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ABSTRACT 

Three dimensional video ( DV3 ) and multi-view imaging technologies may be the next step in the 

evolution of motion picture formats, as we presently witness the appearance of D3  displays, multi-

camera systems with dense or sparse camera configuration, coding systems. Going with the demand 

of entertainment and progressive development of digital devices, developing D3  processing 

algorithms, related applications and systems have been attracted extensive attentions in the industrial 

and research communities. Depth inference from stereo and multi-view images is one of the most 

fundamental techniques in D3  digital imaging applications since it provides the perception and 

visualization of the real word environment in DV3  as well as a useful cue for other applications.  

This thesis devotes to firstly study depth estimation from multi-view images and then use this useful 

information for three applications including: one of the key applications in DTV3 , namely free 

viewpoint synthesis, and other two applications object segmentation and multiple moving object 

tracking. 

The first part (Chapter 3) of this thesis addresses the problem of depth estimation from multiple 

views. The depth information disappears after taking an D2  image from a D3  scene. To recover 

this missing information, the depth can be estimated from two or more images by finding the 

correspondence pairs among them. Initially, we introduce the basic geometric model that enables the 

triangulation of corresponding pixel points across the views.  While the basic physics and geometry 

relating visual disparity to scene structure are well understood automatically measuring this disparity 

by establishing dense and accurate inter image correspondence is a challenging task. Some 

difficulties such as the unable setting the identical internal cameras’ parameters, the change of 

illumination across the views, texture-less regions and occlusion can result in an unreliable 

identification of the point-correspondences and thus in inaccurate depth values.  Next, we review the 

previous works on estimation of depth image using a single image/mono video, two views and 

multiple views. Finally, we have proposed a method that allows the use of several un-rectified 

images simultaneously to estimate a consistency and reliability depth image.  We have introduced 
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three constraints, i.e. intra-line, inter-line and inter-view smoothness constraint, which enforce 

smooth variations of depth value in the scanline, across scanline and consistent depth value across the 

views. The proposed algorithm combines two stages: the first stage serves as a calculation of initial 

depth images and the second stage enhances the depth initial depth images in the first step by 

enforcing consistent depth across the views. The three smooth constraints can be efficiently 

integrated into one dimensional optimization dynamic program algorithm. Experiments have shown 

that the proposed method yields reasonably depth image quality for various multi-view data sets. 

After investigating and presenting the depth estimation algorithm, the next part (Chapter 4) of this 

thesis focuses on the depth based image rendering for D3  video and DTV3  systems. In 

DTVDV 3/3 , the viewer can ideally navigate through the D3  domain and selects his own 

viewpoint.  The chosen viewpoint may not only be selected from available multi-view camera views, 

but also any viewpoint between these cameras. Obviously, this feature requires a smart synthesis 

algorithm that allows free-viewpoint view rendering.  In chapter 4, we have reviewed the recent 

advancements in viewpoint synthesis for DTV3  and then proposed a novel method and showed its 

performance. Our contribution is a novel synthesis method that enables to render a free-viewpoint 

from multiple existing cameras. The proposed method solves the main problems of depth based 

synthesis by  applying forward depth map following with inverse warping texture, performing pixel 

classification to generate an initial new view from stable pixels and using Graph cut to select the best 

candidate for unstable pixels. By defining the types of pixels and using Graph cuts, the color is 

consistent and the pixels wrapped incorrectly because of inaccuracy depth maps are removed. The 

remained disoccluded pixels are inpainted by using depth and texture neighboring pixel value. 

Considering depth information for inpainting, blurring between foreground and background textures 

are reduced. Experimental results show that the proposed method has strength in artifact reduction. 

Objective evaluation has shown that our method get a significant gain in Peak Signal Noise Ratio (

PSNR ) and Structure Similarity Index ( SSIM ) comparing to some other existing methods. Another 

advantage of our method is that we can use a set of un-rectified images in multi-view system to 

create a new view with higher quality 
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As the estimated depth information available, our concern is to apply the usefully estimated D3  

information for the object segmentation method (Chapter 5). Even though image segmentation has 

been addressed in extensive literatures, the results are not satisfactory in many situations. A major 

difficulty lies in the fact that semantic objects are not homogeneous with respect to the low-level 

features in single image, such as color or texture properties. Fortunately, depth information recovered 

from multi-view serves as an important cue for segmentation. We have proposed a method using both 

depth and color cues, which requires no interactive operation, to segment human object from multi-

view video. Our method consist of two stages: for initial frame of the video sequence, the interested 

object is automatically extracted based on saliency model and iterated Graph cut. After having 

segmented object in first frame, from the second frame we have proposed a method combining 

Bayesian estimation and minimizing energy function using Graph cut to segment object. We use 

Gaussian Mixture Model ( GMM ) in RGB space for the color cue and histogram model for depth 

cue.  Based on these probabilistic models, the probability of each pixel to be in foreground is 

computed based on Bayesian estimation and the results are used to create the tri-map including 

foreground (F), background (B) and uncertain region (U). Graph cut is then performed on the 

uncertain region. In the energy function for Graph cut optimization, the color, depth and spatial-

temporal coherence are integrated in data term and the penalty cost of the neighboring pixels with 

different labels is encoded in smoothness term. Experiment results on test sequences are encouraging 

and showed that our method is more effective than the case using only color cue. 

The final work in this thesis is to using the estimated depth information for object tracking (Chapter 

6). Detection and tracking of objects is very importance research area of computer vision and has a 

wide range of application. Many researchers have investigated object tracking and different 

approaches have been presented. Some of approaches can achieve good results in some cases, such as 

when the target object has distinct color distribution from the background. However, multi objects 

tracking is still a difficult task due to various aspects, including inaccurate motion vector estimation, 

variation of the non-rigid object appearance and confusions in multiple targets’ identities when their 

projections in the image are close. Moreover, object regions with various tracking issues such as 
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appearance and disappearance, splitting and merging, without and with occlusion should be dealt 

with in the tracking algorithm. We have proposed a novel tracking method aiming at detecting 

objects and maintaining their label/identification over the time. The main key factors of this method 

are to use depth information and different strategies to track objects under various occlusion 

scenarios. The foreground objects are detected and refined by background subtraction and shadow 

cancellation. The occlusion detection is based on information of foreground blobs in successive 

frames. The occlusion regions are projected to the projection plane XZ  (ground plane) to analysis 

occlusion situations. According to the occlusion analysis results, different objects correspondence 

strategies are introduced to track object under various occlusion scenarios including tracking 

occluded objects in similar depth layer and in different depth layers. The experimental results show 

that our proposed method can track the moving objects under the most typical and challenging 

occlusion scenarios. 
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1  

INTRODUCTION 

1.1 MOTIVATION AND OBJECTIVE OF THESIS 

The conventional two-dimensional ( D2 ) images captured by a traditional single camera lose three-

dimensional ( D3 ) information especially the depth information of the D3  scene, which is a useful 

and important cue for perception and visualization of the real word environment. In the recent years, 

with the fast improvement of the capability of personal computers and digital equipment, more and 

more multi-camera systems with dense or sparse, wide-baseline or narrow-baseline camera 

configuration become available, which significantly broaden the multi-view applications and enhance 

the user experience. Going with the demand of entertainment and progressive development of digital 

devices, developing D3  processing algorithms, related applications and systems have been attracted 

extensive attentions in the industrial and research communities.  

Recently, multi-view imaging technologies are becoming importation with the ongoing convergence 

of extensive visualizations, and greatly influent our life in the area of surveillance for environmental 

security, entertainment, and virtual view synthesis for three dimensional television ( DTV3 ) and free 

viewpoint television ( FTV ) system. Additionally, content-based applications enable analysis and 

interpretation of data by accessing and manipulating semantic objects, offering user flexibility for 

data exploitation in the object level. This popularity and flexibility are the motivation of our efforts to 

learn some key technologies and applications in a multi-view system such as multi-view acquisition, 

depth estimation, depth based view synthesis for DTV3 , depth assisted object segmentation and 

tracking. We focus on learning to estimate depth from multi-view images and to use this useful 

information for some importance applications that are view synthesis for DTV3 , object segmentation 

and tracking.  

In this thesis, firstly we study about estimate depth from multi view images. Depth inference from 

stereo and multi-view images is one of the most fundamental techniques in D3  digital imaging 
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applications. The depth information disappears after taking an D2  image from a D3  scene. To 

recover this missing information, the depth can be estimated from two or more images by finding the 

correspondence pairs among them. From the earliest inquiries into visual perception, it was know that 

we perceive depth based on the different in appearance between left eye and right eye. When viewing 

a scene with both eyes, the observers can use information derived from the different projection of 

objects onto each retina to judge depth. Thus, stereo or disparity measured by using two images of 

the same scene from different angles is the binocular cue to determine the depth information, which 

is negatively correlated to the distance between camera and the object. While the basic physics and 

geometry relating visual disparity to scene structure are well understood automatically measuring this 

disparity by establishing dense and accurate inter image correspondence is a challenging task.  Depth 

estimation from a set of multiple views or images has been widely studied in the computer-vision 

research community. However, depth estimation still remains an open research topic since this is an 

ill-posed problem in many situations. For example, the following aspects is illustrated some 

difficulties. First, due to the unable setting the identical internal cameras’ parameters and/or the 

change of illumination across the views, multi-view images may not conform to the photo-

consistency rule.  The projections of the same D3 point into different views can have different 

intensity/color values. This results in an unreliable identification of the point-correspondences and 

thus in inaccurate depth values. Second, object surfaces appear differently depending on the 

viewpoint. The third, it may occur the appearance of texture-less regions and repeated patterns in the 

scene. This will increases the ambiguity while finding reliable corresponding points, thereby 

resulting in inaccurate depth values. The fourth, in some cases, particular background regions may be 

visible from a given camera viewpoint but may not be visible from a different camera view point, so 

that, it is not possible to identify point-correspondences across the views. In this thesis, first we 

review the existing methods and then propose the algorithm which uses simultaneously multiple 

images/views to estimate depth.  

An important application of depth maps is the depth based image rendering for D3  video and 

DTV3  systems.  In the near future, most video content will be available in D3 . D3  does not only 
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mean stereo video, but also multi-view video, where a user can navigate around and change its 

viewpoint in a similar way as it is already known from today’s video games. Multi-view video is 

recorded using arrays of cameras, which are capturing the same scene from different viewpoints. This 

technique especially enables applications such as DTV3 and FTV . Comparing with the DTV2 , 

the most impressive progress of DTV3 and FTV  is to offer the users a D3 depth feeling of the 

observed scene and the flexibility of interactively selecting the freedom viewpoint of the real 

environment.  The chosen free viewpoint may not only be selected from available multi-view 

cameras, but also any viewpoint between these cameras. It requires a smart rendering algorithm that 

allows free viewpoint view synthesis. In this thesis, we concern such multi view synthesis algorithm 

and aims at proposing best synthesis algorithm when using multi-view texture and depth images of 

the scene.   

As the estimated depth information available, our next concern is to apply the usefully estimated D3

information for the object segmentation method. Even though image segmentation has been 

addressed in extensive literature, the results are not satisfactory. A major difficulty lies in the fact that 

semantic objects are not homogeneous with respect to the low-level features in single image, such as 

color or texture properties. Fortunately, depth information recovered from multi-view serves as an 

important cue for segmentation. However, due to ill-posed nature of depth estimation, errors may 

occur in the depth map. To obtain more robust segmentation results for object-level manipulation, we 

consider to integration of depth, color, and other image cues in our algorithms.  

The final work in this thesis is to using the estimated depth information for object tracking. Detection 

and tracking of objects is very importance research area of computer vision and has a wide range of 

application. Many researchers have investigated object tracking and different approaches have been 

presented. Some of approaches can achieve good results in some cases, such as when the target 

object has distinct color distribution from the background. However, multi objects tracking is still a 

difficult task due to various aspects, including inaccurate motion vector estimation, variation of the 

non-rigid object appearance and confusions in multiple targets’ identities when their projections in 

the image are close. Moreover, object regions with various tracking issues such as appearance and 



1.2

 
disa

algo

anal

1.2 

This

view

1-1 

Cha





2. Structure

appearance, s

orithm. Dept

lysis occlusio

STRUC

s thesis addr

w synthesis, 

shows the or

apter 2: Bac

 Providin

point in i

 Describin

which is 

e of Thesis 

splitting and 

h informatio

on and help t

CTURE OF

resses the fo

depth assiste

rganization a

ckground 

ng the summa

image plane;

ng a method

known as ca

merging, wi

on will be us

to track obje

F THESIS

ollowing top

ed object se

and relations

Figure 1-1

ary of geom

;  

d for compu

amera calibra

--4 -

ithout and w

sed in our tra

cts under var

pics: depth e

gmentation a

hip between 

1. Organizat

etry of multi

uting the int

ation;  

- 

ith occlusion

acking meth

rious occlusi

stimation fro

and depth ai

the chapters

tion of this T

iple views; t

ternal and e

n should be d

od. This info

ion scenarios

om multi-vie

ided moving

s.  

Thesis. 

the relationsh

external para

dealt with in 

ormation is e

s.  

ew images, 

g object track

hip of 3D po

ameters of t

the tracking

employed to

depth based

king. Figure

 

oints and 2D

the cameras,

g 

o 

d 

e 

D 

, 



Chapter 1: Introduction 

 

--5 - 

 Describing a stereo rectification process which is correcting the individual images so that they 

appear as if they had been taken by two cameras with row-aligned image planes. This help to 

reduce the search of point correspondences when depth is estimated; 

 Introducing a very short summary of Graph Cuts, which is use to minimize our energy 

functions in the in later chapters.  

Chapter 3: Depth Estimation 

 Providing the comprehensive review the previous works on estimation of depth image using a 

single image/mono video, two views and multiple views;  

 Presenting the proposed depth estimation method and experimental results. The proposed 

method is utilizing simultaneously all views and  using one dimensional optimization 

strategy;   

Chapter 4: Depth Image Based Synthesis 

 Briefly introducing the advances in three-dimensional video/television ( DTVDV 3/3 ); 

 Providing the review the previous works on estimation of depth based  image synthesis;  

 Presenting a novel view synthesis algorithm and its performance assuming that the depth 

maps, textures of multi-view cameras and their parameters are available;   

Chapter 5: Depth Assisted Object Segmentation 

 Briefly introducing the object segmentation topic;  

 Providing the current research on depth based object segmentation;   

 Presenting the proposed object segmentation algorithm, in which depth is fused with color 

and spatial-temporal coherence in an energy function. This function is optimizing by Graph 

Cuts. 
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Chapter 6: Depth Aided Object Tracking 

 Providing the current research on depth based object tracking;   

 Presenting the proposed tracking method, in which depth information and different strategies 

are used to track objects under various occlusion scenarios. 

