.

Smooth term E__ . (f ,f,): measures the penalty of two neighboring pixel p and g with different
labels and is defined as follow:

1
E oo (f s ) = V(MZ)‘;N TS, = /1, ]mexp(—ﬁucp -C, “), (5-10)

where,

L f,#/,

17, ifq]:{o otherwise (>-11)
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||disp( p,q)” and "C , —C, ”are Euclidean distance of neighboring pixels in coordinate and color

space respectively. N is the set of pairs of neighboring pixels. In practical experiment, a good
results are obtained by defining pixels to be neighbors in 8-way connectivity (horizontal, vertical and

diagonally). In [17], they had shown that it is more effective to set >0 since this relaxes the

tendency to smoothness in region of high contrast. We choose £ the same in [17] as follow:

-l
p=2(c,-c )" (5-12)
This choice of £ ensures that the exponential term in Equation (11) switches appropriately between
high and low contrast. Note that if £ =0, the smooth term is well-known Ising model, which

encourages smoothness everywhere [91].

In our algorithm, the automatically generated tri-map 7 = {T w1y, Ty, }(see section 5.3.2.3.2) is set

as the initial values for graph cut. This is different point of our algorithms comparing to interactive
segmentation method such as GrabCut [91], which requires considerable degree of user interaction
for supplying trimap. With our trimap, Graph cut optimization only need perform in uncertainly

region 7}, . However, T}, is smaller region than whole image, so the time for graph cut optimization

decreases considerably.

5.3.3 Experimental Results

To evaluate the performance of our method, we compare the segmentation results of our method with
respect to the ground truth in the IU sequence, which can be freely downloaded from [104]. We
define the Absolute Mean Error Rate (AMRE) of every fifth frame (in the left view) as the number of
misclassified pixels over the total number of pixels in the image, which is the same measurement

adopted in [92].

4 . . )
AMRE = l z misclassified pixel w.r.t ground trust'

5% total number of pixels in images

(5-13)
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We make a comparison of two cases: 1) using only color/contrast cues, 2) fusing both color and

depth cues. The comparison shows in Figure 5-6.

—~6

2 IU sequence
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Figure 5-6. Quantitative comparison.

Using only color/contrast is a simply our algorithm in which the depth is switched off. As in Figure
5-6 , when depth and color are fused we can get the better segmentation results. The segmentation in

the case using both depth and color is more stable than only color/contrast case because absolute

mean error rate is not much varying.

Many frames in U sequence, the background is non-stationary (there are other people moving in the

background), but our algorithm is also working well on these frame, as demonstration in Figure 5-7.

Frame 21 in IU sequence

Frame 70 in IU sequence

Figure 5-7. Segmentation works well with non-stationary background.

Besides using the IU sequence given in [104], we also set up the system to capture stereo video to

show result of our algorithm. A common Minoru 3D webcam [58] is used to capture stereo video.
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Bouguet’s algorithm built in OpenCV [59] is used for camera calibration. Segmentation in our

captured video also shows good results as in Figure 5-8.

Figure 5-8. Segmentation on stereo video captured by Minoru 3D webcam

We are not focusing on optimizing the running time, but we measure the time which Graph cut
process is initialized by our trimap comparing with the case the graph cut algorithm is applied over
whole image. Our proposal is faster, about 100 milliseconds for each frame. All our implementations
use C++ and OpenCV [59].

5.4 CONCLUSIONS

In this chapter, we have introduced a framework to automatically segment the human region in multi-
view video. Depth is estimated from multi-view image by Graph cut. Saliency model and iterated
Graph cut are used to automatically locate and extract the interested object in the first frame to
trigger the whole process. Depth is fused with color and spatial-temporal coherence in energy
function. By combining Bayesian estimation, trimap is created automatically and used as initial value
to speed-up minimizing energy functions via graph cut. Experiment results on various test sequences

are encouraging.

Our future work will be focused on improved this algorithm for multi-objects segmentation and

efficient way to project the segmentation result in key-view to another views.
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6
DEPTH AIDED OBJECT TRACKING

6.1 INTRODUCTION

Object tracking in the video sequence has played an important role in a research area of computer
vision and a wide range of applications, such as video monitoring and surveillance, video
conferencing and video summarization. Based on different camera configurations, objects can be
tracked by using a single camera or stereo/multiple cameras. Object tracking with a single camera has
studied in many literatures and difference methods have been developed such as tracking by model-
based tracking method [105], appearance-based methods [106-108], feature-based tracking [109],
and statistical methods [110-112]. Many algorithms can obtain good results in some cases, such as
when the targets are separated. However, multiple object tracking is still a challenging task due to the
non-rigid motion of deformable object, persistent occlusion and the dynamic change of object
attributes, such as color distribution, shape and visibility. In the real scene, occlusion between objects
often occurs. For example, in typical surveillance scenario a person is partially or fully occluded by
other people. Unfortunately, these occlusions lead to failed tracking. Some classical frameworks have
been extended to track multi objects. In the multi-object tracking system [113], level set method is
used to handle contour splitting and merging. Extensive methods, i.e. Monte Carlo based
probabilistic methods [114], game theory based approaches [115] and appearance model based
deterministic methods [116, 117] have been presented to solve the mutual occlusion problem.
Another attractive research direction is stereo or multiple camera based method. While object
detection and tracking with a single camera is a well-explored topic, the use of multi-cameras
technology for this purpose has been attracted much attentions recently due to the availability and
low price of new hardware. A multi-camera system observes the scene from two or more different
views, and obtains more comprehensive information than a monocular camera system, which can
take the advantage of depth information to improve the tracking system performance. Some tracking

