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order VARs by approximating VAR models whose lag

orders are finite but “long”, following the results in

Saikkonen (1992) that originated inferences based on

such a finite lag order VAR approximation. For the

test established by this article (hereafter referred as SL

test), the lag order of the VAR considered is supposed

to be not a fixed integer in the conventional sense but

the one that goes to infinity at a “slower” rate as the

sample size increases, and the limiting distributions

for the SL test statistics under the nulls are the same as

the counterparts for the conventional Johansen's LR

test. In addition, Luukkonen and Saikkonen (2000)

adapted the SL test to the DGPs with deterministic

trends on the basis of the above methodology, and

Luukkonen and Saikkonen (1999) and Qu and Perron

(2007) have discussed the determination of an optimal

lag order based on information criteria such as AIC or

HQ in such approximations, pointing out that the SL

test should be executed in the VAR attached to such

an optimal lag order. However, the asymptotics of the

above tests under the alternatives are not explicitly

provided in past articles.

１　Introduction

The number of independent cointegrating relations,

called cointegration rank,  is essential and

indispensable for the model formulation,

parametrization and inferences under the occurrence

of cointegration, particularly in the time series systems

which consist of more than 3 series and consequently

the cointegration rank might be greater than 1.

Conventionally, the detection of the cointegration rank

has been done by Johansen's (1988, 1992, 1996)

likelihood ratio (LR) tests and the methodology based

on those (Johansen methodology) with a limitation

that the data generating processes (DGPs) represented

as finite lag order vector autoregressions (VARs) in

levels need to be supposed.

Several semiparametric and nonparametric

approaches to rank determination have been proposed

to compensate the limitation of the Johansen's LR test.

Among these, Saikkonen and Luukkonen (1997)

studied applicability of the Johansen's LR test (and its

methodology) to the DGPs represented as infinite lag
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that of the conventional Johansen's LR test, suggesting

that in large samples, the tests might be more powerful

than the SL test.

Monte Carlo experiments are also executed in

several particular DGPs taking VARMA(2,2) forms in

order to investigate finite sample performances of the

tests discussed, particularly on how the detection of

the true rank value is achieved as the sample size is

150 or 250 in connection with reflection of the

asymptotics. The experimental results reveal that the

performances vary according to the DGP, in the sense

that those are satisfactory in some DGPs but far from

desirability in other DGPs. and that not only the roots

of the reverse characteristic polynomial of the

VAR/VMA part but also the values of the coefficient

matrices of the VAR/VMA part might seriously affect

the asymptotics established theoretically, partly

because of the forms of the DGPs adopted that are not

the simplest ones, relating this to phenomenon similar

to near-integration. The test newly proposed roughly

seems to perform better than the SL test for many

cases when a suitable VAR lag order is chosen, but its

superiority was occasionally insignificant and its

performances are rather worse than that of the SL test

in several DGPs, unlike the matter expected from the

asymptotics, and the SL seems to be more stable

through the whole DGPs. We might not assert that

each of tests sufficiently reflects the asymptotics even

when the sample size is 250 owing to some

unsatisfactory results for several DGPs.

The paper is organized as follows. Section 2

formulates the DGP and discusses the derivation of a

finite lag order VAR expression with no error

correction term. The tests proposed are presented in

Section 3, and asymptotics for the tests are established

in Section 4. Section 5 deals with Monte Carlo

experiments. The remaining issues including some

concluding remarks are discussed in Section 6. The

proofs of lemmas and theorems in the text are

provided in the Appendix.

The present paper theoretically shows that when the

time series system considered is cointegrated, the SL

test statistics diverge at slower rate than in the

conventional LR tests under the alternatives, resulting

in poor asymptotic powers. As it turns out in later

sections, this are derived mainly from the matter that

the presence of the error correction term in the vector

error correction model (VECM) form does not

significantly contribute to improve the innovation in

terms of the magnitude of the covariance matrix of the

error vector, resulting in that the effect of the error

correction term vanishes as the sample size goes to

infinity. To explicitly evaluate the matter, we derive a

VAR expression such that there are no error correction

term and that the lag order is finite but goes to infinity

at a slower rate as the sample size increases. The paper

also focuses its interest upon the asymptotics of the

tests under the nulls by paying attention to certain

quantities that are “nuisance parameter free”, in the

sense that both their well-known limiting distributions

and their finite sample distributions as the data series

are distributed as Gaussian are so, and asymptotic

differences between the test statistics and the

quantities. The convergence of the differences to zero

in the presence of certain non degenerate random

variables is evaluated, pointing out that the

convergence rate is slower than that of the

conventional one but not so severe.

Another purpose of the present paper is to propose a

new test for the cointegration rank in infinite lag order

VARs, so that the divergence under the alternative is

achieved at faster rate and the limiting distributions

and the convergence rate to nuisance parameter free

quantities leading to those under the nulls are the same

as those of the SL test (or the Johansen's LR test). The

test proposed utilizes the structure of the SL test as

much as possible in construction and partly corrects

the regressant and regressors in its first-stage

regression, so that the term corresponding to the first-

lagged one of the differences is excluded from the list

of the regressors

and as a result, the error correction term can take

effect. It should be strongly noted that the divergence

rate of the test under the alternatives is either equal to
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２　The DGP and Finite Lag Order VAR
Expression

Consider an observed p-dimensional vector time

series yt expressed as

（1）

where µ and µ0 are p-dimensional constant vectors and

{ut} takes an infinite lag order VAR form as

where {εt} is iid (0, Λ) with a p×p positive definite

matrix Λ and finite fourth order cumulants, L stands

for the lag operator, A(z) is defined as

with Im
_ denoting the m

_
×m

_
identity matrix, α and ß

of p× r column full rank matrices, where r is an

integer satisfying 1 ≤ r ≤ p－1, and Hi of p× p

matrices. We make the following assumptions: det

A(z)≠0 for ∀ |z| ≤ 1 except z＝1,

where ||･|| denotes the Euclidean norm, i.e., ||Hi||＝

{tr (H í Hi)} 1/2,  implying that Hi＝ O(i－ 1－ a
_
) for

sufficiently large i, where a
_
＞1, µ is spanned by

columns of γ, where γ is a p×(p－ r) column full

rank matrix such that ß´γ＝0, y0＝Op (1) or O(1) as

an initial condition for yt and rank δ´H(1)γ＝p－ r,

where δ is a p×(p－ r) column full rank matrix such

that δ´α＝0 and δ´Λδ＝ Ip－ r, and H(z)＝ Ip－∑∞
i＝1

Hi z
i, noting that these assumptions except the last one

are generally made in the literature dealing with I(1)

and I(0) series or cointegration (e.g., Saikkonen

(1992), Phillips (1995) or Saikkonen and Luukkonen

(1997)) and that the last one is required to exclude the

occurrence of higher order cointegration in the

definition of cointegration by Engle and Granger

(1987) and is exactly the same as Assumption A3 of

Banerjee et al. (1993, p. 147) or the condition stated

by Equation (4.5) of Johansen (1996, p. 49). 1

Now, define

It is easy to see that C0＝ Ip, that det C(z)≠0 for ∀ |z|

≤ 1 except z＝1, that C(1)＝γδ´, where γ and δ

are some matrices satisfying the requirements given

above for the ones expressed by the notations, and that

Ci＝O(i－1－a
_
) and Ci

(1)＝O(i －a
_
) for sufficiently large

i, and based on these results or essentially owing to the

Granger representation theorem by Engle and Granger

(1987) (e.g., Johansen (1996, p. 49), Theorem 4.2), we

can convert (1) into an infinite order VMA expression

for ∆yt:

（2）

We now note that yt is cointegrated with d＝b＝1 in

the definition of cointegration by Engle and Granger

(1987) and with the cointegration rank r.  For

discussion later, for the case µ≠0 and r＜ p－1,

partition γ into a p-dimensional vector γ1 and a p×

(p－1－ r) matrix γ2, as γ＝[γ1, γ2], and without

losing generality, suppose that γ1́µ≠0 and γ2́µ＝0.

