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We study a mechanism to create a vorton or three-dimensional skyrmion in phase-separated two-component
BECs with the order parameters �1 and �2 of the two condensates. We consider a pair of a domain wall (brane)
and an antidomain wall (antibrane) stretched by vortices (strings), where the �2 component with a vortex winding
is sandwiched by two domains of the �1 component. The vortons appear when the domain wall pair annihilates.
Experimentally, this can be realized by preparing the phase separation in the order �1, �2, and �1 components,
where the nodal plane of a dark soliton in �1 component is filled with the �2 component with vorticity. By
selectively removing the filling �2 component gradually with a resonant laser beam, the collision of the brane
and antibrane can be made, creating vortons.
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I. INTRODUCTION

Quantized vortices are one of remarkable consequences
of superconductivity and superfluidity. In multicomponent
superfluids and superconductors, there appear many kinds
of exotic vortices. When a vortex of one condensate traps
another condensate inside its core, a supercurrent or super-
flow of the latter can exist along the vortex line. Such a
vortex is called a superconducting or superflowing cosmic
string in cosmology [1]. Because of the Meissner effect,
superconducting strings exclude magnetic fields like super-
conductive wires, so that they are proposed to explain several
cosmological phenomena related to galactic magnetic fields.
When a superconducting string is closed and “twisted,” that
is, when the second condensate inside the string core has
a nontrivial winding along the string loop, the supercurrent
persistently flows along the loop and makes it stable. Such a
twisted vortex loop is called a “vorton,” a particle-like soliton
made of a vortex [2,3]. While vortons were discussed in 3He
superfluids [4], they are considered to be a candidate of dark
matter, and a possible source of ultrahigh energy cosmic ray.
There have been a lot of study about their stability, interaction,
and applications to cosmology [5].

On the other hand, three-dimensional (3D) skyrmions
are topological solitons (textures) characterized by the third
homotopy group π3(SU(2)) � Z in a pion effective field
theory. Skyrmions were proposed to be baryons [6]. Since
their proposal, the skyrmions have been studied for a long time
about their stability, interaction, and applications to nuclear
physics [7].

Both 3D skyrmions and vortons have been fascinating
subjects in high energy physics and cosmology for decades,
and a lot of work have been done already, but they have yet
to be observed in nature. On the other hand, these topological
excitations, 3D skyrmions [8–14] and vortons [15,16], can
be realized in Bose-Einstein condensates (BECs) of ultracold
atomic gasses. Moreover 3D skyrmions and vortons have
been shown to be topologically equivalent in two-component

BECs [8,9]. BECs are extremely flexible systems for studying
solitons (or topological defects) since optical techniques can
be used to control and directly visualize the condensate wave
functions [17]. Interest in various topological defects in BECs
with multicomponent order parameters has been increasing;
the structure, stability, and creation and detection schemes for
monopoles [18–21], knots [22], and non-Abelian vortices [23]
have been discussed [24].

It is, however, still unsuccessful to create vortons and 3D
skyrmions experimentally, although the schemes to create and
stabilize them have been theoretically proposed [8–14]. In
the present study we propose how to create vortons or 3D
skyrmions in two-component BECs from domain walls and
quantized vortices. Specific examples of the system include a
BEC mixture of two-species atoms such as 87Rb-41K [25] or
85Rb-87Rb [26], where the miscibility and immiscibility can be
controlled by tuning the atom-atom interaction via Feshbach
resonances. Here the domain wall is referred to as an interface
boundary of phase-separated two-component BECs. Although
the interface has a finite thickness, the wall is well-defined as
the plane in which both components have the same amplitude.
Since a description of two-component BECs can be mapped
to the O(3) nonlinear sigma model (NLσM) by introducing
a pseudospin representation of the order parameter [27–29],
the resultant wall-vortex composite soliton corresponds to
the Dirichlet (D)-brane soliton described in Refs. [30–34],
which resembles a D-brane in string theory [35–37]. Such a
D-brane soliton has been already numerically constructed by
us in two-component BECs [38]. We have found that these
composite solitons are energetically stable in rotating, trapped
BECs and are experimentally feasible with realistic param-
eters. Similar configuration has been also studied in spinor
BECs [39].

A brane-antibrane annihilation was demonstrated to create
some topological defects in superfluid 3He [40]. However,
a physical explanation of the creation mechanism of defects
still remains unclear. The intriguing experiment that mimicked
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the brane-antibrane annihilation was performed in cold atom
systems with the order parameters �1 and �2 of two-
component BECs by Anderson et al. [41]. They prepared the
configuration of the phase separation in the order �1, �2,
and �1 components, where the nodal plane of a dark soliton
in one component was filled with the other component. By
selectively removing the filling component with a resonant
laser beam, they made a planer dark soliton in a single-
component BEC. Then, the planer dark soliton in 3D system
is dynamically unstable for its transverse deformation (known
as snake instability) [41], which results in the decay of the
dark soliton into vortex rings. In the two-component BECs
we have numerically simulated brane-antibrane annihilations,
which resulted in vortex loops [42].