methods focus on usage of depth information only [118], or usage of depth information on better
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foreground segmentation [119], or usage depth information as a feature to be fused in a maximum

likelihood model to predict 3D object positions [120].
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Figure 6-1. The flowchart of proposed tracking method.

In this work, we have presented a novel tracking method aiming at detecting objects and maintaining
their label/identification across video frame sequence. The main points of this method are to use
depth information and different strategies to track objects under various occlusion scenarios. Figure

6-1 shows the flowchart of our tracking system.

The rest of this chapter is organized as follows: section 6.2 presents the proposed tracking method.

Section 6.2.3 shows experimental results; and, finally, section 0 concludes this chapter.
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6.2 PROPOSED TRACKING METHOD

6.2.1 Method Overview

In this part, we have presented a novel tracking method aiming at detecting objects and maintaining
their label/identification over the time. The main key factors of this method are to use depth
information and different strategies to track objects under various occlusion scenarios. The
foreground objects are detected and refined by background subtraction and shadow cancellation. The
occlusion detection is based on information of foreground blobs in successive frames. The occlusion
regions are projected to the projection plane XZ to analysis occlusion situation. According to the
occlusion analysis results, different objects correspondence strategies are introduced to track object
under various occlusion scenarios including tracking occluded objects in similar depth layer and in
different depth layers. The experimental results show that our proposed method can track the moving

objects under the most typical and challenging occlusion scenarios.

Our proposed tracking system is shown in Figure 6-1 and it consists of below main steps.

6.2.2 Depth-Aided Tracking Multiple Objects under Occlusion
6.2.2.1 Depth Estimation

Depth estimation aims at calculating the structure and depth of objects in a scene from two views or a

set of multiple views. This topic has been introduced in Chapter 3.

Figure 6-2. Color image and depth image.

In this work, depth is estimated based on block matching algorithms proposal in [60]. This block
matching technique is a one-pass stereo matching algorithm that uses sliding sums of absolute
differences window between pixels in the left image and the pixels in the right image. An example of

depth image is shown in Figure 6-2.
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6.2.2.2 Foreground Segmentation and Shadow Cancellation

Our method performs foreground segmentation to speed up the process of object tracking. There are
many foreground segmentation algorithms for instance of Gaussian Mixture Model [121, 122]. In our
method, we use simple technique based on absolute differences between current image and

background image.

In some cases, we have the fixed cameras observing the scene, so we may have an image of the
background of the scene. However, in most case this background is not readily available. Moreover,
the background scene often evolves over time because for example the light condition might change
or because of new object could be added or removed from the background. Therefore, it is necessary
to dynamically build the background model by regularly updating it. This can be accomplished by

computing moving average using the following formula:

H, = (1 - a)/u(z—l) + ap,, (6'1)

where, p,is pixel value ate a given time 7, g,  is the current average value, and ¢ is called the
learning rate and it defines the influence of the current value.

In our method, first a color background model is created by computing a moving average for each
channel (R, B and G channels of color image) of each pixel of incoming frames (around 10 frames).
The decision to define a foreground pixel is simply based on comparing the current frame with

background model and then updating this. Specifically,

Fp)— { 0 if|L(p-1,p)<ty 2

I.(p) otherwise

where, F'(p) is value of pixel p in foreground image,

I.(p)—1,( p)| represents the absolute color

difference between the color value at pixel p of current frame /,(p) and the color value of pixel p
of background frame /,,(p) of R, G, B channels. #, is threshold and for the each color channels this

threshold can be set to 0.3* [, (p) . An example of foreground image is shown in Figure 6-3.
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e

(a) input image (b) segmented foreground image

Figure 6-3. Foreground segmentation.

However, the segmented foreground image includes noise affected by the shadow. The shadow
regions are the parts of moving objects. Shadow detection and removing will be used to refine the
foreground. To avoid the effects of shadows, a shadow detection described in [123] is employed.
More detail about this method, please refer to [123]. The result of the shadow detection is shown in

Figure 6-4.

(b) shadow detection (the blue color pixels are the

(a) segmented foreground image detected shadow)

Figure 6-4. Shadow regions detection.

