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SUMMARY
In a gait generation method based on the parametric
excitation principle, appropriate motion of the center of mass
restores kinetic energy lost by heel strike. The motion is
realized by bending and stretching a swing-leg regardless of
bending direction. In this paper, we first show that inverse
bending restores more mechanical energy than forward
bending, and then propose a parametric excitation-based
inverse bending gait for a kneed biped robot, which improves
gait efficiency of parametric excitation walking.

KEYWORDS: Parametric excitation; Dynamic bipedal
walking; Energy restoration; Forward bending; Inverse
bending.

1. Introduction
When a biped robot walks, mechanical energy lost by heel
strike at the ground is unavoidable, and hence, restoration
of mechanical energy is a requisite for sustainable walking.
In passive dynamic walking proposed by McGeer,1 potential
energy is transported to kinetic energy as walking down a
slope. For sustainable walking on a level ground, several
methods for restoration of mechanical energy were proposed,
for example, energy tracking control by Goswami et al.,2

virtual passive dynamic walking by Asano et al.3 and
so on.

Parametric excitation, an example of which is a children’s
swing, is another approach to restore mechanical energy by
appropriate up-and-down movement of the center of mass
(COM). Asano et al.4, 5 first applied parametric excitation
principle to a biped robot with telescopic legs, which made
the swing-leg mass up-and-down, and showed that the robot
walked sustainably. Asano et al.6 also applied parametric
excitation to a real machine. Harata et al.7 applied parametric
excitation principle to a kneed biped robot. This being similar
to telescopic leg, bending and stretching a swing-leg knee
causes up-and-down motion of COM of swing-leg. They
showed that mechanical energy was restored by bending
and stretching a knee only, and hence, a biped robot walked
sustainably without hip actuation.

* Corresponding author. E-mail: harata@hiroshima-u.ac.jp

In this paper, we focus on the fact that the movement
of COM is realized regardless of bending direction, that is,
bending of a swing-leg inversely with human knees also
moves COM up-and-down. Here, the bending way shown
in Fig. 1(a) is called forward bending walking, and the
bending way shown in Fig. 1(b) is called inverse bending
walking.

An example of inverse bending is an acrobot,8 which has a
mechanism similar to the swing-leg of our biped robot. The
acrobot has an actuator on the knee and the robot can be
controlled to swing up, which needs to increase mechanical
energy. The acrobot bends in inverse direction, which is a
similar fashion of giant swing on a horizontal bar. From this
fact, we consider that inverse bending is suitable for energy
restoration, and hence, it improves gait efficiency for the
parametric excitation walking.

In order to improve gait efficiency for the parametric
excitation walking, we propose and study parametric
excitation-based inverse bending walking. First, we show
that inverse bending increases more mechanical energy than
forward bending. Next, we propose parametric excitation-
based inverse bending walking and show that a robot can
walk sustainably. Then, we compare inverse bending with
forward bending for our biped model, and show that inverse
bending walking is more efficient than forward bending with
respect to some performance indices, such as walking speed
and specific resistance.

This paper is organized as follows. Section 2 explains a
biped robot with semicircular feet. In Section 3, we present
the difference of energy restoration between forward bending
and inverse bending for a double pendulum. Section 4 is the
main part of this paper, in which we propose a sustainable
gait generation method for the inverse bending walking
and compare parametric excitation-based inverse bending
walking to forward bending walking with our biped model.
In Section 5, the parametric study is carried out. Finally in
Section 6, we conclude this paper.

2. Model of Planar Kneed Biped Robot
with Semicircular Feet
Figure 2 illustrates the model of a biped robot discussed in
this paper. The robot has five point masses, such that each
leg has two masses and the rest one is at hip joint, and
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Fig. 1. Forward and inverse bending walking.
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Fig. 2. Model of planar kneed biped robot with semicircular feet.

has semicircular feet whose centers are on each leg. Each
leg has an actuated knee joint, but the support-leg is fixed
in a straight posture (see Fig. 2). Therefore, the robot has
three degrees of freedom, and three angles θ1, θ2, and θ3,

as shown in Fig. 2, are taken as generalized coordinates.
Each angle is taken in a clockwise direction from vertical
upward.