Now, let {KT} and {LT} be sequences of positive

integers such that lim T→∞KT＝∞ and lim T→∞KT/T 1/3＝

0 and KT/m ≥ LT＞KT/m－1, where m is an integer

either greater than or equal to 2, and further for h＝0,

1, LT and s＝0, 1, ... , LT, define
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Now, define vt＝∑∞
i＝0 Ci

(1)εt－ i and α
_
＝α(άα)－1,

noting that ß´yt－1＝ ß´vt－1＋ ß´(y0－ v0), therefore,

Eß´yt－1＝Eß´y0. Then, by comparing (3) and (4) after

multiplication of the both sides of those equations by

α
_
´, we obtain

（5）

(5) naturally suggests that residuals obtained by

regressing ß´yt－1 on ∆yt－1, ... , ∆yt－KT
, and 1 are

dominated by LT
－1α

_
´(∑ LT

s＝1εt－ s) of Op(KT
－1/2), though

it will be formally established in discussion to prove

the theorems stated later, and consequently this might

lead to deterioration of the asymptotic power of the SL

test. It will be also seen from (4) or (5) that an

innovation squares error or a linear least squares

prediction error in an infinite order VAR/VECM is not

improved by the presence of its error correction term.

３　Test Statistics

First, define

in order to construct some statistics. Second, based

these, demeaned sample matrix products are

constructed as follows:

where ǔ－ i＋1＝∑∞
h＝0 Chε－ i＋1－h. It is well-known that

(2) can be converted into an infinite order VAR or

VECM representation (e.g., Johansen (1996, p. 55),

Theorem 4.5), and as done in Saikkonen (1992) or

Saikkonen and Luukkonen (1997), the representation

can be further approximated by a KT-th order VAR:

for t ≥ KT＋ 2,

（3）

where ζt－KT－1; KT
is of Op (KT

－1/2－a
_
). We next set up

that there exists a VAR scheme comprising KT pieces

of lagged differences (i.e., ∆yt－ i , i＝1, ... , KT) only,

such that the variances of the error terms except for εt

converge to zero as T tends to ∞, similarly to those

for (3).

Lemma 1 For yt generated by (1), we have

（4）

where Gi ; KT ; LT
are p×p matrices satisfying

and

with the property thatζ
_

t－KT＋LT－1 ; KT－LT
＝Op(KT

－1/2－a
_
). 

小瀧先生  13.7.25 8:12 AM  ページ 60



－ 61 －

with M̂10＝M̂0́1, M̂20＝ M̂0́2 and M̂21＝M̂1́2,

with M̂00 ; ji＝ M̂ 0́0 ; ij , M̂10 ; 1＝ M̂ 0́1 ; 1, M̂31＝ M̂ 1́3, M̂30 ; i＝

M̂ 0́3 ; i and M̂40 ; i＝ M̂ 0́4 ; i, and noting that M̂00 ; 00＝ M̂00.

Third, define

with S̃10＝ S̃0́1, and based on Ĥ1, further define

with Ŝ10＝ Ŝ0́1. Fourthly, let λ̃1 ≥ ... ≥ λ̃p be the ordered

eigenvalues of S̃－111 S̃10 S̃－100 S̃01, and similarly λ̂1 ≥ ... ≥

λ̂p be the ordered eigenvalues of Ŝ－111 Ŝ10 Ŝ－100 Ŝ01. Now,

for j＝0, 1, ... , p－1, two statistics to test the null

r＝ j and the alternative r ≥ j＋1, are given as

Note that Ŝ j corresponds to the SL test, and another is

newly proposed by the present paper and hereafter is

referred as “CSL test”, implying “a corrected SL test”.

The CSL test is motivated by the matter that a

consistent estimator of H1 in (1)/(3) is utilized for

some correction of the first-stage regression as in the

SL test, and for this purpose, we first obtain Ĥ1 as an

estimated coefficient matrix of ∆yt－1 in a regression

equation of ∆yt on ∆yt－1, ... , ∆yt－KT
, yt－1, and 1, and

then Ŝ ij are obtained based on residuals obtained by

regressing of ∆yt－ Ĥ1∆yt－1 or yt－1 on ∆yt－2, ... , ∆yt－KT
,

and 1. It will be shown in the proof of Theorem 2 in
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Furthermore, define the (p－ r)× (p－ r)

matrices/scalars D－1
T and D

_
－1
T , as Ip－ r and (γ́γ)－1 for

the case µ＝0, as

for the case µ≠0 and r＜p－1 and as T－1/2 and T－1/2

(µ´γ)－1 for the case µ≠0 and r＝p－1, and define

We shall now state the asymptotics of the test

statistics in the previous section.

Theorem 1 Suppose that yt is generated by (1).

Then, we have

the following section that the residuals obtained by

regressing ß´yt－1 on ∆yt－2, ... , ∆yt－KT
, and 1 are of

Op (1) without being degenerate, resulting in

asymptotic powers that are as good as that of the

Johansen's LR test. We also see later that the

convergence rate of Ĥ1 to H1 plays a decisive role for

the asymptotics of the test.

４　Asymptotics

To formulate the distributions of the test statistics,

define the (p－ r)-dimensional vector/scalar ξt－1 as

∑ t－1
h＝1δ́εh for the case µ＝0, as ((t－1), ∑ t－1

h＝1έhδ
_
)´

for the case µ≠0 and r＜p－1, where δ
_
＝δγ́γ2

(γ́2γγ́γ2)－1/2, and as t－1 for the case µ≠0 and r＝

p－1, let ξ
_
－1＝T－1∑ T

t＝KT＋2ξt－1 and based on ξt－1

and ξ
_
－1, further define

Note that the quantity tr N
_
－1
11 N

_
0́1δδ́N

_
01 is nuisance

parameter free in its limiting distribution, as seen from

the theorem stated below, and in its finite sample one

as εt are distributed as Gaussian. In addition to the

above notations, let the conventional symbols and

Wm (u) stand for weak convergence of probability

measures on the unit interval [0,  1] and an m-

dimensional standard Brownian motion on [0, 1]

respectively. Also, define W
_

m(u)＝Wm(u)－∫10Wm(u) du,

W̌p－ r(u) as W
_

p－ r(u) for the case µ＝0, as (u－1/2,

W
_

ṕ－ r－1)´ for the case µ≠0 and r＜p－1 and as u－

1/2 for the case µ≠0 and r＝p－1, and
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（6）

where ν1 ≥ ... ≥νr are the ordered eigenvalues of ά

Λ－1αα
_
´Λα

_
,

（7）

with the properties that θ̃＝Op(1) and θ̃－1＝Op(1),

and

（8）

We see from (6) of the above theorem that Ŝ j＝

Op(TKT
－1) under the alternative r＞ j, implying that the

divergence rate TKT
－1 is slower than the conventional

T, and therefore the SL test might be less powerful. On

the other hand, (7) formulates an asymptotic

difference between the SL test statistic under the null

j＝ r and the nuisance parameter free quantity,

characterized by the well-known limiting distribution

stated by (8), which correspond to both (6.21) and

(6.32) of Johansen (1996, pp. 94 and 98). As indicated

by (7), the difference is greatly affected by the size of

KT characterizing the VAR approximation. It will be

stated in the proof of Theorem 1 that the term expressed

as Op(KT
－a

_

) is related to a quantity constructed based

on ζt－KT－1 ; KT
or ζ

_
t－KT＋LT－1 ; KT－LT

. It should be noted that if

a
_

is so large that limT→∞T 1/2/KT
a
_
＋1/2＝0 holds, this term

can be included in the term expressed as op(T
－1/2KT

1/2),

emphasizing that this is valid for the case in which Hi

decay exponentially, such as A(z) taking a rational or

VARMA form.

