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Abstract. Weak measurements carried out between quantum state preparation
and post-selection result in complex values for self-adjoint operators,
corresponding to complex conditional probabilities for the projections on
specific eigenstates. In this paper it is shown that the complex phases of these
weak conditional probabilities describe the dynamic response of the system to
unitary transformations. Quantum mechanics thus unifies the statistical overlap
of different states with the dynamical structure of transformations between these
states. Specifically, it is possible to identify the phase of weak conditional
probabilities directly with the action of a unitary transform that maximizes the
overlap of initial and final states. This action provides a quantitative measure
of how much quantum correlations can diverge from the deterministic relations
between physical properties expected from classical physics or hidden variable
theories. In terms of quantum information, the phases of weak conditional
probabilities thus represent the logical tension between sets of three quantum
states that is at the heart of quantum paradoxes.
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1. Introduction

Weak measurements are a method of determining the statistical properties of quantum systems
between state preparation and a specific post-selected measurement result [1]. Initially, weak
measurements met with a considerable amount of skepticism due to their seemingly paradoxical
and unconventional nature [2, 3]. However, there has recently been renewed interest in weak
measurements, not only motivated by new experimental possibilities [4–6], but also because
weak measurements may clarify fundamental issues in quantum mechanics by indicating
possible experimental resolutions of quantum paradoxes [5, 7–16]. Such resolutions of quantum
paradoxes are usually based on the interpretation of weak measurement statistics in terms of
negative probabilities whose averages can reproduce the experimentally observed violation of
inequalities [17–19]. A more detailed analysis of the strange features of weak measurements
may therefore lead to a better understanding of the essential differences between quantum and
classical statistics.

As early as 1995, Steinberg pointed out that weak measurements provide a natural
definition of conditional probabilities in quantum mechanics [20]. However, the mathematically
consistent definition of such weak conditional probabilities results in complex numbers
originating from the quantum coherences of the initial and final states. In terms of a purely
statistical interpretation, the complex phases of weak conditional probabilities seem to pose
a problem, since it is not immediately obvious how complex values contribute to any
experimentally observable statistics. In this paper, we therefore take a closer look at the actual
physics described by the complex conditional probabilities obtained in weak measurements. The
results show that the complex phases of weak conditional probabilities describe the responses of
the transition probability from the initial to the final state to unitary transformations commuting
with the intermediate measurement. This makes it possible to interpret complex conditional
probabilities in terms of transformation dynamics. In particular, the complex phase obtained for
a specific intermediate measurement result m defines the action S(m) of a unitary transformation
that maximizes the overlap between the initial and the final state. The change of S(m) with m
describes a physical distance between the initial and the final state around a specific result
m. Specifically, fast oscillations of the complex conditional probabilities associated with a
rapidly changing action S(m) indicate a significant separation between the initial and the final
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state within the respective range of m values. Thus, the complex phases of weak conditional
measurements describe situations where the initial and the final state appear to attribute different
physical properties to the system at the intermediate state m, suggesting a classical contradiction
between the physics defined by the three states. Effectively, quantum mechanics seems to
replace the conditional probability of zero for logical contradictions between sets of three
statements with complex probabilities that average out when observed with a sufficiently low
resolution.

In general, the complex phases of weak conditional probabilities convey specific
information on the transformation dynamics of the output statistics by softening the logical
relations between quantum states. The specific non-classical correlation between conditional
statistics and transformation dynamics is expressed by nonzero complex probabilities for
classically inconsistent sets of states, where the complex phase is given by the action of the
transformation that minimizes the logical contradictions between the three states. In the context
of quantum information and quantum paradoxes, the complex phases of weak conditional
probabilities can therefore be understood as a measure of the logical tension between sets of
three non-orthogonal quantum states. While classical statistical expectations are reproduced
when the logical tension is low, logical tensions larger than π/2 result in the negative conditional
probabilities that can be used to characterize quantum paradoxes [10–16]. The unification of
transformation dynamics and conditional probabilities in terms of the logical tension between
three states may thus lead to a better understanding of the non-classical properties of quantum
statistics.

