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SUMMARY

Recently, FPGAs (Field Programmable Gate Arrays) are widely used to implement al-

gorithms with circuits for accelerating computation. Circuit design that minimizes the

number of clock cycles is easy if we use asynchronous read operation. However, em-

bedded blocks of memories in the most modern FPGAs support synchronous read and

synchronous write operations, but do not support asynchronous read operation. Hence,

we can not implement circuits with memories supporting asynchronous read operation

in FPGAs. Because of the above background, this dissertation shows circuit rewriting

algorithms to convert circuits with memories supporting asynchronous read operation

into the equivalent circuits with memories supporting synchronous read operation for

implementing in FPGAs, as follows:

In the domain of digital circuit design, one of the most important tasks is to make

circuit design easy to the designers. We say that circuit design that minimizes the num-

ber of clock cycles is easy if we use asynchronous read operation. However, embedded

block RAMs (Random Access Memories) of the most FPGAs support synchronous read

and synchronous write operations, but do not support asynchronous read operation. To

resolve this problem, the first main contribution of this dissertation is to present acircuit

rewriting algorithmwhich is used to convert a designed circuit with AROMs (Asyn-

chronous Read Only Memories) into an equivalent circuit with SROMs (Synchronous

Read Only Memories). More specifically, a circuit using AROMs supporting asyn-

chronous read operation designed by a non-expert or quicklydesigned by an expert is

given. Ourcircuit rewriting algorithmconverts this circuit with AROMs into an equiva-

lent circuit with SROMs supporting synchronous read operation automatically. Finally,

the resulting circuit with SROMs can be embedded into FPGAs.



Circuits designed by users may have ARAMs (Asynchronous RAMs) supporting

bothasynchronous read and synchronous write operations instead of AROMs support-

ing asynchronous read operationonly. However, embedded block RAMs of the most

modern FPGAs support synchronous read and synchronous write operations but do not

support asynchronous read operation. The second main contribution is to present acir-

cuit rewriting algorithmto resolve this problem. Therefore, presentedcircuit rewriting

algorithm which is devoted to convert automatically a circuit using ARAMs into an

equivalent circuit with SRAMs (synchronous RAMs) supportingbothsynchronous read

and synchronous write operations in order to embed the resulting circuit in FPGAs.

Many practical circuits, designed by users may havecycles. However,circuit rewrit-

ing algorithms, presented as the first and second main contributions are unable to pro-

cess those circuits withcycles. Our third main contribution of this dissertation is to

propose amodified circuit rewriting algorithmwhich is able to process circuits withcy-

cles. More specifically, a circuit withcyclesusing AROMs designed by users is given.

Ourmodified circuit rewriting algorithmconverts it into an equivalent circuit withcycles

using SROMs. Finally, the resulting circuit withcyclesusing SROMs can be embedded

into FPGAs.

By our circuit rewriting algorithms, most of the registers move towards the output

ports, whenever possible. Hence, in general, the resultingcircuits may have the longest

paths from input ports to registers/SROMs/SRAMs or from registers/SROMs/SRAMs

to registers/SROMs/SRAMs or from registers/SROMs/SRAMs to output ports. Perfor-

mance of the resulting circuits therefore may be degraded interms oflatencyandclock

frequency. However, it is easier to improve the performance of the resulting circuits

than minimizing the number of clock cycles by the designers.
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Chapter 1

Introduction

1.1 Background and Motivation

In the context of accelerating computation, many parallel and distributed computing

methods are proposed by the researchers. One of the widely used parallel computing

methods with a multi-core and/or multi-processor computer is presented in [6] and other

one [5], is presenting the distributed computing method using a computer cluster. On

the other hand, FPGAs (Field Programmable Gate Arrays) are aprogrammable VLSI

which can be used for implementing parallel and hardware algorithms. As a device

for low cost pseudo-specialized LSI, FPGAs are attracting attention to the researchers.

With the development of LSI device fabrication, FPGAs are chosen by the researchers

for implementing their applications. For the technical improvement of LSI production,

their size, capabilities, and speed have been increased. Compared with parallel and dis-

tributed computing, the computation granularity of computation using FPGAs would be

the finest. Considering programmability, FPGAs can be considered as hardware that

has an ability of software. Recently, FPGAs are widely used to implement algorithms
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with circuits for accelerating computation. Circuit designthat minimizes the number of

clock cycles is easy if we use asynchronous read operation. However, embedded blocks

of memories in the most modern FPGAs support synchronous read and synchronous

write operations, but do not support asynchronous read operation. Hence, we can not

implement circuits with memories supporting asynchronousread operation in FPGAs.

Because of the above background, we are inspired to present circuit rewriting algo-

rithms to convert circuits with memories supporting asynchronous read operation into

the equivalent circuits with memories supporting synchronous read operation for imple-

menting in FPGAs. For this purpose, this dissertation showscircuit rewriting algorithms

which are as follows:

A Circuit Rewriting Algorithm for Converting Asynchronous ROMs

into Synchronous Ones for FPGAs

A circuit rewriting algorithmthat is used to rewrite a given circuit with AROMs (Asyn-

chronous Read Only Memories) until an equivalent circuit with SROMs (Synchronous

Read Only Memories) is generated for implementing in FPGAs.More specifically, a cir-

cuit, X with AROMs is given. Ourcircuit rewriting algorithmgenerates a circuit,Y with

SROMs which is an equivalent toX with AROMs for implementing in the current FP-

GAs. FPGAs have Configurable Logic Blocks (CLBs) to implement combinational and

sequential circuits and block RAMs to implement Random Access Memories (RAMs)

and Read Only Memories (ROMs). Circuit design that minimizesthe number of clock

cycles is easy if we use asynchronous read operation. However, embedded memories

of the most FPGAs support synchronous read and synchronous write operations, but do

not support asynchronous read operation. Hence, the main contribution of this chapter
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is to present a potent circuit rewriting approach to resolvethis problem. We assume that

a circuit using asynchronous ROMs (AROMs) designed by a non-expert or quickly de-

signed by an expert is given. Our goal is to convert this circuit with asynchronous ROMs

into an equivalent circuit with synchronous ones (SROMs) automatically. Finally, the

resulting circuit with synchronous ROMs can be embedded into FPGAs. We briefly

discuss the techniques to improve performance of the AROM-free resulting circuit and

also describe a technique for applying our rewriting algorithm even if a user designs a

circuit with pipeline structure.

A Circuit Rewriting Algorithm to Obtain Circuits with Synchronous

RAMs for FPGAs

A circuit rewriting algorithm, presented in this chapter is devoted for converting a

circuit with RAMs supporting asynchronous read and synchronous write operations

(ARAMs) into an equivalent circuit with RAMs supporting synchronous read and syn-

chronous write operations (SRAMs); more specifically, a circuit using asynchronous

RAMs (ARAMs) designed by a non-expert or quickly designed byan expert is given.

This rewriting algorithm converts it into an equivalent circuit using synchronous RAMs

(SRAMs) for implementing in FPGAs. In our previous work, mentioned earlier (fol-

lowed by the Chapter3), we consideredonly read operationof the memory blocks

(ROMs). Particularly, presented circuit rewriting algorithm was used to convert a circuit

with AROMs into an equivalent circuit with SROMs. The resulting circuit can be em-

bedded into FPGAs. However, this circuit rewriting algorithm, presented in this chapter

considersboth read and write operationsof the memory blocks (RAMs). In fact, we

improved our previous research work, where RAMs can be used as the additional circuit
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elements to the given input circuits. The conversion of a sequential circuit with ARAMs

into an equivalent fully synchronous circuit with no ARAMs for supporting the modern

FPGA architecture is not trivial. However, our algorithm can do it automatically. We

also briefly discuss the techniques to improve performance of the ARAM-free resulting

circuit.

A Modified Circuit Rewriting Algorithm for the Circuits with Cycle s

A modified circuit rewriting algorithmis used to convert a circuitwith cyclesusing

AROMs into an equivalent circuit using SROMs for implementing in FPGAs. The main

contribution of this chapter is to consider a given circuitwith cyclesusing AROMs. Par-

ticularly, our new circuit rewriting algorithm can be used to convert circuits which have

cycles. In our previous works, mentioned above (followed bythe Chapter3 and Chap-

ter 4), we have presented circuit rewriting algorithms to convert a circuit with asyn-

chronous ROMs or asynchronous RAMs into an equivalent circuit with synchronous

ones. The resulting circuit with synchronous ROMs or synchronous RAMs can be em-

bedded into FPGAs. However, these circuit rewriting algorithms can handle circuits

represented by a directed acyclic graph (DAG) and do not workfor those with cycles.

By the work in this chapter, we succeeded in relaxing the cycle-free condition of circuits.

More specifically, we present an algorithm that automatically converts a circuitwith cy-

clesusing asynchronous ROMs into an equivalent circuit using synchronous ROMs. We

also briefly discuss the techniques to improve performance of the AROM-free resulting

circuit.
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Performance Improvement of the Resulting Circuits

In this chapter, we mainly discuss about the performance improvement of the AROM-

free and ARAM-free resulting circuits. Basically, our rewriting algorithms move regis-

ters towards the output ports, whenever possible. Hence, ingeneral, the resulting circuits

may have the longest paths from input ports to registers/SROMs/SRAMs or from regis-

ters/SROMs/SRAMs to registers/SROMs/SRAMs or from registers/SROMs/SRAMs to

output ports. Therefore, the resulting AROM-free or ARAM-free circuit has large prop-

agation delay and low clock frequency. Hence, we say that performance of the resulting

AROM-free or ARAM-free circuit may be degraded in terms of latency and clock fre-

quency. However, it is easier to improve the performance of the resulting circuits than

minimizing the number of clock cycles. For the reader’s benefit, performance improve-

ment techniques in terms of latency and clock frequency of the resulting circuits are

described in Chapter6, although these arebeyond of this dissertation.

1.2 Dissertation Organization

This doctoral dissertation is organized as follows: The background with motivation and

the introduction of this dissertation are presented in Chapter 1. In Chapter2, we briefly

introduce an FPGA. Chapter3 describes acircuit rewriting approachto convert a cir-

cuit with AROMs into an equivalent circuit with SROMs for implementing in FPGAs.