The dynamic equation during single support phase takes
the form

M(θ )θ̈ + C(θ , θ̇)θ̇ + g(θ ) = SuK − JTλ, (1)

where θ = [ θ1 θ2 θ3 ]T is the generalized coordinate vector,
M ∈ R

3×3 is the inertia matrix, C ∈ R
3×3 is the Coriolis

force and the centrifugal force, and g ∈ R
3×1 is the gravity

vector. The vector J = [0 1 −1] is the Jacobian derived
from the constraint, θ2 = θ3, and λ ∈ R is knee-binding force.
The control input vector SuK in Eq. (1) is given by

SuK =

⎡
⎢⎣

0

−1

1

⎤
⎥⎦ uK, (2)

where uK is the input torque for a swing-leg knee.
In this robot, two types of collisions occur at a knee and

at the ground. The robot gait consists of the following three
phases:
� The first phase (single support phase I): The support-leg

rotates around the contact point between the semicircular
foot and ground, and the knee of the swing-leg is not fixed.
In this phase, the knee-binding force λ equals to zero, and
hence, knee angle of the swing-leg can be controlled by
input torque.

� The second phase (single support phase II): The support-
leg rotates around the contact point like the first phase, but
the knee of the swing-leg is fixed in a straight posture by
knee-binding force. When the first phase changes to the
second phase, a completely inelastic collision is assumed
to occur at the swing-leg knee.

� The third phase (double support phase): This phase occurs
instantaneously, and then the role of the support-leg and
that of the swing-leg are exchanged.

3. Effect of Bending Direction for a Double Pendulum
In this section, we show that inverse bending increases more
energy than forward bending in a double pendulum.

3.1. Difference of energy restoration for a double pendulum
In the parametric excitation method, mechanical energy is
restored by up-and-down motion of COM of a swing-leg,
which is realized by bending and stretching a knee. However,
regardless of bending direction, up-and-down motion can be
realized, that is, COM also moves up-and-down as bending
and stretching a knee in inverse direction with human
movements. In this subsection, we analytically show the
difference of energy restoration between bending directions.
To do this, we use a double pendulum that has the similar
mechanism of the swing-leg of the robot as shown in Fig. 2.

The dynamic equation of a double pendulum shown in
Fig. 3 is given by

MP (θ )θ̈ + CP (θ , θ̇) + GP (θ) = SP uP , (3)
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Fig. 3. Double pendulum.

where,

MP (θ ) =
[
MP 11 MP 12

MP 21 MP 22

]
, (4a)

CP (θ , θ̇) =
[

mSaT rSθ̇
2
S sin(θT − θS)

−mSaT rSθ̇
2
T sin(θT − θS)

]
, (4b)

GP (θ ) =
[

g(mT rT + mSaT ) sin θT

gmSrS sin θS

]
, (4c)

and

MP 11 = mT r2
T + mSa

2
T , (5a)

MP 12 = mSaT rS cos(θT − θS), (5b)

MP 21 = mSaT rS cos(θT − θS), (5c)

MP 22 = mSr
2
S . (5d)

We give a reference trajectory h for the knee joint angle.
In the same way as given in [7], the input torque uP for the
intermediate joint angle is designed by the partial feedback
linearization method so as to track the reference trajectory h,
such as

uP = ZP

KP

, (6)

where KP and ZP are defined by

KP = [
0 1

]
(MP LP )−1 SP ,

ZP = [
0 1

]
(MP LP )−1

(
MP

[
0

−ḧ

]
+ CP + GP

)
,

(7)

respectively, and matrices LP and SP are given by

LP =
[

1 0

1 −1

]
, SP =

[
1

−1

]
. (8)

h(t)

–θF
T

θF
S

–θ I
S

θ I
T

α

Fig. 4. Symmetry of forward bending and inverse bending.

By using this input, Eq. (3) is reduced to

θ̈T − θ̈S = ḧ. (9)

Equation (9) means that if the initial condition satisfies
θT (0) − θS(0) = h(0) and θ̇T (0) − θ̇S(0) = ḣ(0), the relative
angle tracks the reference trajectory h.