The rest of this paper is organized as follows. In section 2, we point out that the real part
of weak values is determined by weak measurements, while the imaginary part is determined
by weak unitary transformations. In section 3, we show how the response to arbitrarily strong
unitary transformations can be predicted from complex weak conditional probabilities. In
section 4, the complex phase of weak conditional probabilities is identified with the action
of a transformation that minimizes the differences between the initial and the final state at
all intermediate results, m. In section 5, the m-dependent distance between the initial and
the final state is illustrated for the case of particle position. It is shown that the derivative
of the action S(x) corresponds to the momentum difference between the initial and the final
state at x . In section 6, the implications of the transformation distance given by the complex
phase for the logical relation between three quantum states are considered and the concept
of logical tension is introduced. In section 7, the transition to the classical limit of mixed
states is analyzed and inequalities for the predictions of transformation statistics from complex
conditional probabilities are derived. Finally, the conclusions are summarized in section 8.

2. Complex weak values

Weak values can be obtained when the measurement interaction is so low that the back-action
effects of the measurement can be neglected. As discussed in [19], weak measurements can
be efficiently represented by measurement operators for the actual outcomes µ of the weak
measurement,

Êµ =
√

wµ(1 + εµ Â), (1)

where wµ gives the probability distribution of the meter readout µ before the weak interaction
and εµ describes the weak coupling that results in small modifications of the meter statistics
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based on the value of the observable Â. The measurement is weak if εµ is so small that quadratic
terms can always be neglected. When applied to an initial state |i〉, the measurement operator
Êµ modifies the statistical weight of the eigenstates of the observable Â according to their
eigenvalues. As a result, the output probability p(µ) is modified in proportion to the average
value of Â. For the initial state |i〉, this modification is given by

p(µ|i) = 〈i | Ê2
µ | i〉 = wµ(1 + 2εµ〈i | Â| i〉). (2)

For sufficiently small couplings εµ, the measurement does not change the quantum statistics of
a final measurement. It is therefore possible to treat the post-selection of a final result | f 〉 as a
condition that is completely independent of the measurement dynamics (for details see [19]).
According to Bayesian statistics, the conditional probability for the weak measurement outcome
µ is then

p(µ|i f ) =
|〈 f | Êµ | i〉|2

|〈 f | i〉|2
≈ wµ

(
1 + 2εµ Re

(
〈 f | Â| i〉

〈 f | i〉

))
, (3)

where the quadratic terms in εµ have been neglected. As the comparison of equation (2) and
equation (3) reveals, the conditional average of Â is given by the real part of the weak value,

〈 Â〉weak =
〈 f | Â| i〉

〈 f | i〉
. (4)

Significantly, the measurement probability given by equation (3) is completely symmetric in
time, so that the imaginary part of the weak value does not contribute to weak measurements
based on self-adjoint measurement operators.

It has been pointed out that the imaginary part of the weak value can be observed in
system–meter interactions if the imaginary part is identified with a ‘shift’ in the momentum of
the pointer [22]. However, the pointer momentum is a conserved quantity in the system–meter
interaction, so the explanation of the change in output probabilities in terms of a dynamic change
of momentum is a misinterpretation. As pointed out in [21], the (unchanged) momentum of the
pointer represents the measurement back-action associated with the force that the pointer exerts
on the system. In the quantum formalism, this force is represented by a parameter φ in the
unitary transformation that expresses the transformation of the quantum system caused by the
action of the force. Although the weak back-action effects average out when the fluctuating
momentum is unknown, there is a correlation between the fluctuations of the force φ and the
fluctuations of the final measurement result f due to the dynamic response of the system to weak
unitary transformations generated by the observable Â. The unitary operator that describes the
statistical effects associated with sufficiently small forces φ has the form

Ûφ = exp(−iφ Â) ≈ (1 − iφ Â). (5)

Comparison of equations (1) and (5) reveals why the response to a weak unitary appears to
be the imaginary part of the weak measurement result. However, it should not be forgotten
that the physics of unitary transformations is quite different from the physics of measurement.
In fact, classical physics clearly distinguishes the two concepts: a transformation changes the
physical properties without any change to the available information, while a measurement
changes the available information, ideally without changing any physical properties. The
problem is that quantum mechanics makes ideal measurements impossible. However, weak
measurements come close to the ideal case, so it is possible to identify the real parts of weak
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values with back-action free measurement statistics, and the imaginary parts with information
free transformations. Specifically, the imaginary part of the weak value is equal to half the
logarithmic derivative of the final probability p( f |i) in φ [21],

