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Abstract 

 

 Catalytic mechanism of ethylbenzene dehydrogenation over Fe-Co/Mg(Al)O 

derived from hydrotalcites has been studied based on the XAFS and XPS catalyst 

characterization and the FTIR measurements of adsorbed species. Fe-Co/Mg(Al)O 

showed synergy, whereas Fe-Ni/Mg(Al)O showed no synergy, in the dehydrogenation 

of ethylbenzene. Ni species were stably incorporated as Ni2+ in the regular sites in 

periclase and spinel structure in the Fe-Ni/Mg(Al)O. Contrarily, Co species exists as a 

mixture of Co3+/Co2+ in the Fe-Co/Mg(Al)O and was partially isolated from the regular 

sites in the structures with increasing the Co content. Co addition enhanced Lewis 

acidity of Fe3+ active sites by forming Fe3+–O–Co3+/2+(1/1) bond, resulting in an 

increase in the activity. FTIR of ethylbenzene adsorbed on the Fe-Co/Mg(Al)O clearly 

showed formations of C–O bond and π-adsorbed aromatic ring. This suggests that 

ethylbenzene was strongly adsorbed on the Fe3+ acid sites via π-bonding and the 

dehydrogenation was initiated by α-H+ abstraction from ethyl group on Mg2+–O2– basic 

sites, followed by C–O–Mg bond formation. The α-H+ abstraction by O2–(–Mg2+) was 

likely followed by β-H abstraction, leading to the formations of styrene and H2. Such 

catalytic mechanism by the Fe3+ acid–O2–(–Mg2+) base couple and the Fe3+/Fe2+ 

reduction-oxidation cycle was further assisted by Co3+/Co2+, leading to a good catalytic 

activity for the dehydrogenation of ethylbenzene.  

 

Key words: ethylbenzene dehydrogenation; styrene, Fe3+–O–Co3+/2+(1/1) active species; 

hydrotalcite; EXAFS; FTIR; C–O bond formation. 
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1. Introduction 

 

 Styrene, an important basic chemical as a raw material for polymers, is produced 

commercially by the dehydrogenation of ethylbenzene using an Fe–K oxide catalyst in 

the presence of a large amount of superheated steam at 600–700 °C [1]. Steam affords 

the heat to shift the chemical equilibrium of the endothermic reaction toward higher 

conversion to styrene [2], assists the formation of active KFeO2 species [3] and 

suppresses the formation of coke on the catalyst [4]. However, one should notice that 

steam is used in a large excess molar amount with respect to ethylbenzene (6–13:1), 

leading to a huge amount of energy consumption (1.5×106 kcal/styrene ton) [5]. 

Moreover, the commercial Fe-K oxide catalyst has some disadvantages: unstable active 

Fe3+ sites [6], small surface area and the migration and loss of potassium promoter 

[7-9]. 

 The search for new catalysts which have large surface areas and can stabilize the 

active state of iron, in the absence of potassium and steam, is much needed. Aluminum 

was proved to be an excellent promoter, preventing sintering in iron-oxide catalysts [10]. 

MgO had especially good characteristics as an additive among a series of alkaline earth 

oxides [11]. Mg2+ ions possess a small ionic radii leading to a high electrostatic 

potential due to the stable valence state, resulting in an effective suppression of Fe 

sintering due to the reduction of Fe3+/2+ to Fe0. The author previously reported that 

Fe/Mg(Al)O catalyst derived from hydrotalcite showed a high activity in the 

dehydrogenation of ethylbenzene in the absence of steam [12]. The active Fe species 

exists as metastable Fe3+ on the Fe/Mg(Al)O catalyst. Recently the authors published 
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three papers: in the first paper [13], Fe–Co/Mg(Al)O bimetallic catalyst showed the 

highest activity in the steamless dehydrogenation of ethylbenzene among a series of 

Fe–Me/Mg(Al)O (Me = Cu, Zn, Cr, Mn, Fe, Co and Ni) systems. The active Fe3+ 

species was reduced at a low temperature by the Fe–Co bimetal formation in TPR, 

leading to the high activity. Simultaneously, the amount of reducible Fe3+ was the 

smallest, resulting in a high stability of the active Fe3+ species against the reduction to 

Fe0. In the second paper [14], bimetallic Fe–Co system showed a clear synergy, i.e., the 

highest activity was obtained at x = 0.25 among Fe0.5-x–Cox/Mg3(Al0.5)O (x = 0–0.5), 

whereas Fe–Ni bimetallic system prepared as comparison showed no synergy. The 

dehydrogenation on the active Fe3+ sites was accelerated by a reduction-oxidation 

between Fe3+ and Fe2+ and Co assisted the reduction-oxidation by forming Fe–Co (1/1) 

bimetallic active species. In the third paper [15], the activity increased with increasing 

the Mg content in Fe0.5/Mg3-xZnx(Al0.5)O (x = 0–3). Both CO2-TPD and IR spectroscopy 

of adsorbed CO2 clearly showed the presence of base sites, Mg2+–O2–, on the catalysts. 

The combination of Mg2+–O2– and Fe3+ was essential for the catalytic activity; the 

dehydrogenation of ethylbenzene was initiated by the H+ abstraction on Mg2+–O2– basic 

sites near the Fe3+ sites.  

 In the present paper, we report further detailed characteristics of the active Fe–Co 

bimetallic species on Fe–Co/Mg(Al)O catalyst obtained by XPS and XAFS analyses, 

and FTIR measurements of pyridine adsorbed on the catalysts. It was clarified that Co 

exists as Co3+/2+ mixed valence state, whereas Ni as Ni2+ in Fe-Ni/Mg(Al)O, although 

both Co2+ and Ni2+ salts were used for the catalyst preparation. Moreover, some new 

mechanistic features of the dehydrogenation are proposed based on the FTIR 
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observation of reaction intermediate possessing C–O bond in ethylbenzene adsorbed on 

Fe–Co/Mg(Al)O. 

 

2. Experimental 

 

2.1. Fe/Mg(Al)O-based catalysts’ preparation 

 

 The catalysts, Fe0.5-x–Cox/Mg3(Al0.5)O (x = 0, 0.25 and 0.5), Fey–Coy/Mg3(Al0.5)O 

(y = 0.1 and 0.5), Fe0.5-z–Niz/Mg3(Al0.5)O (z = 0.25 and 0.5) and Fe0.5/Mg3(Al0.5)O were 

prepared by coprecipitation of metal nitrates, followed by calcination at 550 °C [13]. An 

aqueous solution of the appropriate combination of the nitrates of Mg2+, Zn2+, Fe3+, 

Co2+, Ni2+ and Al3+ (ca. 0.05 total mol/200 ml) was added slowly with vigorous stirring 

into an aqueous solution of sodium carbonate (0.04 mol/400 ml). The pH of the solution 

was adjusted at 10.0 by dropping a 1 M aqueous solution of sodium hydroxide, leading 

to a precipitation of heavy slurry. After the solution was aged at 60 °C for 24 h, the 

precipitates were filtrated, washed with de-ionized water (1000 ml), dried in air at 

100 °C for 4 h, and calcined at 550 °C for 12 h in a muffle furnace in a static air 

atmosphere. The concentration of Na+ in the catalysts after the calcination was 

confirmed to be below 10 ppm by atomic absorption (AA).  