Theorem 2 Suppose that yt is generated by (1).

Then, we have

（9）

where ν
_
1 ≥ ... ≥ ν

_
r are the ordered eigenvalues of ά

(Λ＋αß´Λßά)－1αß´Λß,

（10）

with the properties that θ̂＝Op(1) and θ̂－1＝Op(1).

We see from this theorem that under the null, the

limiting distribution of the CSL test statistic is equal to

that of the SL test and the difference between the CSL

test statistic and the nuisance parameter free quantity

is of Op(T
－1/2KT

1/2), which is also the same as that of the

SL test statistic. In addition, Q̂ j＝Op(T) under the

alternative, in other words, the CSL test is of the same

probability order as the Johansen's LR, suggesting that

the CSL test might be expected to be more powerful

than the SL test as T becomes large. The term

expressed as Op(KT
－a

_

) might be included in the term

expressed as op(T
－1/2KT

1/2) in many cases, based on the

same reason as the one for the SL test stated

previously. However, considering how the

asymptotics established theoretically above are

preserved for the tests under finite samples, there

might exist DGPs that this term greatly affects the

distance from the nuisance parameter free quantity

even if T is not so small and Hi decay exponentially.

This might be caused by some roots of det C(z)＝0,

and some examples adopted in Section 5 might be

related to such cases.

To examine the size of θ̂ in comparison to that of

θ̃ for the SL might be difficult because both are

subject to complicated dependence on various

parameters.

５　Additional Matters and Remarks

If stronger initial conditions such as yt＝0 and ε－ i

＝0 for ∀i ≥ 0 is supposed, reconstructing Q̂j based

on the data series that are not demeaned is allowed for

the case µ＝0, just as done for Ŝ j, and to establish

results as in Theorems 1 and 2 for those in this case

might be rather simpler. We note that the results for

the alternatives are the same as in the above theorems

in other words, each of the results of the right-hand

sides in (6) and (9) still holds for each of the test

statistics replaced, whereas the results under the nulls

require to replace N
_
11, N

_
01, DT and W

_
(p－ r) in (7), (8)

and (10) with suitable ones corresponding to the data

series that are not demeaned (Johansen (1996, p. 94)
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Theorem 3 (¡) Suppose that yt is generated by (1)

as r＝p. Then, for the test statistics and quantities

defined above, instead of (6) and (9) in Theorems 1

and 2, we have

（6）́

noting that ǍΛ́－1ǍǍ－1Λ Ǎ－1´＝ Ip, and

（9）́

where ν
_
1 ≥ ... ≥ν

_
p are the ordered eigenvalues of

(™) Suppose that yt is generated by (1) as r＝0. Then,

for the test statistics and quantities defined above, (8)

still holds and instead of (7) and (10) in Theorems 1

and 2, we have

（7）́

and

（10）́

For the case r＝p, we note that the SL test exhibits

desirable performances even if KT is replaced by a

fixed and short one, since the test statistic is of Op(T)

as stated above and all the nulls must be rejected in

order to detect the true rank value. Also, the

differences between the test statistics and the nuisance

parameter free quantities become smaller under the

null r＝0 for the case r＝0, as stated by (7)´ and

(10)´.

The examination of the tests under DGPs with near-

integrated series or for local alternatives, discussed in

such literatures as Johansen (1996, pp. 201-210),

Elliott and Pesavento (2009), Hjalmarsson and

Österholm (2010) and Kurita (2011), might force us to

adopt a simple approach on the formulation of (1),

supposing that Hi＝0 for any i ≥ 1. However, such

simplification or an extension to a VAR whose lag

order is not one but finite stated in Exercises of

Johansen (1996, pp. 209-210) is not appropriate for

the present paper based on an infinite order VAR

approximation at all, and it will be not easy to find

e.g.).

It should be strongly noted that the DGP (1) does

not exclude the possibility of a finite lag order VAR,

i.e., it is allowable to suppose that Hi＝0 for any i ≥

k＋1 with a nonnegative integer k. In such a situation,

(6) reveals that the SL test is disadvantageous to

desirable rank detection, emphasizing that it is

reasonable to adopt the Johansen's LR test if k is

known. It can also be shown within the well-known

asymptotic theory of the I(0) and I(1) series (e.g.,

Hamilton (1994, p. 192 and p. 548)) that if KT is

replaced with a fixed and short one, Ŝj is of Op(T
－1)

for j＜ r even if A(z) in (1) is not finite. The

conventional divergence rate ensures desirable

rejection of the nulls, though the test adopting such a

value of KT should not be considered as the “SL” test

and is not suitable for the purpose of the study stated

the introduction. On the other hand, the CSL test

always requires a large value of KT to preserve its

asymptotics, since those strongly depend upon the

consistency property of Ĥ1.

We can easily include the case for which r defined

as 1 － rank C (1) is either p or 0 in our discussion

above, noting that yt is weakly stationary except y0 or

∑∞
i＝0Ci

(1)ε－ i as r＝p and it is not cointegrated as r＝

0. The formulation of the DGP under such cases is

rather simpler, in the sense that (1) can be adapted by

replacing α and ß´ forming the error correction term

with a p× p matrix Ǎ having full rank and Ip

respectively for the case r＝p and by letting the term

α (ß´yt－1－Eß´yt－1) vanish for the case r＝0, and

then it is easy to derive such an expression as (2) or

(3) by handling such alteration. However, it is

meaningless for the case r＝0 to derive such an

expression as (4) of Lemma 1 or (5) since (3) can be

already formed as a pure VAR with no error

correction terms, whereas it is possible for the case

r＝p to derive such an equation as (5) from (3) and

(4) altered. Also, for the case r＝p, C(1)＝0 and δ,

γ, N
_
11 and N

_
11 are not defined, and for the case r＝0,

C(1) has full rank, γ＝C(1)Λ1/2, δ＝Λ－1/2, and the

definitions of N
_
11 and N

_
01 are still valid. We shall now

present the asymptotic results of the tests for these

cases.
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some suitable formulation to handle the near-

integration or local alternatives since adaptation over

the whole Hi might be needed, as anticipated from the

Exercises, and then the asymptotic results are expected

to be more complicated as well. In addition, this issue

might be frequently discussed within the framework of

a nested test, for which transitions between a null and

alternative hypotheses are implicitly hypothesized, and

some DGPs within such a framework might not

conform to the requirements for the roots of det A(z)＝

0.

