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Large time asymptotic problems for optimal

stochastic control with superlinear cost

Naoyuki Ichihara*

Abstract

The paper is concerned with stochastic control problems of finite time hori-
zon whose running cost function is of superlinear growth with respect to the
control variable. We prove that, as the time horizon tends to infinity, the value
function converges to a function of variable separation type which is character-
ized by an ergodic stochastic control problem. Asymptotic problems of this type
arise in utility maximization problems in mathematical finance. From the PDE
viewpoint, our results concern the large time behavior of solutions to semilinear

parabolic equations with superlinear nonlinearity in gradients.

1 Introduction

In this paper we deal with optimal stochastic control problems, or stochastic calculus
of variations, having some specific cost functions. As a typical model, we consider for

given m* > 1 and 8 > 0 the following minimizing problem of finite time horizon:

T
1 *
Minimize E[/ ( €™+ |X§|ﬁ) dt}, (1.1)
0 m*

t
subject to XE =X, — / Eds+ Wy, t>0, (1.2)

0
where £ = (&)o<t<r denotes a control process taking its values in RN ,and W =

(Wi)o<t<r stands for an N-dimensional standard Brownian motion on some probability

space (see [8, 10] for general information on optimal stochastic control).
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The objective of this paper is to investigate the asymptotic behavior of the value
function uy (7T, z) for (1.1)-(1.2) as time horizon T tends to infinity. It turns out that

uy behaves as
uy (T, ) = AT —¢(-) — 0 in C(RY) as T — oo, (1.3)

for some real constant A and function ¢ on R that are characterized by an ergodic

stochastic control problem. More specifically, A is represented as

e o1 o,
A = inf liminf TEO[/O (m* ™ + |Xf|5) dt], (1.4)
and the function {(x) := [Dg(z)|@m/ (™ =D De¢(z), where D¢ denotes the gradient
of ¢, gives an optimal Markov control policy for (1.4). The precise formulation will
be given in the next section. We refer to [3] and the references therein for ergodic

stochastic control in RY. Remark that (1.3) implies

UV(T, . )

T — A in O(RY) as T — oo. (1.5)

Although properties (1.3) and (1.5) are natural, proving their validity is not obvious
even in this simple model. The major difficulty comes from the fact that the control
region for & = (&)o<t<r is not compact and the running cost function in (1.1) is
unbounded with respect to both control and space variables.

The analytical counterpart of the above problem can be described as follows. Let
m > 1 be the conjugate number of m*, i.e., m := m*/(m* —1). Then, uy is a
solution to the Cauchy problem for Hamilton-Jacobi-Bellman (or viscous Hamilton-

Jacobi) equation
1 1 _ N
Opu — §Au +—|Dul™ = |z|®  in (0,+00) x RY,
m

(1.6)
u(0, ) =0 in RV,

where 0, := 0/0t and A = Zf\;l 0?/0z?, while (), ¢) in (1.3) is a solution to the

associated ergodic type Hamilton-Jacobi-Bellman equation
1 1 m 5. N
A—=-Ap+ —|Do|™ = |z|” in R™. (1.7)
2 m

Thus, from the PDE point of view, our study concerns the convergence as T' — oo of
solutions of (1.6) to that of (1.7). Asymptotics of type (1.3) for solutions of viscous
Hamilton-Jacobi equations have been studied in [1, 2, 11, 24, 26] by purely analytical
methods. See [1] for results under the periodic setting, [2, 24, 26] under Dirichlet
boundary conditions, and [11, 24] for equations in the whole space. Compared to

these earlier works, the principal novelty of this paper lies in the unbounded nature
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of the problem. In our setting, the superlinear nonlinearity in gradients for (1.6)-(1.7)
is essential since it naturally happens that |Duy| — oo as || — oo. This makes a
substantial contrast to [11, 24] where Duy remains bounded on the whole space.

The large time behavior of solutions to Hamilton-Jacobi-Bellman equations has also
been studied in the context of risk-sensitive stochastic control (see [7, 9, 13, 21, 22]). In
connection with utility maximization problems in mathematical finance, Hata, Nagai
and Sheu [13] and Nagai [22] discuss down-side risk minimization problems in which the
convergence of type (1.5) arises on the dual side of the large deviations control. In those
papers, they derived a family of Hamilton-Jacobi-Bellman equations with quadratic
nonlinearity in gradients, and it turns out that establishing (1.5) for solutions of such
equations is the key to solving the original problem.

In this paper, we focus on the analysis of (1.5), as well as (1.3), to develop a general
theory available for Hamilton-Jacobi-Bellman equations not necessarily quadratic in
gradients. Although cost functions of type (1.1) are natural and typical in the classical
stochastic control theory, the analysis becomes more involved when m* > 2. In such
superquadratic cases, it is crucial to specify the growth order of ¢(x) in (1.3) as |z| —
00, whereas this kind of estimates are unnecessary for 1 < m* <2 (cf. [16]).

Another point to be mentioned is that we show not only (1.5) but also the refined
convergence (1.3). Notice here that (1.3) is not an easy corollary. Indeed, the function
¢ in (1.3) is sensitive to the terminal cost while A in (1.5) is not. That is, if the payoff
(1.1) contains a terminal cost, say g(X%), in addition to the running cost, then ¢ may
vary according to the choice of g. See Section 2 for the precise statement. We remark
finally that the convergence (1.3) has an interpretation in terms of indifference pricing
for volatility derivatives in incomplete markets. We refer, for instance, to [12] and the
references therein for more information in this direction. Applications of our results to
this topic will be discussed in a future work.

This paper is organized as follows. In the next section, we state our assumptions
and main results precisely. Our framework admits slightly general cost functions than
(1.1). In Section 3, we study the dynamic programming equation for value function
uy. Section 4 is concerned with the dynamic programming equation associated with
ergodic stochastic control (1.4). Asymptotic behaviors (1.3) and (1.5) are studied in

Section 5. Appendices are devoted to some technical estimates needed in this paper.

2 Preliminaries and Main results

Let (Q,F, P;(Fi)i>0) be a filtered probability space on which is defined an (F)-
adapted standard Brownian motion W = (W;);> in RY. For a given R¥-valued

(Fi)-progressively measurable control process £ = (&;)i>0, we denote by X¢ = (X?f )0



the controlled process governed by (1.2). Let us define the cost functional of finite time
horizon 7' > 0 by

T
I = B[ [ Q60+ S e g(XD). weRY, @)
0
and that of long-run average by
RS R O ¢ £
Tue) = tipint 2B [0S 60+ S e+ gD (22)

where E®[-] denotes the expectation conditioning Xy = = in (1.2). Throughout the
paper, functions [, f and g are assumed to satisfy the following conditions (H1)-(H3):

(H1) [ € C*(RN x (RN \ {0})), &€ — I(x,€) is strictly convex for all x € RY, and

there exist some [y > 0 and m* > 1 such that

le™ <U(2,6) <IME™ . ID:l(z Ol < I A+ [E™),  (x,6) € R,

where D,l(x,£) is the partial derivative of I(z, &) with respect to x.

(H2) f e C*(RY), and there exist constants fo > 0 and § > 0 such that

folal” = fo' < flo) < f5' (L +Jal”),  [Df(2)] < fo (1 +|2”7h), = €RY.

(H3) g€ & :={ve Cy(RY)] infgy v > —o0}.

Here C,(R") denotes the totality of continuous functions on RY that are at most

polynomially growing, i.e., [v(z)] < C(1 + |z|?) in RN for some C' > 0 and ¢ > 0.

Let h = h(z,p) be the Fenchel-Legendre transform of [(x, £) with respect to &, i.e.,

h(z,p) = sup (p- & — U(x,€)), (x,p) € R*N. (2.3)

EERN
In view of the duality between [ and h, we see that (H1) is equivalent to (H1)" below:
(H1) h e C*(RN x (RV\ {0})), p+ h(x,p) is strictly convex for all z € RV and
there exist some hg > 0 and m > 1 such that
holp™ < h(w,p) < hg'lp|™,  |Doh(z,p)l < hg'(1+ [p|™),  (2,p) € R*Y.
Notice here that 1/m* + 1/m = 1. The equivalence between (H1) and (H1)" can be
seen from Theorem 3.4 in the next section.

We now define the set of admissible control processes. For T' > 0, a control process

& = (&)o<t<r is called admissible if

[ [ e

™LX dt| < 00, z€RY. (2.4)




We denote by Ar the totality of admissible control processes. As far as the ergodic
stochastic control for (2.2) is concerned, we use the notation A, to represent the set
of control processes £ = (& )0 satisfying (2.4) for all 7" > 0.

