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Large time asymptotic problems for optimal
stochastic control with superlinear cost

Naoyuki Ichihara∗

Abstract

The paper is concerned with stochastic control problems of finite time hori-
zon whose running cost function is of superlinear growth with respect to the
control variable. We prove that, as the time horizon tends to infinity, the value
function converges to a function of variable separation type which is character-
ized by an ergodic stochastic control problem. Asymptotic problems of this type
arise in utility maximization problems in mathematical finance. From the PDE
viewpoint, our results concern the large time behavior of solutions to semilinear
parabolic equations with superlinear nonlinearity in gradients.

1 Introduction

In this paper we deal with optimal stochastic control problems, or stochastic calculus
of variations, having some specific cost functions. As a typical model, we consider for
given m∗ > 1 and β > 0 the following minimizing problem of finite time horizon:

Minimize Ex
[ ∫ T

0

( 1

m∗ |ξt|
m∗

+ |Xξ
t |β

)
dt

]
, (1.1)

subject to Xξ
t = X0 −

∫ t

0

ξs ds+Wt, t ≥ 0, (1.2)

where ξ = (ξt)0≤t≤T denotes a control process taking its values in RN , and W =

(Wt)0≤t≤T stands for an N -dimensional standard Brownian motion on some probability
space (see [8, 10] for general information on optimal stochastic control).
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The objective of this paper is to investigate the asymptotic behavior of the value
function uV (T, x) for (1.1)-(1.2) as time horizon T tends to infinity. It turns out that
uV behaves as

uV (T, · ) − λT − φ( · ) −→ 0 in C(RN) as T → ∞, (1.3)

for some real constant λ and function φ on RN that are characterized by an ergodic
stochastic control problem. More specifically, λ is represented as

λ = inf
ξ

lim inf
T→∞

1

T
E0

[ ∫ T

0

( 1

m∗ |ξt|
m∗

+ |Xξ
t |β

)
dt

]
, (1.4)

and the function ξ(x) := |Dφ(x)|(2−m∗)/(m∗−1)Dφ(x), where Dφ denotes the gradient
of φ, gives an optimal Markov control policy for (1.4). The precise formulation will
be given in the next section. We refer to [3] and the references therein for ergodic
stochastic control in RN . Remark that (1.3) implies

uV (T, · )
T

−→ λ in C(RN) as T → ∞. (1.5)

Although properties (1.3) and (1.5) are natural, proving their validity is not obvious
even in this simple model. The major difficulty comes from the fact that the control
region for ξ = (ξt)0≤t≤T is not compact and the running cost function in (1.1) is
unbounded with respect to both control and space variables.

The analytical counterpart of the above problem can be described as follows. Let
m > 1 be the conjugate number of m∗, i.e., m := m∗/(m∗ − 1). Then, uV is a
solution to the Cauchy problem for Hamilton-Jacobi-Bellman (or viscous Hamilton-
Jacobi) equation∂tu−

1

2
∆u+

1

m
|Du|m = |x|β in (0,+∞) × RN ,

u(0, · ) = 0 in RN ,
(1.6)

where ∂t := ∂/∂t and ∆ :=
∑N

i=1 ∂
2/∂x2

i , while (λ, φ) in (1.3) is a solution to the
associated ergodic type Hamilton-Jacobi-Bellman equation

λ− 1

2
∆φ+

1

m
|Dφ|m = |x|β in RN . (1.7)

Thus, from the PDE point of view, our study concerns the convergence as T → ∞ of
solutions of (1.6) to that of (1.7). Asymptotics of type (1.3) for solutions of viscous
Hamilton-Jacobi equations have been studied in [1, 2, 11, 24, 26] by purely analytical
methods. See [1] for results under the periodic setting, [2, 24, 26] under Dirichlet
boundary conditions, and [11, 24] for equations in the whole space. Compared to
these earlier works, the principal novelty of this paper lies in the unbounded nature
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of the problem. In our setting, the superlinear nonlinearity in gradients for (1.6)-(1.7)
is essential since it naturally happens that |DuV | → ∞ as |x| → ∞. This makes a
substantial contrast to [11, 24] where DuV remains bounded on the whole space.

The large time behavior of solutions to Hamilton-Jacobi-Bellman equations has also
been studied in the context of risk-sensitive stochastic control (see [7, 9, 13, 21, 22]). In
connection with utility maximization problems in mathematical finance, Hata, Nagai
and Sheu [13] and Nagai [22] discuss down-side risk minimization problems in which the
convergence of type (1.5) arises on the dual side of the large deviations control. In those
papers, they derived a family of Hamilton-Jacobi-Bellman equations with quadratic
nonlinearity in gradients, and it turns out that establishing (1.5) for solutions of such
equations is the key to solving the original problem.

In this paper, we focus on the analysis of (1.5), as well as (1.3), to develop a general
theory available for Hamilton-Jacobi-Bellman equations not necessarily quadratic in
gradients. Although cost functions of type (1.1) are natural and typical in the classical
stochastic control theory, the analysis becomes more involved when m∗ > 2. In such
superquadratic cases, it is crucial to specify the growth order of φ(x) in (1.3) as |x| →
∞, whereas this kind of estimates are unnecessary for 1 < m∗ ≤ 2 (cf. [16]).

Another point to be mentioned is that we show not only (1.5) but also the refined
convergence (1.3). Notice here that (1.3) is not an easy corollary. Indeed, the function
φ in (1.3) is sensitive to the terminal cost while λ in (1.5) is not. That is, if the payoff
(1.1) contains a terminal cost, say g(Xξ

T ), in addition to the running cost, then φ may
vary according to the choice of g. See Section 2 for the precise statement. We remark
finally that the convergence (1.3) has an interpretation in terms of indifference pricing
for volatility derivatives in incomplete markets. We refer, for instance, to [12] and the
references therein for more information in this direction. Applications of our results to
this topic will be discussed in a future work.

This paper is organized as follows. In the next section, we state our assumptions
and main results precisely. Our framework admits slightly general cost functions than
(1.1). In Section 3, we study the dynamic programming equation for value function
uV . Section 4 is concerned with the dynamic programming equation associated with
ergodic stochastic control (1.4). Asymptotic behaviors (1.3) and (1.5) are studied in
Section 5. Appendices are devoted to some technical estimates needed in this paper.

2 Preliminaries and Main results

Let (Ω,F , P ; (Ft)t≥0) be a filtered probability space on which is defined an (Ft)-
adapted standard Brownian motion W = (Wt)t≥0 in RN . For a given RN -valued
(Ft)-progressively measurable control process ξ = (ξt)t≥0, we denote by Xξ = (Xξ

t )t≥0
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the controlled process governed by (1.2). Let us define the cost functional of finite time
horizon T > 0 by

JT (x; ξ) := Ex
[ ∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt+ g(Xξ
T )

]
, x ∈ RN , (2.1)

and that of long-run average by

J∞(ξ) := lim inf
T→∞

1

T
E0

[ ∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt+ g(Xξ
T )

]
, (2.2)

where Ex[ · ] denotes the expectation conditioning X0 = x in (1.2). Throughout the
paper, functions l, f and g are assumed to satisfy the following conditions (H1)-(H3):

(H1) l ∈ C2(RN × (RN \ {0})), ξ 7→ l(x, ξ) is strictly convex for all x ∈ RN , and
there exist some l0 > 0 and m∗ > 1 such that

l0|ξ|m
∗ ≤ l(x, ξ) ≤ l−1

0 |ξ|m∗
, |Dxl(x, ξ)| ≤ l−1

0 (1 + |ξ|m∗
), (x, ξ) ∈ R2N ,

where Dxl(x, ξ) is the partial derivative of l(x, ξ) with respect to x.

(H2) f ∈ C2(RN), and there exist constants f0 > 0 and β > 0 such that

f0|x|β − f−1
0 ≤ f(x) ≤ f−1

0 (1 + |x|β), |Df(x)| ≤ f−1
0 (1 + |x|β−1), x ∈ RN .

(H3) g ∈ Φ0 := {v ∈ Cp(RN) | infRN v > −∞}.

Here Cp(RN) denotes the totality of continuous functions on RN that are at most
polynomially growing, i.e., |v(x)| ≤ C(1 + |x|q) in RN for some C > 0 and q > 0.

Let h = h(x, p) be the Fenchel-Legendre transform of l(x, ξ) with respect to ξ, i.e.,

h(x, p) := sup
ξ∈RN

(p · ξ − l(x, ξ)), (x, p) ∈ R2N . (2.3)

In view of the duality between l and h, we see that (H1) is equivalent to (H1)′ below:

(H1)′ h ∈ C2(RN × (RN \ {0})), p 7→ h(x, p) is strictly convex for all x ∈ RN , and
there exist some h0 > 0 and m > 1 such that

h0|p|m ≤ h(x, p) ≤ h−1
0 |p|m, |Dxh(x, p)| ≤ h−1

0 (1 + |p|m), (x, p) ∈ R2N .

Notice here that 1/m∗ + 1/m = 1. The equivalence between (H1) and (H1)′ can be
seen from Theorem 3.4 in the next section.

We now define the set of admissible control processes. For T > 0, a control process
ξ = (ξt)0≤t≤T is called admissible if

Ex
[ ∫ T

0

(|ξt|m
∗
+ |Xξ

t |β) dt
]
<∞, x ∈ RN . (2.4)
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We denote by AT the totality of admissible control processes. As far as the ergodic
stochastic control for (2.2) is concerned, we use the notation A∞ to represent the set
of control processes ξ = (ξt)t≥0 satisfying (2.4) for all T > 0.

Let us consider the minimizing problem for (2.1), and denote its value function by

uV (T, x) := inf
ξ∈AT

JT (x; ξ). (2.5)

In Section 3, we prove that uV is a solution to the Cauchy problem∂tu−
1

2
∆u+ h(x,Du) = f in Q,

u(0, · ) = g on ∂pQ,
(CP)

where Q := (0,∞) × RN and ∂pQ := {0} × RN . In the present paper, any solution
is understood in the classical sense, namely, we call a function u : Q −→ R solution
(resp. subsolution, supersolution) of (CP) if u ∈ C1,2(Q) ∩ Cp(Q) and

∂u

∂t
(t, x) − 1

2
∆u(t, x) + h(x,Du(t, x)) = f(x) (resp. ≤ f(x), ≥ f(x))

for all (t, x) ∈ Q, and u(0, x) = g(x) (resp. ≤ g(x), ≥ g(x)) for all x ∈ RN . Here
Cp(Q) stands for the set of continuous functions v on Q such that, for each T > 0,
|v(t, x)| ≤ C(1 + |x|q) in [0, T ] × RN for some C > 0 and q > 0.

