
－ 29 －

general equilibrium. Intuitively, a dynamic general

equilibrium consists of prices and quantities of goods

and production factors such that (¡) given the prices,

the quantities of goods and production factors

maximize every economic agent's payoff function, and

(™) the prices clear every market in every time period.

In other words, the prices equate demand and supply

in every market in every time period. The concept of

dynamic general equilibrium is a natural extension of

the concept of general equilibrium of static economic

models to dynamic models. In the following, firstly,

we explain the concept of general equilibrium of static

economic models. Then, we proceed to explain the

concept of dynamic general equilibrium of dynamic

economic models that is shown to be a natural

extension of the general equilibrium of static

economic models.

2-1．General Equilibrium of Static Economic

Models.

We start this subsection with a simple two -goods

static economy. Two goods are labeled as A and B.

There are m＝ 1, 2, ... , M consumers, k＝ 1, 2, ... , K

producers who produce good A, and l＝ 1, 2, ... , L

producers who produce good B. A representative

consumer m solves the following constrained

optimization problem.

（2.1）

subject to

（2.2）

c d
A, m is the demand for good A by consumer m, c d

B, m is

the demand for good B by consumer m, pA is the price

１．Introduction
The objective of this paper is to provide an

introductory exposition of dynamic general

equilibrium theory which is a fundamental tool for

modern macroeconomic analyses.

The paper consists of 5 sections. After the brief

introduction in section 1, we define the concept of

dynamic general equilibrium in section 2. A dynamic

macroeconomic model is constructed either as a

discrete time model or as a continuous time model,

depending on model builder's purpose. The motions of

economic variables in the dynamic general

equilibrium of discrete time model are described by a

system of difference equations, while the motions of

economic variables in the dynamic general

equilibrium of continuous time model are described by

a system of differential equations. In section 3, we

provide an introduction to the theories of difference

equation and differential equation. These theories are

applied to Solow-Swan economic growth model. In

section 4, we present a discrete time Ramsey model as

a basic example for the dynamic general equilibrium

analyses. In section 5, we present a continuous time

Ramsey model. Readers will notice that the discrete

time Ramsey model and the continuous time Ramsey

model share similar properties with respect to the

behaviors of economic variables in dynamic general

equilibrium.

Although the materials presented in this paper are

rudimentary, readers will find them useful to

understand the analyses of intermediate and advanced

macroeconomic theories.

２．Dynamic General Equilibrium
In this section, we provide the definition of dynamic

The Fundamentals of Economic Dynamics and Policy Analyses:
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Part II. Dynamic General Equilibrium
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（2.11）

（2.12）

A general equilibrium of this two-goods economy is a

set of prices and quantities {pA
＊, pB

＊, {c d
A, m

＊, c d
B, m

＊ ;

m＝ 1, 2, ... , M}, {c s
A, k
＊ ; k＝ 1, 2, ... , K}, {c s

B, l
＊ ;

l＝ 1, 2, ... , L}} such that (¡) given the prices {pA
＊,

pB
＊}, the quantities {c d

A, m
＊, c d

B, m
＊ ; m＝ 1, 2, ... , M}

maximize every consumer's utility u m (c d
A, m, c d

B, m)

subject to budget constraint pA
＊ c d

A, m＋ pB
＊ c d

B, m ≤ wm,

m＝ 1, 2, ... , M, and (™) the prices {pA
＊, pB

＊} equate

aggregate demand and aggregate supply in every

market, i.e.,

（2.13）

（2.14）

The above definition implies that the general

equilibrium prices {pA
＊, pB

＊} are solutions to the

following simultaneous equations with respect to {pA,

pB}.

（2.15）

（2.16）

Given the solution {pA
＊, pB

＊} to {(2.15), (2.16)}, the

general equilibrium quantities are obtained as follows.

（2.17）

（2.18）

（2.19）

（2.20）

The simultaneous equations (2.15) and (2.16),

however, are not independent each other. On the

distributive side of production factor markets,

consumers' income consists of the factor payments

from producers and profits. Therefore, the following

identity must hold.

（2.21）

of good A , pB is the price of good B, and wm is the

income of consumer m. u m (c d
A, m , c d

B, m) is the utility of

consumer m as a function of {c d
A, m, c d

B, m}. The utility

function is assumed to satisfy conditions that

guarantee the existence of well-behaved demand

functions.１ The solution to the above problem is a set

of demand for good A and good B as functions of

prices pA and pB, denoted as

（2.3）

（2.4）

The aggregate demand function for good A and the

aggregate demand function for good B are calculated

as follows.

（2.5）

（2.6）

A representative producer k of good A, given the price

pA of good A, decides supply c s
A, k that maximizes profit

πA, k which is defined as

（2.7）

h A, k (c s
A, k) is production cost as an increasing and

convex function of c s
A, k. The supply that maximizes the

profit is a function of price pA denoted as

（2.8）

The aggregate supply function of good A is calculated

as follows.

（2.9）

A representative producer l of good B, given the

price pB of good B, decides supply c s
B, l that maximizes

profit πB, l which is defined as

（2.10）

h B, l (c s
B, l)  is production cost as an increasing and

convex function of c s
B, l. The individual supply function

of good B and the aggregate supply function of good B

are derived likewise. They are expressed as follows.

１ um (c d
A, m, c d

B, m) is continuous, strictly increasing, and strongly quasi-concave with respect to {c d
A, m, c d

B, m}. See, for example, Varian

(1992).
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By (2.7) and (2.10), (2.21) is rewritten as

（2.22）

On the other hand, the aggregation of every

consumer's budget constraint (2.2) gives the following

identity.

（2.23）

By (2.22) and (2.23), the following identity must hold.

（2.24）

Although there are two markets, one for good A and

the other for good B, (2.24) implies that if aggregate

demand and aggregate supply are equal in one market,

so are they in the other market. This observation is

known as Walras' law. Walras' law in more general

situation is described as follows. suppose there are N ≥

2 markets. If aggregate demand is equal to aggregate

supply in each of N-1 markets, then so are they in the

remaining Nth market. Walras' law (2.24) implies that

(2.15) and (2.16) are linearly dependent. One cannot

obtain a unique solution {pA, pB} for (2.15) and (2.16).

One way to calculate the general equilibrium prices

{pA, pB} is to use an additional condition. For example,

one may use good B as a measure of accounting. This

implies

（2.25）

In other words, good be B is chosen as a numeraire.

Then, we can solve either (2.15) or (2.16) for the

general equilibrium price pA
＊. In this case pA

＊ is the

number of good B that is exchanged for one unit of

good A.

Figure 2.1 is a graphical exposition of equation

(2.15). The horizontal axis measures the amount of

good A, and the vertical axis measures the price of

good A. The downward-sloping curve labeled C d
A (pA)

is the graph of aggregate demand for good A as a

decreasing function of pA, and the upward-sloping

curve labeled C s
A (pA) is the graph of aggregate supply

of good A as an increasing function of pA.The

intersection of the demand curve and the supply curve

determines the equilibrium price pA
＊ where the

aggregate demand and the aggregate supply are

equated at C d
A (pA

＊)＝ C s
A (pA

＊).

A general equilibrium in more generalized model is

defined as follows. In the model, there are m＝ 1, 2,

... , M consumers and k＝ 1, 2, ... , K producers. A

representative consumer m consumes N types of

goods, denoted as

（2.26）

which is a N-dimensional vector, and supplies L types

of factors of production, denoted as

（2.27）

which is a L-dimensional vector. The consumer

chooses {x̃ s
m, ỹ d

m} to maximize utility

（2.28）

subject to budget constraint

（2.29）

The right-hand side of (2.29) is factor income and the

left-hand side of (2.29) is consumption expenditure.

（2.30）

is the N-dimensional vector of factor prices, and

（2.31）

is the L-dimensional vector of goods prices. The

budget constraint (2.29) is rewritten as

Figure 2.1 Good A market Eguilibrium

pA
*

pA

cA
* cA0

cA
d (pA)

cA
s (pA)

二村先生  13.5.29 10:36 AM  ページ 31



－ 32 －

x̃ d
k (2), then there exist ỹ s

k(1)∈Γ(x̃ d
k (1)) and ỹ s

k(2)∈Γ

(x̃ d
k (2)) such that ỹ s

k(1) ≥ ỹ s
k(2). (™) Define x̃ d

k (θ)≡θ

x̃ d
k (1)＋(1 －θ) x̃ d

k (2) and ỹ s
k(θ)≡θ ỹ s

k(1)＋(1 －θ)

ỹ s
k(2). Because Γ(x̃ d

k ) is a convex set defined on x̃ d
k ∈

N
＋, ỹ s

k(θ)∈Γ(x̃ d
k (θ)). (x̃ d

k (1) ≥ x̃ d
k (2) implies x d

k, n (1)

≥ x d
k, n (2) for all n＝ 1, 2, ... , N, and x d

k, n (1)＞ x d
k, n (2)

holds for at least one n.)

The constraint implies that the production

technology exhibits diminishing returns. For example,

if N ＝ 1 and L ＝ 1,  then (2 .40) is a familiar

production function

（2.41）

where f (x d
k) is an increasing concave function. For two

non-negative real numbers x d
k (1) ≥ 0 and x d

k (2) ≥ 0, if

x d
k (1)＞ x d

k (2), then y s
k (1)≡ f (x d

k (1))＞ y s
k (2)≡ f

(x d
k (2)). Define x d

k (θ)≡θ x d
k (1)＋(1 －θ) x d

k (2) and

y s
k (θ)≡θ y s

k (1)＋(1 －θ) y s
k (2), where θ∈[0, 1].

Then y s
k (θ) ≤ f (x d

k (θ)). These properties of the

production function is depicted by figure 2.2.

（2.32）

The solution to this constrained optimization

problem consists of a N-dimensional vector of demand

for goods as a function of prices, denoted as

（2.33）

and a L-dimensional vector of supply of production

factors, denoted as

（2.34）

The aggregate demand for goods, which is also a N-

dimensional vector, is calculated by summing the

individual demand (2.33) with respect to m＝ 1, 2, ... ,

M as follows.

（2.35）

Similarly, the aggregate supply of production factors,

which is also a L-dimensional vector, is calculated by

summing the individual factor supply (2.34) with

respect to m＝ 1, 2, ... , M as follows.

（2.36）

A representative producer k demands L types of

factors of production, denoted as

（2.37）

which is a L-dimensional vector, and supplies N types

of goods denoted as

（2.38）

which is a N-dimensional vector. The producer

chooses {x̃ d
k , ỹ s

k} to maximize profit

（2.39）

subject to production technology constraint

（2.40）

where Γ(x̃ d
k ) is a N-dimensional convex set defined

on x̃ d
k ∈ N

＋. Γ(x̃ d
k ) satisfies the following properties.

(¡) Choose two non-negative real vectors x̃ d
k (1)∈ N

＋

and x̃ d
k (2)∈ N

＋, and a scalar θ∈[0, 1]. If  x̃ d
k (1) ≥

Figure 2.2 Production Function

xk
d (1)

xk
d

xk
d (2)

yk
s (2)

yk
s (1)

yk
s

0 xk
d (θ)

yk
s (θ)

f (xk
d(θ))

yk
s＝f (xk

d)

The solution to the producer's profit maximization

problem consists of a L-dimensional vector of demand

for production factors as a function of prices denoted

as

（2.42）

and a N-dimensional vector of supply of goods

denoted as

（2.43）
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The aggregate demand for production factors, which is

also a L-dimensional vector, is calculated by summing

the individual demand ( 2.42) with respect to k＝ 1, 2,

... , K as follows.

