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Abstract. 

The split Hopkinson pressure bar (SHPB) technique has been used widely for the impact 

testing of materials in the strain-rate range from 102 to 104 s-1. However, some specific problems 

still remain mainly concerning the effects of radial inertia and end friction in a cylindrical 

specimen on the accurate determination of dynamic stress-strain curves of materials. In this study, 

the basic principle of the SHPB technique is revisited based on energy conservation and some 

modifications are made considering radial momentum conservation. It is pointed out that the radial 

inertia and end friction effects are coupled to each other in the SHPB specimen. Computational 

simulations using the commercial finite element (FE) code ABAQUS/Explicit ver. 6.8 are 

conducted to check the validity of the modifications for ductile pure aluminum specimens. Both 

rate-independent and rate-dependent models are adopted for the test material. Simulations are 

performed by varying two different control parameters: a friction coefficient between the specimen 

and the pressure bars and a slenderness ratio of the specimen (or thickness to diameter ratio). 
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1. INTRODUCTION 

One of the most widely used test methods for determining dynamic stress-strain behavior of 

materials is the split Hopkinson pressure bar (SHPB) technique originally developed by Kolsky 

(1949). Before Kolsky (1949), two researchers (Taylor, 1946; Volterra, 1948) had the idea of using 

pressure bars to measure the dynamic properties of materials in compression (Field et al., 2004). In 

the experiments by Taylor (1946), a solid cylindrical specimen was fired against a massive and 

rigid target. The dynamic flow stress of the specimen was estimated by measuring both lengths of 

the deformed and the undeformed section of the specimen. Voltterra (1948) attempted to measure 

the dynamic stress-strain curves of materials in this manner. A swinging impact pendulum was 

used to directly strike a cylindrical specimen. In order to determine the specimen dynamic stress, 

the acceleration was measured with an accelerometer placed on a uniform bar by which the 

specimen was backed up.  

In the conventional SHPB system, a short cylindrical specimen placed between two 

elastic pressure bars is tested. Since its introduction, this technique has been applied in various 

modes of loading, e.g., tension (Harding et al., 1960; Nicholas, 1981; Yokoyama, 2003), torsion 

(Duffy et al., 1971), shear (Klepaczko, 1994; Rittel et al., 2002), three-point bending (Yokoyama 

and Kishida, 1998), punching (Dowling et al., 1970; Dabboussi and Nemes, 2005), and used to 

examine the dynamic response of hard materials such as ceramics (Klepaczko, 1990) and titanium 

alloys (Khan et al., 2004; Khan et al., 2006; Khan et al., 2007), and soft materials such as rubbers 

(Chen et al., 1999; Chen et al., 2002) and polymers (Khan and Zhang, 2001; Khan and Farrokh, 

2006; Nakai and Yokoyama, 2008; Nishida et al., 2009; Farrokh and Khan, 2010; Khan et al., 

2010). However, some specific problems still remain regarding the effect of specimen size on end 

friction and radial inertia. For more details, the reader can refer to several excellent reviews (Zhao 

and Gary, 1996; Al-Mousawi et al., 1997; Zhao et al., 1997; Field et al., 2004; Gama et al., 2004). 

Follansbee and Frantz (1983) discussed the effect of radial inertia on a one-dimensional elastic 

wave propagation in a cylindrical bar, and pointed out that the radial inertia effect is coupled with 
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the axial acceleration. Many workers have difficulties in performing reliable impact tests at higher 

impact velocities (> 20m/s) because the radial inertia effect becomes more significant. The end 

friction and inertia effects are most critical, especially in the impact tests on brittle materials (Frew 

et al., 2001; Frew et al., 2002). Several workers have a challenge to use the SHPB method with a 

pulse shaper to overcome these complicated problems. (Frew et al., 2002; Chen et al., 2003) 

Davies and Hunter (1963) first calculated the actual stress in a cylindrical specimen 

using the law of energy conservation during impact testing. They discovered that there is a 

difference between actual and measured stresses, which arises from radial inertia effects. In 

addition, they found that a criterion for a specimen slenderness ratio  = h / d (thickness h: 

diameter d ratio) should be met for the specimen size to eliminate the difference. In recent years, 

several attempts have been made to obtain compressive stress-stress data from the impact testing of 

materials such as titanium alloys and stainless steels with higher strength than or equal to that of 

the pressure bars. In such cases, it is needed to reduce the diameter as small as possible relative to 

the diameter of the pressure bars to achieve reliable stress-strain data. This is why the specimen 

with a smaller diameter than that of the pressure bars has usually been used. However, the diameter 

of the specimen as well as that of the pressure bars should be determined to meet the assumptions 

on the theory of one-dimensional elastic wave propagation, considering impedance mis-matching 

between the specimen and the pressure bars. The effect of friction between the specimen and the 

pressure bars should be investigated by separating them from the radial inertia effects. There is a 

trade-off between the end friction and radial inertia effects. 

