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Abstract  

New dithienogermole-based conjugated polymers were synthesized by the Stille coupling 

reactions of distannyldithienogermole and dibromoarene, and their photovoltaic properties 

were studied.  These polymers possess low band gaps with broad absorptions covering the 

400-800 nm range, and exhibit good film forming properties.  Bulk hetero-junction solar 

cells prepared from blends of these polymers with PC70BM exhibit high power conversion 

efficiency up to 2.38%. 
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 1.  Introduction 

Polymer solar cells (PSCs) are of current interest due to their potential applications to low 

cost, lightweight, and flexible modules.  Easy manufacturing by the solution process is also 
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an advantage of PSCs [1, 2].  Much attention has been focused on bulk hetero-junction 

(BHJ)-type devices whose active layer is composed of a mixture of an electron-donating 

conjugated compound and an electron-accepting fullerene derivative, such as PCBM [3,4].  

To date, a variety of π-conjugated donor-acceptor (D-A)-type polymers with low band gaps 

and low-lying HOMOs have been designed and investigated as donor materials for PSCs, as 

those polymers can absorb solar light of a wide wavelength range and provide high open-

circuit voltage (Voc) [2, 5, 6].  Dithienosilole (DTS), silicon-bridged bithiopehene, has been 

studied as a unique π-conjugated system with low-lying HOMO and LUMO [7, 8] and often 

employed as the donor component of D-A-type polymers for PSCs [8-17].  It was recently 

demonstrated that use of a DTS-benzothiadiazole alternating polymer (DTS-BTA) leads to 

high-performance PSCs with high power conversion efficiency (PCE) of 5.1% compared to 

its carbon analogue (DTC-BTA) [9] (Chart 1).  This is due to not only the unique electronic 

states of DTS, but also the capability of the DTS polymer to form higher crystallinity films 

when blended with PCBM.  Similarly, dithienocyclopentadiene-based polymer DTC-Tz 

was modified by replacing the ring carbon with a silicon atom (DTS-Tz) to improve the PCE 

of the PSCs from 2.7% to 4.7% [17]. 

 

 

Chart 1. Dithienometallole- and dibenzogermole-based polymers. 
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Recently, we prepared the first dithienogermole-containing D-A-type polymer (DTG-

BTA) (Chart 1), that features repeating units of dithienogermole and benzothiadiazole in 

hopes that the replacement of the silicon with a heavier germanium atom would lead to better 

intermolecular interaction in the solid state and thus higher crystallinity.  As expected, the 

polymer showed broad absorption spectra with an absorption edge at approximately 850 nm 

and was used in the manufacture of BHJ-type PSC by blending with PC70BM [18].  

Although the PSC showed a clear photovoltaic response, PCE was 1.2%, which was lower 

than that of DTS-BTA, and this was primarily ascribed to the low Jsc of the PSC with DTG-

BTA.  A similar dibenzogermole-based polymer DBG-TBT was prepared by Leclerc and 

coworkers, and the blend film of DBG-TBT with PC70BM showed photovoltaic application 

with PCE of 2.8% (Chart 1) [19]. 

To develop DTG-based host polymers for PSCs that would improve the performance of 

PSCs, dithienylbenzothiadiazole and dithienylthiazolothiazole moieties were introduced into 

the backbone as acceptor units and their photovoltaic properties were investigated when 

blended with PC70BM.  The more expanded conjugation of the acceptor unit TBT than BTA 

is expected to enhance polymer interchain interaction in the solid state, thus increasing 

current density.   

 

2.  Experimental  

2.1. Materials 

All reactions were carried out in dry nitrogen or argon. Tetrahydrofuran (THF) and ether 

were distilled from sodium/benzophenone, whereas chlorobenzene was distilled from calcium 

hydride. These solvents were stored over activated molecular sieves until use. Monomers, 

DTGSn2 [18], 3,6-bis(5-bromo-2-thienyl)benzo[3.4]thiaziazole [20], and 2,5-bis(5-bromo-4-

hexyl-2-thiophenyl)thiazolo[5,4-d]thiazole [21] were prepared according to the method in the 

literature. 