Needless to say, the theoretical results established

above hold for any KT satisfying the requirements in

Section 2. However, the SL and CSL tests practically

need to determine a value from the set of such values

of KT in advance, and there are no preceding articles

that propose an approach to determining the optimal

choice from such values of KT and nor any concrete

values were provided in Qu and Perron (2007)

mentioned in Introduction.

６　Monte Carlo Experiments

In this section, we execute Monte Carlo

experiments for the cointegration rank tests dealt with

in this paper, trying to adopt DGP examples to cover

the parameter space of (1) as well as possible. The

purpose of the experiments is to observe how the SL

and CSL tests behave as certain rank determination

methods in finite samples. Taking this and some

circumstances of our results of the empirical sizes and

powers explained later account on or following

Bierens (1997), we put our attention on the entire

procedure to determine the rank value than the

empirical size/power of the individual hypothesis test,

though the latter might more directly reflect the

asymptotics established theoretically in the previous

section and numerous articles including Saikkonen

and Luukkonen (1997) focus their attention on the

latter. 

The DGPs adopted are of 4-variates systems (p＝

4), paying attention to that the system dimensions are

not so small and supposing that µ0＝0, y－ j＝0 for any

j ≥ 0 and εt are distributed as Gaussian with mean

zero and covariance matrix I4 (Λ＝ I4), and possess

VARMA(2,2) representations, emphasizing that the

error structures of the DGPs that the present paper

aims to adopt are a little more complicated than those

adopted by the previous researches: A(z) is expressed

as

where D1, D2 and Ȟ1 are matrices of 4×4 and α̌＝

(Ip＋D1＋D2)α such that det {－α̌ß´z＋(1－ z)(Ip－

Ȟ1z)}＝0 for ∀|z| ≤ 1 except z＝1, det (Ip＋D1z＋

D2z
2)≠0 for ∀|z| ≤ 1, and det (Ip－ Ȟ1z)＝0 and

det (Ip＋D1z＋D2z
2)＝0 have no common roots. Now,

let µ̌＝(Ip－ Ȟ1) µ and define Č(z) as the one satisfying

Then, multiplying both sides of (1) by {－α̌ß´L＋

(1－L)(Ip－Ȟ1L)} yields

（11）

and as done from (1) into (2), (11) can be converted

into a VMA representation:

（12）

It is easy to see from (2) and (11) that C(z)＝ Č(z)(Ip＋

D1z＋D2z
2) and that µ＝ Č(1)µ̌, implying that µ≠0 if

and only if µ̌ is not spanned by the columns of α̌.

We classify our DGP examples in two groups, with

each group containing 24 DGPs, so that the DGPs

within each group cover the values of r ranging from 0

to 3, and specify Ȟ1,α̌, ß, Di and µ̌, so that they are as

similar to each other as possible.2.

First, for the formulation of the VAR parts in the

first group, a single Ȟ1 is designed as

and α̌and ß for the cases r ≥ 1 are specified as
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with di taking the below values of (¡), (™) or (£)

(¡): d1＝d2＝d3＝0.4, d4＝0 and d5＝d6＝d7＝－0.32,

(™): d1＝1.5, d2＝0.9, d3＝0.4, d4＝0.5, d5＝0.56,

d6＝0.2 and d7＝0.04,

(£): d 1＝ d 2＝ d 3＝－0 .1 ,  d 4＝ 0 .5 and d 5＝ d 6＝

d7＝－0.2.

Finally, µ̌ is set to be either zero vector or (1, 0, 0.5,

1)´.

We ran 10,000 simulations using pseudo normal

random variables for εt as T＝150, 250, in order to

obtain the relative frequencies that the rank

determination procedure based on the SL/CSL test for

one value of KT ranging from 3 to 6 correctly detects r

over those 10,000 trials. The tests are executed

consecutively for several nulls at the 5％ level as long

as those are rejected. The critical values are taken

from MacKinnon et al. (1999), noting that those are

not of the empirical distributions of the nuisance

parameter free quantities at each finite sample but of

their limiting distributions, and all calculations were

made in Gauss. In the tables below, those relative

frequency results are presented.

Now, let us survey finite sample performances of

the rank determination procedures based on the SL

and CSL tests through tabular comparison. As

observed, there exist more DGP examples for which

the CSL test seems to be superior to the SL test in

terms of correct rank detection, though the superiority

of the CSL test might be not observed for all the

values of KT, the difference between both tests is not

so great in many cases and the CSL test becomes

comparatively worse in its performances in several

examples. Those might naturally reflect results of the

empirical sizes and powers of the tests that are not

noting that these form nested models.

In the second group, the VAR formation is given as

putting

noting that the four marices of Ȟ1＋ Ip＋α̌ß´ within

the group are similar.

Next, Di are designed as
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reported in the present paper: in general, the CSL test

tends to be more powerful than its worse upward size

distortions can be covered, resulting in more correct

rank detection by the CSL, though there exist cases

such that the stances of the CSL test and the SL test

stated above are reversed. It is also observed that for

the SL test, the power tends to be greater as KT

decreases, emphasizing that it might be supported by

the theoretical results stated in Theorem 1 or its

related statement. However, in many cases, those are

accompanied by serious upward size distortion, and

therefore, it is difficult to find certain clues to decide

whether each test is desirable or not from only the

results of the sizes and powers.3

The cases for which di take the values of (£) in the

first group, particularly as r＝0 or r＝1, reveal

conspicuous inferiority of the CSL test, suggesting

that there might exist some problems in the

convergence property of Ĥ1 under such a case. In

really, experimental results for the CSL statistics

constructed by substituting H1 itself for Ĥ1 certainly

support this suggestion, though those are not provided

in the present paper as well, and from the viewpoint of

the compatibility of these experimental results with

(A.51) in the Appendix, which provides an elaborate

formulation of the convergence of Ĥ1, we might

consider the term as op(T
－1/2KT

1/2) or Op(KT
－a

_

) in this

equation not to be insignificant in finite samples,

particularly in the cases stated above. The negative

values of di in (£) might form situations in which the

stochastic trend Č (1)(Ip＋D1＋D2)(∑
t
h＝1εh) is not

easily distinguished from the weakly stationary part of

yt and consequently correct rank detection is not

smoothly done, though the results for the SL test are

desirable under those cases and the performances of

the CSL test in the second group are rather

considerably better than those of the SL test as an

appropriate KT is chosen. We note that the negative

values of di does not necessarily imply that det (Ip＋

D1z＋D2z
2)＝0 has roots close to the unit root, unlike

VARMA(1,1) or VARMA(2,1), emphasizing that

observing the performances of the tests in such cases

is one of the aims of the experiments. There also exist

several cases in which almost perfect rank detection is

led to by the CSL test: particularly in the cases of r＝

1 in the second group, extremely small sizes

associated with adequate powers result in such rank

detection, though direct results of the sizes and powers

are not provided in the present paper. In these cases,

there exist relatively numerous roots of det {－α̌ß´z＋

(1－ z)(I4－ Ȟ1z)}＝0 that are not 1 but relatively

close to 1 in absolute value, which might cause

“favorable” distortions of the sizes and powers for the

CSL statistics, resulting in the desirable rank detection

discussed above. We next point out that the

performances of the CSL test tend to vary according to

the value of KT chosen: they are noticeably desirable at

several values of KT, whereas the remaining values of

KT lead to severe results, pointing out that this appears

to follow from the convergence property of Ĥ1

associated with the value of KT adopted. On the other

hand, the SL test exhibits relatively stable

performances regardless of the value of KT or the

DGPs.