 

2.2. Characterizations of catalysts. 

 

 The catalyst precursors and the catalysts were characterized by AA, powder X-ray 
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diffraction (XRD), nitrogen adsorption-desorption (N2 absorption-desorption), X-ray 

photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAFS) and 

Fourier-transformed infrared spectroscopy (FTIR).  

 AA measurements were carried out with a Perkin Elmer AAnalyst 100 using a 

mixed gas of acetylene–N2O–air.  

 XRD was recorded on a Mac Science MX18XHF-SRA powder diffractometer 

with monochromatized CuKα radiation (λ = 0.154 nm) at 40 kV and 30 mA. The 

diffraction pattern was identified through comparison with those included in the JCPDS 

(Joint Committee of Powder Diffraction Standards) database.  

 N2 adsorption-desorption isotherms at –196 °C were measured using a 

conventional volumetric apparatus (Bel Japan, BELSORP Mini). Before adsorption 

measurements, samples (ca. 0.1 g) were heated at 400 °C for 10 h under N2 flow. 

Surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. 

 XPS measurements were performed on a Perkin Elmer 1600E spectrometer using 

Mg Kα radiation as excitation source. In charge-up correction, the calibration of binding 

energy (BE) of the spectra was referenced to the C 1s electron bond energy 

corresponding to graphitic carbon at 284.5 eV. In addition, relative atomic sensitivity 

factors (ASF) were used to determine practically more accurate chemical compositions 

on the surface.  

 X-ray absorption spectroscopic measurements were performed at room 

temperature in a transmission mode at the EXAFS facilities installed at the BL01B1 line 

of SPring-8 JASRI, Harima, Japan, using a Si(1 1 1) monochrometer. The data were 

collected in a quick-XAFS mode. Data reduction was carried out with REX2000 
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ver.2.5.9 program [16]. The sample was mixed with boron nitride as a binder and then 

pressed into a disk (10 mm in diameter). Energy was calibrated with Cu K-edge 

absorption (8981.0 eV); the energy step for measurement in the XANES region was 0.3 

V. The adsorption was normalized to 1.0 at an energy position of 50 eV higher than the 

adsorption edge. 

 FTIR spectra of ethylbenzene, 1-phenylethanol, acetophenone and pyridine 

adsorbed on the catalyst were recorded on a Nicolet 6700 FT-IR spectrometer with a 

resolution of 4 cm–1. The catalyst sample, about 30 mg, was pressed into a 

self-supported wafer, pretreated at 550 °C under vacuum (<10–6 mbar) for 1 h, and then 

background spectrum was recorded after cooling the sample to 25 °C. Ethylbenzene was 

adsorbed on the sample at room temperature and sequentially evacuated at 450 °C and 

550 °C, while 1-phneylethanol, acetophenone and pyridine were adsorbed at room 

temperature and sequentially evacuated at room temperature, 100 °C and 400 °C. 

Difference spectra were obtained by subtracting the background spectrum recorded 

previously. 

 

2.3. Catalyst test 

 

 Dehydrogenation of ethylbenzene was conducted using a continuous gas-flow 

reactor with a fixed bed catalyst (Autoclave Engineers Ltd. Model 401 C 0286) at 

atmospheric pressure. In the dehydrogenation reactions, typically 0.15 g of catalyst, 

which had been pelletized to the particles 0.3–0.8 mm in diameter, was loaded into the 

reactor. The catalyst was pre-treated in a He gas flow (100 ml min–1) at 550 °C for 1 h. 
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The reaction was started by introducing a gas mixture of ethylbenzene and He into the 

reactor. Ethylbenzene (0.08 ml min–1; ca. 0.7 mmol min–1) was fed by micro-feeder 

under a He flow (100 ml min–1). He was used as a carrier gas instead of N2, because N2 

can be activated to form NH3 in the presence of H2 over Fe catalysts. The reaction was 

carried out for 3 h of time-on-stream at 550 °C.  

 The reaction products (styrene, toluene, and benzene) and ethylbenzene were 

analyzed by on-line gas chromatograph equipped with FID using a HP-INNOWAX 

column. None of other hydrocarbons was detected. Analysis of hydrogen was 

performed with a TCD gas chromatograph using a packed Molecular Sieve-5A column. 

All the lines and valves between the cold trap and the reactor were heated to 150 °C to 

prevent any condensation of ethylbenzene or of the dehydrogenation products.  

 

3. Results and Discussion 

 

3.1. Surface area, metal composition and crystal structure of the catalysts 

 

 The specific surface areas of the catalysts are shown in Table 1. All catalysts 

exhibited a large surface area due to the porous structure derived from hydrotalcites as 

the precursors. An exceptionally small surface area of Fe0.5/Zn3(Al0.5)O may be due to 

the formation of well crystallized ZnO phase arising from phase separation of Zn(OH)2 

from hydrotalcite during the preparation [15]. As previously reported [13], the metal 

compositions obtained with AA measurement well coincided with those expected from 

the amount of raw materials used. This is also due to the formation of hydrotalcite 
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precursors which can accommodate all metal components in the structure after the 

co-precipitation.  

 After calcination at 550 °C, all Mg-containing catalysts showed the X-ray 

reflections of MgO periclase together with MgAl2O4 spinel. MgO incorporates Ni2+ and 

Co2+, as frequently reported as Mg(Ni)O and Mg(Co)O solid solutions [17,18], or Al3+ 

and Fe3+ as Mg(Al)O and Mg(Fe)O periclase prepared from Mg–Al and Mg–Fe 

hydrotalcites, respectively [19,20]. MgAl2O4 spinel also accommodates Fe3+ in the 

regular sites of Mg(Al,Fe3+)2O4 and Co and Ni in Mg(Ni,Co2+)Al2O4 or 

Mg(Ni)(Al,Co3+)2O4, depending on the valence state of Co2+ or Co3+ [21]. Mössbauer 

measurements suggest that much amount of Fe3+ was incorporated in spinel than 

periclase compared to the values expected from XRD analyses [13,14]. Contrarily, 

Fe0.5/Zn3(Al0.5)O after drying showed reflections of Zn(OH)2, indicating a separation of 

a part of Zn2+ from the Zn2+–Al3+ hydrotalcite, resulting in the formation of ZnO as a 

separated phase after the calcination. Fe0.5/Zn3(Al0.5)O showed the reflections of ZnO 

together with those of zinc ferrite (ZnFe2O4) [15]. This is in contrast to the results of 

Fe0.5/Mg3(Al0.5)O, which showed mainly Mg(Fe,Al)O periclase reflections. Mg–Fe 

system incorporated Fe3+ to form mainly Mg(Fe)O periclase, whereas Zn–Fe system 

formed ZnFe2O4 separately from ZnO. ZnO wurtzite forms solid solutions with Fe3+, 

but the amount of Fe3+ dissolved is small [22]. 