 

2.2. Characterization 
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NMR spectra were recorded on a JEOL model LA-400 spectrometer.  UV-Vis spectra were 

measured with a Hitachi U-2910 spectrometer.  Polymer molecular weights were measured 

by gel permeation chromatography (GPC) using Shodex KF804 and KF806 columns 

connected in series and eluted with THF.  The polymers were detected by a UV detector at 

240 nm and the molecular weights were calculated relative to the polystyrene standards on a 

SIC-480 data station.  TGA was carried out on a SIC model TG/DTA-6200 in nitrogen at a 

rate of 10oC/min.  Cyclic voltammetry (CV) was performed using VersaSTAT3.   Each 

sample (1-2 mg) was homogeneously dissolved into a 0.2 mL of 10 mM tetrabutylammonium 

perchlorate (TBAP)/dichloromethane solution, and the solution was cast on a Pt disc 

electrode (3 mm diameter) and dried in vacuum (< 0.1 Torr) prior to the measurement, as the 

working electrode.  Measurement was performed at a scan rate of 10 mV/s at room 

temperature with a Pt plate as the counter electrode and an Ag/Ag+ reference electrode, in 

acetonitrile containing 0.1 M TBAP.  

 

2.3. PSC fabrication and evaluation 

The polymer photovoltaic devices were fabricated with a typical sandwich structure of 

ITO/PEDOT:PSS/DTG-polymer:PC70BM (80 nm)/LiF (0.5 nm)/Al (80 nm). The ITO-coated 

glass substrates were cleaned with a routine cleaning procedure, including sonication in 

detergent followed by distilled water, acetone, and 2-propanol. A 30 nm thick layer of 

PEDOT:PSS was spin-coated on the cleaned ITO substrate, after exposing the ITO surface to 

ozone for 10 min. The PEDOT:PSS-coated ITO substrate was heated on a hot plate at 150oC 

for 10 min. The DTG-polymers:PC70BM solution in o-dichlorobenzene with diiodooctane 

(2.5 vol%) was spin-coated after filtering through a 0.45 m PTFE syringe filter. The device 

structure was completed by depositing LiF (0.5 nm) and Al (80 nm) cathode as the top 

electrode onto the polymer layer under 10-6 torr vacuum in a thermal evaporator. Current 

density-voltage (J-V) characteristics of all PSCs were measured under illumination with 100 

mW/cm2 (AM 1.5G) simulated solar light from a Peccell PEC-L11 solar simulator.  Data 

were recorded with a Keithley 2400 source-measure unit and all characterizations were 
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carried out in an ambient environment.  Incident photon-to-current conversion efficiency 

(IPCE) was measured as a function of wavelength from 300 to 900 nm with a halogen lamp 

as the light source, and calibration was performed with a silicon reference photodiode. 

Thickness of the thin film was measured with a Veeco Dektak 8 surface profilometer with an 

accuracy of ± 5 nm. 

 

2.4. Polymer synthesis 

In 7 mL of chlorobenzene were dissolved 4,7-bis(5-bromo-2-thienyl)-2,1,3-benzo-

thiadiazole (0.160 g, 0.353 mmol) and bis(2-ethylhexyl)bis(trimethylstannyl)dithienogermole 

(DTGSn2, 0.279 g, 0.353 mmol).  The mixture was purged with a gentle stream of argon for 

10 min, and tris(dibenzylideneacetone)dipalladium(0) (8 mg, 2 mol%), tri(o-tolyl)phosphine 

(18.7 mg, 16 mol%), and CuO (29.6 mg, 0.353 mmol) were added.  The resulting mixture 

was heated at 150 °C for 72 h and cooled to room temperature. To this was added 100 mL of 

methanol to precipitate polymeric substances.  The polymeric substances were washed with 

hot methanol and then with hot hexane in a Soxhlet apparatus.  Finally the methanol- and 

hexane-insoluble substances were extracted with hot chloroform.  Evaporation of the solvent 

from the extract, followed by drying the residue under vacuum for 1 day at room temperature 

gave DTG-TBT as a black solid (100 mg, 50 % yield, Mn = 3.8 K, PDI = 3.15): 1H NMR 

(ppm, CDCl3) δ = 8.30-6.32 (br, 8H), 1.53-1.43 (br, 4H), 1.41-1.05 (m, 20H), 0.93-0.72 (m, 

10H), mp: 180°C. Polymer DTG-Tz was prepared in a manner similar to that above.  Data 

for DTG-Tz: dark green solids. 75% yield. Mn = 11 K, PDI = 2.34). 1H NMR (ppm, CDCl3) δ 

= 7.41 (br, 2H), 7.2 (br, 2H), 2.8 (br, 4H), 1.72 (br, 6H), 1.50-1.06 (m, 30H), 1.05-0.66 (m, 

20H), mp: 240 °C. 