Chapter 7:  Conclusion and Outlook 

 Providing a summary, some conclusions as well as an outlook on future work. 
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2  

BACKGROUND 

2.1 CAMERA MODELS AND CALIBRATION 

2.1.1 Projective Geometry 

Projective geometry serves as a mathematical model for how images of the D3  world are formed. It 

is used to model the image formation process, generate synthetic images, or reconstruct D3 objects 

from multiple images. To model lines, planes or points in a D3 space, usually the Euclidean 

geometry is employed. In Euclidean space, a point defined in three dimensions is represented by a 3-

element vector TZYX ),,( ; the sides of objects have lengths, intersecting lines determine angles 

between them, and two lines are said to be parallel if they lie in the same plane and never meet. 

Moreover, these properties do not change when the Euclidean transformations (translation and 

rotation) are applied. However, when we consider the imaging process of a camera, it becomes clear 

that Euclidean geometry is insufficient: lengths and angles are no longer preserved, and parallel lines 

may intersect.  

Projective geometry establishes an attractive framework to circumvent the above disadvantages of 

the Euclidean geometry. In the projective space, the same point is described using a 4-element vector 

TXXXX ),,,( 4321  such that  

,434241 /XX,      Z/XX,     Y/XXX   (2-1)

where, 04 X . Generally, the coordinates TZYX ),,(  and TXXXX ),,,( 4321 are called 

inhomogeneous coordinates and homogeneous coordinates [1], respectively. 

As a generalization, the mapping from a point in the n-dimensional Euclidean space to a )1( n  

dimensional projective space can be written as  
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,),,...,,(),...,,( 2121     
space Projectivespace Euclidean

T
n

T
n XXXXXX   

(2-2)

where 0 corresponds to a free scaling parameter. This free scaling parameter   is often called 

the homogeneous scaling factor.  

Projective geometry models well the imaging process of a camera because it allows a much larger 

class of transformations than just translations and rotations, a class which includes perspective 

projections. Table 2-1 shows the relationships between two different geometries.  

Table 2-1. The two different geometries, the transformations allowed in each, and the measures 
that remains invariant under those transformations. 

 Euclidean Projective 

Transformations:   

rotation x x 

translation x x 

reflection x x 

uniform scaling  x 

non-uniform scaling  x 

perspective projection  x 

Invariants:   

length x  

angle x  

ration of lengths x  

parallelism x  

cross ratio x x 

2.1.2 Pinhole Camera Model 

Pinhole camera is a simple camera without a lens and with a single small aperture, effectively a light-

proof box with a small hole in one side. Light from a scene passes through this single point and 
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To formulate above relation described in Equation (2-5), we have assumed that the origin of the pixel 

coordinate system corresponds to the principal point T
yx ooo ),( , located at the center of the 

image. However, most of the current imaging systems define the origin of the pixel coordinate 

system at the top-left pixel of the image. A conversion of coordinate systems is thus necessary. Using 

homogeneous coordinates, the principal point position can be readily integrated into the projection 

matrix. Now the perspective projection equation becomes  

.

10100
00
00

1 











































Z
Y
X

of
of

y
x

y

x

  (2-6) 

We have assumed that the pixels of image sensor are square, i.e. aspect ratio is 1:1 and pixels are not 

skewed to derive the relation (2-6). However, both assumptions may not always be valid. In practice, 

the pixel aspect ratio is often provided by the image-sensor manufacturer. The individual pixel on 

typical low cost camera is rectangular rather than square. For example, an NTSC TV system defines 

non-square pixels with an aspect ratio of 10: 11. Moreover, pixels can potentially be skewed, 

especially in the case that the image is acquired by a frame grabber due to an inaccurate 

synchronization of the pixel-sampling process. Two parameter   and   are used to model the pixel 

aspect ratio and skew of the pixel respectively as shown in Figure 2-2. The Equation (2-7) can be 

update as 

  ,0|
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  (2-7)

with TZYXP )1,,,(  being a D3 point defined with homogenous coordinates and xy ff  . The 

intrinsic parameters are denoted as K , and 30 is denoted by T]0,0,0[03  . With nowadays digital 

cameras, it can be assumed that pixels are non-skewed )0(  .  
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The second largest common distortion is tangential distortion. This distortion is due to manufacturing 

defects resulting from the lens not being exactly parallel to the imaging plane. Tangential distortion is 

minimally characterized by two parameters 1p and 2p  [2], such that: 

  
  .22

22

2
22

1

22
21

xpyrpyy
xrpypxx

corrected

corrected




 (2-9)

There are many kinds of distortions that occur in imaging systems, but they are lesser effect than 

radial and tangential distortions. Hence almost research will not deal with them.  

We have five distortion coefficients that model the influence of the radial and tangential distortions 

of the optical system. These coefficients are the new intrinsic parameters of the camera model. In 

OpenCV[2], they are typically bundled into one distortion vector 5 by 1, which is containing 1k , 2k ,

1p , 2p , and 3k . 

2.1.2.3 Extrinsic Parameter 

So far, we assume that D3 points are expressed in the camera coordinate system. In practice, they 

can be expressed in any D3 coordinate system. In order to understand how points in the real world 

are related mathematically to the points in the images plane, two coordinate systems (see the Figure 

2-4) are of particular interest: 

1. The world coordinate system at wO  (denoted here with a subscript ‘W ’ for ‘world’), which 

is independent of placement and parameter of the camera. 

2. The camera coordinate system at the optical center C (denoted by ‘ C ’ for ‘camera’).  

The two coordinate system are related by translation expressed by vector T and rotation represented 

by matrix R . The translation vector T  describes a change in position of the coordinate center C  

and wO , wOCT  . The rotation, in turn, changes the corresponding axes of each system. This 

change is described by the orthogonal matrix R of dimension 33  )1( TRR [3].  
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where Tyxp ),(  is an image point of TZYXP )1,,,(  under transformation M  performed by 

pinhole camera. The matrix M  is called a projection matrix.  Equation (2-12) defines a 

transformation of the projecting a 3D point onto the image plane. 

2.1.3 Projection of 2D Point to 3D Points 

In the previous section, the process of projecting a D3 point onto the D2  image plane was 

described. This part will present how a D2  point can be back-projected to the D3  space and derive 

the corresponding coordinates. Considering a D2  point p  in an image, there exists a collection of 

D3  points that are mapped and projected onto the same point p . This collection of D3  points 

constitutes a ray connecting the camera center ),,( zyx CCCC   and Tyxp )1,,( .  

The Equation (2-12) can rewrite as 

.KRC
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KRp 













  (2-13) 

From Equation (2-13)  the ray )(P associated to a pixel Tyxp )1,,( can be defined as 
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 (2-14) 

where   is the positive scaling factor defining the position of the 3D point on the ray. 

If Z  is known, from Equation (2-14) it is possible to obtain the coordinates X and Y by calculating 

  using the following relation 

,
3r

CZ z
  (2-15) 

where 3r  is computed by Equation (2-14). 

The back-projection of D2  point to D3 points is important for depth estimation and image 

rendering, which will be used later chapters in this Thesis.  
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where, ir corresponds to the thi  column of the rotation matrix R  and RCt  .  

The homography matrix H  that map a planer object’s point on the imager is then described by 

  t rrsKH 21 . Note that H is now a 3-by-3 matrix. The calculation of the camera parameters 

requires the estimation of the homography matrix H . The homography matrix H related to the 

positions of the points on the source image plane (model plane) to the points on the destination image 

plane (imager plane). Given an image of model plane, an homography can be estimated (more detail 

in [10]).  

Assuming that the homography H is calculated, we will write H  out as column vector, 

 321  h hhH  , where each H  is a 3-by-1 vector. From Equation (2-17), we get: 

   .21321  t rrsK h hhH   (2-18)

Reading off these equations, we have: 

,3
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2
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hλK  or  rsKrh
hλK  or  rsKrh
hλK   or  rsKrh











 (2-19)

where, s/1 . 

The rotation vectors are orthogonal to each other (that means the rotation vector’s dot product is 0  

and the vector’s magnitudes are equal), so: 
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 (2-20)

For any vector a  and b  we have TTT abab )( , from equations (2-19) and (2-20) we have:  
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Setting   11  KKB T , we have 
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Because B  is symmetric, it can be written as a reduced vector b with only 6 terms, thus

TBBBBBBb ],,,,,[ 332313221211 . The two constrains in Equation (2-21) have the general form 

j
T
i Bhh as: 
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Using this definition for T
ijv  the two constrains in (2-21) can be written as:  

  .0
2211

12 






b

vv
v

T

T

 (2-24) 

Note that the vector b  which summarizes the intrinsic parameters is a 6 element vector so that 6 

equations are necessary to recover all camera parameters. Therefore, since each homography 

provides 2  linear equations, at least 3  homographies or captured images are sufficient. Assuming 

that we collect N  images of chessboards together, the linear system composed of N  instances of 

Equation (2-24) can be written as 

,0Vb  (2-25) 

where N is 2 N -by-6 matrix. If 3N , this linear can be solved by employing the standard 

technique of Singular Value Decomposition ( SVD ).  
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Using the computed solution vector b, the intrinsic parameters can be derived as follows: 

 The camera intrinsic parameters: 
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 (2-26) 

 The camera extrinsic parameters: 

The rotation matrix and translation vector can be recovered from the Equation (2-19): 
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 (2-27) 

where   denote a cross product. The scaling parameters are determined by 1
1/1 hK  .  

To refined the obtained camera parameters, it may perform an nonlinear minimization of a projection 

function, which is solved with the Levenberg-Marquardt Algorithm [12]. This function is projecting 

the D3  points onto the image plane and accumulating the differences between corresponding points 

as following:  

  ,)
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0|(
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n

i
ij

jjj
ij P

CRR
Kp  (2-28) 

where j  is the image index and i  denotes to the point correspondence index.   

The recommended calibration procedure can be summarized as follows. 

1. Print a chessboard pattern and attach it to a planar surface; 

2. Take N (at least 3) images of the model plane under different orientations by moving either 

the plane or the camera; 

3. Detect the feature points in the images and calculate the N  homography transforms; 
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4. using the N  homography transforms, calculate the intrinsic and extrinsic parameters; 

5. Refine the calculated camera parameters.  

2.2 TWO-VIEW GEOMETRY 

In the previous section, we have introduced the geometry of a single camera. We now describe the 

case of two camera geometry. The two-view geometry is the intrinsic geometry of two different 

perspective views of the same D3  scene (see Figure 2-6). The two perspective views may be 

acquired simultaneously, for example in a stereo rig, or sequentially, for example by a moving 

camera. From the geometric viewpoint, the two situations are equivalent, but notice that the scene 

might change between successive snapshots. 

Most D3  scene points must be visible in both views simultaneously. This is not true in the case of 

occlusions, i.e., points visible in only one camera. Any unoccluded D3  scene point 

TZYXP )1,,,(  is projected to the left and right view as Tyxp )1,,( 111   and Tyxp )1,,( 222  , 

respectively (see the Figure 2-6). Image points 1p  and 2p  are called corresponding points as they 

represent projections of the same D3  scene point P . 

Figure 2-6. Two perspective views of the same 3D scene. 

Algebraically, each perspective view has an associated 3-by-4 camera projection matrix M which 

represents the mapping between the D3  world and an D2  image. We will refer to the camera 

projection matrix of the left view as 1M  and of the right view as 2M . Based on Equation (2-12), we 

have: 
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given a point in one image, one can search for the corresponding point in the other image along a line 

and not in a D2  region, a significant reduction in complexity. 

Figure 2-7 illustrates the rules of the epipolar geometry. Any D3  point P  and the camera 

projection center 1C  and 2C  define a plane that is called the epipolar plane. The projections of the 

point P , image points 1p  and 2p , also lie in the epipolar plane since they lie on the rays connecting 

the corresponding camera projection center and point P . The corresponding epipolar lines, 1l  and 

2l , are the intersections of the epipolar plane with the image planes. The line connecting the camera 

projection centers 1C  and 2C  is called the baseline. The baseline intersects each image plane in a 

point called epipole. By construction, the left epipole 1e  is the image of the right camera projection 

center 2C  in the left image plane. Similarly, the right epipole 2e  is the image of the left camera 

projection center 1C  in the right image plane. All epipolar lines in the left image go through 1e  and 

all epipolar lines in the right image go through 2e . Therefore, the search of point-correspondences 

can be limited to a search along the epipolar line instead of an exhaustive search in the image. An 

example of two views with the computed epipolar lines superimposed onto the images is given in 

Figure 2-8. 

Figure 2-8. Two views of scene with 4 epipolar lines. 

We’ll now summarize some facts about stereo camera epipolar geometry: 

 Every D3 point in view of the cameras is contained in an epipolar plane that intersects each 

image in an epipolar line; 
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 Given a feature in one image, its matching view in the other image must lie along the 

corresponding epipolar line. This is known as the epipolar constraint;  

 The baseline is the line going through the two cameras centers; 

 The epipole is the image-point determined by the intersection of the image plane with the 

baseline; 

 The epipolar constraint means that the possible two-dimensional search for matching features 

across two imagers becomes a one-dimensional search along the epipolar lines once we 

know the epipolar geometry of the stereo rig. This is not only a vast computational savings, it 

also allows us to reject a lot of points that could otherwise lead to spurious correspondences; 

 Order is preserved. If points A  and B  are visible in both images and occur horizontally in 

that order in one imager, then they occur horizontally in that order in the other imager. 

As we pointed out in previous part, each camera is described by a set of extrinsic parameter. They 

determine placement of a camera in respect to external coordinate system. With each of the cameras 

of the stereo systems we associate a separate coordinate system with its center coinciding with the 

central point of the camera. The Z  axis of such coordinate system is collinear with the optical axis 

of the camera. In both coordinate systems, ),,( 1111 ZYXP   and ),,( 2222 ZYXP   represents the 

same D3 point P . On the other hand, on the respective image planes, ),,( 1111 zyxp   and 

),,( 2222 zyxp   determine two difference images of the D3  point P . We note that 11 fz   and 

22 fz  .  

