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ABSTRACT 
We propose a methodology for constructing an integrated phenotype prediction model that 

accounts for multiple pathways regulating a targeted phenotype. The method uses multiple 

prediction models, each expressing a particular pattern of gene-to-gene interrelationship, 

such as epistasis. We also propose a methodology using Gene Ontology annotations to infer 

a biological mechanism from the integrated phenotype prediction model. To construct the 

integrated models, we employed multiple logistic regression models using a two-step learning 

approach to examine a number of patterns of gene-to-gene interrelationships. We first selected 

individual prediction models with acceptable goodness of fit, and then combined the models. 

The resulting integrated model predicts phenotype as a logical sum of predicted results from 

the individual models. We used published microarray data on neuroblastoma from Ohira et 

al (2005) for illustration, constructing an integrated model to predict prognosis and infer the 

biological mechanisms controlling prognosis. Although the resulting integrated model comprised 

a small number of genes compared to a previously reported analysis of these data, the model 

demonstrated excellent performance, with an error rate of 0.12 in a validation analysis. Gene 

Ontology analysis suggested that prognosis of patients with neuroblastoma may be influenced 

by biological processes such as cell growth, G-protein signaling, phosphoinositide-mediated 

signaling, alcohol metabolism, glycolysis, neurophysiological processes, and catecholamine 

catabolism. 
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A DNA microarray is a collection of microscopic 
DNA spots arrayed in high density on a solid sur­
face. This technology enables us to obtain expres­
sion data on tens of thousands of genes in a single 
experiment. Gene expression analysis using the 
microarray has been performed for a variety of 
purposes, including classification of cancer type8) 
and prediction of patient prognosis19). Numerous 
microarray data have recently been opened to the 
public, allowing researchers to obtain data from 
internet sites such as the NCBI Gene Expression 
Omnibus (GEO). However, it remains difficult to 
find important, relevant genes from microarray 
data for the following reasons: the reproducibil­
ity of microarray data is low, the number of genes 
measured is enormous but the number of samples 
is small, and biological interpretation of results is 

difficult. With microarray data analysis there is 
no gold standard method to employ in the search 
for relevant genes. Researchers have suggested 
various methods of microarray analysis depend­
ing on the purpose, such as hierarchical cluster­
ing6), the self-organizing map (SOM)24), principal 
component analysis (PCA)18), the weighted voting 
method8), support vector machines (SVM)4) and 
AdaBoost16). 

In many cases it is thought that a given phe­
notype is regulated by multiple genes, and there 
are many possible patterns of gene-to-gene inter­
relationship affecting a phenotype. For example, 
models might have only the main effects of mul­
tiple genes or they might include interactions 
among genes. The latter expresses epistasis. 
Furthermore, it is possible that multiple pathways 
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control a phenotype. Therefore, we undertook to 
develop a method to search for the combination 
of genes that affects a phenotype, the pattern of 
their interrelationship, and the multiple pathways 
regulating the phenotype, in order to understand 
the biological mechanisms involved. 

As described in Materials and Methods, we 
develop an integrated phenotype prediction model 
expressing multiple pathways by combining indi­
vidual prediction models, each expressing a par­
ticular pattern of gene-to-gene interrelationship 
and fit using logistic regression. We also develop a 
methodology for using gene ontology annotations 
to draw inferences on the biological mechanisms 
controlling the phenotype based on our prediction 
models. 

For illustration, we construct an integrated phe­
notype prediction model and infer the biological 
mechanisms controlling the prognosis of patients 
with neuroblastoma. For this we use the published 
data of Ohira et al17), which are available from the 
GEO website, and validate our model by an inde­
pendent subset of the data. We demonstrate that 
the model has excellent predictive performance 
despite comprising a small number of genes com­
pared with the previously reported analysis of 
these data. Finally, we use Gene Ontology analy­
sis to infer biological processes affecting the prog­
nosis of neuroblastoma patients. 

MATERIALS AND METHODS 

Neuroblastoma Data 
For illustration, we used published microar­

ray data on neuroblastoma 17), available from the 
website of the NCBI Gene Expression Omnibus. 
The data include two sets of expression results: 
data on 5340 genes in 136 patients and data on 
200 genes in 50 patients. Tumor samples were 
randomly selected from among specimens in 
the neuroblastoma tissue bank of the Division 
of Biochemistry, Chiba Cancer Center Research 
Institute, that were collected from a number of 
hospitals in Japan during the period 1996-2002. 
Informed consent was obtained at each hospital. 
The 136 patients in the first set comprised 41 
with stage one, 22 with stage two, 33 with stage 
three, 28 with stage four, and 12 with stage 4s 
neuroblastoma. The 50 patients in the second set 
comprised 15 with stage one, 6 with stage two, 9 
with stage three, 14 with stage four, and 6 with 
stage 4s neuroblastoma. All tumors were classi­
fied according to the International N euroblastoma 
Staging System (INSS). Of the 136 patients, 89 
were one year of age or younger at the time of 
diagnosis and 4 7 were more than one year old. Of 
the 50 patients, 30 were one year of age or young­
er at the time of diagnosis and 20 were more than 
one year old. In the original study, for the pur­
pose of constructing a model predicting 2- or 5-