1

2

∂

∂φ
ln(p( f |i)) = Im

(
〈 f | Â| i〉

〈 f | i〉

)
. (6)

Thus, the imaginary part of the weak value is a measure of the differential response of the final
measurement result f to small phase shifts generated by Â. In this sense, the complex phase
of weak values relates the statistical averages given by the real part to the conjugate dynamic
responses given by the imaginary part. In the following, we show that this relation between
statistics and dynamics provides the key to a deeper understanding of weak measurement
statistics.

3. Weak conditional probabilities and unitary transformations

Initially, weak values attracted attention because they can lie outside the spectrum of eigenvalues
observed in strong measurements. However, it is always possible to represent an operator by its
spectral decomposition. The problem of unusual weak values can then be reduced to the perhaps
more fundamental problem of unusual statistics. Specifically, the weak value of an observable
Â with eigenvalues Am and eigenstates |m〉 is

〈 Â〉weak =

∑
m

Am
〈 f | m〉〈m | i〉

〈 f | i〉
. (7)

This weak value can be interpreted as an average defined by weak conditional probabilities of

p(m|i f ) =
〈 f | m〉〈m | i〉

〈 f | i〉
. (8)

Weak conditional probabilities explain the weak values of any operator with eigenstates |m〉.
Thus, weak conditional probabilities provide a consistent description of the non-classical
statistics observed in weak measurements [17, 19, 20]. In particular, weak conditional
probabilities provide an empirical tool for the investigation of non-classical correlations
between measurement results that cannot be obtained jointly. As shown in a number of recent
experiments [5, 7–16], it is then possible to explain quantum paradoxes in terms of negative
conditional probabilities for the weakly measured alternatives m. In such demonstrations of
non-classical statistics, weak conditional probabilities establish a link between the conventional
representation of quantum coherence as a wave-like property and classical probability theory.
Equation (8) expresses this fundamental relation between the complex conditional probabilities
obtained in weak measurements and the quantum coherence of Hilbert space. In particular,
the post-selection of a final state | f 〉, which is an equal superposition of all intermediate
results |m〉, leads to conditional probabilities p(m|i f ) that are directly proportional to the
complex amplitudes 〈m|i〉 of the initial state. As demonstrated in a recent experiment [23], this
proportionality can be used to realize a direct measurement of the wave function of a quantum
state.

Since the wave function is the more familiar theoretical concept, the discussion in [23]
ignores the connection between this interpretation of the wave function as a specific conditional
probability and the negative conditional probabilities observed in quantum paradoxes. However,
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the significance of quantum paradoxes as indicators of the non-classical properties of quantum
information implies that the appearance of negative probabilities in the conditional statistics of
quantum measurement might be the most significant feature of quantum coherence. In addition,
the conditional probabilities determined in weak measurements have an imaginary part that is
related to the statistical response to weak unitaries given by equation (6). Quantum coherence
thus describes a combination of static probabilities with elements of unitary transformation
dynamics that has no analogy in classical statistics. Consequently, it should be possible to
identify the fundamental difference between quantum statistics and classical statistics by
analyzing the role of the complex phase in weak conditional probabilities.

The following discussion shows how quantum coherence can be interpreted in a statistical
context—and how an image of the complex wave function of a quantum system can appear
in the quantum mechanical limit of conditional probabilities when the post-selected state is
a (not necessarily equal) superposition of the alternative outcomes investigated in the weak
measurement. The result presented in the following can therefore clarify and generalize the
physical principles underlying the direct observation of quantum coherence reported in [23] and
can help to identify the relation to quantum paradoxes.