The effects of end friction and radial inertia in the SHPB specimens have extensively 

been studied using numerical simulations. Bertholf and Karnes (1975) presented a 

two-dimensional numerical analysis of the governing wave equations for the SHPB using a finite 

difference method. To find the optimum shape of the cylindrical specimen, Malinowski and 

Klepaczko (1986) derived the equation that depends not only on the specimen diameter but also on 

the stress, strain rate and time derivative of strain rate from the balance equation of the dissipation 

energy consumed in friction. The validity of the optimum value obtained from the experiments and 



5 

numerical simulations was then assessed. Zencker and Clos (1999) simulated the compression 

SHPB tests on the cylindrical specimen of a rate-dependent elastic-perfectly-plastic material using 

the finite element method (FEM). They demonstrated that accurate dynamic stress-strain curves 

can be obtained when the one-dimensional stress state lies in thin specimens with  0.5. 

Similarly, accurate dynamic stress-strain data can be achieved if both the one-dimensional stress 

state and uniformity of axial stress distribution are guaranteed in a relatively long specimen with 

 1. They found that the criterion for the optimum specimen slenderness ratio   = 2/3  

derived by Davies and Hunter (1963) does not seem to exist. Meng and Li (2003) also simulated 

the compression SHPB tests on pure aluminum 1100 as the two-dimensional wave propagation 

problem using the commercial FE code, and examined the effects of radial inertia and end friction. 

In their simulations, rate-independent pure aluminum 1100 was used as the specimen material. 

They showed that the stress in the specimen increases with increasing friction coefficient, and that 

the optimum specimen slenderness ratio   exists. Moreover, they pointed out that the correct 

stress in the specimen cannot be determined if   >1 under a frictionless condition between the 

specimen and the pressure bars.  

In the present study, the theory by Davies and Hunter (1963) is modified and the 

relationship of radial inertia and friction between the specimen and the pressure bars is examined. 

In addition, to verify the adequacy of the proposed theory based on the simulation results of Meng 

and Li (2003), the compression SHPB tests on pure aluminum 1100 are simulated by the FEM. In 

a series of simulations, two different control parameters are used: the slenderness ratio   and the 

friction coefficient  . Two types of pure aluminum are considered as an example of ductile 

metallic materials. A rate-independent material used by Meng and Li (2003) and a rate-dependent 

material used by Bressan and Lopez (2008) are adopted as the test materials. The rate-independent 

power-law strain hardening model for pure aluminum 1100 and the rate-dependent Johnson-Cook 

model (Johnson and Cook, 1985) for another pure aluminum are introduced into the simulations to 

assess the generality of the results obtained. The true stress can be evaluated directly from both 

models with known constitutive parameters for the two types of pure aluminum (Meng and Li, 
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2003; Bressan and Lopez, 2008). The variations in the stress-strain curve with   and   are 

examined by comparison with the FE results and direct calculations using both models. Note that 

all the computations and energetic formulations are conducted within the framework of the 

conventional continuum mechanics based on the Lagrangian coordinate, and hence any convection 

terms are not be included. Even if the same topic is dealt with by Gorham (1989), the suitable 

coordinate system should be chosen for both experiment and theory. Strain pulses were measured 

by strain gauges glued on the pressure bars in the actual experiments. This implies that the strain 

gauges are fixed on the material, not in a space. In this sense, the Lagrangian coordinate should be 

chosen for the simulation if we attempt to compare with the experiments. 

The structure of the paper is as follows. In Section 2, after a brief introduction of the 

theory by Davies and Hunter (1963) including the formulation procedure, it will be shown that the 

stress measured by the SHPB method does not depend on the specimen size, and that the nominal 

strain rate during impact loading is kept constant by considering a radial momentum balance under 

the frictionless condition to obtain accurate stress-strain responses. Then, the theory will be 

extended by including the end friction effects into the radial momentum balance. The numerical 

procedures using the commercial FE code will be described in Section 3. The computational model 

of the SHPB test system along with the FE mesh division will be given. Computational conditions 

including the two different control parameters   and   will be presented. Then, the results 

computed by varying   and   are provided and some important discussions are given in 

Section 4. The validity of the extended theory will be assessed. Finally, the results and discussion 

will be summarized in Section 5. 