For the up-and-down motion of COM, there is no
difference between inverse bending and forward bending
except for bending direction, and hence, we assume that
hF (t) = − hI (t), whose superscripts “F ” and “I” correspond
to forward bending and inverse bending, respectively. We
suppose that the following relations hold:

cos
(
θF
T − θF

S

) = cos(hF ) = cos
(
θI
T − θI

S

)
,

sin
(
θF
T − θF

S

) = sin(hF ) = − sin
(
θI
T − θI

S

)
,

MF
P (θ) = MI

P (θ ).

(10)

For simplicity, we consider only one cycle of the pendulum
in which the initial states of forward and inverse bending are
the same. In addition, we assume the followings:

� Assumption 1 : Oscillation of the pendulum is sufficiently
small, i.e., |θT |� 1 and |θS |� 1.

� Assumption 2 : Inverse bending and forward bending are
symmetric as shown in Fig. 4, i.e.,

θF
T + θI

T

2
= θF

S + θI
S

2
= α, (11)

where α is the angle of the line connecting the support
point and COM of the pendulum from the vertical line
(see Fig. 4).

From the Assumption 1, CP and GP in Eqs. (4b) and (4c)
are rewritten by eliminating the higher order terms as

CP = 02×1,

GP =
[

g(mT rT + mSaT )θT

gmSrSθS

]
.
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The input power for the pendulum given by

Ė = θ̇
T

SP uP , (12)

is rewritten as

Ė = θ̇
T

SP uP = (θ̇T − θ̇S)uP = ḣF K−1
P ZP

by Eq. (6). We define the row vector W as W := K−1
P [0 1]

(MP LP )−1, then

W = 1

mT r2
T + mS(aT + mSrS)2

X
[
mSr

2
S + mSaT rS −(

mSaT rS + mT r2
T + mSa

2
T

) ]
.

Therefore, the input powers of forward bending and inverse
bending are given by

ĖF = ḣF W

(
MP

[
0

−ḧF

]
+ GF

P

)
,

ĖI = −ḣF W

(
MP

[
0

ḧF

]
+ GI

P

)
,

respectively. The difference of input power between forward
bending and inverse bending is calculated as

ĖI − ĖF = −ḣF W
(
GF

P + GI
P

)
. (13)

Under Assumption 2, Eq. (13) is rewritten as

ĖI − ĖF = −2ḣF αg
mSmT rSrT (rS + aT − rT )

mT r2
T + mS(aT + rS)2

. (14)

Let’s consider the motion of the pendulum be split into
two parts at the vertical line. We suppose that the knee is
bent until COM passes through the vertical line (first half)
and it is stretched after that (second half). Then, α > 0 and
ḣF < 0 hold in the first half, and α < 0 and ḣF > 0 hold in the
second half. This gives the relation αḣF < 0, or equivalently,
ĖI − ĖF > 0. Since the energy restoration of one cycle is
given by

�E =
∫ T

0
Ė dt, (15)

we conclude that

�EF < �EI . (16)

This shows that inverse bending restores more mechanical
energy than forward bending in the case of infinitesimal
oscillation.

3.2. Numerical simulation
In this subsection, we compare the energy restoration of
inverse bending with that of forward bending by numerical
simulation. Parameters of the double pendulum are shown
in Table I. Figure 5 presents the optimal trajectory, A →

Table I. Physical parameters of the double pendulum.

rT 0.20 m rS 0.30 m
mT 1.0 kg mS 4.0 kg
aT 0.40 m aS 0.60 m

A

B

C D

E

1

l

g

m

l0
l

θ θ0

Fig. 5. Optimal trajectory of pendulum for parametric excitation.