Equation (7) indicates that the imaginary part of a weak value can be expressed in terms of a
weighted sum over the imaginary parts of weak conditional probabilities. This means that weak
conditional probabilities have to be complex because the imaginary part is required to describe
all differential changes to the final measurement statistics caused by unitary transformations
with eigenstates |m〉. Specifically, the logarithmic derivative of the final probability p( f |i) in φ

can now be expressed as
1

2

∂

∂φ
ln(p( f |i)) =

∑
m

Am Im(p(m|i f )). (9)

The imaginary parts of weak conditional probabilities thus provide a detailed description of
the linear response to unitaries that commute with (and hence conserve) the projectors |m〉〈m|.
However, unitary dynamics are not limited to the differential changes in φ that define imaginary
weak values. For arbitrarily large parameters φ, the unitary operation can be represented by the
spectral decomposition that assigns an action of φ Am to each eigenstate projector |m〉〈m|. By
identifying the terms of this spectral decomposition with weak conditional probabilities, it is
possible to derive the general relation between complex probabilities and the effects of unitary
transformations. Specifically, the effect of a unitary operation Ûφ = exp(−iφ Â) on the output
probabilities p( f |i) for an initial state |i〉 can be written as

|〈 f | Ûφ | i〉|2 =

∣∣∣∣∣∑
m

exp(−iφ Am)
〈 f | m〉〈m | i〉

〈 f | i〉

∣∣∣∣∣
2

|〈 f | i〉|2. (10)

Using weak measurement statistics, it is now possible to interpret this transformation in terms of
complex conditional probabilities. Specifically, the output probability p( f ; φ) = |〈 f | Ûφ | i〉|2

can be obtained from the complex conditional probabilities p(m|i f ) obtained near φ = 0 using
the relation

p( f ; φ) =

∣∣∣∣∣∑
m

exp(−iφ Am)p(m|i f )

∣∣∣∣∣
2

p( f ; 0). (11)

The dependence of the output probability p( f ; φ) on the parameter φ can therefore be
determined completely using only the weak effects observed around φ = 0.
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In general, a transformation generated by Â conserves the value of m but changes the
value of f . Experimentally, the conditional probability p(m|i f ) is obtained by post-selecting
only systems with a specific value of f . After the unitary transformation is applied, one would
expect that some of the contributions to p( f ; φ) originate from systems with different values of
f . For example, the unitary transform could change the state | f 〉 to an orthogonal state, so that
Û †

φ | f 〉 represents an experimentally distinguishable alternative outcome |g〉. In this case, the
probability of g can be derived from the weak conditional probabilities of f using equation (11).
In classical statistics, there would be no reason to assume that the conditional probabilities
at f should be fundamentally related to the probability of obtaining a different measurement
outcome g 6= f . Thus, the complex phases of weak conditional probabilities express a non-
classical aspect of quantum statistics that has no obvious analogy in classical statistics.

4. Maximizing the overlap of the initial and final states

In classical physics, the transformation dynamics generated by Â correspond to phase-space
trajectories that shift the phase-space point by a distance of φ along a phase-space contour
m with a constant value of Am for Â. In this analogy, quantum states correspond to classical
phase-space contours. The probability p( f ) for an initial state i then originates from the
intersection of two phase-space contours. A transformation generated by Â can modify the
statistical overlap by reducing or increasing the distance between i and f along the different
phase-space contours m. Based on this analogy, it is possible to interpret the complex phases of
weak conditional probabilities as an indication of the distance between the initial and the final
state for transformations along the intermediate states m.

In the Hilbert space formalism, the transformation is described by phase changes of φ Am

that correspond to the classical action of the transformation at m. Using equation (11), it is easy
to see that the maximal output probability is obtained when the action of φ Am introduced by the
transformation compensates for the intrinsic phase of the weak conditional probability, so that
the sum runs over the absolute values. In this case, the probability of finding the final outcome
| f 〉 is

p( f ; max.) =

(∑
m

|p(m|i f )|

)2

p( f ; 0). (12)

The unitary transform that achieves this maximal overlap between the initial and the final state
while conserving m can be defined in terms of an m-dependent action Sm ,

Û max. =

∑
m

exp(−iSm) |m〉〈m |, (13)

where the action Sm is given by the complex phase of the weak conditional probability,

Sm = Arg

(
〈 f |m〉〈m |i〉

〈 f |i〉

)
= Arg(p(m|i f )). (14)

The classical analogy suggests that the unitary transformation defined by the action Sm moves
the phase-space point defined by the intersection of i and m along m until it reaches the
intersection of m and f , where the distance between the two points is given by the gradient
of the action in m. Thus, the complex phases of weak conditional probabilities actually seem to
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define a discrepancy between the physical properties described by the pairs of quantum states
(|i〉, |m〉) and (|m〉, | f 〉).