Let us consider the minimizing problem for (2.1), and denote its value function by
uy (T, x) == inf Jp(z;§). (2.5)
§EAT
In Section 3, we prove that uy is a solution to the Cauchy problem

Oyu — %Au + h(z, Du) = f in Q,
w0, ) =g on 0,Q,

(CP)

where @ := (0,00) x RN and 9,Q := {0} x RY. In the present paper, any solution
is understood in the classical sense, namely, we call a function v : Q — R solution
(resp. subsolution, supersolution) of (CP) if u € C**(Q) N C,(Q) and

0 1
8—1:(?%90) - 58ult, ) + h(w, Du(t,z)) = f(z)  (resp. < f(z), 2 f())
for all (t,z) € @, and u(0,z) = g(x) (resp. < g(x), > g(x)) for all z € RY. Here
C,(Q) stands for the set of continuous functions v on @ such that, for each T > 0,
lo(t,z)] < C(1+]z]9) in [0,T] x RN for some C' > 0 and ¢ > 0.

For later use, we set Qr := (0,T) x RY and

D :={ueC?Q)NC,(Q)| glfu > —oo forall T > 0}.

Theorem 2.1. Assume (H1)-(H3). Let uy be the value function defined by (2.5).
Then uy belongs to ® and is the minimal solution of (CP) in the sense that uy < v
for any solution v of (CP) such that v € ®. Moreover, if 1 <m* <2 in (H1), then it
is the unique solution of (CP) in the class ®.

Let us consider the stationary equation
1
A= 5A¢+h(z,Dg) = f in RV, 6(0)=0, (EP)

where unknown is a pair (), ¢) € R x C?(R"). The constraint ¢(0) = 0 is imposed to
avoid the ambiguity of additive constant with respect to ¢. In section 4, we study the

solvability of (EP). For a given 7 > 0, we set

®, = {v e C*(RY) N C,(RY) | liminfM >0}

|z|—o0 |,9§'|'y

Clearly, @, C &,/ C @ for all v >+ > 0, where ®; is defined by (H3).



Theorem 2.2. Assume (H1) and (H2). Then, there exists a unique solution (A, ) of
(EP) such that p € ®y. Moreover, ¢ belongs to ®z/my+1, where m = m*/(m* — 1)
and m* > 1, B> 0 are the constants in (H1) and (H2), respectively.

We are now in a position to state our main results. Let us consider the minimizing
problem for (2.2), and set
Aoo 1= Inf J(§). (2.6)

In Section 5, we prove the following.

Theorem 2.3. Assume (H1)-(H3). Let uy be the value function defined by (2.5), and
let (X, @) be the unique solution of (EP) such that ¢ € ®q. Then,

UV(T, . )

T — X in ORY) as T — oo. (2.7)

Moreover, X = Ay, and {(z) := Dyh(x, Dp(x)) gives an optimal Markov control policy
for ergodic stochastic control (2.6).

Theorem 2.4. In addition to the hypothesis of Theorem 2.3, we assume that 8 > m”*,
where m* > 1 and > 0 are the constants in (H1) and (H2), respectively. Then, there

exists a real constant ¢ such that

uy (T, -) — (p(- )+ AT) — ¢ in C(RY) as T — oo.

3 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1, namely, we show that uy defined
by (2.5) is the minimal solution of (CP). The proof is divided into two parts. In the
first half, we construct a particular solution of (CP), denoted by u, such that @ < uy
(see Theorem 3.3). In the second half, we verify the identity u = uy by establishing a
comparison theorem (Proposition 3.8) for solutions of (CP). Minimality of uy is also
derived from the same comparison principle.

Throughout the paper, m, m* > 1 and [ > 0 denote the constants in (H1), (H1)’,
and (H2), respectively. Recall that 1/m 4 1/m* = 1. We also use the notation Bg :=
{x e RN ||z| < R} for R > 0.

3.1 Existence of a solution.

Let us consider Cauchy problem (CP). We construct a solution of (CP) by a suitable
approximation procedure. Let {f,} C C:°(RY) be a sequence of functions such that
infen f < fo < fAn, |Df,] < |Df| in RY for all n, and f, — f in C(RY) as



n — o0o. Loosely speaking, f,, is a regularization of f A n. Similarly, we fix a sequence
{gn} C C°(RY) such that infgy g < g, < gAnin RY for all n and g, — ¢ in C(RY)
as n — oo.

For each n, we define the cost functional J:(Fn) by
(n) ’
K wi€) = B | [0 + FulxH) di +,(X5)] (31)
0
and its value function u&f ) by
WM(T,2) = inf J(2:6), (T,x) € Q. (3.2)
§EAT

Theorem 3.1. ugl) s the unique solution of

Oyu — %Au + h(z, Du) = f, in Q,
u(0, - ) = gn on 0,Q,

(CPy)

such that supg, (|u| + |Du|) < oo for all T > 0.

Proof. The assertion of this theorem has been proved in [10, Theorem IV.11.1, Remark
IV.11.2], so that we omit to reproduce the proof. O

The following theorem gives a gradient estimate for solutions of (CP)

Theorem 3.2. Let u be a solution of (CP). Then, for any ¢ € (0,1), r > 0 and
d € (0,1), there exists a constant K > 0 not depending on w and f such that

sup |Du| < K{1+sup |f| +sup |Df|+ sup  |ul}'"=.

(auT} X By B'r+1 B'r+1 (6/2:T] XBrJrl

Proof. We prove this theorem in Appendix A (see Theorem A.1). n
Theorem 3.3. There exists a solution uw € ¢ of (CP) such that u < uy in Q.

Proof. Define u_,u, : Q — R by
T
W (T,2) = Tinf f +infg,  us(T,z) = E[/ FOW,) dt+ g(Wn)].
RN RN 0

Remark that u_ and u, are sub- and supersolutions of (CP). Let ugf ) be the solution of
(CP,,) given by (3.2). By the definition of u4 and u&}l), we see that u_ < u%}l) <wuyin @
for all n. Since |f,,| < |f| and |Df,| < |Df| in RY, we see, in view of Theorem 3.2 with
u= ugL ) and [ = fn, that supy |Du$ )\ is bounded by a constant not depending on n

for any @ CC Q. Taking into account the classical regularity theory for quasilinear



parabolic equation (e.g., [19, Theorem V.3.1]), there exists a § € (0, 1) such that Diugf)
belongs to Holder space C’%’Q(Q) foralli=1...N.

We now set F,(t,z) := f.(z) — h(z, Du&}l) (t,x)) and regard u&}l) as a solution of the
linear parabolic equation

1
Oyu — §Au =F,(t,x) in Q.

Then, it follows from Schauder’s theory that the Holder norm of u&}l ) in the space
C’H%’QH’(Q’ ) is bounded by a constant not depending on n for any ' CC Q. Hence,
there exist a subsequence {n;}; and a function u € C*?(Q)) such that, as n — oo, u@,
atuﬁf)/at, Dugl) and D2u$) converge, respectively, to @, d;u/0t, Du and D?*u uniformly
on compacts. In particular, u satisfies (CP). It is also obvious from the definition of

u&}l) that u € ® and u < uy in ). Hence, the proof is complete. O]

3.2 Minimality and uniqueness.

We establish in this subsection a couple of comparison theorems for sub- and superso-
lutions of (CP). We begin with recalling the duality between [ and h.

Theorem 3.4. Let | = (z,§) satisfy (H1), and let h = h(x,p) be the function defined
by (2.3). Then, the following (a)-(e) hold.
(a) he C*(RYN x (RV\{0})), and p — h(z,p) is strictly convez for all v € RN,
(b) h(x,p)+1(x,&) > E-p for any x,p, & € RY. Moreover,

hz,p) +U(z,§) =& p <= {=Dyh(z,p) < p= Dl(z,$).

(c) There exists a constant hg > 0 such that ho|p|™ < h(x,p) < hy'lp|™ for all
z,p € RY, where m :=m*/(m* —1).

(d) There exist constants hy,l; > 0 such that, for any x,p,& € RY,
halp|™™" < [Dyph(z,p)] < bt |pI™™t, Lle™ ™t < |Del(w, )] < 1 HE™
(e) There exists an hy > 0 such that |D,h(z,p)| < ho(1+|p|™) for all z,p € RY.

Proof. Assertions (a) and (b) can be verified in view of [5, Theorem A.2.5] with minor

changes, so that we omit the proof. Verifying (c) is also easy from the very definition
of h.
To check (d), we observe from (b) and (H1) that

for all z,p € RY. Noting the relation 1/m* 4+ 1/m = 1, we obtain
| Dyh(a, p)| < (I [p) ™ =D = 15~ |p|™ ",

8



On the other hand, we see by Young’s inequality that

0 < lo|Dph(z, p)[™ < |p||Dph(z, p)| — holp|™

h[) 1—m* * h(_)
< (2 m* Uy im

In particular, (ho/2)|p|™ ' < |D,h(z,p)|. Therefore, the first inequality is proved. The
second inequality can be verified similarly.