The information about translation T and rotation R, which describes the changing of the second 

camera (right camera) to the first (left camera) in world coordinates, is contained in essential matrix 

E  (see Figure 2-9). The essential matrix E  obeys the following constraint: 

.00 1212  Ep)   or   (pEP)(P TT  (2-30) 
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Figure 2-9. The essential matrix E contains all of the information about translation T and 
rotation R, which describes the location of the second camera relative to the first in world 

coordinates. 

The matrix E  contains all of the information about the geometry of the two cameras related to each 

other but no information about the cameras themselves. In practice, we are usually interested in pixel 

coordinates. In order to find a relationship between a pixel in one image and the corresponding 

epipolar line in the other image, we will have to introduce intrinsic information about the two 

camera. For the pixel coordinate p we substitute q and camera intrinsic matrix that relates them, that 

means Kpq   or equivalent qKp 1 . Hence, the Equation (2-30) for E  becomes: 

  .01
1

1
1

22  qEKKq TT  (2-31) 

Finally we obtain 

,012 FqqT  (2-32) 

where the matrix 

  ,1
1

1
2

 EKKF T  (2-33) 

is called the fundamental matrix. It describes the epipolar geometry in term of pixel coordinates. 

By providing a number of known correspondences, we can compute the fundamental matrix F , and 

then we can compute the epipolar lines. 

2.2.2 Stereo Calibration 

The problem of stereo calibration consists of determination of the parameters of the two cameras and 

the geometrical relationship between the two cameras in space.  
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The parameters of the two cameras can be computed based on the single-camera calibration method 

in the previous section 2.1.4. Now we concern how to find the rotation matrix R and translation 

vector T  between the two cameras, as depicted in Figure 2-9. The rotation matrix R describes a 

relative rotation between coordinate system of the two cameras and the vector T describes a 

translation of the two camera centers. 

Let us assume that the extrinsic parameters are already known for the two camera of stereo system 

(this can be done by single-camera calibration method in the previous section 2.1.4). There are given 

by four matrices: 1R  and 1T  for the left camera (left camera center 1C ), 2R  and 2T  for the right 

camera (right camera center 2C ). Using the relation in Equation (2-10), which connects coordinate of 

a certain D3 point wP  from world coordinate system with the camera coordinate system, we obtain 

),(
)(

222

111

CPRP
CPRP

w

w




 (2-34) 

where, 1P  and 2P are the location of the D3  point wP  from the coordinate system of the left and 

right cameras respectively. 

After factoring out wP  from the Equation (2-34), we get 

).( 2121122 CCRPRRP T   (2-35) 

On the other hand, it is evident from Figure 2-9 that the two matrices 1P  and 2P are related by 

.12 TRPP   (2-36) 

Comparing two Equation (2-35) and (2-36), the following relations can obtains: 

,)(
,

12212

12

RTTCCRT
RRR T




 (2-37) 

where, R and  T are the sought calibration matrices of the stereo system, iii CRT   with }.2,1{i   
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change re-projection produces for each of the two images while maximizing the viewing area.  This 

method can be described as following. 

To minimize image re-projection distortion, the rotation matrix R that rotates the right camera image 

plane into the left’s plane is split in half between the two cameras. We get the two result rotation 

matrix 1r  and 2r  for the left and right camera, respectively. Each camera rotates half a rotation, so 

their principal rays each end up parallel to the vector sum of where their original principal rays have 

been pointing. However, this rotation just puts the cameras into coplanar alignment but not into row 

alignment. 

Now we build the rotation matrix that will take the left camera’s epipole to infinity and align the 

epipolar lines horizontally. This rotation is described by a matrix rectR , which consists of three 

mutually orthogonal unit vectors: 1e , 2e  and 3e . Taking the principal point ),( yx ooo   as the left 

image origin, the vector 1e is directly along the translation vector between two cameras and is given 

as: 

.1 T

T
e   (2-38) 

The vector 2e is orthogonal to the 1e . Since, 

    ,0,,0,,  T
zyxxy TTTTT  (2-39) 

the 2e take the form 

 
.

0,,
222

yx

T
xy

TT

TT
e




  (2-40) 

The third vector 3e has to be simultaneously orthogonal to the vector 1e  and 2e . Therefore, it can be 

found by using the cross product: 
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.213 eee   (2-41) 

The rotation matrix is now: 

..

333

2

1

















T

T

T

rect

e
e
e

R  (2-42) 

This matrix rotates the left camera so that the epipolar lines become horizontal and the epipoles are at 

infinity. The row alignment of the two cameras is then obtained by: 

..
.

22

11

rRR
rRR

rect

rect




 (2-43) 

The matrices 1R and 2R are the rectification transform (rotation matrix) for the left and right cameras, 

respectively, which we want to find. 

The resulting rectified image is employed in a lot of stereo camera setups and stereo algorithms as 

shown in the next chapter. 

2.3 BACKGROUND OF GRAPTH CUTS THEORY 

In this thesis, we use graph cut to minimize the energy function in depth estimation (in Chapter 3), 

depth based view synthesis application (in Chapter 4) and depth assisted object segmentation (in 

Chapter 5).  Thus, in the next parts, let’s us introduce briefly graph cuts theory.  

Energy minimization is a natural framework for many vision applications. It has several advantages. 

It allows a clean specification of the problem to be solved, as distinct from the algorithm used to 

solve it. In addition, energy minimization naturally allows the use of soft constraints, such as spatial 

coherence. Finally, energy minimization avoids being trapped by early hard decisions.  

Solving a problem via an energy minimization consists of two major steps. First, an objective 

function is formulated. It maps all possible solutions to real numbers, and it shows how good (or bad) 

a candidate solution is. An objective function is usually a sum of terms corresponding to different 

constraints of the problem, either soft or hard. The second step of the approach is to minimize the 
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energy function. This is often a very hard task. Energy functions that arise in vision usually have 

thousands of dimensions and many local minima. 

Recently, new fast energy minimization techniques based on graph cuts have emerged. These 

techniques can be applied to a restricted class of energy functions of discrete variables. An advantage 

of these methods is that in certain cases they can produce a global minimum of the energy or in other 

cases a local minimum with some strong properties. 

Graph cut theory was first applied in the field of computer vision at the end of 1980s’ by Greig et. 

Al.[15]. In [15], they showed that a certain important energy function in vision can be efficient 

solved by powerful min-cut/max flow algorithm. Image restoration was taken as an example by 

obtaining the maximum a posterior (MAP) estimation of a binary image using the graph cut 

technique. Unfortunately, the graph cut technique in [15] remained unnoticed for almost 10 years 

mainly because binary image restoration looked very limited as an application. In the late 90’s new 

computer vision techniques appeared that figured how to use min-cut/max-flow algorithms on graphs 

for more interesting non-binary problems. The results in [16] showed that iteratively running min-

cut/max-flow algorithms on appropriate graphs can be used to find provably good approximate 

solutions for even more general multi-label case when interaction penalties are metrics. A growing 

number of publications in vision use graph based energy minimization techniques for applications 

like image segmentation [17], stereo reconstruction [18],  object detection and tracking [19], 

augmented reality and others. 

Graph cut based methods construct a graph topology to minimize the specified energy function 

activated by the max-flow/min-cut algorithm [20], so that the min-cut on the graph is of minimal 

energy among all the cuts separating the terminals.  Theoretically, EVG , is a graph which 

consists of a set of nodes V and a set of edges E  that connect them. The node set PtsV  },{  

contains two special terminal nodes, which are called the source s, and the sink t , and a set of non-

terminal nodes P . Figure 2-11(a) shows a simple example of a graph with the terminals s and t . 

Generally, non-terminal nodes represent pixels (or voxels), and source and sink correspond to the 
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label can represent depth (in stereo), object index (in segmentation), original intensity (in image 

restoration) or other pixel properties. Normally, the set of possible labels at each pixel is finite. The 

thick lines in Figure 2-12(b) show labeling discontinuities between neighboring pixels.   

Graph cut is not limited to solving the regular binary-label segmentation problem, but is also 

applicable to multi-label energy minimization. In [16], a multi-way cut based on expansion move (

expansion or  swap  ) is proposed to handle the multi-value labeling by repeatedly minimizing 

the energy function containing three or fewer binary variables. A fast algorithm for graph-cut 

optimization including expansion move with source code is implemented and public in [21], which 

drives the extensive application of graph cut technique in various optimization problems. 

2.4 SUMMARY 

In this chapter, the projective geometry has been introduced firstly which uses homogenous 

coordinates to describe the position of D2  and D3  points. Employing the homogenous coordinates, 

we show that the projection of D3  points onto the D2  image plane can be defined by a linear 

projection matrix. This projection matrix can be decomposed into intrinsic and extrinsic camera 

parameters. The intrinsic matrix K  comprises the internal parameters of camera such as focal length 

principal point and skew parameter. The extrinsic matrix ]|[ TR  indicates the external position and 

the orientation of the camera in the D3  world coordinate.  We also present how a 2D point can be 

back projected to the D3  space, which is important for depth estimation and view synthesis in later 

chapter in this thesis. Then, the calibration technique using a planar chessboard pattern that enable 

the estimation of these camera parameters has been presented.  After introducing the geometry of a 

single camera, we have introduced the case of the two view geometry which describes the geometry 

relationship between two images. The key relationship is that corresponding image points must lie on 

particular image lines, i.e. epipolar lines. To simplify the search of point correspondences in the two 

views, we have described the stereo calibration and stereo rectification which are particularly useful 

to estimate the D3  structure of a scene addressing in the next chapter. The stereo calibration consists 

of determination of the parameters of the two cameras and the geometrical relationship between the 



Chapter 2: Background 

 

--33 - 

two cameras in space. In contrast, stereo rectification is the process of correcting the individual 

images so that they appear as if they had been taken by two cameras with row-aligned image planes. 

Finally, the graph cut is briefly introduced which is used to minimize our energy functions in the in 

later chapters.    
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3  

DEPTH ESTIMATION 

3.1 INTRODUCTION 

From the earliest inquiries into visual perception, it was know that we perceive depth based on the 

different in appearance between left eye and right eye. Under simple imaging configuration (both 

eyes or cameras looking straight ahead), the amount of horizontal motion or disparity is inversely 

proportional to distance from the observer (as we will see in later section). While the basic physics 

and geometry relating visual disparity to scene structure are well understood (section 2.2.1), 

automatically measuring this disparity by establishing dense and accurate inter image correspondence 

is a challenging task.  

An D2  image captured by a traditional single camera loses depth information of the D3 scene, 

which is a useful and important cue for perception and visualization of the real word environment. 

Since depth information provides the users with D3  feeling of the scene, depth acquisition and 

reconstruction have been attracted extensive attentions in the industrial and research communities. In 

general, depth of the scene can be obtained by two approaches:  active methods by measuring depth 

directly from digital device such depth camera and time flight (ToF ) camera; passive methods by 

estimating depth from the captured images in a computational way.   

Recently, with the demand of entertainment and progressive development of digital device, camera 

capable of generating 3D models has been emerged. D3  depth camera capturing video with the 

depth information in real-time is being widely used in D3 broadcasting and virtual reality system to 

provide the user with interactive and realistic experience of D3 world. Many kinds of D3 camera 

products currently are available on the market, especially a new class of active depth sensing system 

based on the time-of-flight (ToF ) principle such as SR4000 designed by MESA [22].  ToF  

cameras are active sensors that determine the per-pixel depth value by measuring the time taken by 

infrared light to travel to the object and back to camera. PrimeSense’s D3 Sensors [23] is a digital 
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measured using the matching window block (W ) surrounding pixels. Block matching works by 

using the Sum of Absolute Different (SAD) (see an example in Figure 3-3).  To limiting the length 

of a search, the minimum disparity mind  (the search should start) and the maximum disparity maxd  

are defined (usually 0min d ).  The disparity d of a pixel ),(1 yxp   in the left view 1I  can be find 

by  

.),
~

(),(minarg),(
),(

21~
maxmin





Wjiddd

jydixIjyixIyxd  (3-5)

Repeating the process shown in Equation (3-5) for each pixel in 1I , a dense disparity maps is 

obtained. From the obtained disparity map, we can get the depth image by using the relationship in 

Equation (3-1).  This is a very simple estimation depth algorithm, however the estimated disparity 

values is inaccurately. For example, when capturing two images with two different cameras, the 

contrast settings and illumination may differ. This results in different intensity levels across the views 

yielding unreliable matches.    

The estimation of depth using correspondence point is challenging problems in many situations such 

as in texture-less region, in occluded regions or change of illumination across views. In the next 

section, we are review the state of art work on depth estimation from literature.  

3.3 PREVIOUS WORKS ON DEPTH ESTIMATION 

3.3.1 Single Image/Video Depth Estimation 

With the recent explosive for D3 media contents, converting existing single still images or 

monocular videos to D3 contents is a problem of considerable practical interest. In the following 

part, we will briefly review the research works of this topic including depth estimation from a single 

still image and depth estimation algorithms used in D2  to D3 video conversion. 

Depth estimation from a single still image is a difficult task, since depth typically remains ambiguous 

given only local image features. Some works try to solve this problem by using single using 

monocular cues such as texture variations, texture gradients, occlusion, haze, defocus [24, 25]. For 

example, many objects’ texture will look different at different distances from the viewer. Texture 
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gradients, which capture the distribution of the direction of edges, also help to indicate depth. Haze is 

another depth cue, and is caused by atmospheric light scattering. There are some algorithms that can 

perform depth reconstruction from single images in very specific settings. For example, in [26] 

authors performed surface reconstruction from single images for known, fixed, objects such as hands 

and faces. Methods such as shape from shading [27] and shape from texture [28] generally assume 

uniform color and/or texture, and hence would perform poorly on the complex, unconstrained, highly 

textured images that we consider. In [29], authors reconstructed high quality D3 models from several 

images, but they required that the images also contain “assistant” objects of known shapes next to the 

target object. In some recent works [30, 31], they have presented the algorithms from monocular 

image features.  For example, in [31], they use a hierarchical, multi-scale Markov Random Field 

(MRF) that incorporates multi-scale local and  global image features, and models the depths and the 

relation between depths at different points in the image. They divide the image into small rectangular 

patches, and estimate a single depth value for each patch. They use two types of features: absolute 

depth features – used to estimate the absolute depth at a particular patch – and relative features, 

which we use to estimate relative depths (magnitude of the difference in depth between two patches). 