In this paper we consider a junction of a D-brane soliton
and its antisoliton, namely a pair of a domain wall and an
antidomain wall stretched by vortices. We give an approximate
analytic solution for a pair of the D-brane and anti-D-brane in
the O(3) NLσM. We show that this unstable configuration
decays into a vorton or a 3D skyrmion, instead of an
untwisted vortex ring [41] in the case without stretched
vortices. Experimentally this can be realized by preparing the
phase separation in the order �1, �2, and �1 components,
and rotating the intermediate �2 component. By selectively
removing the filling �2 component gradually with a resonant
laser beam, the collision of the D-brane and anti-D-brane can
be made, to create vortons.

This paper is organized as follows. In Sec. II we present
the Gross-Pitaevski energy functional of two-component
BECs, and rewrite it in the form of NLσM. In Sec. III,
after constructing a phase separation, that is, a domain wall
configuration in NLσM, we consider a pair of a domain wall
and an antidomain wall. We discuss a creation of vortex in two
dimensions, and a creation of vortex loops in three dimensions
after a pair annihilation of the domain walls. In Sec. IV we
consider a pair of a domain wall and an antidomain wall with
vortices stretched between them. We show that when a vortex
loop encloses n of the stretched vortices, the phase of the �2

component winds n times, that is, it is a vorton with n twist. We
also confirm a vorton with n = 1 is topologically equivalent
to a 3D skyrmion. Section V is devoted to a summary and
discussion.

II. SYSTEM

A. Gross-Pitaevski energy functional

The order parameter of two-component BECs is

� = (�1,�2), (1)

where

�j = √
ρje

iθj (j = 1,2) (2)

are the macroscopically occupied spatial wave function of the
two components with the density ρj and the phase θj . The
order parameter can be represented by the pseudospin

s = (s1,s2,s3) = (sin θ cos φ, sin θ sin φ, cos θ ) (3)

with a polar angle θ = cos−1[(ρ1 − ρ2)/ρ] and an azimuthal
angle φ = θ2 − θ1 as

� = √
ρei �

2

(
cos

θ

2
e−i

φ

2 , sin
θ

2
ei

φ

2

)
, (4)

where ρ = ρ1 + ρ2 and � = θ1 + θ2 represent the local
density and phase, respectively [27].

The solutions of the solitonic structure in two-component
BECs are given by the extreme of the Gross-Pitaevski (GP)
energy functional

E[�] =
∫

d3x

{ ∑
j=1,2

[
h̄2

2mj

|∇�j |2 + (Vj − μj )|�j |2

+ gjj

2
|�j |4

]
+ g12|�1|2|�2|2

}
. (5)

Here mj is the mass of the j th component and μj is its
chemical potential. The BECs are confined by the harmonic
trap potential

Vj = 1
2mj

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
. (6)

The coefficients g11, g22, and g12 represent the atom-atom
interactions. They are expressed in terms of the s-wave
scattering lengths a11 and a22 between atoms in the same
component and a12 between atoms in the different components
as

gjk = 2πh̄2ajk

mjk

(7)

with m−1
jk = m−1

j + m−1
k . The GP model is given by the

mean-field approximation for the many-body wave function
and provides quantitatively good description of the static and
dynamic properties of the dilute-gas BECs [43].

B. Mapping to the nonlinear sigma model

To derive the generalized NLσM for two-component BECs
from the GP energy functional (5), we assume m1 = m2 = m

and V1 = V2 = V . By substituting the pseudospin representa-
tion Eq. (4) of �, we obtain [27]

E =
∫

d3x

{
h̄2

2m

[
(∇√

ρ)2 + ρ

4

3∑
α=1

(∇sα

)2
]

+ Vρ

+ mρ

2
|veff|2 + c0 + c1s3 + c2s

2
3

}
, (8)

where we have introduced the effective superflow velocity

veff = h̄

2m
(∇� − cos θ∇φ) (9)

and the coefficients

c0 = ρ

8
[ρ(g11 + g22 + 2g12) − 4(μ1 + μ2)], (10)

c1 = ρ

4
[ρ(g11 − g22) − 2(μ1 − μ2)], (11)

c2 = ρ2

8
(g11 + g22 − 2g12). (12)

The coefficient c1 can be interpreted as a longitudinal magnetic
field that aligns the spin along the x3 axis; it was assumed
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to be zero in this study. The term with the coefficient
c2 determines the spin-spin interaction associated with s3;
it is antiferromagnetic for c2 > 0 and ferromagnetic for
c2 < 0 [27]. Phase separation occurs for c2 < 0, which we
are focusing on. Further simplification can be achieved by
assuming that V = 0 and the total density is uniform through
the relation ρ = μ/g, where g = g11 = g22 and μ = μ1 = μ2,
and that the kinetic energy associated with the superflow veff is
negligible. Although the assumptions veff = 0 and ρ = const
become worse in the vicinities of vortex cores or domain walls,
this simplification does not affect later discussions about the
vorton nucleations based on topology.