For later use, we set QT := (0, T ) × RN and

Φ := {u ∈ C1,2(Q) ∩ Cp(Q) | inf
QT

u > −∞ for all T > 0}.

Theorem 2.1. Assume (H1)-(H3). Let uV be the value function defined by (2.5).
Then uV belongs to Φ and is the minimal solution of (CP) in the sense that uV ≤ v

for any solution v of (CP) such that v ∈ Φ. Moreover, if 1 < m∗ ≤ 2 in (H1), then it
is the unique solution of (CP) in the class Φ.

Let us consider the stationary equation

λ− 1

2
∆φ+ h(x,Dφ) = f in RN , φ(0) = 0, (EP)

where unknown is a pair (λ, φ) ∈ R × C2(RN). The constraint φ(0) = 0 is imposed to
avoid the ambiguity of additive constant with respect to φ. In section 4, we study the
solvability of (EP). For a given γ > 0, we set

Φγ := {v ∈ C2(RN) ∩ Cp(RN) | lim inf
|x|→∞

v(x)

|x|γ
> 0 }.

Clearly, Φγ ⊂ Φγ′ ⊂ Φ0 for all γ ≥ γ′ > 0, where Φ0 is defined by (H3).
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Theorem 2.2. Assume (H1) and (H2). Then, there exists a unique solution (λ, ϕ) of
(EP) such that ϕ ∈ Φ0. Moreover, ϕ belongs to Φ(β/m)+1, where m := m∗/(m∗ − 1)

and m∗ > 1, β > 0 are the constants in (H1) and (H2), respectively.

We are now in a position to state our main results. Let us consider the minimizing
problem for (2.2), and set

λ∞ := inf
ξ∈A∞

J∞(ξ). (2.6)

In Section 5, we prove the following.

Theorem 2.3. Assume (H1)-(H3). Let uV be the value function defined by (2.5), and
let (λ, ϕ) be the unique solution of (EP) such that ϕ ∈ Φ0. Then,

uV (T, · )
T

−→ λ in C(RN) as T → ∞. (2.7)

Moreover, λ = λ∞, and ξ(x) := Dph(x,Dϕ(x)) gives an optimal Markov control policy
for ergodic stochastic control (2.6).

Theorem 2.4. In addition to the hypothesis of Theorem 2.3, we assume that β ≥ m∗,
where m∗ > 1 and β > 0 are the constants in (H1) and (H2), respectively. Then, there
exists a real constant c such that

uV (T, · ) − (ϕ( · ) + λT ) −→ c in C(RN) as T → ∞.

3 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1, namely, we show that uV defined
by (2.5) is the minimal solution of (CP). The proof is divided into two parts. In the
first half, we construct a particular solution of (CP), denoted by ū, such that ū ≤ uV

(see Theorem 3.3). In the second half, we verify the identity ū = uV by establishing a
comparison theorem (Proposition 3.8) for solutions of (CP). Minimality of uV is also
derived from the same comparison principle.

Throughout the paper, m,m∗ > 1 and β > 0 denote the constants in (H1), (H1)′,
and (H2), respectively. Recall that 1/m+ 1/m∗ = 1. We also use the notation BR :=

{x ∈ RN | |x| < R} for R > 0.

3.1 Existence of a solution.

Let us consider Cauchy problem (CP). We construct a solution of (CP) by a suitable
approximation procedure. Let {fn} ⊂ C∞

b (RN) be a sequence of functions such that
infRN f ≤ fn ≤ f ∧ n, |Dfn| ≤ |Df | in RN for all n, and fn → f in C(RN) as
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n→ ∞. Loosely speaking, fn is a regularization of f ∧ n. Similarly, we fix a sequence
{gn} ⊂ C∞

b (RN) such that infRN g ≤ gn ≤ g ∧ n in RN for all n and gn → g in C(RN)

as n→ ∞.
For each n, we define the cost functional J (n)

T by

J
(n)
T (x; ξ) := Ex

[ ∫ T

0

(l(Xξ
t , ξt) + fn(Xξ

t )) dt+ gn(Xξ
T )

]
, (3.1)

and its value function u
(n)
V by

u
(n)
V (T, x) := inf

ξ∈AT

J
(n)
T (x; ξ), (T, x) ∈ Q. (3.2)

Theorem 3.1. u(n)
V is the unique solution of∂tu−

1

2
∆u+ h(x,Du) = fn in Q,

u(0, · ) = gn on ∂pQ,
(CPn)

such that supQT
(|u| + |Du|) <∞ for all T > 0.

Proof. The assertion of this theorem has been proved in [10, Theorem IV.11.1, Remark
IV.11.2], so that we omit to reproduce the proof.

The following theorem gives a gradient estimate for solutions of (CP)

Theorem 3.2. Let u be a solution of (CP). Then, for any ε ∈ (0, 1), r > 0 and
δ ∈ (0, 1), there exists a constant K > 0 not depending on u and f such that

sup
(δ,T ]×Br

|Du| ≤ K{1 + sup
Br+1

|f | + sup
Br+1

|Df | + sup
(δ/2,T ]×Br+1

|u|}1+ε.

Proof. We prove this theorem in Appendix A (see Theorem A.1).

Theorem 3.3. There exists a solution ū ∈ Φ of (CP) such that ū ≤ uV in Q.

Proof. Define u−, u+ : Q −→ R by

u−(T, x) := T inf
RN

f + inf
RN

g, u+(T, x) := Ex
[ ∫ T

0

f(Wt) dt+ g(WT )
]
.

Remark that u− and u+ are sub- and supersolutions of (CP). Let u(n)
V be the solution of

(CPn) given by (3.2). By the definition of u± and u(n)
V , we see that u− ≤ u

(n)
V ≤ u+ in Q

for all n. Since |fn| ≤ |f | and |Dfn| ≤ |Df | in RN , we see, in view of Theorem 3.2 with
u = u

(n)
V and f = fn, that supQ′ |Du(n)

V | is bounded by a constant not depending on n

for any Q′ ⊂⊂ Q. Taking into account the classical regularity theory for quasilinear
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parabolic equation (e.g., [19, Theorem V.3.1]), there exists a θ ∈ (0, 1) such that Diu
(n)
V

belongs to Hölder space C
θ
2
,θ(Q) for all i = 1 . . . N .

We now set Fn(t, x) := fn(x)−h(x,Du
(n)
V (t, x)) and regard u(n)

V as a solution of the
linear parabolic equation

∂tu−
1

2
∆u = Fn(t, x) in Q.

Then, it follows from Schauder’s theory that the Hölder norm of u(n)
V in the space

C1+ θ
2
,2+θ(Q′) is bounded by a constant not depending on n for any Q′ ⊂⊂ Q. Hence,

there exist a subsequence {nj}j and a function ū ∈ C1,2(Q) such that, as n→ ∞, u(n)
V ,

∂tu
(n)
V /∂t, Du(n)

V and D2u
(n)
V converge, respectively, to ū, ∂tū/∂t, Dū and D2ū uniformly

on compacts. In particular, ū satisfies (CP). It is also obvious from the definition of
u

(n)
V that ū ∈ Φ and ū ≤ uV in Q. Hence, the proof is complete.

3.2 Minimality and uniqueness.

We establish in this subsection a couple of comparison theorems for sub- and superso-
lutions of (CP). We begin with recalling the duality between l and h.

Theorem 3.4. Let l = l(x, ξ) satisfy (H1), and let h = h(x, p) be the function defined
by (2.3). Then, the following (a)-(e) hold.

(a) h ∈ C2(RN × (RN \ {0})), and p 7→ h(x, p) is strictly convex for all x ∈ RN .
(b) h(x, p) + l(x, ξ) ≥ ξ · p for any x, p, ξ ∈ RN . Moreover,

h(x, p) + l(x, ξ) = ξ · p ⇐⇒ ξ = Dph(x, p) ⇐⇒ p = Dξl(x, ξ).

(c) There exists a constant h0 > 0 such that h0|p|m ≤ h(x, p) ≤ h−1
0 |p|m for all

x, p ∈ RN , where m := m∗/(m∗ − 1).
(d) There exist constants h1, l1 > 0 such that, for any x, p, ξ ∈ RN ,

h1|p|m−1 ≤ |Dph(x, p)| ≤ h−1
1 |p|m−1, l1|ξ|m

∗−1 ≤ |Dξl(x, ξ)| ≤ l−1
1 |ξ|m∗−1.

(e) There exists an h2 > 0 such that |Dxh(x, p)| ≤ h2(1+ |p|m) for all x, p ∈ RN .

Proof. Assertions (a) and (b) can be verified in view of [5, Theorem A.2.5] with minor
changes, so that we omit the proof. Verifying (c) is also easy from the very definition
of h.

To check (d), we observe from (b) and (H1) that

l0|Dph(x, p)|m
∗ ≤ l(x,Dph(x, p)) = p ·Dph(x, p) − h(x, p) ≤ |p||Dph(x, p)|

for all x, p ∈ RN . Noting the relation 1/m∗ + 1/m = 1, we obtain

|Dph(x, p)| ≤ (l−1
0 |p|)1/(m∗−1) = l1−m

0 |p|m−1.
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On the other hand, we see by Young’s inequality that

0 ≤ l0|Dph(x, p)|m
∗ ≤ |p||Dph(x, p)| − h0|p|m

≤
(h0

2

)1−m∗

|Dph(x, p)|m
∗ − h0

2
|p|m.

In particular, (h0/2)|p|m−1 ≤ |Dph(x, p)|. Therefore, the first inequality is proved. The
second inequality can be verified similarly.

We finally show (e). Observe first that h(x, p) = p ·Dph(x, p) − l(x,Dph(x, p)) for
all x, p ∈ RN . Differentiating both sides by x and noting p = Dξl(x,Dph(x, p)), we
have

Dxh(x, p) = Dxph(x, p)p−Dxl(x,Dph(x, p)) −Dxph(x, p)Dξl(x,Dph(x, p))

= −Dxl(x,Dph(x, p)).

In particular, using (d) and (m− 1)m∗ = m,

|Dxh(x, p)| = |Dxl(x,Dph(x, p))| ≤ l−1
0 (1 + |Dph(x, p)|m

∗
) ≤ l−1

0 (1 + h−m∗

1 |p|m).

Hence, the proof is complete.

Now, we set α := (β/m) + 1. This number will be frequently referred to in later
discussions. Note that β ≥ m∗ if and only if β ≥ α. Given a control process ξ =

(ξt)0≤t≤T , we denote by Xξ = (Xξ
t )0≤t≤T the controlled process governed by (1.2). Set

τR := inf{t > 0 |Xξ
t 6∈ BR} for R > 0. In what follows, unless otherwise specified, C

denotes various positive constants that may take different values from line to line.