year survival, the data on the 136 patients were 
used for model selection and the data on the 50 
patients were used for validation. The 200 genes 
measured in the validation data were those select­
ed according to the model for predicting progno­
sis in the original analysis (Ohira et al). We used 
the data on 127 out of the 136 patients in the first 
data set and the 50 patients in the second data set 
whose clinical outcomes (alive or deceased) at 2 
years after diagnosis were known (Fig. 1). Among 
the 127 patients, 102 had a favorable outcome 
(defined as alive at 2 years) and 25 patients had 
an unfavorable outcome (defined as having died 
within 2 years). Among the 50 patients, 35 had a 
favorable outcome and 15 had an unfavorable out­
come. 

Original study 

127 patients 

Learning data 

Present study 

127 patients 

F*: 102, UF#: 25 

First 
learning data 

50 patients 

Validation data 

25 patients 

F: 17, UF: 8 

Second 
learning data• 

25 patients 

F: 18, UF: 7 

Validation data 

* F represents the group of patients with a favorable outcome (alive 
after 2 years). 
# UF represents the group of patients with an unfavorable outcome 
(died within 2 years). 
Microarray experiments on the 127 and 50 patients were performed in 
separate laboratories. We constructed an integrated phenotype 
prediction model using a two-step learning approach employing the 
first and second learning data sets. We then validated the performance 
of the model using the validation data. 

Fig. 1. Data used in this study 

Data preprocessing 
In the original study, the microarray experi­

mental procedures-RNA preparation, probe label­
ing, and hybridization-were performed in separate 
laboratories for the 127 and 50 patients. To test 
whether the two datasets are comparable, we 
compared the distribution of expression values 
for the 200 genes available in the second dataset 
with that of the same 200 genes among the 127 
patients in the first dataset. To make the com­
parison we used 95% confidence intervals (Cl) for 
the average expression levels. Among favorable 
patients, only about 25% of the genes had Cis that 
overlapped between the two datasets; among the 
unfavorable patients, about 40% of the genes had 
overlapping Cis. However, for most of the genes, 
expression patterns (e.g., either a higher or lower 
level of expression among patients with a favor­
able outcome compared with patients having an 
unfavorable outcome; in other words, expression 
levels shifted up or down) were identical in the 



Inference on Biological Mechanisms 9 

two sets of data. As there was a low frequency of 
genes having overlapping Cis, we normalized the 
gene expression data using the Z score transfor­
mation. The Z score was calculated separately for 
the 127 and 50 patients as follows: 

X - Sin Si (i=l, "·,200). 
in- (Ji 

where Sin is the log of sample signal divided by 
the reference signal for the i-th gene and n-th 
sample, Si is the average of Si, and O'i is the stan­
dard deviation of Si. Expression data in the set of 
50 patients were replicated, so we used the aver­
age of the two expression values for each gene. 

Model building 
To build models for predicting phenotype, we 

used a two-step learning approach. Two learning 
data sets (one from each laboratory) and one vali­
dation data set were used as shown in Fig.1. We 
used the two learning data sets to fit prediction 
models by logistic regression and selected models 
with acceptable goodness of fit and predictive per­
formance. Models confirmed to have excellent pre­
dictive performance in both the first and second 
learning steps were then combined to produce the 
integrated prediction model. 

Prediction models based on logistic regression 
In the first step, we selected models that pre­

dicted prognosis well, using the data on 127 
patients (102 with a favorable outcome and 25 
with an unfavorable outcome), as shown in Fig.1. 
In the second step, we validated the performance 
of the models selected in the first step, using data 
on 25 patients (17 with a favorable outcome and 
8 with an unfavorable outcome, each selected at 
random from the patients with corresponding out­
comes among the original 50 patients). 

In the first step, we considered one-gene models 
for all genes and two-gene models for all combi­
nations of two genes. In addition, we considered 
three-gene models by adding one additional gene 
to the two-gene models that fit well. Models were 
fit using logistic regression. We used a program 
written by ourselves to build logistic regression 
models. The program used Octave library (http:// 
www.gnu.org/software/octave/). 