Since complex probabilities have no classical analogy, it is interesting to find that
they are related to the classical phase-space structure that defines transformations of the
system. Quantum mechanics appears to unify these two aspects of physics into a single
formalism, where the assignment of phase-space points must be replaced by complex
conditional probabilities [24]. As a result, the statistical relations between measurements that
cannot be performed jointly may be paradoxical due to the negative conditional probabilities
corresponding to the transformation dynamics that define the new relation between the
physical properties. At the same time, it becomes possible to predict the effects of arbitrary
transformations from the conditional statistics of a single measurement outcome f . It may
therefore be possible to understand the non-classical features of quantum information in terms
of the action of unitary transformations.

5. Phase-space illustration for continuous variables

As the example of the time evolution generated by a Hamiltonian shows, the relation between
the quantum mechanical action Sm of an eigenstate component |m〉 in a unitary transformation
corresponds to the classical action of that transformation in units of h̄. In the classical case,
the unitary transform can then be described in terms of a shift in the conjugate observable that
parameterizes the classical phase space. For each value of m, the magnitude of this shift is then
given by the m-derivative of Sm . In quantum mechanics, the values of m are usually discrete and
the definition of conjugate observables is difficult. On the other hand, continuous variables such
as position and momentum preserve much more of the classical phase-space structure. It may
therefore be useful to take a look at the weak conditional probabilities of position for a more
intuitive picture of the differences between the initial and final states described by their complex
phases.

If the weak conditional probability density of position is given by p(x |i f ), then the
transformation Ûmax. that maximizes the overlap of initial and final states is

Û max. =

∫
exp

(
−i Arg

(
〈 f |x〉〈x |i〉

〈 f |i〉

))
|x〉〈x |. (15)

In terms of Hamiltonian dynamics, this transformation corresponds to the application of a
potential V (x) over a time t , such that V (x)t = h̄S(x). The classical change of momentum
caused by this transformation at x would be

1P(x) = −h̄
∂

∂x
S(x). (16)

In quantum mechanics, it is possible to express the x-derivative on the right-hand side of the
equation in terms of the momentum operator P̂ . Interestingly, this results in an identification of
the x-derivatives of phase with the real parts of the weak values of momentum at x . Specifically,

−h̄
∂

∂x
S(x) = h̄

∂

∂x
Arg(〈x | f 〉) − h̄

∂

∂x
Arg(〈x |i〉)

= Re

(
〈x | P̂ | f 〉

〈x | f 〉

)
− Re

(
〈x | P̂ |i〉

〈x |i〉

)
. (17)
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Thus, continuous variable quantum mechanics confirms the intuitive notion that the
transformation Ûmax. maximizes the overlap of initial and final states by minimizing the
difference in the conjugate observable P̂ at position x .

Since the momentum difference 1P(x) is equal to the x-derivative of the action h̄S(x),
it is tempting to identify the action directly with the phase-space integral between |i〉, | f 〉 and
|x〉, where the phase-space representations of |i〉 and | f 〉 are given in terms of their weak value
momenta at x . However, some care should be taken since the integration results in a constant
that needs to be defined by the normalization of the complex conditional probabilities to 1. A
specific example may help to illustrate the point. Consider a free particle of mass m. Its position
at various times can be expressed in terms of position x̂ and momentum P̂ at time t = 0. If
|i〉 and | f 〉 are eigenstates of particle position x = 0 at times t = −τ/2 and t = τ/2, they are
defined by the operator relations(

x̂ −
τ

2 m
P̂
)
|i〉 = 0,(

x̂ +
τ

2 m
P̂
)
| f 〉 = 0.

(18)

Note that each point in the phase space defined by x̂ and P̂ refers to a complete trajectory in
time. Thus, the time evolution of the system is fully accounted for by the definition of the initial
and final states at t = 0 and explicit descriptions of time dependences are not necessary. It is
easy to see that the weak values of momentum conditioned by a measurement of position x̂ at
t = 0 are Pi(x) = 2 mx/τ and P f (x) = −2 mx/τ . In phase space, the initial and the final state
are therefore represented by straight lines with opposite slopes intersecting at (x = 0; P = 0).