 

2. BASIC THEORY 

We derive energetic formulations again based on the Lagrangian coordinate. According to Davies 

and Hunter (1963), we consider the specimen as shown in Fig. 1 with the cylindrical coordinate 

system set at its center. The actual stress applied to the specimen,  , can be expressed as  
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Here 2  is the displacement measured by a condenser microphone placed at the edge of the 

output bar; B  and Bc  are the density and the longitudinal elastic wave velocity of pressure 

bars; a , h ,   and   are the radius, thickness, density and Poisson’s ratio of the specimen; 1  

and 2  are the lengths of the input and output pressure bars, respectively. In Eq. (1), the condition 

under which the second term on the right-hand side becomes zero is given by  3/2  ah . 

The well-known criterion for the specimen slenderness ratio is derived as h /d  3 /2. This 

criterion has often been used since the condenser microphone as a measurement equipment was 

replaced with strain gauges. A formulation of Eq (1) by Davies and Hunter (1963) should be 

recalled with all details. Note that the formation is given in an Appendix. 

The theory proposed by Davies and Hunter (1963) is extended by including the effect of 

momentum conservation in the radial direction of the specimen. If the frictionless condition is 

assumed, we can derive the following equation of motion in the radial direction without any 

external force: 

0
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h r                                           (2) 

where   is the volume of the specimen. In Eq. (2), any constitutive equation for the specimen 

material is not considered. Therefore, it does not matter whether or not the material exhibits strain 

hardening. This implies that the strain rate is expected to be a constant under the frictionless 

condition. When 0  derived from Eq.(2) is substituted into Eq. (A.8), we can obtain 

  mpp  :
2

1
21 ,                                                           (3) 

Where m  is the stress in the specimen determined from the incident, reflected and transmitted 

stress pulses i , t , and r . Substituting these three stress pulses into Eq. (3) yields the 

following familiar formula for the stress in the specimen: 
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 tri
B

m A

A  
2

                                                           (4) 

where BA  and A  are the cross-sectional areas of the pressure bar and the specimen, 

respectively. 

Under the frictionless condition, the stress evaluated from Eq. (4) should not be modified 

using any corrections due to radial inertia. Because   does not appear in Eq. (4), it is not 

necessary to consider any conditions on   without friction. 

However, the end friction effects cannot be eliminated completely in the actual 

compression SHPB tests, and therefore the theory should be extended for the friction conditions. 

The friction force produces the radial inertia within the specimen. If the friction force is considered 

in the right-hand side of Eq. (2), we can obtain the following equation by the law of momentum 

conservation in the radial direction: 

 212

3
pp

ah



 ,                                                            (5) 

where   is the coefficient of friction between the specimen and the pressure bars. Equation (5) 

indicates that the time derivative of the strain rate   depends on the pressure on the end surface 

of the specimen. Therefore, the strain rate cannot remain constant during impact loading when 

pressures increase with time. Additionally, no constitutive equation for the specimen materials is 

assumed here. Therefore, it does not matter whether or not the materials exhibit strain hardening, 

but the pressures on both ends of the specimen can vary, depending on the specimen materials. If a 

sum of the pressure 21 pp   becomes zero during deformation, the strain rate may be kept 

constant. In such a sense, it is important whether or not the specimen materials exhibit strain 

hardening. The additional power due to friction force, fP , may be included in the right-hand side 

of Eq. (A.6). Using Eq. (A.2) for the radial displacement rates at both ends of the specimen, we can 

express 
1ru  and 2ru  as  

  ruu rr  21 .                                                               (6) 

Integrating the product of Eq. (6) and the friction force on the end surface leads to  
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Substituting Eqs. (5) and (7) into Eq. (A.7) gives the following equation in terms of : 

   2121 2442
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Thus, introducing the measured stress m  yields a ratio between the measured stress and the true 

stress in the specimen as 







 










122
1

m

.                                                          (9) 

Equation (9) implies that the ratio between the measured stress and the actual stress is linear with 

respect to   and hyperbolic with respect to .  

In the actual experiments, the friction effects cannot be avoided. Thus, Eq. (9) can 

predict that the actual stress gets larger than the measured stress. However, previous articles 

(Bertholf and Karnes, 1975; Malinowski and Klepaczko, 1986; Meng and Li, 2003) indicated an 

opposite tendency against the predictions from Eq. (9). To overcome this inconsistency, we 

attempt to vanish the kinetic energy in Eq. (A.1), and then we can obtain the following equation: 


 1

3

2
1




m

.                                                               (10) 

This means that the dynamic or inertia effects in the axial direction are quite small. Recently, 

Jankowiak et al. (2011) reported that Eq. (10) with  = 0.5 can be obtained when the material 

incompressibility is assumed and the time derivative of strain rate, 0 , is neglected. However, 

the reason why the term can be neglected is not fully explained. Through the above derivation 

procedure, we attempt to clarify why it can be. 

