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[Abstract] 

The high corrosion resistance and strength-to-density ratio makes titanium 

widely used in major industry, but also in a gamut of medical applications. Here 

we report for the first time on our development of a titanium passivation layer 

sensor that makes use of surface plasmon resonance (SPR). The deposited 

titanium metal layer on the sensor was passivated in air, like titanium medical 

devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with 

the passivated surface of titanium in real time. As a proof of concept, corrosion 

of titanium passivation layer exposed to acid was monitored in real time. Also, 

the Ti-SPR sensor can accurately measure the time-dependence of protein 

adsorption onto titanium passivation layer with a sub-nanogram per square 

millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) 

enables real-time assessment of chemical surface processes that occur 

simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as 

acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very 

useful to study titanium-corrosion phenomena and biomolecular titanium-surface 

interactions with application in a broad range of industrial and biomedical fields. 
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[Text] 

1. Introduction 

Thanks to high strength-to-density, excellent corrosion resistance decreasing 

cost and increasing availability, titanium and its alloys enjoy their widespread 

industrial applications in a wide variety of highly corrosive environments 

including sea water, bleaches, alkaline solutions, oxidizing and organic acids [1]. 

These excellent properties make titanium widely used in industries including 

aerospace, marine, power generation, and desalination plants for instance [2-5]. 

Their extremely high corrosion resistance results from the formation of a very 

stable, continuous, highly adherent, and protective oxide film on the titanium 

surface, formed spontaneously and instantly once fresh metal surfaces are 

exposed to air, or moisture. 

Titanium is also commonly used to fabricate a variety of medical devices such 

as hip and knee joints, bone screws and plates, dental implants, stents, 

pacemaker cases and centrifugal pumps of artificial hearts [6-8]. Due to the 

rapidly ageing population, especially in developed countries, the national health 

care costs are escalating. In particular, the increased incidence of hard tissue 

and cardiovascular diseases such as periodontitis, osteoarthritis, and 

arteriostenosis is strongly correlated with the rapidly growing elderly population. 

Therefore, the development of innovative treatment techniques for functional 

repair or complete cure of these diseases is highly desirable. In attempts to 

improve the healing potential of such medical devices, much research is devoted 

to titanium-surface modification methods that enable controlled adsorption of 

biomolecules and ions, or regulated drug release [9-12]. In biomaterial sciences, 



the strategic importance of fundamental research in nano-biotechnology has 

recently been acknowledged [13]. The developments of highly sensitive 

methods that can monitor the interaction of biomolecules at titanium surfaces 

are therefore highly needed. 

Surface plasmon resonance (SPR) can offer real-time and label-free analysis 

of the interfacial events that occur on the surface of a metal layer under 

physiological conditions [14-15]. Recently, the technique of SPR imaging (SPRI) 

has been developed and applied to monitor the adsorbing organic materials and 

biomolecules at multiple independent spots [16]. In this study, we report for the 

first time on our development of a titanium passivation surface sensor chip for 

SPR [17]. There are few reports of the titanium SPR (Ti-SPR) sensor which 

titanium metal layer was passivated in air. Although many studies of a 

TiO2-coated sensor for SPR are reported [18-23], their sensors were coated by 

TiO2 directly and titanium metal was not used. In medicine and dentistry, the 

titanium metal surface of dental implants and artificial bones oxidize in air. Our 

Ti-SPR sensor has the titanium passivation layer, closely resembling the 

condition under which titanium medical devices are normally used during clinical 

treatment. 