B → C → D → E, for a pendulum, given by Lavrovskii and
Formalskii,9 along which increase of mechanical energy
is maximized, with supposition that the length, l, of
the pendulum is changed instantaneously. However, since
the length cannot be changed instantaneously, a reference
trajectory close to the optimal trajectory is chosen. We give
the reference trajectory of an intermediate joint as

h(t) = (θT − θS)d =

⎧⎪⎨
⎪⎩

βAm sin3

(
π

Tset
t

)
(t ≤ Tset)

0 (t > Tset)

,

(17)
where Am is the maximum bending angle, and Tset is
the settling time. Parameter β = ±1 determines bending
direction, i.e., forward bending as β = −1 and inverse
bending direction as β = 1. The time parameter t means
a relative time from the instance of θ̇T = θ̇S = 0 with
θT = θS > 0, that is, t is reset to be zero at the instance.
In the trajectory Eq. (17), the pendulum is bent from t = 0
to t = Tset/2 and stretched from t = Tset/2 to t = Tset. If
the settling time equals to the half period of one cycle, the
motion of the pendulum satisfies the assumption that the
knee is bent in the first half and stretched in the second
half. In addition, the angular velocity and the acceleration of
reference trajectory are zero as t = 0 and t = Tset.

Figure 6 illustrates the mechanical energy of the simulation
result in the case that Am = 1.5 rad, Tset = 0.9 s, and initial
condition α = 0.4 rad. In Fig. 6, the solid line shows the
forward bending result and the dashed line shows the
inverse bending result. Mechanical energy increases when
the pendulum is bent from t = 0 to t = Tset/2 because
potential energy increases as COM up. On the other hand,
the energy decreases when the pendulum is stretched from
t = Tset/2 to t = Tset because potential energy decreases
as COM down. After that, the pendulum is fixed to a
straight posture until the time parameter is reset, and hence,
mechanical energy is constant. From Fig. 6 it is observed
that inverse bending restores more mechanical energy than
forward bending.
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Fig. 6. Difference of energy restoration between forward bending
and inverse bending.

As seen above, inverse bending is suitable for energy
restoration, and hence, we expect that inverse bending
walking is more efficient than forward bending walking.

This analysis has nothing but theoretical meaning because
there is significant difference between a pendulum and the
biped robots. The hip joint of a biped robot is movable, while
the supporting point of a pendulum is fixed at a ceiling. In
spite of this, we will generate inverse bending walking with
the expectation of increasing more kinematic energy.

4. Inverse Bending Parametric Excitation Walking
In this section, we design the control input of the biped
robot and show the numerical simulation results. In addition,
we compare the inverse bending walking with the forward
bending walking.

4.1. Control input design
In this subsection, the control input design for the kneed
biped robot shown in Fig. 2 is explained.

A reference trajectory for the relative knee-joint angle is
given as

(θ2 − θ3)d = f (t)

=

⎧⎪⎨
⎪⎩

βAm sin3

(
π

Tset − δ
(t − δ)

)
(δ ≤ t ≤ Tset)

0 (otherwise),
(18)

where δ > 0 is the beginning time of bending, Am is the
maximum bending angle, and Tset is the settling time that
defines the end of stretching. The parameter β =±1 is used
to indicate bending direction as explained in the previous
section. In this trajectory, the angular velocity equals to
zero at the beginning of bending and the end of stretching,
and hence, the collision at knee is negligible. The time
parameter, t , means a relative time from the beginning of
the first phase, that is, t is reset to be zero at just after
the third phase: the reason why introduction of parameter
δ is illustrated in Fig. 7, where the dashed–dotted line is the
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Tset = 0.8, δ = 0.0

Tset = 1.2, δ = 0.0

Optimal   

Fig. 7. Reference trajectories for knee angle.

optimal trajectory of the telescopic pendulum as shown in
Fig. 5, the dot-line is the case of δ = 0 s and the solid line is
the case of δ = 0.2 s. It is shown in Fig. 7 that the reference
trajectory (solid line) approaches the optimal trajectory in
the case δ = 0.2 s, and hence, it is expected to restore more
mechanical energy than those without δ.