 

3.2. Activity of Fe–Co/Mg(Al)O catalysts. 

 

 In the previous paper, we reported Fe–Co(1/1) bimetallic species as the active 
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sites on Fe0.25–Co0.25/Mg3(Al0.5)O catalyst for the dehydrogenation of ethylbenzene 

[13,14]. The Fe0.25–Co0.25/Mg3(Al0.5)O catalyst was calcined at 550, 650, 750 and 850 

ºC, and each was tested in the dehydrogenation of ethylbenzene (Fig. 1). In the previous 

paper, we reported that the activity evaluated by styrene yield at 30 min of the 

time-on-stream was not affected significantly by the calcination temperature [13]. In the 

present work, the activity was compared by the ethylbenzene conversion during the 

reaction after 60 min of time-on-stream. All catalysts calcined at 550, 650 and 750 ºC 

showed almost the same conversion, but the catalyst calcined at 850 ºC alone showed a 

decreased conversion. The selectivity to styrene was nearly the same independently of 

the calcination temperature between 550 and 850 ºC. These results clearly indicate a 

decrease in the number of the active sites after the calcination at 850 ºC.  

 XPS analyses of Fe0.25–Co0.25/Mg3(Al0.5)O showed peaks of Fe 2p3/2 and Fe 2p1/2 

at 710.6 and 724.1 eV, respectively, which are assigned to Fe3+ for iron [13]. However, 

we could not definitely assign the valence state of Co species in 

Fe0.25–Co0.25/Mg3(Al0.5)O catalysts, because the distinction between Co2+ and Co3+ 

formed on the surface of the catalysts is difficult to be established by XPS [23]. In the 

XPS study of Re-promoted Co/Al2O3 catalyst [24], unusual property was observed; the 

Co 2p3/2 peak of the oxide shifted to a higher binding energy after reduction at 350 °C. 

This is most likely due to the Co3O4 → CoO transition, as Co3+ ions in the spinel 

structure at the lower binding energy were reduced to a +2 valence state at higher 

binding energy. Sexton et al. [25] reported the following peak assignment of Co 2p3/2: at 

780.3 eV together with shake-up satellite at ca. 786 eV for Co2+, whereas at 779.5 eV 

without shake-up satellite for Co3+. These are in contrast to the phenomena generally 
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accepted, in which metal cations of the higher valence state usually have the higher 

binding energy than that of the lower valence state. Recently, the binding energy of 

Co3O4 was reported as Co 2p3/2 = 779.9 eV [26] or 779.6 eV together with shake-up 

satellite peak at 788.2 eV [27]. Actually we observed the peak of Co 2p3/2 at 780 eV 

together with the shake-up satellite at ca. 787 eV for Fe0.25–Co0.25/Mg3(Al0.5)O calcined 

at 550 ºC (Fig. 2a). This suggests that the catalyst surface was composed of mixed 

valence state between Co3+ and Co2+, possibly by the formation of isolated Co3O4 as 

fine particles.  

 The surface metal compositions obtained by XPS analyses are shown in Fig. 3. 

Co/Mg ratio was almost constant between 550 and 850 ºC, whereas Fe/Mg ratio was 

almost constant up to 750 ºC and decreased at 850 ºC. The Fe/Co ratio was ca. 0.9 

between 550 and 750 ºC and decreased to ca. 0.4 at 850 ºC. XRD observations of these 

catalysts showed the enhanced formation of spinel at 850 ºC [13,14]. XPS observations 

showed an increase in the binding energy of Co 2p3/2 from 780 eV at 550 ºC to 780.6 eV 

at 850 ºC (Fig. 2b). This suggests that Co3+ was partly reduced to Co2+; the isolated 

Co3O4 on the catalyst surface was partly converted to (Mg,Co2+)(Al,Fe)2O4 spinel 

during the calcination at increasing temperature. The ionic radii of metal components in 

octahedral coordination are as follows: Mg2+, 0.86 Å; Al3+, 0.68 Å; Fe3+, 0.79 Å; Co2+, 

0.89 Å; Co3+, 0.75 Å and Ni2+, 0.83 Å [28]. It is likely that Ni2+ is stably incorporated 

not only in the hydrotalcites as precursors but also in periclase and spinel in the final 

Fe0.25–Ni0.25/Mg3(Al0.5)O (vide infra), whereas Co2+/Co3+ incorporation in the structures 

is continuously accompanied by the reduction of Co3+ to Co2+ during the calcination at 

increasing temperature. Such reduction, or conversion of Co3O4 to (Mg,Co2+)(Al,Fe)2O4, 
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seems to proceed in the surface layer. This may cause an enhanced dispersion of Co 

species on the surface, resulting in a decrease in the Fe/Co ratio on the catalyst surface. 

The low activity by calcination at 850 ºC (Fig. 1) is likely due to the decrease in the 

Fe/Co ratio, i.e., a decrease in the number of surface Fe3+ species as the active sites. 

 When the Fe–Co loading on Fey–Coy/Mg3(Al0.5)O was varied from y = 0.1 to 0.5, 

the loading with y = 0.25, Fe0.25–Co0.25/Mg3(Al0.5)O, showed a clear deactivation during 

3 h of time-on-stream (Fig. 4). Decreased loading with y = 0.1, Fe0.1–Co0.1/Mg3(Al0.5)O, 

showed no clear deactivation and its activity at 3 h of time-on-stream was almost the 

same as that of Fe0.25–Co0.25/Mg3(Al0.5)O. Increase in the loading up to y = 0.5, 

Fe0.5–Co0.5/Mg3(Al0.5)O, showed no increase in both ethylbenzene conversion and 

styrene selectivity compared with those on Fe0.25–Co0.25/Mg3(Al0.5)O. The highest 

selectivity as well as the most sustainable styrene formation was obtained over 

Fe0.1–Co0.1/Mg3(Al0.5)O with the lowest Fe–Co(1/1) loading.  