 

2. Experimental section 

2.1 Materials 

Bovine serum albumin was purchased from Sigma-Aldrich Japan K.K. (Tokyo, 

Japan). γ-Globulin was purchased from Nacalai Tesque, Inc. (Kyoto, Japan). 

bFGF (recombinant human basic growth factor: KCB-1) was kindly donated by 



KAKEN Pharmaceutical CO., Ltd. (Kyoto, Japan). Dulbecco’s phosphate 

buffered saline without calcium and magnesium (PBS; pH 7.4) was purchased 

from Nissui Pharmaceutial Co., Ltd. (Tokyo, Japan). Dodecylphosphate (DDP) 

was purchased from Alfa Aesar (Ward Hill, MA). Other chemicals were 

purchased from Wako Pure Chemical Industries (Osaka, Japan).  All chemicals 

were used as received without any additional purification. Glass Plates made of 

S-LAL10 (refractive index: 1.72; diameter: 15 mm, thickness: 1 mm) were 

purchased from Arteglass Associates Co. (Kyoto, Japan). 

 

2.2 Surface Plasmon Resonance Instruments 

We constructed a surface plasmon resonance (SPR) instrument which 

observes an SPR spectrum and an SPR angle shift [24-25]. The SPR instrument, 

constructed by referring to Knoll’s method, utilized the Kretschmann 

configuration in which a metal was in the form of a thin film mounted directly onto 

a S-LAL10 glass plate coupled to an S-LAL10 dispersing prism with an index 

matching fluid [14, 26]. An SPR chip was set on the SPR flow cell, which was 10 

mm in length, 1 mm in width, and 1 mm in thickness. Solutions were allowed to 

pass through the flow cell [25]. The He-Ne laser light (λ; 632.8 nm) was linearly 

p-polarized using a Gran-Thomson prism and then passed through a 

non-polarizing cube beam-splitter. The sample surface was exposed to the 

p-polarized light through the prism. The intensity of the reflected light was 

determined by a photo diode detector. A computer was used to control a biaxial 

rotation stage and to process the intensities of the incident and the reflected light 

as a SPR spectrum. At an angle of a dip of the spectrum, the light was resonated 



surface plasmons on the metal layer and this angle is called as an SPR angle.  

[14-15] 

The SPR imaging (SPRI) apparatus employed in this study was used 

SPR-1000 (UBM, Kyoto, Japan), which was developed by referring our 

constructed SPRI [16]. The SPR chip with arrayed spots was mounted on an 

S-LAL10 dispersing prism with index matching fluid. The flow cell was 

constructed using a washer made of silicone and a vinyl chloride lid with an inlet 

and outlet. The back side of the chip was illuminated by a p-polarized, collimated, 

and polychromatic white light through the prism. The reflected light was passed 

through an interference filter and collected by a CCD camera. The data was 

acquired by our designed software. 

The Ti-SPR sensor chip can be used in both instruments. All experiments 

were carried out at 25 °C. 

 

2.3 Development and Evaluation of Titanium SPR Sensor 

2.3.1 Design of Titanium SPR sensor 

General SPR sensor chips are based on gold coated glass substrate. The 

Ti-SPR sensor chips were prepared by depositing titanium metal on a 

contamination-free gold surface of the SPR sensor. For designing of an optimal 

Ti-SPR sensor, it was necessary to consider the thickness and oxidation of the 

deposited titanium layer and detection of protein adsorptions in water solutions. 

So, the SPR spectra of the Ti-SPR sensor were simulated by the Fresnel 

equation of reflection and transmission using prism, glass plate, Cr, Au, Ti, TiO2, 

protein, and water multilayer (Fig. 1) for estimation of an optimal layer thickness 



of the deposited titanium [26-27]. When an amount of proteins adsorption or a 

thickness of TiO2 layer is changed, the SPR angle is shifted. So, the shift of the 

SPR angle (degree) can be calculated as the amount of proteins (4.02 

ng•mm-2•degree-1) or the thickness of the etched TiO2 layer (0.77 nm •degree-1). 

The designed Ti-SPR sensor chips were prepared by Osaka Vacuum 

Industrial Co. Ltd. (Osaka, Japan). These chips were prepared by depositing Cr, 

Au, and Ti on the S-LAL10 glass plates under 2.0×10-2 Pa using an 

electron-beam evaporation method. 