In the rest of this subsection, we design control input to
track the reference trajectory given by Eq. (18). Let’s define
x = [θ1 θ2 θ2 − θ3 − f ]T, and let θ be rewritten by

θ = Lx + N :=
⎡
⎣1 0 0

0 1 0
0 1 −1

⎤
⎦ x +

⎡
⎣ 0

0
−f

⎤
⎦. (19)

Since θ̇ and θ̈ are

θ̇ = Lẋ + Ṅ and θ̈ = Lẍ + N̈, (20)

the dynamic Eq. (1) in the first phase is redefined as

M Lẍ + M N̈ + C Lẋ + C Ṅ + g = SuK. (21)

Let’s define K as

K = [
0 0 1

]
L−1

[
M−1 S

]
, (22)

and select the knee torque uK as

uK = Z

K
, (23)

where Z is defined by

Z = [
0 0 1

]
L−1 M−1(M N̈ + C Lẋ + C Ṅ + g).

(24)
Using Eqs. (22)–(24), the dynamic Eq. (21) reduces to

θ̈2 − θ̈3 = f̈ . (25)

By integrating this equation twice, we obtain

(θ2(t) − θ3(t)) − (θ2(0) − θ3(0)) − (θ̇2(0) − θ̇3(0))t

= f (t) − f (0) − ḟ (0)t. (26)
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Table II. Physical parameters of the kneed biped robot.

r2 0.20 m
r3 0.30 m m2 1.0 kg
a2 0.40 m m3 4.0 kg
a3 0.60 m mH 5.5 kg
l 1.0 m
R 0.575 m

If initial states equal to the initial states of the reference
trajectory, i.e., θ̇2(0) − θ̇3(0) = ḟ (0) and θ2(0) − θ3(0) =
f (0), then Eq. (26) can be rewritten as

θ2(t) − θ3(t) = f (t). (27)

Therefore, the input uK given by Eq. (23) is shown to track
the reference trajectory f (t).

4.2. Numerical simulation results
We present the simulation results of parametric excitation-
based inverse bending walking for the biped robot (Fig. 2),
whose parameters are shown in Table II. We note that in this
model the shin mass is four times larger than the thigh mass
unlike in humans. This is because energy restoration based
on the principle of parametric excitation needs up-and-down
motion of COM of the swing-leg, i.e., if the shin mass is
small, bending the knee makes little up-and-down motion
effect of COM, and hence, mechanical energy is not restored
sufficiently.

In this simulation, we show the results after the biped
robot walks more than 100 steps. This is because a steady
gait for the given reference trajectory is, in general, difficult
to obtain analytically, and hence, we regard that the biped
gait converges to period one walking when the biped robot
walks 100 steps.

Figure 8 illustrates the simulation results between 105 s
and 108 s after the start of simulation, whose initial conditions
are [θT, θ̇

T
] = [−0.21, 0.21, 0.21, 1.0, 0.90615, 0.90615].

Here the parameters of the reference trajectory are set as
the maximum bending angle Am = 0.8 rad, the settling time
Tset = 0.8 s, and the beginning time δ = 0.2 s. Figures 8(a)–
(d) are angular position, angular velocity, mechanical energy,
and knee torque, uK , respectively, and Fig. 8(e) is foot
clearance, which is the height between the bottom of the
swing-leg and the ground level. From Fig. 8(a), θ2–θ3 is
found to be always larger than or equal to 0, that is, the
knee is bent in inverse direction. From Fig. 8(c), energy
dissipation of the collision at the knee is seldom observed,
while energy dissipation by heel strike is relatively large.
That is why θ̇2–θ̇3 is almost zero just before knee impact,
according to the reference trajectory defined by Eq. (18).
Figure 8(e) shows that foot clearance is positive except for
the third phase (double support phase), and hence, the biped
avoids scuffing the ground. In summary, it is found from the
figures that the robot walks sustainably with inverse bending.
Figure 9 shows stick diagram of one step of gait. Figure 10
illustrates relative position between COM of the swing-leg
and hip joint. In Fig. 10, the solid line shows the simulation
result and the dashed line shows the optimal trajectory for the

(a) Angular position (rad)
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Fig. 8. Simulation results for inverse bending walking.

telescopic pendulum (shown in Fig. 5). The arrows indicate
the motion direction, the white circle shows the position at
the lift leg off, and the black circle shows the position at
heel strike. COM first moves backward, then moves forward
and up by bending the knee, and moves down by stretching
the knee. After stretching the knee to a straight posture, heel
strike occurs. The figure shows that COM moves smoothly
along the optimal trajectory of the pendulum.