By using the healing length ξ = h̄/
√

2mgρ as the length
scale, the total energy can reduce to

Ẽ = E

gρξ 3
=

∫
d3x

1

4

[
3∑

α=1

(∇sα

)2 + M2
(
1 − s2

3

)]
, (13)

M2 = 4|c2|
gρ2

, (14)

where M is the effective mass for s3. This is a well-known
massive NLσM for effective description of a Heisenberg
ferromagnet with spin-orbit coupling.

Introducing a stereographic coordinate

u = s1 − is2

1 − s3
, (15)

we can rewrite Eq. (13) as

Ẽ =
∫

d3x

∑3
α=1 |∂αu|2 + M2|u|2

(1 + |u|2)2
. (16)

Here u = 0 (∞) corresponds to the south (north) pole of the
S2 target space.

III. WALL-ANTIWALL ANNIHILATION

A. Domain walls

For a domain wall perpendicular to the x1 axis, u = u(x1),
the total energy is bounded from below by the Bogomol’nyi-
Prasad-Sommerfield (BPS) bound as [30,32,33,38]

Ẽ =
∫

d3x
|∂1u ∓ Mu|2 ± M(u∗∂1u + u∂1u

∗)

(1 + |u|2)2

� |Tw| (17)

by the topological charge that characterizes the wall:

Tw = M

∫
d3x

u∗∂1u + u∂1u
∗

(1 + |u|2)2
, (18)

where ∂i denotes the differentiation with respect to xi . Among
all configurations with a fixed boundary condition, that is, with
a fixed topological charge Tw, the most stable configurations
with the least energy saturate the inequality (17) and satisfy
the BPS equation

∂1u ∓ Mu = 0, (19)

which is obtained by | · · · |2 = 0 in Eq. (17). This equation
immediately gives the analytic form of the wall configuration

uw(x1) = e∓M(x1−x1
0 )−iφ0 . (20)

x1

x2(3)

(a b)

FIG. 1. (Color online) A single domain wall in two-component
BECs. (a) The amplitude of �1 for a domain wall. (b) The pseudospin
texture of the single domain wall perpendicular to the x1 axis in real
space. The arrows denote points in the target space S2. The gradient
and interaction energies are localized around the wall, which is shaded
schematically. The arrows on the wall imply the phase φ0 which the
wall possesses.

The function uw represents the domain wall with wall position
x1

0 and phase φ0 associated with (s1,s2); this phase φ0 yields
the Nambu-Goldstone mode localized on the wall, as in Fig. 1.
The sign ∓ implies a domain wall and an antidomain wall.
The domain wall can be mapped to a path in the target space
as shown in Fig. 2(a).

B. Wall-antiwall annihilation

As described in Sec. I, we note that the intriguing
experiment that mimicked the brane–antibrane annihilation
was performed by Anderson et al. [41]. They created the
configuration shown in Fig. 3, where the nodal plane of
a dark soliton in one component was filled with the other
component. By selectively removing the filling component
with a resonant laser beam, they made a planer dark soliton
in a single-component BEC. The dark soliton corresponds
to the coincident limit of the two kinks in Fig. 3(a). It

(a b)

FIG. 2. (Color online) The S2 target space where the north and
south poles are denoted by � and ⊗, respectively. (a) The path
connecting the north and south poles represents the map from the
path in the domain wall in Fig. 1(b) along the x1 axis in real space
from x1 → −∞ to x1 → +∞. The path in the S2 target space passes
through one point on the equator, which is represented by “←” in
Fig. 1(b) in this example. In general, the U(1) zero mode is localized
on the wall. (b) The path in the target space S2 for a domain wall and
an antidomain wall. The path represents the map from the path along
the x1 axis from x1 → −∞ to x1 → +∞ in real space in Fig. 3(b).
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(a) (b)

FIG. 3. (Color online) A pair of domain wall and antidomain
wall in two-component BECs. (a) The amplitude of �1 for the
wall and antiwall configuration. (b) The pseudospin texture of
the wall and antiwall configuration in real space. The arrows
denote the pseudospin. �1 (�2) is filled outside (between) the walls,
where the other component is zero. In the upper (lower) region outside
the walls, the phase of �1 is fixed to be zero (π ).

is known that the planer dark soliton in the 3D system is
dynamically unstable for its transverse deformation (known as
snake instability) [41], which results in the decay of the dark
soliton into vortex rings.

In our context, this experiment demonstrated the wall-
antiwall collision and subsequent creation of cosmic strings,
where the snake instability may correspond to “tachyon
condensation” in string theory [44]. The procedure that
removes the filling component can decrease the distance R

between two domain walls and cause their collision. The
tachyon condensation can leave lower dimensional topological

defects after the annihilation of D-brane and anti-D-brane. In
our case of the phase-separated two-component BECs, the
annihilation of the two-dimensional defects (domain walls)
leaves one-dimensional defects (quantized vortices).