 

2.3.2 Characterization of Titanium Layer on Ti-SPR sensor 

A transmission electron microscopy (TEM) cross-section of the developed 

Ti-SPR sensor chip embedded in epoxy resin was prepared using an Ion Slicer 

(EM-09100IS, JEOL), and imaged using a JEM-3010 (JEOL) TEM operated at 

300kV. The surface elemental composition of the Ti-SPR sensor was determined 

using an X-ray photoelectron spectroscopy (XPS; AXIS-HS, Kratos, Manchester, 

UK) in vacuo at less than 10-7 Pa. We used Al-Kα monochromatic x-ray with a 

source power of 150 W (acceleration voltage of 15 kV and filament current of 10 

mA) and measured the elemental composition ratio of Au, Ti, and O at 

photo-electron take-off angles of 90, 60, 45, 30, and 15 degrees. The layer 

thicknesses of the titanium and the oxidized titanium on the Ti-SPR sensor were 

estimated by the SPR spectrum of this sensor and the relationship between the 

proteins amount of adsorbed and the SPR angle shift was determined. 

 

2.4 SPR Measurements of Acid Etching and Biomolecule Adsorption  



2.4.1 Effect of Acid Etching on Titanium Surface 

The effect of acid etching of titanium surface was determined by SPR. 

Phosphoric-acid solutions were prepared by dropping 85 wt% phosphoric acid 

into pure water until these pH were 1.8, 1.9, 2.0, and 3.0, respectively and the 

running solution used was pure water. The Ti-SPR sensor chip was set on an 

SPR flow cell. Pure water was allowed to pass through the flow cell until the SPR 

angle was stable. The SPR spectrum was recorded for the Ti-SPR sensor 

exposed to pure water and then the incident light angle was fixed at 1.0 degree 

lower than the minimum of the reflectance, which was the SPR angle. 

Subsequently, the intensity of the reflected light was followed during exposed to 

the phosphoric acid solution under flow for 20 min. Then, this solution was 

washed out with the water for 19 min and the SPR spectrum was recorded again. 

The SPR angle shift was determined from the minima of the two resonance 

profiles.  

The effect of acid etching of titanium was also determined by Quartz Crystal 

Micro-balance (QCM, Q-Sense D300). A QSX 310 (titanium QCM sensor) was 

attached to a QCM flow cell (QWiC301). All QCM apparatuses and chips were 

purchased from Q-Sense AB (Västra Frölunda, Sweden). Pure water was 

allowed to pass through the flow cell until a frequency of the quartz crystal was 

stable. Subsequently, the phosphoric-acid solution was allowed to flow for 20 

min. Finally, this solution was washed out of the flow cell with pure water for 19 

min. The phosphoric-acid solutions used had either pH of 1.8 or 2.0.  

All solutions were flowed at 3.3 ml/min in both experiments. 

 



2.4.2 Protein and Polymer Adsorption on Titanium Surface 

The amount of protein and polymer adsorbed onto the titanium surface was 

determined by the Ti-SPR sensor. The Ti-SPR sensor chip was set on the SPR 

flow cell and then PBS was allowed to pass through the flow cell at 3.3 ml/min. 

After the SPR angle was stable, the SPR spectrum was recorded. Subsequently, 

the intensity of the reflected light was followed during exposure to a protein or 

polymer solution under flow for 10 min. Then, this solution was washed out with 

PBS for 9 min and the SPR spectrum was recorded again. The protein solutions 

used were 2 μg/ml albumin, γ-globulin, and bFGF in PBS. The polymer solutions 

used were 100 μg/ml polyethyleneimine (PEI) and gelatin in PBS, and 1 wt% 

poly phosphoric acid (PPAc) in water. 