4.3. Comparison between inverse bending walking
and forward bending walking
In this subsection, we compare inverse bending walking and
forward bending walking with respect to step period, walking
speed, and specific resistance (SR). Specific resistance is the
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Fig. 9. Stick diagram of inverse bending walking.

−0.2 −0.1 0 0.1 0.2
−0.65

−0.6

−0.55

−0.5

xg (m)

Starting point

End point

y g
 (

m
)

Fig. 10. Position of COM of swing-leg.

nondimensional value defined as

SR =

∫ T −

0+
|uK (θ̇2 − θ̇3)|dt/T

MggV
, (28)

where 0+ and T − represent the time just after and just before
heel strike, respectively, Mg is the total mass of a robot, and V

is an average walking speed of one cycle. The denominator
of Eq. (28) represents walking distance and the numerator
represents the sum of absolute input energy. This means
that SR is energy consumption when a biped robot walks
a distance, and hence, the walking is more efficient as the SR
is smaller.

First, inverse bending walking is compared with forward
bending walking for the same reference trajectory. The
parameters are set as R = 0.6 m, a2 = 0.35 m, r2 = 0.175 m,
a3 = 0.75 m, ra = 0.375 m, Am = 1.2 rad, Tset = 0.75 s, and
δ = 0.2 s. In these parameters, bipedal walking converges to
period one walking for both inverse bending walking and
forward bending walking. Table III shows the simulation
results. In this table, foot clearance represents the minimum
value of foot clearance during one cycle. This table shows
that inverse bending walking is better with respect to walking
speed and SR. In both cases, the robot avoids scuffing the
ground.

Next, inverse bending walking is compared with forward
bending walking at almost the same walking speed. In the
parametric excitation method, mechanical energy increases
when bending a swing-leg and decreases when stretching.
When the energy variation caused by bending and stretching
the swing-leg becomes large, the numerator of Eq. (28)
increases. Therefore, in the case of same walking speed, SR
is small if energy variation is small. Figure 11 illustrates the

Table III. Gait descriptors of inverse bending walking and forward
bending walking.

Inverse bending Forward bending

Step period 0.91 s 0.85 s
Walking speed 0.83 m/s 0.67 m/s
Specific resistance 0.11 0.15
Foot clearance 0.019 m 0.0031 m
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Fig. 11. Cyclic variation of total mechanical energy.

mechanical energy in forward bending walking and inverse
bending walking. In Fig. 11, the dashed line shows inverse
bending walking and the solid line shows forward bending
walking for walking speed of about 0.618 m/s. From Fig. 11,
it is observed that mechanical energy of inverse bending
walking increases from 98 to 101 J and decreases from 101
to 99 J. On the other hand, mechanical energy of forward
bending walking increases from 98 to 103.5 J and decreases
from 103.5 to 99 J. Then the energy variation of inverse
bending walking is 5 J, while that of forward bending walking
is 10 J. This result shows that inverse bending walking is more
efficient than forward bending walking.

5. Effect of Parameters
In this section, we study the effect of the reference
trajectory parameters, the physical parameters, and the initial
conditions on walking performance. In our model, the shin
mass has been four times larger than the thigh mass to
sufficiently restore the mechanical energy. In addition, our
model has the large feet to decrease energy dissipation by
heel strike.10 We showed in the previous section that inverse
bending restores more mechanical energy than forward
bending. Therefore, in the parametric study for the biped
robot we show that the shin mass and the foot radius can be
decreased. On the other hand, the parametric study for the
reference trajectory is carried out to clarify the effect of the
reference trajectory and this leads to determine the efficient
parameters of the trajectory. The effect of the initial condition
is studied to evaluate the stability of the gait.

We perform numerical simulation in changing one of the
parameters, such as the maximum bending angle, the settling
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Fig. 12. Effect of bending angle.

time, the beginning time, the shin mass, the foot radius, and
the initial condition. Throughout the numerical simulation
in this section, physical parameters of robot are set as those
shown in Table II unless otherwise stated. In the simulation,
we illustrate only the results in which we can generate
sustainable gait. However, we ignore the possibility that the
biped feet scuff the ground.