We finally show (e). Observe first that h(x,p) = p - Dyh(x,p) — l(z, Dyh(z, p)) for
all z,p € RY. Differentiating both sides by = and noting p = D¢l(x, D,h(x,p)), we
have

D, h(z,p) = Dyph(z,p)p — Dyl(z, Dyh(x,p)) — Dyph(x, p) Del(z, Dpyh(z, p))
= —Dql(z, Dyh(z, p)).

In particular, using (d) and (m — 1)m* = m,
| Duh(w, p)| = | Dul(w, Dyh(x, p)] < lg (1 + [ Dyh(z, p)[™) < lg (L +hy™ [p™).
Hence, the proof is complete. O

Now, we set a := (3/m) 4+ 1. This number will be frequently referred to in later
discussions. Note that § > m* if and only if § > «. Given a control process £ =
(&)o<i<r, we denote by X¢ = (X)o<<r the controlled process governed by (1.2). Set
TR = inf{t > 0| X’ & By} for R > 0. In what follows, unless otherwise specified, C'

denotes various positive constants that may take different values from line to line.

Lemma 3.5. Suppose that £ € Ap. Then E‘”[ sup |Xf|a} < oo forallx € RV,
0<t<T

Proof. This lemma is easily verified by the standard argument. The proof is given in

Appendix C for the convenience of the reader. O
The following result will be used in Sections 4 and 5.

Proposition 3.6. Let u be a subsolution of (CP) for some g € C,(RY) (not necessarily
belonging to ®g), and suppose that supg, (|u|/(1+[z|*)) < oo for all T > 0. Then, for
anyx € RN and T, S >0,

u(S+T,z) < dnf B [u(s,X§)+ /0 (I(XE, &) + F(XE)) dt]|. (3.3)

In particular, v < uy in Q.



Proof. Fix any £ € Ar, and apply Ito’s formula to u(S + T — t,Xf). Then, noting

Theorem 3.4 (b), as well as the subsolution property for u, we see that
TATR
u(S+Toa) < B [u(S + T~ T Arg X5,,) + / (X5 &) + F(X0)) dt].
0

We now send R — oo. Since |u(t,z)| < C(1 + |x|%) in Qgyr for some C' > 0, and [, f

are bounded below, we conclude in view of Lemma 3.5 that

w(S +T,z) < B [u(s, X&) + /T(Z(Xf,gt) ) dt].

0

Taking the inf over £ € A, we obtain (3.3). O

Proposition 3.7. Suppose that 1 < m* < 2 in (H1), or equivalently m > 2 in (H1).
Then, (3.3) is valid for any subsolution w of (CP) such that v € ®. In particular,
u < uy in Q.

Proof. Observe from m > 2 that, for any € > 0, there exists a k. > 0 such that
Ke
h(w,p) = h(z,q) = Dph(z,9)- (p—q) = S lp—al* ¢, w,p,g €RY.

We can also see in view of Theorem 3.4 (b) that £ = D,h(x, D¢l(z,§)) for all (z,€) €
R?Nand that h(x,q) + l(x,€) = £ - ¢ if and only if ¢ = D¢l(z, ). Thus,

h(l’,p) + l($>€> - 5 “p
= h($,p) - h(l‘,Dgl(.’L’,f)) - D;,JL(LL’,Dgl(.Z‘,f)) ’ (p - D§Z($7£>>
> Zlp—Del(w,O)P =, wp.eRY.

Let u be a subsolution of (CP) such that u € ®, and fix any £ € Ap. Then, by the

previous estimate, we have
u(S, X5) —u(S +T,z)
T T
- [ 0xt D)~ & Du— fxyar+ [ D,
oT ) 0 .
> [0 6) = S + FIDu—af =2 de+ [ Duaw,
0 0

where we have set Du = Du(S + T — t, Xf) and ¢; := Dgl(Xf, &). In particular,

T T
u(S, X5) + / ((XE, &) + F(XE)) di — / gV,

T T
2u(5—|—T,9:)—5T+%/ |Du—qt|2dt+/ (Du — q;) dW,.
0 0

10



In view of Theorem 3.4 (d), |Del(x, &)™ < (I7HE™ 1™ = [7™|€]™ for all (z,€) €
R?N. This infers that E””UOT lg:|™ dt] < oo. Hence, fOT qdW,; is an (F;)-martingale.

Using Jensen’s inequality, we have

B [u(s, X8 + [ 00860 + 70580 ]

> B° [u(S+T, ) — T + % /OT \Du— g dt + /OT(DU - qt)dwt}
> s log E* [6—55(u(S-l—T,ac)—aT)—(ng/Q) ST 1Du—q4|? dt—re fOT(Du—qt)th:|
> u(S:L T,x)—eT.
Sending € — 0, we conclude that (3.3) holds. O

Proposition 3.8. Let v be a supersolution of (CP) such that v € ®. Then, for any
x€RY and T,S >0,

o(§+T.x) = inf E” [U(S, X5) + /OT(Z(Xf,&) + f(X7)) dt|.
In particular, v > uy in Q.
Proof. Let X* = (X) be the diffusion process governed by

dX] = —D,h(XF, Du(T — t, X}))dt +dW,, 0 <t <T AT,

where 7, = limp_oo 7. We set & = D,h(X}), Dv(T —t,X/)) for 0 <t < T A 7.

Then, we observe that
UX7,&) + h(X;, Do) = & - Dv, Dv:=Do(T 1, X;).

Applying Ito’s formula to v(S + T — t, X;°) and noting the supersolution property for

v, we see that
TATR
WSHT =T AR X))+ [ (U6 + FOX) de
0
TATR TATR
SU(S—l—T,x)—i—/ (l(Xt*,ff)—i—h(X;‘,Dv)—§I~Dv)dt+/ Dv dW;
0 0
TATR
:v(S+T,a:)+/ Dov dW,.
0
Taking expectation, we obtain

TATR
oS+ Ta) 2 B[o(S + T =T A X))+ [ (U006 + 7)) ]
0

11



Since [, f and v are bounded below on R*¥, RY and Qg., respectively, we can apply

Fatou’s lemma to deduce that
T NToo
W(S +T,2) > E° [U(S HT =T AT, Xipr ) + / UX7, &)+ F(XD)) dt] .
0

Notice here that P*(1 < T') = 0. Otherwise, E*| fOTAT‘X’ f(X})dt] = oo, which does

not agree with the last inequality. Thus, P*(T'A 7o =T) =1 and
T
oS+ ) 2 B [o(SXp) + [ (06,6 + FOX) ]
0

Since £* € Ap in view of (H1) and (H2), we obtain the required estimate. O
Gathering the results of this section, we can prove Theorem 2.1.

Proof of Theorem 2.1. Let u € ® be the solution of (CP) given in Theorem 3.3. Then
u < uy in Q). By Proposition 3.8, we also see that u > uy in (). Hence, uy = @ in Q.
Furthermore, Proposition 3.8 implies that uy < v in @ for any solution v of (CP) such
that v € ®. Thus, uy is the minimal solution of (CP) in the class ®. Uniqueness under
1 <m* < 2is a direct consequence of Proposition 3.7 in combination with Proposition

3.8. Hence, the proof of Theorem 2.1 is complete. m

Remark 3.9. Let ® be the totality of u € ® such that supg,. (Jul/(1 + |z|*)) < oo
for all T > 0. Then, the uniqueness of solutions to (CP) in the class ®' is valid as a
direct consequence of Propositions 3.6 and 3.8. However, we do not know, in general,
whether a solution of (CP) belongs to ® without assuming any upper bound for g. This

1s the reason why the uniqueness in the class ® is not guaranteed for m* > 2.

4 Proof of Theorem 2.2

The proof of Theorem 2.2 is divided into two parts. We first construct a suitable
solution of (EP) by a standard analytical approximation procedure. We then establish

a uniqueness result using some probabilistic arguments.

4.1 Existence.
We begin with the following gradient estimate for solutions of (EP).

Theorem 4.1. For any r > 0, there exists a constant K > 0 depending only on r, N,
and the constants in (H1) such that for any solution (X, ¢) of (EP),

sup |Do| < K(1 4 sup |f — Y™ + sup |[Df|}/@m=1), (4.1)
By

Br+l Br+l
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Proof. The proof of this theorem will be given in Appendix B (see Theorem B.1). [

Proposition 4.2. Let (A, ¢) be a solution of (EP). Then, there exists a K > 0 such
that
[Dé(x)| < K1+ [2*7),  [o(2)] < K1 +a]?), zeRY,

where a = (B/m) + 1.