The results for T＝250 are more desirable than

those for T＝150 in both tests, reflecting certain

dependence of the asymptotics stated in the previous

section upon the sample size.

In general, the finite sample performances of the

two methods are not so stable in the sense that those

are desirable in several DGP examples but not so in

others, though the SL test seems to be more robust.

We also note that values of KT other than those

adopted above might not satisfy the requirements in

Section 2 and tend to fail in successfully detecting the

rank value.

７　Concluding remarks

We have been dealt with two cointegration rank

tests, the one discussed by Saikkonen and Luukkonen

(1997), abbreviated as the SL test, and the version

corrected by the present paper, named the CSL, via the

finite lag order VAR approximation and discussed

their performances through the asymptotic results

established theoretically and finite sample

performances by some Monte Carlo experiments. As a

result, it is pointed out that with the exception of the
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appropriate value of KT is needed to achieve

satisfactory rank detection, particularly for the CSL

test.

Discussion on the asymptotics/performances of the

tests when the DGP considered corresponds to a local

alternative has not been dealt with in the present

paper, emphasizing that the simple DGP formulations

adopted by the previous researches are not appropriate

in our situation and that there exist some DGPs that

are not suitable for local alternatives. Also, the case in

which one root in det C(z)＝0 is close to －1,

mentioned as the “near” non-invertible case, has not

been paid attention to, noting that this issue has been

discussed similarly in unit root testing for time series

with serially correlated errors (e.g., Perron and Ng

(1996)) Furthermore, the issue of how one value of KT

as an optimal lag order should be determined has not

been discussed as well. It might be not easy to

establish a method giving one concrete value with

some validity beyond the requirements given above, as

predicted from articles such as Qu and Perron (2007).

On the other hand, the experiments in this paper might

be worthier if the critical value of the empirical

distribution of the nuisance parameter free quantity

was adopted instead of the counterpart of the limiting

one for each test, though the present paper's work was

done under the supposition that the differences are

inconsiderable. In addition, in order to derive firmer

views on the finite sample performances of the tests,

we might need to compare the tests discussed in this

paper with other cointegration rank tests such as those

mentioned above. We leave these issues to future

research.

FOOTNOTES

１ Note that (1) is essentially the same as the DGP

formulation by Saikkonen (1992) or Saikkonen

and Luukkonen (1997).
２ For the change of the values, it is not easy for the

roots of the equation det{－α̌ß´z＋(1－ z)(Ip－

Ȟ1z)}＝0 to keep satisfying the requirements, and

thus we need to chose suitable values with great

care.

CSL under the alternatives, the tests discussed here are

not free of some slower convergence/divergence

properties, as seen in other cointegration rank tests for

the DGPs with serially correlated errors, such as the

ones in Bierens (1997) or Shintani (2001). Under the

alternatives, the divergence of the SL test statistics is

slower than the conventional one, whereas the CSL is

considered to overcome such weakness in the sense

that its divergence rate is the same as that for the

conventional Johansen's LR test, and similarly under

the nulls, the speed of the convergence of the test

statistics to the nuisance parameter free quantities

leading to the well-known limiting distributions is

certainly reduced, resulting in deterioration of the

asymptotic sizes and powers of the tests. We also

emphasize that the conventional divergence of the

CSL test under the alternative was led to from the

matter that the CSL test successfully manage the first

step regression used in the SL test by altering one

vector series included in the list of regressors.

In addition to the theoretical outcomes on the

asymptotic properties of the SL and CSL tests, the

experiments in the previous section reveal finite

sample performances of the tests in several specific

examples. We might find several DGP examples that

the asymptotic properties do not work sufficiently,

particularly for the CSL test, though the number of

such cases does not outnumber that of the cases which

led to satisfactory results, and it might be stated that

the CSL test is generally superior to the SL test. On

the other hand, the SL test generally exhibits

satisfactory performances in the examples for which

the CSL performances were not so. This seems to

reflect the matter that the consistency property of the

estimator of H1 is severely deteriorated in some DGPs

and for some values of KT, implying that the CSL test

is not robust at all. For the cases of r＝3, the tests

must be rejected three times to attain to the true rank

value, and if KT adopted is a comparatively small

value, the tests, particularly the SL test, might tend to

lead to desirable rank detection probably because of

the divergence properties of the test statistics under the

alternatives stated in Sections 4 and 5. We might

recognize from the experimental results that an
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３ The report on the empirical sizes and powers and

the technical report for detailed proofs of the

theorems and lemma are available from the author

upon request.

Appendix

Proof of Lemma 1 Noting that (3) for which KT

is replaced by KT－1 or KT－ LT is still valid, we

replace KT and t in this equation with KT－LT and t－

s, respectively, for s＝0, 1, ... , LT, which yields

（A.1）

The lemma can be proved essentially by multiplying

both sides of (A.1) as s＝0 by the polynomial

taking into account that

Proof of Theorem 1 We first note that the quantities

for which ζt－KT－1 ; KT
or ζ

_
t－KT＋LT－1 ; KT－LT

are used in

construction are at most of Op(KT
－a

_

) in the asymptotics

desired for the theorem, though to show it is omitted

in this paper. The well-known asymptotics for weakly

stationary and ergodic, I(0) and I(1) series (e.g.,

Hannan (1970, pp. 209-212), Hamilton (1994, p. 192

and p. 548), Park and Phillips (1888, 1989) or Phillips

(1995)) play an active part for the proof, and it should

also be noted that the proof needs some arguments on

sums of KT-pieces of quantities being of various orders

of probability, such as Op(1) or Op((KT－ s＋1)) for

s＝1, ... , KT. The arguments/results in the foregoing

articles such as Saikkonen (1992) or Saikkonen and

Luukkonen (1997) are not applied to the present proof,

since those are not provided for the convenience of the

present paper and in addition, quantities constructed

based on ∑ LT

s＝1εt－ s have been not dealt with in these

studies. The evaluation of these quantities is more

specific and elaborate in the present paper, though

doing so makes the proof tedious and long. The role of

Equation (4) or (5) and asymptotics on ∑ LT

s＝1εt－ s

should be particularly emphasized. Taking these

points into account, we proceed with tasks needed to

prove the theorem below.

First, define a series of pKT-dimensional vectors and

pKT×pKT matrices as follows:

with Ñ20＝ Ñ0́2. Second, for any sequence of positive

integers {NT} such that limT→∞NT＝∞ and limT→∞

NT/KT ≤ 1, let I
_
ŃT

and ǏŃT
represent the p×pNT matrices,

gievn as
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Then, based on these notations and several

relationships such as

(A.2) can be converted into

（A.3）

We shall now turn to the derivation of an

asymptotic result for

which will be completed in (A.20) below through long

and tedious arguments. First, define

with N̂01 ; h ; t＝ N̂1́0 ; h ; t. Then it is not difficult to see that

（A.4）

and that

（A.5）

which is in turn followed by

（A.6）

where

We next state some elementary results for the sums

of M
_

T -pieces of statistics. Let {M
_

T} and {N
_

T} be

sequences of positive integers such that limT→∞

M
_

T＝∞ and limT→∞N
_

T＝∞. Then, for any M
_

T p-

dimensional vector b
_

, any pN
_

T-dimensional vector f
_

noting that the p×p submatrix comprising the last p

columns of Ǐ ŃT
is set to zero matrix. Third, let I

_
N
_

T ; NT

represent the p×pNT matrix such that

where {N
_

T} is a sequence of positive integers such that

limT→∞NT＝∞ and N
_

T＜NT.