（2.44）

Similarly, the aggregate supply of goods, which is also

a N-dimensional vector, is calculated by summing the

individual supply (2.43) with respect to k＝ 1, 2, ... ,

K as follows.

（2.45）

A general equilibrium of this economy is a set of

prices and quantities {p̃ x
＊, p̃ y

＊, {x̃ s
m
＊, ỹ d

m
＊ ; m＝ 1, 2,

... , M}, {x̃ d
k
＊, ỹ s

k
＊ ; k＝ 1, 2, ... , K}} such that (¡)

given the prices {p̃ x
＊, p̃ y

＊}, the quantities maximize

every consumer's utility at u m(x̃ s
m
＊, ỹ d

m
＊) subject to

budget constraint p̃ y
＊ ỹ d

m ≤ p̃ x
＊ x̃ s

m
＊ as well as every

producer's profit at πk
＊＝ p̃ y

＊ ỹ s
k－ p̃ x

＊ x̃ d
k
＊ subject

to technology constraint ỹ s
k ∈Γ(x̃ d

k ), and (™) the

prices {p̃ x
＊, p̃ y

＊} equate aggregate demand and

aggregate supply in every market, i.e.,

（2.46）

（2.47）

The above definition implies that the general

equilibrium prices {p̃ x
＊, p̃ y

＊} are solutions to the

following simultaneous equations system with respect

to {p̃ x , p̃ y}.

（2.48）

（2.49）

(2.48) and (2.49) are a system of L＋ N equations

with respect to L＋ N unknowns {p̃ x , p̃ y}. Like the

two goods economy example, however, these L＋ N

equations are linearly dependent because of Walras'

law. Therefore, an additional condition must be

imposed to calculate the equilibrium prices {p̃ x
＊, p̃ y

＊}.

An example of the additional condition is to set

（2.50）

which implies that the pr ice of the first production

factor is chosen as a numeraire.

Figure 2.3 depicts how the markets work in this

model economy. In the goods market, N types of

goods are traded. Given the prices p̃ y, each consumer

m＝ 1, 2, ... , M posts the demand for goods ỹ d
m , and

each producer k＝ 1, 2, ... , K posts the supply of

goods ỹ s
k. In the production factors markets, L types of

factors are traded. Given the factor prices p̃ x , each

producer k＝ 1, 2, ... , K posts the demand for factors

x̃ d
k , and each consumer m＝ 1, 2, ... , M posts the

supply of factors x̃ s
m. In the general equilibrium, prices

are set at the level such that the aggregate demand and

the aggregate supply are equated in every L ＋ N

markets.

In the following sections, we will analyze dynamic

general equilibrium of dynamic economic models. It

will be understood through specific examples that the

dynamic general equilibrium is a natural extension of

the general equilibrium of static economic models to

models in which the decision makings of economic

agents involve not only the types of goods and factors

in one point of time but also across time.

Figure 2.3

Demand for Goods
~ym

d (N×1)
m=1, 2, ... , M

Goods Markets
~py (N×1)

M Consumers K Producers

Factor Markets
~px (L×1)

Supply of Goods
~yk

d (N×1)
k=1, 2, ... , K

Supply of Factors
~xm

s (L×1)
m=1 ,2, ... , M

Demand for Factors
~xk

d (L×1)
k=1, 2, ... , K

３．The Analyses of Difference Equations
and Differential Equations.

It will be shown that the analyses of dynamic

general equilibrium are conducted through the

analyses of difference equations in discrete time

models, and through the analyses of differential

equations in continuous models. In this section, we

make a brief review of the analyses of difference

equations and differential equations.

3-1. The Analyses of Difference Equations.

A difference equation describes the motions of
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as a function of initial value x 0 as follows.

（3.10）

By repetition, at an arbitrary time t, x t is expressed as a

function of x 0 and t as follows.

（3.11）

Readers can verify that (3.11) satisfies (3.1) for any x 0

∈ and any t. (3.11) is called a general solution of

(3.1). On the other hand, if we specify the initial value

x 0, (3.11) is called a specific solution of (3.1). For

example, if x 0 ＝ 1, then (3.11) is written as

（3.12）

This implies that (3.5) is a specific solution of (3.1)

with the initial value x 0 ＝ 1. On the other hand, if

x 0＝ 3, then (3.11) is rewritten as

（3.13）

This implies that (3.7) is a specific solution of (3.1)

with the initial value x 0 ＝ 3.

For any initial value x 0 ∈ , the general solution

(3.11) implies that x t converges to 2 as t becomes

larger, i.e.,

（3.14）

In fact, x t＝ 2 is said to be a steady state of the

difference equation (3.1). A steady state of the

difference equation (3.1) is defined as a value of x t

such that x t remains at the steady state as time t passes.

By this definition, a steady state x ＊ of the difference

equation (3.1) satisfies

（3.15）

From this, we obtain x ＊＝ 2. Then, (3.14) implies that

the steady state is globally stable. Figure 3.1 depicts

the trajectory of the two specific solution of (3.1), one

is (3.5) with initial value x 0 ＝ 1, and the other is (3.7)

with initial value x 0 ＝ 3. Both solutions converge to

the steady state x ＊＝ 2. If the initial value x 0 is

smaller than the steady state x ＊＝ 2, then the solution

is a monotonically increasing sequence x 0 ＜ x1＜...＜

variables across discrete time periods. For an

expositional purpose, consider the following

difference equation with respect to x t.

（3.1）

The subscript t expresses discrete time periods t ∈

(－∞, ... , － 2, － 1, 0, 1, 2, ... , ∞). Specifically,

(3.1) is said to be a first-order linear non-homogenous

difference equation with respect to x t. A solution to the

difference equation (3.1) is a function of time x t＝

g (t) that satisfies (3.1), i.e.,

（3.2）

for all t ∈(－∞, ... , － 2, － 1, 0, 1, 2, ... , ∞). For

example, we may try if

（3.3）

satisfies (3.1) for all t. The answer is no because

（3.4）

Therefore, g (t)＝ 2t does not satisfy (3.1) unless

t＝－ 1. How about the following candidate function

of time?

（3.5）

We can verify that (3.5) is a solution to (3.1) because

（3.6）

(3.5) is not the only solution to (3.1). Readers can

verify that

（3.7）

also satisfies (3.1). In fact, there are continuums of

solutions for (3.1) which is obtained by the following

recursive substitution method. Given x 0 at time t＝ 0,

x1 is calculated by using (3.1) as follows.

（3.8）

Then, at t＝ 1, x2 is calculated again by using (3.1) as

follows.

（3.9）

By eliminating x 1 from (3.8) and (3.9), x 2 is expressed
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x t－ 1＜ x t＜ x t ＋ 1＜... converging to the steady state.

On the other hand, if the initial value x 0 is larger than

the steady state x ＊＝ 2 ,  then the solution is a

monotonically decreasing sequence x 0 ＞ x 1 ＞ ... ＞

x t－ 1＞ x t＞ x t＋ 1＞... converging to the steady state.

（3.16）

（3.17）

（3.18）

（3.19）

（3.20）

(3.16) is a production function. Yt is output, Kt is

capital, L t is labor. The constant parameter A in (3.16)

expresses the level of technology. Given the factor

inputs K t and L t , higher technology level A enables

larger output Yt. The constant parameter α∈(0, 1) is

the share of capital in the production function. (3.16)

is said to be a Cobb-Douglas production function.

(3.17) implies that the output Yt is divided between

consumption Ct and investment It. (3.18) implies that

the growth rate of labor L t is n. (3.19) implies the

capital accumulation process. By the end of time

period t, d × 100 ％ of capital Kt depreciates. The

capital at the beginning of time period t＋ 1, Kt＋ 1, is

the leftover capital (1 － d ) Kt plus investment It.

(3.20) is a investment function, implying that s×

100 ％ of output Yt is used for investment. s is the

investment rate. In a closed economy where there is no

lending to or borrowing from other economies, s is

also the saving rate. s is called as well the propensity

to invest or the propensity to save. By (3.17) and

(3.20), the consumption Ct is (1 － s)× 100 ％ of

Figure 3.1

xt

0
0

0.5

1

1.5

2
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3

3.5
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t

xt＝2＋( 12 )
t

xt＝2－( 12 )
t

The global stability of the steady state is depicted

by using a phase-diagram. See figure 3 .2. The

horizontal axis measures x t and the vertical axis

measures x t＋ 1. On the (x t, x t＋ 1) plane, there are two

lines, one is a 45-degree line on which x t＋ 1 ＝ x t

holds, and the other is the graph of the difference

equation (3.1). The intersection of these two lines

corresponds to the steady state x ＊＝ 2 because it

satisfies both x t＋ 1＝ x t and the difference equation.

By using figure 3.2, the global stability of the steady

state is demonstrated by the following steps.

Step 0. Pick an arbitrary initial value x 0. Then x 1 is

found on the graph of (3.1).

Step 1. x 1 , measured on the vertical axis is projected

on the horizontal axis by using 45-degree line.

Step 2. Then, x 2 is found on the graph of (3.1).

Step 3. x 2, measured on the vertical axis is projected

on the horizontal axis by using 45-degree line.

Repeat these steps to generate the sequence {x 0, x 1, x 2,

...}. It is understood that for any initial value x 0 ∈ ,

the solution converges to the steady state x ＊＝ 2.

Example 1．Solow-Swan Economic Growth Model

in Discrete Time.

A discrete time Solow-Swan model consists of the

following equations. For t＝ 0, 1, 2, ... ,

Figure 3.2

x0
0 x1

x1

x2

x3

xt＋1 45°�

xt
x2 x*＝2

xt＋1＝   xt＋1 12
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（3.27）

The sign (＋ or －) above each parameter in the

parenthesis of (3.27) implies the effect of an increase

of the parameter on the steady state capital-labor

ration ks.

Step 3. The stability of steady state capital-labor ratio

ks is summarized by the following theorem.

Theorem 3.2. Given the initial capital labor ratio k0 ≡

K0 / L0, (¡) if k0 ＜ ks, then the difference equation

(3.23) generates a monotonically increasing sequence

k0 ＜ k1 ＜ ... ＜ kt＜ kt＋ 1＜ ... that converges to the

steady state ks, or (™) if k0 ＞ ks, then the difference

equation (3.23) generates a monotonically decreasing

sequence k0 ＞ k1 ＞ . . .  ＞ kt＞ kt ＋ 1 ＞ . . .  that

converges to the steady state ks

The convergence of capital-labor ratio to the steady

state is expressed as

（3.28）

Figure 3.3 depicts a graph of (3.23) where the

horizontal axis measures k t and the vertical axis

measures k t＋ 1. Define the right-hand side of (3.23) as

a function of k t as follows.

（3.29）

Ψ(kt) has the following properties. Ψ(0)＝ 0. The

slope of Ψ(k t) is

（3.30）

When kt is small (large), k t
α－ 1 is large (small) because

α∈(0, 1). Specifically, we have the followings.