5.1. Parameters of reference trajectory
In this subsection, gait performance is evaluated as changing
the parameters of the reference trajectory.

First, we fix Tset = 0.60, 0.65, 0.70 s and δ = 0.2 s and
change the bending angle, Am from 1.0 rad to 1.5 rad.
Walking speed and SR are evaluated for each bending angle.
Figure 12 shows the simulation results. In Fig. 12, the
triangles denote the results of the settling time Tset = 0.6 s,
the squares denote the results of Tset = 0.65 s, and the circles
denote the results of Tset = 0.7 s. From Fig. 12, it is observed
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Fig. 13. Effect of settling time.

that walking speed and SR become large as the bending
angle, Am, increases. This is because when the bending
angle becomes large, more mechanical energy is restored,
and hence, walking speed becomes large. On the other hand,
input torque and angular velocity of the knee also become
large. The simulation results also show that the walking speed
is larger and the SR is smaller.

Next, we fix Am = 0.8, 0.9, 1.0 rad and δ = 0.2 s and
change the settling time, Tset from 0.6 s to 0.9 s. Figure 13
shows the simulation result. In Fig. 13, the triangles denote
the results of the bending angle Am = 0.8 rad, the squares
denote the results of Am = 0.9 rad, and the circles denote
the results of Am = 1.0 rad. It is observed from Fig. 13 that
walking speed is larger and SR is smaller as the settling time
Tset increases. In addition, period doubling bifurcation occurs
when Tset ≥ 0.85 s and Am = 0.9 rad, and Tset ≥ 0.815 s and
Am = 1.0 rad. This indicates that more mechanical energy is
restored when Tset and Am are larger. When the settling time
is large, angular velocity of the swing-leg is small. However,
there is an upper bound of the settling time, because we
assume that heel strike occurs after the knee is stretched to
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a straight posture. If the setting time is too large, heel strike
may occur before the swing-leg is stretched to a straight
posture, for example, Tset ≤ 0.885 s when Am = 0.9 rad and
Tset ≤ 0.865 s when Am = 1.0 rad.

Finally, we fix Am = 0.8, 0.9, 1.0 rad and Tset − δ = 0.7 s
and change the beginning time, δ, from 0.0 to 0.4 s. Figure 14
shows the simulation results. In Fig. 14, the triangles denote
the results of the bending angle Am = 0.8 rad, the squares
denote the results of Am = 0.9 rad, and the circles denote
the results of Am = 1.0 rad. Figure 14 shows that walking
speed is larger and SR is smaller as the beginning time,
δ, increases. Period doubling bifurcation also occurs when
δ ≥ 0.19 s and Am = 0.8 rad, δ ≥ 0.15 s, and Am = 0.9 rad,
and δ ≥ 0.14 s and Am = 1.0 rad. There is also an upper
bound of the beginning time, for example, δ ≤ 0.21 s when
Am = 0.8 rad, δ ≤ 0.18 s when Am = 0.9 rad, and δ ≤ 0.17 s
when Am = 1.0 rad.

These results indicate that to increase the walking speed
all the bending angles, the settling time, and the beginning
time δ are made larger. But the effect of these three
parameters is slightly different. If Am increases, angular
velocity of the knee becomes large. On the other hand, if
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Fig. 15. Effect of shin mass.

Tset and δ increase, the gait becomes more efficient with the
angular velocity fixed; especially when Tset increases, angular
velocity becomes small. This is because angular velocity of
the knee joint is proportional to the bending angle and is
inversely proportional to the settling time (see Eq. (18)).
Small angular velocity of the knee joint is desirable in view
of maximum actuator torque, and hence, increase of Tset is
most acceptable for realizing high-speed gait, although there
is an upper bound.