The one-gene model is: 

logit[Pr(Y = 1)]= a+ f31X1 

where logit is the log odds, namely, logit[Pr] = 
log[Pr I (1-Pr)]. For the value Y, we coded 1 for a 
favorable prognosis and 0 for an unfavorable prog­
nosis. The "X.j is the log of sample signal divided by 
the reference signal, normalized by the Z score 
transformation for gene j (1 ~ j ~ 5340). The a 
and f3 J are unknown parameters; the former rep­
resents an overall average signal, the latter the 
effect of gene j. 

We considered five forms of two-gene models: 

logit[Pr(Y = 1)]= a+ f31X1 + f3 kxk (1) 

logit[Pr(Y = 1)]= a+f31X1+f31kXJXk (2) 

logit[Pr(Y = 1)]= a+ f3 kXk + f3 JkXJXk (3) 

logit[Pr(Y = 1)]= a+ f31X1 + f3 kXk + f3 JkXJXk (4) 

logit[Pr(Y = 1)]= a+f3 JkXJXk (5) 

where f3 Jk is the effect of two-way interac­
tion between genes j and k (1~ j < k ~ 5340). 
Equations (2), (3), ( 4) and (5) with interaction 
terms express epistasis. We examined about 71 
million models corresponding to these five model 
forms and the combinations of 5340 genes select­
ed two at a time. We performed the likelihood 
ratio test for the significance of each explanatory 
variable in each of the five model forms. We then 
selected as the best two-gene model the form with 
the smallest Akaike information criterion (AIC) 
for which all explanatory variables had p values 
below 0.01 (if such a model existed). We also con­
sidered for selection two-gene models having an 
AIC value of 70 or less. 

We considered models for three genes derived 
from the following full model: 

logit[Pr(Y = 1)] 

= a+ f3 JXJ + f3 kXk + f3 rXz + f3 1kX){k + f3 1rX)(z 

+ f3 krXkXz + f3 JkrX){kXz (6) 

where 1 ~ j < k ~ 5,340 and l is different from 
j and k (1 ~ l ~ 5340, l * j, l * k). We considered 
sixteen forms of three-gene models derived from 
the full model (6) by taking subsets of the vari­
ables. We examined these sixteen model forms 
by adding one additional gene to the two-gene 
models that fit well. We performed the likelihood 
ratio test for the significance of each explanatory 
variable in the sixteen model forms and selected 
as the best three-gene model the form with the 
smallest AIC value for which all explanatory vari­
ables had p values below 0.01 (if such a model 
existed). We also considered for selection three­
gene models having an AIC value of 70 or less. 

In the second step, we checked the performanc­
es of the models selected in the first learning step 
by predicting the prognoses of the 25 patients in 
the second learning data set using predicted val­
ues y given by (7) and calculating the resulting 
error rate: 

"-{1, p>0.5 
y- 0 " 05 ' ' p< . 

where p = 
1 

and z = logit[P,.(Y= l)] (7) 
1 +exp(-2) 

where p is the predicted probability of favorable 
prognosis and 2 is the predicted log odds. For 
example, 2 = a+ f3 iXi for a one-gene model. For 
the predicted value j), we coded 1 for a favorable 
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prognosis and 0 for an unfavorable prognosis. We 
selected models with error rates of 0.1 or less. 

Integrated phenotype prediction model 
It is possible that a phenotype is controlled by 

multiple pathways. Therefore, we constructed an 
integrated phenotype prediction model composed 
of multiple prediction models that were consid­
ered to reflect important pathways. The integrat­
ed model predicts prognosis by a logical sum of 
predicted unfavorable prognosis outcomes from 
individual prediction models. First, we selected 
the top ten prediction models according to AIC. To 
examine the characteristics of models and remove 
redundancy among the selected models, we per­
formed a cluster analysis for those top ten models 
on the 25 patients using predicted prognosis. The 
clustering algorithm was set to average linkage 
clustering using the Euclidean distance. The mod­
els from different clusters performed differently 
in regards to predicting prognosis. Therefore, we 
selected the model with the smallest AIC in each 
cluster as representative of that cluster. We then 
defined the candidate integrated phenotype pre­
diction model as the best combination of repre­
sentative models (the combination with minimal 
error rate and fewest number of models) among 
the collection of all possible models constructed by 
logical sums of the individual models. The predict­
ed value Jimdl is obtained from the candidate inte­
grated phenotype prediction model and given by 

A !l,Lya=m 
Yimdl = "'" A (a= 1, ··· , m). 