Let us discuss this in two dimensions in more detail. Here
U(1) zero modes of the wall and the antiwall are taken to
be opposite as in Fig. 3(b). The configuration is mapped to a
loop in the S2 target space, see Fig. 2(b). This configuration is
unstable. It should end up with the vacuum with the up-spin
�. In the decaying process the loop is unwound from the south
pole in the target space. To do this there are two topologically
inequivalent ways, which are schematically shown in Figs. 4(a)
and 4(b). In real space, at first, a bridge connecting two walls
is created as in Figs. 4(c) and 4(d). Here there exist two
possibilities of the spin structure of the bridge, corresponding
to two ways of the unwinding processes. Along the bridge
in the x1 direction, the spin rotates (c) anticlockwise or (d)
clockwise on the equator of the S2 target space. Let us label
these two kinds of bridges by “↓” and “↑”, respectively.

In the next step, a “passage” through the bridge is formed
as in Figs. 4(e) and 4(f), where the ground state, that is, the
up-spin � state, is filled between them. The phase of the filling
�1 component through the passage is connected anticlockwise
or clockwise [Figs. 4(g) and 4(h)] Let us again label these two
kinds of passages by “↓” and “↑”, respectively. In either case,
the two regions separated by the domain walls are connected
through a passage created in the decay of domain walls. Once
created, these passages grow to holes in order to reduce the
domain wall energy.

Several holes are created in the entire decaying process.
Let us focus a pair of two neighboring holes. Then, one can

(a) (c) (e g)

(b) (d) (f h)

FIG. 4. (Color online) Decaying processes of the wall-antiwall pair. (a) and (b) The loop in the pseudospin space is unwound in two ways.
(c) and (d) A bridge is created between the wall and antiwall. In this process there are two possibilities of spin structure along the bridge.
(e) and (f) The upper and lower regions are connected with a passage through the bridge being formed. (g) and (h) The �1 component is filled
inside the passage, and the phase of �1 component is connected anticlockwise or clockwise.
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(a b)

(c d)

FIG. 5. (Color online) Stable and unstable wall rings. (a) and (b)
Stable wall rings. The domain wall phase winds once (the winding
number is ±1) along the rings. Total configurations are 2D skyrmions
with a nontrivial element ±1 of the second homotopy group π2. The
phase �1 winds ±1 so that it is a vortex, while �2 is filled inside the
core. (c) and (d) Unstable wall rings. The domain wall phase does not
wind (the winding number is 0) along the rings. The phase �1 does
not wind so that it cannot be a vortex, while �2 is filled inside the
ring. They decay into ground state (up pseudospin).

find a ring of a domain wall between the holes as shown
in Fig. 5. Here, since there exist two kinds of holes (↑ and
↓), there exist four possibilities of the rings, (a) ↑↓, (b) ↓↑,
(c) ↑↑, and (d) ↓↓ in Fig. 5. In all the cases, the �2

component is confined in the domain wall rings. The phase
of �1 component has a nontrivial winding outside the rings of
types (a) and (b), whereas it does not have a winding outside
the domain wall rings of types (c) and (d). Consequently, the
domain wall rings of types (c) and (d) can decay and end up
with the ground state �. However, the decay of the rings of
types (a) and (b) is topologically forbidden; they are nothing
but coreless vortices.

In the O(3) NLσM, the domain wall rings of types (a) of
(b) are the Anderson-Toulouse vortices [45], or lumps in field
theory [46]. The solutions can be written as (z ≡ x1 + ix2)

u = u0 =
k∑

i=1

λi

z − zi

or u = ū0 (21)

for a lump or an antilump, where zi ∈ C represent the position
of the lump while and λi ∈ C∗ with |λi | and arg λi representing
the size and the U(1) orientation of the lump, respectively. In
fact, one can show that these configurations have a nontrivial
winding in the second homotopy group π2(S2) � Z which can
be calculated from

1

2π

∫
d2x

i(∂1u
∗∂2u − ∂2u

∗∂1u)

(1 + |u|2)2
. (22)

(a b)

FIG. 6. (Color online) Decay of a domain wall pair in three
dimensions. Domain walls are two-dimensional objects. (a) Two
kinds of holes labeled by ↑ and ↓ are created after a domain-wall
pair decay. (b) Along the boundary of these two kinds of holes, there
appear vortex lines (denoted by dotted lines), which in general making
vortex loops.

The wall rings of Figs. 5(a) and 5(b) belong to +1 and −1 of
π2(S2), respectively. Namely they are a lump and an antilump,
respectively.

So far we have discussed two-dimensional space in which
domain wall is a line and a vortex is point-like. In three
dimensions, domain walls have two spatial dimensions. When
the decay of the domain wall pair occurs, there appear
two-dimensional holes, which can be labeled by ↓ or ↑ in
Fig. 6(a). Along the boundary of these two kinds of holes,
there appear vortex lines, which in general making vortex
loops, as in Fig. 6(b). This process has been numerically
demonstrated [42]. The vortex rings decay into the funda-
mental excitations in the end.