5.2. Physical parameters
In this subsection, we change the physical parameters and
evaluate gait performance.

We first fix Am = 0.8, 0.9, 1.0 rad, Tset = 0.8 s and
δ = 0.2 s, and change the shin mass, m3, from 5.0 kg to
1.0 kg. Figure 15 shows the simulation results. In Fig. 15, the
triangles denote the results of the bending angle Am = 0.8 rad,
the squares denote the results of Am = 0.9 rad, and the
circles denote the results of Am = 1.0 rad. Figure 15 shows
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Fig. 16. Effect of foot radius.

that walking speed and SR are larger as the shin mass,
m3, increases. Period doubling bifurcation occurs when
m3 ≥ 4.5 kg and Am = 0.8 rad, m3 ≥ 4.2 kg and Am = 0.9 rad,
and m3 ≥ 3.9 kg and Am = 1.0 rad. This is because input
torque and energy restoration becomes large when the shin
mass increases.

Next, we fix Am = 0.8, 0.9, 1.0 rad, Tset = 0.8 s, and
δ = 0.2 s and change the foot radius, R, from 0.6 to 0.0 m.
Figure 16 shows the simulation results. In Fig. 16, the
triangles denote the results of the bending angle Am = 0.8 rad,
the squares denote the results of Am = 0.9 rad, and the circles
denote the results of Am = 1.0 rad. Figure 16 shows that the
biped robot cannot walk when Am = 1.0 rad and R ≤ 0.37 m.
Period doubling bifurcation occurs when R ≤ 0.43 m and
Am = 0.8 rad, R ≥ 0.51 m and Am = 0.9 rad, and R ≥ 0.56 m
and Am = 1.0 rad.

The above two results indicate that the both shin mass
and foot can be made small. Then, we search appropriate
parameters to generate sustainable gait with point foot.
Here, we set Am = 0.8 rad, Tset = 0.8 s, δ = 0.2 s, R = 0 m,
and m3 = 2.5 kg. Simulation result illustrated in Fig. 17 is
one step after the gait converges to period one walking.

Walking direction

Fig. 17. Stick diagram in the case of point foot.

Figure 17 shows that the biped robot with point foot can
walk sustainably.

5.3. Basin of attraction
In this subsection, we calculate the basin of attraction. To do
this, we consider the sustainable gait, for which the target
control input corresponds to Am = 0.8 rad, Tset = 0.8 s, and
δ = 0.2 s, and we simulate the motion from the several initial
conditions. Our robot has three degrees of freedom for initial
conditions, i.e., the support-leg angle, the support-leg angular
velocity, and the swing-leg angular velocity. We perform the
simulation for the initial conditions, such that the support-
leg angle θ1 changes from 0.1 to 0.4 rad, and the angular
velocities θ̇1 and θ̇2 change from 0.0 to 2.0 rad/s. We regard
an initial condition belongs to the basin of attraction when
the biped robot walks 100 steps successfully.

Simulation results of the basin of attraction are
shown in Fig. 18, which depicts three slices of two-
dimensional figures. The axes represent the initial conditions
of the system. Figures 18(a)–(c) are the results for
θ1 = − 0.284 rad, θ̇2 = 0.969 rad/s, and θ̇1 = 1.137 rad/s,
respectively. In these figures, the circles indicate
the initial conditions from which the robot walks
sustainably and the initial condition converges to the
fixed point indicated by the star, [ θ1 θ2 θ3 θ̇1 θ̇2 θ̇3 ] =
[−0.284 0.284 0.284 1.137 0.969 0.969 ].

In order to evaluate the basin of attraction, we calculate
the minimum relative error of the attraction from the fixed
point for each slice. The relative errors in Figs. 18(a)–(c) are
2.3%, 1.22%, and 13.76%, respectively.

6. Conclusion and Future Work
In this paper, we proposed parametric excitation-based
inverse bending walking. First, we focused on the restoration
of energy by bending and stretching a swing-leg. We
showed by a double pendulum that inverse bending was
more suitable for energy restoration than forward bending
by linear analysis and numerical simulation. Then, we
generated inverse bending walking with only knee torque like
parametric excitation walking. We also showed that inverse
bending walking was more efficient than forward bending
walking. The parametric study showed that the effects of the
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reference trajectory were clarified and the proposed method
could decrease shin mass and foot radius of the biped robot.
In particular, SR became one-fifth of the most minimum
value of forward bending walking,7 and the semicircular feet
could be removed. In the future work, we will clarify the
reason why inverse bending walking is analytically more
than efficient than forward bending walking.
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