Proof. Fix any r > 0. Since f/m = a — 1 and (6 —1)/(2m — 1) < a — 1, we see by
virtue of Theorem 4.1 that

sup |Dop| < C(1+ sup |f — N|Y™ + sup |[Df|VCmD)y < C + C(r + 1)L
B,

Br+1 Br+1
This yields the first estimate of this proposition. The second estimate is easily deduced

from the first one. Hence, we have completed the proof. O
In what follows, we use the notation
1
Fl|(x) == =5 A0 () + hiz, D () — f(x), = eRY, ¢ eCRY).  (42)

Lemma 4.3. There exist constants vy > 0 and py € (0,1) such that, for any p €
[—po, po] and v € [0, al, function ¢o(x) := p(1 + |z|?)/? satisfies

Flpo)(z) < —wplz|’ + v, =€ RN, (4.3)
Proof. Let p € [—1,1] and v € [0, ). Observe that
Deo(x) = vp(1 + |2[*)0~2 2,
Ado(x) = yp{(y+ N = 2)|z* + N}(1 + |z[*)0-972,
Since 7 < « implies m(y — 1) < 3, we see, in view of (H1)’, (H2) and |p| < 1, that
Flgo](x) < C(L+ a2 + [p"|2"0) = folal|? < (|pIC — fo)lz]’ + C

for some C' > 0 independent of p and «. Choosing py € (0, 1) so small that py < C~! fy
and setting 1 := min{ fo — poC, C~'}, we obtain (4.3). O
Lemma 4.4. There exist a constant p, > 1 such that function () := py (1 +|z|?)*/?

satisfies Flio](x) > —K; in RY for some K; > 0.

Proof. Similarly as in the previous lemma, we easily see, in view of (H1)’, (H2) and
m(a — 1) = (3, that

Flypo)(x) > —p1C(1 + [2]*72) + hop{"|z|™ ™V — fo (1 + |z|7)
> (hop* — pmC — fo)|zl® = C(1 + p1)

for some C' > 0 not depending on p;. Choosing p; so large that hop?* — p1C — fo* >0
and setting K := C(1 + p1), we obtain the required estimate. O
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We now construct a solution (A, ¢) of (EP) such that ¢ € ®,. For this purpose, fix
any ¢o(r) := po(1+ |z|>)7/? satisfying (4.3) for some py € (0,1) and v € [ A 3, . For
e € (0,1), let us consider the elliptic equation

Flv] +ev. =epy in RY, (4.4)

Proposition 4.5. For any e, there exists a solution v. € C*(RN) of (4.4) such that
ev:(0) is bounded uniformly in ¢ € (0,1).

Proof. Let 1y be the function given in Lemma 4.4. Fix any €. By the definitions of ¢q
and 1y, we see that ¢y < ¥ in RY. Moreover, ¢y — 1/(evp) and 1)y + K, /e are sub-
and supersolutions of (4.4), respectively.

For each R > 0, we consider the Dirichlet problem

F[U] +ev = €¢0 in BR, v = ¢0 on (‘9BR (45)

It is well known (e.g., [18, Theorem 4.8.3]) that (4.5) has a solution v = vy € C?(Bj).
We also see by the standard comparison theorem that ¢y — 1/(cvy) < vg < g+ K /e
in Bg. Moreover, for any r > 0, there exists a K > 0 such that supg |Dvg| < K for
all R > r (see Theorem B.1 in Appendix B). These facts, together with the classical
regularity theory for quasilinear elliptic equations (e.g., [18, Theorem 4.6.1]), imply
that the Holder norm |Duglg,p, for some # € (0,1) is bounded by a constant not
depending on R > r. Applying Schauder’s theory for linear elliptic equations, we also
see that the Holder norm |vg|s4e.p, is bounded by a constant not depending on R > r.
In particular, the family {vg}gs, is pre-compact in C*(R"), namely, there exist a
sequence {R;}; with R; — oo as j — oo, and a function v € C*(R") such that vg,,
Dug;, and DZURJ. converge, respectively, to v, Dv, and D?v in C(RY) as j — oco. Thus,

we conclude that v is a solution of (4.4) satisfying

bo(x) — g—io < w(x) < olx) + %, r € RY. (4.6)

This implies also that ev(0) is bounded by a constant not depending on e. Hence, we

have completed the proof. O]
The following lemma will be needed in Section 5.

Lemma 4.6. Let ¢o(z) := po(1 + |z|?)@"D/2 satisfy (4.3) for some py € (0,1). Then,
for each e € (0,1), there exists a supersolution V. of (4.4) such that

do(r) < (x) < K (1+ |x|2)(°‘w)/2, r eRY, (4.7)

for some K. > 1.
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Proof. Fix any ¢ € (0,1) and set ¢(z) = p(1 + |z|*>)(@"/2 where p > 1 will be

determined later. Then, we observe that

FI)(z) + (@) — =o()
> —pC(1+ [2]"72) 4 €7D — O(1 + o)
+elp = 1)1+ faf?) 2
(€71 p™ = Cp)la]™ D = Clal’ + (p = (1 + o) = C(1 4 p).

Y

Here and in what follows, C' > 0 denotes various constants not depending on p and ¢.

We first consider the case where a A f = a. Then m(aAf—1) =m(a—1) = 0.
Choosing p so that C~!1p™ — Cp > C and setting 9.(x) := ¥ (z) + C(1 + p)/e, we see
that 1. is a supersolution of (4.4). Suppose next that o A § = (3. In this case, we
choose p = p. so large that C~'p™ — Cp > 0 and C|z|? < e(p — 1)(1 + |z]?)%/? in RY.
Then ¢.(z) := ¢¥(z) + C(1 + p)/e is a supersolution of (4.4). Estimate (4.7) can be
verified in both cases by the definition of ¢.. Hence, the proof is complete. O

Proposition 4.7. Let ¢o(x) := po(1 + |z|?)7/% be any function satisfying (4.3) for
some py € (0,1) and v € [a A B,al, and let v, be the solution of (4.4) constructed in
Proposition 4.5. Set p.(v) := v-(x) —v:(0). Then, the family {@e}oc(0,1) s pre-compact
in C*(RY). Moreover, there exists a constant M > 0 such that ¢. > ¢o— M in RN for
all €.

Proof. Set . := €v.(0). Then C} := sup.¢(g 1) |\e| < 00 and ¢, is a solution of
A+ Floe) +ep- =e¢p in RY, ©:(0) = 0. (4.8)

In view of Theorem B.1 in Appendix B and ¢.(0) = 0, we observe that, for any
R > 0, supg, |¢| and supp, [Dy.| are bounded by a constant not depending on ¢.
In particular, by the same argument as in the proof of Proposition 4.5, we see that
Hoélder norm |¢e|o49.5, for some 6 € (0,1) is bounded uniformly in . Hence, {p.}. is
pre-compact in C?(RY).

We next prove the latter claim. By the convexity of F[-] and Lemma 4.3, we see
that, for any 6 € (1/2,1),

Floo)(z) < 0F[¢o] + (1 = 0)F[0)(z) < 5" — %Mlﬂ +fo!, weRY,

where fp and v are the constants in (H2) and (4.3), respectively. Taking into account
this estimate, we can choose an R > 0 such that F[d¢o](z) < —C} for all |z| > R
and § € (1/2,1), and then find an M > 0 such that supy_..; supg, (|¢o| + |@:]) < M.

Notice that M is finite since supp,, [¢:| is bounded by a constant not depending on .
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We now claim that ¢. > d¢9 — M in RY for all 6 € (1/2,1). To prove this, we
first observe that ¢.(z) — d¢o(x) > —supp, (Jpe| + [¢o|) = =M for all [z| < R. On the
other hand, since infgn (. — @) > —o0 by virtue of (4.6), and

pe(x) = (0do(x) = M) = (9= — ¢o)(x) + (1 = §)¢po(x) + M — o0
as |z| — oo, we can find an R. s > R such that ¢.(z) > d¢g(x) — M for all |z| > R.;.
Set D :={z € RN | R < |z| < R.s5}. Then, for any x € D, we have F[0¢,— M](z)+

e(dpo(z) — M) < epo(x) — Cy and Flp|(z) + ep-(z) > e¢g — Cy. Therefore, §¢g — M
and . are, respectively, sub- and supersolutions of

Fv] +ev=epy—Cy, in D,

and satisfy d¢pg — M < ¢. on 0D. Applying the standard comparison theorem, we
obtain d¢g — M < ¢. in D. Hence, §¢g — M < . in RY for all § € (1/2,1). Letting
§ — 1, we conclude that ¢g — M < ¢, in RV, O

Theorem 4.8. Let ¢o(z) := po(1 + |2|>)7/? be any function satisfying (4.3) for some
po € (0,1) and v € [a A B,a]. Then there exists a solution (X, ) of (EP) such that
infgy (¢ — ¢o) > —o0.