 

3. FINITE ELEMENT ANALYSIS 

Both Eqs. (9) and (10) are derived from the simple energy balance with neglect of the influences 

due to temperature rise and any dissipation. In addition, the constant coefficient of friction is used. 
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Actually, specimen temperature increases during impact loading. The friction coefficient varies, 

during plastic deformation of the specimen. Excellent studies (Ogawa, 1997; Rajagopalan and 

Prakash, 1999) on measurements of the friction coefficient by the SHPB techniques are available. 

FE simulations should be performed under the same condition to show the validity of Eq. (10). 

Accordingly, the effects of temperature rise and kinetic friction coefficient are not considered in 

the present simulations. 

A commercial FE code, ABAQUS/Explicit Ver. 6.8, is used for the numerical analysis. 

Here, two different constitutive models are adopted to simulate the dynamic deformation behavior 

of rate-independent and rate-dependent materials. One material model obeying the power-law 

strain hardening for pure aluminum 1100 is given as 

 npK   ,                                                                  (11) 

where K  and n  are the material parameters. The other material model known as the Johnson - 

Cook model for another pure aluminum is expressed as 
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where   is the equivalent stress, p  is the equivalent plastic strain, T  is the absolute 

temperature, A , B , *n , C  and *m  are the material parameters, 0  is the reference strain 

rate (usually 1 s-1),  mT  is the melting temperature and rT  is the room temperature (298 K in the 

analysis). The Johnson-Cook model is not based on any underlying physics such as dislocation 

theory. More physically-based models, for example, the Zerilli-Armstrong model (Zerilli and 

Armstrong, 1987), can more legitimately be extrapolated. However, the selection of the 

constitutive model is not a target of this paper. Thus, it is decided that the Johnson-Cook model is 

employed because of its comprehensive use. The specimen material is assumed to be the two types 

of pure aluminum for which the respective constitutive equations described above are adopted. 

Three stress-strain curves of these models are shown in Fig. 2, where the solid line indicates 

stress-strain data used by Meng and Li (2003). The dotted line denotes the stress-strain curve fitted 

using Eq. (11) and the corresponding material parameters are given in Table 1. The dashed-dotted 
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line shows the stress-strain curve at a constant strain rate of 250 s-1 from the Johnson-Cook model, 

whose constitutive parameters are identified by Bressan and Lopez (2008), and are listed in Table 

2. 

We consider the SHPB test system consisting of a striker bar, input and output pressure 

bars and the specimen. In the model, the input and output bars are 16 mm in diameter and 1300 

mm in length. The striker bar is 16 mm in diameter and 500 mm in length. Figure 3 shows the FE 

model used for the analysis. The striker bar and the pressure bars are modeled with axisymmetric 

triangular quadratic elements with 6 nodes (ABAQUS: CAX10M). The displacement interpolation 

function is quadratic for this element. The specimen is modeled with axisymmetric quadrilateral 

linear elements with 4 nodes (ABAQUS: CAX4R). The displacement interpolation function is 

linear for this element. A reduced integration technique is applied to evaluate both element 

stiffness matrices. For the striker and pressure bars, the total numbers of nodes are 12500 and 

68271, and those of elements are 26271 and 32500, respectively. For the specimen with a 

slenderness ratio   (= h/d) = 0.3, the total numbers of elements and nodes are 5940 and 6100, 

respectively. When   is varied, the number of elements is decreased or increased with respect to 

  as the size of the element becomes the same as that for  = 0.3. As shown in this figure, the 

radial size of the finite element is decreased with increasing radial position in order to ensure a 

uniform lumped mass for the accurate dynamic FE analysis in an axisymmetric problem. A locking 

may be overcome by using the triangular quadratic element for the pressure bars when the harder 

material (an austenitic stainless steel) is selected for simulation. To avoid this locking issue, the 

use of quadratic element is preferred. A series of simulations with a finer or coarser mesh division 

are performed to confirm a mesh independence of the results. Initially, the striker bar, the pressure 

bars and the specimen are all in contact with each other at their end surfaces. Here, the master 

surface is chosen for the specimen in the contact process. The impact velocity of the striker is 

taken as 5 m/s. Nodes along the axes of the striker bar, the pressure bars and the specimen are 

fixed in the radial direction. Elastic constants and density of pure aluminum are as follows: EAl = 

72.4 GPa, Al = 0.3 and Al = 2770 kg/m3. The material for the striker bar and the pressure bars is 
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assumed to be a bearing steel with Young’s modulus BE = 208 GPa, Poisson’s ratio B = 0.3 and 

density B = 7800 kg/m3. The kinematic contact pair algorithm is introduced at each contact 

surface. To determine the stress-strain curve of the specimen by the same procedure, the time 

histories of normal stresses in the z-direction at the Gaussian point within an element are shown in 