 

3.3. XANES and XAFS analyses of the catalysts. 

 

 The Fe K-edge XANES spectra of Fe0.25–Co0.25/Mg3(Al0.5)O, 

Fe0.25–Ni0.25/Mg3(Al0.5)O, Fe0.5/Mg3(Al0.5)O and α-Fe2O3 are shown in Fig. 5. The 

energy level of Fe K-edge XANES spectra indicates that Fe species in the catalysts exist 

in the valence state of Fe3+ [29]. This well coincided with the results obtained by 

Mössabauer and XPS analyses [13,14]. The Fe K-edge XANES for the catalysts is a 

little different from that of α-Fe2O3 and close to that of Fe3O4 reported by Chen et al 

[29]. The pre-edge peak arises from a 1s → 3d transition, which is forbidden in 
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octahedral coordination but occurs in coordination without inversion center (distorted 

octahedral, tetrahedral) [30]. It is known from high resolution measurements that the 

pre-edge peak is sharp and more intensive with Fe3+ in tetrahedral coordination [31]. 

However, the pre-edge peaks of all catalysts were neither sharp nor intense and, 

moreover, separated into two peaks (Figs. 5Ab, c and d). Such split of the pre-edge peak 

of Fe3+ into two components were reported for α-Fe2O3 and Fe(acac)3 [32]. In the 

present work, α-Fe2O3 (Fe3+ in distorted octahedral coordination) showed more intense 

pre-edge peak than those of all catalysts (Fig. 5Aa). Moreover, the pre-edge peak of 

α-Fe2O3 was split into two peaks, the second peak of which was substantially intensified 

compared to the first peak. Contrarily, all catalysts showed rather weak pre-edge peak 

split into two peaks, the intensities of which were almost comparable each other (Figs. 

5Ab, c and d). This seems to reflect a lower distortion from the ideal octahedral 

symmetry with respect to all catalysts compared with that of α-Fe2O3.  

 The characteristics of the pre-edge and post-edge peaks are almost similar; the 

coordination symmetry around Fe3+ is likely to be almost the same for all catalysts, 

independently of the presence of Co or Ni. The shapes of pre-edge peaks (Fig. 5A) 

suggest that the spin states of Fe3+ are the same in all catalysts. Moreover, the EXAFS 

oscillation modes (data are not shown) are the same for all catalysts, indicating that the 

coordination spheres around Fe3+ are the same, independently of the presence of Co or 

Ni. The first coordination sphere around Fe3+ can be fitted by oxygen atom and the 

second sphere by aluminum atom. Thus, Fe3+ species is most likely distributed in the 

regular sites of the periclase and the spinel in the structure of the catalysts. No clear 

evidence of the formation of Fe–O–Co or Fe–O–Ni bonding was obtained from the 
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results of Fe K-edge XANES measurements. Relatively long wave length, i.e., low 

frequency, of the EXAFS oscillation also indicates a rather small contribution of heavy 

atom such as Fe, Co or Ni, at the neighboring sites of Fe. 

 The Co K-edge XANES spectra of Co0.5/Mg3(Al0.5)O, Fe0.25–Co0.25/Mg3(Al0.5)O 

and CoO are shown in Fig. 6. The XANES peak for CoO was observed at 7724 eV (Fig. 

6a) as reported by Jacobs et al. [33] for pure CoO. It was reported that the XANES peak 

of Co3+ species was observed at 5 eV higher than that of Co2+ [34]. Moreover, Co3O4, 

which contains 2 atoms in 3+ oxidation state and 1 atom in 2+ oxidation state, showed 

the XANES peak at 3 eV higher than that of Co2+ [35]. Actually the energy level of the 

XANES peak of the catalysts was ca. 2 eV higher than that of CoO, suggesting that Co 

species exist as a mixed valence state between Co3+ and Co2+, possibly as Co3O4, on the 

catalysts. This coincided with the results obtained by H2-TPR [14] and XPS analyses, 

although clear assignment of the valence state of Co species was difficult in XPS (vide 

supra). Pre-edge features are associated with the symmetry effects in the environment of 

cobalt and are due to 1s → 3d transitions. As described by Moen et al. for Co K-edge 

peak [36,37], the transition is most intense when the first coordination shell lacks 

inversion symmetry. Therefore, the pre-edge feature is most intense for tetrahedral 

symmetry but should not be permitted for octahedral symmetry. In the present work, a 

weak pre-edge peak was observed at 7707 eV for all samples (Figs. 6a, b and c). The 

intensity of the pre-edge peak was higher for Co0.5/Mg3(Al0.5)O than for 

Fe0.25–Co0.25/Mg3(Al0.5)O (Figs. 6Ab and c), suggesting that Co species in the former 

possess the lower symmetric state, i.e., in the more distorted octahedral coordination, 

than that in the latter. A shoulder observed at ca. 7717 eV for Co0.5/Mg3(Al0.5)O (Fig. 
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6b) may originate from the gradual polymerization of Co2+ ions with oxygen ion (O2–) 

as the concentration of Co increases in the co-preciptation solution [23]. The 

polymerization will finally leads to a substantial formation of isolated cobalt oxide 

clusters, Co3O4, as fine particles on the catalyst surface. This again well coincided with 

the results observed for Co0.5/Mg3(Al0.5)O sample by H2-TPR and XRD [14]. 

 Fe0.25–Co0.25/Mg3(Al0.5)O showed a slightly different mode in the EXAFS 

oscillation from that of Co0.5/Mg3(Al0.5)O (data are not shown) and, further, showed the 

stronger peak in the second coordination sphere than Co0.5/Mg3(Al0.5)O in Fourier 

transforms of EXAFS oscillation (Figs. 7f and g). These suggest that the coordination 

sphere around Co species differ each other between in Fe0.25–Co0.25/Mg3(Al0.5)O and 

Co0.5/Mg3(Al0.5)O. The peak intensity in the second coordination sphere frequently 

varies due to the following reasons: 1) several atoms coordinate to Co changing the 

bond distance, or 2) heavy atoms coordinate to Co, e.g., by forming Co–O–Fe or 

Co–O–Co bonding. Moreover, the peak position varied and the peak intensity was 

weaker at the first coordination sphere (Co–O bonding) (Figs. 7f and g) than those 

observed for Fe species (Fe–O bonding) (Figs. 7b, c and d), indicating that Co–O bond 

length was not constant. Neither Co nor Ni species was found around Fe species as 

observed for Fe K-edge XANES and EXAFS oscillation. Compared with such simple 

coordination sphere around Fe, the coordination sphere around Co species was more 

complex, suggesting that Co–O–Co and Co–O–Fe bonding were contaminated. This 

may coincide with the formation of Co3O4 as well as the results obtained in the previous 

paper; Co species tends to be isolated from the periclase and spinel structures to form 

CoOx in Co-rich catalysts [14].  
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 The energy levels of Ni K-edge XANES spectra of Fe0.25–Ni0.25/Mg3(Al0.5)O, 