These features try to capture two processes in the human visual system: local feature processing 

(absolute features), such as that the sky is far away; and continuity features (relative features), a 

process by which humans understand whether two adjacent patches are physically connected in D3

and thus have similar depths. They chose features that capture three types of local cues: texture 

variations, texture gradients, and color.  

Figure 3-4 shows an example of depth estimated from single still image by algorithm [31].  

Although, there are many studies trying to study depth from a single image, it still remains a 

challenging problem.  
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3.3.2 Stereo Depth Estimation 

In computer vision, the topic of stereo matching has been one of the most widely studies and 

fundament problems and continues to be the most active research areas. Most stereo matching 

algorithms today focus on dense correspondence, since this is requires for application such as depth 

image based synthesis (detail in Chapter 4), modeling and some other depth based applications 

(object segmentation in Chapter 5, multiple objects tracking in Chapter 6).  Now, we review the 

dense correspondence algorithms based on the taxonomy and categorization scheme proposed by 

Scharstein and Szeliski [35]. In [35], the authors has introduced a set of algorithmic blocks from 

which a large set of algorithms can be constructed. It is based on the observation that most of stereo 

algorithms perform some subset of following components: 

1. matching cost computation or cost function; 

2. support of cost aggregation; 

3. disparity calculation and optimization; 

4. Post processing for refining disparity map. 

For example, the introduced simple algorithm in section 3.2 can be broken down into step 1, 2, 3 as: 

1. the matching cost is the absolute different of intensity values at a given disparity;  

2. the support of the matching function is done by summing of matching cost over square 

window with constant disparity;  

3. Disparity is calculated by selecting the minimal aggregated value at each pixel. 

3.3.2.1 Matching Cost 

The first component of any dense stereo matching algorithms is matching cost or cost function that 

measures correlation or similarity between pixels in order to determine how likely they are to be in 

correspondence. 
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The most common pixel based matching costs include, among others, absolute intensity different 

(Sum of Absolute Different –SAD, example in Figure 3-3), squared intensity different (Sum of 

Squared Different – SSD), Cross Correlation (CC), Normalized Cross Correlation (NCC).  

3.3.2.2 Support of the Cost Aggregation 

The second component of dense stereo matching algorithms is the support of the matching cost 

function. These include single-pixel windows [36], square windows, adaptive windows [37], 

shiftable windows [38-40]. Typically, to obtain a reliable matching metric, a large region support 

should be used. However, whereas using a large window provides a reliable matching support at an 

object surface with smoothly varying depth, an unreliable support is obtained at object boundaries. 

To solve this problem, a segment-based approach [41, 42] decomposes the image into a sufficiently 

large number of object segments (using for example a color segmentation technique) and assumes 

that a single depth value is computed for each segment. Therefore, as the segmentation would follow 

the shape of objects, an advantage of such a segment-based approach is that the depth is more 

accurately estimated at the boundaries of objects.  

3.3.2.3 Disparity Calculation and Optimization 

The most important component is the disparity calculation and optimization strategy. Accordingly 

the stereo matching algorithms can be categorized into local and global methods.  

Local approaches calculate independently the disparity of each pixel using the single matching cost 

of the selected pixel, and implicitly make smoothness assumptions by aggregating support. The local 

methods emphasize the matching cost definition and cost aggregation steps. The final disparities are 

computed by simply choosing the disparity at each pixel associated with the minimum cost value. 

Thus, these methods perform a local “winner-take-all” (WTA) optimization at each pixel. Local 

optimizations typically yield accurate disparity estimates in textured regions. However, large texture-

less regions tend to produce fuzzy disparity estimates.  

In contrast, global approaches explicitly enforce the smoothness assumptions of disparity field and 

determine all the disparities simultaneously by applying global cost minimization using various 
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optimization techniques. Global methods perform almost all of their work during the disparity 

computation phase and often skip the aggregation step. For most of global methods, firstly the global 

energy needs to be defined.  The objective is to find a disparity function d that minimizes a global 

energy. The general global energy is defined as 

).()()( dEdEdE smoothdata   (3-7)

The data term, )(dEdata , measures how well the disparity function d agrees with the input image 

pair. The smoothness term, )(dEsmooth  encodes the smoothness assumptions made by the algorithm. 

To make the optimization computationally tractable, the smoothness term is often restricted to only 

measuring the differences between neighboring pixels’ disparities.  

Once the global energy has been defined, a variety of algorithms can be used to find a minimum such 

as simulated annealing [43], dynamic programming [44],  belief propagation [45] or graph-cut [18, 

46]. The objective is to find a disparity function that minimizes a global energy, where various 

constraints are applied to reduce the uncertainties of disparity map.  

Since new stereo matching algorithms continue to be introduced, however according to recent 

advances [47], region-based stereo methods are more favored due to their better disparity smoothness 

regularization. For optimization strategies, global approaches in general produce more accurate 

disparity map, while local approaches have slightly poor results, and tend to produce outliers in the 

homogenous area, blur disparity at discontinuous boundary and match failure in occlusion, but is 

superior with respect to computational complexity. 

3.3.3 Multi- view Depth Estimation 

3.3.3.1 Multi-camera System 

In the recent years, with the fast improvement of the capability of personal computers and digital 

equipment, more and more multi-camera systems with dense or sparse, wide-baseline or narrow-

baseline camera configuration become available, which significantly broaden the multi-view 
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3.3.3.2 Literature Review for Multi-view Depth Estimation 

As introducing in the above sub-section (3.3.3.1), with the growing capability of capturing devices, 

multi-view capture system with dense or sparse camera array can be built with ease, which motivates 

the development of multi-view techniques and its related applications.  

Multi-view depth map estimation has received more attention so far and resulted in a number of 

methods with different accuracy and complexity. In [46], a graph model of multi-view stereo images 

was proposed with the visibility constraint. The graph model used all the pixels of the multi-view 

images as nodes in the graph. Because the graph model exploited all possible interactions among all 

the pixels of the multi-view images, it made huge improvement. However, the graph was getting 

bigger as the number of multi-view images increased. Because of the property, computational times of 

the graph increased as proportional to the number of multi-view images. In [53], depth map for each 

view is estimated by conventional algorithm and then the total error minimization process using the 

graph cut algorithm is used to obtain simultaneously the depth images at three viewpoints. This 

method gives good results but needs to use conventional algorithm to estimate depth map for each 

view and long computation time because of graph cut algorithm. Some people use belief propagation 

to estimate depth maps. In [54], depth maps are obtained by segmentation and then belief 

propagation is used for refining step. Belief propagation and camera optical flow are used in [55], 

where depth maps are de-noised. Although depth estimation based on graph model and belief 

propagation yields an accurate depth map, they are computationally complex and difficulty in real 

time implementation. In [52] multiple images are also utilizing for the estimation of depth map of 

each view. Multi stage segmentation method is used to estimate the depth maps. Each independently 

segmented color texture image was followed by computing and iteratively refining the disparity 

space distribution for each segment and, finally, image matting is used by computing the alpha values 

for pixels along the disparity discontinuities. In [56], pairs of images among multiple views are used 

to estimate depth map by stereo algorithms and then the depth maps are regularized in a filtering step 

and merged for the final depth map. Because depth image are estimated pairwise, the consistency of 

depth estimates across the views is not enforced. Another depth estimation method proposed in [57] 
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3.5 PROPOSED DEPTH ESTIMATION ALGORITHM  

This section presents a multi-view depth estimation algorithm that utilizes all views simultaneously, 

enforces a smooth variation of depth pixels within the image and consistent depth images across the 

views. The proposal algorithm is based on three constraints, i.e. intra-line, inter-line and inter-view 

smoothness costs which make the smooth variation of depth values in scanline, between scanline and 

consistent depth among views. These smooth costs are integrated into the one dimension 

optimization dynamic programming algorithm which helps in finding a global optimum.  

Experimental results on several multi-view data sets are encouraging. 

3.5.1 Introduction 

This proposal method deals with the problem of estimation depth of objects in the scene from a set of 

multiple views or images. Depth information recovered from multi-view image/video serves as an 

important cue for many applications such as virtual view synthesis, multi-view video coding, multi-

view object segmentation and others. However, estimating an accurate depth map is a complex 

process, which makes real-time implementation challenging.  

In section 3.3, we already introduced the previous works on depth estimation. Most of the introduced 

methods estimate depth using rectified views. As we known in the rectification image section, the 

rectification process can lead to excessive and unwanted image distortion. Moreover, multiple pre-

processing (image rectification) and post processing (image de-rectification) procedures may be 

necessary. In multi-view system, multiple images are available so that an efficient depth estimation 

algorithm should employ all views available. Many algorithms estimate depth map from multiple 

views are reviewed in section 3.3.3. In the following parts, we will propose the algorithm that utilizes 

multiple un-rectified images simultaneously to estimate depth. Three smooth costs, i.e. intra-line, 

inter-line and inter-view smooth costs are used to enforce a smooth variation of depth pixels within 

the image and among the images. These smooth costs can be integrated into the one dimension 

optimization dynamic programming algorithm which helps in finding a global optimum with 

polynomial complexity.  
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3.5.2 Proposal Depth Estimation from Multiple Images 

It should be noted that there exists a relation between the depth of an object and its corresponding in 

the image. For instance, the near and far objects are seen as large and small in the image, 

respectively. Thus, a near object can be observed with higher resolution than a far object so that the 

depth resolution of a near object should be higher than that of a far object. To dealing with depth 

sampling, we use the plenoptic sampling method presented in [64]. In [64], they employ a non-linear 

quantization of depth between a minimum and maximum depth minZ and maxZ .  Since the depth 

image is usually the gray image with intensity with the range between 0 and 255,   i.e. 2550  d , 

the relation among depth Z,   nearest minZ , and farthest maxZ  can be expressed as:   

.
0.10.10.1

0.255

0.1

maxmaxmin ZZZ

d
Z











  
(3-8)

In such a depth image, pixel value 0min d  represents the farthest 3D point with depth being maxZ , 

and the pixel value 255max d  represents the nearest 3D point with depth being minZ .  

We propose an algorithm which is based on one-dimensional optimization to estimate depth images. 

A vector of depth pixel value },..,,{ max1min dddD   (or equivalent the vector of

},,..,{ min1max ZZZZ  ) along a scanline is computed to minimizes the energy function )(DE , 

defined by 

),()()( DEDEDE smoothdata   (3-9) 

where, )(DEdata and )(DEsmooth  are the matching cost and smoothness cost, respectively. These 

costs are defined as follows. 

3.5.2.1 Matching Cost )(DEdata  

Our approach employs multiple views and estimates the depth using a correlation table ),,( cZyxC  

similar to the Disparity Space Image (DSI) in [65]. The ),,( cZyxC  structure is a 2D table of size 
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,),,( 111
krkkkkk

T
c TRpKRZYX

rrrrr

    (3-11) 

where  
rkK is an 33 intrinsic matrix describing internal parameters of the reference camera rk .  

rkR is a 33 rotation matrix indicating the external orientation of the reference camera and 
rkT is a 

13  translation vector describing the external position the reference camera. To compute the 

intrinsic parameter K and extrinsic parameters, i.e. R  and T  of a camera, people usually use the 

calibration technique as discussing in section 2.1.4 and section 2.2.2. 
rk is a positive scaling factor 

defining the position of the 3D point.  

If we know the scaling factor 
rk , we can obtain the value of X and Y of the 3D point. Since we 

know cZ thus 
rk  is calculated by: 

.
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321

11
321

3
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krkkkk
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TR),C,C,(CpKR),z,zwhere  (z
z
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rrrr
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 (3-12) 

In the second step, the candidate pixel positions in neighboring views are calculated by projecting the 

calculated 3D point T
cZYXP ),,( onto each neighboring view k  according to the Equation 

(2-13), providing a corresponding pixel corresponding pixel T
kk yx )1,,(  for each view for which: 

,),,()1,,( kk
T

ckk
T

kkk TKZYXRKyx   (3-13) 

where, kK , kR and kT are representing the intrinsic matrix, rotation matrix and translation vector of 

the neighboring camera k , respectively. These two steps are repeated for depth candidates cZ , so 

that a corresponding similarity can be measured.  

By exploiting camera parameters, multiple views can be employed simultaneously so a reliable 

similarity value can be obtained. The similarity measure among the selected pixel and the pixels in 

neighboring views is measured using the SAD and the matching cost is stored in a correlation table 

),,( cZyxC . This idea is illustrated by Figure 3-15.  
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Step 1: Initial Depth Map for Each View 

In this step, we wish to enforce the constraints that consecutive image scanlines should have smooth 

depth variations along and across the lines. We denote the objective function for one view at the first 

step as: 

. E)()( smooth11  DEDE data  (3-15)

Depth image for each view is estimated with the intra-line and inter-line constraints, so we define the 

smoothness cost for this step as:  

(D).E(D)E E lineinterlineintrasmooth1    (3-16)

The term (D)E lineintra  in Equation (3-16) is designed to make it more likely that a pair of adjacent 

pixels ),1( yxp  and ),( yxq  along a scanline in the reference image with similar intensity would 

end up with similar disparity. For example, if the neighbor pixel p and q  have the similar intensity, 

the intra-line penalty cost is low if they have similar depth value and the cost is high if they have 

different depth value.  

Practically, the cost function integrating the intra-line penalty cost can be written as: 





 

 .
1

otherwise(D)E

T,y)(x,d(x,y)d  if  (D)E
(D)E dkk rr

 

    

intra_2

intra_1
lineintra

 (3-17)

The two functions )(DE intra_1 and )(DE intra_2  are defined as following 
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1),1(),(
)(E

11

1

intra_1
















otherwise,y)(xd(x,y)dλα

T,y)(x-I(x,y)Iif   yxdyxd
D

x
kk

kk
x

kk

rr

rrrr c        
 

(3-18) 
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d rr
          

 

Here, D  is the vector of depth pixel values ),( yxd
rk along a scanline, ),( yxd

rk the estimated depth 

at position ),( yx in the reference image with index rk , rk  varies between 1 ≤ rk  ≤ N, for the N
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views. 1 , and 11  (typical scalar factor) are control parameters used to penalty variations along 

the scanline. dT  is a different depth threshold and cT  is threshold of intensity variation (in our 

experiment, we set  11  , 31  , 3dT and 10cT ).  