Fig. 4. The element positioned in the middle of the pressure bars is chosen to pick out the stress 

pulses in the SHPB tests. Then, the nominal mean stress can be calculated from Eq. (4). The 

nominal strain rate and nominal strain can be obtained as: 

 rti
BB hc




 
1

  and 
t

dt
0

'  .                                           (13) 

Figure 4 shows the three different stress pulses in the z-direction for  = 0.3 and  = 0.0. It is 

seen that similar stresses can be generated when a stress amplitude of 100 MPa is given at the end 

of the input bar, as reported by Meng and Li (2003).  

Two series of simulations are performed by varying   and   as follows. First,   is 

varied as 0.1, 0.2, 0.3, 0.433, 0.5, 1.0 and 2.0 for a fixed value of d = 13.3 mm, following Meng 

and Li (2003). Next,   is also varied as 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 for fixed 

values of   = 0.3 and d = 13.3 mm. Some of selected parameters are not available in practice. 

For example, both   = 2.0 and  = 0.7 are unlikely large. Note that these large values are 

intentionally included to show the validity of simulations by comparison of the results by Meng 

and Li (2003) even under such extreme conditions. 

 

4. RESULTS AND DISCUSSION 

4.1 Effects of slenderness ratio and friction coefficient on stress-strain curves 

Figure 5 shows nominal strain rate – plastic strain curves for the two types of pure aluminum from 

the FE analysis with (a) the rate-independent model and (b) the rate-dependent Johnson-Cook 

model for several specimen slenderness ratios   without friction ( = 0). It is seen that the strain 

rate does not remain constant for each   during impact loading for both models. Once the strain 

rate increases markedly, it decreases gradually with the progress of plastic deformation. The 
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decrease in strain rate gets smaller with increasing  , and then 0  can be satisfied for larger 

values of   without friction. This is obvious from Eq. (2) as discussed below. It is observed that 

the strain rate increases with decreasing   due to the decrease in the specimen thickness h. The 

oscillations in strain rate are enhanced with decreasing  . The radial inertia force in the specimen 

increases under the frictionless condition (Follansbee and Frantz, 1983), and hence a variation of 

the strain rate grows larger. Actually, 0  cannot be generated because of Pochhammer-Chree 

effect (Bancroft, 1941; Davies, 1948), which may occur in thinner specimens. The strain rate in the 

rate-independent material gets higher than that in the rate-dependent one. This is because the flow 

stress of the rate-dependent material increases with increasing strain rate. Unexpectedly, a 

significant difference cannot be found between both materials. The change in strain rate during 

plastic deformation is less dependent on the constitutive behavior. 

Figure 6 shows true stress – plastic strain curves for pure aluminum from (a) the direct 

calculations and (b) the FE analysis using the Johnson-Cook model for several specimen 

slenderness ratios   without friction. In the direct calculations using the Johnson-Cook model, 

the true stress can be obtained from both Eq. (12) with the material parameters given in Table 2 

and the strain rate – plastic strain curves shown in Fig. 5. Note that the compressive stress and 

strain are assumed as positive in this work. For a constant strain rate, the stress-strain curves 

obtained from the direct calculations can be drawn as shown in Fig. 2. The oscillations in the 

stress-strain curves can be observed in Fig. 6 (a). This is because of oscillations in the substituted 

strain rate as shown in Fig. 5. Similar oscillations are also found in Fig. 6 (b). Overall, the stress 

decreases with increasing  , which might be due to the decrease in strain rate.   is not 

explicitly included in Eq. (12). As mentioned above, the strain rate – plastic strain relation depends 

on  . Therefore, the stress calculated by substituting the  -dependent strain rate – plastic strain 

relation into Eq. (12) varies, depending on  . 

Strong oscillations in Figs. 5 and 6 may be associated with the bar geometry as reported 

by Bancroft (1941) and Davies (1948). Therefore, using both FFT filter and an inverse method, the 
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results may be corrected as Jankowiak et al. (2011) did. Here, this effect is not discussed since the 

topic is inappropriate to deal with this effect. 

To verify the modification of the theory by Davies and Hunter (1963), Fig. 7 shows that 

comparisons between analytic curves and the FE results for the true stress – plastic strain curves 

for the two types of pure aluminum with (a) rate-independent and (b) rate-dependent models for 

several specimen slenderness ratios   without friction. This figure reveals that the results from 

both direct calculations and FE analysis show fairly good agreement for both models. It is 

confirmed that the correspondence can also be observed for other values of  , and hence the 

additional increment in stress arising from the radial inertia is quite small without friction. 