（3.31）

In addition, Ψ(kt) is concave because

（3.32）

From these observations, we summarize that Ψ(kt) is

increasing and concave function of kt, and the graph of

Ψ(kt) has a unique inter section kt＋ 1＝ kt≡ ks with a

45-degree line.

output, i.e.,

（3.21）

1 － s is called the consumption rate or the propensity

to consume.

These equations (3.16) ～ (3.21) are meant to

express the economic activities at the national level.

Therefore, the variables in (3.16) ～ (3.21) are

understood as aggregate variables.

The analyses of the Solow-Swan model is

conducted in 3 steps. In step 1, we derive a difference

equation with respect to capital-labor ratio. In step 2,

we calculate the steady state of the difference

equation. In step 3, we analyze the stability of the

steady state.

Step 1. Divide both side of (3.19) by L t＋ 1. By (3.16),

(3.18), (3.19), and (3.20), we have

（3.22）

（3.22）is rewritten as

（3.23）

where kt is capital-labor ratio defined as

（3.24）

(3.23) is a nonlinear first-order difference equation

with respect to kt.

Step 2. At the steady state of (3.23), k t＋ 1 and kt are

equal and constant at ks. Therefore,

（3.25）

holds. (3.25) is solved for the steady state ks as

follows.

（3.26）

We have the following theorem with respect to the

steady state (3.26).

Theorem 3.1. The steady state capital-labor ratio

(3.26) is increasing in the technology level A and the

investment rate s, while decreasing in the growth rate

n of labor and the capital depreciation rate d.

Theorem 3.1 is expressed as follows.

二村先生  13.5.29 10:37 AM  ページ 36



－ 37 －

Given the initial capital-labor ratio k0, we can trace the

transition of k t toward the steady state ks. Figure 3.4 is

a phase-diagram for a sequence {k t ; t＝ 0, 1, 2, ...}

generated by the difference equation given an arbitrary

initial capital-labor ratio k0 which is assumed to be

smaller than the steady state ks. Given k 0, k 1 is found

on the vertical axis at k 1 ＝Ψ(k 0). By using the 45-

degree line, we can project k 1 on the horizontal axis.

Then, k 2 is found on the vertical axis at k 2 ＝Ψ(k 1). By

using the 45-degree line again, we can project k 2 on

the horizontal axis. Then, k 3 is found on the vertical

axis at k 3 ＝Ψ(k 2). These steps are repeated to prove

the first statement of theorem 3.2. Readers may prove

the second statement of theorem 3.2 by starting with

an arbitrary initial capital-labor ratio k 0 which is larger

than the steady state ks.

Figure 3.5 is a trajectory of capital-labor ratio {kt ;

t＝ 0, 1, 2, ...} generated by the difference equation

(3.23) with an initial capital-labor ratio k0 which is

smaller than the steady state ks. In the figure, the

horizontal axis measures time t＝ 0, 1, ... , and the

vertical axis measures {kt ; t＝ 0, 1, 2, ...}. The figure

shows that the sequence {kt ; t＝ 0, 1, 2, ...} generated

by the difference equation (3.23) is a monotonically

increasing sequence converging to the steady state ks.

Figure 3.3
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Once the motion of capital-labor ratio kt is

characterized, the motions of other variables are

characterized as well because they are related to the

capital-labor ratio as follows. By definition, capital is

calculated by

（3.33）

At the steady state, the capital becomes Kt＝ ks Lt.

Therefore, the growth rate of capital is equal to the

growth rate n of labor. By rewriting the production

function (3.16), output is calculated by

（3.34）

At the steady state, Yt＝ Akαs L t. Therefore, the growth

rate of output is also equal to the growth rate n of

labor. Define the output per labor by

（3.35）

(3.35) is also called the labor productivity. By (3.34)

and (3.35), output per labor is calculated by

（3.36）

Figure 3.5
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Then, the production function (3.38) is rewritten as

（3.45）

(3.45) is called a production function with labor-

augmenting technological progress. Define the capital-

labor ratio in efficiency unit of labor by

（3.46）

Step 1. Divide both sides of (3.42) by L̃ t＋ 1. By (3.38),

(3.39), (3.41), (3.42), and (3.43), we have

（3.47）

(3.47) is written in terms of k̃ t as

（3.48）

Again, (3.48) is a nonlinear first-order difference

equation with respect to k̃ t.

Step 2. At the steady state of (3.48), k̃ t＋ 1 and k̃ t are

equal and constant at k̃s. Therefore, we have

（3.49）

(3.49) is solved for the steady state k̃s as follows.

（3.50）

(3.50) implies the following theorem.

Theorem 3 .3 .  The steady state capital-ratio in

efficiency unit (3.50) is increasing in the investment

rate s, while decreasing in the growth rate n of labor,

At the steady state, output per labor is constant at

（3.37）

Therefore, on the steady state of the basic Solow-

Swan model, the growth rates of aggregate (macro)

variables such as {Kt, Yt} are equal to the growth rate

of labor, and the variables per worker such as {k t, yt}

become constants.

Example 2．Solow-Swan Economic Growth

Model with Technological Progress.

The properties of the basic Solow-Swan model is

insufficient to describe the economic growth of

industrialized countries because the labor

productivities of these countries seem to grow over

extended periods of time. The reason for such a

sustained growth in real world could be explained by

technological progress. We can modify the basic

Solow-Swan model to incorporate technological

progress as follows. For t＝ 0, 1, 2, ... ,

（3.38）

（3.39）

（3.40）

（3.41）

（3.42）

（3.43）

In the production function (3.38), the technology level

At is not constant. As implied by (3.39), At grows at the

growth rate g. The other equations (3.40) ～ (3.43) are

same as the basic Solow-Swan model. If g＝ 0, then

At is constant, and the model becomes the basic

Solow-Swan model.

The analyses of the modified Solow-Swan model is

also conducted in 3 steps that we followed before in

the analyses of the basic model. In the analysis of the

modified model, we need to define the variables so

that they become constant at the steady state. Define

the efficiency unit of labor by

（3.44）

(3.44) implies that labor is augmented by technology.

二村先生  13.5.29 10:37 AM  ページ 38



－ 39 －

the capital depreciation rate d, and the growth rate g of

technological progress.

Theorem 3.3 is expressed as follows.

（3.51）

In addition, like theorem 3.2 of the basic Solow-

Swan model, we have the following theorem with 

respect to the global stability of the steady state k̃s.

Theorem 3.4. Given the initial capital-labor ratio in

efficiency unit k̃0 ≡ K0 / [L0 A0 ], (¡) if k̃0 ＜ k̃s, then

the difference equation (3 .48) generates a

monotonically increasing sequence k̃ 0 ＜ k̃ 1 ＜ ... ＜

k̃ t＜ k̃ t＋ 1＜ ... that converges to the steady state k̃s, or

(™) if k̃ 0 ＞ k̃ s, then the difference equation (3.48)

generates a monotonically decreasing sequence k̃0 ＞

k̃1 ＞ ... ＞ k̃ t＞ k̃ t＋ 1＞ ... that converges to the steady

state k̃s

The convergence of capital-labor ratio to the steady

state is expressed as

（3.52）

Like the proof of theorem 3.2, the proof of theorem

3.4 is obtained through the analysis of the difference

equation (3.48). The right-hand side of (3.48) is

increasing and concave with respect to k̃ t with the

slope approaching to infinite as k̃ t approaching to zero,

and the slope approaching to (1 － d)/[(1 ＋ n) (1 ＋

g)1/(1 －α)] ＜ 1 as k̃ t approaching to infinity.

Step 3. Once the motion of capital-labor ratio in

efficiency unit k̃ t is characterized, the motion of the

other variables are characterized as well because, like

those in the basic Solow-Swan model, they are related

to k̃ t as follows. By definition, the capital is calculated

by

（3.53）

Given L0 and A0, by the repeated substitutions of (3.39)

and (3.41), we have the following expressions for At

and L t.

（3.54）

1
1－α

（3.55）

Then, the labor in efficiency unit is expressed as

follows.

（3.56）

In (3.56),

（3.57）

is the growth rate of the labor in efficiency unit. By

(3.53) and (3.56),

（3.58）

At the steady state, k̃ t is constant at k̃ s . Then (3.58)

implies that the growth rate of capital at the steady

state is Γ .  By (3.38), (3 .46), and (3 .56), the

production function is rewritten as follows.

（3.59）

At the steady state,

（3.60）

Therefore, the growth rate of output in the steady state

also is Γ. By definition, the capital-labor ratio is

expressed as follows.

（3.61）

In (3.61),

（3.62）

At the steady state, k̃ t is constant at k̃ s. Then (3.61)

implies that the growth rate of capital-labor ratio at the

steady state is γ. By (3.44), (3.54), and (3.59), the

output per labor (labor productivity) is calculated by

（3.63）

At the steady state,

（3.64）
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equation (3.23) will generate an monotonically

increasing sequence of capital-labor ratio {kt ; t＝ 0,

1, 2, ...} which converges to ks. Given L0 ＝ 100, the

sequence of labor {Lt ; t ＝ 0 ,  1 ,  2 ,  . . .} is also

calculated by (3.18).

Step 2. By (3.16), (3.23), (3.33), and (3.35), the

values of variables at t＝ 1 are calculated as follows.

（3.65）

（3.66）

（3.67）

（3.68）

Step 3. The values of variables for t＝ 2, 3, 4, ... are

calculated by repetitions of step 2. Table 3.1 shows the

values of variables {L t, Kt, kt, Yt, yt} for t＝ 0, 1, 2, ... ,

the growth rate of kt (labeled as Dk(t)/k(t)), the growth

rate of Yt (labeled as DY(t)/Y(t)), and the growth rate

of yt (labeled as Dy(t)/y(t)).

Figure 3.6 depicts the trajectory of capital-labor

ratio kt. The figure shows that, starting with k0＝ 1.5,

the capital-labor ratio kt is a monotonically increasing

sequence converging to the steady state ks＝ 55.65.

Therefore, the growth rate of output per labor at the

steady state also is γ.

We can summarize that, at the steady state of the

Solow-Swan model with technological progress, the

growth rates of the aggregate (macro) variables such

as {Kt, Yt} are Γ＝(1 ＋ n)(1 ＋ g)1/(1 －α), and the

growth rates of the variables per labor such as {kt, yt}

are γ＝(1 ＋ g)1/(1 －α). Unlike the basic Solow-Swan

model, the variables per labor grow at the steady state

because of technological progress g＞ 0.

Numerical Simulation of the Basic Solow-Swan

Model.

Readers can numerically simulate the Solow-Swan

models. As an example, we present a numerical

simulation of the basic Solow-Swan model. The

simulation is conducted through the following 3 steps.

Step 1. Specify the values of parameters and initial

variables of the model. In this simulation example, we

specify these values as follows; {A＝ 10, s＝ 0.2,

α＝ 0.3, n＝ 0.02, d＝ 0.1} and {K0 ＝ 150, L0 ＝

100 }. Therefore, the initial capital-labor ratio is k0 ＝

K0 / L0 ＝ 1.5. By (3.26), the steady state capital-labor

ratio is ks＝ 55.65 which is larger than the initial

capital-labor ratio k0 ＝ 1.5. Therefore, the difference

Table 3.1 Simulation of the Basic Solow-Swan Model.