Using an arbitrary normalization length of L , the wave functions of the initial and final
states can be given as

〈x |i〉 =
1

√
L

exp

(
i

m

h̄τ
x2

)
,

〈x | f 〉 =
1

√
L

exp

(
−i

m

h̄τ
x2

)
.

(19)

The weak conditional probability density determined from these two wave functions is

p(x |i f ) =

√
2 m

π h̄τ
exp

(
i
2 m

h̄τ
x2

− i
π

4

)
. (20)

Interestingly, the complex phase S(x) of this weak conditional probability is −π/4 for the
classical solution at x = 0. As a result of this phase shift, the range of x values contributing
positive real parts to the total probability is broadened to include x-values with actions up to
(3π/4)h̄ higher than the minimal action at x = 0.

The phase-space geometry corresponding to the weak conditional probability in
equation (20) is illustrated in figure 1. Each quantum state corresponds to a straight line,
and all three states form a triangle. Classically, the crossing point of the initial and the final
state at (x = 0, P = 0) would correspond to the trajectory defined by the initial and final
conditions, and the conditional probability for x would be a delta function around x = 0.
Obviously, quantum mechanics relaxes this tight deterministic relation. Instead, the quantitative
disagreement between the three different trajectories defined by the three pairs of quantum states
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|i

|f

|x
(0, 0)

(x, 2mx/τ )

(x,−2mx/τ )

Phase space area:
S(x) + π/4

Figure 1. Phase-space illustration of weak conditional probabilities for an initial
eigenstate of x̂ − τ P̂/2m and a final eigenstate of x̂ + τ P̂/2m. The phase-space
area enclosed by the three states is equal to the complex phase S(x) of the weak
conditional probability plus π/4.

results in a complex phase proportional to the total phase-space area between the three non-
identical phase-space points, minus a normalization phase of π/4. In the macroscopic limit,
classical determinism is recovered, because a low-resolution measurement of x will average
over several periods of oscillation of the complex phase, leaving only the slowly varying positive
contributions to the conditional probability around x = 0. However, a resolution at the pure
state level will always provide complete information on the phase-space distances between the
quantum states concerned.

6. Logical tension between three quantum states

The phase-space analysis shows that weak conditional probabilities are non-zero even though
the initial, intermediate and final states do not intersect at a common phase-space point. If
there is a non-zero pairwise overlap of the three states, quantum mechanics expresses the
conditional relation of all three states in terms of the complex phase. Classical determinism
is replaced with phases close to zero, while classical contradictions are replaced with rapidly
oscillating phases. In this sense, the complex phase associated with unitary transformation
functions provides a quantitative measure of the non-classical logical relation between quantum
statements. Specifically, it may be useful to consider the complex phase of weak conditional
probabilities as the measure of logical tension between sets of three quantum states. If the logical
tension is low, conditional and joint probabilities are positive and the rules of classical statistics
apply. On the other hand, logical tensions above π/2 result in negative joint probabilities such
as those observed in quantum paradoxes [10–16].

In general, the logical tension is a symmetric function of three states, invariant under
permutations of the sequence of states. It is therefore appropriate to express it as

S(i, m, f ) = Arg(〈 f |m〉〈m |i〉〈i | f 〉). (21)

Mathematically, this is the geometric phase of a cyclic product of the mutual overlaps of three
states, also known as a Pancharatnam phase [25]. As such, it describes a rather fundamental
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|f

| i

|m1

|m2

2Sm1

−2Sm2

Figure 2. Logical tension on the Bloch sphere. For any combination of three
states, the phase of the weak conditional probabilities is equal to half the area
of the geodesic triangle defined by the three states. For a pair of orthogonal
intermediate states, the phase difference is equal to half the area enclosed by
the geodesics through |i〉 and through | f 〉, corresponding to the angle of rotation
between the two geodesics. Thus, rotating |i〉 into the same half-plane as | f 〉

relaxes the logical tension to zero.

feature of Hilbert space algebra. Due to the analysis given in the previous sections, this
geometric phase can now be identified with a mismatch in the physical properties defined by the
three states.