Lemma 3.5. Suppose that ξ ∈ AT . Then Ex
[

sup
0≤t≤T

|Xξ
t |α

]
<∞ for all x ∈ RN .

Proof. This lemma is easily verified by the standard argument. The proof is given in
Appendix C for the convenience of the reader.

The following result will be used in Sections 4 and 5.

Proposition 3.6. Let u be a subsolution of (CP) for some g ∈ Cp(RN) (not necessarily
belonging to Φ0), and suppose that supQT

(|u|/(1 + |x|α)) <∞ for all T > 0. Then, for
any x ∈ RN and T, S ≥ 0,

u(S + T, x) ≤ inf
ξ∈AT

Ex
[
u(S,Xξ

T ) +

∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt
]
. (3.3)

In particular, u ≤ uV in Q.
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Proof. Fix any ξ ∈ AT , and apply Ito’s formula to u(S + T − t,Xξ
t ). Then, noting

Theorem 3.4 (b), as well as the subsolution property for u, we see that

u(S + T, x) ≤ Ex
[
u(S + T − T ∧ τR, Xξ

T∧τR
) +

∫ T∧τR

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt
]
.

We now send R → ∞. Since |u(t, x)| ≤ C(1 + |x|α) in QS+T for some C > 0, and l, f
are bounded below, we conclude in view of Lemma 3.5 that

u(S + T, x) ≤ Ex
[
u(S,Xξ

T ) +

∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt
]
.

Taking the inf over ξ ∈ AT , we obtain (3.3).

Proposition 3.7. Suppose that 1 < m∗ ≤ 2 in (H1), or equivalently m ≥ 2 in (H1)′.
Then, (3.3) is valid for any subsolution u of (CP) such that u ∈ Φ. In particular,
u ≤ uV in Q.

Proof. Observe from m ≥ 2 that, for any ε > 0, there exists a κε > 0 such that

h(x, p) − h(x, q) −Dph(x, q) · (p− q) ≥ κε

2
|p− q|2 − ε, x, p, q ∈ RN .

We can also see in view of Theorem 3.4 (b) that ξ = Dph(x,Dξl(x, ξ)) for all (x, ξ) ∈
R2N , and that h(x, q) + l(x, ξ) = ξ · q if and only if q = Dξl(x, ξ). Thus,

h(x, p) + l(x, ξ) − ξ · p
= h(x, p) − h(x,Dξl(x, ξ)) −Dph(x,Dξl(x, ξ)) · (p−Dξl(x, ξ))

≥ κε

2
|p−Dξl(x, ξ)|2 − ε, x, p, ξ ∈ RN .

Let u be a subsolution of (CP) such that u ∈ Φ, and fix any ξ ∈ AT . Then, by the
previous estimate, we have

u(S,Xξ
T ) − u(S + T, x)

=

∫ T

0

(h(Xξ
t , Du) − ξt ·Du− f(Xξ

t )) dt+

∫ T

0

DudWt

≥
∫ T

0

(−l(Xξ
t , ξt) − f(Xξ

t ) +
κε

2
|Du− qt|2 − ε) dt+

∫ T

0

DudWt,

where we have set Du = Du(S + T − t,Xξ
t ) and qt := Dξl(X

ξ
t , ξt). In particular,

u(S,Xξ
T ) +

∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt−
∫ T

0

qt dWt

≥ u(S + T, x) − εT +
κε

2

∫ T

0

|Du− qt|2 dt+

∫ T

0

(Du− qt) dWt.

10



In view of Theorem 3.4 (d), |Dξl(x, ξ)|m ≤ (l−1
1 |ξ|m∗−1)m = l−m

1 |ξ|m∗ for all (x, ξ) ∈
R2N . This infers that Ex[

∫ T

0
|qt|m dt] < ∞. Hence,

∫ T

0
qtdWt is an (Ft)-martingale.

Using Jensen’s inequality, we have

Ex
[
u(S,Xξ

T ) +

∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt
]

≥ Ex
[
u(S + T, x) − εT +

κε

2

∫ T

0

|Du− qt|2 dt+

∫ T

0

(Du− qt) dWt

]
≥ − 1

κε

logEx
[
e−κε(u(S+T,x)−εT )−(κ2

ε/2)
R T
0 |Du−qt|2 dt−κε

R T
0 (Du−qt) dWt

]
≥ u(S + T, x) − εT.

Sending ε→ 0, we conclude that (3.3) holds.

Proposition 3.8. Let v be a supersolution of (CP) such that v ∈ Φ. Then, for any
x ∈ RN and T, S ≥ 0,

v(S + T, x) ≥ inf
ξ∈AT

Ex
[
v(S,Xξ

T ) +

∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt
]
.

In particular, v ≥ uV in Q.

Proof. Let X∗ = (X∗
t ) be the diffusion process governed by

dX∗
t = −Dph(X

∗
t , Dv(T − t,X∗

t )) dt+ dWt, 0 ≤ t < T ∧ τ∞,

where τ∞ := limR→∞ τR. We set ξ∗t := Dph(X
∗
t , Dv(T − t,X∗

t )) for 0 ≤ t < T ∧ τ∞.
Then, we observe that

l(X∗
t , ξ

∗
t ) + h(X∗

t , Dv) = ξ∗t ·Dv, Dv := Dv(T − t,X∗
t ).

Applying Ito’s formula to v(S + T − t,X∗
t ) and noting the supersolution property for

v, we see that

v(S + T − T ∧ τR, X∗
T∧τR

) +

∫ T∧τR

0

(l(X∗
t , ξ

∗
t ) + f(X∗

t )) dt

≤ v(S + T, x) +

∫ T∧τR

0

(l(X∗
t , ξ

∗
t ) + h(X∗

t , Dv) − ξ∗t ·Dv) dt+

∫ T∧τR

0

Dv dWt

= v(S + T, x) +

∫ T∧τR

0

Dv dWt.

Taking expectation, we obtain

v(S + T, x) ≥ Ex
[
v(S + T − T ∧ τR, X∗

T∧τR
) +

∫ T∧τR

0

(l(X∗
t , ξ

∗
t ) + f(X∗

t )) dt
]
.
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Since l, f and v are bounded below on R2N , RN and QS+T , respectively, we can apply
Fatou’s lemma to deduce that

v(S + T, x) ≥ Ex
[
v(S + T − T ∧ τ∞, X∗

T∧τ∞) +

∫ T∧τ∞

0

(l(X∗
t , ξ

∗
t ) + f(X∗

t )) dt
]
.

Notice here that P x(τ∞ < T ) = 0. Otherwise, Ex[
∫ T∧τ∞

0
f(X∗

t ) dt] = ∞, which does
not agree with the last inequality. Thus, P x(T ∧ τ∞ = T ) = 1 and

v(S + T, x) ≥ Ex
[
v(S,X∗

T ) +

∫ T

0

(l(X∗
t , ξ

∗
t ) + f(X∗

t )) dt
]
.

Since ξ∗ ∈ AT in view of (H1) and (H2), we obtain the required estimate.

Gathering the results of this section, we can prove Theorem 2.1.

Proof of Theorem 2.1. Let ū ∈ Φ be the solution of (CP) given in Theorem 3.3. Then
ū ≤ uV in Q. By Proposition 3.8, we also see that ū ≥ uV in Q. Hence, uV = ū in Q.
Furthermore, Proposition 3.8 implies that uV ≤ v in Q for any solution v of (CP) such
that v ∈ Φ. Thus, uV is the minimal solution of (CP) in the class Φ. Uniqueness under
1 < m∗ ≤ 2 is a direct consequence of Proposition 3.7 in combination with Proposition
3.8. Hence, the proof of Theorem 2.1 is complete.

Remark 3.9. Let Φ′ be the totality of u ∈ Φ such that supQT
(|u|/(1 + |x|α)) < ∞

for all T > 0. Then, the uniqueness of solutions to (CP) in the class Φ′ is valid as a
direct consequence of Propositions 3.6 and 3.8. However, we do not know, in general,
whether a solution of (CP) belongs to Φ′ without assuming any upper bound for g. This
is the reason why the uniqueness in the class Φ is not guaranteed for m∗ > 2.

4 Proof of Theorem 2.2

The proof of Theorem 2.2 is divided into two parts. We first construct a suitable
solution of (EP) by a standard analytical approximation procedure. We then establish
a uniqueness result using some probabilistic arguments.

4.1 Existence.

We begin with the following gradient estimate for solutions of (EP).

Theorem 4.1. For any r > 0, there exists a constant K > 0 depending only on r, N ,
and the constants in (H1)′ such that for any solution (λ, φ) of (EP),

sup
Br

|Dφ| ≤ K(1 + sup
Br+1

|f − λ|1/m + sup
Br+1

|Df |1/(2m−1)). (4.1)

12



Proof. The proof of this theorem will be given in Appendix B (see Theorem B.1).

Proposition 4.2. Let (λ, φ) be a solution of (EP). Then, there exists a K > 0 such
that

|Dφ(x)| ≤ K(1 + |x|α−1), |φ(x)| ≤ K(1 + |x|α), x ∈ RN ,

where α = (β/m) + 1.

Proof. Fix any r > 0. Since β/m = α − 1 and (β − 1)/(2m − 1) < α − 1, we see by
virtue of Theorem 4.1 that

sup
Br

|Dφ| ≤ C(1 + sup
Br+1

|f − λ|1/m + sup
Br+1

|Df |1/(2m−1)) ≤ C + C(r + 1)α−1.

This yields the first estimate of this proposition. The second estimate is easily deduced
from the first one. Hence, we have completed the proof.

In what follows, we use the notation

F [ψ](x) := −1

2
∆ψ(x) + h(x,Dψ(x)) − f(x), x ∈ RN , ψ ∈ C2(RN). (4.2)

Lemma 4.3. There exist constants ν0 > 0 and ρ0 ∈ (0, 1) such that, for any ρ ∈
[−ρ0, ρ0] and γ ∈ [0, α], function φ0(x) := ρ(1 + |x|2)γ/2 satisfies

F [φ0](x) ≤ −ν0|x|β + ν−1
0 , x ∈ RN . (4.3)

Proof. Let ρ ∈ [−1, 1] and γ ∈ [0, α]. Observe that

Dφ0(x) = γρ(1 + |x|2)(γ−2)/2x,

∆φ0(x) = γρ{(γ +N − 2)|x|2 +N}(1 + |x|2)(γ−4)/2.