Ni0.5/Mg3(Al0.5)O and NiO (Fig. 8) indicate that Ni species in the catalysts is in the 

valence state of Ni2+. The Ni K-edge XANES for the calcined catalyst is very similar to 

that of NiO, with the rock salt structure, i.e., Ni cations basically octahedrally 

coordinated by oxygen atoms. The characteristics of pre-edge (Fig. 8A) and post-edge 

suggest that the coordination symmetry around Ni2+ is slightly distorted octahedral [26], 

independently of the copresence of Fe. EXAFS oscillation of Ni0.5/Mg3(Al0.5)O differs 

from that of Fe0.25–Ni0.25/Mg3(Al0.5)O, and shows a short wave length, suggesting the 

formation of Ni–O–Ni bonding. Actually the spectrum can be fitted with oxygen in the 

first coordination sphere and with Ni in the second coordination sphere. In the presence 

of Fe, i.e., Fe0.25–Ni0.25/Mg3(Al0.5)O, the oscillation with the short wave length almost 

disappeared and the peak of the second coordination sphere was weakened in Fourier 

transforms of EXAFS oscillation, suggesting that Ni–O–Ni contribution was lowered or 

that Ni–O–Fe contribution was almost negligible (Figs. 7i and j). 

 All these data suggest that each Fe, Co and Ni was mainly coordinated by Al (or 

Mg) through oxygen atom except Co–O–Fe and Co–O–Co bonding possibly on the 

surface of Mg3Fe0.25Co0.25Al0.5 catalyst particles. 

 

3.4. FTIR of ethylbenzene adsorbed on the catalysts 

 

 The FTIR spectra of ethylbenzene adsorbed on Fe0.5/Mg3(Al0.5)O, 

Fe0.25–Co0.25/Mg3(Al0.5)O and Fe0.5/Zn3(Al0,5)O catalysts are shown in Figs. 9a-f. At 450 

ºC, Fe0.5/Zn3(Al0.5)O showed broad absorption bands around 1360 and 1560 cm–1 
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corresponded to hydrocarbons decomposition fragments, presumably as oligomers of 

reactant and/or product species (Fig. 9e) [38,39]. It was also reported that intense IR 

bands were observed at about 1360 and 1590 cm–1 for ground graphite, carbon blacks 

and some activated carbons [40]. However, these bands totally disappeared at 550 ºC, 

suggesting that these fragments were almost decomposed and desorbed, leading to no 

coke formation on the catalysts, (Fig. 9f). Fe0.5/Zn3(Al0.5)O showed also weak 

absorption bands at 1445, 1494 and 1602 cm–1 (Fig. 9e) at 450 ºC, which are all 

assigned to ν(C–C) of aromatic ring of ethylbenzene [41], suggesting a weak adsorption 

of ethylbenzne via its aromatic ring on Fe0.5/Zn3(Al0.5)O. These indicate that 

ethylbenzene was adsorbed on Fe0.5/Zn3(Al0.5)O, but followed by decomposition, 

leading to no substantial formation of styrene.  

 Although the broad bands around 1360 and 1560 cm–1 were observed on 

Fe0.25–Co0.25/Mg3(Al0.5)O at 450 and 550 ºC, they are not intensive as those on 

Fe0.5/Zn3(Al0.5)O (Figs. 9c and d). On Fe0.25–Co0.25/Mg3(Al0.5)O at 450 and 550 ºC (Figs. 

9c and d), the absorption bands of ν(C–C) of aromatic ring of ethylbenzene were 

observed at 1445, 1481, 1494 and 1602 cm–1 together with the band of ν(C–H) of 

aromatic ring of ethylbenzene at 1385 cm–1 [41]. Among these bands, the ν(C–C) band 

at 1481 cm–1 was most intensified at 550 ºC. The wave numbers of these bands well 

coincided with those observed for ethylbenzene adsorbed on β-zeolite [41]. For 

ethylbenzene in gas phase, the ν(C–C) bands were observed at 1460 and 1498 cm–1, 

whereas the ν(C–H) band was observed at 1382 cm–1 [41]. Compared with these values 

in gas phase, the ν(C–C) bands were shifted toward lower wave numbers (from 1460 

and 1498 cm–1 to 1445, 1481 and 1494 cm–1), whereas the ν(C–H) band showed no 
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significant shift (1385 cm–1), on the catalyst. When benzene was adsorbed on α-Fe2O3, a 

strong absorption band appeared at 1481 cm–1 assigned to ν19 vibration [42] composed 

by out-of plane deformation vibrations. This indicates that there is an interaction with 

an electron-withdrawing center nearly perpendicular to the aromatic ring [43]. It is most 

likely that ethylbenzene was strongly adsorbed on Fe0.25–Co0.25/Mg3(Al0.5)O through the 

aromatic ring, presumably via a π-type bonding interaction with rather strong Lewis 

acidic centers. On the other hand, Fe0.5/Mg3(Al0.5)O showed no absorption band 

between 1368 and 1602 cm–1, i.e., all bands of ν(C–C) at 1445, 1481, 1494 and 1605 

cm–1 and of ν(C–H) at 1385 cm–1 of aromatic ring of ethylbenzene adsorbed were not 

observed on Fe0.5/Mg3(Al0.5)O even under high magnification (Figs. 9a and b). This 

suggests that π-type bonding interaction of aromatic ring with Lewis acid centers was 

not strong on Fe0.5/Mg3(Al0.5)O as on Fe0.25–Co0.25/Mg3(Al0.5)O, although 

Fe5/Mg3(Al0.5)O possesses Lewis acid sites on the surface (vide infra). 

 Fe0.25–Co0.25/Mg3(Al0.5)O showed further the absorption bands at 1095, 1153, 

1198, 1246 and 1307 cm–1 at 450 and 550 ºC (Figs. 9c and d). The most intense band at 

1246 cm–1 may be assigned to C–O stretching vibration, because the absorption band of 

C–O bond was observed at 1211 cm–1 for 1-butanol adsorbed on Pt electrode [44]. The 

weak band at 1095 cm–1 is assigned to coke formed on the catalyst surface as observed 

in benzene alkylation with propylene over Hβ-zeolite [45]. The broad band at 1307 cm–1 

may be assigned to vinyl C–H bending mode of styrene formed from ethylbenzene and 

the weak band at 1198 cm–1 is assigned to styrene in gaseous phase [38]. These suggest 

that styrene was formed by the dehydrogenation during the FTIR measurements of 

ethylbenzene adsorption. Similar pattern of the absorption bands was observed on 
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Fe0.5/Mg3(Al0.5)O, although not intensive as on Fe0.25–Co0.25/Mg3(Al0.5)O. The band at 

1246 cm–1 clearly indicated the C–O bonding also on Fe0.5/Mg3(Al0.5)O. Moreover, a 

new band appeared at 1676 cm–1 at 500 ºC (Fig. 9b) and may be assigned to free 

CH2=CH2 [45], suggesting that an occurring of styrene decomposition on Mg3Fe0.5Al0.5.  