Chapter4 describes acircuit rewriting approachto convert a circuit with ARAMs sup-

porting asynchronous read and synchronous write operations into an equivalent circuit

with SRAMs supporting synchronous read and synchronous write operations. In Chap-

ter 5, amodified circuit rewriting approachis described to convert a circuit with cycles

5



using AROMs into an equivalent circuit with cycles using SROMs for implementing in

FPGAs. Techniques to improve performance of the resulting circuits are described in

Chapter6. Finally, this dissertation is concluded in Chapter7.
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Chapter 2

FPGA

An FPGA (Field Programmable Gate Array) is a programmable VLSI in which a hard-

ware designed by users can be embedded instantly. In mid-1980’s, the first commer-

cially viable FPGA has been invented. At first, since the sizeof a hardware that can

be embedded on an FPGA was small and the speed was slow. Hence,applications of

FPGAs were limited to a specific area, such as digital signal processing, prototyping

ASIC, and computer hardware emulation. With technical improvement of LSI produc-

tion, however, their size, capabilities, and speed have been increased. Recently, because

of their flexibility, they are widely used for various applications.

2.1 FPGA Architecture Basics

Typical FPGAs consist of an array of programmable logic elements, distributed memory

blocks, embedded multipliers, Input/Output Block and programmable interconnections

between them. Figure2.1shows an example of FPGA hardware fabric. The logic block

usually contains either a logic function or a multiplexer and several flip-flops. An exam-

7



ple of a logic block is illustrated in Figure2.2. The distributed memory block is usually

a dual-port RAM (Random Access Memory) on which a word of datafor possibly dis-

tinct addresses can be read/written at the same time. Note that, a RAM can be treated as

ROM by selecting the write enable input of a RAM as low. The embedded multipliers

can compute multiplication much faster than multipliers that consists of logic elements.

The user’s hardware logic design can be embedded into the FPGAs using the design

tools supplied by the FPGA vendors. Using design tools supplied by FPGA vendors,

a hardware logic designed by users can be embedded into the FPGAs. However, de-

signed circuits by users with AROMs (Asynchronous ROMs) supporting asynchronous

read operation or ARAM (Asynchronous RAMs) supporting asynchronous read and

synchronous write operations can not be implemented in FPGAs, because, embedded

blocks of memories in FPGAs support synchronous read and synchronous write op-

erations. Hence, our goal is to provide circuit rewriting algorithms that can convert

circuits with AROMs or ARAMs into the equivalent circuits with synchronous ones for

implementing in FPGAs. In particular, circuits consist of registers (Rs), combinational

circuits (CCs) and AROMs or ARAMs are converted automaticallyby our circuit rewrit-

ing algorithms into the equivalent circuits having registers (Rs), combinational circuits

(CCs) and SROMs or SRAMs for implementing in FPGAs.
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Figure 2.1: An example of FPGA hardware fabric.
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Figure 2.2: An example of a logic block.
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Chapter 3

A Circuit Rewriting Algorithm for

Converting Asynchronous ROMs into

Synchronous Ones for FPGAs

The main contribution of this chapter is to present a circuitrewriting algorithm to con-

vert a circuit with AROMs supporting asynchronous read operation into an equivalent

circuit with SROMs supporting synchronous read operation for implementing in FP-

GAs. Most of FPGAs have Configurable Logic Blocks (CLBs) to implement combina-

tional and sequential circuits and block RAMs to implement Random Access Memories

(RAMs) and Read Only Memories (ROMs). We say that circuit design that minimizes

the number of clock cycles is easy if we use asynchronous readoperations. However,

embedded memories of the most FPGAs support synchronous read and synchronous

write operations, but do not support asynchronous read operations. This chapter pro-

vides one of the potent approaches to resolve this problem. We assume that a circuit

using asynchronous ROMs designed by a non-expert or quicklydesigned by an expert
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is given. Our goal is to convert this circuit with asynchronous ROMs (AROMs) into an

equivalent circuit with synchronous ones (SROMs) automatically. The resulting circuit

with synchronous ROMs can be embedded into FPGAs. We briefly discuss the tech-

niques to improve performance of the AROM-free resulting circuit and also describe

a technique for applying our rewriting algorithm even if a user designs a circuit with

pipeline structure.

3.1 Introduction

Our approach, presented in this chapter is devoted to convert a circuits with AROMs

into an equivalent circuit with SROMs for implementing in FPGAs. An FPGA is a

programmable VLSI (Very Large Scale Integration) in which ahardware designed by

users can be embedded quickly. FPGAs may implement hundredsof circuits that work

in parallel. Therefore, they are used to accelerate useful computations. Some circuit

implementations in FPGAs are described [1, 2, 9, 14] to accelerate computation. For

example, a parallel implementation [9] for the exhaustive verification of the Collatz

conjecture has been presented. In this implementation, 24 co-processors embedded in a

Xilinx Virtex-2 Family FPGA perform the exhaustive verification in parallel.

In this chapter, we mainly focus the following asynchronousand synchronous read

operations of memory blocks.

3.1.1 Asynchronous read operation

The memory block outputs the data specified by the address given to the address port.

When the address value is changed, the output data is updated immediately within some

11



delay time. In other words, the output data port always outputs M[d], which is the data

stored in the input address valued.

3.1.2 Synchronous read operation

Even if the address value is changed, the output data is not updated. The output data is

updated based on the address value at the rising edge of clock. More specifically, the

output data port outputsM[d], whered is the address data at the previous point of rising

clock edge.

Let AROMsand SROMsdenote ROMs with asynchronous and synchronous read

operations, respectively. In general, the circuit design is simpler and easier to the de-

signers, in particular to the non-expert circuit designersif AROMs are available. In

asynchronous read operation, the value of a specified address can be obtained imme-

diately. However, in synchronous read operation, one clockcycle is required to obtain

it. Nevertheless, block RAMs embedded in most of the currentFPGAs do not support

asynchronous read operation for increasing its operating clock frequency.

The main contribution of this chapter is to present a circuitrewriting approach that

convertsan asynchronous circuitconsisting

combinational circuits (CCs), registers (Rs), and ROMs with asynchronous

read operations (AROMs)

into an equivalent synchronous circuitconsisting

combinational circuits (CCs), registers (Rs), and ROMs with synchronous

read operations (SROMs).

Note that, most of the current FPGAs support synchronous read operation, but do not

12



support asynchronous one. We are thinking the following scenario to use our circuit

rewriting algorithm:

• An asynchronous circuit designed by a non-expert, or quickly designed by an

expert is given.

• Our circuit rewriting algorithm converts it into an equivalent synchronous circuit.

• The resulting synchronous circuit can be implemented in FPGAs.

In other words, designers can design a circuit for FPGAs under the assumption of asyn-

chronous read operation, which is simpler and easier than one with synchronous read

operation.

We will show a simple example illustrating that the circuit design is simpler if

AROMs are available. Suppose that for an inputX0, we need to computeXn = Xn−1 +

f (Xn−1) for everyn ≥ 1. We assume that the functionf is computed using a ROM. More

specifically, we use a ROM such that addressi is storing a value off (i). Figure3.1(a)

illustrates a circuit with an AROM to computeX1,X2, . . . for an inputX0. An AROM

is used to compute the value off (Xn) for a givenXn. It should be clear that this circuit

outputsX1,X2, . . . in every clock cycle. Figure3.1(b) shows a circuit with an SROM.

Since one clock cycle is necessary to read the value off (Xn) for input Xn, we need to

insert a register to synchronize two inputsXn and f (Xn) of the adder as illustrated in the

figure. This circuit outputsX1,X2, . . . in every two clock cycles. Hence, the circuit in

Figure3.1(b) needs double clock cycles over the circuit in Figure3.1(a). Using our algo-

rithm to the sub-circuit with solid lines (wires) in Figure3.1(a), we can obtain the circuit

in Figure3.1(c) automatically. In the circuit with an SROM in Figure3.1(c), X1,X2, . . .

is output in every clock cycle. Thus, the timings of the circuits in Figure3.1(a) and (c)
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AROM

R

f(Xn)

+

(a) A circuit with an AROM (b) A circuit with an SROM
by a non-expert

(c) The converted circuit with an SROM

X0

SROM

R

f(Xn)

+

X0

R SROM
f(Xn)

+

X0

R

Xn Xn Xn

Figure 3.1: An example of circuits using an AROM and an SROM.

are identical.

It is not trivial for the non-expert designers to minimize the number of clock cycles

to obtain circuit as illustrated in Figure3.1(c). However, our algorithm can do it auto-

matically. Although, clock performance may degrade in the converted circuit due to the

moving of registers (Rs) towards the output ports by our algorithm; however, designers

can make a trade-off between the maximum delay and number of clock cycles for their

designs. The readers should refer to Figure3.2 for an illustration. In Figure3.2, the

number of clock cycles is increased as well as the maximum delay is decreased by in-

serting the pipelined registers. In general, the insertionof the pipelined registers is not

difficult. On the other hand, our algorithm may decrease the number of clock cycles by

removing redundant registers. Although it may increase themaximum delay, sometimes

the resulting circuit takes smaller total computing time. Readers may refer to Chapter6

for details about performance improvement techniques.
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 by inserting 

pipelined registers 

 by our technique

Number of clock cycles

Maximum delay

Figure 3.2: A relation between the maximum delay and the number of clock cycles.

The outlines of our new idea are as follows:

1. We introducea negative register(NR), which is an imaginary register latching a

future input data.

2. We define simplefive rulesthat rewrite a circuit.

3. The rewriting algorithm that we propose just repeats applying these rules until no

more rules can be applied. When the rewriting algorithm terminates, we have an

equivalent AROM-free circuit to the original circuit.

The key and innovative idea is to introduce a negative register. In our rewriting algo-

rithm, a circuit with AROMs is first converted into an AROM-free circuit with negative

registers. After that, our algorithm continues to rewrite circuit such that all NRs are

removed. When the algorithm terminates, all negative registers will be removed if pos-

sible, and the resulting circuit becomes an equivalent to the original circuit.

A circuit implementation with AROMs is better than SROMs implementation, be-

cause of less power consumption, easy to design etc. But it has some problems like

small in size so that it does not support the designer’s demand, more expensive, and less
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speedy [3, 10, 11]. To cut the clock distribution power, an asynchronous circuit design

in FPGAs is very much suitable, described in [13, 8, 19]. However, it is not supported

by the current FPGAs.

On the other hand, a circuit implementation with SROMs is dominating the mod-

ern digital circuit design industry, because it supports the modern FPGA architecture,

although it has some drawbacks to design like clock distribution, more power consump-

tion etc [3, 11]. Therefore, we should use SROMs when we need a function of ROMs.