 

3.  Results and discussion 

The DTG-polymers were prepared under the conditions that were optimized for the 

preparation of DTG-BTA, utilizing the CuO-modified Stille coupling reactions [22] of 

DTGSn2 with bis(bromothienyl)benzothiadiazole and bis(bromohexylthiophene)thiazolo-
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thiazole at 150°C (Scheme 1).  The organic products were fractionated with a Soxhlet 

apparatus to give polymers DTG-TBT and DTG-Tz as black and dark green solids, 

respectively, which are soluble in hot chloroform, but insoluble in hot methanol and hexane.  

The number-average molecular weights (Mn) of the polymers were determined by GPC using 

polystyrene standards to be 3.8 K (PDI = 3.2) for DTG-TBT and 11 K (PDI = 2.3) for DTG-

Tz. The polymer structures were verified mainly from the 1H NMR spectra (Figure 1).  

Although the spectra showed only broad signals, the signal integration ratios almost agreed 

with those of the regularly alternating structures of DTG and benzothiadiazole or 

thiazolothiazole units shown in Scheme 1.  A similar reaction of DTGSn2 and 

bis(bromothienyl)benzothiadiazole in the absence of CuO also gave a polymeric substance.  

However, its 1H NMR spectrum showed very broad and unresolved aromatic proton signals 

with much less integration than expected.  Attempted improvement of the molecular weights 

and the product yields under forcing conditions, at 170°C in an autoclave, did not affect the 

results for DTG-Tz.  Thermal properties of the polymers were evaluated by TGA under a 

nitrogen atmosphere and DTG-TBT and DTG-Tz were found to show good stability with 5 % 

weight loss temperatures of 382°C and 340°C, respectively.  The molecular weights and 

thermal properties of the polymers are summarized in Table 1. 

 

 

Scheme 1. Synthesis of DTG-based polymers. 

 

The UV-vis absorption spectra of the present DTG-based polymers in chloroform and as 

solid thin films prepared by spin-coating are shown in Figure 2a and the absorption 

wavelengths are listed in Table 1.  In chloroform, DTG-TBT shows an absorption 
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maximum at 585 nm, which appears at a higher energy than that of DTS-TBT (ca. 630 nm) 

as reported in the literature [12].  In film, the absorption band shifts to a longer wavelength 

(λmax = 620 nm).  Although this still appears at a higher energy than that of DTS-TBT in 

film (650 nm), the difference in absorption maxima of DTG-TBT depending on the 

conditions, Δλmax = (λmax in film – λmax in chloroform) = 35 nm, is larger than that of DTS-

TBT (Δλmax = 20 nm), indicating the strong interchain interaction of DTG-TBT in the solid 

state.  As reported previously, the UV spectra of DTG-BTA always showed broad 

absorption maxima at 651 nm and 687 nm in chloroform and as film, respectively, and the 

absorption maxima were longer than those of the present DTG-TBT [18].  The introduction 

of a thienylene unit into the DTG-benzothiadiazole bond is likely to reduce the D-A 

interaction between them.  A similar tendency was observed for DTS-BTA [8] and DTS-

TBT [12]. 

Similar to DTG-TBT, DTG-Tz shows a large shift of the absorption maximum from 542 

nm in chloroform to 589 nm in film (Δλmax = 47 nm).  In addition, a shoulder around 650 

nm appears for DTG-Tz in film, again indicating the strong interchain interaction.  The 

optical band gaps of the DTG-based polymers were estimated from the absorption edges in 

the UV-vis spectra of the films to be 1.60 and 1.80 eV for DTG-TBT and DTG-Tz, 

respectively (Table 1). They are very similar to those reported for DTS-TBT (1.51-1.53 eV) 

[12] and DTS-Tz (1.83 eV) [17].  The CV measurements were carried out for the DTG-

polymer films on Pt wires at the rate of 10 mV/sec (Figure 3).  The HOMO energy levels of 

DTG-TBT and DTG-Tz were calculated to be both -5.05 eV, based on the CV oxidation 

onsets (EHOMO/eV = –4.8 – [Eonset–E1/2 (Ferrocene)]/V), and the LUMO energy levels were 

calculated to be –3.45 eV (DTG-TBT) and –3.25 eV (DTG-Tz) from the optical band gaps 

and the electrochemical HOMO energy levels.  They are in good relationship with the 

electronic states of PEDOT-PSS and PC70BM (Figure 2b [23]), to facilitate efficient charge 

separation and hole transfer to PEDOT-PSS.   