Benchmark Case: {A＝ 10, s＝ 0.2, alpha＝ 0.3, n＝ 0.02, d＝ 0.1, L (0)＝ 100, K (0)＝ 150}

t L (t) K (t) Y (t) C (t) I (t) y (t) r (t) w (t) G [Y (t)] g [y (t)]

0 100.00 150.00 1129.35 903.48 225.87 11.29 2.26 7.91

1 102.00 360.87 1490.13 1192.11 298.03 14.61 1.24 10.23 0.319 0.294

2 104.04 622.81 1779.70 1423.76 355.94 17.11 0.86 11.97 0.194 0.171

3 106.12 916.47 2026.26 1621.01 405.25 19.09 0.66 13.37 0.139 0.116

4 108.24 1230.07 2244.19 1795.35 448.84 20.73 0.55 14.51 0.108 0.086

5 110.41 1555.90 2441.72 1953.37 488.34 22.12 0.47 15.48 0.088 0.067

6 112.62 1888.66 2624.02 2099.21 524.80 23.30 0.42 16.31 0.075 0.054

7 114.87 2224.60 2794.58 2235.66 558.92 24.33 0.38 17.03 0.065 0.044

8 117.17 2561.05 2955.88 2364.70 591.18 25.23 0.35 17.66 0.058 0.037

9 119.51 2896.12 3109.75 2487.80 621.95 26.02 0.32 18.21 0.052 0.031

10 121.90 3228.46 3257.62 2606.09 651.52 26.72 0.30 18.71 0.048 0.027

11 124.34 3557.14 3400.57 2720.45 680.11 27.35 0.29 19.14 0.044 0.023

12 126.82 3881.54 3539.51 2831.60 707.90 27.91 0.27 19.54 0.041 0.020

13 129.36 4201.28 3675.16 2940.13 735.03 28.41 0.26 19.89 0.038 0.018

14 131.95 4516.19 3808.14 3046.51 761.63 28.86 0.25 20.20 0.036 0.016

15 134.59 4826.20 3938.98 3151.18 787.80 29.27 0.24 20.49 0.034 0.014
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Figure 3.7 depicts the trajectory of output Yt, and

figure 3.8 depicts the growth rate of output DY(t)/Y(t).

Along the transition path toward the steady state, the

growth rate of Yt is positive but decreasing toward the

steady state growth rate which is equal to the growth

rate n＝ 0.02 of labor.

rate of output per labor Dy(t)/y(t). Along the transition

path toward the steady state, the growth rate of yt is

positive but decreasing toward zero because yt

becomes constant ys at the steady state.

Figure 3.6
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Figure 3.9 depicts the trajectory of output per labor

(labor productivity) yt. Because yt＝ Akαt , the shape of

the trajectory of labor productivity reflects the motion

of capital-labor ratio kt. {yt ; t＝ 0, 1, 2, ...} is a

monotonically increasing sequence converging to the

steady state ys＝ Akαs. Figure 3.10 depicts the growth

Figure 3.9
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3-2．The Analyses of Differential Equations.

A differential equation, like a difference equation,

describes the motions of variables. However, time

flows continuously t∈ ＝(－∞, ∞). Like we did

for an expositional purpose in the analyses of

difference equations in 3-1, we start with a specific

example of differential equation which is given as

follows.

（3.69）

In (3.69), x is a function of time, and x・≡ dx / dt. x・＞ 0

implies that x increases as time t increases, x・＜ 0

implies that x decreases as time t increases, and x・＝ 0

implies that x is constant. (3.69) is said to be a first-

order linear non-homogenous differential equation

with respect to x. A solution to the differential

equation(3.69) is a function of time x＝ h(t) that

satisfies (3.69). We may ask if a candidate function
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For any initial value x (0)∈ , the general solution

(3.76) implies that x (t) converges to the steady state

x ＊＝ 1 as t gets larger, i.e.,

（3.78）

These observations imply that the steady state x ＊ is

globally stable. Figure 3.11 depicts the trajectories of

two specific solutions of (3.69), one with the initial

value x(0)＝ 2, and the other with x(0)＝ 0.

h(t) satisfies (3.69), i.e.,

（3.70）

holds for all t∈ . For example, we may try if

（3.71）

satisfies (3.69) for all t∈ . The answer is no because

（3.72）

is not zero for all t∈ . How about the following

candidate?

（3.73）

We can verify that (3.73) is a solution to (3.69)

because

（3.74）

This holds for all t∈ . (3.73) is not the only solution

to (3.69). Readers can verify that

（3.75）

also satisfies (3.69). In fact, like what we saw in the

analyses of difference equations, there are continuums

of solutions for (3.69). A general solution of (3.69) is

given by

（3.76）

where x (0) is the initial value of x (t). Readers man

verify that (3.76) indeed satisfies (3.69) for any x (0)

∈ and any t∈ . On the other hand, if we specify

the initial value x (0), (3.76) is called a specific

solution of (3.69). For example, if x(0)＝ 2, then

(3.76) becomes (3.73). This implies that (3.73) is a

specific solution of (3.69) with the initial value x(0)＝

2. Furthermore, if x (0)＝ 0, then (3.76) becomes

(3.75). This implies that (3.75) is a specific solution of

(3.69) with the initial value x(0)＝ 0.

A steady state of a difference equation is defined as

the value of x(t) where it becomes constant x(t)＝ x ＊.

Because x(t) becomes constant at the steady state, x・＝

0. At the steady state, hence, the differential equation

(3.69) satisfies

（3.77）

Figure 3.11
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We can also use a phase-diagram to analyze the

global stability of the steady state of the differential

equation (3.69). In this example, the phase-diagram of

(3.69) is a real line x (t)∈ . See Figure 3.12. The

differential equation (3.69) implies that

（3.79）

In figure 3.12, there are two arrows. The one that is

labeled x・＞ 0 implies that when x(t) is larger than the

steady state x ＊＝ 1, it decreases monotonically toward

the steady state. The other arrow that is labeled x・＜ 0

implies that when x(t) is smaller than the steady state x＊

＝ 1, it increases monotonically toward the steady

state. x (t) becomes constant only if it is on the steady

state x ＊＝ 1.

Example 3．Solow-Swan Economic Growth

Model in Continuous Time.

As an example for the analyses of differential

equation applied to economic model, we use a Solow-
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Swan economic growth model in continuous time. A

continuous time Solow-Swan model consists of the

following equations. For t ≥ 0,

（3.80）

（3.81）

（3.82）

（3.83）

（3.84）

(3.80) ～ (3.84) are almost identical to (3.16) ～

(3.20) of the discrete time Solow-Swan model. In

(3.80) ～ (3.84), all the variables {Y(t), K(t), L(t), C(t),

I(t)} are continuous functions of time t. (3.82) implies

that the growth rate of labor is n. If L・(t) is replaces

with L・(t) L(t＋ 1)－ L(t), then (3.82) becomes

identical to (3.18). (3.83) implies that the increment of

capital K・(t) consists of gross investment I(t) minus

depreciation dK(t). If K・(t) is replaced with K・(t)

K(t＋ 1)－ K(t), then (3.83) becomes identical to

(3 .19). In (3.80), we assume that the level of

production technology A is constant. The model,

however, is easily modified to incorporate a

technological progress by replacing A with A・(t)/A(t)＝

g which corresponds to (3.39).

The analyses of the continuous time Solow-Swan

model is also conducted in 3 steps. In step 1, we

derive a differential equation with respect to capital-

labor ratio. In step 2, we calculate the steady state of

the difference equation. In step 3, we analyze the

stability of the steady state.

Step 1. Divide both sides of (3.83) with labor L. By

(3.80), (3.83), and (3.84), we have

（3.85）

Define capital-labor ratio by

（3.86）

Differentiate both sides of (3.86) with respect to time.

Then, we have the following.

（3.87）

By (3.82) and (3.86), (3.87) is rewritten as follows.

（3.88）

By (3.85), (3.86), and (3.88), we have

（3.89）

(3.89) is a first-order nonlinear differential equation

with respect to k.

Step 2. At the steady state of (3.89), k is constant at ks

so that k・＝ 0. Therefore, at the steady state, (3.89)

becomes

（3.90）

(3.90) is solved for the steady state ks as follows.

（3.91）

(3.91) is identical to (3.26) of the discrete time Solow-

Swan model. Therefore, theorem 3.1 also holds for the

continuous time Solow-Swan model that is

summarized as follows.

（3.92）

Step 3. With respect to the stability of the steady

state, we have the following theorem.

Theorem 3.5. The steady state capital-labor ratio ks of

differential equation (3.89) is globally stable.

We can prove the theorem by using a phase-diagram

as follows. In figure 3.13, where the horizontal axis

measures capital-labor ratio k, we draw the graph of

sAk α and the graph of (n＋ d) k . The graph of sAk α

is an increasing concave curve. At k＝ 0, sAk α＝ 0.

The slope of the graph is sAαkα－ 1. When k is small,

the slope is large. When k is large, the slope is small.

Specifically, we have the followings.

Figure 3.12
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Once the motion of capital-labor ratio k(t) is

characterized, the motions of other variables are

characterized as well because, like those in the

discrete time Solow-Swan model, they are related to

the capital-labor ratio as follows. The capital is

calculated by

（3.95）

In the steady, k(t) is constant at ks. Therefore, at the

steady state, (3.95) becomes

（3.96）

(3.96) implies that the growth rate of capital K(t) at the

steady state is equal to the growth rate n of labor. The

output Y(t) is also expressed as a function of capital-

labor ratio k(t). By (3.80), we have

（3.97）

At the steady state (3.97) becomes

（3.98）

(3.98) implies that the growth rate of output Y(t) at the

steady state is also equal to the growth rate n of labor.

These observations are summarized as follows.

（3.99）

By (3.97), the output per labor (labor productivity) is

（3.100）

In the steady, k(t) is constant at ks. Therefore, at the

steady state, (3.100) becomes

（3.101）

（3.93）

The graph of (n＋ d ) k is a straight line with slope

n＋ d. Therefore, in figure 3.13, the graph of sAk α

and the graph of (n＋ d ) k have a unique intersection.

(3.89) implies that k・＝ 0 at the intersection because

sAk α＝(n＋ d ) k at the intersection. Therefore, the

intersection in figure 3.13 implies the steady state ks of

the differential equation (3.89). Furthermore, figure

3.13 implies the following relationship.

（3.94）

On the horizontal axis of figure 3.13, we label two

arrows indicating the motions of capital-labor ratio

stated by (3.94). For example, if k(t)＜ ks at some time

t∈ , then k・(t)＞ 0 because sAk (t)α＞(n＋ d ) k(t).

Theorem 3.5 implies that if the initial capital-labor

ratio k(0) is smaller than the steady state ks, then the

differential equation generates a sequence {k(t) ; t ≥ 0}

that is monotonically increasing and converging to the

steady state ks. On the other hand, if the initial capital-

labor ratio k(0) is larger than the steady state ks, then

the differential equation generates a sequence {k(t) ; t

≥ 0} that is monotonically decreasing and converging

to the steady state ks.