IV. D-BRANE–ANTI-D-BRANE ANNIHILATION

A. D-brane soliton

The D-brane soliton by Gauntlett et al. [30] can be
reproduced in two-component BECs as follows [38]. For a
fixed topological sector, vortices (a domain wall) parallel
(perpendicular) to the x1 axis, the total energy is bounded
from below by the BPS bound as [30,32,33,38]

Ẽ =
∫

d3x
|∂1u ∓ Mu|2 + |(∂2 ∓ i∂3)u|2

(1 + |u|2)2

±
∫

d3x
M(u∗∂1u + u∂1u

∗) + i(∂2u
∗∂3u − ∂3u

∗∂2u)

(1 + |u|2)2

� |Tw| + |Tv| (23)

by the topological charges that characterize the wall and
vortices:

Tw = M

∫
d3x

u∗∂1u + u∂1u
∗

(1 + |u|2)2
, (24)

Tv = i

∫
d3x

∂2u
∗∂3u − ∂3u

∗∂2u

(1 + |u|2)2
. (25)

Then, the least energy configurations with fixed topological
charges (a wall with a fixed number of vortices) satisfy the
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s3

s3

1

2  

domain wall

vortex

x1

x2

x3(a)

(b)

(c)

(d)

FIG. 7. (Color online) The typical D-brane soliton in two-
component BECs. (a) Schematic illustration of the wall-vortex
soliton configuration viewed from the length scale larger than the
domain-wall width and the vortex core size. The two-component
BECs �1 (x1 < 0) and �2 (x1 > 0) are separated by the domain wall.
A single vortex located at x1 < 0 (�1 component) is connected to the
domain wall. (b) The isosurface of s3 = 0 for the solution Eq. (27)
of the NLσM, where M = 1, x1

0 = 0, φ0 = 0, Nv1 = 1, Nv2 = 0, and
z

(1)
1 = 0. The corresponding spin textures s in the z = 0 plane and

y = 0 plane are shown in (c) and (d), respectively. The magnitude of
s3 is denoted by color. We have s = (0,0, − 1) along the vortex core.

BPS equations

∂1u ∓ Mu = 0, (∂2 ∓ i∂3)u = 0. (26)

The analytic form of the wall-vortex composite solitons can
be found (z ≡ x2 + ix3)

u(x1,z) = uw(x1)uv(z), (27)

where [32]

uw(x1) = e∓M(x1−x1
0 )−iφ0 , (28)

uv(z) =
∏Nv1

j=1

(
z − z

(1)
j

)
∏Nv2

j=1

(
z − z

(2)
j

) . (29)

The function uw represents the domain wall with wall
position x1

0 and phase φ0. The function uv gives the vortex
configuration, being written by arbitrary analytic functions
of z; the numerator represents Nv1 vortices in one domain (�1

component) and the denominator represents Nv2 vortices in the
other domain (�2 component). The positions of the vortices are
denoted by z

(1)
j and z

(2)
j . The total energy does not depend on

the form of the solution, but only on the topological charges
as Tw = ±M or 0 (per unit area), and Tv = 2πNv (per unit
length), where Nv is the number of vortices passing through a
certain x1 = const plane.

s3

1

2  

x1

x2

x3(a)

(b)

(c)

(d)

s3

FIG. 8. (Color online) The D-brane soliton to which two vortices
attach. (a) Schematic illustration of the configuration in which each
component has a single vortex connected to the wall. (b) The
isosurface of s3 = 0 for the solution Eq. (27) of the NLσM, where
M = 1, x1

0 = 0, φ0 = 0, Nv1 = 1, Nv2 = 1, z
(1)
1 = −2, and z

(2)
1 = 2.

The corresponding spin textures s in the z = 0 plane and y = 0 plane
are shown in (c) and (d), respectively. The magnitude of s3 is denoted
by color. The wall becomes asymptotically flat due to the balance
between the tensions of the attached vortices.

Figure 7 shows a D-brane soliton with the simplest wall-
vortex configuration of Eq. (27). A vortex exists in x1 < 0
and forms a texture, where the spin points down at the center
and rotates continuously from down to up as it moves radially
outward. The edge of vortex attaches to the wall, causing it to
bend logarithmically as x1 = log |z|/M [Figs. 7(b) and 7(d)].
We can construct solutions in which an arbitrary number of
vortices are connected to the domain wall by multiplying by
the additional factors z − z

(i)
j [see Eq. (29)]; Fig. 8 shows a

solution in which both components have one vortex connected
to the wall. In the NLσM, the energy is independent of the
vortex positions z

(i)
j on the domain wall; in other words, there

is no static interaction between vortices.