Since one-dimension dynamic programming optimization is performed independently for each 

scanline, which has led to horizontal line based streaking artifacts in the depth image. Voiding this 

artifact, we introduce an inter-line penalty cost (D)E lineinter  to enforce smooth variations of depth 

values across scanlines. In practice, the inter-line penalty cost can be defined as: 






 





,
1)1,(),(

)(E
22

2

line-inter otherwiseTλα

T)(x,yd(x,y)dif   yxdyxd
D

x
d

kk
x

kk rrrr d        
 (3-19) 

where, similar to intra-line cost 2 , and 2  (typical scalar factor) are control parameters used to 

penalty variations between two the scanlines. dT  is a different depth threshold (in our experiment, 

we set  12  , 12   and 3dT ). 

Step 2: Depth Image Refinement 

The aim of this second step is to refine the initialization depth images from the first step such that the 

final depth images are consistent across the views. In this step, we wish to enforcer the constraint that 

objects should have consistent world depth values in all depth images. We encode the inter-view 

constraint using the following objective function:  

(D).E)()( viewinter12  DEDE  (3-20) 

The inter-view penalty costs can be written as 

,),(),()(E sinter_view kkkk

w

x

N

kk
v yxdyxdD

r

v

 


  (3-21) 

where, v is control parameters used to penalty variations among views. The depth ),( yxd
rk  and 

),( kkk yxd correspond to the depth of pixel ),( yx  in the reference view with index rk and the depth 
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where ),( yx  is an image point p and corresponding depth value pZ . a ,b and care the linear 

function parameters of each segmentation.  

  ,,, BcbaA T   (3-23) 

where each row of A  is  1x,y, vector for a pixel and each row of B  is its corresponding Z . 

To estimate unknown parameters ),,( cba , we using the random sample consensus (RANSAC) 

algorithm [68]. The RANSAC calculate the plane parameters as follows:  

1. In each segmented region, first we randomly select three pixels denoted by ),( ii yx  and their 

corresponding depth value iZ , with 3,2,1i . A test plane from the three selected points is 

created by:   

.
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 (3-24) 

2. The candidate parameters (a, b, c) are computed by solving the linear equations system.  

3. Test the remaining points in the segmented region against this fitted plane and  counts the 

number of pixels (inliers) that support for this model with in a given error threshold. The 

equation used to determining if a given point is a inliers is 

,
),,(0
),,(1

),,(

,
1

),,(
22













Diiii

Diiii
iii

iii
iiii

TZyxD
TZyxD

ZyxInlier

ba

Zcbyax
ZyxD

 (3-25) 

where ),,( iiii ZyxD is the distance from point ),,( iii Zyx to the fitted plane and DT  is a 

distance threshold. 

4. Repeat steps 2 and 3 until stopping criteria is reached. Usually iteration until the maximum 

number of inliers is greater than a set threshold, or reaches the maximum iteration number. 
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The parameters with biggest support are selected as the planar parameters of segmented 

region.  

This technique is performed for all image segments and we obtain the refined depth map. 

3.5.3 Experimental Results 

In this section, we evaluate the accuracy of our depth estimation algorithm describing in previous 

section. The proposed depth estimation algorithm has been tested on some multi-view data sets such 

as “Break-dancers” and “Ballet” [69], which is utilized in multi-view coding, rendering and depth 

estimation research. In the following parts, we first provide an objective evaluation and, second, 

subjective evaluation of depth image quality.   

For objective evaluation, basically we have two approaches. The first approach is a direct method 

which is based on the comparison with ground-trust depth image. However, the ground truth multi-

view depth images are not usually available. The second approach is an indirect method which is 

based on rendering quality evaluation. This technique is based on the notion that the quality of the 

rendered image depends on the accuracy of the estimated depth image. Generally, the more accurate 

a depth image is, the higher the rendering quality becomes. In this experiment, the synthesis of 

virtual image is carried out using the simply 3D warping synthesis algorithm, which is presented in 

the next Chapter 4. The synthesis image ( sI ) is rendered at the same position and orientation of a 

selected view ( cI ), i.e. virtual camera has the same external and internal parameters as selected 

camera.  In this method, the quality of calculated depth image is measured objectively by calculating 

the Peak Signal Noise Ratio ( PSNR ) of the synthesis image sI  and the captured image cI . This 

idea is shown in Figure 3-17.  

Before computing PSNR , the image is converted from RGB color space to YUV color space, and Y 

channel is used for calculation. Y channel is defined by 

B(i,j)..G(i,j).R(i,j).Y(i,j) 114058702990   (3-26) 

The PSNR  can be calculated by  
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that our proposed algorithm that uses multi-views to compute depth images consistently and yields 

better results comparing with two-view depth estimation, for example  improvement of 3.3 dB for the 

“Break-dancer” and 2.7 dB for “Ballet”, respectively.   

Table 3-3.  The quality of synthesized image resulting of two different depth estimation 
algorithms 

 Two views Multi-views (8 views) 

“Break-dancers” 28.6 dB 31.9 dB 

“Ballet” 26.1 dB 28.7 dB 

It should be noted that the higher PSNR  values can be obtained via other better image rendering 

algorithms, whereas in this work, our simple algorithm is utilized during the rendering stage. It also 

note that the PSNR  might not match the subjective visual quality, i.e. human subjective perception, 

however this is simple image quality metric that has been widely accepted in research community. 

Next we show the subjective quality of the estimated depth using the proposed algorithm.  The 

estimated depth images for the reference view of different data sets are presented in Figure 3-18 and 

Figure 3-19, where the whiter intensities indicate the regions closer to the camera.  It can be seen 

that the estimated depth map have consistent depth value across the lines so that the streaking 

artifacts are reduced.  Second, the result shows that the depth discontinuity between the foreground 

objects and background wall is accurately estimated. It can be noted that the depth of colorless and 

texture-less can be accurately estimated. For instance, the texture-less walls in Figure 3-19 are 

correctly estimated.  

Up till now, as our knowledge there is a few contribution exist which employ the complex “Break-

dancer” and “Ballet” multi-view sequences.  We have found two papers that use either both 

sequences [52] or “Break-sequence” only [70]. In [52], authors proposed method which perform an 

over segmentation of the color image and compute the depth of each segment using a belief 

propagation algorithm. In [70], the proposal is based on modified plane sweeping algorithm. In 

Figure 3-20 shows the estimated depth images by the proposed method comparing with the results in 

these two papers.  
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depth. Until now, there are three commonly used depth estimation methods from 2D to 3D video 

conversion applications. “Depth from Motion Parallax” method, which is based on the fact that 

objects with different motions usually have different depths, is most widely used for the depth 

estimation in 2D-to-3D video conversion.  Depth estimation from two views is one of the most 

widely studies and fundament problem and continues to be the active research areas.  We have 

reviewed the two-view depth estimation algorithms based on the taxonomy and categorization 

scheme proposed by [35], which comprises a set of algorithmic blocks from which a large set of 

algorithms can be constructed. Next, we have introduced the multi-view system which significantly 

broaden the multi-view applications and enhance the user experience. Then we also review the 

previous works on multi-view depth estimation. 

In the second part of this chapter, a novel algorithm is proposed for the estimation depth from multi-

view images utilizing calibration parameters to provide consistency and reliability. We have 

introduce three constraints, i.e. intra-line, inter-line and inter-view smoothness constraint, which 

enforce smooth variations of depth value in the scanline, across scanline and consistent depth value 

across the views. The proposed algorithm combines two steps: the first steps serves as a calculation 

of initial depth images and the second step enhance the depth initial depth images in the first step by 

enforcing consistent depth across the views. The three smooth constraints can be efficiently 

integrated into one dimensional optimization dynamic program algorithm. Experiments have shown 

that the proposed smooth constrains yield reasonably depth image quality for various multi-view data 

sets.  

One important application of depth image is a depth based view synthesis for free-viewpoint video 

and 3D-TV systems, which are detail described in the next chapter.  
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4  

DEPTH IMAGE BASED SYNTHESIS 

4.1 INTRODUCTION 

There is an increasing interest in three-dimensional video/television (3DV/3DTV) systems since the 

technology advances rapidly in 3D scene capturing, processing, transmission and displaying.  With 

the growing capability of capturing devices, multi-view capture system with dense or sparse camera 

array can be built with ease, Free-viewpoint television (FTV) [71] system has attracted increasing 

attention. In FTV system, user can freely select the viewpoint of any dynamic real world scene. The 

chosen free-viewpoint cannot only be selected from available multi-view camera views, but also any 

viewpoint between these cameras. 

Creating 3D depth impression requires that a viewer looking at 3D display see a different view with 

each eye. There are roughly two categories of such 3D display: stereoscopic displays with glasses 

and autostereoscopic displays without wearing glasses. For stereoscopic displays that require the 

viewer to wear glasses, two views are emitted at the display while the accompany glasses allow only 

one view to go through each eyeglasses. There are some typical glassed including anaglyph glasses, 

polarized glasses, and shutter glasses. The necessity to wear glasses is considered as a main obstacle 

for success of 3DV in home user environment.  The invention of autostereoscopic display gives us an 

opportunity to overcome this problem. Several images are emitted at the same time but the 

technology ensures that users only see a stereo pair from a specific viewpoint. For example, the high 

resolution LCD screens with slanted lenticular lens technology as commercially available from 

Phillips [72] are capable of displaying 9 and more simultaneous views, of which only a stereo pair is 

visible from a specific viewpoint. With this, multiuser 3D sensation without glasses is enable, for 

example in a living room. This principle is shown in Figure 4-1. For example, at position 1, a user 

sees only view 1 and view 2 with right eye and left eye, respectively. At another position 3, a user 

sees only view 6 and view 7, hence multi-user 3D viewing is supported. All views are properly 

arranged such that views 1 and 2, then view 2 and 3 and so on are stereo pairs with proper human eye 
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Rearranging Equation (4-1) we can derive 3D coordinate of the scene point wP : 

).()(),,( 11111
1

11 CRKpRKZYX T
www     (4-3) 

Substituting Equation (4-3) into Equation (4-2), we obtain the synthetic pixel position 2p : 

.)()( 22211111
1

112222 CRKCRKpRKRKp     (4-4) 

Assuming that the world coordinate system is the same as the reference camera coordinate system 

and looks at along directionZ  , i.e., )0,0,0(1 C , 331 xIR  and wZ1 , Equation (4-4) can 

rewrite as following: 

,2221
1

12222 CRKpZKRKp w    (4-5) 

where, wZ is defined by the pixel value at coordinate point 1p in the reference image.  

The relationship (4-5) constitutes the 3D image warping equation that enables the synthesis of the 

virtual view from a reference texture and a corresponding depth map. Given a pixel point 

Tyxp ]1,,[ 111  from the reference image and its corresponding depth value Zw, we can calculate a 

pixel point 2p on the synthesis image.  This equation specifies the computation for one pixel only so 

that it has to be performed for the entire image. 

4.2.2 Previous Works  

In this paragraph, we describe some recent research on free-viewpoint DIBR algorithm. In [52], 

author has developed a free-viewpoint rendering algorithm which is based on layered representation. 

For texture mapping, 3D meshes are created and the rendering is implemented on a GPU. Although 

the results look good, the method is complex and requires a considerable amount of pre- and post-

processing operations. This work is extended in [78] where the depth map is decomposed into three 

layers and these layers are warped separately. The warp results are obtained for each layer and 

merged. To deal with artifacts, they have introduced three post-processing algorithms. In [79], a new 

viewpoint is rendered by some steps. First, the depth maps of the reference cameras are warped to the 

new viewpoint. Then the empty pixels are filled with a median filter. Afterwards, the depth maps are 
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processed with a bilateral filter. Then, the textures are retrieved by performing an inverse warping 

from the projected depth maps back to the reference cameras. Ghost contours are removed by dilating 

the disocclusions. Finally, the texture images are blended and the remaining disocclusions are 

inpainted using the method proposed by Telea [80]. Although, the results look good, this method is 

remaining some issues such as not removing all holes by median filter, assigning a none-zero value 

for some pixels in disocclusion regions.  This work is improving in [81] by introducing three 

enhancing techniques.  First, re-sampling artifacts are filled in by a combination of median filtering 

and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high 

discontinuities. Third, disocclusion regions are inpainted with depth information. The quality of this 

method is higher than the work in [79], but still having disadvantages. For example, they have to 

define the label of pixel at high discontinuities.  The color consistency during blending is not verified 

to avoid jagged edges at straight line after blending. The work in [82] combines depth based hole 

filling and inpainting to restore the disoccluded pixels more accurately compared to inpainting 

method without using depth information. This method produces a notable blur and can be 

computationally inefficient when disoccluded region is larger in new view. . 

4.3 PROPOSED ALGORIMTH AND ITS PERFORMANCE 

4.3.1 Algorithm Overview 

In this section, we introduce a new free-viewpoint rendering algorithm from multiple color and depth 

images. First, the depth maps for the virtual views are created by warping the depth maps of 

reference cameras. We process the wrapped depth maps with median filter. Depth maps consist of 

smooth regions with sharp edges, so filtering with a median will not degrade the quality. Then, the 

textures are retrieved by performing an inverse warping from the warped depth maps to the reference 

cameras. This allows a simple and accurate re-sampling of synthetic pixel.  After that, all warped 

depth and warped texture images are used to classify pixel as stable, unstable and disoccluded 

regions. An initial virtual view is created based on weighted interpolation of stable pixels. To refine 

the synthetic view, best candidates for unstable pixels are optimally selected by Graph cuts. By 

defining the types of pixels and using Graph cuts, the color is consistent and the incorrectly wrapped 
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4.3.2.4 Pixel Classification and Initial New View Creation  

Formally, suppose that we have a set of N  texture images },...,,{ 21 NIIII   and N  depth images 

},...,,{ 21 NZZZZ  . Let )( pI m  and )( pZ m  be the color and depth value at position of thm   

image. 

In this step, we describe the type of pixels in the synthetic view. We go through each pixel Pp of 

all N input images and classify as stable, unstable and disoccluded pixels. To detect the types of 

pixel, we set the thresholds (depth threshold Zt and color threshold Ct ) and examine the color and 

depth values for pixel Pp . For each color channel, the color threshold Ct  is set to be 15 in our 

case. Depth threshold is the brightness in the depth map. In our experiments, Zt  is set to 5 for the 8 

bits depth quantization. 