One of the research works described the implementation of asynchronous circuit in

FPGA [16]. In this research work, they described the problems like hazards, timing

constraints, state holding elements, analog components and decomposition of the asyn-

chronous circuit implementation in FPGA. Another researchwork described a novel

FPGA architecture for implementing various styles of asynchronous logic [7]. They

implemented a full-adder circuit in two different logic styles. While in synchronous

circuits a clock globally controls the activity where as asynchronous circuit activity is

locally controlled using communication channels to detectthe presence of data at their

inputs and outputs. An asynchronous module communicates with each other using re-

quests and acknowledges [17]. Some dedicated FPGAs have also been developed to

test asynchronous designs. Unfortunately, these FPGAs areclosely associated to a style

of design. For instance, PGA-STC [12] and MONTAGE [16] are based on an asyn-

chronous design, GALSA [4] and STACC [15] are globally asynchronous FPGAs but

locally synchronous and PAPA [18] is a fully asynchronous FPGA dedicated to optimize

pipeline circuits.

To the best of our knowledge, there is no previous research work on our topic. It

is well known that the architecture of the current FPGAs is the best suited for digital
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synchronous circuit designs. Unfortunately, they do not have block RAMs supporting

asynchronous read operations. It is also known that AROM is implemented in LUTs

which is easy to use because of the immediate output of data. However, it is small in

size and costly. Therefore, our target is to generate an AROM-free fully synchronous

sequential circuit from a sequential circuit with AROMs which is an equivalent to the

original circuit so that it can support the modern FPGA architecture.

We summarize several significant points of our results as follows:

• Negative registers (NRs) are newly introduced as a key and innovative idea. Fur-

ther, the correctness of our algorithm is proved in a rigorous manner.

• Our circuit rewriting algorithm moves all redundant registers towards the output

ports. They can be removed to decrease the latency of the circuit. Therefore, the

circuit that obtained has minimum latency in the sense that all redundant registers

are deleted. We will discuss a technique to minimize latencyof the resulting

circuits in Chapter6.

• Clock performance may degrade in the resulting circuit by ourrewriting algo-

rithm. However, we can improve the clock performance by inserting registers

appropriately, although this is beyond of this dissertation. For the benefit of read-

ers, a technique to improve clock performance of the resulting circuit will be

discussed in Chapter6.

• FPGA vendors may think that they will support asynchronous read operation for

next-generation FPGAs satisfying low latency circuits with forfeiting the high

clock frequency. If this is the case, our rewriting approachis useless. However,

our results suggest to the FPGA vendors that support of asynchronous read opera-
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tion is not necessary, because it can be automatically converted into synchronous

one using our algorithm.

• The readers may think that circuits dealt with this chapter are too restricted where

as circuits in real-world are more complicated. However, itmay be possible to

extract a sub-circuit from the complicated circuit. We can then apply our circuit

rewriting algorithm to this sub-circuit.

• Even if a user designs a circuit with pipeline structure, ouralgorithm moves

pipeline registers towards the output ports and destroys the pipeline structure.

However, it may be possible to perform AROM-free conversionlocally without

collapsing a global pipeline structure. For this purpose, we need to extract sub-

circuits in the original circuit such that it contains no pipeline register. By using

our algorithm for each sub-circuit, it can be converted intoan AROM-free circuit.

Since the timing of each sub-circuit is not changed, the whole converted circuit is

identical to the original circuit. In this way, our algorithm may be applicable to

the pipelined circuits.

This chapter is organized as follows: Section3.2briefly describes the circuits and their

equivalence. In Section3.3, we describe our rewriting algorithm, circuit graph and also

explain the equivalence for our rewriting rules. Section3.4 presents the proof of the

correctness of our rewriting algorithm. Finally Section3.5concludes this chapter.

3.2 Circuits and Their Equivalence

This section briefly describes the circuit elements such as combinational circuit (CC),

registers (R), read only memory (ROM) and their equivalence. Let us consider a se-
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quential circuit that consists of input ports, output ports, combinational circuits (CCs),

registers (Rs), read only memories (ROMs), a global clock input (clock), and a global

reset input (reset). The following subsections describe the circuit elements such as com-

binational circuit (CC), register (R), read only memories (ROMs).

3.2.1 Combinational Circuit (CC)

A combinational circuit (CC) is a network of fundamental logicgates with no feedback.

So, it can compute Boolean functions represented by Booleanformulas, such asF =

A·B+B·C andG = B ·C as illustrated in Figure3.3. Once inputs are given, the outputs

are computed in small propagation delay.

A B C

F G

Figure 3.3: An example of a combinational circuit (CC).

3.2.2 Register (R)

Register is a memory element that can store data or information. A b-bit register has a

clock input and a reset input. It can store ab-bit data as shown in Figure3.4. If reset is

1, then theb-bit data is initialized by 0. If reset is 0, the stored data isupdated by the
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value given to the input portd at every rising clock edge. The data stored in the register

is always output from portq.

clock

d

q

d

q

b-bit register (R)

SROM

d

q

AROM

clock

reset

reset

Figure 3.4: A register (R), a synchronous ROM (SROM) and an asynchronous ROM

(AROM).

3.2.3 ROM (Read Only Memory)

ROM is also known as a memory element where data or information can be stored

permanently. A ROM (Read Only Memory) has ab-bit input d and ac-bit data output

q. It is storing 2b words such asM[0], M[1], . . ., M[2b − 1] with c bits each. We deal

with two types of ROMs in terms of read operations as follows:

• Synchronous ROM (SROM)An SROM has a clock input and a reset input. If

reset is 1 then the stored value is initialized by 0. The read operation is performed
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at every rising clock edge when reset is 0. The outputq is the value ofM[d] at the

latest rising clock edge.

• Asynchronous ROM (AROM) An AROM has no clock input and no reset input.

The value ofM[d] is continuously output from portq.

The Figure3.5shows a timing diagram of reading operations of the R, SROM, AROM

and NR. In the figure, time 0, 1, 2,. . . correspond to rising edges of the periodic clock

input. Initially global reset is 1 and it drops to 0 just before time 0. Datad0, d1, d2, . . .

are given to the input portd. As shown in the figure, the value of output,q of R and

SROM is 0 at time 0. Also, at time 1, 2,. . . the values of output,q of R and SROM

ared0, d1, d2, . . . andM[d0], M[d1], M[d2], . . ., respectively. For the AROM, the data

M[d0], M[d1], M[d1], . . . are taken from the output port,q immediately at time 0, 1, 2,

. . ., respectively.

In current FPGAs, an SROM can be implemented in embedded block RAMs. How-

ever, an AROM is implemented in LUTs, which are very costly. Hence, we should use

SROMs when we need a function of ROMs. On the other hand, AROM is easy to use,

because we can get output data from the AROM immediately.

We will describe a behavior of a circuit element using a sequence of output at every

rising clock edge for theperiodic clock(clock is inverted into a fixed frequency), and

initial reset (initially, reset is 1 and drops to 0 before the first rising clock edge) as

illustrated in Figure3.5. The behavior of each circuit element is described by the output

sequences as follows:

• Combinational Circuit (CC) For simplicity, we assume 3-input 2-output com-

binational circuit which is shown in Fig.3.3. There is no difficulty to extend the

definition for generalm-input n-output combinational circuit. We assume that, at
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d d0 d1 d2 d3

q (SROM)

clock

M [d0] M [d1 M [d2] M [d3]q(AROM)

q(R) d1 d2

time 0 1 2 3

M [d1] [d2]

reset

0

0

d0

M [d0]

q (NR) d3 d4d1 d2

Figure 3.5: A timing chart of a register (R), an SROM, an AROM and a negative register

(NR).

time i (i ≥ 0), ai, bi, andci are given to the 3 input portsA, B, andC. Let f andg

be the two functions with three arguments that determine thevalue of output ports

F andG. The output sequences ofF andG are as follows:

CC(F):〈 f (a0,b0, c0), f (a1,b1, c1), f (a2,b2, c2), . . .〉

CC(G):〈g(a0,b0, c0),g(a1,b1, c1),g(a2,b2, c2), . . .〉

• Register (R)Let di denotes an input value given to an input portd at timei (i ≥ 0).

The output sequence is described as follows:

R: 〈0,d0,d1,d2, . . .〉

• Synchronous and Asynchronous ROMs (SROMs and AROMs)Let M[ j] de-

notes the value stored in addressj ( j ≥ 0) of the ROM. The output sequences of
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SROM and AROM are as follows:

SROM:〈0,M[d0],M[d1],M[d2], . . .〉

AROM: 〈M[d0],M[d1],M[d2],M[d3], . . .〉

In this chapter, we assume that a fully synchronous circuit has data inputs, data out-

puts, a global clock input, a global reset input, combinational circuits (CCs), registers

(Rs), SROMs, AROMs, and their interconnects. The readers should refer to the Fig-

ure3.6 for illustrating an example of a fully synchronous circuit.The global clock and

the global reset are directly connected to the clock input ports and the reset input ports

of all Rs and SROMs. Also, we assume that a circuit has no loop.

I I

RCC

AROM

O

AROM

R

O

R CC

CC
clock

reset

AROM

CC

AROM

R

RCC

CCR

data input

data output

0 0

-1 -1

0 -1

-1 0

0

0

-1

-1

Figure 3.6: An example of a fully synchronous circuit and thecorresponding circuit

graph with potentiality.

Let us defineequivalenceof two fully synchronous circuits for the periodic clock

and initial reset. We say that two circuitsX andY are anequivalentif, for any input

sequence, the output sequences are the same except for first several outputs. For the
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b-bit register

d
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= =

q

c

c

AROM

c-bit register

d

b

clock

reset

clock

reset

clock

reset

Figure 3.7: An example of three circuits such as SROM, R+AROM, and AROM+R for

showing an equivalence.

reader’s benefit, we will show an example of the equivalence.

Let us consider a circuit R+AROM, that is, the output of R is connected to the input

of AROM as illustrated in Figure3.7. We also consider a circuit AROM+R, in which

the output of AROM and the input of R are connected. For the periodic clock with initial

reset, the output sequences of SROM, R+AROM, and AROM+R are as follows:

SROM:〈0,M[d0],M[d1],M[d2], . . .〉

R+AROM: 〈M[0],M[d0],M[d1],M[d2], . . .〉

AROM+R: 〈0,M[d0],M[d1],M[d2], . . .〉

Since these three circuits have the same output in time 1, 2,. . ., they are an equivalent.