Consequently, the above-mentioned modification is validated. It can be observed that the actual 

stress-strain curve slightly differs from the analytic curves for smaller values of   due to the 

Pochhammer-Chree oscillations. Meng and Li (2003) had no descriptions of this point; however, 

the present results compares well with their results. The above discussions are different from those 

given in the previous studies (Bertholf and Karnes, 1975; Meng and Li, 2003). They concluded 

that   = 2/3  derived by Davies and Hunter (1963) is optimum. In contrast, Zencker and 

Clos (1999) observed that the criterion does not seem to exist. The discussion here and the 

extended theory described in Section 2 are theoretically supported by their valid results for both 

rate-independent and rate-dependent models. Furthermore, with regard to the FE division depicted 

in Fig. 3, it can be said that the additional oscillations resulting from the difference in the lumped 

mass between the specimen and the pressure bars are quite small, because the analytic curve 

corresponds to that obtained by FE analysis even for larger values of   with a larger mass. Thus, 

the FE division is valid for this analysis. 

Figure 8 depicts true stress – plastic strain curves for pure aluminum from (a) direct 

calculations and (b) FE analysis using the Johnson-Cook model for various values of  at  = 0.3. 

Figure 8 (a) shows that the stress slightly decreases with increasing   due to the strain rate 

effects, while Fig. 8 (b) indicates that the stress clearly increases with increasing  . A similar 
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tendency is observed between the results in Fig. 8(b) and those obtained from the previous works 

(Bertholf and Karnes, 1975; Meng and Li, 2003). 

Figure 9 shows comparisons between analytic curves and the FE results for the true 

stress – plastic strain curves for the two types of pure aluminum with (a) rate-independent and (b) 

rate-dependent models for several values of friction coefficient  . For both models, a large 

difference between the results of direct calculations or analytic curves and FE analysis can be 

found. The difference increases with the increase in  . The tendency is almost the same for both 

models. 

 

4.2 Validation of the prediction by the proposed theory 

The ratio of stress defined by the left-hand side of Eq. (10) vs the friction coefficient   for a 

constant slenderness ratio  = 0.3 at various plastic strains is shown in Fig. 10 for (a) 

rate-independent and (b) rate-dependent models to check the validity of the extended theory in 

terms of Eq. (10). The solid line indicates the results calculated from Eq. (10) with  = 0.3 and 

 = 0.3. If the model is assumed to be incompressible,   is set equal to 0.5. The dotted line 

indicates this extreme condition such as the perfectly-plastic model. As shown in this figure, one 

analytic curve can approximately be drawn by using different types of symbols depending on 

plastic strains of the computed results for both models. The curve within smaller ranges of   

shows a linear behavior and then becomes flat beyond a certain critical value of  . Overall, the 

ratio of the difference in stresses varies nonlinearly with  . The qualitative correspondence 

between the FE results and Eq. (10) can be observed in smaller ranges of  . However, the slope 

of the line from Eq. (10) is slightly smaller than that from FE analysis. In larger ranges of  , it is 

conceivable that the triaxial stress state prevails within the specimen involving barreling, strongly 

associated with the plastic deformation. Since the stress state is not considered in the extended 

theory, Eq. (10) cannot predict the flat curve in larger ranges of  . Meanwhile, all the data are 

denoted by the solid and dotted lines. The value of   in Eq. (10) is not valid for completely 

elastic or plastic materials. Therefore, this result might be acceptable for the slope of the curves. 
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As shown in this figure, these properties are independent of the types of materials. For OHFC 

copper, Jankowiak et al. (2011) showed the similar curves on Fig. 10. The results obtained here are 

quite consistent with their reliable data. 

Figure 11 shows the ratio of two stresses defined by the left-hand side of Eq. (10) vs the 

specimen slenderness ratio   at various plastic strains for (a) rate-independent and (b) 

rate-dependent models. The ratio of the difference in the two stresses obtained by FE analysis 

varies hyperbolically with respect to  . One hyperbolic curve can approximately be drawn for 

different plastic strains of the computed results indicated by different types of symbol. For both 

materials, the tendency is almost the same. The solid and dotted lines indicate the theoretical 

predictions form Eq. (10) with  = 0.3 and 0.5, respectively. The hyperbolic change drawn with 

the computed results in terms of   can be predicted from Eq. (10). All the simulated data are 

included between the solid and dotted lines. This result might also be acceptable for the slope of 

the curves. 

Overall, these results suggest that it is difficult to state that the kinematic energy strongly 

affects the stress-strain behavior during the impact compression test. 