Since γ ≤ α implies m(γ − 1) ≤ β, we see, in view of (H1)′, (H2) and |ρ| ≤ 1, that

F [φ0](x) ≤ C(1 + |x|γ−2 + |ρ|m|x|m(γ−1)) − f0|x|β ≤ (|ρ|C − f0)|x|β + C

for some C > 0 independent of ρ and γ. Choosing ρ0 ∈ (0, 1) so small that ρ0 < C−1f0

and setting ν0 := min{f0 − ρ0C,C
−1}, we obtain (4.3).

Lemma 4.4. There exist a constant ρ1 > 1 such that function ψ0(x) := ρ1(1+ |x|2)α/2

satisfies F [ψ0](x) ≥ −K1 in RN for some K1 > 0.

Proof. Similarly as in the previous lemma, we easily see, in view of (H1)′, (H2) and
m(α− 1) = β, that

F [ψ0](x) ≥ −ρ1C(1 + |x|α−2) + h0ρ
m
1 |x|m(α−1) − f−1

0 (1 + |x|β)

≥ (h0ρ
m
1 − ρ1C − f−1

0 )|x|β − C(1 + ρ1)

for some C > 0 not depending on ρ1. Choosing ρ1 so large that h0ρ
m
1 − ρ1C − f−1

0 ≥ 0

and setting K1 := C(1 + ρ1), we obtain the required estimate.
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We now construct a solution (λ, ϕ) of (EP) such that ϕ ∈ Φα. For this purpose, fix
any φ0(x) := ρ0(1 + |x|2)γ/2 satisfying (4.3) for some ρ0 ∈ (0, 1) and γ ∈ [α∧ β, α]. For
ε ∈ (0, 1), let us consider the elliptic equation

F [vε] + εvε = εφ0 in RN . (4.4)

Proposition 4.5. For any ε, there exists a solution vε ∈ C2(RN) of (4.4) such that
εvε(0) is bounded uniformly in ε ∈ (0, 1).

Proof. Let ψ0 be the function given in Lemma 4.4. Fix any ε. By the definitions of φ0

and ψ0, we see that φ0 ≤ ψ0 in RN . Moreover, φ0 − 1/(εν0) and ψ0 + K1/ε are sub-
and supersolutions of (4.4), respectively.

For each R > 0, we consider the Dirichlet problem

F [v] + εv = εφ0 in BR, v = φ0 on ∂BR. (4.5)

It is well known (e.g., [18, Theorem 4.8.3]) that (4.5) has a solution v = vR ∈ C2(BR).
We also see by the standard comparison theorem that φ0 − 1/(εν0) ≤ vR ≤ ψ0 +K1/ε

in BR. Moreover, for any r > 0, there exists a K > 0 such that supBr
|DvR| ≤ K for

all R > r (see Theorem B.1 in Appendix B). These facts, together with the classical
regularity theory for quasilinear elliptic equations (e.g., [18, Theorem 4.6.1]), imply
that the Hölder norm |DvR|θ;Br for some θ ∈ (0, 1) is bounded by a constant not
depending on R > r. Applying Schauder’s theory for linear elliptic equations, we also
see that the Hölder norm |vR|2+θ;Br is bounded by a constant not depending on R > r.
In particular, the family {vR}R>r is pre-compact in C2(RN), namely, there exist a
sequence {Rj}j with Rj → ∞ as j → ∞, and a function v ∈ C2(RN) such that vRj

,
DvRj

, and D2vRj
converge, respectively, to v, Dv, and D2v in C(RN) as j → ∞. Thus,

we conclude that v is a solution of (4.4) satisfying

φ0(x) −
1

εν0

≤ v(x) ≤ ψ0(x) +
K1

ε
, x ∈ RN . (4.6)

This implies also that εv(0) is bounded by a constant not depending on ε. Hence, we
have completed the proof.

The following lemma will be needed in Section 5.

Lemma 4.6. Let φ0(x) := ρ0(1 + |x|2)(α∧β)/2 satisfy (4.3) for some ρ0 ∈ (0, 1). Then,
for each ε ∈ (0, 1), there exists a supersolution ψε of (4.4) such that

φ0(x) ≤ ψε(x) ≤ Kε(1 + |x|2)(α∧β)/2, x ∈ RN , (4.7)

for some Kε > 1.
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Proof. Fix any ε ∈ (0, 1) and set ψ(x) := ρ(1 + |x|2)(α∧β)/2, where ρ > 1 will be
determined later. Then, we observe that

F [ψ](x) + εψ(x) − εφ0(x)

≥ −ρC(1 + |x|α∧β−2) + C−1ρm|x|m(α∧β−1) − C(1 + |x|β)

+ ε(ρ− 1)(1 + |x|2)(α∧β)/2

≥ (C−1ρm − Cρ)|x|m(α∧β−1) − C|x|β + ε(ρ− 1)(1 + |x|2)(α∧β)/2 − C(1 + ρ).

Here and in what follows, C > 0 denotes various constants not depending on ρ and ε.
We first consider the case where α ∧ β = α. Then m(α ∧ β − 1) = m(α − 1) = β.

Choosing ρ so that C−1ρm − Cρ ≥ C and setting ψε(x) := ψ(x) + C(1 + ρ)/ε, we see
that ψε is a supersolution of (4.4). Suppose next that α ∧ β = β. In this case, we
choose ρ = ρε so large that C−1ρm − Cρ ≥ 0 and C|x|β ≤ ε(ρ− 1)(1 + |x|2)β/2 in RN .
Then ψε(x) := ψ(x) + C(1 + ρ)/ε is a supersolution of (4.4). Estimate (4.7) can be
verified in both cases by the definition of ψε. Hence, the proof is complete.

Proposition 4.7. Let φ0(x) := ρ0(1 + |x|2)γ/2 be any function satisfying (4.3) for
some ρ0 ∈ (0, 1) and γ ∈ [α ∧ β, α], and let vε be the solution of (4.4) constructed in
Proposition 4.5. Set ϕε(x) := vε(x)−vε(0). Then, the family {ϕε}ε∈(0,1) is pre-compact
in C2(RN). Moreover, there exists a constant M > 0 such that ϕε ≥ φ0 −M in RN for
all ε.

Proof. Set λε := εvε(0). Then C1 := supε∈(0,1) |λε| <∞ and ϕε is a solution of

λε + F [ϕε] + εϕε = εφ0 in RN , ϕε(0) = 0. (4.8)

In view of Theorem B.1 in Appendix B and ϕε(0) = 0, we observe that, for any
R > 0, supBR

|ϕε| and supBR
|Dϕε| are bounded by a constant not depending on ε.

In particular, by the same argument as in the proof of Proposition 4.5, we see that
Hölder norm |ϕε|2+θ;BR

for some θ ∈ (0, 1) is bounded uniformly in ε. Hence, {ϕε}ε is
pre-compact in C2(RN).

We next prove the latter claim. By the convexity of F [ · ] and Lemma 4.3, we see
that, for any δ ∈ (1/2, 1),

F [δφ0](x) ≤ δF [φ0] + (1 − δ)F [0](x) ≤ ν−1
0 − f0

2
|x|β + f−1

0 , x ∈ RN ,

where f0 and ν0 are the constants in (H2) and (4.3), respectively. Taking into account
this estimate, we can choose an R > 0 such that F [δφ0](x) ≤ −C1 for all |x| ≥ R

and δ ∈ (1/2, 1), and then find an M > 0 such that sup0<ε<1 supBR
(|φ0| + |ϕε|) ≤ M .

Notice that M is finite since supBR
|ϕε| is bounded by a constant not depending on ε.
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We now claim that ϕε ≥ δφ0 −M in RN for all δ ∈ (1/2, 1). To prove this, we
first observe that ϕε(x)− δφ0(x) ≥ − supBR

(|ϕε|+ |φ0|) = −M for all |x| ≤ R. On the
other hand, since infRN (ϕε − φ0) > −∞ by virtue of (4.6), and

ϕε(x) − (δφ0(x) −M) = (ϕε − φ0)(x) + (1 − δ)φ0(x) +M −→ ∞

as |x| → ∞, we can find an Rε,δ > R such that ϕε(x) ≥ δφ0(x) −M for all |x| ≥ Rε,δ.
Set D := {x ∈ RN |R < |x| < Rε,δ}. Then, for any x ∈ D, we have F [δφ0−M ](x)+

ε(δφ0(x) −M) ≤ εφ0(x) − C1 and F [ϕε](x) + εϕε(x) ≥ εφ0 − C1. Therefore, δφ0 −M

and ϕε are, respectively, sub- and supersolutions of

F [v] + εv = εφ0 − C1 in D,

and satisfy δφ0 −M ≤ ϕε on ∂D. Applying the standard comparison theorem, we
obtain δφ0 −M ≤ ϕε in D. Hence, δφ0 −M ≤ ϕε in RN for all δ ∈ (1/2, 1). Letting
δ → 1, we conclude that φ0 −M ≤ ϕε in RN .

Theorem 4.8. Let φ0(x) := ρ0(1 + |x|2)γ/2 be any function satisfying (4.3) for some
ρ0 ∈ (0, 1) and γ ∈ [α ∧ β, α]. Then there exists a solution (λ, ϕ) of (EP) such that
infRN (ϕ− φ0) > −∞.

Proof. Let vε be the solution of (4.4) given in Proposition 4.5. Set ϕε(x) := vε(x)−vε(0)

and λε := εvε(0). Then, by virtue of Proposition 4.7 and the fact that supε |λε| < ∞,
there exist a sequence {εn} with εn → 0 as n → ∞, a real constant λ and a function
ϕ ∈ C2(RN) such that λεn → λ and ϕε → ϕ in C2(RN) as n → ∞. Since (λεn , ϕεn)

is a solution of (4.8) with ε = εn, we conclude by sending n → ∞ that (λ, ϕ) is a
solution of (EP). We can also see that infRN (ϕ− φ0) > −∞ in view of the latter claim
of Proposition 4.7. Hence, we have completed the proof.

Corollary 4.9. There exists a solution (λ, ϕ) of (EP) such that ϕ ∈ Φα.

Proof. This corollary is obvious from Theorem 4.8. Indeed, it suffices to set γ = α and
choose a ρ0 ∈ (0, 1) so that φ0(x) = ρ0(1 + |x|2)α/2 satisfies (4.3).

Proposition 4.10. Let (λ, ϕ) be a solution of (EP) such that ϕ ∈ Φ0. Then,

ϕ(x) + λT = inf
ξ∈AT

Ex
[ ∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt+ ϕ(Xξ
T )

]
, T > 0. (4.9)

Moreover, the optimal Markov control policy for the right-hand side of (4.9) is given
by ξ(x) := Dph(x,Dϕ(x)).