B. Brane-antibrane annihilation with a string

We are ready to study a pair of a domain wall and
an antidomain wall stretched by vortices. An approximate
analytic solution of the domain wall pair stretched by one
vortex, which is schematically shown in Fig. 9(a), can be given
in the O(3) NLσM as

u(x1,z) = uw(x1)uv(z), (30)

uw(x1) = e−M(x1−x1
1 )−iφ1 + eM(x1−x1

2 )−iφ2 , (31)

uv(z) = 1/z. (32)
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(a) (b) (c)

FIG. 9. (Color online) (a) A pair of a D-brane (domain wall) and an anti-D-brane (antidomain wall) stretched by a string (vortex) in
two-component BECs. The branes are perpendicular to the x1 axis and the string is placed along the x1 axis. The arrows denote pseudospins.
The �1 (�2) component is filled outside (between) the branes, where the other component is zero. In the upper (lower) region outside the
branes, the phase of �1 is fixed to be zero (π ). In the middle region, the phase of �2 has winding around the vortex placed at the x1 axis.
Accordingly, the pseudospin rotates once (anti)clockwise at the endpoint of string on the (anti)brane. The profile of the �1 component along a
line parallel to the x1 axis at (x2,x3) �= 0 represents two kinks in the left panel, while the profile of the �1 component along the x1 axis shows
the coincident two kinks, that is, a dark soliton. The dot in the center denotes the point (�1,�2) = 0, which corresponds to a singularity in
the NLσM approximation (ρ = const) in (b). (b) The isosurface of s3 = 0 of an approximate solution in Eq. (30) with a domain wall and an
antidomain wall stretched by a vortex in the O(3) NLσM, where M = 1, x1

1 = −3, x1
2 = 3, φ1 = 0, φ2 = π . (c) The pseudospin texture of an

approximate solution in Eq. (30).

Here x1
1 and x1

2 (x1
1 < x1

2 ) represent the positions of the wall and
antiwall, respectively, while φ1 and φ2 denote the phase of the
wall and antiwall, respectively. This solution is good when the
distance |x1

1 − x2
2 | between the walls is large compared with

the mass scale M−1. For our purpose, the phases are taken
as φ1 = φ2 + π , which means that the �1 component has a
dark soliton when the intermediate �2 component vanishes.
The isosurface of s3 = 0 and the pseudospin structure of this
configuration are plotted in Figs. 9(b) and 9(c), respectively.
In order to avoid the logarithmic bending of the walls, one can

A
B C

FIG. 10. (Color online) Loops in the wall-vortex systems. While
the loop A yields an untwisted vortex ring in Fig. 11(a), the loop
B (C) yields a vorton, that is, a vortex ring twisted once (twice). A
vorton with twisted once is shown in Fig. 11(b).

use uv(z) in Eq. (29) with Nv1 = Nv2 instead of Eq. (32), as
in Fig. 10. The solution in Eqs. (30)–(32) of the O(3) NLσM
has a singularity at the midpoint of the vortex stretching the
domain walls, as in Fig. 9. It is, however, merely an artifact in
the NLσM approximation of ρ = const; the singularity does
not exist in the original theory without such the approximation,
because ρ varies and merely vanishes at that point.

Now let us discuss the dynamics of the wall-antiwall
configuration. As in the case without a stretched string, the
configuration itself is unstable to decay, and vortex loops are
created in the �1 component. Since the �2 component is
localized along the vortex core, the s3 = 0 surface forms a
torus (ring), where the region of s3 > 0 is outside the torus,
whereas the region s3 < 0 is inside it. As far as the phase of
�2 component inside the ring is concerned, the vortex loops
are classified into (1) the untwisted case [see Fig. 11(a)] and
(2) the twisted case [see Fig. 11(b)].

(1) If the closed vortex loop encloses no stretched vortices
as the loop A in Fig. 10, the vortex loop is not twisted, as in
Fig. 11(a). Equivalently, the phase of the �2 component inside
the ring is not wound.

(2) However, if the vortex loop encloses n stretched vortices
as the loops B and C in Fig. 10, the vortex loop is twisted n

times. It implies that the phase of the �2 component inside
the ring is wound n times. A vortex loop twisted once, which
is nothing but a vorton with the minimum twist, is shown in
Fig. 11(b). The vertical section of the torus by the x1-x2 plane
is a pair of a skyrmion (coreless vortex) and an antiskyrmion
(coreless vortex). Moreover, the presence of the stretched
vortex implies that the phase winds anticlockwise along the
loops, as can be seen by the arrows on the top and the bottom
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(a) (c)(b)

FIG. 11. (Color online) (a) The pseudospin texture of an untwisted vortex ring, and (b) and (c) the pseudospin and phase textures of a
twisted vortex ring, that is, a vorton, after the brane-antibrane annihilation. (b) The pseudospin structure of the vorton. The torus divides the
regions of �1 and �2 which repel each other: �1 (�2) are filled outside (inside) the torus. The vertical section of the torus by the x1-x2 plane
is a pair of 2D skyrmions and antiskyrmions. While they rotate along the x1 axis their pseudospins are twisted. This spin texture is equivalent
to that of a knot [22,28,29]. (c) The phase structure of the vorton. The arrows denote the phase of �1 and �2. The circle denotes the core of
vorton where �2 is filled and �1 is zero. The phase of �2 winds once along that circle. The square of the dotted line denotes a loop where �2

is zero. The phase of �1 winds once along that loop. Note that the loops of �1 and �2 are zero, respectively, make a link. Along the zeros of
�1 (�2), the phase of �2 (�1) winds once.

of the torus in Fig. 11(b). When the 2D skyrmion pair rotate
along the x1 axis their phases are twisted and connected to
each other at the π rotation. Note that the zeros of �1 and �2

make a link. Along the zeros of �1 (�2), the phase of �2 (�1)
winds once. The configuration is nothing but a vorton.