In the case of continuous variables, the logical tension between three quantum states is a
function of the phase-space area enclosed by the three states, as shown in figure 1. However,
quantum information is most commonly formulated in terms of two-level qubit systems. For
such systems, quantum states can be illustrated by points on the Bloch sphere. As explained
in [25], the complex phase defined by equation (21) is then equal to half the area of the geodesic
triangle defined by the three points on the sphere. As before, the logical tension between three
states is illustrated by a triangle, indicating the symmetry of the three states.

The complete conditional probability for qubits is obtained by just two orthogonal results m
represented by opposite poles of the Bloch sphere, as shown in figure 2. Due to the sequence of
states, the logical tension has opposite sign for the two states. Therefore, the difference between
the two logical tensions is equal to half the total area of the two triangles. In terms of the unitary
operation Ûmax., this phase difference describes a rotation around the m-axis that rotates i into
the same plane as f . Thus the logical tension is reduced to zero when all three states lie in
the same half-plane. In contrast, logical tensions of π are achieved when all three states lie
in the same plane, but not in the same half-plane. For the complete set of weak conditional
probabilities, this means that the conditional probabilities are real and positive when i and f
are on the same side of the m-axis, while one of the conditional probabilities is negative when i
and f are on opposite sides.

With regard to quantum paradoxes, classical statistical models work if the conditional
probabilities are real and positive. Logical tension provides a natural quantitative expression
for this condition. It seems therefore reasonable to define the classical limit as the limit of
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small logical tension. In the qubit case, this would suggest that the initial and final states
on the same side of the weak measurement axis could be considered classical. However, a
simple rotation around the measurement axis will induce arbitrary amounts of logical tension. In
general, equation (11) indicates that all pure state systems can easily be transformed into states
with high logical tensions between them. A more robust classical limit can only be obtained by
considering mixed states, where the summation over probabilities with varying logical tensions
may result in positive real values and small imaginary parts for all conditional probabilities
obtained from unitary transformations in m.

7. Mixed state inequalities and classical limits

As explained in section 3, the precise prediction of output probabilities observed after arbitrarily
large transformations of the system from weak conditional probabilities is a highly non-
classical feature of quantum statistics. In the classical limit, this feature should be replaced
with the expectation of statistical independence of the output probabilities obtained from strong
transformations, limiting reliable predictions to the linear response to weak transformations
given by the empirical definition of the imaginary conditional probability in equation (9).

The proper classical limit is obtained when classical noise effects cover up the non-classical
details of quantum statistics. Since equations (3) and (6) provide an experimental recipe for
obtaining the real and imaginary weak values, it is a straightforward matter to find the proper
expressions of weak conditional probabilities in the presence of classical noise. For an initial
state given by a density operator ρ̂i , the weak conditional probability is

p(m|i f ) =
〈 f |m〉〈m |ρ̂i | f 〉

〈 f |ρ̂i | f 〉
. (22)

This expression is mathematically equivalent to the pure state case if |i〉 is replaced with ρ̂i | f 〉.
As shown in [23], the conditional probability for a well-defined outcome f can then be used
to determine the wave function 〈m|i〉 of the initial state |i〉. However, this is not correct if the
initial state is a mixed state. In this case, the method used in [23] will actually determine ρ̂i | f 〉,
an expression that describes only the fraction of the quantum state ρ̂i that is coherent with
the final state | f 〉. As the quantum coherence between | f 〉 and other states decreases, ρ̂i | f 〉

becomes more and more localized around | f 〉, so that the conditional probability at f becomes
independent of the conditional probability at different final states g.