0, LYa *m 
(8) 

For the predicted value Jimdl, we coded 1 for a 
favorable prognosis and 0 for an unfavorable prog­
nosis; m is the number of representative models 
used in the candidate integrated phenotype pre­
diction model. To construct the integrated pheno­
type prediction model, we used the combination 
with the smallest error rate for Jimdl in the sec­
ond learning data. We then used the data on the 
remaining 25 out of 50 patients for independent 
validation of the integrated model. The prognosis 
of patients in the validation data was predicted 
based on equation (8) and the error rate was cal­
culated. 

Inference on biological mechanism using 
Gene Ontology analysis 

We performed Gene Ontology (GO) analysis 
to infer from the integrated model the biologi­
cal mechanisms controlling the phenotype. The 
GO terms are controlled vocabularies to describe 
gene and gene product attributes, which are pro­
vided by Gene Ontology Consortium (http://www. 
geneontology.org/). We annotated individual genes 
in the neuroblastoma data with GO terms using 
Gene Compass software (DYNACOM), based on 

the tables "gene2go" and "gene2unigene" located 
on the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov 
/gene/DATA!). The "gene2go" table gives infor­
mation on the GO terms from the Entrez Gene 
identifiers and the "gene2unigene" table gives cor­
responding UniGene cluster ID from the Entrez 
Gene ID. We used GO terms in the Biological 
Process category. We performed a statistical test 
to identify GO terms that were significantly over­
represented in genes included in the top ten mod­
els. The null and alternative hypotheses for the 
test are: 

o H o HO : P go = P go VS. 1 : P go * P go 

Consider, for example, a certain GO term, XX. pgo 

is the proportion of genes appearing in the top ten 
models that have GO term :XX. p ~0 is the propor­
tion of genes appearing in ten models randomly 
selected that have GO term :XX. Define d as the 
number of genes appearing in the top ten mod­
els. We selected d genes randomly from among all 
genes in the neuroblastoma data, and repeated 
this e = 10,000 times. Denote by f the number of 
genes with GO term :XX among genes appearing 
in the top ten models and denote by h the number 
of genes with GO term :XX among the d genes ran­
domly selected from the neuroblastoma data. An 
upper-tail Monte Carlo p value Pmc for GO term 
:XX was calculated by 

i_q,. 
e 

{
1, h,.~f 

where q,. = - (r= 1, ... ,e). 
0, h,. < f 

We calculated Pmc for each GO term and selected 
GO terms with Pmc of 0.01 or less as significant­
ly over-represented among genes appearing in 
the top ten models. To assess the stability of this 
approach based on the top ten models, we also 
performed the GO analysis using the top thirty 
models. 

RESULTS 

Individual prediction models fit by logistic 
regression 

In the first learning step, no one-gene model 
met the selection criteria (all explanatory vari­
ables having likelihood ratio test p values below 
0.01 and the model AIC value being 70 or less), 
whereas 72 two-gene models and 154,374 three­
gene models were selected. In the second learning 
step, because the number of genes differs between 
the first and second learning data sets, only mod­
els using genes existing in both data sets could be 
analyzed; this restricted the analysis to 31 poten­
tial two-gene models and 7,051 potential three­
gene models. Among these, one two-gene model 
and 739 three-gene models had error rates of 0.1 
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Table lA. Two-gene model satisfying the selection cri-
teriat 

Result of prediction 
Model 

Covariate using the second learning 
information 

data 
Number of 

X1 X2 
Error errors In Model 

AIC 
rate UF# p* form 

0.08 
MADA MYCN 

(2/25) 
2/8 0117 X1,X2 62.2 

t AIC 70 or less and error rate 0.1 or less. 
# UF represents the group of patients with an unfavorable outcome. 
* F represents the group of patients with a favorable outcome. 

Table lB. Top ten three-gene models satisfying the 
selection criteriat 

Result of prediction 
Model 

Covariate using the second 
information 

learning data 
Number of 

X1 X2 X3 
Error errors In Model 

AIC 
rate UF# p* form 

DDXJ PRPH 66 0.08 
TMEMi (2/25) 2/8 0/17 X1,X2,X3 45.l 

PRPH MYCN PDM121 (gjg~) 2/8 0117 X1,X2,X3, 46.8 
X23,X123 

GNBJ ENDJ HADHB 
0.08 

2/8 0/17 X1,X2,X3 46.9 
(2/25) 

MADA MYCN GAP43 
0.08 

2/8 0117 X1,X2,X3 47.3 
(2/25) 

GNBJ ENDJ TUBA3 
0.08 

2/8 0117 X1,X2,X3 47.3 
(2/25) 

NCAMJ MYCN RPL4 
0.08 

2/8 0/17 
X1,X2,X3, 47.9 

(2/25) X23, X123 

DDXJ PRPH VPS41 
0.08 

2/8 0117 X1,X2,X3 47.9 
(2/25) 