 

5. SUMMARY AND CONCLUSIONS 

The theory by Davies and Hunter (1963) has been modified, and the relationship of radial inertia 

and the friction between the specimen and the pressure bars was examined. In addition, to verify 

the adequacy of the proposed theory by referring to the simulation results of Meng and Li (2003), 

the compression SHPB tests on the two types of pure aluminum were simulated by the FEM. In a 

series of simulations, the two different control parameters, namely, the slenderness ratio   and 

the friction coefficient   were used. The rate-independent power-law and the rate-dependent 

Johnson-Cook constitutive models were introduced into the simulations to check the generality of 

the results obtained for ductile metallic materials. The true stresses were calculated directly from 

their models with the known constitutive parameters for the two types of pure aluminum. The 

variations in the dynamic stress-strain curve with   and   were examined by comparison with 
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the FE results and the direct calculations using their models. The main findings of the present 

computational study are summarized as follows: 

1) Under the frictionless conditions ( = 0), the accurate stress-strain behavior can be 

characterized by the conventional SHPB method, and the strain rate can be constant during 

impact loading. No corrections or reconstructions of the stress-strain curves are necessary. 

However, large oscillations in the stress-strain curve appear when   gets smaller. Any 

suitable corrections should be taken into account. 

2) The ratio between measured and analytic stress varies nonlinearly with   according to the 

proposed theory. Up to a certain value of  , the curve shows a linear relationship. One curve 

can approximately be drawn at different strains. The proposed theory can predict this linear 

relationship. 

3) The ratio between measured and analytic stress varies hyperbolically with respect to  . Only 

one curve can be plotted for any strains. However, the proposed theory can accurately predict 

this relationship by neglecting the kinetic energy of the specimen. 
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FIGURE CAPTIONS 

Figure 1  A cylindrical coordinate system at a center of a specimen with a radius a and thickness 

h subjected to pressures p1 and p2 at both ends 

Figure 2  Stress – strain curves for two types of pure aluminum with rate-independent model used 

by Meng and Li (2003) and rate-dependent Johnson-Cook models used by Bressan and 

Lopez (2008) 

Figure 3  Finite element model of the split Hopkinson pressure bar test system 

Figure 4  Example of three stress pulses on the input and output pressure bars from the finite 

element calculations of the SHPB test on pure aluminum 1100 

Figure 5  Nominal strain rate – plastic strain curves for two types of pure aluminum from the 

finite element analysis with (a) rate-independent model and (b) rate-dependent 

Johnson-Cook model for several slenderness ratios   of the specimen without 

friction 

Figure 6  True stress – plastic strain curves for pure aluminum from (a) direct calculations and (b) 

finite element analysis using the Johnson-Cook model for several slenderness ratios 

  of the specimen without friction 
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Figure 7  Comparisons between analytic curves and the FE results for true stress – plastic strain 

curves for two types of pure aluminum with (a) rate-independent and (b) 

rate-dependent models for several slenderness ratios   of the specimen without 

friction  

Figure 8  True stress – plastic strain curves for pure aluminum from (a) direct calculations and (b) 

finite element analysis using the Johnson-Cook model for several friction coefficients 

  

Figure 9  Comparisons between analytic curves and the FE results for true stress – plastic strain 

curves for two types of pure aluminum with (a) rate-independent and (b) 

rate-dependent models for several friction coefficients   

Figure 10 Ratio of two stresses defined by Eq. (10) vs the friction coefficient   for (a) rate- 

independent and (b) rate-dependent models 

Figure 11 Ratio of stress defined by Eq. (10) vs the slenderness ratio   for (a) rate- independent 

and (b) rate-dependent models 

 

TABLE CAPTIONS 

Table 1 Material parameters of the rate-independent power-law strain hardening model for pure 

aluminum 1100 used by Meng and Li (2003) 

Table 2 Material parameters of the rate-dependent Johnson-Cook model for pure aluminum used 

by Bressan and Lopez (2008) 
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Appendix 

A.1 Theory by Davies and Hunter (1963) 

To verify the validity of Eq. (1), we will start with the law of energy conservation in the 

specimen by obeying their derivation procedure as 

PUK   ,                                                                 (A.1) 

where K  is the kinetic energy, U  is the internal energy and P  is the power of external applied 

forces. An overdot (•) denotes the material time derivative. If the Eulerian coordinate is taken, the 

material time derivative includes the convection term. However, the Lagrangian coordinate is 

assumed here, and, hence, the term cannot be considered. 

If the uniform strain rate   is applied in the thickness direction of the specimen 

(corresponding to the z-direction) as shown in Fig. 1, the axial and radial components of velocities 

in the specimen can be formulated as  

Vzuz    and   rur  ,                                                    (A.2) 

where V  is a rigid body velocity of the whole specimen due to a collision with the striker bar. 