6.2.2.3 Blobs Extraction and Blobs’ Information Store

First, we try to extract the blobs of objects from segmented foreground image. Blob extraction is
performed on the foreground binary image by connected component labeling using CvBlobLib
library [124]. The foreground binary image can obtained from simple threshold operation followed
by the application of eroded and dilated operation on the segmented foreground image. CvBlobsLib
provides two basic functionalities: extracting 8-connected components, referred to as blobs, in binary
or grayscale images using Chang’s contour tracing algorithm [125], and filtering the obtained blobs
to get the objects in the image that we are interested in. In our method, we remove any blobs that

have area small than 100 pixels.
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For every frame, after extracting blobs, information about blob is stored in a structured record for

later processing steps. The blob’s information includes total number of blob (NB), blob’s center
coordination (x,y), blob area (BA), and the average depth value of blob (Z_, ). Blobs are also

given temporally identification (/D).

We define two kinds of distance: the distance between blob i and blob j in the same frame #and

the distance between blob i of frame ¢ and blob j of frame (¢ —1).

The distance d(i,, j,) between blob i and blob j in the same frame ¢ is computed by:

d(ipj) = \(x, =)+ (v, =y, (6-3)
where (x,,y,) and (x;,y;)are the center coordination of blob i and blob Jjat frame 7,
respectively.
Similarly, a distance D(i,, j, ) between blob i of frame ¢ and blob j of frame (f—1)is

calculated by:

DG, jiyy)) = \/(xi, X )+ (yi, Vi )% (6-4)

where (x,,y, ) and (x o Vi ) are the center coordination of blobi at frame # and blob j at frame

(¢ —1) correspondingly.

6.2.2.4 Occlusion Detection
We detect the occlusion in current frame ¢ according to blobs’ information at frame #and previous

frame (¢ —1). It is based on two clues. The first clue comes from the shortest distance between blobs
at the same frame (¢ —1)and the second one is the difference of number of blobs at frame # and

(¢—1). First, we find the shortest distance d(i,_,, j,,)) between blobs in frame (# —1), assuming

that it occurs between blob mand blob 7, i.e. d,; (n,_,,,m ) = min{d (i, ), j, 1)} -
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We define an occlusion flag f,

occ _ start

This flag gets value t if occlusion is found at frame # and

otherwise it gets value —1. Specially,

t l:fdmin(n(t—l)’m(t—l)) < yesora A1d NB, < NB

— (1)

o start = ; , 6-5
focnistalt {_1 OtherWlse ( )
where, NB, , and NB, are the total number of blobs in frame (¢/—1)and frame ¢ respectively.
d om0 18 the threshold of blob distance at the same frame.

Similarly, we also detect when the occlusion terminates. The end of occlusion is checked based on

the shortest distance between blobs at the current frame # and the difference of number of blobs at

current frame and previous frame (¢ —1). We define the end of occlusion flag f, . ,,, as following:

t ifdmin(nr’mt) < dthreshold and NB

p ~ { < NB
occ _end _l otherwise

(t=1) t , (6-6)

6.2.2.5 Depth Aided Object Tracking

According to the result of occlusion detection, the tracking objects can be dividing into two types:

tracking objects without occlusion and tracking objects under occlusion.

6.2.2.5.1 Tracking Objects without Occlusion
The video objects correspondence under non-occlusion is obtained through the shorted distance

D(i,, j,,,) between blobs in previous frame and blobs in the current frame. This distance between

blobs in previous frame and blobs in the current frame is calculated by Equation (6-4). For instance,

once a foreground blob m at frame ¢ (B;") finds its corresponding blob B/, , in frame (t 1), its

label or identification (/D) is updated correspondingly to the 7D of blob B/, . Specially,

IDof B = ID of B},

l,f{D(Bt’",B(’;_U) =min {D(Btm,B({_U)},j =12,.,NB, (6-7)

D(B".B!, )<D

(t-1) thres
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6.2. Proposed Tracking Method

where B’ denotes the blob k at frame j; NB,, , is number of blobs in frame (1—1);D,,, is

(=1

distance threshold.

6.2.2.5.2 Tracking Objects under Occlusion

The main idea of our tracking method is that the object label or identification (/D) is maintained
constantly during occlusion and after they switch their positions.

When occlusion occurs, we can detect and extract the occlusion region. We also can detect and

separately extract a list of objects that are non-occlusion objects in previous frame but overlaying

each other in current frame.

In order to track the objects under occlusion, depth information is used to analysis the occlusion
situation. First, the occluded regions are projected to the ground plane XZ according to their
horizontal position and their depth gray level (more detail in the next subsection). Then according to
the XZ plane, the occlusion objects can be divided into two types based on the depth ranges: a) in
the different depth layer or b) in the same depth layer. We are dealing with these situations as

following parts.
e Project Occlusion Regions into Ground Plane X7

A
b Z

Ry

Figure 6-5. The image plane XY and ground plane XZ.