Proof. Let v. be the solution of (4.4) given in Proposition 4.5. Set p.(z) := v.(x)—v.(0)
and A; := £v.(0). Then, by virtue of Proposition 4.7 and the fact that sup, |A\:| < oo,
there exist a sequence {e,} with ¢, — 0 as n — o0, a real constant A and a function
© € C*(RY) such that \., — X and p. — ¢ in C*(RY) as n — oco. Since (\.,, ¢-,)
is a solution of (4.8) with ¢ = ¢,, we conclude by sending n — oo that (A, ¢) is a
solution of (EP). We can also see that infgn (¢ — ¢g) > —o0 in view of the latter claim

of Proposition 4.7. Hence, we have completed the proof. O]
Corollary 4.9. There exists a solution (X, ) of (EP) such that ¢ € ®,.

Proof. This corollary is obvious from Theorem 4.8. Indeed, it suffices to set v = a and
choose a py € (0, 1) so that ¢o(x) = po(1 + |z|?)*/? satisfies (4.3). O
Proposition 4.10. Let (A, @) be a solution of (EP) such that ¢ € ®y. Then,
T
p(z) + \T = Jnf B [/ (X5, &) + F(XP)) dt + gp(Xg)], T > 0. (4.9)
T 0

Moreover, the optimal Markov control policy for the right-hand side of (4.9) is given
by {(x) := Dph(z, Do(x)).

Proof. Since v(T,x) := p(x)+ AT is a solution of (CP) with g = ¢ € &y and v € P, the
> part is deduced from Proposition 3.8. We can also obtain the opposite inequality
in view of Propositions 3.6 and 4.2. The optimality of £ is verified similarly as in the
proof of Proposition 3.8. O]
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4.2 Uniqueness.

In this subsection, we establish a uniqueness result for (EP). Let (), ¢) be any solution

of (EP), and let X = X% be the associated diffusion process governed by
dXy = —Dyh(Xy, Dp(Xy)) dt + dW,, t > 0. (4.10)

The key to proving uniqueness lies in the ergodicity of X¥. More precisely, we prove
that X¥ is ergodic provided ¢ € ®j. The ergodicity of X¥ is also crucial in Section 5.
We recall here the definition of ergodicity. Let X = (X}):>0 be a diffusion process in
RN with infinitesimal generator A = (1/2)A +b(z)D for some b € C(RY; RY). We say

that X is ergodic if there exists a unique probability measure x on RY such that
w(B) = / P*(X; € B)u(dz) forall t>0, BeBRY).
RN

The above p is called the invariant probability measure for X. It is well known (see

for instance [6, Theorem 4]) that, if X is ergodic, then
Bl — [ vuldy) as T oo (4.1
R

for any ¢ € L>°(RY) and x € RV,
The following two theorems on the ergodicity of diffusion processes are fundamental
and will be frequently used in the rest of this paper. The first theorem gives a criterion

for the ergodicity of a diffusion process (cf. [15, 16]).

Theorem 4.11. Let X be a diffusion process in RN with infinitesimal generator A.
Suppose that there exist constants r,e > 0 and a function u € C?*(RN \ B,) such that
u(x) — oo as |v| — oo and Au < —¢ in RV \ B,. Then, X is ergodic.
Proof. Observe first that X is ergodic if and only if it is positive recurrent in the sense
that E*[o,.] < oo for all z,y € RY and € > 0, where 0, := inf{t > 0||X; — y| < £}.
See for instance [23, Theorem 4.9.6] for the proof of this fact.

It thus suffices to prove that X is positive recurrent. But it is known that the

assumptions of this theorem imply the positive recurrence of X. See for instance [23,
Theorem 4.6.3] or [15, Theorems 4.1, 5.5] for a complete proof. ]

The second theorem claims that (4.11) is still valid for 1) not necessarily bounded
but integrable with respect to u, and that the convergence is uniform on compacts as

a function of z.

Theorem 4.12. Let X be a diffusion process in RN, and suppose that X is ergodic

with tmvartant probability measure . Then,

o) — [ o) in C®Y) as T o0
for all ¥ € C(RY) satisfying [n ¥ (y)p(dy) < oo.
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Proof. This theorem has been proved in [16, Proposition 2.7] (cf. [17, Lemma 7.5]). O
We now study the ergodicity of X¥ given in (4.10).

Proposition 4.13. Let (A, ) be a solution of (EP) such that ¢ € ®g, and let X¥ be
the associated diffusion process governed by (4.10). Then X% is ergodic. Moreover, let
@ be the invariant probability measure for X¥. Then, for any (T,z) € Q and ¢ > 1,

sup E7[| X7, 7] < oo, / ly|?p(dy) < oo. (4.12)
R>0 RN

Proof. Fix any py € (0,1) such that ¢g(x) := —po(1 + |z|?)*/? satisfies (4.3) for some
vg > 0. Set u := ¢ — infgy  — Pg. Let A® be the infinitesimal generator for X%, that
is,

1
A%v = §Av — Dyh(x, Dp(z))Dv, v € C*RMN). (4.13)

Then, by the convexity of h(z,p) in p, we see that

(APu)(x) = 5(Bg(r) ~ Ado(r)) — Dyh(, Dp(a)) (Dipl) — Dn())
< Flpol(2) - Flg)(x) < —volel? + 15" + A — —o0

as |z| — oo, where F|[-] is defined by (4.2). Since u(z) — oo as |z| — oo, we conclude
in view of Theorem 4.11 that X¥ is ergodic.

To show the latter claim, let ¢ > 1 be any number and apply Ito’s formula to
w(X7)9. Then,

TATR
WX = o) = [ qu( ) (A7) +

0 DR
2 u(XY) ) (4.14)

TATR
+ / qu( X)) Du( X)) dW,.
0

Noting Proposition 4.2 and the fact that u > —¢o = po(1 + |z|>)*/? in RV, we obtain

g — 1 |Du(z)[”
2 u(x)

C(1+ [z]*h)?
< Flgol(z) — Flp](x) + po(1+ [2]2)72

< —pplz|? + gt 4+ A+ C(1 + |z|?) @272,

APu(x) +

Since o — 2 < 3, there exists a v > 0 such that

g — 1| Du(z)]?
2 u(x)

A%u(x) + < —v|z|’ + vt = —k(z), zeRV.

Remark here that k(x) — oo as |r| — oo. Plugging the last estimate into (4.14),

taking expectation, and noting the fact that M := max,cp~ qu(z)7'k_(x) < oo,
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where ki (z) := max{0, £k(z)}, we have

B, 27 [ e 7)o

<utey+ 5[ [ T Qe (XP) dt] < ()t + MT.

Since ¢ is arbitrary and u > —¢@g > po|z|* in R, we obtain the first estimate in (4.12).
To establish the second estimate, we send R — oo in the above inequality and
divide both sides by T. Then,

1

[ [ qu(X) (X7 ] <

ua@)

Letting T" — oo and taking into account Birkhoft’s individual ergodic theorem, we have

[ outr k) = Jim B*[ [ qu(x ) (07 ] < o

T—oo

Since q is arbitrary and u(z)? 'k, (x) > |z|@ D in RN\ By for some R > 0, we obtain
the second estimate in (4.12). O

We are now in position to establish a uniqueness for (EP).

Theorem 4.14. Let (A, @) and (v, ¢) be two solutions of (EP) such that p,¢ € ®y.
Then A =v and ¢ = ¢.

Proof. We first show that A\ = v. Let X¥ be the diffusion associated with (), ¢)
and set & := Dyh(X7, Dp(XY)). Note that £¥ € Az in view of Proposition 4.13. Set
u(T,x) := ¢(x)+vT. Observe in view of Proposition 4.2 that supg,. (Ju|/(1+]z|%)) < oo
for all 7" > 0. Then, applying Proposition 3.6 to the above u and using Proposition
4.10, we see that, for any (T, z) € Q,

o) +oT < inf B[ [ UCXE.6) + X)) dt + 0(X5)]

<[ [ G0xe.g)+ S i+ o0
= () + AT + E*[(¢ — ¢)(X7)].
In particular,
-9+ -NT< E(o-9)(X7)). (Ta)eQ  (415)

Since E*[(¢ — ¢)(X7)] — Jan (@ — @) (y)u(dy) < 0o as T — oo by virtue of Theorem
4.12; we have v < \. Changing the role of (A, ¢) and (v, ¢) in the above argument, we

also see that A\ < v. Hence, \ = v.
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To obtain the equality ¢ = ¢ in RY, we set A\ = v in (4.15) and send T — oo.
Then, (¢ — ¢)(z) < [en (¢ — ©)(y) u(dy) for all 2 € RY. Taking the sup over z € R,

we have

0< [ 0= 2w —sup(o— )} i) < 0.