It may be interesting to point out that this spin texture
is equivalent to the one of a knot soliton [22,28,29], that is, a
topologically nontrivial texture with a Hopf charge π3(S2) � Z
in an O(3) NLσM. Mathematically, this fact implies that a
vorton is Hopf fibered over a knot.

Finally, to confirm a vorton creation of a domain wall pair
annihilations, we show a numerical simulation of the time-
dependent GP equation ih̄∂t�j = δE/δ�∗

j for the domain
wall pair with a stretched vortex in Fig. 12. The numerical
scheme to solve the GP equation is a Crank-Nicholson method
with the Neumann boundary condition in a cubic box without
external potentials. The box size is 52.1ξ × 52.1ξ × 52.1ξ

with ξ = h̄/
√

mμ1. We prepare a pair of a domain wall and an
antidomain wall at coincident limit with a vortex winding in

the �2 component. Here, for simplicity we put a cylindrically
symmetric perturbation, which is expected to be induced from
various modes of the string. Several holes grow after being
created, and there appear vortex loops. Although the holes
appear asymmetrically because of the cubic boundary, the
boundary effect is small in the center region and the initial
perturbation causes a vortex loop there. The vortex loop
enclosing the �2 winding, which is nothing but a vorton, is
created in the center of Fig. 12(c).

C. Equivalence of the vorton to the three-dimensional skyrmion

It has been already shown in [8,9] that 3D skyrmions are
topologically equivalent to vortons in two-component BECs.
In this section we show it in our context of the brane-antibrane
annihilations.

In Fig. 13 the arrows denote the phase of �1 along a large
loop (of the square of the dotted line) going to the boundary
where �2 is zero, making a link with the vorton core. The

arg

)c()b()a(

FIG. 12. (Color online) A numerical simulation of a vorton creation. Surfaces are defined by n1 − n2 = 0.18(μ1/g) (μ1 = g = 1,h̄ = m =
1), while color represents the phase of the �2 component. (a) First, we prepare a pair of a domain wall and an antidomain wall at coincident
limit with a vortex winding in the �2 component. (b) Holes are created in the wall annihilation. (c) A vorton is created in the center.
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FIG. 13. (Color online) The equivalence between the vorton and
the 3D skyrmion. The arrows denote the phase of �1 along a large
loop (of the square of the dotted line) going to the boundary where �2

is zero, making a link with the vorton core. The left panel represents
the configuration of the vorton from the brane-antibrane annihilation
[see Fig. 11(a)], while the right panel represents the configuration of
a 3D skyrmion. They are topologically isomorphic to each other.

left panel of Fig. 13 represents the phases of �1 and �2

of the vorton from the brane-antibrane annihilation [see also
Fig. 11(b)]. This is topologically equivalent to the right panel of
Fig. 13. Here we show that the phase structure of the right panel
is that of a 3D skyrmion. They are topologically isomorphic
to each other.

First, let us introduce the matrix U as(
�1

�2

)
=

(
�1 −�∗

2
�2 �∗

1

)(
1
0

)
= U

(
1
0

)
, (33)

with

U ≡
(

�1 −�∗
2

�2 �∗
1

)
(34)

being an element of an SU(2) group, when

det U = |�1|2 + |�2|2 = 1. (35)

The GP energy functional given in Eq. (5) is not SU(2)
symmetric in general. When the relations

g11 = g22 = g12, μ1 = μ2 (36)

hold, the GP energy functional is SU(2) symmetric, and
Eq. (35) holds (up to overall constant) [47].

Even when the GP energy functional given in Eq. (5) is
not SU(2) symmetric, we can approximately consider the
parametrization by U in Eq. (34). A rotationally symmetric
configuration of a 3D skyrmion can be given by [6]

U = exp i

(
f (r)

r
|r| · σ

)
(37)

with a function f (r) with the boundary condition

f (r = 0) = nπ, f (r = R) = 0, (38)

where R is the size of the system. Here, n ∈ Z is an element
of the third homotopy group π3(SU(2)) � Z.

In the polar coordinates (r,θ,φ),

r
|r| = (sin θ cos φ, sin θ sin φ, cos θ ). (39)

By using the formula exp(i�n · σ ) = cos � + in · σ sin � for
n2 = 1, the 3D skyrmion in Eq. (33) with U in Eq. (37) can

be obtained as(
�1

�2

)
=

(
cos f (r) − i sin f (r) cos θ

sin f (r) sin θe−iφ

)
. (40)

First, let us study the phase structure of �1 of the 3D
skyrmion in Eq. (40). At the boundaries and the origin, Eq. (40)
becomes (

�1

�2

)
=

(
1
0

)
at r = R,

(41)(
�1

�2

)
=

(
(−1)n

0

)
at r = 0.