Note that the outputs in time 0 are not equal. In this chapter,we ignore first several

clock cycles when we determine an equivalence of the circuits.

Suppose that a circuitX with AROMs is given. The main contribution of this chapter

is to show

• a necessary condition such that an AROM-free circuit,Y can be generated, which
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is an equivalent toX, and

• an algorithm to deriveY if the necessary condition is satisfied.

For later reference, we will introducea negative register(NR), which is a nonexis-

tent device used only for showing our algorithm to deriveY and related proofs. Recall

that, a regular register latches the input at the rising clock edge. A negative register

latches a future input. The Figure3.5also shows a timing diagram of a negative register

(NR). An NR latches the value of inputd at the rising edge of two clock cycles later as

illustrated in Figure3.5. Thus, the NR has the following output sequence for a periodic

clock with an initial reset:

NR: 〈d1,d2,d3, . . .〉.

In our algorithm to derive an AROM-free circuitY, circuits with NRs will be used as

interim results.

3.3 Circuit Graph and Rewriting Rules

This section shows a circuit with its underlying directed circuit graph and also describes

five rewriting rules in details. We simply use a directed graph to denote the intercon-

nections of a fully synchronous circuit. We call such graphas a circuit graph. A circuit

graph consists of a set of nodes and a set of directed edges connecting two nodes. Each

node is labeled by either I (Input port), O (Output port), CC (Combinational Circuit), R

(Register), NR (Negative Register), AROM, or SROM. A node with label I is connected

with one or more outgoing edges. A node with label O is connected with exactly one

incoming edge. A node with label CC has one or more incoming edges and one or more
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outgoing edges. A node with label R, NR, AROM, or SROM has one incoming and one

outgoing edge. We also assume that a circuit graph is a directed acyclic graph (DAG),

that is, it has no directed cycles. The Figure3.6 illustrates an example of a directed

graph. Note that nodes with label I, R, NR, AROM, or SROM has only one outgoing

edge. The readers may think that one outgoing edge is a too stringent restriction because

it does not allow two or more fan-outs. However, we can implement multiple fan-outs

by attaching a simple combinational circuit (CC) that just duplicates the input. For ex-

ample, a CC with one input portA and two output portsF andG such thatF = A and

G = A is used to implement fan-out 2 as illustrated in Figure3.8.

A

F = A G = A

Figure 3.8: A combinational circuit to implement fan-out 2 circuit.

For a given circuitX with AROMs, we will show an algorithm to derive an AROM-

free and NR-free circuit,Y by rewriting circuits. We assume thatX is given as a circuit

graph. We will define rules to rewrite a circuit graph. The readers should refer to

Figure3.9 for illustrating the rules, where P and S denote predecessorand successor

nodes respectively. The nodes between predecessor and successor nodes are rewritten

as follows:

Rule 0 AROM node is rewritten into SROM+NR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, thatis, they are
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Figure 3.9: Rules to rewrite a circuit graph.

removed.

Rule 2 R+SROM (or NR+SROM) is rewritten into SROM+R (or SROM+NR).

Rule 3 If one of the incoming edges of a CC node is connected to an NR node, then

the NR node is removed, an R node is added to all the other incoming edges, and

the NR node is moved to all the outgoing edges of the CC node.

Rule 4 If all the incoming edges of a CC node are connected to an R node,then all the

Rs are moved to all the outgoing edges of the CC node.

Let us confirm that, after applying one of the rewriting rules, an original circuit and

the resulting circuit are an equivalent. Letai, bi, ci, anddi (i ≥ 0) denote inputs given
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from the predecessor node at timei.

Rule 0 Both AROM and SROM+NR have the output sequence〈M[d0], M[d1], M[d2],

M[d3], . . .〉, and thus they are an equivalent.

Rule 1 R+NR and NR+R have the output sequences〈d0, d1, d2, d3, . . .〉 and〈0,d1,d2,d3, . . .〉,

respectively. Also, NULL circuit has the output sequence〈d0,d1,d2,d3, . . .〉. Thus,

they are an equivalent.

Rule 2 R+SROM and SROM+R have the output sequences〈0, M[0], M[d0], M[d1],

. . .〉 and〈0, 0, M[d0], M[d1], . . .〉, respectively and thus they are an equivalent.

On the other hand, NR+SROM and SROM+NR have the output sequences〈0,

M[d1], M[d2], M[d3], . . .〉 and〈M[d0],M[d1],M[d2],M[d3] . . .〉, respectively and

thus they are an equivalent.

Rule 3 The output sequences of the left-hand side of the rule are〈 f (a1,b0, c0), f (a2,b1, c1),

f (a3,b2, c2), . . .〉 and 〈g(a1,b0, c0), g(a2,b1, c1), g(a3,b2, c2), . . .〉. Those of the

right-hand side are〈 f (a1,b0, c0), f (a2,b1, c1), f (a3,b2, c2), . . .〉 and〈g(a1,b0, c0),

g(a2,b1, c1), g(a3,b2, c2), . . .〉. Thus, they are an equivalent.

Rule 4 The output sequences of the left-hand side of the rule are〈 f (0,0,0), f (a0,b0, c0),

f (a1,b1, c1), . . .〉 and〈g(0,0,0), g(a0,b0, c0), g(a1,b1, c1), . . .〉. Those of the right-

hand side are〈0, f (a0,b0, c0), f (a1,b1, c1), . . .〉 and〈0, g(a0,b0, c0), g(a1,b1, c1),

. . .〉. Thus, they are an equivalent.

We are now in position to describe the rewriting algorithm. Suppose that an in-

put circuit graph has nodes with labelsI, O, R, AROM, SROM, andCC. The following

rewriting algorithm generates a circuit graph which is an equivalent to the original cir-

cuit graph.
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Figure 3.10: Interim and resulting circuit graphs obtainedby our rewriting algorithm

for a circuit graph.

Find a minimum i such that Rule i can be applied to the current circuit

graph. Rewrite the circuit graph using such Rule i. This rewriting procedure

is repeated until no more rewriting is possible.

The readers should refer to Figure3.10 for illustrating interim and resulting circuit

graphs obtained using our rewriting algorithm. In this figure, nodes applied rules are

highlighted.
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Let us observe the behavior of our rewriting algorithm. First, our rewriting algorithm

repeats the applying Rule 0 to all AROM nodes until all AROM nodes are rewritten into

SROM+NR. After that, NR nodes are moved towards the output nodes using Rules 2

and 3. Similarly, R nodes are moved towards the output nodes using Rules 2 and 4

whenever possible. Also, adjacent pairs of R and NR are removed by Rule 1. Thus,

intuitively, all NR nodes in the resulting circuit graph aremoved and placed just before

the output nodes.

For the purpose of clarifying the condition such that our rewriting algorithm can

generate NR-free circuit graph, we definethe potentiality of the nodesin a circuit

graph. Suppose that a nodev of a circuit graph hask (≥ 0) incoming edges such as

(u1, v), (u2, v), . . . , (uk, v). Let us definethe potentiality p(v) of a nodev as follows:

• If v is I, thenp(v) = 0.

• If v is O or SROM, thenp(v) = p(u1).

• If v is AROM or NR thenp(v) = p(u1) − 1.

• If v is R thenp(v) = p(u1) + 1.

• If v is CC, thenp(v) = min(p(u1), p(u2), . . . , p(uk)).

The Figure3.6also shows the potentiality of each node.

We have the following theorem.

Theorem 3.3.1 All O nodes of a circuit graph have non-negative potentiality, if and

only if our rewriting algorithm generates an AROM-free and NR-free circuit graph,

equivalent to the original circuit graph.
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In other words, we can determine a fully synchronous circuitthat can be converted into

an AROM-free circuit by evaluating the potentiality of all Onodes of the correspond-

ing circuit graph. Also, the potentiality of all O nodes are non-negative, our rewriting

algorithm generates an AROM-free and NR-free circuit graph, and the corresponding

fully synchronous circuit is an AROM-free and an equivalentto the original fully syn-

chronous circuit. For example, in Figure3.10, the potentiality of the right O node is

negative. Hence, the resulting circuit graph has an NR node and our rewriting algorithm

fails to remove all NRs.

3.4 Proof of Theorem3.3.1

The main purpose of this section is to show a proof of Theorem3.3.1. We will show

several lemmas for a proof of Theorem3.3.1.

Let us observe how the potentiality of nodes is changed by ourrewriting algorithm.

We focus the potentiality of successor nodes. LetP andS denote the predecessor and

successor nodes for Rules 0, 1, and 2. Also, letP1, P2, P3, andS1, S2 be the three

predecessor and two successor nodes in Rules 3 and 4. We compute the potentiality of

each successor node both before and after applying the rulesas follows.

Rule 0 p(S) = p(P) − 1.

Rule 1 p(S) = p(P).

Rule 2 p(S) = p(P) + 1 if R andp(S) = p(P) − 1 if NR.

Rule 3 p(S1) = p(S2) = min(p(P1) − 1, p(P2), p(P3)) = min(p(P1), p(P2) + 1, p(P3) +

1)− 1.
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Rule 4 p(S1) = p(S2) = min(p(P1) + 1, p(P2) + 1, p(P3) + 1) = min(p(P1), p(P2),

p(P3)) + 1.

Thus, the potentiality of every successor node is never changed by applying the rules.

In every rule, O nodes can only be successor nodes. Thus, we have,

Lemma 3.4.1 The potentiality of every O node of the resulting circuit graph is the same

as that of the corresponding O node of the original circuit graph.

In Figure3.10, the potentialities of the left and the right O nodes are 0 and−1, respec-

tively, and these values are never changed.

In a circuit graph, leta segmentbe a directed pathu1, u2, . . ., uk such that,u1 anduk

are either I, O, SROM, or CC, andu2, . . ., uk−1 are either R or NR. Note that, ifk = 2

then it represents a null segment withu1, u2. We also have the following lemma.

Lemma 3.4.2 Let u be an NR node and(u, v) be its outgoing edge in the resulting circuit

graph. Node v must be either NR or O node. Also, all NR nodes must be in segments

ending at O node.

Proof If v is an R, SROM, or CC node then Rules 1, 2, or 3 can be applied. Since

no more rules can be applied to the resulting circuit graph,v must be either NR or O

node. Since the successor of NR nodes must be NR or O node, all NR nodes must be in

segments ending at O node.