 

2.5 SPRI Measurements of Cell Response and Corrosion Resistance 

2.5.1 Preparation of Titanium Array for SPRI 

The titanium surface of the Ti-SPR sensor chip was cleaned by argon-plasma 

irradiation (electrode current of 23 mA for 90 seconds), and then immersed in 

acetone and toluene for 5 minutes each. This washed chip was then immersed 

in 2 mM octadecyltrichlorosilane (ODTCS) dissolved into toluene for 24 hours at 

60ºC. After silane-treatment, this chip was washed successively with toluene, 

acetone, a 1:1 (v/v) acetone-water mixture, and finally again with acetone. This 

OTDCS layer adsorbed onto the titanium surface was then irradiated/etched with 

argon plasma (electrode current of 10 mA for 10 minutes), after having 

positioned a stainless steel mask pattern (5x5 pore arrays with a circular pore 

size of 1 mm, and an inter-pore space of 1 mm) in order to make 1 mm diameter 



titanium spots on the OTDCS-coated Ti-SPR sensor chip. This patterned array 

chip was immersed in acetone. 

 

2.5.2 Preparation of Polymer-Coated Titanium Array 

The polymer-coated titanium array chip was prepared by dropping 1 µl PBS 

onto the titanium spots of the titanium array chip, after which the chip was kept in 

saturated water vapor for 20 minutes. Then, the PBS drops were removed and 

0.5 µl of PEI, gelatin, PPAc, and PBS were dropped onto these spots, after 

which the chip was again kept in saturated water vapor for 20 minutes. Finally, 

each spot was 5 times washed with PBS. 

 

2.5.3 Interaction of cells with titanium assessed using SPRI 

The interaction of cells onto the polymer-coated titanium array chip was 

determined by SPRI. An albumin free PIPES-buffered medium (25 mM PIPES 

(pH 7.2), 159 mM NaCl, 5 mM KCl, 0.4 mM MgCl2, 1 mM CaCl2, 5.6 mM 

glucose) [28] was prepared as solvent and the sample solution used was a 

MC3T3-E1 cell suspension (500,000 cells in 1 ml of this medium). The chip was 

attached to an SPRI batch cell. 300 µl of the medium was dropped onto the 

batch cell and the SPRI image was allowed to stabilize. Then, 100 µl of the cell 

suspension was dropped onto the batch cell and mixed in situ, while the SPRI 

image data was recorded for 1 hour. Under the above-mentioned condition, 

phase contrast microscopy images of cell attachment on the polymer-spotted 

array chip were made. 

 



2.5.4 Preparation of DDP treated Titanium Array 

The DDP treated array chip was prepared by dropping 0.3 µl of 1wt% DDP 

dissolved in 1:1 (wt/wt) water-ethanol mixture onto the titanium spots of the 

titanium array chip, after which the chip was kept in saturated water vapor for 30 

minutes. Then, the chip was washed with acetone 3 times. 

 

2.5.5 Observation of Corrosion Resistance of DDP treated Titanium by SPRI 

The process of acid etching onto the DDP coated titanium array chip was 

observed by the SPRI for 10 min. An HCl/KCl-buffered solution (pH 1.5; 41.4 mM 

HCl and 50.0 mM KCl) [29] and a KCl solution (63.1 mM KCl) were prepared as 

the ‘running’ and the ‘sample’ solution, respectively. The chip was attached to an 

SPRI flow cell. The running solution was allowed to pass through the flow cell 

and the SPRI image was allowed to stabilize. Then the SPRI data was recorded 

simultaneously at the different spots during exposure to the sample solution at a 

flow rate of 3.3 ml/min. 

 

3. Results and discussion 

3.1 Development of Titanium SPR Sensor 

For the design of the Ti-SPR sensor, the SPR spectrum needed to be 

simulated. Figure 2 shows the simulated SPR spectra in relation to the thickness 

and the oxidation rates of the titanium layers. The titanium layer deposited on 

the SPR sensor chip easily oxidizes in air (leading to increased 

corrosion-resistance). When the titanium layer (atomic weight; 47.9, density; 4.5 

g/cm3) is oxidized to the titanium dioxide layer (molecular weight; 79.9), its 



density is reduced and its thickness is increase [30]. A density of titanium dioxide 

crystal is 3.8 g/cm3 (antase) or 4.2 g/cm3 (rutile) and the oxidized titanium layer 