Proof. Since v(T, x) := ϕ(x)+λT is a solution of (CP) with g = ϕ ∈ Φ0 and v ∈ Φ, the
≥ part is deduced from Proposition 3.8. We can also obtain the opposite inequality
in view of Propositions 3.6 and 4.2. The optimality of ξ is verified similarly as in the
proof of Proposition 3.8.
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4.2 Uniqueness.

In this subsection, we establish a uniqueness result for (EP). Let (λ, ϕ) be any solution
of (EP), and let X = Xϕ be the associated diffusion process governed by

dXt = −Dph(Xt, Dϕ(Xt)) dt+ dWt, t ≥ 0. (4.10)

The key to proving uniqueness lies in the ergodicity of Xϕ. More precisely, we prove
that Xϕ is ergodic provided ϕ ∈ Φ0. The ergodicity of Xϕ is also crucial in Section 5.
We recall here the definition of ergodicity. Let X = (Xt)t≥0 be a diffusion process in
RN with infinitesimal generator A = (1/2)∆+ b(x)D for some b ∈ C(RN ; RN). We say
that X is ergodic if there exists a unique probability measure µ on RN such that

µ(B) =

∫
RN

P x(Xt ∈ B)µ(dx) for all t > 0, B ∈ B(RN).

The above µ is called the invariant probability measure for X. It is well known (see
for instance [6, Theorem 4]) that, if X is ergodic, then

Ex[ψ(XT )] −→
∫

RN

ψ(y)µ(dy) as T → ∞ (4.11)

for any ψ ∈ L∞(RN) and x ∈ RN .
The following two theorems on the ergodicity of diffusion processes are fundamental

and will be frequently used in the rest of this paper. The first theorem gives a criterion
for the ergodicity of a diffusion process (cf. [15, 16]).

Theorem 4.11. Let X be a diffusion process in RN with infinitesimal generator A.
Suppose that there exist constants r, ε > 0 and a function u ∈ C2(RN \ Br) such that
u(x) → ∞ as |x| → ∞ and Au ≤ −ε in RN \Br. Then, X is ergodic.

Proof. Observe first that X is ergodic if and only if it is positive recurrent in the sense
that Ex[σy,ε] < ∞ for all x, y ∈ RN and ε > 0, where σy,ε := inf{t > 0 | |Xt − y| < ε}.
See for instance [23, Theorem 4.9.6] for the proof of this fact.

It thus suffices to prove that X is positive recurrent. But it is known that the
assumptions of this theorem imply the positive recurrence of X. See for instance [23,
Theorem 4.6.3] or [15, Theorems 4.1, 5.5] for a complete proof.

The second theorem claims that (4.11) is still valid for ψ not necessarily bounded
but integrable with respect to µ, and that the convergence is uniform on compacts as
a function of x.

Theorem 4.12. Let X be a diffusion process in RN , and suppose that X is ergodic
with invariant probability measure µ. Then,

Ex[ψ(XT )] −→
∫

RN

ψ(y)µ(dy) in C(RN) as T → ∞

for all ψ ∈ C(RN) satisfying
∫

RN ψ(y)µ(dy) <∞.
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Proof. This theorem has been proved in [16, Proposition 2.7] (cf. [17, Lemma 7.5]).

We now study the ergodicity of Xϕ given in (4.10).

Proposition 4.13. Let (λ, ϕ) be a solution of (EP) such that ϕ ∈ Φ0, and let Xϕ be
the associated diffusion process governed by (4.10). Then Xϕ is ergodic. Moreover, let
µ be the invariant probability measure for Xϕ. Then, for any (T, x) ∈ Q and q > 1,

sup
R>0

Ex[|Xϕ
T∧τR

|q] <∞,

∫
RN

|y|qµ(dy) <∞. (4.12)

Proof. Fix any ρ0 ∈ (0, 1) such that φ0(x) := −ρ0(1 + |x|2)α/2 satisfies (4.3) for some
ν0 > 0. Set u := ϕ− infRN ϕ− φ0. Let Aϕ be the infinitesimal generator for Xϕ, that
is,

Aϕv :=
1

2
∆v −Dph(x,Dϕ(x))Dv, v ∈ C2(RN). (4.13)

Then, by the convexity of h(x, p) in p, we see that

(Aϕu)(x) =
1

2
(∆ϕ(x) − ∆φ0(x)) −Dph(x,Dϕ(x))(Dϕ(x) −Dφ0(x))

≤ F [φ0](x) − F [ϕ](x) ≤ −ν0|x|β + ν−1
0 + λ −→ −∞

as |x| → ∞, where F [ · ] is defined by (4.2). Since u(x) → ∞ as |x| → ∞, we conclude
in view of Theorem 4.11 that Xϕ is ergodic.

To show the latter claim, let q > 1 be any number and apply Ito’s formula to
u(Xϕ

t )q. Then,

u(Xϕ
T∧τR

)q − u(Xϕ
0 )q =

∫ T∧τR

0

qu(Xϕ
t )q−1

(
Aϕu(Xϕ

t ) +
q − 1

2

|Du(Xϕ
t )|2

u(Xϕ
t )

)
dt

+

∫ T∧τR

0

qu(Xϕ
t )q−1Du(Xϕ

t ) dWt.

(4.14)

Noting Proposition 4.2 and the fact that u ≥ −φ0 = ρ0(1 + |x|2)α/2 in RN , we obtain

Aϕu(x) +
q − 1

2

|Du(x)|2

u(x)
≤ F [φ0](x) − F [ϕ](x) +

C(1 + |x|α−1)2

ρ0(1 + |x|2)α/2

≤ −ν0|x|β + ν−1
0 + λ+ C(1 + |x|2)(α−2)/2.

Since α− 2 < β, there exists a ν > 0 such that

Aϕu(x) +
q − 1

2

|Du(x)|2

u(x)
≤ −ν|x|β + ν−1 =: −k(x), x ∈ RN .

Remark here that k(x) → ∞ as |x| → ∞. Plugging the last estimate into (4.14),
taking expectation, and noting the fact that M := maxx∈RN qu(x)q−1k−(x) < ∞,
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where k±(x) := max{0,±k(x)}, we have

Ex[u(Xϕ
T∧τR

)q] + Ex
[ ∫ T∧τR

0

qu(Xϕ
t )q−1k+(Xϕ

t ) dt
]

≤ u(x)q + Ex
[ ∫ T∧τR

0

qu(Xϕ
t )q−1k−(Xϕ

t ) dt
]
≤ ϕ(x)q +MT.

Since q is arbitrary and u ≥ −φ0 ≥ ρ0|x|α in RN , we obtain the first estimate in (4.12).
To establish the second estimate, we send R → ∞ in the above inequality and

divide both sides by T . Then,

1

T
Ex

[ ∫ T

0

qu(Xϕ
t )q−1k+(Xϕ

t ) dt
]
≤ u(x)q

T
+M.

Letting T → ∞ and taking into account Birkhoff’s individual ergodic theorem, we have∫
RN

qu(y)q−1k+(y)µ(dy) = lim
T→∞

Ex
[ 1

T

∫ T

0

qu(Xϕ
t )q−1k+(Xϕ

t ) dt
]
≤M.

Since q is arbitrary and u(x)q−1k+(x) ≥ |x|(q−1)α in RN \BR for some R > 0, we obtain
the second estimate in (4.12).

We are now in position to establish a uniqueness for (EP).

Theorem 4.14. Let (λ, ϕ) and (ν, φ) be two solutions of (EP) such that ϕ, φ ∈ Φ0.
Then λ = ν and ϕ = φ.

Proof. We first show that λ = ν. Let Xϕ be the diffusion associated with (λ, ϕ)

and set ξϕ
t := Dph(X

ϕ
t , Dϕ(Xϕ

t )). Note that ξϕ ∈ AT in view of Proposition 4.13. Set
u(T, x) := φ(x)+νT . Observe in view of Proposition 4.2 that supQT

(|u|/(1+|x|α)) <∞
for all T > 0. Then, applying Proposition 3.6 to the above u and using Proposition
4.10, we see that, for any (T, x) ∈ Q,

φ(x) + νT ≤ inf
ξ∈AT

Ex
[ ∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt+ φ(Xξ
T )

]
≤ Ex

[ ∫ T

0

(l(Xϕ
t , ξ

ϕ
t ) + f(Xϕ

t )) dt+ φ(Xϕ
T )

]
= ϕ(x) + λT + Ex[(φ− ϕ)(Xϕ

T )].

In particular,

(φ− ϕ)(x) + (ν − λ)T ≤ Ex[(φ− ϕ)(Xϕ
T )], (T, x) ∈ Q. (4.15)

Since Ex[(φ − ϕ)(Xϕ
T )] →

∫
RN (φ − ϕ)(y)µ(dy) < ∞ as T → ∞ by virtue of Theorem

4.12, we have ν ≤ λ. Changing the role of (λ, ϕ) and (ν, φ) in the above argument, we
also see that λ ≤ ν. Hence, λ = ν.

19



To obtain the equality φ = ϕ in RN , we set λ = ν in (4.15) and send T → ∞.
Then, (φ− ϕ)(x) ≤

∫
RN (φ− ϕ)(y)µ(dy) for all x ∈ RN . Taking the sup over x ∈ RN ,

we have
0 ≤

∫
RN

{(φ− ϕ)(y) − sup
RN

(φ− ϕ)}µ(dy) ≤ 0.

Since suppµ = RN , we obtain φ− ϕ = supRN (φ− ϕ) in RN . Noting φ(0) = ϕ(0) = 0

by definition, we conclude that φ = ϕ in RN .

The proof of Theorem 2.2 is now obvious from Corollary 4.9 and Theorem 4.14. We
remark that, contrary to Cauchy problem (CP), the uniqueness of solutions to (EP) is
guaranteed for any m > 1, or equivalently, for any m∗ > 1. This comes from the fact
that any solution φ of (EP) satisfies supRN (|φ|/(1+ |x|α)) <∞ by virtue of Proposition
4.2.

We close this section by making a remark on the value of λ. We first observe the
following result on the solvability of (EP).

Theorem 4.15 (Theorem 2.1 of [15]). There exists a critical constant λ∗ such that
(EP) has a solution φ ∈ C2(RN) if and only if λ ≤ λ∗.

Proposition 4.16. Let (λ, ϕ) be the unique solution of (EP) such that ϕ ∈ Φ0. Then,
λ = λ∗.

Proof. Let φ be a solution of (EP) for λ = λ∗. Then, similarly as in the proof of
Theorem 4.14, we see that λ∗ ≤ λ. Since λ∗ ≥ λ by Theorem 4.15, we obtain λ =

λ∗.