Figure 3.13

( k
.
＞0 )

0

( k
.
＝0 ) ( k

.
＜0 )

(n+d )k

sAkα�

k
ks

Figure 3.14 depicts a trajectory of capital-labor ratio

k(t) with the initial capital-labor ratio k(0) smaller than

the steady state ks.

Figure 3.14

0

k(t)

k(0)

t

ks

二村先生  13.5.29 10:37 AM  ページ 44



－ 45 －

(3.101) implies that the labor productivity is also

constant at the steady state.

Readers may understand that the continuous time

Solow-Swan model and the discrete time Solow-Swan

model share the same properties stated by theorem 3.1

～ theorem 3.5.

４．Discrete Time Ramsey Model
In this section, we analyze a discrete time Ramsey

model. The model was first proposed by Ramsey

(1928). It is the most basic and fundamental tool to

analyze dynamic general equilibrium. The simplest

bare-bones Ramsey model consists of many

households and many firms whose behaviors will be

described in the following.

4-1. Households

There are N identical households. N is assumed to

be constant, although we can extend the basic model

to incorporate population growth Nt＋ 1＝(1 ＋ n) Nt. In

each period t＝ 0, 1, 2, ... , a representative household

faces the following budget constraint.

（4.1）

The right-hand side of (4.1) is income. k s
t is the

household's asset, and rt is the interest rate. l s
t is the

household's labor supply, and wt is the wage rate.

Hence, rt k s
t is asset income, and wt l s

t is labor income.

k s
t is also regarded as the supply of capital because it

will be used as capital input by firms. In the following,

for analytical simplicity, we assume that the household

supplies a fixed amount of labor in each period.

Specifically, we assume

（4.2）

The left-hand side of (4.1) implies that the income is

used for consumption ct and investment i t. The

household's asset changes through investment as

follows.

（4.3）

For analytical simplicity, we assume that the asset

does not depreciate, although we can extend the basic

model to incorporate capital depreciation k s
t＋ 1＝(1 －

δ) k s
t＋ it, 0 ≤ δ ≤ 1. The household's utility from

consumption ct is

（4.4）

Notice u(ct) is an increasing and concave function of ct

because u'(ct)＝ c t
－σ＞ 0 and u''(ct)＝－σ ct

－σ－ 1＜ 0.

σ is a parameter that measures the curvature of u(ct).

Define the curvature of u(ct) by －u''(ct)× ct /u'(ct).

Then, by (4.4),

（4.5）

When σ is very small, u(ct) is approximately a

linear function of ct. On the other hand, when σ is

large, u(ct) is highly “bending” function of ct. (The

relative price of consumption in t＋1 and consumption

in t is 1 ＋ rt＋ 1. σ is shown to be the inverse of the

price elasticity of substitution between ct＋ 1 and ct. See

Blanchard and Fischer (1989) for a reference.) When

σ＝ 1, (4.4) can not be defined. In this case, we

replace (4.4) with

（4.6）

In fact, when σ＝ 1, (4.6) is obtained by applying

L'Hopital's rule to (4.4). The household's lifetime

utility function is defined as follows.

（4.7）

In (4.7), T is the last period of the household. ρ∈(0,

1) is a discount factor which measures the relative

importance of future utilities. Because ρt decreases as

t increases, the utility of future consumption is less

important than the utility from current consumption.

The household is “impatient”. In the following, we do

not specify T. Instead, we analyze a case with T＝∞

which approximates the behavior of a long-life

household. The representative household's constrained

optimization problem is summarized as follows. Given

the initial asset k s
0, the household chooses a sequence

of consumption and asset {ct , k s
t＋ 1 ; t＝ 0, 1, 2, ...} to

maximize

（4.8）

subject to

（4.9）
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Remark 1. If the transversality condition (4.10) holds,

then (4.16) becomes

（4.17）

Remark 2. If the interest rate rt is constant at r, then

the transversality condition becomes

（4.18）

and (4.16) becomes

（4.19）

The transversality condition (4.10) follows from two

logical reasons. First, because all the households are

identical, no one can borrow from other households.

This implies k s
T＋ 1 can not be negative. Second, if

(4 .10) is positive, then the household is not

optimizing. In fact, if the last term of the left-hand side

of (4.16) is positive, then the household can increase

consumption (hence utility) by reducing the capital of

indefinite future.２

The solution to the household's constrained

optimization problem is obtained as follows. Define

the Lagrangean as a function of the sequence of

consumption and asset {ct , k s
t＋ 1 ; t＝ 0, 1, 2, ...}, and

the sequence of Lagrangean multiplier {λt ; t＝ 0, 1,

2, ...} as follows.

（4.20）

The optimal solution {ct , k s
t ＋ 1 ; t ＝ 0, 1, 2, ...},

together with {λt ; t＝ 0, 1, 2, ...} must satisfy the

following first-order conditions.

（4.21） for all t＝ 0, 1, 2, ... .

（4.22）

for all t＝ 0, 1, 2, ... .

The household takes the sequence of interest rate and

wage rate {rt , wt ; t＝ 0, 1, 2, ...} as givens as a price-

taker. We also impose the following “transversality

condition” on the household's constrained optimization

problem.

（4.10）

The transversality condition is derived by the

recursive substitution of (4.9) as follows. At t＝ 0,

and t＝ 1, (4.9) is expressed as

（4.11）

（4.12）

We eliminate k s
1 from (4.11) and (4.12), and arrange

the result to have

（4.13）

At t＝ 2, (4.9) is

（4.14）

We eliminate k s
2 from (4.13) and (4.14), and arrange

the result to have

（4.15）

By repeating these steps for t＝ 0, 1, 2, ... , T, we have

the following.

（4.16）

The transversality condition (4.10) is obtained by

letting T→∞ in (4.16) and setting the last term of the

left-hand side of (4.16) to be zero.

２ (4.10) is also called the non-Ponzi game condition. The precise definition of a transversality condition is the value of capital

measured in terms of utility units converges to zero in indefinite future. See Leonard and Long (1992) for rigorous treatment of

transversality conditions.
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（4.23）

for all t＝ 0, 1, 2, ... .

4-2．Firms

Although the number of firms is inessential in the

Ramsey model because of liner-homogeneity of

production function, we assume that it is equal to the

number of households N for analytical simplicity. By

this assumption, one firm employs one labor in labor

market equilibrium.

In each period t＝ 0, 1, 2, ... , a representative firm

chooses the demand for capital k d
t and the demand for

labor l d
t to maximize profit πt which is defined as

（4.24）

subject to production function

（4.25）

In (4.25), A is a constant parameter that measures the

level of technology, and ß is the weight of capital in

the Cobb-Douglas production function. The optimal

capital and labor must satisfy the following first-order

conditions.

（4.26） for all t＝ 0, 1, 2, ... .

（4.27） for all t＝ 0, 1, 2, ... .

(4.26) implies that the marginal product of capital is

equal to the interest rate, and (4.27) implies that the

marginal product of labor is equal to the wage rate. By

(4.25), (4.26) and (4.27) are rewritten as follows.

（4.28） for all t＝ 0, 1, 2, ... .

（4.29）

for all t＝ 0, 1, 2, ... .

The maximized profit, however, is zero because of the

linear-homogeneity of production function with

respect to capital and labor. This claim is confirmed as

follows.

（4.30）

(4.30) also implies

（4.31）

4-3．Dynamic General Equilibrium

A dynamic general equilibrium of the discrete time

Ramsey model is a sequence of prices and quantities

{{rt, wt ; t＝ 0, 1, 2, ...}, {k d
t＋ 1, k s

t＋ 1, l d
t , l s

t , ct , it , yt ;

t＝ 0, 1, 2, ...}} such that (¡) given the prices {rt , wt ;

t ＝ 0 ,  1 ,  2 ,  . . .} the quantities maximize every

household's lifetime utility (4.8) subject to budget

constraint (4.9) as well as every firm's profit (4.24)

subject to production function (4.25), and (™) the

prices equate aggregate demand and aggregate supply

in every market in every time period t＝ 0, 1, 2, ... .

There are three markets in this model; capital

market, labor market, and output market. In each

period t＝ 0, 1, 2, ... , the aggregate demand for

capital by firms is N× k d
t , and the aggregate supply

of capital by households is N× k s
t . Therefore the

capital market equilibrium is described as

（4.32）

In the following, we drop the superscripts “d ” and

“s”, and express the amount of capital in equilibrium

by kt . At the initial time period t＝ 0, the aggregate

supply of capital N × k s
0 is given. The interest rate r0

and the wage rate w0 adjust to equate the aggregate

demand for capital N× k d
0 to the given aggregate

supply of capital.

In each period t ＝ 0, 1, 2, ... , the aggregate

demand for labor by firms is N × l d
t ,  and the

aggregate supply of capital by households is N× l s
t＝

N. Therefore the labor market equilibrium is described

as

（4.33）

In each period t ＝ 0, 1, 2, ... , the aggregate

demand for output by households is N× ct＋ N× it ,

and the aggregate supply of output by firms is N× yt .

Therefore, the output market equilibrium is described

by

（4.34）
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c ＊} of the difference equations (4.36) and (4.37)

satisfy the followings.

（4.38）

（4.39）

By (4.39), the steady state capital k ＊ is

（4.40）

Then, by (4.38), steady state consumption c ＊ is

（4.41）

Step 2. Rewrite the difference equations (4.36) and

(4.37) as follows.

（4.42）

（4.43）

By definition, the followings hold at the steady state

{k ＊, c ＊}.

（4.44）

（4.45）

We apply first-order linear approximations to the

right-hand sides of (4.42) and (4.43) evaluated at the

steady state {k ＊, c ＊}. The results are given as

follows.

（4.46）

（4.47）

In (4 .46), ∂F1(k ＊,  c ＊)/∂kt implies the partial

differentiation of F1(kt , ct) with respect to kt evaluated

at the steady state {k ＊, c ＊}. This term is calculated as

follows.

（4.48）

Although there are three markets in each period t＝

0, 1, 2, ... , because of Walras' law, if two of the three

markets are in equilibrium, so is the third market. For

example, if the capital market and the labor market are

in equilibrium, the interest rate, that is the price in

capital market, is equal to the marginal product of

capital (4.28), and the wage rate, that is the price in

labor market, is equal to the marginal product of labor

(4.29). Then, a representative consumer's budget

constraint (4.1) is

（4.35）

In (4.35), the third equality is obtained by the capital

market equilibrium condition k d
t ＝ k s

t and the labor

market equilibrium condition l d
t ＝ l s

t＝ 1. We could

have added the price of output, say pt, t＝ 0, 1, 2, ... ,

to the model. Instead, We set pt＝ 1 for all t＝ 0, 1, 2,

... . In other words, we choose the output pr ice as a

numeraire. We are able to do this because of Walras'

law.

In the dynamic general equilibrium, given the initial

capital k0 , the sequence of capital and consumption

{kt＋ 1, ct ; t＝ 0, 1, 2, ...} satisfies the following

equations. By (4.23), (4.28), and (4.29),

（4.36）

and by (4.21), (4.22), and (4.28),

（4.37）

(4 .36) and (4 .37) form a system of first-order

nonlinear difference equations with respect to {kt＋ 1, ct

; t＝ 0, 1, 2, ...}. Although our objective is to find

solutions to (4.36) and (4.37), nonlinear equations are

difficult to solve. Therefore, in the following, we

approximate (4.36) and (4.37) by a system of first-

order linear difference equations, and find solutions of

the approximated system. This analysis consists of 4

steps.