»
'

X

Each foreground pixel in occlusion region has 3D information obtained from depth map. These
pixels are projected to the ground plane XZ according to their horizontal position and their depth
gray level, where X is the width of the depth map and the range of Z is [0, 255]. The projected

point, which is located at(x,z), is defined as p(x,z). The value at position p(x,z) of projection
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plane is the total number of points at position x in the depth maps that have same gray level (depth

value z ). Figure 6-5 illustrates the image plane XY and ground plane XZ .
In order to remove noisy points, if the value at point p(x,z)is less than threshold 7; the point

p(x,z) will be discarded. Then we also apply morphological operations (dilating and eroding

operation) to remove noisy points and connect nearby points. The remaining points in XZ plane are

grouped in to the blobs that are based on connected component analysis technique using CvBlobLib

library [124]. If a projected blob is small than threshold T, it is consider a noise and it will be

removed. The projected blobs are defined as {PB; | (j =1,2,...,m)}, where m is total number of
projected blobs. Each projected blobs PB is mask as object regions. Figure 6-6 shows an example

of projected blobs in XZ plane.

(a) input image (c) occlusion region (depth image)

»

(b) foreground blob (occlusion region) (d) projected blobs in XZ plane
Figure 6-6. Projected foreground blobs in XZ plane.

As mention before, according to the projected blobs in XZ plane, the occlusion objects can be
divided into two types based on the depth ranges: a) in the different depth layers or b) in the one

depth layer.

¢ Tracking Occluded Objects in Different Depth Layers
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Figure 6-6 shows the case of occluded objects is in different depth layers. Once occluded objects

have different depth layer, they can be segmented in color image by means of their depth ranges.

An example of color image segmentation by means of depth ranges is shown Figure 6-7.

(a) Input image (b) Foreground blob (occlusion region)

(e) Segmented object based on depth layer 1 (red

color in (d)). (c) Occlusion region (depth image)

ol
(f) Segmented object based on depth layer 2 (blue (d) Projected blobs in XZ plane.
color in (d)). (occluded objects in different depth layers).

Figure 6-7. An example of image segmentation by means of depth ranges.

In our method, object correspondence under different layer is based on Bhattacharyya distance [126]
between the color histograms. In statistics, the Bhattacharyya distance measures the similarity of two
probability distributions. In our case, Bhattacharyya distance represents the similarity between two

normalized histograms. The Bhattacharyya distance is calculated by:

BD(H,,H,) = \/1 - i,/H1 (b)- H,(b), (6-8)

where, BD denotes Bhattacharyya distance; /4, and H, are the two normalized color histograms;
N is number of bin in histogram.
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LetO* = {Of,0%,...,0% } is the occluded objects at frame k and U" = {U",U?,...,U"} denotes the
existing non-occluded objects in previous frame » (the frame before occlusion is found). The color

histogram of each occluded objects and existing non-occluded objects are H, and H,,,

respectively. In this paper, color histograms are created from hue component of HSV color space.

Figure 6-8 shows an example of the color histogram.

Frequency

Hue

(a) Color image (b) Color histogram

Figure 6-8. An example of color histogram.

For each occluded object O, we calculate the Bhattacharyya distance BD(O},U ) between color
histogram of this object and color histogram of every object U in U " and then find the shortest

distance BD,_ . The Bhattacharyya distance BD(O},U ) 1s computed according to Equation (6-8),

1

specially:

N
BD(O},U") = \/1 =D JHo ()H,, (). (6-9)
b=l !

The occluded object OF will update its /D according to U »if BD(O},U?) = BD,,, . Figure 6-10

shows the numeric results of calculating Bhattacharyya distance between two histograms. Figure 6-9

illustrates an example of tracking occluded objects in different depth layers.

(a) Input frame (b) Output
(having occlusion objects) (tracking occlusion objects in different layers)

Figure 6-9. Tracking occluded objects in different depth layers.
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Sh

(a) Input frame
(having occlusion objects)

(b) Segmented obj. 1 in input
frame (O,).

i (c) Segmented obj. 2 in input

frame (O,).

H,

H,

2

il

(d) Previous frame

(Before occlusion happened).

(b1) Histogram of object O1 in (b) (c1) Histogram of object O, in (¢)

(H,,)

(Ho,)

BD(H, ,H )

Distance: 0.3288

A i

BD(H, ,H, )

Distance: 0.4106

,

.AM

(e) Object 1 before occlusion
happened (U1)

(e1) Histogram of object Ul in (e) (H ;)

—————————————————————————————————————————

distance between H 0 and H v, is !

0.3288

distance between H , and H,
2 1

is 0.4106

BD(H,, ,H,,)

Distance: 0.4253

H,
i

|

BD(H, ,H,,)

Distance: 0.3367

x
.