CD44 DDXJ GNBJ 
0.08 

2/8 0/17 X1,X2,X3, 48.2 
(2/25) Xn 

MADA MYCN PRPH 
0.08 

2/8 0117 X1,X2,X3 48.9 
(2/25) 

CD44 DDXJ MDRF4L2 (gj~~) 2/8 0/17 X1,X2,X3 48.9 

t AIC 70 or less and error rate 0.1 or less. 
# UF represents the group of patients with an unfavorable outcome. 
* F represents the group of patients with a favorable outcome. 

or less. 
The selected two-gene model is shown in Table 

lA. This model incorporated Monoamine oxidase A 
[MAOA] and V-myc myelocytomatosis viral related 
oncogene, neuroblastoma derived (avian) [MYCM. 
It did not have a significant interaction between 
MAOA and MYCN. Among the 739 three-gene 
models that satisfied our selection criteria, the 
top ten models are shown in Table lB, ranked by 
AIC value. Genes appearing in the top ten models 
are shown in Table 2. Of 739 models, 116 had sig­
nificant gene-gene interactions; thus, more than 
80% of the selected models had no interactions. 
The gene most often included in these three-gene 
models was MYCN, appearing in 167 models. 
The second most frequently appearing gene was 

Table 2. Genes appearing in the top ten* three-gene 
models 

Gene 
Accession Name 
Number 

CD44 AL832642 CD44 molecule (Indian blood group) 

DDXJ NM_004939 
DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 1 

ENOJ NM 001428 Enolase 1, (alpha) 

GAP43 NM_002045 Growth associated protein 43 

GNBJ NM_002074 
Guanine nucleotide binding protein (G 
protein), beta polypeptide 1 
Hydroxyacyl-Coenzyme A 

HADHB NM 000183 
dehydrogenase/3-ketoacyl-Coenzyme A 
thiolaselenoyl-Coenzyme A hydratase 
(trifunctional protein), beta subunit 

MAOA Xl7192 Monoamine oxidase A 

MORF4L2 NM 012286 Mortality factor 4 like 2 
V-myc myelocytomatosis viral related 

MYCN NM_005378 oncogene, neuroblastoma derived 
(avian) 

NCAMJ NM_000615 Neural cell adhesion molecule 1 

POMl21 AF036613 POMl21 membrane glycoprotein (rat) 

PRPH NM_006262 Peripherin 

RPL4 NM 000968 Ribosomal protein L4 

TMEM66 AB028926 Transmembrane protein 66 

TUBA3 NM_006082 Tubulin, alpha 3 
VPS41 U87309 Vacuolar protein sorting 41 (yeast) 

* The top ten three-gene models ranked according to AIC value. 

CD44 molecule (Indian blood group) [CD44] (118 
models). The third most frequent was Peripherin 
[PRPHJ (109 models). Moreover, among the mod­
els with interactions, MYCN was the gene most 
often included, appearing in about half (57) of 
these models. The second most frequently includ­
ed gene was Rho guanine nucleotide exchange fac­
tor (GEF) 7 [ARHGEF7], appearing in 20 models. 
The third most frequent was CD44 (18 models). 
MYCN, DEAD (Asp-Glu-Ala-Asp) box polypeptide 
1 [DDXl], and PRPH appeared in four of the top 
ten models. Guanine nucleotide binding protein (G 
protein) and beta polypeptide 1 [GNBl] appeared 
in three of the top ten models. CD44, Enolase 1, 
(alpha) [ENOl] and MAOA appeared in two of 
the top ten models. Three of the top ten three­
gene models had significant interactions; MYCN 
interacted with another gene in two of these three 
models. 

Integrated phenotype prediction model 
Cluster analysis using the top ten models and 

25 patients of the second learning data set pro­
duced four clusters, as shown in Fig. 2. Many 
patients with an unfavorable outcome were 
located towards the left in the horizontal dimen­
sion. Taking the four representative models (mod­
els with the smallest AIC from each cluster), we 
searched for the best combination to construct 
the integrated phenotype prediction model. 
Combining two of the three-gene models led to 
an error rate of 0 in two instances: GNB1-EN01-
HADHB combined with MAOA-MYCN-GAP43 
and GNB1-EN01-HADHB combined with DDXl-
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Prediction probability 

UF# ··====:J••• F* ~ 0 0.5 

~ I I n ~ ~I ~-Pr-ed-ic-tl-·on~m-od_e_ls~~ 
CD44 - DDXJ - GNBJ 

MAOA - !v!YCN - PRPH 

CD44 - DDXJ - MORF4L2 

MAOA - !v!YCN - GAP43 ····~···················· '----1.•.,.-,.,~ 1111111111 DDXJ - PRPH - VPS41 .,.l ............... .. 
I Patients I 