From Lemma3.4.2, we will prove that all SROM and CC nodes in the resulting

circuit graph have zero potentiality.

Lemma 3.4.3 All SROM and CC nodes in the resulting circuit graph have non-negative

potentiality.
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Proof Since the resulting graph is AROM-free, nodes follow NR nodes can have nega-

tive potentiality. Since no segment ending at SROM or CC has NRnodes, their poten-

tiality must be non-negative.

Similarly, we have the following lemma.

Lemma 3.4.4 All SROM and CC nodes in the resulting circuit graph have non-positive

potentiality.

Proof We assume that the resulting circuit graph has a SROM or CC nodewith positive

potentiality, and show a contradiction. Letv be a first SROM or CC node with negative

potentiality, that is, all SROM and CC nodes in all directed paths incoming tov have

non-positive potentiality and SROM or CC nodev has positive potentiality.

Case 1 v is an SROM node

Let (u, v) denotes the incoming edge. Ifu is either R or NR, then Rule 2 can be

applied. Since no more rules can be applied to the resulting circuit graph, it must

be either I, SROM, or CC. If this is the case,p(u) = 0 and thus,p(v) = 0, a

contradiction.

Case 2 v is a CC node

Let (u1, v), (u2, v), . . . , (uk, v) (k ≥ 1) denote the incoming edges. From Lemma3.4.2,

none ofu1,u2, . . . ,uk is an NR node. If all of them are R nodes, then Rule 4 can

be applied. Thus, at least one of them is not an R node. It follows that at least

one of them is either I, SROM, or CC node. From the assumption, the poten-

tiality of such node is non-positive, Hence, the potentiality of v is non-positive, a

contradiction.
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We are now in position to show the proof of Theorem3.3.1. From Lemma3.4.3

and3.4.4, all SROM and CC nodes in the resulting circuit graph have zeropotentiality.

Hence, if the potentiality of one of the O nodes in the resulting circuit graph is negative,

a segment ending at O node in the resulting graph should have NR from Lemma3.4.2.

Similarly, if the potentiality of all the O nodes is non-negative, no segment ending at an

output node has NR in the resulting circuit graph. From Lemma3.4.1, the potentiality

of O nodes does not change by our rewriting algorithm. Thus, all output nodes of a

circuit graph have negative potentiality, if and only if ourrewriting algorithm generates

the resulting circuit graph with NR nodes. This completes the proof of Theorem3.3.1.
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Figure 3.11: A circuit an almost equivalent to that of Figure3.6 that can be converted

into an AROM-free circuit.

From Theorem3.3.1, it is not always possible to have an equivalent AROM-free cir-

cuit to the original one. However, we may modify a circuit such that it can be converted

into an almost equivalent AROM-free circuit. For this purpose, we compute the poten-
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tiality of all O nodes in the corresponding circuit graph. After that, we insert registers

just before O nodes with negative potentiality so that the potentiality of the correspond-

ing O nodes turns into a zero. Since the potentiality of the corresponding O nodes now

is 0, it can be converted into an equivalent AROM-free circuit by our Theorem3.3.1.

The readers should refer to the Figure3.11for illustrating an example. Note that, the

resulting circuit is not an equivalent to the original circuit. However, the difference is the

latency of the output. Thus, we can say that the resulting circuit is an almost equivalent

to the original circuit.

3.5 Concluding Remarks

The main contribution of this chapter was to present a rewriting algorithm and five

rewriting rules to convert a circuit with AROMs into an equivalent circuit with no

AROMs for the current FPGA. Using our rewriting algorithm, any sequential circuit

with AROMs can be converted into an equivalent fully synchronous sequential circuit

with no AROMs to support the modern FPGA architecture. Although this conversion is

not trivial. However, our approach, presented in this chapter did it automatically. We

also described a technique for applying our rewriting algorithm even if a user designs a

circuit with pipeline structure.
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Chapter 4

A Circuit Rewriting Algorithm to

Obtain Circuits with Synchronous

RAMs for FPGAs

We present a circuit rewriting algorithm to generate an equivalent circuit with Syn-

chronous Random Access Memories (SRAMs for short) for a circuit with Aynchronous

Random Access Memories (ARAMs for short) such that generated circuit with SRAMs

can be embedded into FPGAs. The main contribution of this chapter is to considerboth

the read and write operationsof the memories (RAMs) for the algorithm. The con-

tribution, described in Chapter3, was to consideronly read operationof the memry

blocks (ROMs). More specifically, presented algorithm was to obtain an equivalent cir-

cuit with SROMs supporting synchronous read operation for the circuit with AROMs

supporting aynchronous read operation. However, this circuit rewriting algorithm, pre-

sented in this chapter, is used to obtain an equivalent circuit with SRAMs supporting

both synchronous read and synchronous write operations forthe circuit with ARAMs

36



supporting aynchronous read and synchronous write operations. We say that that circuit

design that minimizes the number of clock cycles is easy if weuse asynchronous read

operations. However, embedded memories in FPGAs support synchronous read and

synchronous write operations, but do not support asynchronous read operations. To re-

solve this problem, we provide one of the potent approaches in this chapter. We assume

that a circuit using asynchronous RAMs designed by a non-expert or quickly designed

by an expert is given. Our goal is to convert this circuit withasynchronous RAMs into

an equivalent circuit with synchronous ones. The resultingcircuit with synchronous

RAMs can be embedded into the FPGAs. We also briefly discuss the techniques to

improve performance of the ARAM-free resulting circuit.

4.1 Introduction

Recall the contribution, presented in Chapter3 which was concerned withonly read op-

erationof the memory blocks such ROMs in FPGAs. More specifically; presented algo-

rithm in Chapter3, was used to convert a circuit with AROMs supporting asynchronous

read operation into an equivalent circuit with SROMs supporting synchronous read op-

eration. However, algorithm, presented in this chapter mainly concerns bothread and

write operationsof the memory blocks. Particularly, presented algorithm isused to con-

vert a circuit using asynchronous RAMs (ARAMs) designed by anon-expert or quickly

designed by an expert into an equivalent circuit using synchronous RAMs (SRAMs) for

implementing in FPGAs. For the benefit of readers, we recall abrief description of a

memory block. The memory block is a dual-port RAM which can perform read and/or

write operations for a word of data to two distinct or same addresses in the same time.

In this chapter, we consider single-port RAM which can be embedded into a dual-port
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block RAM of the current FPGAs. Usually, the dual-port RAM supports synchronous

read and synchronous write operations. The read and write operations are performed at

the rising clock edges. FPGAs can be used to implement designed circuits by users. For

the benefit of readers, we recall some examples of circuit implementations in FPGAs,

described in [1, 2, 9, 14] to accelerate computation.

In this chapter, we mainly focus on the asynchronous read, synchronous read and

synchronous write operations of memory blocks as follows:

Asynchronous read operation

The memory block outputs the data specified by the address given to the address

port. When the address value is changed, the output data is updated immediately

within some delay time. In other words, the output data port always outputsM[a],

which is the data stored in the input address valuea.

Synchronous read operation

Even if the address value is changed, the output data is not updated. The output

data is updated based on the address value at the rising edge of the clock. More

specifically, the output data port outputsM[a] on the rising edge of the clock,

wherea is the address data at the previous point of the rising clock edge.

Synchronous write operation

The memory block stores the input data, given to the data porton the rising edge

of the clock only when write enablewe is high. Even though, the input data value

is changed and the rising edge of the clock is available, nevertheless write enable

we is low, the input data value is not written into the memory block. Particularly,

the input data valued is only written into the memory ofM[a] on the rising edge
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of the clock when write enablewe is high, wherea, d andwe represent address

data value, input data value and write enable respectively at the previous point of

the rising clock edge.

In this chapter, we consider asynchronous RAMs (ARAMs) and synchronous

RAMs (SRAMs). They have a data input portD, an address input portA, clock

input port clock, write enable input portwe and data output portQ as shown in

Figure 4.1. ARAMs and SRAMs support asynchronous and synchronous read

operations respectively. Also they both support synchronous write operation. In

general, the circuit design is simpler and easier to the designers, more specifically

to the non-expert circuit designers if ARAMs are available.In asynchronous read

operation, the value of a specified address can be obtained immediately. How-

ever, in synchronous read operation, one clock cycle is required to obtain it. Nev-

ertheless, block RAMs embedded in most of the current FPGAs do not support

asynchronous read operation for increasing its clock frequency.

In our previous work in Chapter3, we have presented a circuit rewriting approach

for Directed Acyclic Graph (DAG) circuits considering onlyread operations of

the memory blocks (ROMs). However, this chapter considers both read and write

operations of the memory blocks (RAMs). Note that, a RAM can be treated as

a ROM when write enablewe is low. It is not trivial to convert a circuit with

ARAMs into an equivalent circuit with synchronous ones. However, it is auto-

matically done by our algorithm.

The main contribution of this chapter is to present a circuitrewriting approach

that convertsan asynchronous circuitconsisting

Combinational Circuits (CCs), Registers (Rs), and RAMs with asyn-
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chronous read and synchronous write operations (ARAMs)

into an equivalent synchronous circuitconsisting

Combinational circuits (CCs), Registers (Rs), and RAMs with syn-

chronous read and synchronous write operations (SRAMs).

Note that, most of the current FPGAs support synchronous read operation, but do

not support asynchronous one. We are thinking the followingscenario to use our

circuit rewriting algorithm:

• An asynchronous circuit with ARAMs designed by a non-expert, or quickly

designed by an expert is given.

• Our circuit rewriting algorithm converts it into an equivalent synchronous

circuit with SRAMs.

• The resulting synchronous circuit can be implemented in FPGAs.

The outlines of our work are as follows:

• We use a Negative Register (NR) which is originally introduced in our pre-

vious Chapter3. The NR is an imaginary register that is used for latching a

future input data.

• We define simple five rules that rewrite a circuit.

• The rewriting algorithm just repeats applying these rules until no more rules

can be applied. When the rewriting algorithm terminates, we have an equiv-

alent ARAM-free circuit to the original circuit.

Our results have several significant points as follows:
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• The correctness of our algorithm is proved in a rigorous manner.

• Our algorithm works for the circuits with RAMs. In particular, our cir-

cuit rewriting algorithm is used to generate an equivalent circuit with Syn-

chronous Random Access Memories (SRAMs for short) for a circuit with

Aynchronous Random Access Memories (ARAMs for short) such that gen-

erated circuit with SRAMs can be embedded into FPGAs.