J

(f) Object 2 before occlusion
happened (U2)

(f1) Histogram of object U2 in f) (H, )

---------------------------------------- T
'

distance between H o, and H,,

¢ distance between H o and H , is
0.4253

is 0.3367

Figure 6-10. Bhattacharyya distance between two histograms.
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¢ Tracking Occluded Objects in One Depth Layer

Figure 6-11 shows an example of occluded objects in similar depth layer.

(a) Input frame
(having occlusion objects)

(c) projected blobs in XZ plane

(b) Ocelusion region in depth (occlusion objects in one depth layer)

image
Figure 6-11. Tracking occluded objects in different depth layers.

When occlusion objects have similar depth range or full occlusion, it is difficult to segment and track
multiple objects as above technique. To deal with this problem, we propose the tracking method

based on Camshift (Continuously Adaptive Mean Shift) algorithm [127] as following part.

Assuming that there are m occluded object OF (i =1,2,...,m)in the occlusion region R* , their

oce

existing corresponding tracks in the previous frame are U {*~Y. Our algorithm has following steps:

(i) Pre-computing the color histogram H, for every existing track U 7, and the color histogram

H , for occlusion region. Here we calculate a hue histogram from HSV color space.

(i) Based on the average depth values, sorting the list of object U ;k—” so that the object with

biggest depth U - (i.e. the shortest distance from camera) goes first.

foremost

(iii) Calculating a back projection of a hue plane (see an example of projection image in Figure

6-12) of occlusion region using the pre-computing histogram of U*~) ' Based on the back

foremost

projection image, finding in R the corresponding object of U_(ﬁ'f,;zm

e using camsift

(k-1)
foremost *

algorithm. Label it as O*

foremost

with ID according to the ID of U
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(iv) Removing the O* in R*

foremost occ*

Selecting the next track in the sorted U {*~" list and running

step (iii) to find the next O*in R},

occ *

(v) Repeating step (iv) until all objects in OFin R¥ finds their corresponding track.

occ

(a) Previous frame ! (d) Input frame
(Before occlusion happened). (having occlusion objects)

(b1) Object 1 with bigger depth | (b2) Object 2 !

(b) Two objects before occlusion happened. (e) Occluded objects in input frame

(f) Projection image of occluded region in input
frame using pre-computing histogram in (c).

(c) Histogram of object 1 in (b1).

Figure 6-12. An example of projection image.
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Figure 6-13 demonstrates a result of tracking occluded objects in one depth layer.

(a) Input frame (b) Output
(having occlusion objects) (tracking occlusion objects in different layers)

Figure 6-13. An example of tracking occluded objects in one depth layer.

In practice, when projecting partly occluded objects or fully occluded objects with similar depth
ranges into XZ plane, we will obtain only one blob/region in XZ plane. In the case, the objects in
similar depth range are partly occluded, the above algorithm will work well (see Figure 6-13).
However, the fully occluded objects current frame ¢ will reappear as partial occluded objects bind

their occluder in the later frame, so it will be tracked by our method (see example in Figure 6-17).

6.2.3 Experimental Results
In this section, we show the experimental results to evaluate the proposed tracking method. We
evaluate the tracking performance by the capability of detecting and maintaining constant ID of

foreground objects during the occlusion and after the occlusion over.

The proposed tracking method has been test on some video sequences. The input of out method is a
pair of video sequence and the output is the left video sequence in which has a set of moving objects

labeling with /D and bounding boxes with different color.

Figure 6-14 shows results of tracking non-occlusion objects. In the example Figure 6-14(a), in the 3
frames (left to right) each object appears one after another and in the fourth frame, object with
ID =3 has gone out the scene. These results illustrate the ability of our algorithm in detecting

object, assigning and maintaining the objects’ ID .
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6.2. Proposed Tracking Method

a) Tracking of non-occluded objects in “Gym sequence” (from left to right, the frame numbers are: 34, 42,
60 and 201)

b) Tracking of non-occluded objects in “Room sequence” (from left to right, the frame numbers are: 0, 19,
113 and 250, respectively.

Figure 6-14. Result of tracking non-occluded objects.

We demonstrate the result of tracking of occluded objects in different depth layers in Figure 6-15. .
Our proposed method can successful detect the object under partial occlusion. All of objects have

constantly label over the time even they are moving in variety of pose and position.

(a) “Gym sequence”: from left to right, the frames indexes are 65, 73, 87 and 145, respectively.

(b) “Room sequence”: from left to right, the frame indexes are 127,129, 132 and 135, respectively.

Figure 6-15. Tracking occluded objects in different depth layers.

Tracking the occluded object under the similar depth layer is shown in Figure 6-16. These examples
show that the proposed algorithm can detect and track a partial occluded object that is equivalent to

at least one half a human body.
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(b) “Room sequence”: from left to right, the frame indexes are 236,237, 238 and 239, respectively.

Figure 6-16. Tracking occluded objects in one depth layer.

Figure 6-17 shows the case an object is fully occluded and in the similar depth layer with its
occluder and our system cannot detect it. However, in the future time when this object reappears as
partial occluded object, the system can detect and maintain its ID. This example demonstrate the
capability of proposed algorithm in term of maintain constant label for object over the video

sequence.