From Eq. (A.2), the kinetic energy is given as  
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When Eq. (A.3) is differentiated with respect to time, we can obtain  
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where ha2  is the volume of the specimen. If the uniform stress   is only applied in the 

axial direction, the rate of strain energy can be written as  

 U .                                                                  (A.5) 

The pressures 1p  and 2p  are only applied to both edges of the specimen as external 

forces (see Fig.1). From the displacement rates at both ends of the specimen ( 2/hz   and 

2/hz  ) given by Eq. (A.2), the power due to the external force can be expressed as  
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Substitution of Eqs. (A.4), (A.5) and (A.6) into Eq. (A.1) yields the following equation 

after some rearrangements: 
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The terms inside the brackets on the right-hand side of Eq. (A.7) can be set equal to zero from the 

momentum conservation in the axial direction of the specimen. Finally, we can obtain 
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Moreover, Davies and Hunter (1963) showed that the following equation can be obtained by 

setting ppp  21  at the limit of h  to 0: 

 
2

22a
p  .                                                            (A.9) 

Equation (A.9) is identical to that derived from Kolsky’s formulation (Davies and Hunter, 1963). 

After obtaining Eq. (A.9), Davies and Hunter (1963) derived Eq. (1) by expressing the first term on 

the right-hand side of Eq. (A.8) using the displacement measured with a condenser microphone 

located at the edge of the output pressure bar.  
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Figure 1  A cylindrical coordinate system at a center of a specimen with a radius a and thickness h 

subjected to pressures p1 and p2 at both ends 



 

 

 

 

 

 

 

 

 

Figure 2  Stress – strain curves for two types of pure aluminum with rate-independent model used by Meng 

and Li (2003) and rate-dependent Johnson-Cook models used by Bressan and Lopez (2008) 



 

 

 

 

 

 

 

 

Figure 3  Finite element model of the split Hopkinson pressure bar test system 



 

 

 

 

 

 

 

 

 

 

Figure 4  Example of three stress pulses on the input and output pressure bars from the finite element 

calculations of the SHPB test on pure aluminum 1100 



 

 

 

 

 

 

(a) Rate-independent model 

 

(b) Rate-dependent Johnson-Cook model 

Figure 5  Nominal strain rate – plastic strain curves for two types of pure aluminum from the finite element 

analysis with (a) rate-independent model and (b) rate-dependent Johnson-Cook model for 

several slenderness ratios   of the specimen without friction 



 

 

 

 

 

 

(a) Direct calculations using Johnson-Cook model 

 

(b) FEA using Johnson-Cook model 

Figure 6  True stress – plastic strain curves for pure aluminum from (a) direct calculations and (b) finite 

element analysis using the Johnson-Cook model for several slenderness ratios   of the 

specimen without friction 



 

 

 

 

 

 

 

(a) Rate-independent model 

 

(b) Rate-dependent Johnson-Cook model 

Figure 7  Comparisons between analytic curves and the FE results for true stress – plastic strain curves for 

two types of pure aluminum with (a) rate-independent and (b) rate-dependent models for 

several slenderness ratios   of the specimen without friction 

 



 

 

 

 

 

 

 

(a) Direct calculations using Johnson-Cook model 

 
(b) FEA using Johnson-Cook model 

Figure 8  True stress – plastic strain curves for pure aluminum from (a) direct calculations and (b) finite 

element analysis using the Johnson-Cook model for several friction coefficients   



 

 

 

 

(a) Rate-independent model 

 

(b) Rate-dependent Johnson-Cook model 

Figure 9  Comparisons between analytic curves and the FE results for true stress – plastic strain curves for 

two types of pure aluminum with (a) rate-independent and (b) rate-dependent models for several 

friction coefficients   



 

 

 
(a) Rate-independent model 

 
(b) Rate-dependent Johnson-Cook model 

Figure 10 Ratio of two stresses defined by Eq. (10) vs the friction coefficient   for (a) rate- independent 

and (b) rate-dependent models 



 

 

 

(a) Rate-independent model 

 

(b) Rate-dependent Johnson-Cook model 

Figure 11 Ratio of stress defined by Eq. (10) vs the slenderness ratio   for (a) rate- independent and (b) 

rate-dependent models 
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Table 1 Material parameters of the rate-independent power-law strain hardening model for pure aluminum 

1100 used by Meng and Li (2003) 

 

K  [MPa] n  

321.5 0.44 

 

Table 2 Material parameters of the rate-dependent Johnson-Cook model for pure aluminum used by Bressan 

and Lopez (2008) 

A  [MPa] B  [MPa] *n  C  *m  mT  [K] 

8 90 0.35 0.2 0.7 933 

 