• Our circuit rewriting algorithm moves all redundant registers toward the

output ports. They can be removed to decrease the latency of the circuit.

Therefore, the circuit that obtained has minimum latency inthe sense that

all redundant registers are deleted. Readers may refer to Chapter 6 for an

example.

• Since, our rewriting algorithm moves registers towards theoutput ports,

whenever possible. Hence, in general, the resulting circuit may have the

longest path from input ports to registers/SRAMs or from registers/SRAMs

to registers/SRAMs or from registers/SRAMs to output ports. Hence, clock

performance of the resulting circuit may degrade. However,it is easier to

improve clock performance of the resulting circuit than minimizing number

of clock cycles. Clock performance of the resulting circuit can be improved

by inserting registers (Rs) appropriately. In this regard,we refer the readers

to Chapter6, where we have shown an example for improving clock perfor-

mance of the resulting ARAM-free circuit.

This chapter is organized as follows: Section4.2briefly describes random access

memory (RAM). We briefly review the circuits with RAMs and also show their

equivalence in Section4.3. In Section4.4, we describe our rewriting algorithm,
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circuit graph with RAMs and also explain the equivalence forour rewriting rules.

For the reader’s benefits, Section4.5 shows how our circuit rewriting algorithm

works for circuit graphs with RAMs. Section4.6 presents the proof of the cor-

rectness of our rewriting algorithm. Finally Section4.7concludes this chapter.

4.2 Random Access Memory (RAM)

A RAM is an array of memory where information can be stored until power is

switched off. It hasb-bit data inputD, e-bit address inputA andc-bit data output

Q, it can store 2e words such asM[0], M[1], . . ., M[2e−1] with b bits each, shown

in Figure 4.1. A RAM can support asynchronous read, synchronous read and

synchronous write operations. These are described by the following subsections.

SRAM

Q

clock

DAwe

ARAM

Q

clock

DAwe

Figure 4.1: An asynchronous RAM (ARAM) and a synchronous RAM(SRAM).

4.2.1 Asynchronous read operation

A RAM continuously outputs the data specified by the address given to the ad-

dress portA. When the address valuea is changed, the output data is updated

immediately within some delay time. In other words, the output data port always
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outputsM[a], which is the data stored in the input address valuea.

4.2.2 Synchronous read operation

Even if the input address valuea is changed, the output data specified by the

address given to the address portA is not updated. The output data is updated

based on the address valuea at the rising edge of the clock. More specifically, the

output data portQ outputsM[a] on the rising edge of the clock, wherea is the

address data at the previous point of the rising clock edge.

4.2.3 Synchronous write operation

A RAM stores the input data valued which is given to the data portD on the rising

edge of the clock only when write enablewe is high. Even though, the input data

valued is changed and the rising edge of the clock is available, nevertheless write

enablewe is low, the input data valued is not written into the memory ofM[a].

Particularly, the input data valued is only written into the memory ofM[a] on

the rising clock edge when write enablewe is high, wherea, d andwe represent

address data value, input data value and write enable respectively at the previous

point of the rising clock edge.

For the reader’s benefit, we will describe two types of RAM (shown in Figure4.1)

as follows:

Asynchronous RAM (ARAM):

An ARAM supports asynchronous read and synchronous write operations.

It has a clock input clock and a write enable inputwe. The clock input clock

43



is only needed for write operation. The data values ofM[a] are continuously

output from portQ. They do not depend on clock input clock. Only when

write enablewe is high, initial stored values ofM[a] are updated by input

data valued, given to the data input portD at the latest rising clock edge.

Synchronous RAM (SRAM):

An SRAM supports synchronous read and synchronous write operations. It

has also a clock input clock and a write enable inputwe. The read operation

of the SRAM is performed on every rising clock edge. The output Q is the

value of M[a] at the latest rising clock edge. The write operation for an

SRAM is the same as an ARAM. The readers may refer to the Figure4.2for

read and write operations of an ARAM and an SRAM.

In this chapter, we consider Write After Read (WAR) mode for data handling of

the memory blocks. Now, we will discuss the WAR and RAW mode only for the

SRAM, because the SRAM supports synchronous read and synchronous write

operations. The WAR and RAW modes of an SRAM are described as follows:

Write After Read (WAR) Mode:

First, currently stored data, specified by the address givento the address

port A outputs from the output portQ at the latest rising clock edge. Then

input data valued, given to the data portD is written into the memory of

M[a] at the latest rising clock edge only when write enableweis high. More

specifically, the output data portQ outputs currently stored data ofM[a] on

the latest rising clock edge first. Then the input data valued is written into

the memory ofM[a] on the latest rising clock edge only when write enable

we is high.

44



clock

time 0 1 2 3

reset

4

we

5

D 11 12 13 -

Q (SRAM, WAR)

Q (NR)

- -

A 1 2 3 1 2 3

12 13 - - - -

Q (SRAM, RAW)

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 0 0 0 11 12

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 11 12 13 11 12

Q(R) 0 11 12 13 - -

Q (ARAM) 0

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 0 11 12 13

Figure 4.2: A timing chart of an ARAM, an SRAM, a register (R),and a negative

register (NR).
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Read After Write (RAW) Mode:

First, input data valued, given to the data portD is written into the memory

of M[a] at the latest rising clock edge when only write enablewe is high.

Then currently stored data, specified by the address given tothe address port

A outputs from the output portQ at the latest rising clock edge. Particularly,

input data valued is written first into the memory ofM[a] on the latest

rising clock edge only when write enablewe is high. Then stored data value

of M[a] outputs from the output portQ at the latest rising clock edge.

The readers should refer to the Figure4.2 for the illustrations of the WAR and

RAW. Figure4.2shows a timing diagram of the ARAM, SRAM, register (R) and

negative register (NR). Initially global reset is 1 and it drops to 0 just before time

0. We assume that write enablewe is high for the first several clock cycles from

the beginning (initiallyweis 1 and drops to 0 before the fourth rising clock edge).

Data 11, 12, 13,−, −, − and 1, 2, 3, 1, 2, 3 are given to the input data portD

and address portA respectively. The dash (-) line represents any data which is

not necessary in our case. For simplicity, we have used the written data values

at the memory content ofM[1], M[2], M[3] for an SRAM to read again at the

latest rising clock edge at time 3, 4, 5 respectively. We havealso used the written

data values at the memory content ofM[1], M[2], M[3] for an ARAM to read

immediately at time 3, 4, 5 respectively. The edges at time 0,1, 2 of the clock

represent the latest rising edges for the stored data valuesat the memory content

of M[1], M[2], M[3] respectively of an SRAM and ARAM. On the other hand,

the edges at time 0, 1, 2, 3, 4 of the clock represent the latestrising edges for the

output data sequence of 0, 0, 0, 11, 12 respectively of an SRAMwhen it follows
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WAR. We assume that the stored values ofM[a] are initialized by 0 of an SRAM

and an ARAM. For the case of an ARAM, the data values at the memory content

of M[1], M[2], M[3], M[1], M[2], M[3] correspond to 0, 0, 0, 11, 12, 13 are

taken respectively at time 0, 1, 2, 3, 4, 5 from the output portQ immediately

due to the asynchronous read operations. Therefore, the output sequence of an

ARAM [ Q(ARAM)] is: 0, 0, 0, 11, 12, 13. According to the WAR, the output

sequence of an SRAM [Q(S RAM,WAR)] is: 0, 0, 0, 0, 11, 12 at time 0, 1, 2, 3,

4, 5 respectively. On the other hand, according to the RAW, the output sequence

of an SRAM [Q(S RAM,RAW)] is: 0, 11, 12, 13, 11, 12 at time 0, 1, 2, 3, 4, 5

respectively. Note that, the output value of an SRAM at time 0is initialized by 0.

The stored data at the memory content ofM[1], M[2], M[3] of the time 0, 1, 2,

3, 4, 5 are the same for an ARAM and an SRAM which areM[1]: 0, 11, 11, 11,

11, 11;M[2]: 0, 0, 12, 12, 12, 12 andM[3]: 0, 0, 0, 13, 13, 13. The output of R

is 0 at time 0. Also at time 1, 2, 3, 4, 5; the value of output R is 11, 12, 13,−, −

respectively. The value of output NR is 12, 13,− ,−, −, − of the time 0, 1, 2, 3, 4,

5 respectively.

4.3 Circuits with RAMs and Their Equivalence

In this section, we mainly describe circuits with RAMs including the behavior of

the circuit elements and their equivalence. Let us considera synchronous sequen-

tial circuit that consists of input ports, output ports, combinational circuits (CCs),

registers (Rs), random access memories (RAMs), a global clock input (clock), a

global reset input (reset) and a write enable inputwe. For the benefit of read-
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ers, we recall a brief overview from the previous Chapter3 about combinational

circuits (CCs), registers (Rs) as follows. However, RAM as a circuit element is

newly described.

A combinational circuit (CC) is a network of fundamental logicgates with no

feedback. So, it can compute Boolean functions representedby Boolean formulas,

such asF = A · B+ B ·C andG = B ·C as illustrated in the previous Chapter3.

Once inputs are given, the outputs are computed in small propagation delay.

A b-bit register has a clock input and a reset input. It can storeab-bit data. If reset

is 1, then theb-bit data is initialized by 0. If reset is 0, the stored data isupdated

by the value given to the input portd at every rising clock edge. The data stored

in the register is always output from portq, as shown in the previous Chapter3.

About RAMs, we refer readers to the Section4.2of this chapter.

4.3.1 Behavior of the Circuit Element

We will describe a behavior of the circuit elements using a sequence of output as

well as stored data at every rising clock edge for periodic clock (clock is inverted

into a fixed frequency), initial reset (initially, reset is 1and drops to 0 before the

first rising clock edge) and write enablewe(initially, weis 1 and drops to 0 before

the fourth rising clock edge) as illustrated in Figure4.2. For the benefit of readers,

we recall the output sequences for combinational circuits (CCs) and registers (Rs).

However, output sequences and stored data of RAMs will be described newly. The

behavior of each circuit element is described by the output sequences and stored

data as follows:
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Combinational Circuit (CC):

For the benefit of readers, we recall the output sequences of acombinational

circuit (CC) from the previous Chapter3. For simplicity, we assume 3-

input 2-output combinational circuit, as illustrated in the previous Chapter3.