“Room sequence”: from left to right, the frame indexes are 67,72, 73 and 74, respectively.

Figure 6-17. Tracking fully occluded objects.
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6.3 CONCLUSIONS

In this chapter, we have presented a novel tracking method aiming at detecting objects and
maintaining their ID over the time. The main key factor of this method is to use depth information to
help to track objects under various occlusion scenarios. Different object tracking strategies are apply
according to occlusion situation including finding correspondence object based on Bhattacharyya
distance between two histograms and using camshift based algorithm with the help of object depth
ordering. The experimental results presented have confirmed the capability of our proposed objects

tracking algorithm under the most typical and challenging occlusion scenarios.

However, the proposed algorithm can work only in an indoor or medium sized environment since the
reliability of depth information diminished in proportion to the distance from camera and only when
the moving velocity of objects are slow. In the future work, to construct a robust moving object
tracking system in both indoor and outdoor environment, we will study to use more object’s features

to classify and track the objects.
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CONCLUSIONS AND OUTLOOK

7.1 SUMMARY AND CONCLUSIONS

This thesis devotes to firstly study depth estimation from stereo/multi-view images and then use this
useful information for one of the key application in 3DTV, namely free viewpoint synthesis, and for
object segmentation and multiple moving object tracking applications. The achievements are

summarized as follow parts.
e Chapter 3: Depth Estimation

We have proposed a method that allows the use of several un-rectified images simultaneously to
estimate a consistency and reliability depth image. We have introduced three constraints, i.e. intra-
line, inter-line and inter-view smoothness constraint, which enforce smooth variations of depth value
in the scanline, across scanline and consistent depth value across the views. The proposed algorithm
combines two stages: the first stage serves as a calculation of initial depth images and the second
stage enhances the depth initial depth images in the first step by enforcing consistent depth across the
views. The three smooth constraints can be efficiently integrated into one dimensional optimization
dynamic program algorithm. Experiments have shown that the proposed smooth constrains yield
reasonably depth image quality for various multi-view data sets. Although, depth estimation has been

widely studied, we have some small contributions as:

o Using several uncertified images simultaneously. As we known, in the multi-view camera
configuration, multiple images are available so that the algorithm employ all view could
yields an accurate depth map comparing the common case using only two views.
Furthermore, with uncertified images we do not need the image rectification pre-processing

or image de-rectification post-processing;

o Adding the smoothness constraints which enforce smooth variations of depth value in the

scanline, across scanline and consistent depth value across the views.
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This proposed method was published in the Proceeding of the fourth International Conference on

Communication and Electronics (ICCE), 1% -3 August 2012, Hue, Vietnam.
e Chapter 4: Depth Based View Synthesis

After investigating and presenting the depth estimation algorithm, the Chapter 4 of this thesis focus
on the depth based image rendering for 3D video and 3DTV systems. As we have introduced, view

synthesis is one of key techniques in the near future 3DV/3DTV system.

For synthesizing high quality of virtual view, we have proposed a novel method employing multiple
color and depth images. The proposed method solves the main problems of depth based synthesis by
applying forward depth map following with inverse warping texture, performing pixel classification
to generate an initial new view from stable pixels and using Graph cut to select the best candidate for
unstable pixels. The remained disoccluded pixels are inpainted by using depth and texture
neighboring pixel value. Experimental results show that the proposed method has strength in artifact
reduction. Objective evaluation has shown that our method get a significant gain in PSNR and SSIM
comparing to some other existing methods. Another advantage of our method is that we can use a set

of un-rectified images in multi-view system to create a new view with higher quality.

Depth imaged based view synthesis is one of active research field, but we have added some

contributions as:

o Solving the cracks and holes due to sampling rate by applying forward depth map
following with inverse warping texture. This allows a simple and accurate re-sampling of

synthetic pixel.

o Presenting the procedure to classify the pixel as stable, unstable and disocclusion from the
multiple images and providing an energy function to select the unstable pixels by Graph
Cuts. By defining the types of pixels and using Graph cuts, the incorrectly wrapped pixels

because of inaccuracy depth maps are removed in the synthetic view.