5 Proof of the main results

This section is devoted to the proofs of Theorem 2.3 and Theorem 2.4.

5.1 Proof of Theorem 2.3.

In this subsection, we establish convergence (1.5) under our standing assumptions
(H1)-(H3).

Proposition 5.1. Let (λ, ϕ) be the solution of (EP) such that ϕ ∈ Φ0, and let uV be
the value function defined by (2.5). Then, for any R > 0 and η > 0, there exists a
T0 > 0 such that

−η ≤ uV (T, x)

T
− λ ≤ η, for all T ≥ T0, x ∈ BR. (5.1)
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Proof. Let φ0(x) := ρ0(1 + |x|2)(α∧β)/2 satisfy (4.3) for some ρ0 ∈ (0, 1), and let vε be
the solution of (4.4) given in Proposition 4.5. Set ϕε := vε − vε(0) and λε := εvε(0).
Then, (λε, ϕε) satisfies (4.8). In view of Proposition 4.7, we observe that there exists
an M > 0 such that ϕε ≥ φ0−M in RN for all ε. Furthermore, by the pre-compactness
of {ϕε}ε in C2(RN) and the uniqueness result for (EP), we also see that ϕε → ϕ in
C(RN) and λε → λ as ε→ 0.

Let ψε be the supersolution of (4.4) given in Lemma 4.6. Then, similarly as in the
proof of Proposition 4.5, we can verify that vε satisfies φ0 − 1/(εν0) ≤ vε ≤ ψε in RN .
In particular, for each ε, there exists a Cε > 1 such that

φ0(x) −M ≤ ϕε ≤ Cε(1 + |x|α∧β), x ∈ RN . (5.2)

Fix any η > 0. We first prove the lower bound of (5.1). Set

v(T, x) := (1 − e−δT )ϕε(x) + (λ− 2η)T + q(T ), (T, x) ∈ Q,

for some ε, δ ∈ (0, 1) and q ∈ C1([0,∞)). We find suitable ε, δ and q so that v is a
subsolution of (CP). By the convexity of F [ · ], we observe that

∂v

∂t
+ F [v] ≤ e−δT δϕε + λ− 2η + q′ + (1 − e−δT )F [ϕε] + e−δTF [0]

≤ e−δT δϕε + λ− 2η + q′ + (1 − e−δT ){ε(φ0 − ϕε) − λε}
+ e−δT (−f0|x|β + f−1

0 ).

Taking into account (5.2), we have

∂v

∂t
+ F [v] ≤ e−δT (δCε − f0)|x|β + q′ + e−δT (2δCε + f−1

0 + |λ|)

+ εM + |λ− λε| − 2η.

We now choose ε and δ so that εM + |λ− λε| < 2η and δCε − f0 < 0. Then,

∂v

∂t
+ F [v] ≤ q′(T ) + e−δT (2δCε + f−1

0 + |λ|).

We next define q so that the right-hand side is zero and q(0) = infRN g, namely,

q(T ) := inf
RN

g − 2δCε + f−1
0 + |λ|
δ

(1 − e−δT ), T ≥ 0.

Since v(0, · ) = q(0) ≤ g in RN , we conclude that v is a subsolution of (CP) such that
supQT

(|v|/(1 + |x|α∧β)) <∞ for all T > 0. Applying Proposition 3.6, we obtain

v(T, x) ≤ inf
ξ∈AT

Ex
[
v(0, Xξ

T ) +

∫ T

0

(l(Xξ
t , ξ) + f(Xξ

t )) dt
]

≤ inf
ξ∈AT

Ex
[
g(Xξ

T ) +

∫ T

0

(l(Xξ
t , ξ) + f(Xξ

t )) dt
]

= uV (T, x).
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In particular,

λ− 2η +
q(T ) − |ϕε(x)|

T
≤ uV (T, x)

T
, (T, x) ∈ Q.

Noting infT>0 q(T ) > −∞, we conclude that, for any R > 0, there exists a T0 > 0 such
that λ− η ≤ uV (T, x)/T for all x ∈ BR and T ≥ T0.

We next show the upper bound of (5.1). LetXϕ = (Xϕ
t )t≥0 be the diffusion governed

by (4.10) and set ξϕ
t := Dph(X

ϕ
t , Dϕ(Xϕ

t )) for t ≥ 0. Then, by the definition of uV

and Proposition 4.10, we see that

uV (T, x)

T
≤ 1

T
Ex

[ ∫ T

0

(l(Xϕ
t , ξ

ϕ
t ) + f(Xϕ

t )) dt+ g(Xϕ
T )

]
= λ+

ϕ(x) + Ex[(g − ϕ)(Xϕ
T )]

T
.

Since Ex[(g−ϕ)(Xϕ
T )] converges to

∫
RN (g−ϕ)(y)µ(dy) in C(RN) as T → ∞ by virtue

of Theorem 4.12, we can see that, for any R > 0, there exists a T0 > 0 such that
uV (T, x)/T ≤ λ+ η for all x ∈ BR and T ≥ T0. Hence, the proof is complete.

Proposition 5.2. Let (λ, ϕ) be the solution of (EP) such that ϕ ∈ Φ0, and let λ∞ be the
constant defined by (2.6). Then λ = λ∞. Moreover, function ξ(x) := Dph(x,Dϕ(x))

gives an optimal Markov control policy for (2.6).

Proof. Let uV be the value function given by (2.5). Then, for any ξ ∈ A∞ and T > 0,

uV (T, 0)

T
≤ 1

T
E0

[ ∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt+ g(Xξ
T )

]
.

Since the left-hand side converges to λ as T → ∞ by Proposition 5.1, we obtain λ ≤ λ∞.
Let Xϕ = (Xϕ

t )t≥0 be the diffusion given in (4.10) and set ξϕ
t := Dph(X

ϕ
t , Dϕ(Xϕ

t ))

for t ≥ 0. Since ξϕ ∈ AT for all T > 0, we see that ξϕ ∈ A∞. Using Proposition 4.10,
we have

ϕ(0) + λT

T
=

1

T
E0

[ ∫ T

0

(l(Xϕ
t , ξ

ϕ
t ) + f(Xϕ

t )) dt+ g(Xϕ
T )

]
+
E0[(ϕ− g)(Xϕ

T )]

T

for all T > 0. In particular,

λ ≥ lim inf
T→∞

1

T
E0

[ ∫ T

0

(l(Xϕ
t , ξ

ϕ
t ) + f(Xϕ

t )) dt+ g(Xϕ
T )

]
.

The last equality together with λ ≤ λ∞ imply that λ = λ∞, and that ξϕ is an optimal
control for (2.6). Hence, we have completed the proof.

Remark 5.3. Proposition 5.2 implies that the value λ∞ does not depend on g ∈ Φ0.

Theorem 2.3 is now easily deduced from Propositions 5.1 and 5.2, so that we omit
the proof.

22



5.2 Proof of Theorem 2.4.

Let (λ, ϕ) be the solution of (EP) such that ϕ ∈ Φ0, and let uV be the value function
given by (2.5). We set w(T, x) := u(T, x) − (ϕ(x) + λT ) for (T, x) ∈ Q and prove that
w(T, · ) converges in C(RN) to a constant as T → ∞. Observe that w is a solution of∂tw − Aϕw +Hϕ(x,Dw) = 0 in Q,

w(0, · ) = g − ϕ on ∂pQ,
(5.3)

where Aϕ is the differential operator given by (4.13), and Hϕ(x, p) is defined by

Hϕ(x, p) := h(x, p+Dϕ(x)) − h(x,Dϕ(x)) −Dph(x,Dϕ(x)) · p ≥ 0.

Lemma 5.4. Let (λ, ϕ) be the solution of (EP) such that ϕ ∈ Φ0, and let Xϕ = (Xϕ
t )t≥0

be the associated ergodic diffusion. Then,

w(T + S, x) ≤ Ex[w(T,Xϕ
S )], T, S ≥ 0, x ∈ RN .

Proof. We apply Ito’s formula to w(T + S − t,Xϕ
t ). Then,

w(T + S − S ∧ τR, Xϕ
S∧τR

) − w(T + S,Xϕ
0 )

=

∫ S∧τR

0

(−∂tw + Aϕw)(T + S − t,Xϕ
t ) dt+

∫ S∧τR

0

Dw(T + S − t,Xϕ
t ) dWt

≥
∫ S∧τR

0

Dw(T + S − t,Xϕ
t ) dWt.

Taking expectation, we have

w(T + S, x) ≤ Ex[w(T + S − S ∧ τR, Xϕ
S∧τR

)].

Since |w(t, x)| ≤ C(1 + |x|q) in QT+S for some C, q > 1, and {|Xϕ
S∧τR

|q ; R > 1} is
uniformly integrable by Proposition 4.13, we obtain the desired estimate after sending
R → ∞.

Proposition 5.5. For any R > 0, the family {w(T, · ) |T > 1} is uniformly bounded
from above on BR. Moreover, if β ≥ m∗, then it is also uniformly bounded from below
on BR.

Proof. Let Xϕ = (Xϕ
t )t≥0 be the ergodic diffusion associated with (λ, ϕ). Then, in

view of Lemma 5.4 and Theorem 4.12, we see that

w(T, x) ≤ Ex[(g − ϕ)(Xϕ
T )] −→

∫
RN

(g − ϕ)(y)µ(dy) <∞ as T → ∞

uniformly on BR. In particular, w(T, · ) is bounded above on BR uniformly in T > 1.
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To get a lower bound, we assume β ≥ m∗. Recall that β ≥ m∗ if and only if β ≥ α.
Set v(T, x) := (1− e−δT )ϕ(x) + λT + q(T ) for some δ > 0 and q ∈ C1([0,∞)) that will
be determined later. Then, noting ϕ(x) ≤ K(1+ |x|α) in RN for some K > 0 by virtue
of Proposition 4.2 and observing β ≥ α by assumption, we see that

∂v

∂t
+ F [v] ≤ e−δT δϕ+ λ+ q′ + (1 − e−δT )F [ϕ] + e−δTF [0]

≤ e−δT (δK − f0)|x|β + q′ + e−δT (2δK + |λ| + f−1
0 ).

We now choose δ := f0/K and q(T ) := infRN g − δ−1(2δK + |λ| + f−1
0 )(1 − e−δT ).