A pixel is classified as: 

 + if the depth value of a pixel Pp at all N input depth images is less than depth threshold Zt , 

we classify the pixel p as the disoccluded pixel. The color and depth values of the pixel p at synthetic 

view are set temporally to zero. 

.2100 ,..,N,k, t(p),   if Z(p), Z(p)I Zknewnew   (4-10) 

 + if the depth value of a pixel Pp at only one input image is higher than the depth threshold Zt

and at all remaining )1( N images is less than Zt , we classify the pixel p as the stable pixel. This is 

case the pixel p is visible in only one view. The values of the pixel p at synthetic view are just 

copied from the values of the pixel p  in the visible view. 

.21,)( k,..,N,m,m,t(p),  Zt(p)   if Z(p)Zp(p), ZI(p)I ZmZkknewknew   (4-11) 

+ If the depth value of a pixel Pp   is higher than the depth threshold Zt  in more than one view, 

we examine both the color and depth values of the pixel p to detect the types of pixel. 
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First step, for each view k , Nk ,..,2,1 , we examine pixel p . If the depth value of the pixel p is 

higher than the depth threshold Zt , then we check other views j , Nj ,..,2,1 , kj  . If the view j

has both a depth value of the pixel p higher than the depth threshold Zt  and has color similarity at p

of view j and k , )( pI j and )( pIk are called consistent color (the color similarity at pixel p of two 

input images j  and k  is defined based on the absolute color differences between )( pI j and )( pIk

of R , G and B  channels, Ckj tpIpI  )()( ). We count the total number of view j , Nj ,..,2,1  

having the consistent color with view k  ( Nk ,..,2,1 , kj  ) at pixel p. Assuming that for each 

view Nk ,..,2,1 , this total number is kS .  

Second step, we find the biggest number of kS , assuming that the biggest number is M .  

If  5.02/  NM , we classify the pixel p as the stable pixel. Otherwise, the pixel p is 

classified as the unstable pixel. The value of unstable pixel can set to be -1 so that they can be easily 

identified.      

The color and depth values of stable pixel p at synthetic view are rendered by blending M pixels 

as following weighted interpolation:  

,

,

11

11





























M

i
ii

M

i
inew

M

i
ii

M

i
inew

w(p)Zw(p)Z

 w(p)Iw(p)I

 (4-12)

where, iw  is the weight factor assigned to view i , )( pI i and )( pZi are color value and depth value 

of pixel p  at view i . The weight assigned to each view should reflect its proximity with the view 

being synthesized.  The views that are closer to the synthetic view should have a bigger weight. In 

general, case, the weight iw  can be set based on baseline spacing. However, for more precise 

weighting, we use the angle distance determined by the point in D3 and camera positions as shown 

in Figure 4-10. The weight factor iw  is calculated by 
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4.3.2.5 Find the Best Candidate for Unstable Pixel by Graph Cuts 

In this step, we focus on refining initial synthetic view with unstable pixels. Unstable pixels have 

multiple pixel candidates and we want to predict the best candidate that minimizes the energy 

function described in following part. 

We denote L  as labeling space with  NL ,..,2,1 , representing the image index and let U be the 

set of unstable pixels. Let pf be the label of unstable pixel p and Lf p  . A labeling f  is to assign 

a particular label pf to a pixel Up . With this definition, our problem is to find the labeling *f to 

fill the unstable region, such that the labeling *f has minimum cost. 

We define our energy function based on the MRF formulation: 

,),()()(
),(

,



Nqp

qpqp
Up

pp ffVfDfE     (4-15) 

where, f is the labeling field, U  is the set of unstable pixels, and N is the pixel’s neighborhood 

system. )( pp fD is called the data term, which defines the cost of assigning label pf to pixel p . 

),(, qpqp ffV  denotes the smoothness term that evaluates the cost of disagreement between p and q  

which is assigned with pf and qf respectively.   is a parameter to weigh the importance of these two 

terms. 

Data term )( pp fD is defined by 

,1
1




N

i
if

Nq
newfqfpp (p)I(p)Iβ(q)I(p)I)O((p)αZ)(fD

p

p

pp
 (4-16) 

where pN is neighboring pixels of p , )( pZ
pf  is the depth value of pixel p  at candidate pf , 

)(qInew and qO (0 or 1) are the color value and disoccluded indicator of pixel q , respectively.  and

 are weight factors. )( pIi  is color value of pixel p at input image i . )()( qIpI ji   represents the 

sum of absolute color differences between )(qI i and )(qI j of R, G and B channels. 
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The first part of data term enforces the candidate pixel selected to agree with its neighboring pixels. 

In addition, the neighboring pixel that is disocclusion does not influence the candidate selection 

process. It is also penalized less cost for the selecting a candidate pixel which has smaller depth value 

Z  because the pixel with smallest depth value is closer to the camera and more likely defined the 

color of synthetic pixel 2p .  

The second part of Equation (4-16) is stationary cost, which defined based on color similarity at pixel 

p of all the input images. If the pixel p  has similar color at more input images, the stationary cost is 

smaller.  

Smoothness term ),(, qpqp ffV : measures the penalty of two neighboring pixel p  and q with 

different labels and is defined as follow:  

,
2

)()()()(
),(,

qIqIpIpI
ffV qpqp ffff

qpqp


  (4-17) 

where,   denotes the Euclidean distance in RGB color spaces.  The smoothness term gives a higher 

cost if pf and qf do not match well.  

By incorporating such the smoothness term, we can achieve visually smooth in the synthetic image. 

We apply graph cuts optimization that is public available in [83] to minimize our energy function 

)( fE . More detail about energy minimization with graph cuts can be found in [16, 21]. 

This step is specified by 

 .minarg E(f),   with fZ (U)  ,ZI(U)I
f

*
fnewfnew *    (4-18) 

The refinement of image in Figure 4-11 by using graph cut to select the best candidate for unstable 

pixel is shown in Figure 4-12.  
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where, M is number of visible pixels inside the window. O  is disoccluded region, and id is distance 

from disoccluded pixel occp to visible pixel ip . )( inew pI and )( inew pZ are color and depth values of 

the visible pixel ip . 

Second, for each pixel op in remaining disoccluded regions we search in eight directions to find the 

pixel up , which has the smallest depth value minZ at the edge of disoccluded region and the distance 

ud from this point to op . We define a window with the size of )()(  uu dd  centered at op (at 

first, 0 ), and we count the visible pixels which have depth value Z with 5min  ZZ .  If there 

are not enough 50% of visible pixels inside the window, we increase the size of window by 

increasing  . Finally, disoccluded pixels are inpainted by a weighted interpolation from visible pixels 

according to (4-19). 

With inpainting procedure describing above, this step can summarized by 

.),ZInpaint(I],Z[I newnewfinalfinal   (4-20)

4.3.3 Experimental Results 

We quantify the proposal method performance based on Peak Signal Noise Ratio ( PSNR ) and the 

Structural SIMilarity (SSIM) index [84] between a reference image rI  and a synthetic image sI . The 

system for measurement the quality of synthesized view is illustrated in Figure 3-17. 

We have adopted the PSNR  as the quality metric for comparison for two reasons. First, an 

advantages of PSNR  is that errors are measured on pixel basis so that errors resulting from the 

projection and synthesis will also to contribute to the measured PSNR . Second, it is the most proven 

and commonly used method to measure quality different by the research community. As describing 
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in section 3.5.3, before computing PSNR , the images are converted from RGB color space to YUV 

color space, and Y channel is used for calculation. Y channel is defined by Equation (3-26) and 

PSNR  is calculated by using Equation (3-27).   

SSIM index is a method for measuring the similarity between two images [84]. The difference with 

respect to PSNR is that PSNR estimates perceived errors; on the other hand, SSIM considers image 

degradation as perceived change in structural information. Structural information is the idea that the 

pixels have strong inter-dependencies especially when they are spatially close. These dependencies 

carry important information about the structure of the objects in the visual scene.  The SSIM index 

between two image signal x and y within the window NN    is calculated as following:  

  
   ,

22
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2
22

1
22

21

CC

CC
yxSSIM

yxyx

yxyx









 (4-21)

where: 

  x and y are the average of x and y, respectively; 

 2
x and 2

y are the variance of x and y, respectively; 

 xy is the covariance of x and y; 

 2
11 )( Lkc   and 2

22 )( Lkc  are two variables to stabilize the division with weak 

denominator;  L  is the dynamic range of the pixel-values (typically 12  ixel#bit per pL ; 

01.01 k  and 03.02 k  by default). 

For image quality assessment, the local statistic x , 2
x  and xy  are typically computed within a 

local window 88 square window, which moves pixel by pixel over the entire image. In practice, 

one usually requires a single overall quality measure of the entire image. We use the mean SSIM 

index to evaluate the overall image quality: 

,),(
1

),(
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4.3.3.1 PSNR and SSIM 

Figure 4-16 shows our PSNR and SSIM comparison with those of Sohl et al. [87]  over 100 

frames for the “Break-dancer” and  “Ballet” sequences. 

 

(a) PSNR for “Break-dancer”. (b) SSIM for “Break-dancer”. 

 

(c) PSNR for “Ballet”. (d) SSIM for “Ballet”. 

Figure 4-16.  PSNR and SSIM comparison:  (a)  PSNR for “Break-dancer”,  (b)  SSIM for 
“Break-dancer”,  (c) PSNR for “Ballet” , (d) SSIM for “Ballet”. 

The measured synthetic image qualities are compared with other methods and summarized in 

Table 4-1. From the results, the average PSNR of  proposal is superior to that of other methods such 

as Mori et al [79], Sohl et al. [87]  with a gain of 3.0dB. The structure similarity (SSIM) of our 

method is higher than that of Sohl et al. method.  

Moreover, in multi-view configuration, we have N cameras, which capture the scene at 

difference positions. For our experimental case, there are 8 cameras. Thus, instead of using only two 

camera views as above conventional methods, we can use more than two images to synthesize a new 
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Table 4-2. Calculation time for one frame with varying numbers of unstable pixels. 

Number of Unstable Pixels  

(%) 

Time of Graph Cut 

(%) 

Time of synthesis one frame

 (s) 

6.74 11.3 8.43 

15.63 14.7 8.22 

23.93 17.9 8.11 

30.55 20.6 7.99 

4.4 SUMMARY AND CONCLUSIONS 

In 3D-TV, the viewer can ideally navigate through the 3D domain and select his own viewpoint.  The 

chosen viewpoint may not only be selected from available multi-view camera views, but also any 

viewpoint between these cameras. Obviously, this feature requires a smart synthesis algorithm that 

allows free-viewpoint view rendering.  In this chapter, we have reviewed the recent advancements in 

viewpoint synthesis for 3D-TV and then proposed a novel method and showed its performance. 

As discussing, an accurate manner for obtaining such a free viewpoint synthetic image is to employ a 

depth image based rendering method (DIBR). Such method assumes that the availability of a depth 

map for each camera image. The depth map encodes the distance to the viewer/camera for the 

content of each pixel in the camera image. More detail how to get the depth map is described in early 

Chapter 3. The basic idea of DIBR method is to perform 3D warping to the virtual viewpoint using 

texture image and depth map of the reference cameras. Most recent algorithms employ 3D warping 

from the two reference views to generate a virtual one, following the post processing procedure to 

enhance the quality of synthetic views.  

In the second part of this chapter, we describe a novel synthesis method that enables to render a free-

viewpoint from multiple existing cameras. The proposed method solves the main problems of depth 

based synthesis by performing pixel classification to generate an initial new view from stable pixels 

and using Graph cut to select the best candidate for unstable pixels. By defining the types of pixels 

and using Graph cuts, the color is consistent and the pixels wrapped incorrectly because of 

inaccuracy depth maps are removed. The remained disoccluded pixels are inpainted by using depth 
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and texture neighboring pixel value. Considering depth information for inpainting, blurring between 

foreground and background textures are reduced. Experimental results show that the proposed 

method has strength in artifact reduction. In addition, our smooth term makes the result visually 

smooth.  Objective evaluation has shown that our method get a significant gain in PSNR and SSIM 

comparing to some other existing methods. Another advantage of our method is that we can use a set 

of un-rectified images in multi-view system to create a new view with higher quality. The drawback 

of our method is using Graph Cuts, which is time consuming. However, we just only apply Graph 

Cuts for unstable pixels, which are a small amount of pixels comparing to whole image, so the time 

for Graph Cuts can be reduced. 
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object rather than the whole scene, which motivates the development of object-based segmentation.  

The segmented semantic objects can provide the users with flexibility of object-level manipulation 

and access, and facilitate many content-related applications such as object recognition and retrieval, 

object-based entertainment and surveillance.  In this chapter, we focus on the techniques of objects 

based segmentation. 

Based on the type of source data, object based segmentation can be classified into image 

segmentation or video segmentation.  Video segmentation may incorporate image segmentation 

technique to segment each frame into lots of homogenous regions. However, temporal coherence 

constraint in the sequences results in the difference between video segmentation and the 

segmentation of series of its single frame. Temporal coherence constraint addresses strong 

correlation of segmentations overtime, but the results can be quite unstable if segmenting them 

independently using image segmentation algorithm. 

According to the different camera configuration, semantic objects can be segmented from single or 

multiple views of image/video.  Most of interest has been focused on the research of mono-view 

segmentation leading to many advanced algorithms, theories and technologies. Especially object-

based segmentation has drawn great attention from the research and industrial community, resulting 

in many commercial products with image cutout tools or user interface, such as Video SnapCut [88], 

Lazy Snapping [89], Ratio cut [90] and GrabCut [91]. These interactive object segmentation tools 

requires user intervention to provide foreground/background hints by brush stokes or bounding box, 

which can obtain high accuracy object regions.  

On the other hand, multi-view segmentation had not attracted much attention due to the limitation of 

capture technology. With the recent growing capability of capturing devices, multi-view capture 

system with dense or sparse camera array can be built with ease, which motivates the development of 

multi-view techniques and its related applications.  Based on the different methodologies involved, 

the existing algorithms of object detection and extraction from multi-view images can be grouped 

into three categories: background subtraction, visual hull-based and depth-based. According to the 
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assumption that the depth values over one object vary smoothly and continuously, the depth 

information recovered from multi-view images serves as an important cue for segmentation. 