 

3.5. FTIR of pyridine adsorbed on the catalysts  

 

 The basicity of the Fe0.5/Mg3-xZnx(Al0.5)O catalysts was evaluated by the 

CO2–TPD and FTIR of CO2 adsorbed on the catalysts, and the important role of 

Mg2+–O2– basic site on the activity was suggested in the previous paper [15]. According 

to the results of FTIR measurements of ethylbenzene adsorbed on the catalysts, the 

adsorption of aromatic ring of ethylbenzene on the Lewis acid sites was suggested as an 

intermediate during dehydrogenation (Fig. 9). The nature of the Lewis acid sites is 

likely different each other on Fe0.5/Mg3(Al0.5)O and Fe0.25–Co0.25/Mg3(Al0.5)O. The 

surface acidity was evaluated by the FTIR of pyridine adsorbed on the catalysts. When 

pyridine was adsorbed at room temperature and sequentially evacuated at 100 °C, both 

Fe0.25–Co0.25/Mg3(Al0.5)O (Fig. 10a) and Fe0.5/Mg3(Al0.5)O (Fig.10c) showed similar 

pattern of the spectra. The bands at 1602, 1575 and 1443 cm−1 can be ascribed to 

stretching modes of the pyridine ring coordinated to surface Lewis acid sites, i.e. 

coordinatively unsaturated Fe3+ species (L-py) [46], while the band at 1488 cm−1 

contains contributions due to vibration of both pyridinium ions adsorbed on Brønsted 

acid sites (B-Py) and coordinatively adsorbed pyridine molecules (L-Py) [47]. The latter 

band at 1488 cm–1 was more intense on Fe0.5/Mg3(Al0.5)O than on 



 20

Fe0.25–Co0.25/Mg3(Al0.5)O. The band at 1543 cm−1 was observed only on 

Fe0.5/Mg3(Al0.5)O and is assigned to vibrations of pyridine molecules adsorbed on 

Brønsted acid sites (B-Py) [47]. Both bands at 1560 and 1507 cm-1 can not be assigned 

to any species and were more intensely observed on Mg3Fe0.5Al0.5 than on 

Fe0.25–Co0.25/Mg3(Al0.5)O. These results indicate that Lewis acid sites exist on both 

Fe0.5/Mg3(Al0.5)O and Fe0.25–Co0.25/Mg3(Al0.5)O surface together with small amounts of 

Brønsted acid sites, the latter, however, were more enhanced on Fe0.5/Mg3(Al0.5)O than 

on Fe0.25–Co0.25/Mg3(Al0.5)O.  

 When pyridine was evacuated at 400 °C on Fe0.25–Co0.25/Mg3(Al0.5)O (Fig. 10b), 

the band at 1443 cm–1 was substantially weakened, the bands at 1602 and 1575 cm–1 

disappeared, and a new band at 1616 cm–1 ascribed to L-Py appeared [48]. This 

indicates that the nature of Lewis acid sites was changed at 400 °C on 

Fe0.25–Co0.25/Mg3(Al0.5)O. On the other hand, on Fe0.5/Mg3(Al0.5)O after evacuation at 

400 °C (Fig. 10d), all bands of L-Py were proportionately weakened except that the 

band at 1488 cm–1 of B-Py almost disappeared, suggesting that the Brønsted acid sites 

were converted to the Lewis acid sites at 400 °C on Fe0.5/Mg3(Al0.5)O. 

 When pyridine was evacuated at 100 ºC on Fe0.5/Zn3(Al0.5)O, only weak bands at 

1443 and 1592 cm–1 were observed (Fig. 10e). The band at 1443 cm–1 is assigned to 

L-Py, whereas the band at 1592 cm–1 is assigned to physisorbed or hydrogen-bonded 

pyridine (H-Py) [48]. These bands almost disappeared after evacuation at 400 ºC (Fig. 

10f), indicating that no significant acid site was formed on Fe0.5/Zn3(Al0.5)O. 

 It is concluded that both Fe0.25–Co0.25/Mg3(Al0.5)O and Fe0.5/Mg3(Al0.5)O possess 

Lewis acid sites, whereas Fe0.5/Zn3(Al0.5)O does not. The Lewis acid sites may be 
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originated from Fe3+ species on the catalyst surface and the nature is different each other 

between Fe0.25–Co0.25/Mg3(Al0.5)O and Fe0.5/Mg3(Al0.5)O. Judging from the results of 

TPR measurements, i.e., Fe3+ was reduced at lower temperature on 

Fe0.25–Co0.25/Mg3(Al0.5)O than on Fe0.5/Mg3(Al0.5)O [13,14], the Fe3+ species seems 

more reactive on Fe0.25–Co0.25/Mg3(Al0.5)O than on Fe0.5/Mg3(Al0.5)O.  

 

3.6. Catalytic mechanism. 

 

 In ethylbenzene dehydrogenation over a commercial Fe2O3 catalyst, Măicăneanu 

et al. [49] proposed a mixed acid–basic and reduction–oxidation mechanism based on 

the kinetic study; a formation of π-adsorbed intermediate on Fe3+ acid centers, followed 

by elimination of two hydrogen ions from two C–H ethylic groups on basic centers with 

electrons transfer to Fe3+ to form styrene and H2. Miura et al. [50] proposed an initiation 

by the α-H+ abstraction on the basic site, followed by the formation of π-adsorbed 

intermediate on Fe3+ acid centers, based on H-D exchange study using the same catalyst. 

In the previous paper [15], we proposed the following mechanism: ethylbenzene (EB) 

was H+ abstracted on Mg2+–O2− basic sites, followed by further dehydrogenation to 

styrene (St) via the reduction of Fe3+ to Fe2+ (1). Both St and H2 were simultaneously  

 2Mg2+O2−Fe3+ + EBad → 2Mg2+OH−Fe2+ +Stad (1) 

desorbed with the reoxidation of Fe2+ to Fe3+ (2). Recently, Oliveira et al. [51] reported 

 2Mg2+OH−Fe2+ + Stad →  2Mg2+O2−Fe3+ + St + H2 (2) 

that, in ethylbenzene dehydrogenation over Fe/MCM-41 catalyst, the Fe3+ acid site of 

the catalyst adsorbs ethylbenzene, reversibly abstracting the α-hydrogen at a basic OH 
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adjacent to the acid site, whereas the O− base sites abstracts the β-hydrogen. A similar 

mechanism was also reported in the oxidative dehydrogenation of ethylbenzene on the 

Si–Al catalysts; the acid site adsorbs ethylbenzene, reversibly abstracting the 

α-hydrogen at the basic OH adjacent to the acid site, and the base site activates gaseous 

oxygen to form O– which abstracts the β-hydrogen leading to styrene formation [52]. 