·~················· 

Unfavorable 
outcome 

Favorable 
outcome 

GNBJ - ENOJ - TUBA3 

GNBJ -ENOJ -HADHB 

NCAMJ - MYCN - RPL4 

DDXJ - PRPH - TMEM66 

PRPH - MYCN - POMJ 21 

* F represents patients with a favorable outcome (alive after 2 years). 
# UF represents patients with an unfavorable outcome (died within 2 years). 
Underlined models were chosen as representative models . 

1.0 

Fig. 2. Hierarchical clustering applied to the top ten models and 25 
patients of the second learning data by predicted probability of prognosis 

Level of gene expression 
"t Abundant 
.J Poor 

PRPH-VPS41. Because the sum of AIC values 
for the combination GNBl-ENOl-HADHB and 
MAOA-MYCN-GAP43 was smaller than that for 
GNBl-ENOl-HADHB and DDX1-PRPH-VPS41, 
we chose the former as the integrated phenotype 
prediction model (Fig. 3). To validate the perfor­
mance of this model, we predicted the prognosis 
of the 25 patients in the independent validation 
data, obtaining an error rate of 0.12 (Table 3) . 

Model 1 

GNBJ .J 
ENOJ .... 

HADAB .J 
.....------' 

Increased risk 

Model2 

MADA .J 
MYCN .... 

GAP43 .J 

Increased risk 

Unfavorable outcome 

Biowgical differe-nces between phenotype groups 

Fig. 3. The integrated prediction model composed of 
the logical sum of two selected models 

A total of sixteen genes appeared among the 
top ten prediction models, as shown in Table 
2. Among 215 GO terms that are involved with 
these 16 genes, those that were significantly over­
represented (Monte Carlo p values of 0.01 or less) 
are listed in Table 4. Among the GO terms select­
ed were: cell growth, G-protein signaling, alcohol 
metabolism, glycolysis, neurophysiological pro­
cesses, and catecholamine catabolism. Among the 
genes in our integrated model, GNBl is involved 
in G-protein signaling and neurophysiological 
processes, ENOl in alcohol metabolism and gly­
colysis, MAOA in neurophysiological processes, 
and GAP43 in cell growth and G-protein signal­
ing. There were no GO terms involving HADAB or 
MYCN in the list of GO terms with a p value less 
than 0.01 among the top ten models. GO terms 
with Monte Carlo p values less than 0.01 for the 
39 genes appearing in the top thirty models are 
similar to those selected for the top ten models, 
confirming the stability of our results based on 
the top ten models. 

Table 3. Integrated prediction model to predict progno­
sis in neuroblastoma patients 

Result of 

Covariate 
prediction Model 

using the second information 

Model 
learning data 

Number of 

X1 X2 X3 
Effor effors I n Model 

AIC 
rate UF# p* form 

M~del GNBJ ENOJ HADHB O 
12 

X1X~2' 46.9 

(3i2s) 
217 1118 

Model MAOA MYCN GAP43 XJ , X 2, 47.3 
2 ~ 

# UF represents the group of patients with an unfavorable outcome. 
* F represents the group of patients with a favorable outcome. 
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Table 4. GO terms significantly over-represented 
among genes appearing in the top ten models 

Mean 

Number 
number of 

GO term Pmc Genes 
of genes 

genes by 
random 

selection 

regulation of cell growth <0.001 
ENG1,GAP43, 

0.146 
MGRF4L2 

regulation of growth <0.001 
ENG1,GAP43, 0.188 
MGRF4L2 

cell growth <0.001 
ENG1,GAP43, 0.195 
MGRF4L2 

regulation of cell size <0.001 
ENG1,GAP43, 0.199 
MGRF4L2 

growth 0.001 
ENG1,GAP43, 

0.24 
MGRF4L2 

G-protein signaling, coupled 
to IP3 second messenger 0.001 GAP43,GNBJ 2 0.046 
(phospholipase C activating) 