Then, ∂tv + F [v] ≤ 0 in Q and v(0, · ) ≤ g in RN . In particular, v is a subsolution of
(CP) such that supQT

(|v|/(1 + |x|α)) <∞ for all T > 0. Applying Proposition 3.6, we
obtain v ≤ uV in Q. This infers that −e−δTϕ(x) + q(T ) ≤ w(T, x) for all (T, x) ∈ Q.
Since infT q(T ) > −∞, we conclude that w(T, · ) is bounded below on BR uniformly
in T > 1.

Let Γ be the totality of all ω-limits of {w(T, · ) |T > 1} in C(RN), namely,

Γ := {w∞ ∈ C(RN) | lim
j→∞

w(Tj, · ) = w∞ in C(RN) for some lim
j→∞

Tj = ∞}.

Since sup[1,∞)×BR
|Dw| < ∞ for all R > 0 by virtue of Theorem 3.2 and Proposition

5.5, we see that {w(T, · ) |T > 1} is pre-compact in C(RN). In particular, Γ 6= ∅.

Proposition 5.6. There exists a constant c ∈ R such that Γ = {c}.

Proof. We first show that any element of Γ is constant. Let w∞ ∈ Γ, i.e., w(Tj, · ) →
w∞ in C(RN) as j → ∞ for some diverging sequence {Tj}. By Lemma 5.4, we see that

w(T + S, x) ≤ Ex[w(T,Xϕ
S )], T, S ≥ 0, x ∈ RN . (5.4)

Take S := Tj − T and send j → ∞. Then, in view of Theorem 4.12, we have

w∞(x) ≤
∫
w(T, y)µ(dy).

Since
∫
|w∞(y)|µ(dy) <∞ in view of Proposition 4.13, we deduce by choosing T := Tj

and letting j → ∞ that

w∞(x) ≤
∫
w∞(y)µ(dy).

In particular, w∞ is bounded above on RN . Taking the sup over x ∈ RN , we obtain

0 ≤
∫

(w∞(y) − sup
RN

w∞)µ(dy) ≤ 0.

From the last estimate and the fact that suppµ = RN , we conclude that w∞ =

supRN w∞ in RN . Hence, w∞ is constant.

24



We next show that Γ consists of a single element. Suppose that there exist two
diverging sequences {Tj} and {Sj} such that w(Tj, · ) → c1 and w(Sj, · ) → c2 in
C(RN) as j → ∞ for some c1, c2 ∈ R. We choose S := Sj − T and T := Tk in (5.4),
and let j → ∞ and k → ∞ in this order. Then,

c2 ≤ lim
k→∞

∫
w(Tk, y)µ(dy) =

∫
c1µ(dy) = c1.

Thus, c2 ≤ c1. Changing the role of {Tj} and {Sj}, we also have c1 ≤ c2. Hence,
c1 = c2, and Γ consists of a single element which is constant.

Theorem 2.4 is now easy to verify. We omit to reproduce the proof.

Remark 5.7. In the statement of Theorem 2.4, uV can be replaced by any solution u

of (CP) such that u ∈ Φ.

We close this section by making a remark on our additional assumption β ≥ m∗.
This condition is needed only to obtain the lower bound of w(T, x) in Proposition 5.5.
Once we have proved it, Theorem 2.4 remains valid without assuming β ≥ m∗. In
particular, we have the following theorem.

Theorem 5.8. The assertion of Theorem 2.4 remains valid if we assume (H1)-(H3)
and infRN (g − ϕ) > −∞.

Proof. Since infRN (g − ϕ) > −∞, there exists a C > 0 such that g ≥ ϕ − C in RN .
Noting Proposition 4.10, we have

uV (T, x) ≥ inf
ξ∈AT

Ex
[ ∫ T

0

(l(Xξ
t , ξt) + f(Xξ

t )) dt+ ϕ(Xξ
T )

]
− C

= ϕ(x) + λT − C.

This implies that w(T, x) := uV (T, x)− (ϕ(x)+λT ) is bounded below on BR uniformly
in T > 1 for all R > 0. Hence, the assertion of Theorem 2.4 is valid in view of
Proposition 5.6.

Appendix A: Gradient estimate for (CP)

Let Ω and Ω′ be given bounded domains in RN with C3 boundary such that Ω
′ ⊂ Ω.

We set Qδ := (δ, T ]×Ω and Q′
δ := (δ, T ]×Ω′ for δ ≥ 0. Given a function f ∈ C2(RN),

let us consider the parabolic equation

∂tu−
1

2
∆u+ h(x,Du) = f in Q0, (A.1)

where h is assumed to satisfy (H1)′.
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Theorem A.1. For any ε, δ ∈ (0, 1), there exists a K > 0 depending only on ε, δ, the
constants in (H1)′, and d := dist(Ω′, ∂Ω) such that

sup
Q′

δ

|Du| ≤ K(1 + sup
Ω

|f | + sup
Ω

|Df | + sup
Qδ/2

|u|)1+ε

for any smooth solution u of (A.1). Moreover, if supΩ |Du(0, x)| < ∞, then the above
estimate holds with δ = 0.

Proof. Let ρ0 ∈ C2([0,∞)) be a cut-off function in time such that ρ0(t) = 0 for
t ∈ [0, δ/2] and 0 < ρ0(t), ρ

′
0(t) ≤ 1 for t ∈ (δ, T ]. Let ρ ∈ C2(RN) be a cut-off function

in space such that ρ ≡ 1 in Ω′, supp ρ ⊂ Ω, and 0 ≤ ρ ≤ 1 in Ω. Note that supΩ |Dρ|
and supΩ |∆ρ| depend only on d.

Fix any number q such that max{1/4, (3 −m)/4} < q < 1/2 and 1/(2q) < 1 + ε,
and set η(t, x) := ρ0(t)

m/(m−1)ρ(x)2m/(1−2q). We evaluate the function

z(t, x) := η(t, x){(1 + |Du(t, x)|2)q − u(t, x)}

at its maximum point (t0, x0) on Qδ/2. Note here that we have either z(t0, x0) = 0 or
z(t0, x0) > 0. Suppose first that z(t0, x0) = 0. Then, for any (t, x) ∈ (δ, T ]×Ω′, we see
that

η(t, x)(1 + |Du(t, x)|2)q = z(t, x) + η(t, x)u(t, x) ≤ z(t0, x0) + u(t, x) ≤ sup
Qδ/2

|u|.

Recalling ρ(x) = 1 and ρ′0(t) > 0 for t > δ/2, we have

ρ0(δ)
m/(m−1)|Du(t, x)|2q ≤ η(t, x)(1 + |Du(t, x)|2)q ≤ sup

Qδ/2

|u|.

This implies that supQ′
δ
|Du| ≤ K(1 + supQδ/2

|u|)1+ε for some K > 0 depending only
on ε, δ and m.

It remains to consider the case where z(t0, x0) > 0. Set U(t, x) := 1 + |Du(t, x)|2

and w(t, x) := U(t, x)q−u(t, x), so that z = ηw. Notice first that (t0, x0) ∈ (δ/2, T ]×Ω

since η = 0 in ({δ/2} × Ω) ∪ ([δ/2, T ] × ∂Ω). This deduces that zt = wηt + ηwt ≥ 0,
Dz = wDη + ηDw = 0 and ∆z = w∆η + 2DwDη + η∆w ≤ 0 at (t0, x0), where zt, ηt

and wt denote the t-derivatives of z, η and w, respectively. In particular, at (t0, x0),

0 ≤ zt −
1

2
∆z = η(wt −

1

2
∆w) + w(ηt −

1

2
∆η + η−1|Dη|2). (A.2)

In what follows, since we evaluate the right-hand side of (A.2) only at (t0, x0), we omit
the component (t0, x0) if there is no confusion.

We first estimate wt − (1/2)∆w. By direct computation, we observe that wt =

2qU q−1DuDut − ut, Dw = qU q−1DU −Du, and

∆w = q(q − 1)U q−2|DU |2 + qU q−1∆U − ∆u

=
q − 1

q
U−q|Dw +Du|2 + 2qU q−1{tr((D2u)2) +DuD(∆u)} − ∆u.

26



Since tr((D2u)2) ≥ 0 and ut − (1/2)∆u = −h(x,Du) + f , we have

wt −
1

2
∆w

≤ 2qU q−1DuD(ut −
1

2
∆u) − (ut −

1

2
∆u) +

1 − q

2q
U−q|Dw +Du|2

≤ −2qU q−1Du(Dxh−Df +D2uDph) + h− f +
1 − q

q
U−q(|Dw|2 + |Du|2).

Noting 1/4 < q < 1/2, 2qU q−1D2uDu = Dw +Du, and |Du| ≤ U1/2, we obtain

wt −
1

2
∆w

≤ U q−(1/2)(|Dxh| + |Df |) −Dph(Dw +Du) + h− f + 3(U−q|Dw|2 + U1−q).

We now remind |Dxh| ≤ h−1
0 (1 + |p|m), |Dph| ≤ h−1

1 |p|m−1 and 1− q < (m+ 2q− 1)/2

to deduce that

wt −
1

2
∆w ≤ |f | + |Df | + U q−(1/2)h−1

0 (1 + |Du|m) + h−1
1 |Du|m−1|Dw|

+ 3U−q|Dw|2 + 3U1−q −DphDu+ h

≤ |f | + |Df | + (3 + 2h−1
0 )U (m+2q−1)/2

+ h−1
1 |Dw|U (m−1)/2 + 3U−q|Dw|2 − (DphDu− h).

Since Dph · p − h = l(x,Dph) ≥ l0|Dph|m
∗ ≥ l0h

m∗
1 |p|m in view of (H1) and Theorem

3.4, there exists a constant K1 > 1 such that

wt −
1

2
∆w ≤ 1 + |f | + |Df | −K−1

1 Um/2

+K1U
(m+2q−1)/2(1 + |Dw|U−q + |Dw|2U−2q). (A.3)

We recall that z(t0, x0) > 0. This implies w(t0, x0) > 0, and therefore u(t0, x0) <

U(t0, x0)
q. In particular, w < U q + u < 2U q at (t0, x0). Noting this facts and plugging

|Dw| = wη−1|Dη| < 2U qη−1|Dη| into (A.3),

wt −
1

2
∆w ≤ 1 + |f | + |Df | −K−1

1 Um/2

+K1U
(m+2q−1)/2(1 + 2η−1|Dη| + 4η−2|Dη|2).