However, due to ill-posed nature of depth estimation, errors may occur in the depth map.  To obtain 

more robust segmentation results for object-level manipulation, integration of depth, color, and other 

image cues should be considered. 

From the perspective of this study, we address the topic of depth-based object segmentation. A 

review the existing depth based algorithms for image/video segmentation and our proposed algorithm 

will be discussed in the following sections. 

5.2 CURRENT RESEARCH ON DEPTH BASED OBJECT SEGMENTATION 

Depth information reconstructed from multi-view images (MVI) usually serves as a valuable source 

in various related techniques such as 3D reconstruction [18], free-viewpoint synthesis (as described 

detail in Chapter 4), object tracking (will be described in next chapter) and object segmentation as 

showing in this chapter.  Comparing with the 2D analysis and processing, the recovered depth 

information from the multi-view images assists in understanding and visualizing the 3D world in 

more efficient way. Accurate object segmentation in the clutter scene and complicated scenario is 

almost impossible or error-prone without any semantic knowledge about the scene or only relying on 

the 2D information (color, texture, and spatial location) from single-view images, since the semantic 

object is not always homogenous with these low-level features. By assuming that object locates in the 

different depth layer in the 3D scene and the depth value over one object forms smooth and 

consistent distributions, semantic objects can be extracted with known depth and segmentation 

performance using 2D features can be improved. However, object segmentation only exploiting the 

depth data is problematic due to the inaccuracy of the depth reconstruction resulting from the 

inherent difficulties of stereo matching such as the lack of textures and occlusion. Thus, to obtain 

more precise and robust segmentation for object-level manipulation, intelligent fusion of depth with 

other features should be taken into account. 

In almost public papers, depth estimation and object segmentation from multi-view images are 

generally addressed in sequential [92], joint  [93] [94]  or iterative [95] [96] approaches.  
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The most straightforward approach for depth-based segmentation is to perform depth estimation 

beforehand, and then incorporate the depth information into the segmentation framework. In [92], 

authors described models and algorithms for bi-layer segmentation of stereoscopic frames. Stereo 

disparity is obtained by dynamic programming in Layered Dynamic Programming algorithm, and 

stereo match likelihood is then probabilistically fused with contrast-sensitive color model to segment 

each frame by ternary graph cut.  

To avoid the propagation of error from depth estimation to foreground extraction in the sequential 

approaches, depth reconstruction and object segmentation problems can be simultaneously solved by 

joint optimization. For example, in [93], authors proposed a flexible and homogenous approach to 

simultaneous depth estimation and background subtraction in a multi-view setting, assisted by a static 

background image with known depth for each camera. The results of depth reconstruction and 

background separations algorithm is obtained as minimization of energy functional, to generation a 

dense depth map and foreground map. In [94], multi-view scene reconstruction and segmentation are 

dealt with by joint graph-cut optimization for the challenging outdoor environments with moving 

cameras, such as rugby and soccer scenes.  Segmentation and depth labeling field are formulated into 

the unified energy function, which involves color and contrast term for segmentation, as well as the 

match and smoothness term for reconstruction. 

The iterative depth-based segmentation receives the segmentation feedback from current estimation 

to improve the depth reconstruction and vice versa. In [95], the estimated depth map and 

segmentation mask are iteratively computed using an Expectation-Maximization (EM) algorithm. In  

[96], an iterative algorithm is developed  to create the intermediate synthesized view using depth and 

segmentation information, which continuously performance the disparity estimation and the image 

segmentation in the iterative circle, and improve the result of each other. 

In next section, we propose a method which is an approach in straightforward way. First, depth is 

estimated and then the depth information is incorporated into the segmentation framework.           
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5.3 PROPOSED SEGMENTATION ALGORITHM USING DEPTH INFORMATION 

In this part, we propose a method, which requires no interactive operation, to segment human object 

from multi-view video. Our method consist of two stages: for initial frame of the video sequence, we 

automatically extract object based on saliency model and iterated Graph cut. After having segmented 

object in first frame, we propose the algorithm combining Bayesian estimation and minimizing 

energy function using Graph cut to segment object. In our energy function, the color, depth and 

spatial-temporal coherence are integrated in data term. Smooth term is encoded the penalty cost of 

the neighboring pixels with different labels. 

The following section is organized as:  section 5.3.1 will briefly introduce our method; section 5.3.2 

emphasizes on our proposal segmentation algorithm; and finally experiments are presented in section 

5.3.3.  

5.3.1 Alogrithm Overview 

Here, we focus on depth-based multi-view object segmentation. Depth information recovered from 

multi-view image/video serves as an important cue for our segmentation algorithm. We approach in 

straightforward way. First, depth is estimated and then the depth information is incorporated into the 

segmentation framework. This approach is reasonable because depth maps are becoming a readily 

available commodity of the multi-view pipeline. Depth information recovered from multi-view 

image/video serves as an important cue for our segmentation algorithm. The purpose of this research 

is to fuse color, with depth to robust object segmentation. The contribution point of our research is 

automatically created tri-map by Bayesian estimation. Created trimap is initial value to speed-up 

graph cut optimization algorithm. 

In our framework, depth is estimated based on algorithms in [18], detail in section 5.3.2. But in many 

cases, depths are free given with multi-view colors images. For the starting step, if the input is first 

frames in sequences, we apply the novel method to segment object based Saliency model [97] and 

GrabCut [91]. From the second frame, we propose a probabilistic model combining Bayesian 
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Depth map provides vital information for scene interpretation; therefore, depth maps are becoming a 

readily available commodity of the multi-view pipeline. We can make use of this new free 

information to our algorithm. 

5.3.2.2 Saliency Cut in the First Frame  

Most of graph cut based object segmentation algorithm need user’s intervention to specify the initial 

foreground and background regions as the hard constraints such as in [89], [91] and [17]. User’ 

interaction is helpful to obtained good segmentation results, but the initialization itself may be 

annoying the user especially when much guidance is needed. 

In our proposal algorithm, the object will be automatically segmented but requiring only the object 

mask in the first frame in video sequence. To obtain the first frame object mask, we have two ways: 

manually or automatically locating and extracting object. For manually extracting objects, user can 

use some tools such as Lazy Snapping [89], GrabCut [91], or using simple background subtraction 

method with having background of the first frame. 

In this section, our purpose is automatically locating and extracting object in the first frame. Visual 

attention concept gives us with smart mechanism to perceptually attract human’s attention toward the 

location of interesting objects in a complicated scene. Saliency model in [98] is one of the earliest 

works. Give a static image, this model employs color, intensity and orientation to compute Saliency 

Map (SM), which encodes the obviousness at each location in the visual input. Until now, there are 

many saliency models have proposed such as in [97, 99-101].  

In this work, we apply the ideal given in [97] and [99] to compute the saliency map. The process is 

demonstrated in Figure 5-4.  

After having saliency map, we consider the use of this map to assist in salient object segmentation. 

Saliency maps have been previously employed for unsupervised object segmentation such as in [102, 

103].  
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k
kfkfpfkp CGwfCP   (5-3) 

where,  BFf , representing foreground and background; fkw ,  is a mixture weighting 

coefficient; and );;( ,, kfkfpCG  is the thk Gaussian component as: 
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(5-4) 

Given the GMM model   KkBFfw kfkfkf ,...,1,,,,, ,,,    (i.e. the weight w , means 

, covariance  , and K2 Gaussian component for background and foreground), we can calculate the 

likelihood )( fCP p with  BFf ,  by using Equation (5-3) .  

Depth Data Model 

Depth image is an array of gray values. Here we use histogram of gray values for depth data model 

);( fph . The same as color model, we need two histograms, one for foreground and another for 

background. Histograms are normalized to sum to 1 over gray level range  
p

fph 1);( and we get 

likelihood of pixel p with depth value pD as:  

.},{);()( BFfwithfphfDP p   (5-5) 

5.3.2.3.2 Bayesian Estimation and Trimap Creation 

This section computes the probability of each pixel to be in foreground base on Bayesian estimation 

and the results are used to create the tri-map, which is used for segmentation object via graph cut. 

Let’s t
pC , t

pD are color and depth value of pixel p  on color and depth images at time t . The 

probability of pixel p belongs to foreground is calculated based on Bayes’ formula as: 

,
)()|.()()|.(

)()|.(
),|(

BPBDCPFPFDCP

FPFDCP
DCFP

t
pp

tt
pp

t

t
pp

t

pp
t


  (5-6) 
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where, )(xP  is probability of x , F and B  stand for Foreground and Background in which pixel p  

belongs to. 

We assume that color and depth are independent, so the likelihood: 

.
,

B)| (DPB) | (C P )B| ,D(CP
 )|F (D) P|F (C P) |F ,D(CP

p
t

p
t

pp
t

p
t

p
t

pp
t




 (5-7) 

The likelihood )|( FCP p
t and )|( BCP p

t are calculated from foreground and background Gaussian 

Mixed Model (GMM) which are constructed from the previous segment result of color frame at

)1( t .  

Similarly, the likelihood )|( FDP p
t  and )|( BDP p

t  are calculated from gray-level histogram 

which also constructed from previous segment result of depth image at )1( t .  

Because of successive frames in the temporal domain would have strong correlations, so the prior 

probability )(FPt  and )(BPt of frame at t  are calculated from the previous image frame at )1( t . 

In order to get more accurate result, )(FPt  and )(BPt  can inferred from smooth map the D2 mask 

of segmentation results in previous frame at )1( t  by performing Gaussian filter. 

Based on computed prior probability and likelihood probability, the posterior probability 

),|( pp
t DCFP and ),|( pp

t DCBP  are calculated by Equation (5-6). 

Applying this process for whole image pixel p , we get the probability image )( pI prob . Based on 

probability value of pixel p , )( pI prob  the tri-map T  { F : Foreground; B : Background; U : 

Uncertainly region} can be created by: 

.1
)(
)(
)(

otherwise
 threshold(p)I          if

  threshold(p)I   if  

UpT
FpT
BpT

prob

prob














 (5-8) 

Here, threshold can be very small real value; in our experiment we choose threshold is 0.005. To 

remove the noise in trimap T , a filter to applied to foreground region and background regions.  
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),( qpdisp  and qp CC  are Euclidean distance of neighboring pixels in coordinate and color 

space respectively. N  is the set of pairs of neighboring pixels. In practical experiment, a good 

results are obtained by defining pixels to be neighbors in 8-way connectivity (horizontal, vertical and 

diagonally). In [17], they had shown that it is more effective to set 0  since this relaxes the 

tendency to smoothness in region of high contrast. We choose   the same in [17] as follow: 

  .)(2
1

2


 qp CC  (5-12) 

This choice of   ensures that the exponential term in Equation (11) switches appropriately between 

high and low contrast. Note that if 0 , the smooth term is well-known Ising model, which 

encourages smoothness everywhere [91]. 

In our algorithm, the automatically generated tri-map  UBF TTTT ,, (see section 5.3.2.3.2) is set 

as the initial values for graph cut. This is different point of our algorithms comparing to interactive 

segmentation method such as GrabCut [91], which requires considerable degree of user interaction 

for supplying trimap. With our trimap, Graph cut optimization only need perform in uncertainly 

region UT . However, UT  is smaller region than whole image, so the time for graph cut optimization 

decreases considerably.  

5.3.3 Experimental Results 

To evaluate the performance of our method, we compare the segmentation results of our method with 

respect to the ground truth in the IU sequence, which can be freely downloaded from [104]. We 

define the Absolute Mean Error Rate (AMRE) of every fifth frame (in the left view) as the number of 

misclassified pixels over the total number of pixels in the image, which is the same measurement 

adopted in [92].  

.
5

1 4

0


esls in imager of pixetotal numb

nd trustw.r.t grouied pixel misclassif
AMRE  (5-13) 
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6  

DEPTH AIDED OBJECT TRACKING 

6.1 INTRODUCTION 

Object tracking in the video sequence has played an important role in a research area of computer 

vision and a wide range of applications, such as video monitoring and surveillance, video 

conferencing and video summarization. Based on different camera configurations, objects can be 

tracked by using a single camera or stereo/multiple cameras. Object tracking with a single camera has 

studied in many literatures and difference methods have been developed such as tracking by model-

based tracking method [105], appearance-based  methods [106-108], feature-based tracking [109], 

and statistical methods [110-112]. Many algorithms can obtain good results in some cases, such as 

when the targets are separated. However, multiple object tracking is still a challenging task due to the 

non-rigid motion of deformable object, persistent occlusion and the dynamic change of object 

attributes, such as color distribution, shape and visibility. In the real scene, occlusion between objects 

often occurs. For example, in typical surveillance scenario a person is partially or fully occluded by 

other people. Unfortunately, these occlusions lead to failed tracking. Some classical frameworks have 

been extended to track multi objects. In the multi-object tracking system [113], level set method is 

used to handle contour splitting and merging. Extensive methods, i.e. Monte Carlo based 

probabilistic methods [114], game theory based approaches [115] and appearance model based 

deterministic methods [116, 117] have been presented to solve the mutual occlusion problem. 

Another attractive research direction is stereo or multiple camera based method. While object 

detection and tracking with a single camera is a well-explored topic, the use of multi-cameras 

technology for this purpose has been attracted much attentions recently due to the availability and 

low price of new hardware. A multi-camera system observes the scene from two or more different 

views, and obtains more comprehensive information than a monocular camera system, which can 

take the advantage of depth information to improve the tracking system performance. Some tracking 

methods focus on usage of depth information only [118], or usage of depth information on better 
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6.2.2.2 Foreground Segmentation and Shadow Cancellation 

Our method performs foreground segmentation to speed up the process of object tracking. There are 

many foreground segmentation algorithms for instance of Gaussian Mixture Model [121, 122]. In our 

method, we use simple technique based on absolute differences between current image and 

background image.   

In some cases, we have the fixed cameras observing the scene, so we may have an image of the 

background of the scene. However, in most case this background is not readily available. Moreover, 

the background scene often evolves over time because for example the light condition might change 

or because of new object could be added or removed from the background. Therefore, it is necessary 

to dynamically build the background model by regularly updating it. This can be accomplished by 

computing moving average using the following formula: 

,)1( )1( ttt p    (6-1) 

where, tp is pixel value ate a given time t , )1( t is the current average value, and  is called the 

learning rate and it defines the influence of the current value. 