There is no difficulty to extend the definition for generalm-input n-output

combinational circuit. We assume that, at timei (i ≥ 0), ai, bi, andci are

given to the 3 input portsA, B, andC. Let f andg be the two functions

with three arguments that determine the value of output ports F andG. The

output sequences ofF andG are as follows:

CC(F):〈 f (a0,b0, c0), f (a1,b1, c1), f (a2,b2, c2), . . .〉

CC(G):〈g(a0,b0, c0),g(a1,b1, c1),g(a2,b2, c2), . . .〉

Register (R):

Let di denotes an input value given to an input portD at time i (i ≥ 0). As

shown in Figure4.2, the output sequence of the register (R) is described as

follows:

R: 〈0,11,12,13,−,−, . . .〉

Synchronous and Asynchronous RAMs (SRAMs and ARAMs):

Let M[ j] denotes the value stored in addressj ( j ≥ 0) of the RAM. Recall

that the initial data values ofM[ j] are 0 and the WAR mode of the SRAM is

considered. As shown in Figure4.2, the output sequences and stored data of

an SRAM and ARAM of the time 0, 1, 2, 3, 4, 5 are as follows:

SRAM (output sequence):〈0,0,0,0,11,12〉

SRAM (stored data ofM[1], M[2] andM[3]):

M[1]: 〈0,11,11,11,11,11〉. It means that memory content of the
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address value 1 is updated by 11 at time 1 and remains the same

until further updating.

M[2]: 〈0,0,12,12,12,12〉. It means that memory content of the

address value 2 is updated by 12 at time 2 and remains the same

until further updating and

M[3]: 〈0,0,0,13,13,13〉. It means that memory content of the ad-

dress value 3 is updated by 13 at time 3 and remains the same until

further updating.

ARAM (output sequence):〈0,0,0,11,12,13〉

ARAM (stored data ofM[1], M[2] andM[3]):

M[1]: 〈0,11,11,11,11,11〉. M[2]: 〈0,0,12,12,12,12〉 andM[3]:

〈0,0,0,13,13,13〉. These have the same aforesaid explanations.

In this chapter, we assume that a fully synchronous circuit has data input, data

output, a global clock input, a global reset input, a write enable input, combina-

tional circuits (CCs), registers (Rs), SRAMs, ARAMs, and their interconnects.

The readers should refer to the Figure4.3 for illustrating an example of a fully

synchronous circuit. The global clock is directly connected to the clock input

ports of all Rs and SRAMs, ARAMs and the global reset is connected to the re-

set input ports of all Rs. Also the write enable is directly connected to the write

enable input ports of all SRAMs and ARAMs. We assume that a circuit has no

loop.
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Figure 4.3: An example of a fully synchronous circuit with ARAMs and the correspond-

ing circuit graph with potentiality.

A

Q

e

b

SRAMclock

D

b

we

Q

b

ARAM

D

b

= =

Q

b

clock

A

e

ARAM
clock

D

b

weA

e

we

11

1 clock

reset
1-bit R e-bit R clock

reset
b-bit R clock

reset

reset

b-bit R

Figure 4.4: An example of three circuits such as SRAM, R+ ARAM and ARAM + R

for showing an equivalence.

51



4.3.2 An Example of Circuits with RAMs to Show an Equiva-

lence

We will describean equivalenceof the circuits with RAMs in terms of output

sequences and stored data. Let us definean equivalenceof two fully synchronous

circuits for the periodic clock and initial reset. Note that, an equivalenceof the

circuits with RAMs is determined by the output sequences andstored data. We say

that two circuits X and Y are an equivalent if, for any input sequence, the output

sequences and stored data at the same memory locations are the same except for

first several outputs and stored data.

For the periodic clock with initial reset and write enable, the output sequences and

stored data in case of three circuits such as SRAM, R+ARAM and ARAM+R as

illustrated in Figure4.4 are as follows. The readers may refer to Figure4.5 for

better understanding. Figure4.5 shows timing diagram of the earlier mentioned

three circuits for illustratingan equivalence.

SRAM (output sequence):〈0,0,0,0,11,12〉

SRAM (stored data ofM[1], M[2] andM[3]):

M[1]: 〈0,11,11,11,11,11〉, M[2]: 〈0,0,12,12,12,12〉 andM[3]: 〈0,0,0,13,13,13.〉

R+ARAM (output sequence):〈0,0,0,0,11,12〉

R+ARAM (stored data ofM[1], M[2] andM[3]):

M[1]: 〈0,0,11,11,11,11〉, M[2]: 〈0,0,0,12,12,12〉 andM[3]: 〈0,0,0,0,13,13.〉

ARAM+R (output sequence):〈0,0,0,0,11,12〉

ARAM+R (stored data ofM[1], M[2] andM[3]):

M[1]: 〈0,11,11,11,11,11〉, M[2]: 〈0,0,12,12,12,12〉 andM[3]: 〈0,0,0,13,13,13.〉
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These have also the same explanations mentioned above.

Since, these three circuits have the same output in time 0, 1,2, 3, 4 and 5. Also

they have the same stored data at the memory location 1 (M[1]) of the time 2, 3, 4

and 5, at memory location 2 (M[2]) of the time 3, 4 and 5 and at the memory loca-

tion 3 (M[3]) of time 4 and 5. Thus, these three circuits arean equivalent. In this

chapter, we ignore first several clock cycles when we determine an equivalence

of the circuits.

Suppose that a circuitX with ARAMs is given. The main contribution of this

chapter is to show

• a necessary condition such that an ARAM-free circuit,Y can be generated,

which is an equivalent toX, and

• an algorithm to deriveY if the necessary condition is satisfied.

Recall a Negative Register (NR), which is a nonexistent device used only for

showing our algorithm to deriveY and related proofs. Recall again that, a regu-

lar register latches the input at the rising clock edge whereas a negative register

latches a future input. An NR latches the value which is givento input data port

D at the rising edge of two clock cycles later as illustrated inFigure4.2. Thus, an

NR has the following output sequence for a periodic clock with an initial reset.

NR: 〈12,13,−,−,−,−, 〉.

In our algorithm to derive an ARAM-free circuitY, circuits with NRs will be used

as interim results.
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Figure 4.5: A timing chart for showing an equivalence of the three circuits such as

SRAM, R+ ARAM and ARAM + R.
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Figure 4.6: Rules to rewrite a circuit graph with RAMs (ARAMsand SRAMs).

4.4 Circuit Graph with RAMs and Rewriting Rules

This section will describe a circuit with RAMs whose underlying graph is di-

rected acyclic graph (DAG) and rules for generating an equivalent ARAM-free

and NR-free circuit graph to the given input circuit graph with ARAMs. We sim-

ply use a directed graph to denote the interconnections of a fully synchronous

circuit. We call such graph as a circuit graph. A circuit graph consists of a set of

nodes and a set of directed edges connecting two nodes. Each node is labeled by

either I (Input port), O (Output port), CC (Combinational Circuit), R (Register),
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NR (Negative Register), ARAM, or SRAM. A node with label I is connected with

one or more outgoing edges. A node with label O is connected with exactly one

incoming edge. A node with label CC has one or more incoming edges and one

or more outgoing edges. A node with label R and NR has one incoming and one

outgoing edge. A node with label ARAM or SRAM has three incoming edges

and one outgoing edge. Note that, we assume a circuit graph which is a directed

acyclic graph (DAG), that is, it has no directed cycles. The Figure4.3 illustrates

an example of a directed graph. Note that nodes with label I, R, NR, ARAM, or

SRAM has one outgoing edge. The readers may think that one outgoing edge is a

too stringent restriction because it does not allow two or more fan-outs. However,

we can implement multiple fan-outs by attaching a simple combinational circuit

(CC) that just duplicates the input. For example, a CC with one input portA and

two output portsF andG such thatF = A andG = A is used to implement fan-out

2 as illustrated in Chapter3. For a given circuitX with ARAMs, we will show an

algorithm to derive an ARAM-free and NR-free circuit,Y by rewriting circuits.

We assume thatX is given as a circuit graph. We will define rules to rewrite a cir-

cuit graph. The readers should refer to Figure4.6 for illustrating the rules, where

P and S denote predecessor and successor nodes respectively. The nodes between

predecessor and successor nodes are rewritten as follows:

Rule 0 ARAM node is rewritten into SRAM+NR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, thatis, they

are removed.

Rule 2 R+SRAM (or NR+SRAM) is rewritten into SRAM+R (or SRAM+NR).
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Figure 4.7: Interim and resulting circuit graphs obtained by our rewriting algorithm for

a circuit graph with RAMs (ARAMs and SRAMs).
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More specifically, if each incoming edge of an SRAM node is connected

to a R node, then all the Rs are moved to the outgoing edge of theSRAM

node. On the other hand, if one of the incoming edges of an SRAMnode is

connected to an NR node, then the NR node is removed, a R node isadded

to all the other incoming edges, and the NR node is moved to theoutgoing

edge of the SRAM node.

Rule 3 If one of the incoming edges of a CC node is connected to an NR node,

then the NR node is removed, an R node is added to all the other incoming

edges, and the NR node is moved to all the outgoing edges of theCC node.

Rule 4 If all the incoming edges of a CC node are connected to a R node, then

all the Rs are moved to all the outgoing edges of the CC node.

Let us confirm that, after applying one of the rewriting rules, an original circuit

and the resulting circuit are an equivalent. Letai, bi, ci, di, ai (address data) and

we(i ≥ 0) denote inputs given from the predecessor node at timei.

Rule 0 Both ARAM and SRAM+ NR have the same output sequences and

stored data.

ARAM /SRAM+NR (output sequence):〈0,0,0,11,12,13〉.

ARAM /SRAM+NR (stored data ofM[1], M[2] andM[3]:

M[1]: 〈0,11,11,11,11,11〉, M[2]: 〈0,0,12,12,12,12〉 andM[3]: 〈0,0,0,13,13,13〉.

Thus they are an equivalent.

Rule 1 R+NR and NR+R have the following output sequences.

R+NR : 〈11,12,13,−,−,−〉 and NR+R: 〈0,12,13,−,−,−〉. Also, NULL

58



circuit has the following output sequence. NULL:〈11,12,13,−,−,−〉. Thus,

they are an equivalent.

Rule 2 R+SRAM has the following output sequence and stored data.