 In the present work, we presumably assigned the band at 1246 cm–1 to ν(C–O). 

This assignment may be confirmed by the FTIR measurements of 1-phenylethanol and 

acetophenone as a reference. When 1-phneylethanol (Fig. 9g) was adsorbed on 

Mg3Fe0.25Co0.25Al0.5 at room temperature, two absorption bands appeared at 1207 and 

1262 cm–1 together with those at 1368, 1445, 1494 and 1602 cm–1. Acetophenone (Fig. 

9h) showed also similar patterns of absorption, i.e., two bands at 1216 and 1262 cm–1 

together with those at 1368, 1445, 1494 and 1602 cm–1. The latter four bands were also 

observed at 100 ºC (Figs. 9h and j) and can be assigned to ν(C–C) of aromatic ring of 

1-phenylethanol and acetophenone strongly adsorbed on Lewis acid sites as observed 

for ethylbenzene adsorbed on Mg3Fe0.25Co0.25Al0.5 (Figs. 9c and d). The former two 

bands can be assigned to two types of ν(C–O) of ethyl α-C bound to Mg2+ through 

oxygen, one of which (1262 cm–1) shifted to 1282 cm–1 at 100 ºC for 1-phenylethanol 

(Fig. 9h). In both 1-phenylethanol and acetophenone, two types of C–O bond may be 

formed when adsorbed on Mg3Fe0.25Co0.25Al0.5, and a small shift is expected 

dependently of the presence or absence of H (Scheme 1). The band around 1680 cm–1 

may be assigned to ν(C=O) of free acetophenone (Fig. 9i), or that formed from 

1-phenylethanol on the catalyst (Fig. 9g) [53]. The band of ν(C=O) of acetophenone 

shifted toward lower wave numbers at 100 ºC (Figs. 9h and j). 
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 It is thus most likely that the band at 1246 cm–1 observed for ethylbenzene on both 

Mg3Fe0.25Co0.25Al0.5 and Mg3Fe0.5Al0.5 (Figs. 9a-d) is assigned to ν(C–O) of ethyl α-C 

bound to Mg2+ through oxygen. The surface base sites generated on O2– bound to Mg2+ 

near Fe3+ sites are responsible for H+-abstraction, and further the dehydrogenation 

reaction was accelerated by the reduction-oxidation between Fe3+ and Fe2+ [13-15]. The 

dehydrogenation mechanism is proposed as shown in Scheme 2. Ethylbenzene was 

strongly adsorbed on Fe0.25–Co0.25/Mg3(Al0.5)O, whereas weakly on Fe0.5/Mg3(Al0.5)O, 

through the aromatic ring, via a π-type bonding interaction with Fe3+ Lewis acid sites. 

Simultaneously, α-H+ abstraction took place on O2– basic sites bound to Mg2+ 

(intermediate I) as proposed in ethylbenzene dehydrogenation by Miura et al. [50] and 

Tagawa et al. [52]. This may be followed by the bond formation between O2–(–Mg2+) 

and α-C of ethylbenzene; the strong π-adsorption of ethylbenzene makes ethyl α-C 

electron deficient and reactive with O2–. Nucleophilic attack of basic oxygen to carbon 

atoms is frequently observed in organic synthesis. Ethylbenzene was α-H+ abstracted 

through intermediate I to form intermediate II on Mg2+O2– basic sites, which was further 

dehydrogenated to styrene via the reduction of Fe3+ to Fe2+. The intermediate II just 

before dehydrogenation was stabilized by mesomeric effect caused by the presence of 

Hδ–, which then reacted with β-H+ of ethyl group to form H2. Both styrene and H2 were 

desorbed simultaneously with the reoxidation of Fe2+ to Fe3+, and this step seems to be a 

rate determining step of this dehydrogenation reaction. Actually trace amount of styrene 

was detected in gas phase (1198 cm–1) during the FTIR measurements of ethylbenzene 

adsorbed on Fe0.5/Mg3(Al0.5)O and Fe0.25–Co0.25/Mg3(Al0.5)O catalysts (Figs. 9b and d). 

Such acid-base catalyzed and reduction-oxidation assisted reaction accelerates catalytic 
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cycle for ethylbenzene dehydrogenation. The addition of Co resulted in the formation of 

Co3+/2+ species on the catalyst surface and enhanced the reactivity of Fe3+ species as the 

Lewis acid sites by withdrawing electron through a Fe3+–O–Co3+/2+ bond. This leads to 

the enhanced formation of C–O bond and further the enhanced reduction-oxidation of 

Fe3+/2+ species, resulting in an enhanced activity of Fe0.25–Co0.25/Mg3(Al0.5)O catalyst in 

the dehydrogenation of ethylbenzene.   

 

4. Conclusion 

 

 Fe–Co/Mg(Al)O catalysts derived from hydrotalcite showed a synergetic increase 

in the activity by Fe-Co bimetal formation. Co species exists as a mixture of Co3+/Co2+ 

together with Fe3+, although Co2+ nitrate was used as a raw material in the catalyst 

preparation. Co addition enhanced Lewis acidity of the Fe3+ acid sites by forming 

Fe3+–O–Co3+/2+(1/1) bimetallic species, leading to an enhanced π-bonding of aromatic 

ring of ethylbenzene to the Fe3+. Thus activated ethyl group of ethylbenzene adsorbed 

on the Fe3+ Lewis acid sites was α-H+ abstracted on Mg2+–O2– basic sites, to form C–O 

bond on the catalyst surface. The α-H+ abstraction by O2–(–Mg2+) might proceed via 

C–O–Mg bonding intermediate, followed by β-H+ abstraction, leading to the formations 

of styrene and H2. It is concluded that the mixed catalytic mechanism by the Fe3+ Lewis 

acid–O2–(–Mg2+) base couple and the Fe3+/Fe2+ reduction-oxidation cycle was 

effectively assisted by Co3+/Co2+ couple, leading to a good catalytic activity for the 

dehydrogenation of ethylbenzene.  
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Table 1. Specific surface area of the catalysts.a) 

 

Catalyst 
Specific surface area 

/ m2 gcat
-1 

Fe0.5/Mg3(Al0.5)O 178 

Fe0.25–Co0.25/Mg3(Al0.5)O 187 

Fe0.1–Co0.1/Mg3(Al0.5)O  198 

Fe0.5–Co0.5/Mg3(Al0.5)O  175 

Co0.5/Mg3(Al0.5)O 171 

Fe0.25–Ni0.25/Mg3(Al0.5)O  238 

Ni0.5/Mg3(Al0.5)O 181 

Fe0.5/Zn3(Al0.5)O 109 

 
a) The catalysts were prepared by co-precipitation of metal nitrates at pH = 10.0 and 

calcined at 550 °C for 12 h. 
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Figure captions 

 

Figure 1. Ethylbenzene dehydrogenation over Fe0.25–Co0.25/Mg3(Al0.5)O catalysts 

calcined at 550, 650, 750 and 850 °C. 