Using the above notations, we obtain an expression

for ∆ zt－1:

（A.2）

where νt－2KT－1＝∑∞
m＝0ČKT

－1F
_

KT＋1＋mεt－2KT－1－m Next, let

{K2 ; T} be a sequence of positive integers such that 

limT→∞K2 ; T/KT
1/2＝0 and limT→∞KT

1/(1＋a
_
)/K2 ; T＝0, let K1 ; T

＝K－K2 ; T, and define

where
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such that b
_

´b
_
＝Op (1) and f

_
´f
_
＝Op (1), and any

pM
_

T×pN
_

T matrix Ľ whose elements are of Op(1), it is

easy to see that

（A.7）

In the discussion on the sums of M
_

T-pieces of statistics

below, (A.7) is used without particularly mentioning

it.

Now, return to the derivation of the asymptotic

targeted and for this purpose, define

In view of (A.2) and (A.3), it can be seen that Ñ02Č´－1KT

and ČKT

－1M̂22Č´－1KT
are described by the quantities defined

above and undefined ones that are at most of Op(T
－1/2),

which will be shown through the standard asymptotic

theory for weakly stationary and ergodic series, and

from this, it is obvious that

（A.8）

Next, partition M̂η into four block matrices as

where M̂η ; 11, M̂η ; 12, M̂η ; 21 and M̂η ; 22 are matrices of

pK1 ; T×pK1 ; T, pK1 ; T×pK2 ; T, pK2 ; T×pK1 ; T and pK2 ; T×

pK2 ; T and define

Then, it is trivial again by the standard asymptotic

theory for weakly stationary and ergodic series to

show that

（A.9）

Also, define

Then, by (A.4) to (A.6) and by showing

we can obtain

（A.10）

Next, let M̂ω1;－ and M̂ω1:ψ;－ represent the matrices of

pK2 ; T×pK2 ; T and pK2 ; T×p respectively such that

Then, it can be shown based on the properties of 

ψt－KT－1 or ωt－KT－1 ; 1 that the submatrix comprising

columns from the ( j－1)p＋1-th to the jp-th of 

M
_
ω1:ψ;－ is of O((K2 ; T－ j＋1)－1－a

_

) for j＝1, ... , K2 ; T. It

is also led to by the standard asymptotic theory that

（A.11）

where M
_
ω1;－ and M

_
ω1:ψ;－ are matrices of pK2 ; T×pK2 ; T

and pK2 ; T×p respectively, such that

Similarly, defining M
_
ψ＝Eψt－KT－1ψt́－KT－1, it follows

from the definition of ψt－KT－1 and the standard

asymptotic theory that M
_
ψ＝O(1) and M̂ψ＝M

_
ψ＋

Op(T
－1/2). Also, in view of the form of M

_
ω1:ψ;－, we can

find a pK2 ; T× r column full rank matrix M
_
ω1:ψ;＋ such

that its columns correspond to some of those of 

M
_
ω1:ψ;－,

Also, defining
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and this in turn ensures the presence of a p× p

orthogonal matrix L̃ such that L̃＝[L̃1, L̃2] with L̃1 of

p×(p－ r) and L̃2 of p× r,

Consequently,

（A.16）

where Ř is a p×p constant matrix such that Ř＝O(1)

and (L̃2́ ŘL̃2)
－1＝O(1) and L̃T＝[L̃1, K2 ; T

－1/2 KT
1/2 L̃2].

Now, putting (A.14) to (A.16) together yields

（A.17）

It is not so difficult to see from (A.13) and (A.16) that

for any pKT-dimensional vectors b and f such that

b´b＝Op(1) and f ´f＝Op(1),

（A.18）

It can also be shown by (A.3) and some results

including (A.8) or (A.11) that P̂1＝Op(T
－1/2KT

1/2) and

P̃ 2＝ Op (K － 1
T ;＊ ), where KT ;＊＝ min{T 1/2,  K 2 ; T

a
_
＋ 1}.

Furthermore, defining

it can be shown based on the above result of P̃2 and via

some arguments that for any pKT-dimensional vector b

such that b´b＝Op(1),

（A.19）

Hence, by applying (A.17) and (A.19) as well as the

above result of P̂1 to (A.12), we obtain

it is trivial from the form of M
_
ω1:ψ and the definitions

of P̂1, P̃2 and P̂2 to see that

and that

（A.12）

On the other hand, in view of the forms of M̃ω1:ψ and

Q
_
ω1 :ψ and based on that the submatrix comprising

columns from the ( j－1)p＋1-th to the jp-th of M
_
ω1:ψ;－

is of O((K2 ; T－ j＋1)－1－a
_

), j＝1, ... , K2 ; T, and (A.8),

(A.9) and (A.11) with some manipulation and via

tedious arguments, it can be shown that for any pKT-

dimensional vectors b and f such that b´b＝Op(1) and

f ´f＝Op(1),

（A.13）

Also, defining

and by using arguments similar to those used to derive

(A.13), we obtain

（A.14）

and

（A.15）

Furthermore, taking the form of Λ
_
ω1: Q into account, it

can be shown that
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（A.20）

Next, define

with ξ
_
－1＝T－1∑T

t＝KT＋2ξt－1 and Ñ21＝ Ñ1́2. Using (A.2)

and (A.3) with tedious arguments, it can be led to that

（A.21）

where

noting that the terms expressed by the orders of

probability are all matrices of p×p and 0 in

is zero matrix of p×pK2 ; T. We note that (A.21) is

associated with (A.8) of Saikkonen and Luukkonen

(1997, p. 114). It can also be shown by the well-

known asymptotics for I(0) and I(1) or (A.16) and the

properties of the elements of ωt－KT－1 in the statement

subsequent to (A.3) that Ñ＊＝Op(1) and that Ω̃＊Ω̃＊́＝

Op(1). Furthermore, it can be derived from arguments

similar to those used to derive (A.13) and (A.16) that

where the term expressed as O(KT
－1) is p×pK1 ; T and

the one as O(K2 ; T
－1/2) is p×pK2 ; T, and based on this

result as well as (A.21), the following can be derived:

（A.22）

Consequently, by using the second equation of (A.12),

(A.13), (A.18), (A.19), (A.21) and (A.22) with the

asymptotics of P̃2, Ñ＊ and Ω̃＊ above, it can be shown

that

（A.23）

Also, from the results and the arguments used to

derive (A.23), we obtain

（A.24）

For the derivation of other fundamental

asymptotics, define

where N
_
20＝N

_
0́2 and M̂21 ;＋＝ M̂1́2 ;＋, partition M̂12 ;＋Č´－1KT

into blocks as

where M̂12 ;＋ ; i of p× p, i＝1, ... , KT and also put

M̂21 ;＋ ; i＝ M̂1́2 ;＋ ; i. It is easy to see from (A.2) and (A.3)

as well as from the standard asymptotic theory for

weakly stationary and ergodic series that

（A.25）

By suitably using the first result of (A.25) in addition

to the second equation of (A.12), (A.13), (A.18) and
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and their related quantities. For this purpose, define