on the Ti-SPR sensor was expected to be low crystallinity and to be contained 

many hydroxyl groups [30-32], we assumed that the density of the oxidized 

titanium layer was 4.0 g/cm3 and its layer grew in the uni-axial direction and the 

thickness of this layer increased 1.9 times as a result of oxidization. In the case 

of a 5 nm thick of titanium surface layer, the peak of the SPR spectrum was 

sharpened with the degree of oxidation. In case of a 10 nm titanium layer, 

however, the peak of the SPR spectrum did not sharpen and the SPR angle, 

which is a minimum reflectance angle in the SPR spectrum, occurred at high 

incident light angle. The latter is disadvantageous because the amount of protein 

adsorption is related to the increase of the SPR angle. In case of a 20 nm Ti 

layer, the peak of the SPR spectrum did not occur. These simulations suggest 

that the thinner the titanium layer is, the more accurate (‘sharper’) the SPR 

spectrum is. Therefore, a Ti-SPR sensor with the most optimal 5 nm thick metal 

titanium layer was employed. 

 

3.2 Evaluation of Ti-SPR sensor Surface 

The simulation was not sufficient to determine the actual thickness of surface 

oxide layer. So we measured the Ti-SPR sensor chip, as shown in figure 3 and 4 

using TEM and SPR. The thinnest achievable titanium layer that could be 

sputter-coated was 5 nm. High-magnification cross-sectional TEM image of the 

Ti-SPR sensor (fig. 3) showed the 49 nm Au layer with about 10 nm Ti/TiO2 layer 

on top and the Cr-layer underneath on top of the glass substrate. In the SPR 



result (fig. 4), the spectrum of the Ti-SPR sensor was detected and the thickness 

of the oxide layer was obtained by comparing both the simulated and the 

measured SPR spectra. The dotted line in the figure shows the simulated SPR 

spectrum for a 0.7 nm thick titanium layer and a 7.6 nm titanium dioxide layer. 

Good agreement was found for the actual and simulated SPR spectra. 

Figure 5 shows the results of the atom fraction of Au and the O/Ti ratio at the 

Ti-SPR sensor surface as measured by angle-dependent XPS, confirming that 

the gold layer was uniformly coated with an ultrathin oxidized titanium layer, and 

that the O/Ti ratio at the top was larger than at the bottom. The nonstoichiometric 

O/Ti ratio may be due to the fact that the outer surface contained titanium 

hydroxide (TiO(OH)2 with an O/Ti ratio of 3, while the O/Ti ratio of TiO2 is 2), and 

because oxygen of these hydroxyl groups seemed to mainly exist at the top layer. 

From these results, the external layer of the titanium surface SPR sensor was 

concluded to be the titania. 

 

3.3 Detection of Acid Etching on Titanium Surface 

Titanium is very corrosion-resistant thanks to the presence of the passivating 

film on the surface. When we exposed the surface of the Ti-SPR sensor to 

phosphoric-acid solutions with different pH (fig. 6a), the SPR angles shifted to a 

lower angle except for the pH=3.0 solution. This indicates that the oxidized 

titanium surface was etched when exposed to phosphoric-acid solutions with a 

pH of 2.0 or below. The average thickness changes at pH 2.0, 1.9, and1.8 were 

about 20 pm, 50 pm, and 120 pm, respectively. 

Using QCM, the effect of etching titanium was also determined under the 



same conditions (fig. 6b), but the relatively low signal-to-noise ratio obscured the 

QCM spectrum. Pressure fluctuation of the flowing solution strongly affects the 

frequency of the quartz crystal, whereas the optical performance of the Ti-SPR 

sensor is largely unaffected under similar conditions. For measuring titanium 

etching, the Ti-SPR sensor has a high-sensitivity, which is achieved because 

TiO2 has a higher dielectric constant (ε: 5.19) than phosphoric acid (ε: 2.12) [33] 

in water, and consequently the SPR angle shift due to changes in layer thickness 

is about 5 times more sensitive for TiO2 (0.77 nm•degree-1) than for phosphoric 

acid (4 nm•degree-1). 