Step 1. The steady state capital and consumption {k ＊,
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If we evaluate (4.48) at the steady state {k ＊, c ＊},

(4.48) becomes

（4.49）

The other terms in (4.46) and (4.47) become as

follows.

（4.50）

（4.51）

（4.52）

Therefore, (4.46) and (4.47) are approximated by the

following first-order linear difference equations.

（4.53）

（4.54）

Step 3. Define the deviations of capital and

consumption from the steady sate as follows.

（4.55）

（4.56）

Then, (4.53) and (4.54) are rewritten as follows.

（4.57）

（4.58）

By (4.57), ĉ t＝(1/ρ) k̂ t－ k̂ t＋ 1 and ĉ t＋ 1＝(1/ρ) k̂ t＋ 1

－ k̂ t＋ 2. We put these into (4.58) to eliminate ĉ t and

ĉ t＋ 1. The result is the following second-order linear

difference equation with respect to k̂ t.

（4.59）

Step 4. A general solution to (4.59) is calculated as

follows. Define the “characteristic equation” of (4.59)

as

（4.60）

Because (4.60) is a quadratic equation with respect to

µ, it has two solutions denoted as {µ1, µ2}. They are

called the characteristic roots of (4.60). Figure 4.1

depicts the graph of Ψ(µ). Because Ψ(0)＝ 1/ρ＞ 0

and Ψ(1)＝－ M＜ 0, one root of (4.60) is between

zero and one, and the other root is larger than one, i.e.,

（4.61）

The general solution of (4.59) is expressed as follows.

（4.62）

In (4.62), H1 and H2 are arbitrary real constants. We

can verify that (4.62) satisfies (4.59) in any time

period t and any real constants {H1, H2} as follows.

(4.62) implies

（4.63）

（4.64）

Put these expressions into the left-hand side of (4.59)

to verify the claim, i.e.,

（4.65）

Although there are continuums of solution (4.62), we

can find a unique specific solution that satisfies the

initial condition k0 and the transversality condition.

Figure 4.1
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steady state k ＊ ,  then {kt ＋ 1 ; 0 ,  1 ,  2 ,  . . .} is a

monotonically decreasing sequence k0 ＞ k1 ＞ ... ＞

kt＞ kt＋ 1 ＜ ... converging to k ＊.

Figure 4.2 depicts the statements (¡) and (™) of

theorem 4.1.

First, notice if H2 ≠ 0, then k̂ t＝ kt－ k ＊ will explode

either to ＋∞ or to －∞ because µ2＞ 1. Therefore,

in order for the sequence of capital {k̂ t＋ 1 ; 0, 1, 2, ...}

generated by (4.62) satisfy the transversality condition

(4.10),

（4.66）

must hold. Then ( 4.62) becomes

（4.67）

At the initial time period t＝ 0, k0 is given. Then,

(4.67) implies

（4.68）

By (4.67) and (4.68), we have

（4.69）

(4.69) is rewritten as

（4.70）

(4.70) is a unique specific solution of the difference

equation (4.59) that satisfies the initial condition k0

and the transversality condition (4.10). Because 0 ＜

µ1 ＜ 1 , the sequence of capital {kt＋ 1 ; 0, 1, 2, ...}

converges to the steady state k ＊ given any initial

capital k0, i.e.,

（4.71）

Furthermore, if the initial capital k0 is smaller than the

steady state k ＊, then the second term of the right-hand

side of (4 .70) is a positive sequence that

monotonically decreasing to zero. On the other hand,

if the initial capital k0 is larger than the steady state k ＊,

then the second term of the right-hand side of (4.70) is

a negative sequence that monotonically increasing to

zero. We summarize these observations as the

following theorem.

Theorem 4.1. The dynamic general equilibrium

sequence of capital {kt＋ 1 ; 0, 1, 2, ...} satisfies (¡) if

the initial capital k0 is smaller than the steady state k ＊,

then {kt＋ 1 ; 0, 1, 2, ...} is a monotonically increasing

sequence k0 ＜ k1 ＜ ... ＜ kt＜ kt＋ 1＜ ... converging to

k ＊, and (™) if the initial capital k0 is larger than the

Figure 4.2

0
t

k0

k0

k*

kt

Once the dynamic general equilibrium sequence of

capital {kt＋ 1 ; 0, 1, 2, ...} is specified, the motions of

other variables of the Ramsey model are specified as

well as follows. (4.70) implies that the growth rate of

k̂ t is µ1 because

（4.72）

By (4.57) and (4.72), we have

（4.73）

(4.73) is rewritten as

（4.74）

From the inspection of (4.74), we summarize the

properties of the dynamic general equilibrium

sequence of consumption {ct ; 0, 1, 2, ...} by the

following theorem.

Theorem 4.2. The dynamic general equilibrium

sequence of consumption {ct ; 0, 1, 2, ...} satisfies the

following properties; (¡) Given the initial capital k0 at

t＝ 0, there is a unique initial consumption c0 that is

determined by

（4.75）
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(™) By theorem 4.1, the dynamic general equilibrium

sequence of capital {kt ; t＝ 0, 1, 2, ...} converges to

the steady state k ＊. Therefore, (4.74) implies that the

dynamic general equilibrium sequence of consumption

{ct ; 0, 1, 2, ...} also converges to the steady state c ＊,

i.e.,

（4.76）

Because (1/ρ)＞ µ1∈(0, 1), if the initial capital k0 is

smaller than the steady state k ＊, then (4.75) implies

that the initial consumption c0 is also smaller than the

steady state c ＊. In addition, by theorem 4.1, the

dynamic general equilibrium sequence of consumption

{ct ; 0, 1, 2, ...} is a monotonically increasing sequence

c0 ＜ c1 ＜ ... ＜ ct＜ ct ＋ 1 ＜ ... converging to the

steady state c ＊. (¢) The statement in (£) also implies

that if the initial capital k0 is larger than the steady

state k ＊, then the initial consumption c0 is larger than

the steady state c ＊. In addition, the dynamic general

equilibrium sequence of consumption {ct ; 0, 1, 2, ...}

is a monotonically decreasing sequence c0 ＞ c1 ＞ ...

＞ ct＞ ct＋ 1＞ ... converging to the steady state c ＊.

In the discrete time Ramsey model, when the

characteristic roots of (4.60) satisfies {0 ＜ µ1 ＜ 1 and

µ2 ＞ 1}, the steady state {k ＊, c ＊} of the dynamic

general equilibrium is said to be a “saddle point” of

the difference equations (4.53) and (4.54).

In the dynamic general equilibrium, by (4.25), the

output per labor (labor productivity) is

（4.77）

By (4.28) and (4.29), the interest rate and the wage

rate are

（4.78）

（4.79）

The aggregate variables are obtained by multiplying

per-household variables with the number of

households and by multiplying per-firm variables with

the number of firms. (In this example, the number of

households and the number of firms are assumed to be

same.)

4-4．Numerical Example

In the following, a numerical simulation example of

the discrete time Ramsey model will be presented.

Readers may replicate the result, and conduct

simulation experiments by changing parameter values

and initial conditions. The simulation is conducted in

2 steps.

Step 1. The parameter values and the initial capital at

t＝ 0 are set as follows.

（4.80）

By (4.40) and (4.41), these values imply that the

steady state capital and consumption are calculated as

（4.81）

In addition, by (4.60), the characteristic roots are

calculated as

（4.82）

Step 2. The dynamic general equilibrium sequences

of capital, consumption, output per labor, interest rate,

and wage rate {kt＋ 1 , ct , yt , rt , wt ; t＝ 0, 1, 2, ...} are

calculated by using (4.70), (4.74), (4.77), (4.78), and

(4.79). The results are summarized in table 4.1.

Figure 4.3 depicts the dynamic general equilibrium

trajectory of capital {kt ; t＝ 0, 1, 2, ...}. As predicted

by theorem 4.1, because the initial capital k0 ＝ 50 is

smaller than the steady state k ＊＝ 110.87, figure 4.3

shows that the dynamic general equilibrium sequence

of capital {kt ; t ＝ 0, 1, 2, ...} is monotonically

increasing and converging to the steady state. Figure

4.4 depicts the dynamic general equilibrium trajectory

of consumption {ct ; t＝ 0, 1, 2, ...}. Given the initial

capital k0 ＝50 at t＝0, a unique value of consumption

c0 ＝ 30.18 is calculated from (4.75). Starting from

{k0 ＝ 50, c0 ＝ 30.18}, the difference equations

{(4.53), (4.54)} generates the dynamic general

equilibrium sequence of capital and consumption {kt＋ 1,

ct ; t＝ 0, 1, 2, ...} which converges to the steady state

{k ＊＝ 110.87, c ＊＝ 41.06}. As predicted by theorem

4.2, the dynamic general equilibrium sequence of

consumption {ct ; t＝ 0, 1, 2, ...} is also monotonically

increasing and converging to the steady state c ＊.
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５．Continuous Time Ramsey Model
In section 3, we saw that the discrete time Solow-

Swan model and the continuous time Solow-Swan

model share similar properties. In addition, we saw

that while the analysis of discrete time Solow-Swan

model is conducted through the analysis of difference

equation, the analysis of continuous time Solow-Swan

model is conducted through the analysis of differential

equation. Likewise, in this section, we are going to see

that the discrete time Ramsey model and the

continuous time Ramsey model share similar

properties. In addition, while the analysis of discrete

time Ramsey model is conducted through the analysis

of difference equations, the analysis of continuous

time Ramsey model is conducted through the analysis

of differential equations.

The simplest bare-bones continuous time Ramsey

model consists of many households and many firms

whose behaviors, that are similar to those of the

discrete time Ramsey model, will be presented in the

following.

5-1．Households

There are N identical households. Although N is

assumed to be constant, the model can be extended to

handle cases with population growth described by N
・

/N＝ n . At time t ≥ 0, a representative household

faces the following budget constraint.