Since supp 1 = RY, we obtain ¢ — ¢ = supgn (¢ — ¢) in RY. Noting ¢(0) = ¢(0) = 0
by definition, we conclude that ¢ = ¢ in RV, O

The proof of Theorem 2.2 is now obvious from Corollary 4.9 and Theorem 4.14. We
remark that, contrary to Cauchy problem (CP), the uniqueness of solutions to (EP) is
guaranteed for any m > 1, or equivalently, for any m* > 1. This comes from the fact
that any solution ¢ of (EP) satisfies supgn (|¢|/(14|z]*)) < oo by virtue of Proposition
4.2.

We close this section by making a remark on the value of \. We first observe the

following result on the solvability of (EP).

Theorem 4.15 (Theorem 2.1 of [15]). There exists a critical constant \* such that
(EP) has a solution ¢ € C*(RY) if and only if X < \*.

Proposition 4.16. Let (A, ¢) be the unique solution of (EP) such that ¢ € ®y. Then,
A= A"

Proof. Let ¢ be a solution of (EP) for A = A*. Then, similarly as in the proof of
Theorem 4.14, we see that \* < A. Since A* > X by Theorem 4.15, we obtain A =
A" O

5 Proof of the main results

This section is devoted to the proofs of Theorem 2.3 and Theorem 2.4.

5.1 Proof of Theorem 2.3.

In this subsection, we establish convergence (1.5) under our standing assumptions
(H1)-(H3).

Proposition 5.1. Let (X, ) be the solution of (EP) such that ¢ € ®q, and let uy be
the value function defined by (2.5). Then, for any R > 0 and n > 0, there ezists a
To > 0 such that

uy (T, x)

T —A<mn, forall T>T, x € Bp. (5.1)

—n =<
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Proof. Let ¢o(x) := po(1 + |2]?)@¥/? satisfy (4.3) for some py € (0,1), and let v, be
the solution of (4.4) given in Proposition 4.5. Set . := v. — v-(0) and A, := €v.(0).
Then, (A, ¢.) satisfies (4.8). In view of Proposition 4.7, we observe that there exists
an M > 0 such that ¢, > ¢y — M in R" for all e. Furthermore, by the pre-compactness
of {p.}. in C*(RY) and the uniqueness result for (EP), we also see that ¢. — ¢ in
C(RM)and A\, — Aase — 0.

Let 1. be the supersolution of (4.4) given in Lemma 4.6. Then, similarly as in the
proof of Proposition 4.5, we can verify that v. satisfies ¢g — 1/(er) < v, < 1), in RY.

In particular, for each ¢, there exists a C. > 1 such that
do(x) = M < e < Ce(1+[2]*"), zeRY. (5.2)
Fix any n > 0. We first prove the lower bound of (5.1). Set
u(T,2) = (1= e M)pe(r) + (A =20)T +¢(T), (T,2) €Q,

for some £, € (0,1) and ¢ € C'([0,00)). We find suitable ¢,d and ¢ so that v is a
subsolution of (CP). By the convexity of F[-], we observe that

% +F] < e oo, + A —2n+ ¢ + (1 — e D) Flp] + e T F[0]
<e 5.+ X —2n+q + (1 — e {e(do — ) — A}

+e (= folal” + fo )

Taking into account (5.2), we have

0
a_z + Flv] <e™(6C. = fo)lz|” + ¢ + e T (200 + fo ' + |A)

+eM + A= A| —2n.
We now choose ¢ and 4 so that eM + |\ — A\.| < 2np and 6C. — fy < 0. Then,

0
o+ Pl < (1) +e7 (200, + f + ).
We next define ¢ so that the right-hand side is zero and ¢(0) = infg~ g, namely,

-1
q(T) :=inf g — 20C i;o A (1—eT), T>0.
RN

Since v(0, - ) = ¢(0) < g in RN, we conclude that v is a subsolution of (CP) such that
supg,. ([v]/(1 4 |z[*"?)) < oo for all T > 0. Applying Proposition 3.6, we obtain

oT.a) < inf B[o00.X5)+ [ Q0XE9) + F(x)al]

< anf B7[oX) + [ (1X5.9)+ FXD) ] = w(T.)
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In particular,

(1) = lpe(@)] _ uy(T,z)

T - T

Noting infr~o q(T') > —o0o, we conclude that, for any R > 0, there exists a Ty > 0 such
that A — n < uy (T, z)/T for all z € B and T > Ty.

We next show the upper bound of (5.1). Let X¥ = (X;);>0 be the diffusion governed

by (4.10) and set & = D,h(X[, Dp(X[)) for t > 0. Then, by the definition of uy

and Proposition 4.10, we see that

)\—27)+q (T,x) € Q.

@ < L / (H(XF,€0) + F(XP)) di + g(XF)

pla) + E°[(g — 9)(X7)]

Y
* T

Since E”[(g — ¢)(X7)] converges to [ox (9 —¢)(y)p(dy) in C(RY) as T — oo by virtue
of Theorem 4.12, we can see that, for any R > 0, there exists a Ty > 0 such that
uy(T,x)/T < A+ n for all z € Bg and T' > T,. Hence, the proof is complete. ]

Proposition 5.2. Let (A, @) be the solution of (EP) such that ¢ € ®q, and let Ay, be the
constant defined by (2.6). Then A\ = A. Moreover, function £(x) := Dyh(x, Dp(x))
gives an optimal Markov control policy for (2.6).

Proof. Let uy be the value function given by (2.5). Then, for any £ € A, and T > 0,

uy (T, 0 1 T

AT < ] [kt 60 + X e+ g(x5)],

Since the left-hand side converges to A as T' — oo by Proposition 5.1, we obtain A < A,
Let X¥ = (X/)i>0 be the diffusion given in (4.10) and set & := D,h(XY, Dp(XY))

for t > 0. Since £¥ € A for all T > 0, we see that £¥ € A.,. Using Proposition 4.10,

we have

O o] [ e, + s i+ o) +

E°(p — g)(X7)]
T

for all 7" > 0. In particular,

A > liminf = B° TlX‘P 7 X7))dt + g(X7
> tipint 2B [ Q00F.60) + FOXE) e+ 9(X7)].

T—o00

The last equality together with A < A\, imply that A = A, and that £¥ is an optimal
control for (2.6). Hence, we have completed the proof. O

Remark 5.3. Proposition 5.2 implies that the value A\, does not depend on g € .

Theorem 2.3 is now easily deduced from Propositions 5.1 and 5.2, so that we omit

the proof.
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5.2 Proof of Theorem 2.4.

Let (A, ¢) be the solution of (EP) such that ¢ € ®¢, and let uy be the value function
given by (2.5). We set w(T,z) := u(T,x) — (¢(x) + AT) for (T, z) € @ and prove that
w(T, -) converges in C(RY) to a constant as T'— oo. Observe that w is a solution of

ow — A%w + Hy(z, Dw) =0 in @, (5.3)
w(0,-)=g—¢ on JpQ,

where A% is the differential operator given by (4.13), and H,(x,p) is defined by
Hy(x,p) := h(x,p+ Do(x)) = h(z, Dp(x)) — Dph(z, Dp(x)) - p 2 0.

Lemma 5.4. Let (\, @) be the solution of (EP) such that p € ®q, and let X¥ = (X} )i>0

be the associated ergodic diffusion. Then,
w(T +S,z) < E*[w(T,XE), T,5>0, xRN
Proof. We apply Ito’s formula to w(T + S — ¢, X;). Then,

w(T+S =SSNt X&) —w(T+ S, X¥)

SATR

SATR SATR
:/ (—8tw+AS"w)(T+S—t,X;P)dt+/ Dw(T + S —t, X7) dW,
0 0

SATR
> / Dw(T + S — t, XF) dW,.
0
Taking expectation, we have
w(T + S,z) < E*[w(T + S — S A Tr, X§.,)]-

Since |w(t,z)] < C(1 + |z|?) in Qrys for some C,q > 1, and {|Xg, |75 R > 1} is
uniformly integrable by Proposition 4.13, we obtain the desired estimate after sending
R — . O]

Proposition 5.5. For any R > 0, the family {w(T, -)|T > 1} is uniformly bounded
from above on Bgr. Moreover, if 3 > m*, then it is also uniformly bounded from below

on Bpg.

Proof. Let X¥ = (X[ )0 be the ergodic diffusion associated with (A, ¢). Then, in

view of Lemma 5.4 and Theorem 4.12, we see that

w(T,r) < E*[(g — ¢)(X7)] — - (9 =) (yu(dy) <oo as T — oo

uniformly on Bg. In particular, w(7T, -) is bounded above on By uniformly in 7" > 1.
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To get a lower bound, we assume 3 > m*. Recall that § > m* if and only if 5 > «a.
Set v(T,x) == (1 —eT)p(x) + \T + q(T) for some § > 0 and g € C(]0,00)) that will
be determined later. Then, noting ¢(z) < K(1+|z|*) in RY for some K > 0 by virtue

of Proposition 4.2 and observing § > « by assumption, we see that

ov

i + Flu] < e Tsp+ A+ ¢ + (1 — e TYFlp] + e °TF[0]

< e (K — fo)|z|? + ¢ 4+ e T (20K + |A + £371).