The above-mentioned experiments confirm the real-time high-resolution 

acid-etching measuring capability of the Ti-SPR sensor.  

 

3.4 Measurement of Biomolecule adsorption on Titanium Surface 

Thanks to high biocompatibility, titanium is commonly used a variety of 

medical devices. However, chemical and biological reactions of non-treated 

titanium surface are poor because of its chemical stability. Therefore many 

modification methods of titanium surface have been studied for increasing 

bioactivity, bone conductivity, and biocompatibility. [32, 34-35] 

In this study, the Ti-SPR sensor was used to measure the interaction between 

biomolecules and titanium passivation layer in real time. Figure 7 shows the 

increasing protein absorption on Ti with time for the three proteins studied. It was 

assumed that the difference in pI and molecular weight of the proteins would 

influence absorbed the protein amounts. At pH 7.4, the Ti surface is negatively 

charged [36], γ-globulin is slightly negatively charged, albumin is negatively 



charged, and bFGF is positively charged. Therefore, we consider that γ-globulin 

(158 kDa, pI 5.8-7.3) was most adsorbed on Ti (2.85 ng/mm2) because of its 

largest molecular weight, albumin (69 kDa, pI 4.9) was least adsorbed (0.85 

ng/mm2) because of its negative charge, and bFGF (17 kDa, pI 10.1), though its 

molecular weight is 10 times smaller than γ-globulin, was more adsorbed (2.08 

ng/mm2) than albumin because of its positive charge.  

The Ti-SPR sensor also enabled us to measure changes in adsorption of 

polymers to surfaces, like for instance titanium medical devices that are coated 

with different polymers in order to slowly release drugs and cytokines [37]. 

Real-time changes in SPR angle shifts were measured when titanium was 

exposed to PEI, gelatin, and PPAc suspensions, respectively (fig. 8). While PEI 

and gelatin were rapidly adsorbed onto the titanium surface and resisted 

removal by washing, PPAc significantly etched the surface due to its low pH (pH; 

1.5), but left a thin PPAc layer deposited upon washing [38]. 

These results indicate that the developed Ti-SPR sensor can accurately 

measure the time-dependent protein and polymer adsorption process onto the 

titanium passivation layer. 

 

3.5 SPRI Observation of Cell Response on Titanium Surface 

A variant of the sensor enables SPRI-mapping of biological surface processes. 

Using the SPRI, the cell response onto the polymer-coated titanium array chip 

could be studied in real-time (fig. 9a and 9b). The response of MC3T3-E1 cells 

were found to be better to the spots coated with PPAc, titanium, PEI, and gelatin, 

in this order. Unfortunately, the cell response on the surface contains not only 



cell adhesive but also cell reactions [39]. This differential cell adhesion was 

confirmed by phase-contrast microscopy (fig.9c), which showed that cells 

adhered onto the PPAc-spot and the gelatin-spot through developed filopodia 

along with spread cell bodies, while cells on the PEI-spot and Ti-spot clearly 

showed less filopodia without spread cell bodies. These results indicated that 

the cell response from SPRI was not correlated with the cell spread area but 

contained some sort of living-cell actions. Although another measurement 

method for detecting some cell reaction is needed to be combined, we suppose 

the study of early cell response to titanium using SPRI could contribute to a 

better understanding of the early phases of osseointegration of titanium implants, 

leading to improved osseointegration therapy. 