o Using both color and depth information to fill the disocclusion regions. This will help to

reduce the blurring between foreground and background textures.
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This work was published in the Proceeding of the 19" Korea-Japan Joint Workshop on Frontiers of
Computer Vision; and in the Proceeding of the 17™ International Conference on Image Processing,
Computer Vision, & Pattern Recognition. The revised version was published in Journal of Signal

and Information Processing.
e Chapter 4: Depth Assisted Object Segmentation

As the estimated depth information available, our concern is to apply the usefully estimated 3D
information for the object segmentation method. We have proposed a method using both depth and
color cues, which requires no interactive operation, to segment human object. Our method consist of
two stages: for initial frame of the video sequence, the interested object is automatically extracted
based on saliency model and iterated Graph cut. After having segmented object in first frame, we
have propose a method combining Bayesian estimation and minimizing energy function using Graph
cut to segment object. We use Gaussian Mixture Model (GMM) in RGB space for the color cue and
histogram for depth cue. Based on these probabilistic models, the probability of each pixel to be in
foreground is computed based on Bayesian estimation and the results are used to create the tri-map
including foreground (F), background (B) and uncertain region (U). Graph cut is then performed on
the uncertain region. In our energy function for Graph cut optimization, the color, depth and spatial-
temporal coherence are integrated in data term and the penalty cost of the neighboring pixels with
different labels is encoded in smoothness term. Experiment results on test sequences are encouraging

and showed that our method is more effective than the case using only color cue.

Many researchers have investigated object tracking and different approaches have been presented,

but our research has added some contributions as:

o Proposing the object segmentation method for video using both depth and color cues,

which requires no interactive operation;

o Using probabilistic models for depth and color cues with Bayesian estimation to create tri-
map; with tri-map, Graph cut only performed on the uncertain region, which can speed up

the Graph cut process.
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This concept of integrating depth and color into the object segmentation was published in ICGST

International Journal on Graphics, Vision and Image Processing GVIP (ICGST-GVIP).

e Chapter 5: Depth Aided Object Tracking

The final work in this thesis is to using the estimated depth information for object tracking. We have
presented a novel tracking method aiming at detecting objects and maintaining their
label/identification over the time. The main key factors of this method are to use depth information
and different strategies to track objects under various occlusion scenarios. The foreground objects are
detected and refined by background subtraction and shadow cancellation. The occlusion detection is
based on information of foreground blobs in successive frames. The occlusion regions are projected
to the projection plane XZ to analysis occlusion situation. According to the occlusion analysis results,
different objects correspondence strategies are introduced to track object under various occlusion
scenarios including tracking occluded objects in similar depth layer and in different depth layers. The
experimental results show that our proposed method can track the moving objects under the most

typical and challenging occlusion scenarios.

Many researchers have investigated object tracking and different approaches have been presented,

but our research has added some contributions as:
o Using depth information to help to track objects under various occlusion scenarios;

o Applying different object tracking strategies according to occlusion situation with the help

of object depth ordering.

This proposed method was published in Journal of Signal and Information Processing and in the

International Journal of Computer Science and Network Security.

7.2 OUTLOOK

This thesis has contributes to several areas of depth estimation, view synthesis for 3DTV and object
tracking and segmentation, however there are still a number of issues need to be address. For future
work, that further improves techniques proposed in this thesis as well as potential new researches are

listed below:
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¢ Depth Estimation

o The proposed depth estimation algorithm is only performed independently for each frame
of views. We can modify this algorithm to utilize the temporal consistency in successive

video frames to obtain a more accurate depth image;

o To improve the quality of depth maps, we could concern about other approaches such as

Graph models, two dimension optimization, or depth map refinement techniques;

o In this thesis, we just concern the narrow baseline multiple camera system, thus the future

work can investigate for the wide based line case.

e Free viewpoint synthesis for 3DTV

o The similar in depth estimation, the proposed view synthesis is just performed for each
frame. The extension with utilizing temporal information in successive video frames could

yield a higher quality of synthesis view;

o We think that improving the disocclusion filling technique can further enhance the
perceptive rendering quality. For example, edge, depth and segmentation features can use

to correctly fill in the disocclusion pixels;

o The DIBR brings new challenges such as the question of synthesized view evaluation. We
could be interested in the protocols of subjective assessment and the reliability of object
quality metrics in the context of DIBR based view synthesis, because it may lead to

improving the quality of synthesize views.

o To use in real time system, it should consider to reduce the algorithm complexity or to

implement in hardware.

e Depth based object segmentation

o We had assumed that color and depth are independent, however there could be some
correlations between color and depth information. We think that modeling the correlation

of color and depth in some ways such as 4 dimensions histogram (3 dimensions are

- 131 -



7.2. Outlook

assigned for 3 color channels and another dimension for depth) could give a better results

than the case when these two cues are modeled independently;

o The segmentation algorithm only deals with object segmentation in the key view, so
finding efficient way to project the segmentation result in key-view to another views is an

interested topic.

o We could extent the proposed method to segment multi-objects;

e Depth based multiple object tracking

o The proposed algorithm can work well only in an indoor or medium sized environment
since the reliability of depth information diminished in proportion to the distance from
camera and only when the moving velocity of objects are slow. In the future work, to
construct a robust moving object tracking system in both indoor and outdoor environment,

we will study to use more object’s features to classify and track the objects.
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APPENDICES

A1 CALIBRATION PARAMETERS OF THE MULTI-VIEW SEQUENCES
‘BREAK-DANCERS” AND “BALLET”

These test sequences were acquired by Microsoft Research [69]. This data includes a sequence of 100
images captured from 8 cameras. The resolution of both sequences is 1024 x 768 pixels and the
frame rate is 15 frames per second. Table 7-1 and Table 7-2 show each camera along with the
calibration parameters of the multi-view sequences “Break-dancers” and “Ballet”, respectively.