Reaction temperature, 550 °C ; catalyst, 0.15 g; ethylbenzene, 0.08 ml 

min-1(ca. 0.7 mmol min–1); He, 100 ml min–1. 

Full line, ethylbenzene conversion; dotted line, styrene selectivity. 

●, Fe0.25–Co0.25/Mg3(Al0.5)O (550); ■, Fe0.25–Co0.25/Mg3(Al0.5)O (650); ▲, 

Fe0.25–Co0.25/Mg3(Al0.5)O (750); ○, Fe0.25–Co0.25/Mg3(Al0.5)O (850). 

Figure 2. Co 2p XP spectrum Fe0.25–Co0.25/Mg3(Al0.5)O catalysts. 

 a) calcined at 550 °C; b) calcined at 850 °C. 

Figure 3. Surface metal composition of Fe0.25–Co0.25/Mg3(Al0.5)O catalysts calcined 

at 550, 650, 750 and 850 °C. 

 The metal composition was calculated from the XPS analytical results. 

 ●, Fe/Mg ratio; ■, Co/Mg ratio. 

Figure 4. Ethylbenzene dehydrogenation over Fex–Cox/Mg3(Al0.5)O (x = 0.1, 0.25 

and 0.5) catalysts calcined at 550 °C. 

Reaction temperature, 550 °C ; catalyst, 0.15 g; ethylbenzene, 0.08 ml 

min-1(ca. 0.7 mmol min–1); He, 100 ml min–1. 

Full line, ethylbenzene conversion; dotted line, styrene selectivity. 

■, Fe0.1–Co0.1/Mg3(Al0.5)O; ●, Fe0.25–Co0.25/Mg3(Al0.5)O; ▲, 

Fe0.5–Co0.5/Mg3(Al0.5)O. 

Figure 5. Fe K-edge XANES and the pre-edge spectra (A) of Fe0.5/Mg3(Al0.5)O, 
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Fe0.25–Co0.25/Mg3(Al0.5)O and Fe0.25–Ni0.25/Mg3(Al0.5)O catalysts with 

standard material. 

 (a) α-Fe2O3; (b) Fe0.5/Mg3(Al0.5)O; (c) Fe0.25–Co0.25/Mg3(Al0.5)O; (d) 

Fe0.25–Ni0.25/Mg3(Al0.5)O. 

Figure 6. Co K–edge XANES and the pre–edge spectra (A) of Co0.5/Mg3(Al0.5)O and 

Fe0.25–Co0.25/Mg3(Al0.5)O catalysts with standard material. 

 (a) CoO; (b) Co0.5/Mg3(Al0.5)O; (c) Fe0.25–Co0.25/Mg3(Al0.5)O. 

Figure 7. Fourier transformed Fe, Co and Ni EXAFS data of the catalysts with 

standard materials. 

Fe: (a) α-Fe2O3; (b) Fe0.5/Mg3(Al0.5)O; (c) Fe0.25–Co0.25/Mg3(Al0.5)O; (d) 

Fe0.25–Ni0.25/Mg3(Al0.5)O. 

 Co: (e) CoO; (f) Co0.5/Mg3(Al0.5)O; (g) Fe0.25–Co0.25/Mg3(Al0.5)O. 

 Ni: (h) NiO; (i) Ni0.5/Mg3(Al0.5)O; (j) Fe0.25–Ni0.25/Mg3(Al0.5)O. 

Figure 8. Ni K–edge XANES and the pre–edge spectra (A) of Ni0.5/Mg3(Al0.5)O and 

Fe0.25–Ni0.25/Mg3(Al0.5)O catalysts with standard material. 

 (a) NiO; (b) Ni0.5/Mg3(Al0.5)O; (c) Fe0.25–Ni0.25/Mg3(Al0.5)O. 

Figure 9. FTIR spectra of ethylbenzene and 1-phenylethanol adsorbed on 

Fe0.5/Mg3(Al0.5)O, Fe0.25–Co0.25/Mg3(Al0.5)O and Fe0.5/Zn3(Al0.5)O 

catalysts. 

 Ethylbenzene: (a) Fe0.5/Mg3(Al0.5)O, 450 ºC; (b) Fe0.5/Mg3(Al0.5)O, 550 ºC; 

(c) Fe0.25–Co0.25/Mg3(Al0.5)O, 450 ºC; (d) Fe0.25–Co0.25/Mg3(Al0.5)O, 550 

ºC; (e) Fe0.5/Zn3(Al0.5)O, 450 ºC; (f) Fe0.5/Zn3(Al0.5)O, 550 ºC.  

 1-Phenylethanol: (g) Fe0.25–Co0.25/Mg3(Al0.5)O, room temperature; (h) 
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 Fe0.25–Co0.25/Mg3(Al0.5)O, 100 ºC. 

 Acetophenone: (i) Fe0.25–Co0.25/Mg3(Al0.5)O, room temperature; (h) 

 Fe0.25–Co0.25/Mg3(Al0.5)O, 100 ºC. 

Figure 10. FTIR spectra of pyridine adsorbed on Fe0.5/Mg3(Al0.5)O, 

Fe0.25–Co0.25/Mg3(Al0.5)O and Fe0.5/Zn3(Al0.5)O catalysts. 

 a) Fe0.25–Co0.25/Mg3(Al0.5)O, 100 ºC; b) Fe0.25–Co0.25/Mg3(Al0.5)O, 400 ºC; 

c) Fe0.5/Mg3(Al0.5)O, 100 ºC; d) Fe0.5/Mg3(Al0.5)O, 400 ºC; e) 

Fe0.5/Zn3(Al0.5)O, 100 ºC; f) Fe0.5/Zn3(Al0.5)O, 400 ºC. 

Scheme 1. Adsorption of 1-phenylethanol and acetophenone on 

Fe0.25–Co0.25/Mg3(Al0.5)O. 

Scheme 2. Plausible reaction scheme of ethylbenzene dehydrogenation on 

Fe0.25–Co0.25/Mg3(Al0.5)O. 
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Figure 1.  K. Takehira et al. 
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Figure 2. K. Takehira et al. 
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Figure 3.  K. Takehira et al. 
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Figure 4.  K.Takehira et al. 
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Figure 5.  K. Takehira et al. 
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Figure 6.  K. Takehira et al. 
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Figure 7.  K. Takehira et al. 
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Figure 8.  K. Takehira et al. 
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Figure 9.  K. Takehira et al. 
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Figure 10.  K. Takehira et al. 
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Scheme 1. 
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Scheme 2. 
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