 

3.6 SPRI Observation of Corrosion Resistance of Titanium Surface  

The imaging potential of the Ti-SPR sensor was illustrated in a surface 

corrosion experiment involving exposure to the HCl/KCl-buffered solution. DDP 

and ODTCS can immobilize on the surface strongly as a self-assembled 

monolayer because they have a long alkyl chain and a surface-active head 

group [40-41], and these immobilized layers were supposed to protect the 

titanium surface from acid. In figure 10a, the SPRI image of the DDP treated 

titanium array revealed that the DDP-solution, which is acidic, etched the 

ODTCS-coated titanium around the DDP-spots. The acid-etching of titanium with 

HCl leads to the highest corrosion at the titanium-spot, slightly less in the 

OTDCS-coated surface, while the DDP-spot appeared most resistant to the 

HCl-acid attack (fig. 10b). This result suggests that these monolayers coated on 



titanium surface have a property of corrosion resistance, especially DDP-treated 

surface. 

 

4. Conclusions 

For the titanium medical devices, their surfaces oxidize in air and then have 

the passivation layer. Our developed Ti-SPR sensor has the similar passivation 

layer as these devices because the titanium metal layer on the sensor oxides in 

a similar way. From the results, the Ti-SPR sensor could detect the acid etching, 

the biomolecule adsorption, the cell reaction, and the corrosion resistance on the 

titanium surface in real-time assessment. 

The Ti-SPR sensor shows a broad applicability to study surface interactions 

with titanium passivation layer. In Biomaterial Sciences, this instrument most 

obviously enables investigations of surface chemistry and biomolecular aspects 

of integration of titanium implants in human bone, especially to gain insight in the 

earliest processes of protein adsorption and cell attachment, a scientifically 

important enigma that needs to be clarified in order to further ameliorate implant 

therapy in dental medicine and orthopedics. This sensor may also prove useful 

to study interactions of biomolecules and cells with other titanium medical 

devices used within the human body. In Material Sciences, the process of 

corrosion could be studied in more depth to further improve the 

corrosion-resistance of titanium-based machines/equipment used in major 

marine and aerospace industry. Thus, this innovative high-resolution surface 

analytical tool could not only be employed to investigate the surface properties of 

titanium, but also to develop new materials with better surface treatment method 



for titanium devices.  
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[Figure legends] 

Figure 1  

Schematic illustrating the Ti-SPR sensor with coupled prism for SPR. The 

deposited titanium metal layer is easily oxidized by air and its thickness is 

changed. The thickness and dielectric constant are indicated for each 

coated/adsorbed substance (S-LAL10 glass, Cr, Au, Ti, TiO2, protein, and PBS). 

 

Figure 2 

Simulation of SPR spectrum against 0, 20, 40, 60, 80, and 100 % oxidized 

titanium metal layers by air. Thicknesses of vapor deposited titanium metal layer 

were (a) 5 nm, (b) 10 nm, and (c) 20 nm. 

 

Figure 3 

High-magnification cross-sectional TEM image of the Ti-SPR sensor. 

 

Figure 4 

SPR spectrum of the developed Ti-SPR sensor. 5-nm titanium metal layer was 

deposited on this sensor. The continuous and dotted lines represent the 

measured and theoretically calculated spectra (titanium; 0.7 nm, titanium 

dioxide; 7.6 nm), respectively. 

 

Figure 5 

Atom fraction of Au (●) and O/Ti (○) ratio on the surface of the Ti-SPR sensor as 

measured by angle-dependent XPS. 



 

Figure 6 

Effect of etching titanium passivation layer with phosphoric acid at different pH, 

as measured by SPR (a) and by QCM (b). The acid solutions were flowed for 20 

min and then were washed out with pure water for 19 min. 

 

Figure 7 

Time evolution of protein adsorption on titanium passivation layer by SPR. 

Protein solutions in PBS were 2 µg/ml γ-globulin, 2 µg/ml albumin, and 2 µg/ml 

bFGF. The protein solutions were flowed for 10 min and then were washed out 

with PBS for 9 min. 

 

 

Figure 8 

Time evolution of polymer adsorption on titanium passivation layer by SPR. 

Polymer solutions were 100µg/ml PEI and 100 µg/ml gelatin in PBS, and 1wt% 

PPAc in water. The polymer solutions were flowed for 10 min and then were 

washed out with PBS for 9 min. 