For mixed states, the prediction of output probabilities for strong unitaries is complicated
by the fact that the output probability cannot be separated into transitions between i and
f . Instead, the unitary Ûφ acts on both sides of the density operator ρ̂i . To obtain any
predictions about the effects of the unitary, it is necessary to find a relation between this exact
expression of the transformation dynamics and the expression 〈 f |Ûφρ̂i | f 〉 that is related to
the weak conditional probabilities. Such a relation can indeed be obtained in the form of a
Cauchy–Schwarz inequality for the Hilbert space vectors ρ̂

1/2
i Û †

φ | f 〉 and ρ̂
1/2
i | f 〉,

〈 f |Ûφρ̂iÛ
†
φ | f 〉>

〈 f |Ûφρ̂i | f 〉〈 f |ρ̂iÛ
†
φ | f 〉

〈 f |ρ̂i | f 〉
. (23)

If the unitaries on the right-hand side of the inequality are expressed by their spectral
decompositions, the result is a sum over weak conditional probabilities that corresponds to the
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pure state case of equation (11). Therefore, the mixed state inequality reads

p( f ; φ)>

∣∣∣∣∣∑
m

exp(−iφ Am)p(m|i f )

∣∣∣∣∣
2

p( f ; 0), (24)

confirming that the pure state case given by equation (11) is the ultimate limit of statistical
predictions based on weak conditional probabilities.

Equation (24) shows that weak conditional probabilities always provide a correct prediction
for the contributions of the quantum state ρ̂i | f 〉 to the output statistics of the transformed
system. However, other contributions will be added to the predicted ones, so that the predicted
probabilities will only be a small fraction of the actual probabilities in the classical limit. To
quantify the transition to the classical limit, it is useful to remember that the inequality above
is always an equality for small φ, since the changes of p( f ; φ) that are linear in φ provide the
very definition of imaginary weak values given by equation (6). The effects of classical noise,
therefore, first appear in the second derivative in the parameter φ,

∂2

∂φ2
p( f ; φ=0)>−2

∑
m

A2
m Re(p(m|i f )) −

∣∣∣∣∣∑
m

Am p(m|i f )

∣∣∣∣∣
2
 p( f ; 0). (25)

Interestingly, the lower limit of this second derivative can be interpreted as minus two times
the real part of the conditional uncertainty of Â, as defined by the complex values of the
weak conditional probabilities. In the pure state limit, the equality of the two terms requires
negative conditional uncertainties, since at least some second derivatives of p( f ; φ = 0) must
be positive. In the classical limit, all uncertainties must be positive, so that positive second
derivatives require a corresponding amount of additional (classical) noise. On the other hand,
the magnitude of negative second derivatives is limited by the total uncertainty in Â, so the
expectation for the classical limit is that the absolute ratio of the second derivative of the
probability p( f ) in φ to the probability p( f ) itself is everywhere larger than the uncertainty of
Â in the initial state. On the whole, these conditions suggest that the classical limit is obtained
when probability distributions are smooth on scales close to the uncertainty limit of quantum
metrology given by δφ > 1/(21A).

8. Conclusions

The results of this paper show that the complex conditional probabilities obtained in weak
measurements can be interpreted in terms of the dynamics required to optimize the overlap
of the initial and final states for a range of intermediate states. Weak conditional probabilities
oscillating between negative and positive values, therefore, indicate a difference in the physical
properties of initial and final states corresponding to a classical phase-space distance. The
complex phase itself represents the action of the unitary transformation that maximizes the
contribution to the overlap between the initial and final states at the intermediate state.

Effectively, weak conditional probabilities replace the strict logic of classical determinism
with an equally strict logic of statistical correlations between measurements that cannot be
carried out at the same time. In this modified statistical theory, the complex phase represents
the dynamic action that would be necessary to overcome the contradictions between the three
statements encoded in the initial, intermediate and final states. In terms of quantum information,
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the complex phase of weak conditional probabilities thus provides a quantitative measure
of the logical tension between three quantum statements. Since logical tensions greater than
π/2 appear as negative conditional probabilities in the correlations between the results of
separate measurements, the violation of classical inequalities in quantum paradoxes can then be
understood as the consequence of the high logical tensions characterizing the extreme quantum
limit. On the other hand, the classical limit can be defined as the limit of low logical tension,
where classical noise reduces the imaginary parts of weak conditional probabilities to the point
where they are always much smaller than the (positive) real parts.

By extending the concept of conditional probabilities to include complex phases identified
with the logical tension, weak measurement statistics establish a relation between the
non-classical correlations observed in quantum paradoxes and the physics of continuous
transformations. This fundamental relation between dynamics and statistics might be the key
to a better intuitive understanding of quantum phenomena and their applications.
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