Note that the calibration parameters are a left-handed coordinate system with the origin (0,0) of the

image located in the bottom left corner.

Table 7-1. Calibration parameters of the multi-view sequence “Break-dancers”.

K R T
1884.19  -0.654998 513.7 0962107  -0.005824  0.272486 -14.832727
Camera 0 0.0 1887.49 395.609 0.004023 0.999964 0.007166 0.093097
0.0 0.0 1.0 40272519 -0.005795  0.962095 -0.005195
1898.03 0.282128 517.91 0.97581 -0.02601 0.216939 -11.315863
Camera 1 0.0 1900.81 382.815 0.022983 0.999598 0.016432 -0.167907
0.0 0.0 1.0 0217280  -0.011048  0.976016 0.701363
1904.87 0.437636 497.954 0.987 -0.009204  0.160317 -7.554977
Camera 2 0.0 1908.15 385.047 0.007599  0.999912 0.010582 0.000823
0.0 0.0 1.0 -0.1604  -0.009226  0.986984 1.245204
1872.93 0.680911 546.988 0996735  -0.00745 0.08025 -3.841023
Camera 3 0.0 1877.1 380.224 0.00641 0.999888 0.013222 -0.089977
0.0 0.0 1.0 -0.080339  -0.012665  0.996671 -0.083842
1877.36 0.415492 579.467 1.0 0.0 0.0 0.000006
Camera 4 0.0 1882.43 400.612 0.0 1.0 0.0 0.000001
0.0 0.0 1.0 0.0 0.0 1.0 -0.000003
1871.23 0.747826 540.106 0998897  -0.017983  -0.043130 3.858103
Camera 5 0.0 1877.30 412.656 0.017587  0.999799  -0.009367 0.069365
0.0 0.0 1.0 0.043280  0.008599  0.999013 0.606667
1873.25 1.0738 578.641 0991407  -0.015086  -0.129693 7.647271
Camera 6 0.0 1880.06 386.506 0016454  0.999816  0.009545 -0.012308
0.0 0.0 1.0 0120526  -0.011597  0.991473 -0.270987
1576.87 2.04 580.624 0982395  0.005137  -0.186558 11.306122
Camera 7 0.0 1883.93 395399 | -0.003610  0.999954  0.008587 -0.146099
0.0 0.0 1.0 0.186594  -0.007762  0.982368 -1.040691
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A.1. Calibration Parameters of the Multi-view Sequences “Break-Dancers” and “Ballet”
Table 7-2. Calibration parameters of the multi-view sequence “Ballet”.
K R T
1918.27 2.48982 494.085 0.949462 0.046934 0310324 -15.094651
Camera 0 0.0 1922.58 447736 | -0.042337 0998867  -0.021532 0.189829
0.0 0.0 1.0 -0.310985  0.007308  0.950373 1.383263
1913.69 -0.14361 533.307 0.972850  0.010365 0.231187 -11.58932
Camera 1 0.0 1918.17 398.171 -0.012981  0.999864  0.009794 -0.355771
0.0 0.0 1.0 -0.231056  -0.012528  0.972852 1.045534
1914.07 0.343703 564.645 0.98923 0.003946  0.146295 -7.784865
Camera 2 0.0 1918.5 428.422 -0.004391  0.999983 0.002724 -0.431597
0.0 0.0 1.0 -0.146283  -0.003337  0.989230 1.392058
1909.91 0.571503 545.069 0.996415 0.026023 0.08048 -3.903715
Camera 3 0.0 1915.89 394.306 -0.026884  0.999591 0.009614 -0.040429
0.0 0.0 1.0 -0.080197  -0.011743  0.996707 0.168691
1908.25 0.335031 560.336 1.0 0.0 0.0 -0.000002
Camera 4 0.0 1914.16 409.596 0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0
1915.78 1.210910 527.609 0.998175 0.028914 -0.0530 3.849864
Camera 5 0.0 1921.73 394.455 -0.028594  0.999567 0.006786 0.041657
0.0 0.0 1.0 0.053173  -0.005258  0.998570 0.428967
1910.57 0.786148 578.134 0.988494 0.037674  -0.146458 7.602324
Camera 6 0.0 1916.27 404.469 -0.037105  0.999288 0.006622 -0.045578
0.0 0.0 1.0 0.146603  -0.001111  0.989188 -0.044837
1929.09 0.831916 585.52 0.975422 0.032363  -0.217910 11.142041
Camera 7 0.0 1937.21 416.944 -0.033721  0.999425  -0.002516 0.200655
0.0 0.0 1.0 0.217705 0.009803 0.975952 -0.230057
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