We now choose § := fo/K and ¢(T) := infgy g — 6 (26K + |A| + f3 1) (1 — e7T).
Then, dv + Flv] <0 in @ and v(0, -) < g in RY. In particular, v is a subsolution of
(CP) such that supg, (|v|/(1+ |z|*)) < oo for all T' > 0. Applying Proposition 3.6, we
obtain v < uy in Q. This infers that —e°Tp(x) + ¢(T) < w(T, z) for all (T,x) € Q.
Since infr ¢(T) > —oo, we conclude that w(T, -) is bounded below on By uniformly
inT > 1. 0

Let T be the totality of all w-limits of {w(T, -)|T > 1} in C(RY), namely,

I'= {we € CRY)| lim w(T}, ) = ws in C(RY) for some lim T; = oo }.
J—00

J—00

Since SUp(y o)« p, |[Dw| < oo for all R > 0 by virtue of Theorem 3.2 and Proposition
5.5, we see that {w(T, -)|T > 1} is pre-compact in C'(RY). In particular, T" # ().

Proposition 5.6. There ezists a constant ¢ € R such that ' = {c}.

Proof. We first show that any element of I' is constant. Let we € I, ie., w(Tj, -) —

Weo in C(RY) as j — oo for some diverging sequence {7}}. By Lemma 5.4, we see that
w(T + S,z) < E*[w(T,X5)], T,8>0, zecRY (5.4)

Take S :=T; — T and send j — oo. Then, in view of Theorem 4.12, we have

W (1) < / w(T, y)u(dy).

Since [ |weo(y)|p(dy) < oo in view of Proposition 4.13, we deduce by choosing T" := T}
and letting j — oo that

Weo(7) < / Woo (Y) p(dy).

In particular, ws is bounded above on RY. Taking the sup over x € RY, we obtain

0< /(woo<y) — sup weo ) p(dy) < 0.

RN

From the last estimate and the fact that suppp = RY, we conclude that w., =

SUPpN Wso in RY. Hence, we, is constant.
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We next show that I' consists of a single element. Suppose that there exist two
diverging sequences {7;} and {S;} such that w(Tj, -) — ¢; and w(S;, -) — ¢ in
C(RY) as j — oo for some c1,c2 € R. We choose S :=S; — T and T := T} in (5.4),

and let j — oo and £ — oo in this order. Then,

¢ < lim [ w(Ty, y)pu(dy) = /Clu(dy) =

k—o0

Thus, ¢; < ¢;. Changing the role of {7} and {S;}, we also have ¢; < ¢y. Hence,
c1 = 9, and T" consists of a single element which is constant. O

Theorem 2.4 is now easy to verify. We omit to reproduce the proof.

Remark 5.7. In the statement of Theorem 2.4, uy can be replaced by any solution u
of (CP) such that u € ®.

We close this section by making a remark on our additional assumption 5 > m*.
This condition is needed only to obtain the lower bound of w(T, z) in Proposition 5.5.
Once we have proved it, Theorem 2.4 remains valid without assuming # > m*. In

particular, we have the following theorem.

Theorem 5.8. The assertion of Theorem 2.4 remains valid if we assume (H1)-(HS3)
and infgn (g — ) > —o0.

Proof. Since infgn (g — @) > —o0, there exists a C' > 0 such that g > ¢ — C in RY.
Noting Proposition 4.10, we have

wlT,o) > inf B*[ [ 00X+ FXH)at + 9(5)] - €
= p(x) + \T - C.

This implies that w(T, x) := uy (T, x) — (¢(x) + AT) is bounded below on Bg uniformly
in T > 1 for all R > 0. Hence, the assertion of Theorem 2.4 is valid in view of

Proposition 5.6. O

Appendix A: Gradient estimate for (CP)

Let © and Q' be given bounded domains in RY with C® boundary such that Q' cQ.
We set Qs := (6, 7] x Q and Qf := (5, T] x ' for § > 0. Given a function f € C*(RY),

let us consider the parabolic equation
1
Oy — §Au +h(z,Du) = f in Qo, (A.1)
where h is assumed to satisfy (H1)'".
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Theorem A.l. For anye,0 € (0,1), there exists a K > 0 depending only on €, 9, the
constants in (H1), and d := dist(§Y,0) such that

sup |Du| < K(1 4 sup |f| + sup |Df| + sup |u|)***

Qs Q Q Qs /2
for any smooth solution w of (A.1). Moreover, if supg, |Du(0,z)| < co, then the above
estimate holds with 6 = 0.

Proof. Let py € C*([0,00)) be a cut-off function in time such that py(t) = 0 for
t €[0,8/2] and 0 < po(t), py(t) < 1 for t € (6,T]. Let p € C*(RY) be a cut-off function
in space such that p = 1 in ', suppp C 2, and 0 < p < 1 in Q. Note that supg, | Dp|
and supg, |Ap| depend only on d.

Fix any number ¢ such that max{1/4,(3 —m)/4} < ¢ <1/2 and 1/(2q) < 1 +¢,
and set 1(t, z) := po(t)™ ™=V p(2)?™/(1720) We evaluate the function

2(t, ) =0t 2){(1 + [Du(t, 2)])* — u(t, )}

at its maximum point (¢, z) on Qs /2~ Note here that we have either 2(ty, z9) = 0 or
2(to, xo) > 0. Suppose first that z(to, z9) = 0. Then, for any (¢,z) € (§,T] x ', we see
that

1(t,2)(1 + | Dut, 2) ) = 2(t,2) + (¢, 2u(t, z) < 2(t0,20) + u(t, ) < sup [u].

Qs/2
Recalling p(z) = 1 and p;(t) > 0 for t > §/2, we have
po(8)™ "V Du(t, x)[** < n(t, x)(1 + | Du(t, z)[*)? < sup |u].
5/2
This implies that supg, [Du| < K (1 + supg, ,, lu|)1*¢ for some K > 0 depending only
on ¢, 0 and m.

It remains to consider the case where z(tg, zo) > 0. Set U(t,z) := 1+ |Du(t, z)|?
and w(t,z) := U(t,x)?—u(t, z), so that z = nw. Notice first that (¢y,x¢) € (0/2,T] xQ
since n = 0 in ({6/2} x Q) U ([6/2,T] x 092). This deduces that z; = wn; + nw; > 0,
Dz =wDn+nDw =0 and Az = wAn + 2DwDn + nAw < 0 at (tg, o), where z;, n;

and w; denote the t-derivatives of z, n and w, respectively. In particular, at (¢y, zo),
1 1 1 _
0<z— §Az = n(w; — iAw) + w(n — §A77 + 1t Dnl?). (A.2)

In what follows, since we evaluate the right-hand side of (A.2) only at (o, o), we omit
the component (¢, zo) if there is no confusion.

We first estimate w; — (1/2)Aw. By direct computation, we observe that w;, =
2qU DuDu; — v, Dw = qU9 DU — Du, and

Aw = q(q — DU ?|DU* + qUT AU — Au

-1
= qTUq]Dw + Dul? + 2qU Htr((D*u)?) + DuD(Au)} — Au.
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Since tr((D?*u)?) > 0 and u; — (1/2)Au = —h(z, Du) + f, we have

1
w; — =Aw
2
» 1 1 1—q _ )
< 2qU* " DuD(u; — éAu) — (uy — éAu) + 2—qU Y| Dw + Dul|

1—
< —2qU 'Du(D,h — Df + D*>uD,h) +h — f + = 9y-9(|Dw|? + | Duf?).
q

Noting 1/4 < q < 1/2, 2qU? ' D*>uDu = Dw + Du, and |Du| < U2, we obtain

1
Wy — §Aw

< U Y2(|D,h| + |Df|) — Dyh(Dw + Du) + h — f + 3(U~ Y Dw|* + U'79).

We now remind | Dyh| < hg'(1+ [p|™), [Dyh| < hy'[p/™ " and 1 —q < (m+2¢—1)/2
to deduce that
1
+3U Y| Dw|* + 3U""% — D,hDu + h
< |f| + |Df] + (3 + 2hg HUm+2a=b/2
+ b | Dw|U™Y/2 43079 Dw|? — (DyhDu — h).

Since Dyh - p — h = l(x, Dyh) > lo|Dpyh|™ > loh [p|™ in view of (H1) and Theorem
3.4, there exists a constant K7 > 1 such that

1
w— 5Aw <1+ |f|+|Df| - K;'um?