In our method, first a color background model is created by computing a moving average for each 

channel (R, B and G channels of color image) of each pixel of incoming frames (around 10 frames). 

The decision to define a foreground pixel is simply based on comparing the current frame with 

background model and then updating this. Specifically, 

,
)(

)()(0
)(



 

otherwisepI
tpIpIif

pF Hbg

c

c 
 (6-2) 

where, )( pF is value of pixel p in foreground image, )()( pIpI bgc  represents the absolute color 

difference between the color value at pixel p of current frame )( pIc  and the color value of pixel p

of background frame )( pIbg  of R, G, B channels. Ht is threshold and for the each color channels this 

threshold can be set to )(*3.0 pIbg . An example of foreground image is shown in Figure 6-3. 
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For every frame, after extracting blobs, information about blob is stored in a structured record for 

later processing steps. The blob’s information includes total number of blob )(NB , blob’s center 

coordination ),( yx , blob area )(BA , and the average depth value of blob )( minZ . Blobs are also 

given temporally identification )(ID .  

We define two kinds of distance: the distance between blob i  and blob j  in the same frame t and 

the distance between blob i  of frame t and blob j of frame )1( t .  

The distance ),( tt jid  between blob i  and blob j  in the same frame t  is computed by:    

,)()(),( 22
tttt jijitt yyxxjid   (6-3) 

 where ),(
tt ii yx  and ),(

tt jj yx are the center coordination of blob i  and blob j at frame t , 

respectively.  

Similarly, a distance ),( )1( tt jiD  between blob i  of frame t  and blob j  of frame )1( t is 

calculated by: 

,)()(),( 22
)1( )1()1( 

 tttt jijitt yyxxjiD  (6-4) 

where ),(
tt ii yx  and ),(

)1()1(  tt jj yx are the center coordination of blob i at frame t and blob j at frame 

)1( t correspondingly.      

6.2.2.4 Occlusion Detection 

We detect the occlusion in current frame t according to blobs’ information at frame t and previous 

frame )1( t . It is based on two clues. The first clue comes from the shortest distance between blobs 

at the same frame )1( t and the second one is the difference of number of blobs at frame t  and

)1( t . First, we find the shortest distance ),( )1()1(  tt jid  between blobs in frame )1( t , assuming 

that it occurs between blob m and blob n , i.e. )},(min{),( )1()1()1()1(min   tttt jidmnd .  
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We define an occlusion flag startoccf _ . This flag gets value t if occlusion is found at frame t  and 

otherwise it gets value 1 . Specially, 

,1
)1(11min

_ otherwise
 NB and NBd),m(nif dtf t-tthreshold)(t)(t

startocc




   (6-5) 

where, )1( tNB and tNB are the total number of blobs in frame )1( t and frame t  respectively. 

thresholdd  is the threshold of blob distance at the same frame.   

Similarly, we also detect when the occlusion terminates. The end of occlusion is checked based on 

the shortest distance between blobs at the current frame t  and the difference of number of blobs at 

current frame and previous frame )1( t . We define the end of occlusion flag endoccf _ as following: 

,1
)1(min

_ otherwise
 NB and NBd),m(nif dtf ttthresholdtt

endocc




   (6-6) 

6.2.2.5 Depth Aided Object Tracking 

According to the result of occlusion detection, the tracking objects can be dividing into two types: 

tracking objects without occlusion and tracking objects under occlusion.  

6.2.2.5.1 Tracking Objects without Occlusion 

The video objects correspondence under non-occlusion is obtained through the shorted distance 

),( )1( tt jiD  between blobs in previous frame and blobs in the current frame. This distance between 

blobs in previous frame and blobs in the current frame is calculated by Equation (6-4). For instance, 

once a foreground blob m  at frame t )( m
tB finds its corresponding blob n

tB )1(  in frame )1( t , its 

label or identification )(ID  is updated correspondingly to the ID of blob n
tB )1(  . Specially,  

,
21min

1
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1
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6.3 CONCLUSIONS 

In this chapter, we have presented a novel tracking method aiming at detecting objects and 

maintaining their ID over the time. The main key factor of this method is to use depth information to 

help to track objects under various occlusion scenarios. Different object tracking strategies are apply 

according to occlusion situation including finding correspondence object based on Bhattacharyya 

distance between two histograms and using camshift based algorithm with the help of object depth 

ordering. The experimental results presented have confirmed the capability of our proposed objects 

tracking algorithm under the most typical and challenging occlusion scenarios.  

However, the proposed algorithm can work only in an indoor or medium sized environment since the 

reliability of depth information diminished in proportion to the distance from camera and only when 

the moving velocity of objects are slow. In the future work, to construct a robust moving object 

tracking system in both indoor and outdoor environment, we will study to use more object’s features 

to classify and track the objects. 
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7  

CONCLUSIONS AND OUTLOOK 

7.1 SUMMARY AND CONCLUSIONS 

This thesis devotes to firstly study depth estimation from stereo/multi-view images and then use this 

useful information for one of the key application in 3DTV, namely free viewpoint synthesis, and for 

object segmentation and multiple moving object tracking applications. The achievements are 

summarized as follow parts. 

 Chapter 3: Depth Estimation 

We have proposed a method that allows the use of several un-rectified images simultaneously to 

estimate a consistency and reliability depth image.  We have introduced three constraints, i.e. intra-

line, inter-line and inter-view smoothness constraint, which enforce smooth variations of depth value 

in the scanline, across scanline and consistent depth value across the views. The proposed algorithm 

combines two stages: the first stage serves as a calculation of initial depth images and the second 

stage enhances the depth initial depth images in the first step by enforcing consistent depth across the 

views. The three smooth constraints can be efficiently integrated into one dimensional optimization 

dynamic program algorithm. Experiments have shown that the proposed smooth constrains yield 

reasonably depth image quality for various multi-view data sets. Although, depth estimation has been 

widely studied, we have some small contributions as: 

o Using several uncertified images simultaneously. As we known, in the multi-view camera 

configuration, multiple images are available so that the algorithm employ all view could 

yields an accurate depth map comparing the common case using only two views. 

Furthermore, with uncertified images we do not need the image rectification pre-processing 

or image de-rectification post-processing; 

o Adding the smoothness constraints which enforce smooth variations of depth value in the 

scanline, across scanline and consistent depth value across the views.  
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This proposed method was published in the Proceeding of the fourth International Conference on 

Communication and Electronics (ICCE), 1st -3rd  August 2012, Hue, Vietnam. 

 Chapter 4: Depth Based View Synthesis 

After investigating and presenting the depth estimation algorithm, the Chapter 4 of this thesis focus 

on the depth based image rendering for 3D video and 3DTV systems. As we have introduced, view 

synthesis is one of key techniques in the near future 3DV/3DTV system.   

For synthesizing high quality of virtual view, we have proposed a novel method employing multiple 

color and depth images. The proposed method solves the main problems of depth based synthesis by  

applying forward depth map following with inverse warping texture, performing pixel classification 

to generate an initial new view from stable pixels and using Graph cut to select the best candidate for 

unstable pixels. The remained disoccluded pixels are inpainted by using depth and texture 

neighboring pixel value. Experimental results show that the proposed method has strength in artifact 

reduction. Objective evaluation has shown that our method get a significant gain in PSNR and SSIM 

comparing to some other existing methods. Another advantage of our method is that we can use a set 

of un-rectified images in multi-view system to create a new view with higher quality. 

Depth imaged based view synthesis is one of active research field, but we have added some 

contributions as: 

o Solving the cracks and holes due to sampling rate by applying forward depth map 

following with inverse warping texture.  This allows a simple and accurate re-sampling of 

synthetic pixel.  

o Presenting the procedure to classify the pixel as stable, unstable and disocclusion from the 

multiple images and providing an energy function to select the unstable pixels by Graph 

Cuts. By defining the types of pixels and using Graph cuts, the incorrectly wrapped pixels 

because of inaccuracy depth maps are removed in the synthetic view. 

o Using both color and depth information to fill the disocclusion regions. This will help to 

reduce the blurring between foreground and background textures.  
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This work was published in the Proceeding of the 19th Korea-Japan Joint Workshop on Frontiers of 

Computer Vision; and in the Proceeding of the 17th International Conference on Image Processing, 

Computer Vision, & Pattern Recognition.  The revised version was published in Journal of Signal 

and Information Processing.  

 Chapter 4: Depth Assisted  Object Segmentation 

As the estimated depth information available, our concern is to apply the usefully estimated 3D 

information for the object segmentation method. We have proposed a method using both depth and 

color cues, which requires no interactive operation, to segment human object. Our method consist of 

two stages: for initial frame of the video sequence, the interested object is automatically extracted 

based on saliency model and iterated Graph cut. After having segmented object in first frame, we 

have propose a method combining Bayesian estimation and minimizing energy function using Graph 

cut to segment object. We use Gaussian Mixture Model (GMM) in RGB space for the color cue and 

histogram for depth cue.  Based on these probabilistic models, the probability of each pixel to be in 

foreground is computed based on Bayesian estimation and the results are used to create the tri-map 

including foreground (F), background (B) and uncertain region (U). Graph cut is then performed on 

the uncertain region. In our energy function for Graph cut optimization, the color, depth and spatial-

temporal coherence are integrated in data term and the penalty cost of the neighboring pixels with 

different labels is encoded in smoothness term. Experiment results on test sequences are encouraging 

and showed that our method is more effective than the case using only color cue. 

Many researchers have investigated object tracking and different approaches have been presented, 

but our research has added some contributions as: 

o Proposing the object segmentation method for video using both depth and color cues, 

which requires no interactive operation;   

o Using probabilistic models for depth and color cues with Bayesian estimation to create tri- 

map; with tri-map, Graph cut only performed on the uncertain region, which can speed up 

the Graph cut process.  
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This concept of integrating depth and color into the object segmentation was published in ICGST 

International Journal on Graphics, Vision and Image Processing GVIP (ICGST-GVIP).  

 Chapter 5: Depth Aided Object Tracking   

The final work in this thesis is to using the estimated depth information for object tracking. We have 

presented a novel tracking method aiming at detecting objects and maintaining their 

label/identification over the time. The main key factors of this method are to use depth information 

and different strategies to track objects under various occlusion scenarios. The foreground objects are 

detected and refined by background subtraction and shadow cancellation. The occlusion detection is 

based on information of foreground blobs in successive frames. The occlusion regions are projected 

to the projection plane XZ to analysis occlusion situation. According to the occlusion analysis results, 

different objects correspondence strategies are introduced to track object under various occlusion 

scenarios including tracking occluded objects in similar depth layer and in different depth layers. The 

experimental results show that our proposed method can track the moving objects under the most 

typical and challenging occlusion scenarios.  

Many researchers have investigated object tracking and different approaches have been presented, 

but our research has added some contributions as: 

o Using depth information to help to track objects under various occlusion scenarios; 

o Applying different object tracking strategies according to occlusion situation with the help 

of object depth ordering.  

This proposed method was published in Journal of Signal and Information Processing and in the 

International Journal of Computer Science and Network Security.  

7.2 OUTLOOK 

This thesis has contributes to several areas of depth estimation, view synthesis for 3DTV and object 

tracking and segmentation, however there are still a number of issues need to be address. For future 

work, that further improves techniques proposed in this thesis as well as potential new researches are 

listed below: 
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 Depth Estimation  

o The proposed depth estimation algorithm is only performed independently for each frame 

of views. We can modify this algorithm to utilize the temporal consistency in successive 

video frames to obtain a more accurate depth image; 

o To improve the quality of depth maps, we could concern about other approaches such as 

Graph models, two dimension optimization, or depth map refinement techniques; 

o In this thesis, we just concern the narrow baseline multiple camera system, thus the future 

work can investigate for the wide based line case. 

 Free viewpoint synthesis for 3DTV 

o The similar in depth estimation, the proposed view synthesis is just performed for each 

frame. The extension with utilizing temporal information in successive video frames could 

yield a higher quality of synthesis view; 

o We think that improving the disocclusion filling technique can further enhance the 

perceptive rendering quality. For example, edge, depth and segmentation features can use 

to correctly fill in the disocclusion pixels; 

o The DIBR brings new challenges such as the question of synthesized view evaluation. We 

could be interested in the protocols of subjective assessment and the reliability of object 

quality metrics in the context of DIBR based view synthesis, because it may lead to 

improving the quality of synthesize views. 

o To use in real time system, it should consider to reduce the algorithm complexity or to 

implement in hardware. 

 Depth based object segmentation 

o We had assumed that color and depth are independent, however there could be some 

correlations between color and depth information. We think that modeling the correlation 

of color and depth in some ways such as 4 dimensions histogram (3 dimensions are 
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assigned for 3 color channels and another dimension for depth) could give a better results 

than the case when these two cues are modeled independently; 

o The segmentation algorithm only deals with object segmentation in the key view, so 

finding efficient way to project the segmentation result in key-view to another views is an 

interested topic. 

o We could extent the proposed method to segment multi-objects;  

 Depth based multiple object tracking 

o The proposed algorithm can work well only in an indoor or medium sized environment 

since the reliability of depth information diminished in proportion to the distance from 

camera and only when the moving velocity of objects are slow. In the future work, to 

construct a robust moving object tracking system in both indoor and outdoor environment, 

we will study to use more object’s features to classify and track the objects. 
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B               

ABBREVIATIONS

MRF Markov Random Fields 

3DTV Three Dimension Television  

FTV Free-viewpoint Television 

BM Block Matching 

GPU Graphic Processing Unit 

SVD Singular Value Decomposition  

SAD Sum of Absolute Difference 

SSD Sum of Square Difference 

CC Cross Correlation. 

NCC Normalized Cross Correlation 

WTA Winner – Take – All 

MSE Mean Square Error 

PSNR Peak Signal Noise Ratio 

MVD Multiple View plus Depth 

MVC Multi-view Video Coding 

SSIM Structure Similarity Index 

DIBR Depth Image Based Rendering 

2D Two Dimension 

3D Three Dimension 

3DV Three Dimensional Video 

fps Frames Per Second 

HSV Hue, Saturation, Value 

RGB Red, Green, Blue 

GMM Gaussian Mixture Model 

MAP Maximum A Posteriori 

OOI Object Of Interest 

F Foreground region 

B Background region 

U Uncertain region 

CMOS 
Complementary Metal Oxide 

Semiconductor 

CCL Connected Component Labeling 

SM Saliency Map 
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