PSCs were fabricated with the structure of ITO/PEDOT:PSS/DTG-polymers:PC70BM 

(1:3.6) /LiF [24] /Al and the active area of 0.25 cm2.  Diiodooctane, which is often used as a 
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processing additive to control phase separation, was added for the spin-coating of the blend 

films [25].  In fact, when diiodooctane was not used, the power conversion efficiency (PCE) 

of the DTG-BTA-based cell [18] dropped to approximately a half of that prepared using 

iiodooctane.  No annealing was applied.  The typical J-V characteristics and the IPCE plots 

of the devices are depicted in Figure 4.  As summarized in Table 2, the DTG-TBT-based 

cell exhibits the performance parameters of Jsc = 5.47 mA/cm2, Voc = 0.59 V, and FF = 0.48, 

giving rise to PCE of 1.55 %.  Under the same conditions, higher cell parameters are 

obtained from the DTG-Tz-based PSC (Jsc = 6.31 mA/cm2, Voc = 0.58 V, FF = 0.65, and PCE 

= 2.38 %), mainly arising from the higher FF of the PSC fabricated with DTG-Tz than that 

with DTG-TBT (Table 2 and Figure 4a), which usually means better phase separation and 

more efficient charge dissociation in the films.  The present PSCs show improved 

photovoltaic performance, compared with PSCs fabricated with DTG-BTA, reported 

previously (PCE = 1.2%, Table 2) [18], in spite of that DTG-BTA shows more extended 

conjugation as evidenced by the longer λmax (651 nm in chloroform and 687 nm in film).  

This is probably due to the enhanced interchain interaction in DTG-TBT and DTG-Tz.  

The IPCE of the PSCs start to increases around 730 nm and 810 nm, and reach 27 % at 460 

nm and 35 % at 600 nm for DTG-TBT and DTG-Tz, respectively as shown in Figure 4b. 

The PCEs of similar PSCs with DTS-TBT and DTS-Tz were reported to be higher (3.43% 

and 4.7%) than those of the present PSCs, due to the higher current density (10.67 and 11.8 

mA/cm2) for the DTS-based PSCs [12, 17].   

 

4.  Conclusions 

 We have designed and synthesized new DTG-based low-band gap polymers composed of 

relatively electron-rich DTG units and electron-deficient benzothiadiazole or thiazolothiazole 

units in the backbone. DTG-TBT and DTG-Tz polymers show broad absorptions covering 

300 nm to 700-800 nm with the optical band gaps of 1.60 and 1.80 eV for DTG-TBT and 

DTG-Tz, respectively.  They feature good thermal stability and good solubility in common 

organic solvents as well as high photovoltaic performance when blended with PC70BM, 
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compared with the previously reported DTG-benzothiadiazole polymer (DTG-BTA).  

However, the PCEs are still lower than those of PSCs fabricated with the DTS analogues, due 

to the lower current density.  Current density may be improved by increasing polymer 

molecular weights.  Optimization of the polymer structures by tuning the substituents may 

also influence polymer packing structures in films, thereby improving the current density.  

Further studies to improve the performance of the present DTG-based PSCs are under way. 
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Table 1 

Synthesis and properties of DTG-containing polymers. 

a Polymeric substance that is soluble in hot chloroform but insoluble in hot methanol and 

hexane was collected.  

b Determined by GPC, relative to polystyrene standards.  

c Decomposition temperature (with 5% weight loss) determined by TGA under N2. 
 

d Optical band gap calculated from the absorption onset in film. 

  

Polymer Yield/% Mn
b PDIb Td/

oCc 
UV-vis λmax/nm 

Eg/eVd

In CHCl3 Film 

DTG-TBTa 50 3,800 3.15 382 585 620 1.60 

DTG-Tza 75 11,000 2.34 340 542 589 1.80 
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Table 2  

Performance of PSCs based on DTG-containing polymers as host materials.a 

Polymer Jsc/mAcm-2 Voc/V FF PCE/% 

DTG-TBT 5.47 0.59 0.48 1.55 

DTG-Tz 6.31 0.58 0.65 2.38 

DTG-BTAb 4.68 0.61 0.43 1.21 

a PSCs structure: ITO (150 nm)/PEDOT:PSS (30 nm)/DTG-polymer:PC70BM (1:3.6 wt%, 

80 nm)/LiF (0.5 nm)/Al (80 nm). 

b See reference 18. 
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Figure 1. 1H NMR spectra of a) DTG-TBT and b) DTG-Tz in CDCl3. 
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Figure 2.  a) UV-vis absorption spectra of DTG-containing polymers in chloroform and as 

films. b) Energy levels for the polymers. 
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Figure 3.  CVs of solid films of DTG-containing polymers.  
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Figure 4.  a) J-V and b) IPCE plots of DTG-polymer-based PSCs. 
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