+ K U™ D2(1 4 | Dw|U~1 + | Dw]?U~29). (A.3)

We recall that z(to,z¢) > 0. This implies w(to, xo) > 0, and therefore u(ty, zg) <
U(to, xo)?. In particular, w < U? 4 u < 2U? at (ty, o). Noting this facts and plugging
|Dw| = wn™'|Dn| < 2099~ Dn| into (A.3),

|
wy = Aw <1+ |f[+[Df| - K;'um?
+ Ky U202 (1 4 207 Dyl + 4y 7% | D).

We set 0 ;= m~'(m +2¢—1) € (1/2,1) and V := nU™?2. Then, we have

1 _ _ _ _
n(w, = Aw) <1+ |f|+[Df| - K W+ K VO (1 + 297 D| + 457%|Dnf?)
<1+ |f|+ |Df| = K7W+ K\VO(1 + 297% Dn| + 4~ 9| Dp|?).
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As to the second term of the right-hand side of (A.2), we see, in view of w < 2U4

at (to, o) and 2g/m < (1/m) A 0, that

1 - m m, —2q/m -
w(n — 5 A0+ [Dyf?) < (U /2y2a/my=2a/m(2m, 4| An| + 20| D)

< Vv2imop=tmy, 47 An| + 2~ Dy ?).

Hence, plugging the last two estimates into (A.2), we conclude that

V < Ki(L+ |f|+|Df]) + Ko (1 v VO (L + 7™ + =D Dyl + 57 An))

for some Ky > 0.

We now set v :=2m/(1 — 2¢q) = 2/(1 — 0) > 4. Then, we see that

m 1/(m—1 m/(m—1 m m m
ne=———py/ " Vppp? < (o "V )t = ——nt/

m — 1 m— 1 m — 1
1Dl = vp "D Dp| < A (py D p1) 0D Dp| = 402 D),

Y

and

|An| < ypg /Y Ap] + (v — 1)p7 2 Dpl?}
< (gD p OV Ap| 4 (v — 1) (pg "V p7) 022 Dp)?
= 2 Ap| + (v — 1)n’| Dpl?.

Thus, there exists a K3 > 0 depending only on m, ¢ and d = dist({?’, 9Q2) such that

V <KL+ |f| + |Df]) + Ko k(1 v V7).

Since 6 < 1, we conclude in view of Young’s inequality that

V < Ka(L+|fI+ D)) (A.4)

for some K; > 0 depending only on the constants in (H1)’, ¢ and d. Thus, for any
(t,x) € (6, T] x &,

po (&)™ ™V (t, z) = 2(t, ) < 2(to, o) = 1(te, To)(U(to, 20)? — u(ty, z0))
< V(to, o) + [ullo, wo)| < Ka(1 +|f| + |Df]) + sup [ul,

Qs/2

which implies that

[ Dut,z)[** < po(8) ™" VLKL (1 + [ f| + [Df]) + 2sup |ul}.

5/2

The last inequality easily deduces the desired estimate.

The latter claim of this theorem can be seen by taking py = 1. Hence, we have

completed the proof. O
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Appendix B: Gradient estimate for (EP)

Let Q and Q' be bounded domains in RY with C® boundary such that Q' c Q. For
given € € [0,1) and f € C*(RY), we consider the elliptic equation

1
—§A¢ + h(z,Dp) +ep=f in Q (B.1)
where h is assumed to satisfy (H1)'.

Theorem B.1. There exists a K > 0 depending only on N, d := dist(€)',092) and the
constants in (H1) such that

sup | Do| < K (1 +sup(e¢)”™ + sup f1/™ 4 sup | D f|*/ =) (B.2)
o Q 0 Q

for any solution ¢ € C3*(RN) of (B.1), where ry. := max{+r,0} forr € R.

Proof. Let p € C*(Q2) be a cut-off function such that p = 1 in ', suppp C €, and
0<p<1linQ Setn:=p™m=V w = (1/2)|D¢|? and z := nw. Let z( be a
maximum point of z on 2. We may assume without loss of generality that z(zo) > 1.
Indeed, if z(xg) < 1, then for any x € ', (1/2)|D¢(x)|*> = z(x) < 2(xy) < 1. Thus,
|D¢| < /2 in € and (B.2) is valid.

From the fact that z(xy) > 1, we have xy € Q. In particular, Dz = nDw+wDn =0
and Az < 0 at z = z¢. Noting Dw = D?*¢D¢ and Aw = tr((D?¢)?) + D(A¢)D¢ =
tr((D?¢)?) + 2((Dyh — Df)Dé + D,hDw + ew), we observe that, at x = o,

0> Az = nAw + 2DnDw + wAn
= ntr((D*¢)?) + 2n((Dyh — Df)Dé + D,h(—wn™ ' Dn) + 2ew)
+ 2Dn(—wn "' Dn) + wAn
> ntr((D?¢)?) — 2n((| Duh| + | D) Dg| + wn™ [ Dl | Dyhl) — w(2n ™! Dnl* + | Anl).

From now on, since we evaluate values only at © = x4, we omit the component z.
We now remind |D,h| < hy'(1+ [p|™) and |D,h| < hy'|p|™ !, and observe that

N(tr(D?*¢)?) > (tr(D?*¢))? = 4(h + ¢ — f)* > 2h3| DP|*™ — 16()>. — 16 2.

Then,

2
2—]f\;‘)n|D¢|2m < 16()> + 162 + ntr((D*¢)?)

< 16(e¢)” + 167 +2nhy " (1 + [D@|™)| D] + 20| Dg|| Df |

_ m _ 1
+ hi'|Do|™ | Dn| + | Dol (" Dn|? + 51 An0).

29



Applying Young’s inequality to |D¢||Df|, we see that, for any § > 0, there exists a
constant Cs > 0 such that |Dg¢||Df| < §|Dg|*™ + Cs| D f|*™/2m=1)_ Hence, there exists
a K7 > 0 depending only on N and the constants in (H1)" such that

n| D’ < Ki{1+ (e¢)2 + f2 + | Df[>m/m=D
+ | D™ Dl 4 | D@ (7| Dyl + |An])}.

We now set V :=n|Dg¢|*™ and 6 := (m + 1)/2m € (1/m,1). Then,

V < K {1+ (e6)2 + f2 + |Df]Pm™/@m=1
+ Vo070 Dy| + Vm (=3 0m Dy 2 47 tm A}

Observing 1 < z < (n|D¢|*)™ <V and 6 > 1/m, we have

V< Ki(1+ (5¢)2_ + f_?_ + ’Df|2m/(2m71))
+ KV (7| Dyl + 07| D +17° | An]).

We claim here that =% Dn| and n=% An| are bounded by a constant depending only
on m and d. Indeed, recalling n = p? with v := 4m/(m — 1), we can verify that

n~?|Dn| = vp "' ""°|Dp| = vp|Dp|,
n Al <A {0 Ap| + (v = 1)p" 2| Dpl*} = v{p|Ap| + (v — 1)|Dp[*}.

Hence, there exists a Ky > 0 depending only on N, d and the constants in (H1)’ such
that
V <KL+ (e9)2 + f3 + | DfPEm=),

from which we easily deduce (B.2). O

Appendix C: Moment estimate for controlled pro-

cesses

Given a control £ = (&)o<i<T, let X = (Xf Jo<t<T be the associated controlled process

governed by (1.2).

Lemma C.1. Let a := (8/m) + 1. Then, there exists a constant C > 0 such that

™) ds

T
B[ sup XF1e] <2l + o[ [ 41X e
0<t<T 0

for allT >0, 2z € RY, and £ € Ar.
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Proof. Fix any R > 0. By Ito’s formula, Young’s inequality, and § = m(a—1) > a—2,
we see that

tATR tATR
XE |~ X = — / alXEP2XE - € ds + / ol X2 XE AW,
0 0

N o 2 tATR
yoloat=2 = ) / |XE|7 ds
0

tATR . tATR
< 0/ (1+ | X5 + &™) ds + / o X822 XE AW
0 0

Applying Burkholder’s inequality, we have

tATR
E*| sup |XEATR|°‘] —|z]* < C’Em[ sup / (1+ |X§|ﬂ + &)™ )ds}
0<t<T 0<t<T Jo
tATR
—I—aEz[ sup ‘/ |XE[*72XE AW,
0

0<t<T

)

T
SCEI[/ (L+1XE° + Ie,
0

+oEe|( /0 g ds) Y 2] .

m ds]

Since the last term can be estimated as

CE" [( /0 o | X§ [P ds) 1/2]

TATR 1/2
e[ sp |xE / X§tas) |
0

0<t<TATR

IA
Q

1 T
< o8| sup 1XE ] v orr| [ pxetas),
0

0<t<T

we conclude that

T
| sup (X5, 7] < 2!x|a+CE‘”[/ (14 X8 + fel™ ) ds] < oo
0

0<t<T
Sending R — oo, we obtain the desired estimate. O
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