alcohol metabolism 0.001 
DDXI,ENGJ, 

0.254 
MAGA 

phosphoinositide-mediated 
0.002 GAP43,GNBJ 2 0.067 

signaling 

glycolysis 0.002 DDXl,ENGl 2 0.074 

glucose catabolism 0.002 DDXl,ENGl 2 0.083 

alcohol catabolism 0.002 DDXl,ENGl 2 0.087 

hexose catabolism 0.002 DDXl,ENGl 2 0.087 

monosaccharide catabolism 0.002 DDXI,ENGJ 2 0.087 

sensory perception of taste 0.004 GNBJ 1 0.004 

carbohydrate catabolism 0.004 DDXJ,ENGJ 2 0.104 

cellular carbohydrate 
0.004 DDXI,ENGJ 2 0.104 

catabolism 

neurophysiological process 0.004 
GNBI,MAGA, 

0.332 
NCAMJ 

glucose metabolism 0.004 DDXI,ENGJ 2 0.115 

glial cell differentiation 0.004 GAP43 0.004 

main pathways of 
0.005 DDXI,ENGJ 2 0.117 

carbohydrate metabolism 

hexose metabolism 0.007 DDXl,ENGl 2 0.147 

cell organization and 
DDXl,ENGJ, 

0.007 GAP43,MGRF4L2, 6 1.904 
biogenesis PGM121,VPS41 

morphogenesis 0.008 
CD44,ENG1, 

4 0.848 
GAP43,MGRF4L2 

monosaccharide metabolism 0.008 DDXl,ENGl 2 0.151 

gliogenesis 0.008 GAP43 1 0.008 

catecholamine catabolism 0.008 MAGA 0.008 

dopamine catabolism 0.008 MAGA 0.008 

peptidyl-proline modification 0.009 PGM121 0.009 

second-messenger-mediated 
0.009 GAP43,GNB1 2 0.144 

signaling 

generation of precursor 
0.009 

DDXl,ENGl, 
0.459 

metabolites and energy MAGA 

• Mean number of genes with a certain GO term included among 16 genes selected 

randomly (10000 repetitions). 

DISCUSSION 

Gene combinations and patterns of gene-to­
gene interrelationships affecting phenotype 

No one-gene model satisfied our selection cri­
teria. However, one-gene models incorporating 
MYCN3·21), Neurotrophic tyrosine kinase recep­
tor type 1 [NTRK1]13•14), CD447) or FYN oncogene 
related to SRC, FGR, YES [FYN] 1) had likelihood 
ratio test p values less than 0.01. Furthermore, 
one-gene models incorporating Cadherin 2 type 1 
or N-cadherin (neuronal) [CDH2]22) had p values 
less than 0. 05. On the other hand, one-gene mod­
els incorporating Pleiotrophin (heparin binding 
growth factor 8, neurite growth-promoting factor 

1) [PTN] 15) or Septin 7 [SEPT7] 12) did not demon­
strate significant likelihood ratio tests (data not 
shown). All seven of these genes have been report­
ed to be markers of neuroblastoma prognosis. 
One two-gene model and 739 three-gene models 
satisfied our selection criteria. One of the known 
markers, MYCN, appeared in many of these mod­
els. The results suggest that the combination of 
MYCN and one or more other genes predicts well 
the prognosis of many patients. Thus, our analysis 
showed that expression of MYCN is an important 
factor for neuroblastoma prognosis, as was previ­
ously reported 17). In addition, the present study 
suggests that MYCN tends to interact with other 
genes. It has been reported that elevated expres­
sion of MYCN induces the expression of many 
ribosomal proteins (RP) in neuroblastoma, which 
suggests that genes involved in the protein syn­
thesis machinery are major targets of the MYCN 
protein2•11). MYCN might raise the efficiency of 
protein synthesis after transcription for several 
genes. Therefore, MYCN might demonstrate inter­
actions with other genes. MYCN interacted with 
NCAM1, as seen in the top ten models. It has 
been reported that MYCN regulates the expres­
sion of NCAM cell-surface receptors; expression 
levels of both NCAM1 and MYCN were elevated 
in SKNSH cells transfected with the vector con­
taining MYCN cDNA10). 

It is possible that a phenotype is controlled by 
multiple pathways. Therefore, we constructed an 
integrated phenotype prediction model composed 
of multiple prediction models that were consid­
ered to reflect important pathways. In the pres­
ent study, prognosis due to the integrated model 
is based on a logical sum of predicted unfavorable 
prognosis outcomes from individual prediction 
models. In future, other integrated models such as 
a logistic regression model using predicted proba­
bility from individual prediction models are worth 
examining, too. 