（5.1）

In (5.1), c(t) is consumption, i (t) is investment, k s(t) is

capital supply, r (t) is interest rate, l s(t) is labor supply,

and w(t) is wage rate. Each variable is a continuous

Table 4.1 Simulation of Discrete Time Ramsey

Model

t k (t) c (t) y (t) r (t) w (t)

0 50.000 30.184 32.336 0.194 22.635

1 54.115 30.920 33.113 0.184 23.179

2 57.951 31.605 33.800 0.175 23.660

3 61.528 32.245 34.413 0.168 24.089

4 64.864 32.841 34.962 0.162 24.474

5 67.974 33.396 35.457 0.156 24.820

6 70.873 33.915 35.904 0.152 25.133

7 73.577 34.398 36.310 0.148 25.417

8 76.098 34.848 36.679 0.145 25.675

9 78.448 35.268 37.015 0.142 25.910

10 80.640 35.660 37.322 0.139 26.125

11 82.683 36.025 37.603 0.136 26.322

12 84.589 36.366 37.861 0.134 26.503

13 86.365 36.683 38.098 0.132 26.699

14 88.021 36.979 38.316 0.131 26.821

15 89.566 37.255 38.516 0.129 26.961

16 91.006 37.513 38.701 0.128 27.091

17 92.349 37.752 38.871 0.126 27.210

18 93.600 37.976 39.029 0.125 27.320

19 94.768 38.185 39.174 0.124 27.422

20 95.856 38.379 39.308 0.123 27.516

21 96.871 38.561 39.433 0.122 27.603

22 97.817 38.730 39.548 0.121 27.684

23 98.699 38.887 39.655 0.121 27.758

24 99.522 39.034 39.754 0.120 27.827

25 100.289 39.172 39.845 0.119 27.892

Parameters: beta＝ 0.3, A＝ 10, rho＝ 0.9, sigma＝ 2

Figure 4.3
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function of time. The right-hand side of (5.1) is the

household's income consisting of capital income r (t)

k s(t) and labor income w(t) l s(t). The left-hand side of

(5.1) implies that the income is used for consumption

c(t) and investment i (t). The stock of capital is

accumulate through investment as follows.

（5.2）

where k
・s(t)＝ dk s(t)/dt is the increment of capital

between time t and t＋ ∆ t where ∆ t is very small. If

k
・s(t) is approximated by k

・s(t) k s(t＋ 1)－ k s(t), then

(5.2) is same as (4.3) of the discrete time Ramsey

model. In the following, we assume

（5.3）

The household's utility from consumption c(t) is

（5.4）

If σ＝ 1, then (5.4) is replaced with log-utility

function

（5.5）

The household's lifetime utility function is defined by

（5.6）

In (5.6), θ＞ 0 is a discount factor which measures

the relative importance of future utilities. Because e－θt

decreases as t increases, the utility from future

consumptions is less important than the utility from

current consumption. Given the initial capital supply

k s(0) , the household chooses a sequence of capital

supply and consumption {k s(t), c(t) ; t ≥ 0} to

maximize the lifetime utility (5.6) subject to budget

constraint (5.1). The household takes the sequence of

interest rate and wage rate {r (t), w(t) ; t ≥ 0} as

givens. We also impose the transversality condition on

the household's constrained optimization problem. The

transversality condition of the continuous time

Ramsey model is given as follows.

（5.7）

Readers may notice the equivalence implied by the

transversality condition (4.10) of discrete time

Ramsey model and the transversality condition (5.7)

of continuous time Ramsey model. In fact, (5.7) is

obtained by integrating the household's budget

constraint, a procedure which is equivalent to the

procedure of deriving the transversality condition

(4.10) of discrete time Ramsey model. (5.1) is

rewritten as follows.

（5.8）

Multiply exp[∫
T

t r (s)ds] on the both sides of (5.8), and

integrate with respect to t between 0 and T. Then, the

left-hand side of (5.8) becomes

（5.9）

The second equality holds because of the following

integration by parts.

（5.10）

The right-hand side of (5.8) becomes

（5.11）

Next, multiply exp[－∫
T

0 r (s)ds] on the both sides to

obtain

（5.12）

(5.12) is rewritten as

（5.13）

The transversality condition (5.7) is obtained by

letting T→∞ in (5.13) and setting the second term of

the left-hand side of (5.13) to be zero.
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（5.21）

（5.22）

5-2．Firms

For analytical simplicity, we assume that the

number of firms is N which is equal to the number of

households. At time t ≥ 0, a representative firm

chooses the demand for capital k d(t) and the demand

for labor l d(t) to maximize profit π(t) which is

defined as

（5.23）

subject to production function

（5.24）

The technology level A is assumed to be constant. The

model, however, can be extended to handle cases with

technological progress described as A・/A＝ g. The

optimal capital and labor must satisfy the following

first-order conditions.

（5.25）

（5.26）

By (5.25) and (5.26), the interest rate r (t) and the

wage rate w(t) are expressed as

（5.27）

（5.28）

By the linear homogeneity of production function, the

maximized profit is zero. Therefore, the following

equation holds.

（5.29）

5-3．Dynamic General Equilibrium

A dynamic general equilibrium of the continuous

time Ramsey model is a sequence of prices and

quantities {{r (t), w(t) ; t ≥ 0}, {k d(t), k s(t), l d(t), l s(t),

c(t), i(t), y(t) ; t ≥ 0}} such that (¡) given the prices

{r(t), w(t) ; t ≥ 0}, the quantities maximize every

Remark 1. If the transversality condition (5.7) holds,

then (5.13) becomes

（5.14）

Remark 2. If the interest rate r (t) is constant at r, then

exp[－∫
T

0 r (s)ds]＝ e－r T. In this case, the transversality

condition (5.7) becomes

（5.15）

and (5.13) becomes

（5.16）

The economic implications of the transversality

condition (5.7) of continuous time Ramsey model are

same as those of the transversality condition (4.10) of

discrete time Ramsey model. First, k s(T) can not be

negative because identical households can not borrow

among themselves. Second, if (5.7) is positive, then

the household is not optimizing. The house hold can

increase consumption (hence utility) by reducing the

capital of indefinite future.

The solution to the household's constrained

optimization problem is obtained as follows. Define

the Hamiltonian as a function of the sequence of

capital supply and consumption {k s(t), c(t) ; t ≥ 0} and

the sequence of “shadow price” {λ(t) ; t ≥ 0} as

follows.

（5.17）

The optimal solution {k s(t), c(t) ; t ≥ 0} together with

{λ(t) ; t ≥ 0} must satisfy the following first-order

conditions.

（5.18）

（5.19）

（5.20）

(5.19) and (5.20) are rewritten as follows.
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household's lifetime utility (5.6) subject to budget

constraint (5.1) as well as every firm's profit (5.23)

subject to production function (5.24), and (™) the

prices equates aggregate demand and aggregate supply

in every market at all time t ≥ 0.

There are three markets in this model; capital

market, labor market, and output market. The

equilibrium condition in capital market is given by

（5.30）

The left-hand side of (5.30) is the aggregate demand

for capital by firms, and the right-hand side of (5.30)

is the aggregate supply of capital by households.

(5.30) implies

（5.31）

In the following, we drop the superscripts “d ” and “s”

from (5.31), and express the amount of capital in

equilibrium by k (t). At the initial time period t＝ 0,

the aggregate supply of capital Nk s(0) is given. The

interest rate r (0) and the wage rate w(0) adjust to

equate the aggregate demand for capital Nk d(0) to the

given aggregate supply of capital.

The equilibrium condition in labor market is given

by

（5.32）

The left-hand side of (5.32) is the aggregate demand

for labor by firms, and the right-hand side of (5.32) is

the aggregate supply of labor by households. (5.32)

implies

（5.33）

The equilibrium condition in output market is given

by

（5.34）

The left-hand-side of (5.34) is the aggregate supply of

output by firms, and the right-hand side is the

aggregate demand for output by households consisting

of aggregate consumption and aggregate investment.

The condition however, is redundant because of

Walras' law.

In the dynamic general equilibrium, given the initial

capital k (0) , the sequence of capital and consumption

{k (t), c(t) ; t ≥ 0} satisfies the following equations. By

(5.22) and (5.29),

（5.35）

and by (5.18), (5.21), and (5.27),

（5.36）

(5.35) and (5 .36) form a system of first-order

nonlinear differential equations with respect to {k (t),

c(t) ; t ≥ 0}. Although our objective is to find solutions

to (5.35) and (5.36), nonlinear equations are in general

difficult to solve. Therefore, like we did for the

analysis of discrete time Ramsey model, we

approximate (5.35) and (5.36) by a system of first-

order linear differential equations, and find solutions

to the approximated system. The analysis consists of 4

steps.

Step 1. The steady state capital and consumption {k ＊,

c ＊} of the differential equations (5.35) and (5.36)

satisfy the followings.

（5.37）

（5.38）

By (5.38), the steady state capital k ＊ is

（5.39）

Then, by (5.37), the steady state consumption c ＊ is

（5.40）

By definition, the followings hold at the steady state

{k ＊, c ＊}.

（5.41）

（5.42）

We apply first-order linear approximations to the

right-hand sides of (5.35) and (5.36) evaluated at the

steady state {k ＊, c ＊}. The results are given as

follows.

（5.43）
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(5.55) is a second-order linear differential equation

with respect to k̂(t).

Step 4. A general solution of (5.55) is calculated as

follows. The characteristic equation of (5.55) is given

by

（5.56）

Because (5.56) is a quadratic equation with respect to

µ, (5.56) has two characteristic roots. These roots,

denoted as {µ1, µ2} satisfy

（5.57）

Therefore, one root must be positive while the other

root must be negative. Let

（5.58）

The general solution of (5.55) is expresses as follows.

（5.59）

In (5.59), H1 and H2 are arbitrary real constants. We

can verify that (5.59) satisfies (5.55) in any time

period t and any real constants {H1, H2} as follows.

(5.59) implies

（5.60）

（5.61）

Put these expressions into the left-hand side of (5.55)

to verify the claim, i.e.,

（5.62）

Although there are continuums of solution (5.59), we

can find a unique specific solution that satisfies the

initial condition k (0) and the transversality condition

(5.7). First, notice if H2 ≠ 0, then k̂ (t)＝ k (t)－ k ＊

will explode either to ＋∞ or to －∞ because µ2 ＞ 0.

Therefore, in order for the sequence of capital {k (t) ; t

≥ 0} generated by (5.59) satisfy the transversality

condition (5.7),

（5.63）

（5.44）

In (5 .43), ∂F1(k ＊,  c ＊)/∂k implies the partial

differentiation of F1(k (t), c(t)) with respect to k (t)

evaluated at the steady state {k ＊, c ＊}. This term is

calculated as follows.

（5.45）

If we evaluate (5.45) at the steady state {k ＊, c ＊},

(5.45) becomes

（5.46）

The other terms in (5.43) and (5.44) become as

follows.

（5.47）

（5.48）

（5.49）

Therefore, (5.37) and (5.38) are approximated by the

following first-order linear difference equations.

（5.50）

（5.51）

Step 3. Differentiate both sides of (5.50) with respect

to time t to have

（5.52）

where k̈ (t)＝ dk・(t) /dt＝ d [dk・(t)/dt]/dt. Eliminate c・(t)

from (5.51) and (5.52). Then, we have

（5.53）

Define the deviation of capital from its steady state by

（5.54）

Because k̂
・

(t)＝ k・(t) and k̈̂ (t)＝ k̈ (t), (5.53) is rewritten

as follows.

（5.55）

二村先生  13.5.29 10:38 AM  ページ 56



－ 57 －

must hold. Then (5.59) becomes

（5.64）

At the initial time period t＝ 0, k (0) is given. Then,

(5.64) implies

（5.65）

By (5.59) and (5.65), we have

（5.66）

(5.66) is rewritten as

（5.67）

(5.67) is a unique specific solution of the differential

equation (5.53) that satisfies the initial condition k (0)

and the transversality condition (5.7). From the

inspection of (5.67), we have the following theorem.