We emphasize the role of (5) to establish the

asymptotics of ß´S
_
10, ß´S̃11 ß, ß´S̃10 and ß´S̃11γD

_
T
－1

below, and note that they are constructed based on

residuals obtained by regressing ß´vt－1, εt, ∆yt－µ

and D
_

T
－1γ´yt－1 on ∆ z t́－1－µḰT

and 1 and that ß´M̂12＝

ß´M̂12 ;＋. Substituting the right-hand side of (5) for

ß´vt－1 in the expression of ß´S
_
10 and applying (A.5),

I
_

LT; KT
η
_
＝Op(T

－1/2KT) shown easily and (A.31) to the

expression obtained by the substitution, it can be led to

that

（A.33）

Similarly, it is led to by substitution similar to that

used to derive (A.33) as well as (A.6) and (A.20) that

（A.34）

Note that N－1C_ 11 of Saikkonen and Luukkonen (1997,

pp. 114-115) corresponds to our ß´S̃11ß, though their

statistics are not demeaned versions, and that their

(A.12) should be restated as N－1C_ 11＝Op(K
－1) in view

of (A.34), emphasizing that Eu1, t－1 u 1́, t－1 is equal to

∑1qH´(H∑ qqH´)－1 H∑ 1́q, which also follows from our

(A.29) and (A.44). Also, by substituting the right-hand

side of (3) for (∆yt－µ)´ in the expression of KT ß´S̃10,

we obtain

（A.35）

Furthermore, based on substitution of the right－hand

side of (5) for v t́－1ß in the expression of D
_

T
－1´γ́S̃11ß

and from (A.10), (A.24) and (A.32) with arguments

similar those used to derive (A.33), (A.34) or (A.35),

we obtain

（A.36）

implying that (A.14) of Saikkonen and Luukkonen

(1997, p. 115) should be replaced by a more suitable

the asymptotics of P̃ and based on arguments similar

to those used to derive (A.24), it can be shown that

（A.26）

Also, based on (A.9) as i＝1, the second equation of

(A.12), (A.13), (A.18), (A.19) and (A.21) with the

asymptotics of Ñ＊ and Q̃＊ in addition to the first result

of (A.25),

（A.27）

Furthermore, it can be established by using (A.9) as

i＝1, (A.19), the property of Ω̃＊ and the second result

of (A.25) that

（A.28）

Similarly, based on arguments similar to those used to

derive (A.26), the result of P̃2, (A.19) and (A.25), it

can be shown that

（A.29）

and that

（A.30）

On the other hand, defining

it can be shown based on the results obtained

previously and via long and tedious arguments that

（A.31）

It is now remarked that (A.31) plays a decisive role in

evaluating the difference between the test statistic and

the nuisance parameter free quantity stated by (7) of

Theorem 1. Also, from (A.20) and (A.29) we obtain

（A.32）

Now, we turn to the derivation of asymptotics of S̃ij
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one. Similarly, substitution of the right-hand side of

(3) for ∆yt－µ and ∆yt́ －µ´ in the expression of S̃00,

together with

as the standard result, (A.26) and (A.33) as well as

arguments similar to those used to derive (A.34),

yields

（A.37）

On the other hand, the theory for standard Brownian

motion formulates the limiting distributions of 

DT
－1N

_
11DT, N

_
01DT

－1 and δ́N
_
01DT

－1, resulting in (8). It is

also led to by (2), (A.23), (A.28) and (A.29) that

（A.38）

noting that (A.38) is a detailed version of (A.15) of

Saikkonen and Luukkonen (1997, p. 115). Similarly,

based on substitution of the right-hand side of (3) for

∆yt－µ in the expression of S̃01γD
_

T
－1 and from (A.27),

(A.30) and the definitions of S̃11 and S̃01, we obtain

（A.39）

The remaining parts of the proof can be proved

following manners similar to those used to show the

counterparts for the conventional LR test (e.g.,

Johansen (1988) or Johansen (1996), ch. 11) based on

(A.33) to (A.39).

Proof of Theorem 2 This theorem can be proved

essentially based on a part of arguments used in the

proof of Theorem 1 .  First, define the p (KT－1)-

dimensional vectors

and based on those, define

Based on arguments similar to those to derive (A.24),

it can be shown that

（A.40）

arguments similar to those to show (A.29) yields

（A.41）

and by argumants similar to those to show (A.28),

（A.42）

Also, following the arguments used in (A.31) with

minor alterations, it is easily led to that

（A.43）

Furthermore, it is trivial from the standard theory for

weakly stationary and ergodic series to show that

（A.44）

Then, it follows immediately from (A.42) and (A.44)

that

（A.45）

On the other hand, defining
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The rest of the proof can be proved as has been

done for the counterpart in the proof of Theorem 1

based on (A.45), (A.47), (A.48) and (A.51) to (A.53).

Proof of Theorem 3 The results required for the

theorem can be led to by suitably arranging the

arguments used to prove Theorems 1 and 2, noting

that the quantities accompanied by γ or δ vanish for

the case r＝p and that the ones accompanied by ß or

α
_

or based on (4) or (5) are so for the case r＝0.
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TABLE 1 Relative frequencies of determining correctly : The first group

DGP/Test SL CSL

KT 3 4 5 6 3 4 5 6

(¡): µ̌＝0

T＝150

r＝0 0.891 0.869 0.822 0.783 0.645 0.617 0.903 0.875

r＝1 0.931 0.83 0.727 0.592 0.811 0.813 0.867 0.811

r＝2 0.907 0.81 0.782 0.546 0.905 0.917 0.813 0.791

r＝3 0.823 0.545 0.527 0.295 0.88 0.75 0.754 0.6

T＝250

r＝0 0.938 0.932 0.918 0.906 0.81 0.815 0.982 0.978

r＝1 0.965 0.954 0.946 0.901 0.897 0.896 0.986 0.962

r＝2 0.938 0.946 0.931 0.901 0.937 0.945 0.934 0.937

r＝3 0.952 0.928 0.914 0.818 0.941 0.954 0.948 0.929

(™): µ̌＝0

T＝150

r＝0 0.824 0.83 0.731 0.712 0.589 0.618 0.984 0.979

r＝1 0.829 0.648 0.587 0.491 0.879 0.898 0.339 0.308

r＝2 0.606 0.548 0.359 0.355 0.875 0.88 0.103 0.1

r＝3 0.317 0.153 0.139 0.088 0.655 0.372 0.468 0.295

T＝250

r＝0 0.898 0.913 0.877 0.885 0.761 0.805 0.997 0.998

r＝1 0.935 0.913 0.865 0.785 0.923 0.942 0.533 0.454

r＝2 0.828 0.84 0.67 0.693 0.928 0.943 0.173 0.161

r＝3 0.661 0.578 0.464 0.391 0.909 0.819 0.83 0.699

(£): µ̌＝0

T＝150

r＝0 0.902 0.892 0.859 0.817 0.428 0.385 0.548 0.473

r＝1 0.945 0.912 0.836 0.723 0.635 0.639 0.443 0.437

r＝2 0.933 0.924 0.888 0.8 0.916 0.909 0.811 0.767

r＝3 0.877 0.81 0.717 0.568 0.874 0.841 0.798 0.733

T＝250

r＝0 0.938 0.943 0.933 0.922 0.633 0.623 0.827 0.802

r＝1 0.954 0.962 0.957 0.941 0.759 0.772 0.438 0.445

r＝2 0.947 0.947 0.944 0.94 0.944 0.944 0.907 0.884

r＝3 0.959 0.96 0.959 0.947 0.943 0.949 0.948 0.947
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DGP/Test SL CSL