Biological differences between patients with 
favorable and unfavorable outcomes 

As mentioned above, the integrated pheno­
type prediction model is composed of two compo­
nent models: GNB1-EN01-HADHB(model 1) and 
MAOA-MYCN-GAP43 (model 2). Each component 
model predicts prognosis based on characteristics 
of the cancer cells represented by expression of the 
three genes that appear in the model. Elucidation 
of the cancer-cell characteristics that influence 
prognosis is an important goal. Therefore, we 
examined the biological features of the sixteen 
genes appearing in the top ten models using GO 
terms. To assess the stability of the results, we 
also examined features of the 39 genes appearing 
in the top thirty models. Features of the genes in 
the top thirty models were similar to features of 
the genes in the top ten models. 
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Numerous genes involved in cell growth 
appeared in the top ten models. ENOl (model 1) 
is involved in cell growth, glucose catabolism, and 
alcohol catabolism. It has been reported that over­
expression of ENO 1 is associated with survival 
outcome in lung cancer5) and ENOl expression 
is elevated in hepatitis C virus-related hepato­
cellular carcinoma23). ENOl encodes the a sub­
unit of enolase, which comprises three subunits: 
a , /] , and y . Enolase is an essential glycolytic 
enzyme and is a known molecular marker of 
advanced neuroblastoma. Cancer cells preferen­
tially use anaerobic glycolysis for inefficient ener­
gy metabolism (the Warburg effect). A high level 
of ENOl expression increases the risk of unfa­
vorable outcomes in model 1. The degree of acti­
vation of glycolysis might differ between patients 
with favorable and unfavorable outcomes. GAP43 
(model 2) is involved in cell growth and G-protein 
signaling; its expression is induced in the early 
stages of neuronal differentiation. In addition, it 
has been reported that expression of GAP43 is 
induced by the cytokine TGF-/J 25\ which modu­
lates neuroblastoma cell proliferation and dif­
ferentiation in vitro20). A low level of GAP43 
expression increases the risk of unfavorable out­
comes in model 2. Aberrant cell differentiation, 
or the lack of TGF- fJ signal to inhibit cell prolif­
eration, might be a cause of low levels of GAP43 
expression. Hence, neuroblastoma cells of patients 
with favorable and unfavorable outcomes might 
differ in terms of cell growth. 

Our GO analysis also suggested that patients 
with favorable and unfavorable outcomes might 
differ in terms of G-protein signaling and phos­
phoinositide-mediated signaling. GNBl (model 
1) is involved in G-protein signaling and phos­
phoinositide-mediated signaling. GNBl encodes 
the /] subunit of the G-protein, which is com­
posed of a , fJ , and y subunits. Deletion of the 
lp36 region has been reported in neuroblastoma; 
the GNBl gene is located in this region9). A low 
level of GNBl expression increases the risk of 
unfavorable outcome in model 1. GAP43 (model 2) 
is also involved in G-protein signaling and phos­
phoinositide-mediated signaling. This gene is 
involved in TGF- /] signaling, which inhibits cell 
proliferation, as described above. 

Our GO analysis also showed that there might 
be differences in alcohol metabolism and glucose 
catabolism between patients with favorable and 
unfavorable outcomes. ENOl (model 1) is involved 
in glycolysis, as described above. A difference in 
glycolytic energy supply may lead to a difference 
in cell growth, thereby affecting prognosis. 

Many genes involved in neurophysiological 
processes appeared in the top ten models. MAOA 
(model 2) codes an enzyme that degrades amine 
neurotransmitters, such as dopamine and sero­
tonin. A low level of MAOA expression increases 

the risk of unfavorable outcomes in model 2. 
Aberrant neurophysiological processes might 
affect patient outcome. Catecholamines, such as 
dopamine, are biomarkers of neuroblastoma. 

Our GO analysis suggests that model 1 predicts 
patient outcome by the status of G-protein and 
phosphoinositide-mediated signaling mediated by 
GNBl and cell proliferation mediated by ENOl, 
whereas model 2 predicts patient outcome by the 
status of neurophysiological processes mediated 
by MAOA and G-protein and phosphoinositide­
mediated signaling mediated by GAP43. There 
were no GO terms involving HADAB or MYCN in 
the list of GO terms with ap value less than 0.01 
among the top ten models. 

In summary, we developed a methodology for 
constructing an integrated phenotype prediction 
model by combining multiple prediction models, 
and we also developed a methodology for infer­
ring biological mechanisms from the integrated 
phenotype prediction model using GO terms. Our 
results suggest that prognosis of neuroblastoma 
patients may be affected by biological processes 
such as cell growth, G-protein signaling, phos­
phoinositide-mediated signaling, alcohol metabo­
lism, glycolysis, neurophysiological processes, and 
catecholamine catabolism. Although these results 
require confirmation by biological experiments, we 
think that our method is useful for inferring the 
biological mechanisms controlling a phenotype by 
combining information on multiple pathways, the 
combination of genes affecting the phenotype, and 
the patterns of gene-to-gene interrelationships. As 
information accumulates on GO, we will be bet­
ter able to understand the biological mechanisms 
using our methods. 
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