We set θ := m−1(m+ 2q − 1) ∈ (1/2, 1) and V := ηUm/2. Then, we have

η(wt −
1

2
∆w) ≤ 1 + |f | + |Df | −K−1

1 V +K1V
θη1−θ(1 + 2η−1|Dη| + 4η−2|Dη|2)

≤ 1 + |f | + |Df | −K−1
1 V +K1V

θ(1 + 2η−θ|Dη| + 4η−(1+θ)|Dη|2).
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As to the second term of the right-hand side of (A.2), we see, in view of w < 2U q

at (t0, x0) and 2q/m < (1/m) ∧ θ, that

w(ηt −
1

2
∆η + η−1|Dη|2) ≤ (ηUm/2)2q/mη−2q/m(2ηt + |∆η| + 2η−1|Dη|2)

≤ V 2q/m(2η−1/mηt + η−θ|∆η| + 2η−(1+θ)|Dη|2).

Hence, plugging the last two estimates into (A.2), we conclude that

V ≤ K1(1 + |f | + |Df |) +K2(1 ∨ V θ)(1 + η−1/mηt + η−(1+θ)|Dη|2 + η−θ|∆η|)

for some K2 > 0.
We now set γ := 2m/(1 − 2q) = 2/(1 − θ) > 4. Then, we see that

ηt =
m

m− 1
ρ

1/(m−1)
0 ρ′0ρ

γ ≤ m

m− 1
(ρ

m/(m−1)
0 ργ)1/m =

m

m− 1
η1/m,

|Dη| = γρ
m/(m−1)
0 ργ−1|Dρ| ≤ γ(ρ

m/(m−1)
0 ργ)(γ−1)/γ|Dρ| = γη(1+θ)/2|Dρ|,

and

|∆η| ≤ γρ
m/(m−1)
0 {ργ−1|∆ρ| + (γ − 1)ργ−2|Dρ|2}

≤ γ(ρ
m/(m−1)
0 ργ)(γ−1)/2|∆ρ| + γ(γ − 1)(ρ

m/(m−1)
0 ργ)(γ−2)/2|Dρ|2

= γη(1+θ)/2|∆ρ| + γ(γ − 1)ηθ|Dρ|2.

Thus, there exists a K3 > 0 depending only on m, q and d = dist(Ω′, ∂Ω) such that

V ≤ K1(1 + |f | + |Df |) +K2K3(1 ∨ V θ).

Since θ < 1, we conclude in view of Young’s inequality that

V ≤ K4(1 + |f | + |Df |) (A.4)

for some K4 > 0 depending only on the constants in (H1)′, q and d. Thus, for any
(t, x) ∈ (δ, T ] × Ω′,

ρ0(t)
m/(m−1)w(t, x) = z(t, x) ≤ z(t0, x0) = η(t0, x0)(U(t0, x0)

q − u(t0, x0))

≤ V (t0, x0) + |u(t0, x0)| ≤ K4(1 + |f | + |Df |) + sup
Qδ/2

|u|,

which implies that

|Du(t, x)|2q ≤ ρ0(δ)
−m/(m−1){K4(1 + |f | + |Df |) + 2 sup

Qδ/2

|u|}.

The last inequality easily deduces the desired estimate.
The latter claim of this theorem can be seen by taking ρ0 ≡ 1. Hence, we have

completed the proof.
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Appendix B: Gradient estimate for (EP)

Let Ω and Ω′ be bounded domains in RN with C3 boundary such that Ω
′ ⊂ Ω. For

given ε ∈ [0, 1) and f ∈ C2(RN), we consider the elliptic equation

−1

2
∆φ+ h(x,Dφ) + εφ = f in Ω, (B.1)

where h is assumed to satisfy (H1)′.

Theorem B.1. There exists a K > 0 depending only on N , d := dist(Ω′, ∂Ω) and the
constants in (H1)′ such that

sup
Ω′

|Dφ| ≤ K(1 + sup
Ω

(εφ)
1/m
− + sup

Ω
f

1/m
+ + sup

Ω
|Df |1/(2m−1)) (B.2)

for any solution φ ∈ C3(RN) of (B.1), where r± := max{±r, 0} for r ∈ R.

Proof. Let ρ ∈ C2(Ω) be a cut-off function such that ρ ≡ 1 in Ω′, supp ρ ⊂ Ω, and
0 ≤ ρ ≤ 1 in Ω. Set η := ρ4m/(m−1), w := (1/2)|Dφ|2, and z := ηw. Let x0 be a
maximum point of z on Ω. We may assume without loss of generality that z(x0) > 1.
Indeed, if z(x0) ≤ 1, then for any x ∈ Ω′, (1/2)|Dφ(x)|2 = z(x) ≤ z(x0) ≤ 1. Thus,
|Dφ| ≤

√
2 in Ω′ and (B.2) is valid.

From the fact that z(x0) > 1, we have x0 ∈ Ω. In particular, Dz = ηDw+wDη = 0

and ∆z ≤ 0 at x = x0. Noting Dw = D2φDφ and ∆w = tr((D2φ)2) + D(∆φ)Dφ =

tr((D2φ)2) + 2((Dxh−Df)Dφ+DphDw + εw), we observe that, at x = x0,

0 ≥ ∆z = η∆w + 2DηDw + w∆η

= η tr((D2φ)2) + 2η((Dxh−Df)Dφ+Dph(−wη−1Dη) + 2εw)

+ 2Dη(−wη−1Dη) + w∆η

≥ η tr((D2φ)2) − 2η((|Dxh| + |Df |)|Dφ| + wη−1|Dη||Dph|) − w(2η−1|Dη|2 + |∆η|).

From now on, since we evaluate values only at x = x0, we omit the component x0.
We now remind |Dxh| ≤ h−1

0 (1 + |p|m) and |Dph| ≤ h−1
1 |p|m−1, and observe that

N(tr(D2φ)2) ≥ (tr(D2φ))2 = 4(h+ εφ− f)2 ≥ 2h2
0|Dφ|2m − 16(εφ)2

− − 16f 2
+.

Then,

2h2
0

N
η|Dφ|2m ≤ 16(εφ)2

− + 16f 2
+ + η tr((D2φ)2)

≤ 16(εφ)2
− + 16f 2

+ + 2ηh−1
0 (1 + |Dφ|m)|Dφ| + 2η|Dφ||Df |

+ h−1
1 |Dφ|m+1|Dη| + |Dφ|2(η−1|Dη|2 +

1

2
|∆η|).
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Applying Young’s inequality to |Dφ||Df |, we see that, for any δ > 0, there exists a
constant Cδ > 0 such that |Dφ||Df | ≤ δ|Dφ|2m +Cδ|Df |2m/(2m−1). Hence, there exists
a K1 > 0 depending only on N and the constants in (H1)′ such that

η|Dφ|2m ≤ K1{1 + (εφ)2
− + f 2

+ + |Df |2m/(2m−1)

+ |Dφ|m+1|Dη| + |Dφ|2(η−1|Dη|2 + |∆η|)}.

We now set V := η|Dφ|2m and θ := (m+ 1)/2m ∈ (1/m, 1). Then,

V ≤ K1{1 + (εφ)2
− + f 2

+ + |Df |2m/(2m−1)

+ V θη−θ|Dη| + V 1/m(η−(m+1)/m|Dη|2 + η−1/m|∆η|)}.

Observing 1 < z < (η|Dφ|2)m ≤ V and θ > 1/m, we have

V ≤ K1(1 + (εφ)2
− + f2

+ + |Df |2m/(2m−1))

+K1V
θ(η−θ|Dη| + η−2θ|Dη|2 + η−θ|∆η|).

We claim here that η−θ|Dη| and η−θ|∆η| are bounded by a constant depending only
on m and d. Indeed, recalling η = ργ with γ := 4m/(m− 1), we can verify that

η−θ|Dη| = γργ−1−γθ|Dρ| = γρ|Dρ|,
η−θ|∆η| ≤ γ{ργ−1−γθ|∆ρ| + (γ − 1)ργ−2−γθ|Dρ|2} = γ{ρ|∆ρ| + (γ − 1)|Dρ|2}.

Hence, there exists a K2 > 0 depending only on N , d and the constants in (H1)′ such
that

V ≤ K2(1 + (εφ)2
− + f 2

+ + |Df |2m/(2m−1)),

from which we easily deduce (B.2).

Appendix C: Moment estimate for controlled pro-
cesses

Given a control ξ = (ξt)0≤t≤T , let Xξ = (Xξ
t )0≤t≤T be the associated controlled process

governed by (1.2).

Lemma C.1. Let α := (β/m) + 1. Then, there exists a constant C > 0 such that

Ex
[

sup
0≤t≤T

|Xξ
t |α

]
≤ 2|x|α + CEx

[ ∫ T

0

(1 + |Xξ
s |β + |ξs|m

∗
) ds

]
for all T > 0, x ∈ RN , and ξ ∈ AT .
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Proof. Fix any R > 0. By Ito’s formula, Young’s inequality, and β = m(α−1) > α−2,
we see that

|Xξ
t∧τR

|α − |X0|α = −
∫ t∧τR

0

α|Xξ
s |α−2Xξ

s · ξs ds+

∫ t∧τR

0

α|Xξ
s |α−2Xξ

s dWs

+
α(α+N − 2)

2

∫ t∧τR

0

|Xξ
s |α−2 ds

≤ C

∫ t∧τR

0

(1 + |Xξ
s |β + |ξs|m

∗
) ds+

∫ t∧τR

0

α|Xξ
s |α−2Xξ

s dWs.

Applying Burkholder’s inequality, we have

Ex
[

sup
0≤t≤T

|Xξ
t∧τR

|α
]
− |x|α ≤ CEx

[
sup

0≤t≤T

∫ t∧τR

0

(1 + |Xξ
s |β + |ξs|m

∗
) ds

]
+ αEx

[
sup

0≤t≤T

∣∣∣ ∫ t∧τR

0

|Xξ
s |α−2Xξ

s dWs

∣∣∣]
≤ CEx

[ ∫ T

0

(1 + |Xξ
s |β + |ξs|m

∗
) ds

]
+ CEx

[( ∫ T∧τR

0

|Xξ
s |2(α−1) ds

)1/2]
.

Since the last term can be estimated as

CEx
[( ∫ T∧τR

0

|Xξ
s |2(α−1) ds

)1/2]
≤ CEx

[(
sup

0≤t≤T∧τR

|Xξ
t |α−1

∫ T∧τR

0

|Xξ
s |α−1 ds

)1/2]
≤ 1

2
Ex

[
sup

0≤t≤T
|Xξ

t∧τR
|α−1

]
+ CEx

[ ∫ T

0

|Xξ
s |α−1 ds

]
,

we conclude that

Ex
[

sup
0≤t≤T

|Xξ
t∧τR

|α
]
≤ 2|x|α + CEx

[ ∫ T

0

(1 + |Xξ
s |β + |ξs|m

∗
) ds

]
<∞.

Sending R → ∞, we obtain the desired estimate.
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