KT 3 4 5 6 3 4 5 6

(¡): µ̌≠0

T＝150

r＝0 0.776 0.716 0.659 0.564 0.432 0.392 0.908 0.864

r＝1 0.903 0.829 0.779 0.67 0.695 0.672 0.89 0.83

r＝2 0.625 0.373 0.379 0.27 0.786 0.809 0.724 0.681

r＝3 0.888 0.708 0.686 0.489 0.916 0.841 0.517 0.37

T＝250

r＝0 0.863 0.844 0.825 0.778 0.588 0.583 0.979 0.971

r＝1 0.931 0.904 0.908 0.873 0.77 0.775 0.986 0.963

r＝2 0.865 0.713 0.689 0.522 0.856 0.877 0.89 0.879

r＝3 0.945 0.912 0.909 0.856 0.944 0.928 0.731 0.655

(™): µ̌≠0

T＝150

r＝0 0.675 0.675 0.556 0.528 0.394 0.42 0.972 0.965

r＝1 0.809 0.713 0.652 0.574 0.737 0.723 0.406 0.372

r＝2 0.436 0.45 0.317 0.335 0.771 0.8 0.166 0.155

r＝3 0.422 0.276 0.233 0.168 0.763 0.528 0.003 0.002

T＝250

r＝0 0.797 0.823 0.763 0.765 0.575 0.624 0.995 0.995

r＝1 0.891 0.875 0.855 0.81 0.802 0.799 0.604 0.516

r＝2 0.654 0.685 0.499 0.543 0.84 0.872 0.26 0.245

r＝3 0.704 0.674 0.55 0.515 0.897 0.87 0.007 0.004

(£): µ̌≠0

T＝150

r＝0 0.806 0.792 0.733 0.672 0.27 0.225 0.437 0.361

r＝1 0.901 0.879 0.825 0.757 0.719 0.697 0.454 0.444

r＝2 0.709 0.582 0.453 0.38 0.783 0.768 0.678 0.646

r＝3 0.919 0.882 0.836 0.751 0.92 0.89 0.672 0.558

T＝250

r＝0 0.855 0.865 0.844 0.82 0.415 0.39 0.717 0.69

r＝1 0.923 0.924 0.913 0.899 0.821 0.815 0.449 0.45

r＝2 0.887 0.868 0.799 0.718 0.85 0.846 0.83 0.815

r＝3 0.946 0.936 0.928 0.919 0.943 0.933 0.868 0.819

TABLE 1（continued）
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DGP/Test SL CSL

KT 3 4 5 6 3 4 5 6

(¡): µ̌＝0

T＝150

r＝0 0.943 0.901 0.893 0.839 0.57 0.415 0.971 0.939

r＝1 0.919 0.659 0.691 0.497 0.806 0.768 0.963 0.946

r＝2 0.61 0.66 0.404 0.379 0.847 0.84 0.886 0.881

r＝3 0.946 0.938 0.839 0.627 0.947 0.965 0.958 0.904

T＝250

r＝0 0.961 0.942 0.946 0.927 0.783 0.677 0.998 0.995

r＝1 0.961 0.946 0.938 0.832 0.894 0.873 0.99 0.988

r＝2 0.943 0.945 0.83 0.823 0.898 0.896 0.99 0.99

r＝3 0.951 0.97 0.958 0.964 0.952 0.972 0.999 0.999

(™): µ̌＝0

T＝150

r＝0 0.908 0.846 0.846 0.769 0.855 0.737 0.993 0.986

r＝1 0.786 0.483 0.555 0.424 0.896 0.81 0.758 0.657

r＝2 0.433 0.665 0.29 0.39 0.801 0.877 0.538 0.656

r＝3 0.928 0.593 0.628 0.268 0.923 0.867 0.386 0.178

T＝250

r＝0 0.944 0.912 0.927 0.9 0.923 0.869 1.0 1.0

r＝1 0.955 0.843 0.862 0.689 0.948 0.94 0.959 0.896

r＝2 0.861 0.935 0.696 0.817 0.941 0.931 0.884 0.934

r＝3 0.954 0.964 0.955 0.887 0.955 0.965 0.884 0.653

(£): µ̌＝0

T＝150

r＝0 0.914 0.915 0.901 0.875 0.155 0.122 0.915 0.888

r＝1 0.936 0.867 0.757 0.645 0.579 0.545 0.884 0.859

r＝2 0.676 0.643 0.506 0.422 0.706 0.727 0.966 0.961

r＝3 0.96 0.959 0.939 0.843 0.953 0.954 0.987 0.975

T＝250

r＝0 0.932 0.945 0.944 0.939 0.348 0.339 0.991 0.987

r＝1 0.949 0.957 0.953 0.931 0.731 0.725 0.964 0.959

r＝2 0.942 0.939 0.893 0.844 0.794 0.819 0.999 0.999

r＝3 0.959 0.961 0.962 0.961 0.955 0.959 0.998 0.996

TABLE 2 Relative frequencies of determining r correctly: The second group
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DGP/Test SL CSL

KT 3 4 5 6 3 4 5 6

(¡): µ̌≠0

T＝150

r＝0 0.88 0.792 0.801 0.701 0.563 0.404 0.953 0.91

r＝1 0.912 0.739 0.76 0.602 0.653 0.575 0.951 0.908

r＝2 0.716 0.741 0.556 0.53 0.739 0.687 0.91 0.906

r＝3 0.924 0.903 0.882 0.775 0.926 0.889 0.969 0.934

T＝250

r＝0 0.918 0.862 0.886 0.834 0.718 0.598 0.996 0.99

r＝1 0.936 0.882 0.913 0.842 0.729 0.68 0.988 0.977

r＝2 0.923 0.885 0.872 0.843 0.8 0.765 0.994 0.994

r＝3 0.934 0.913 0.925 0.908 0.933 0.915 0.992 0.988

(™): µ̌≠0

T＝150

r＝0 0.833 0.699 0.735 0.594 0.604 0.467 0.987 0.975

r＝1 0.83 0.609 0.653 0.528 0.722 0.673 0.818 0.717

r＝2 0.57 0.719 0.416 0.53 0.801 0.758 0.634 0.729

r＝3 0.862 0.74 0.748 0.454 0.876 0.863 0.566 0.322

T＝250

r＝0 0.894 0.804 0.856 0.782 0.715 0.623 0.999 0.998

r＝1 0.926 0.847 0.881 0.772 0.778 0.764 0.972 0.927

r＝2 0.902 0.851 0.798 0.827 0.891 0.816 0.932 0.957

r＝3 0.907 0.902 0.902 0.885 0.902 0.897 0.907 0.788

(£): µ̌≠0

T＝150

r＝0 0.86 0.846 0.819 0.771 0.236 0.187 0.918 0.884

r＝1 0.909 0.872 0.808 0.726 0.622 0.562 0.856 0.818

r＝2 0.79 0.741 0.641 0.571 0.696 0.689 0.975 0.972

r＝3 0.922 0.914 0.907 0.876 0.901 0.519 0.961 0.949

T＝250

r＝0 0.88 0.895 0.885 0.868 0.369 0.352 0.992 0.989

r＝1 0.925 0.92 0.917 0.899 0.74 0.708 0.961 0.953

r＝2 0.932 0.913 0.898 0.87 0.752 0.765 1.0 0.999

r＝3 0.941 0.936 0.934 0.925 0.952 0.862 0.984 0.98

TABLE 2（continued）
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