 

Figure 9 

MC3T3-E1 cell adhesion on the polymer-coated titanium array. (a) SPRI image 

of the array chip after 1-hour incubation with cells. The four spots were titanium 

(passivation surface), PEI, gelatin, and PPAc as shown in the schematic. (b) 

Real-time assessment of MC3T3-E1 cell response on the polymer-coated 



titanium array by SPRI. (c) Phase-contrast microscopy of MC3T3-E1 cell 

attachment. 

 

Figure 10 

SPRI imaging of acid-etching of the DDP treated titanium array chip. (a) The 

array chip of four 1-mm spots, of which two spots were titanium (passivation 

surface, black spots in the schematic), and the two other spots were treated with 

DDP (red spots in the schematic), amidst the ODTCS-treated titanium (blue 

surrounding area in the schematic). The SPRI image revealed that the 

DDP-solution etched the ODTCS-treated titanium near the DDP-spots. (b) The 

whole area, including the four spots and the surrounding area, were exposed to 

the HCl/KCl buffer (pH=1.5), during which the SPR-reflected light intensity was 

recorded in real-time using SPRI. 

 

 

 



Figure 1

S-LAL10
Cr
Au
Ti

Protein
TiO2

PBS

ε = -30 + 31i, t = 1 nm

ε = 5.19
ε = -4.30 + 21.1i
ε = -12.5 + 1.25i, t = 49 nm

ε = 2.10

ε = 1.77

60°

S-LAL10
ε = 2.96

Incident angle
θ

Incident light
(λ; 632.8 nm)

Reflected light

Ti-SPR
sensor chip

Adsorption
layer

Medium



Figure 2

40 50 7060 80
Incident light angle (degree)

R
ef

le
ct

an
ce

100 %

a b c
0 %
20 %
40 %
60 %
80 %

0.
2

40 50 7060 80
Incident light angle (degree)

R
ef

le
ct

an
ce

100 %

0 %
20 %
40 %

60 %

80 %

0.
2

40 50 7060 80
Incident light angle (degree)

R
ef

le
ct

an
ce

100 %

0 %
20 %
40 %
60 %
80 %

0.
2



Figure 3

20 nm

Ti/TiO2

Au

Cr
Glass

Epoxy



Calculated

Measured

Figure 4

40 7050 60
Incident light angle (degree)

R
ef

le
ct

an
ce

1.0

0.8

0.6

0.4

0.2

0



Figure 5
A

to
m

 fr
ac

tio
n 

of
 [A

u]

0.1

0.08

0.06

0.04

0.02

0

3.0

2.9

2.7

2.8

2.6

2.5
0.2 0.6 0.8 1.00.4

[O
]/[

Ti
]

Take-off angle of photoelectron (sin θ)

; [O]/[Ti]
; [Au]/{[O]+[Ti]+[Au]}



Figure 6

0 5 10 15 20 25 30 35 40SP
R

 a
ng

le
 s

hi
ft 

(d
eg

re
e) 0.1

0

-0.1

-0.2
Time (min)

a

pH 3.0

pH 1.9
pH 2.0

pH 1.8

pH 2.0
pH 1.8

0 5 10 15 20 25 30 35 40
Time (min)

0

5

Fr
eq

ue
nc

y 
sh

ift
 (H

z)

-5

-10

b



Figure 7

0 5 10 15 20
Time (min)

bFGF

γ-globlin

albumin

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

SP
R

 a
ng

le
 s

hi
ft 

(d
eg

re
e)



Figure 8
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Figure 9
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Figure 10
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We report for the first time on our development of a titanium passivation layer 

sensor that makes use of surface plasmon resonance. The deposited titanium 

metal layer on the sensor was passivated in air, like titanium medical devices. 

This sensor analyses not only biomolecules interactions but also corrosion of 

titanium passivation layer exposed to acid in real time and will therefore be very 

useful to study titanium-corrosion phenomena and biomolecular titanium-surface 

interactions with application in a broad range of industrial and biomedical fields. 
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