Theorem 5.1. The dynamic general equilibrium

sequence of capital {k (t), t ≥ 0} satisfies that (¡) if the

initial capital k (0) is smaller than the steady state k ＊,

then {k (t), t ≥ 0} is a monotonically increasing

sequence converging to k ＊, or (™) if the initial capital

k (0) is larger than the steady state k ＊ , then {k (t), t ≥

0} is a monotonically decreasing sequence converging

to k ＊.

The convergence of the general equilibrium sequence

of capital {k (t), t ≥ 0} to the steady state k ＊ implies

（5.68）

Theorem 4.1 and theorem 5.1 show that the dynamic

general equilibrium sequence of capital {kt ; t＝ 0, 1,

2, ...} of discrete time Ramsey model and the dynamic

general equilibrium sequence of capital {k (t), t ≥ 0} of

continuous time Ramsey model have the same

properties about monotonicity and convergence to

unique steady state. Therefore, figure 4.2 is also used

to depict the transition of the dynamic general

equilibrium sequence of capital {k (t), t ≥ 0} to the

steady state k ＊ for the continuous time Ramsey

model.

Once the dynamic general equilibrium sequence of

capital {k (t), t ≥ 0 } is set, the motions of the other

variables are set we well as follows. By (5.67),

（5.69）

By (5.50) and (5.69), the dynamic general equilibrium

sequence of consumption {c(t), t ≥ 0} is given as

follows.

（5.70）

Because the dynamic general equilibrium sequence of

capital {k (t), t ≥ 0} converges to the steady state k ＊,

(5.70) implies that the dynamic general equilibrium

sequence of consumption {c(t), t ≥ 0} also converges

to the steady state c ＊. A further inspection of (5.70)

enables us to characterize the properties of dynamic

general equilibrium sequence of consumption {c(t), t ≥

0} which are summarized by the following theorem.

Theorem 5.2. The dynamic general equilibrium

sequence of consumption {c(t), t ≥ 0} satisfies the

following properties; (¡) Given the initial capital k (t)

at t＝ 0, there is a unique initial consumption c(t) that

is determined by

（5.71）

(™) The dynamic general equilibrium sequence of

consumption {c(t), t ≥ 0} converges to the steady state

c ＊, i.e.,

（5.72）

(£) Because µ1 ＜ 0, if the initial capital k (0) is

smaller than the steady state k ＊, then (5.71) implies

c(0) is also smaller than the steady state c ＊. In

addition, by theorem 5 .1 ,  the dynamic general

equilibrium sequence of consumption {c(t), t ≥ 0} is a

monotonically increasing sequence converging to the

steady state c ＊. (¢) The statement in (£) also implies

that if the initial capital k (0) is larger than the steady

state k ＊, then (5.71) implies c(0) is larger than the

steady state c ＊. In addition, the dynamic general

equilibrium sequence of consumption {c(t), t ≥ 0} is a

monotonically decreasing sequence converging to the

steady state c ＊.

In the continuous time Ramsey model, when the
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decrease of capital, while the right-pointing arrow

below the locus indicates the increase of capital.

characteristic roots of (5.56) satisfies {µ1 ＜ 0 and

µ2 ＞ 0}, the steady state {k ＊, c ＊} of the dynamic

general equilibrium is said to be a “saddle point” of

the differential equations (5.50) and (5.51).

By (5.24), (5.27), and (5.28), the output per labor

(labor productivity), the interest rate, and the wage

rate in the dynamic general equilibrium are given as

follows.

（5.73）

（5.74）

（5.75）

The aggregate variables are obtained by multiplying

per-household variables with the number of

households and by multiplying per-firm variables with

the number of firms. (In this example, the number of

households and the number of firms are assumed to be

same.)

5-4．Phase-Diagram Analysis

We can characterize the dynamic general

equilibrium sequence of capital and consumption

{k (t), c(t) ; t ≥ 0} by the phase-diagram analysis of

differential equations {(5.35), (5.36)} as follows.

These equations are replicated here.

（5.76）

（5.77）

(5.76) implies that k・(t)＝ 0 when capital k (t) and

consumption c(t) satisfy the following relationship.

（5.78）

Figure 5.1 depicts the locus of the combinations of

capital and consumption that satisfy (5.78). In the

figure, the horizontal axis measures capital k, and the

vertical axis measures consumption c. (5.76) also

implies that k・(t)＝ Ak (t) ß－ c(t)＜ 0 holds at any

point (k, c) above the locus, while k・(t)＝ Ak (t) ß－

c(t)＞ 0 holds at any point (k, c) below the locus.

Therefore, capital k (t) is decreasing above the locus,

while it is increasing below the locus. In figure 5.1,

the left-pointing arrow above the locus indicates the

Figure 5.1

k

c

0

k
.
＞0

k
.
＜0

c＝Ak

(5.77) implies that c・(t)＝ 0 when capital k (t)

satisfies

（5.79）

regardless of consumption c(t). In fact, (5.79) implies

that c・(t)＝ 0 when capital k (t) is at the steady state k ＊

＝(ßA/θ)1/(1 － ß). (5.77) also implies that if k (t)＜ k ＊,

then c・＝(1/σ)(ßAk ß－ 1－θ) c＞ 0, or if k (t)＞ k ＊,

then c・＝(1/σ)(ßAk ß－ 1－θ) c＜ 0. The vertical line

in figure 5.2 indicates k (t)＝ k ＊. In figure 5.2, the

horizontal axis measures capital and the vertical axis

measures consumption. At any point (k, c) on the left

of the vertical line, k (t)＜ k ＊ holds. Therefore,

consumption is increasing at the point, i.e., c・(t)＞ 0.

The upward-pointing arrow at the left of the vertical

line in figure 5.2 indicates that consumption is

increasing. By the same reason, at any point (k, c) on

the right of the vertical line, k (t)＞ k ＊ holds.

Therefore, consumption is decreasing at the point, i.e.,

c・(t)＜ 0. The downward-pointing arrow at the right of

the vertical line in figure 5 .2 indicates that

consumption is decreasing.

By combining figure 5.1 and figure 5.2, the positive

orthant of capital and consumption is divided into four

phases as depicted by figure 5.3. These phases are

labeled as phase Ⅰ, phase Ⅱ, phase Ⅲ, and phase Ⅳ.

At any point (k, c) in phase Ⅰ, capital k (t) is

decreasing because the point is above the c＝ Ak ß

locus, and consumption c(t) is decreasing because the

point is on the right of the vertical line indicating
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k (t)＝ k ＊. By the same reason, k (t) is decreasing and

c(t) is increasing in phase Ⅱ, k (t) is increasing and c(t)

is increasing in phase Ⅲ, and k (t) is increasing and

c(t) is decreasing in phase Ⅳ. From these observations,

we can state that a sequence of capital and consumption

{k (t), c(t) ; t ≥ 0} generated by the differential

equations {(5.76), (5.77)} starting from {k (0), c(0)} at

t＝ 0 belonging to either phase Ⅱ or phase Ⅳ does

not converge to the steady state {k ＊, c ＊}. In figure

5.3, the unique intersection of the locus of c＝ Ak ß

and the vertical line at k (t)＝ k ＊ indicates the steady

state {k ＊, c ＊} of the differential equations {(5.76),

(5.77)} because both k・＝ 0 and c・＝ 0 are satisfied. A

dynamic general equilibrium sequence of capital and

consumption {k (t), c(t) ; t ≥ 0} that satisfies the initial

condition k (0) and the transversality condition (5.7)

must belong to either phase Ⅰ or phase Ⅲ. In figure

5.3, the downward-sloping dotted-arrow pointing to

the steady state {k ＊, c ＊} in phase Ⅰand the upward-

sloping dotted-arrow pointing to the steady state {k ＊,

c ＊} in phase Ⅲ indicate the possible dynamic general

equilibrium sequence of capital and consumption. For

example, consider an initial capital k (0) at t＝ 0

which is smaller than the steady state capital k ＊. As

depicted in figure 5.3, there is a unique initial

consumption c(0) such that {k (0), c(0)} is on the

dynamic general equilibrium trajectory. As time t

passes, the sequence of capital and consumption {k (t),

c(t) ; t ≥ 0} generated by the differential equations

{(5 .76), (5 .77)} stays on the dynamic general

equilibrium trajectory converging to the steady state

{k ＊, c ＊}. The dotted-arrow implies that along the

process, both capital and consumption are

monotonically increasing sequences converging to the

steady state {k ＊, c ＊}.

The dynamic general equilibrium trajectory of

capital and consumption is unique. Given the initial

capital k (0), consider an initial consumption c'(0) that

is below the dynamic general equilibrium trajectory,

or an initial consumption c''(0) that is above the

dynamic general equilibrium trajectory. These two

alternative initial consumptions are depicted in figure

5.4. In figure 5.4, the trajectory of capital and

consumption generated by the difference equations

{(5.76), (5.77)} starting with initial condition {k (0),

c '(0)} is labeled as AA. For awhile, capital and

consumption increase because they are in phase Ⅲ.

Compared to the capital and consumption on the

dynamic general equilibrium trajectory, however,

consumption is smaller and capital accumulation is

faster. As a result, at some time t,  capital and

consumption enter phase Ⅳ. As time t proceeds

further, either the non-negative constraint on

consumption or the transversality condition for capital

will be violated. On the other hand, in figure 5.4, the

trajectory of capital and consumption generated by the

difference equations {(5.76), (5.77)} starting with

initial condition {k (0), c''(0)} is labeled as BB. The

capital and consumption increase for a while because

they are in phase Ⅲ too. Compared to the capital and

consumption on the dynamic general equilibrium

Figure 5.2
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by the differential equations {(5.76), (5.77)} is a

monotonically decreasing sequence converging to the

steady state {k ＊, c ＊}.

Although these properties of the dynamic general

equilibrium capital and consumption are similar to the

properties stated by theorem 5.1 and theorem 5.2,

theorem 5.3 holds as global properties, while theorem

5.1 and theorem 5.2 hold as local properties of the

linearly approximated differential equations.
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trajectory, consumption is larger and capital

accumulation is slower. As a result, at some time t,

capital and consumption enter phase Ⅱ where the

capital decreases while the consumption increases. as

time t proceeds further, non-negativity constraint on

capital will be violated.

Figure 5.4
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If the initial capital k (0) at t＝ 0 is larger than the

steady state k ＊,  then there is a unique initial

consumption c(0) such that {k(0), c(0)} is on the

dynamic general equilibrium trajectory in phase Ⅰ.

Starting with {k (0), c(0)}, the differential equations

{(5.76), (5.77)} generate a monotonically decreasing

sequence of capital and consumption {k (t), c(t) ; t ≥

0} converging to the steady state.

These properties are summarized by the following

theorem.

Theorem 5.3. Given the initial capital k (0) at t＝ 0,

there is a unique consumption c(0) such that (¡) if

k (0) is smaller than the steady state k ＊, then c(0) is

smaller than the steady state c ＊, and the dynamic

general equilibrium sequence of capital and

consumption {k (t), c(t) ; t ≥ 0} generated by the

differential equations {(5.76), (5 .77)} is a

monotonically increasing sequence converging to the

steady state {k ＊, c ＊}, or (™) if k (0) is larger than the

steady state k ＊, then c(0) is larger than the steady state

c ＊, and the dynamic general equilibrium sequence of

capital and consumption {k (t), c(t) ; t ≥ 0} generated
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