Along the x1 axis (θ = 0,π ), Eq. (40) becomes(
�1

�2

)
=

(
exp[−if (r)]

0

)
at θ = 0,

(42)(
�1

�2

)
=

(
exp[if (r)]

0

)
at θ = π,

Eqs. (41) and (42) show, in the case of n = 1, the phase
structure of �1 in the right panel of Fig. 13.

Second, let us study the phase structure of �2. We consider
the ring defined by θ = π/2 and the radius r such that f (r) =
π/2. Along this ring, the �i are(

�1

�2

)
=

(
0

e−iφ

)
. (43)

The �2 component winds once along this ring, as in Fig. 11(c).
This winding of the �2 component originates from the winding
in the brane-antibrane configuration in Eq. (32).

We thus have seen that the 3D skyrmion in Eq. (33) is
topologically equivalent to a vorton.

V. SUMMARY AND DISCUSSION

We have studied a mechanism to create a vorton or three-
dimensional skyrmion in phase separated two-component
BECs. We consider a pair of a domain wall and an antidomain
wall with vortices stretched between them. The �2 component
is sandwiched by the regions of the �1 component, where the
phase difference of �1 in the two separated regions is taken to
be π . When the domain wall pair decays, there appear vortex
loops of the �1 component with the �2 component trapped
inside their cores. If a �1 vortex loop encloses one stretched
vortex, it becomes a vorton. More generally, if the vortex loop
encloses n of the stretched vortices, it becomes a vortex ring
with the phase of �2 twisted n times. We also have confirmed
that the vorton (n = 1) is topologically equivalent to a 3D
skyrmion.

Experimentally this can be realized by preparing the
phase separation in the order �1, �2, and �1 components,
and rotating the intermediate �2 component. By selectively
removing the filling �2 component with a resonant laser beam,
the collision of the brane and antibrane can be made, to create
vortons.

Once created in the laboratory, one can study the stability
and dynamics of a vorton experimentally. The vorton will
propagate along the direction perpendicular to the initial con-
figuration of the branes. Therefore, to investigate the dynamics
of a vorton, we need to prepare a large size of cloud in that
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direction. In the case of untwisted vortex loop (usual loop, not a
vorton), it will easily shrink and eventually decay into phonons
if the thermal dissipation works enough. However, the vorton
should be stable against the shrinkage and will propagate to
reach the surface of the atomic cloud. Such a difference must
be a benchmark to detect vortons in experiments.

On the other hand, the thermal and quantum fluctuations
may make the vorton unstable. Our numerical calculations
rely on the mean field GP theory. The topological charge
of a vorton is the winding of the phase of �2 along the
closed loop (which is proportional to the superflow along the
closed loop). Since this topological charge is defined only
in the vicinity of the vorton, there is a possibility that it
can be unwound, once quantum and thermal fluctuation is
taken into account beyond the mean-field theory. Quantum
mechanically, such a decay is caused by an instanton effect
(quantum tunneling). This process also resembles the phase
slip of superfluid rings. The vorton decay by the quantum and
thermal tunneling is considered to be an important process in
high energy physics and cosmology since it will radiate high
energy particles such as photons, which may explain some high
energy astrophysical phenomena observed in our Universe.
Therefore it would be important that one realizes vortons in
laboratory by using ultracold atomic gases; it may simulate a
vorton decay with emitting phonons quantum mechanically,
beyond the mean-field approximation.

In this paper we have mainly studied topological aspects
of the vorton creation using the NLσM approximation. In
order to study dynamics of topological defects beyond this
approximation, we need a precise form of the interaction
between the defects. An analytic form of the interaction
between vortices was derived in the case of miscible (c2 > 0)
two-component BECs, and it was applied to the analysis of
vortex lattices [48]. Extension to the case of the immiscible

case (c2 < 0) focused in this paper will be useful to study the
interaction between vortices attached to domain walls, and that
between vortons and/or walls.

In our previous paper [38] we discussed that the domain
wall in two-component BECs can be regarded as a D2-brane,
as the D-brane soliton [30–34] in field theory, where “Dp-
brane” implies a D-brane with p space dimensions. This is
because the string endpoints are electrically charged under
U(1) gauge field of the Dirac-Born-Infeld (DBI) action for a
D-brane [49]. In our context, the U(1) gauge field is obtained by
a duality transformation from U(1) Nambu-Goldstone mode
of the domain wall. Since the D-brane soliton [38] in two-
component BECs, precisely coincides with a BIon [50], that
is, a soliton solution of the DBI action of a D-brane, the domain
wall can be regarded as a D2-brane.

On the other hand, it is known in string theory [44] that when
a Dp-brane and an anti-Dp-brane annihilate on collision, there
appear D(p − 2) branes. If we want to regard our domain wall
as a D2-brane, the pair annihilation of a D2-brane and anti-D2-
brane should result in the creation of D0-branes. Therefore,
a discussion along this line leads us to suggest a possible
interpretation of 3D skyrmions as D0-branes, which are point-
like objects.
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