R+SRAM (output sequence):〈0,0,0,0,0,11〉

R +SRAM (stored data ofM[1], M[2] andM[3]:

M[1]: 〈0,0,11,11,11,11〉, M[2]: 〈0,0,0,12,12,12〉 andM[3]: 〈0,0,0,0,13,13〉

SRAM+R has the following output sequence and stored data.

SRAM+R (output sequence):〈0,0,0,0,0,11〉

SRAM+R (stored data ofM[1], M[2] andM[3]:

M[1]: 〈0,11,11,11,11,11〉M[2]: 〈0,0,12,12,12,12〉 andM[3]: 〈0,0,0,13,13,13〉

On the other hand, NR+ SRAM has the following output sequence and

stored data.

NR+SRAM (output sequence):〈0,0,0,0,12,13〉

NR+SRAM (stored data ofM[1], M[2] andM[3]:

M[1]: 〈0,12,12,12,12,12〉, M[2]: 〈0,0,13,13,13,13〉 andM[3]: 〈0,0,0,−,−,−〉

SRAM+NR has the following output sequence and stored data.

SRAM+NR (output sequence):〈0,0,0,0,12,13〉

SRAM+NR (stored data ofM[1], M[2] andM[3]):

M[1]: 〈0,0,12,12,12,12〉, M[2]: 〈0,0,0,13,13,13〉 andM[3]: 〈0,0,0,0,−,−〉

Thus they are an equivalent.

For the Rule 2, we consider that an NR is connected to data input port D

only. If an NR is connected to the address input portA or write enable input

we, an equivalenceof the Rule 2 can be shown in similar way.
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Rule 3 The output sequences of the left-hand side of the rule are〈 f (a1,b0, c0),

f (a2,b1, c1), f (a3,b2, c2), . . .〉 and 〈g(a1,b0, c0), g(a2,b1, c1), g(a3,b2, c2),

. . .〉. Those of the right-hand side are〈 f (a1,b0, c0), f (a2,b1, c1), f (a3,b2, c2),

. . .〉 and〈g(a1,b0, c0), g(a2,b1, c1), g(a3,b2, c2), . . .〉. Thus, they are an equiv-

alent.

Rule 4 The output sequences of the left-hand side of the rule are〈 f (0,0,0),

f (a0,b0, c0), f (a1,b1, c1), . . .〉 and〈g(0,0,0), g(a0,b0, c0), g(a1,b1, c1), . . .〉.

Those of the right-hand side are〈0, f (a0,b0, c0), f (a1,b1, c1), . . .〉 and 〈0,

g(a0,b0, c0), g(a1,b1, c1), . . .〉. Thus, they are an equivalent.

We are now in position to apply the rewriting algorithm to thegiven input circuit.

Suppose that an input circuit graph has nodes with labelsI, O, R, ARAM, SRAM,

andCC. The following rewriting algorithm generates a circuit graph which is an

equivalent to the original circuit graph.

Find a minimum i such that Rule i can be applied to the current circuit

graph. Rewrite the circuit graph using such Rule i. This rewriting

procedure is repeated until no more rewriting is possible.

4.5 An Example to Show the Behavior of Our Algo-

rithm for the Circuits with RAMs

In this section, we will describe, how our rewriting algorithm works for the cir-

cuits with RAMs. Let us observe the behavior of the rewritingalgorithm.

• First, the rewriting algorithm repeats the applying Rule 0 to all ARAM nodes
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until all ARAM nodes are rewritten into SRAM+NR. After that, Rule 0 is

never be applied.

• Rules 1 is applied and adjacent R and NR nodes are removed whenever

possible.

• R or NR nodes is moved towards the output nodes using Rule 2, 3 and 4

whenever possible.

Figure4.7 shows one of the applications of our rewriting algorithm. First, our

rewriting algorithm repeats the applying Rule 0 to all ARAM nodes until all

ARAM nodes are rewritten into SRAM+NR. After that, Rule 1 is used to re-

move adjacent R and NR. Then Rule 3, Rule 1, Rule 3, Rule 2, Rule3, Rule 1 are

applied one after another. Thus, intuitively, all NR nodes in the resulting circuit

graph are moved and placed just before the output nodes.

For the purpose of clarifying the condition such that the rewriting algorithm can

generate NR-free circuit graph. We definethe potentiality of the nodesin a circuit

graph. Suppose that a nodev of a circuit graph hask (≥ 0) incoming edges such as

(u1, v), (u2, v), . . . , (uk, v). Let us definethe potentiality p(v) of a nodev as follows:

• If v is I, thenp(v) = 0.

• If v is O, thenp(v) = p(u1).

• If v is SRAM, thenp(v) = min(p(u1), p(u2), p(u3)).

• If v is ARAM, thenp(v) = min(p(u1), p(u2), p(u3)) − 1.

• If v is NR, thenp(v) = p(u1) − 1.

• If v is R thenp(v) = p(u1) + 1.
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• If v is CC, thenp(v) = min(p(u1), p(u2), . . . , p(uk)).

Figure4.3shows the potentiality of each node.

We have the following theorem.

Theorem 4.5.1 All O nodes of a circuit graph have non-negative potentiality, if

and only if our rewriting algorithm generates an ARAM-free and NR-free circuit

graph, equivalent to the original circuit graph.

4.6 Proof of Theorem4.5.1

The main purpose of this section is to show a proof of Theorem4.5.1. Let us

observe how the potentiality of nodes is changed by our rewriting algorithm. We

focus the potentiality of successor nodes. LetP1, P2, P3 andS denote the prede-

cessor and successor nodes for Rules 0 and 2.P andS denote the predecessor

and successor nodes for Rules 1. Also letP1, P2, P3 andS1, S2, denote the pre-

decessor and successor nodes for Rules 3 and 4. We compute thepotentiality of

each successor node both before and after applying the rulesas follows.

Rule 0 p(S) = min(p(P1), p(P2), p(P3)) − 1.

Rule 1 p(S) = p(P).

Rule 2 p(S) = min(p(P1)+1, p(P2)+1, p(P3)+1)) = min(p(P1), p(P2), p(P3))+1

if all are R andp(S) = min(p(P1), p(P2), p(P3)−1)) = min(p(P1)+1, p(P2)+

1, p(P3)) − 1 if any of them is NR. In this case an NR is connected to data

input portD.
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Rule 3 p(S1) = p(S2) = min(p(P1) − 1, p(P2), p(P3)) = min(p(P1), p(P2) +

1, p(P3) + 1)− 1.

Rule 4 p(S1) = p(S2) = min(p(P1)+1, p(P2)+1, p(P3)+1) = min(p(P1), p(P2),

p(P3)) + 1.

Thus, the potentiality of every successor node is never changed by applying the

rules. In every rule, O nodes can only be successor nodes. Thus, we have,

Lemma 4.6.1 The potentiality of every O node of the resulting circuit graph is

the same as that of the corresponding O node of the original circuit graph.

In Figure 4.7, the potentialities of the left and the right O nodes are -2 and 0,

respectively, and these values are never changed.

In a circuit graph, leta segmentbe a directed pathu1, u2, . . ., uk such that,u1 and

uk are either I, O, SRAM, or CC, andu2, . . ., uk−1 are either R or NR. Note that, if

k = 2 then it represents a null segment with u1 and u2. We also havethe following

lemma.

Lemma 4.6.2 Let u be an NR node and(u, v) be its outgoing edge in the resulting

circuit graph. Node v must be either NR or O node. Also, all NR nodes must be in

segments ending at O node.

Proof If v is an R, SRAM, or CC node then Rules 1, 2, or 3 can be applied. Since

no more rules can be applied to the resulting circuit graph,v must be either NR or

O node. Since the successor of NR nodes must be NR or O node, allNR nodes

must be in segments ending at O node.
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From Lemma4.6.2, we will prove that all SRAM and CC nodes in the resulting

circuit graph have zero potentiality.

Lemma 4.6.3 All SRAM and CC nodes in the resulting circuit graph have non-

negative potentiality.

Proof Since the resulting graph is an ARAM-free, nodes follow the NR nodes

can have negative potentiality. Since no segment ending at SRAM or CC has NR

nodes, their potentiality must be non-negative.

Similarly, we have the following lemma.

Lemma 4.6.4 All SRAM and CC nodes in the resulting circuit graph have non-

positive potentiality.

Proof We assume that the resulting circuit graph has a SRAM or CC nodewith

positive potentiality, and show a contradiction. Letv be a first SRAM or CC node

with negative potentiality, that is, all SRAM and CC nodes in all directed paths

incoming tov have non-positive potentiality and SRAM or CC nodev has positive

potentiality.

Case 1 v is an SRAM node

Let (u1, v), (u2, v), and (u3, v) denote the incoming edges. From Lemma4.6.2,

none ofu1, u2 andu3 is an NR node. Ifu1, u2 andu3, all are R, then Rule 2

can be applied. Thus at least one of them is not an R node. It follows that

at least one of them is either I or SRAM or CC node. If this is the case,

p(u1) = 0 or p(u2) = 0 or p(u3) = 0 and thus,p(v) = 0, a contradiction.
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Case 2 v is a CC node

Let (u1, v), (u2, v), . . ., (uk, v) (k ≥ 1) denote the incoming edges. From

Lemma4.6.2, none ofu1, u2, . . ., uk is an NR node. If all of them are R

nodes, then Rule 4 can be applied. Thus, at least one of them isnot an R

node. It follows that at least one of them is either I or SRAM orCC node.

From the assumption, the potentiality of such node is non-positive, Hence,

the potentiality ofv is non-positive, a contradiction.

From Lemma4.6.3and4.6.4, all SRAM and CC nodes in the resulting circuit

graph have zero potentiality. Hence, if the potentiality ofone of the O nodes in

the resulting circuit graph is negative, a segment ending atO node in the resulting

graph should have NR from Lemma4.6.2. Similarly, if the potentiality of all

the O nodes is non-negative, no segment ending at an output node has NR in the

resulting circuit graph. From Lemma4.6.1, the potentiality of O nodes does not

change by our rewriting algorithm. Thus, all output nodes ofa circuit graph have

negative potentiality, if and only if our rewriting algorithm generates the resulting

circuit graph with NR nodes. This completes the proof of Theorem4.5.1.

By the Theorem4.5.1, it is not always possible to have an equivalent ARAM-free

circuit. However, we may modify a circuit such that it can be converted into an

almost equivalent ARAM-free circuit. For this purpose, we compute the poten-

tiality of all O nodes in the corresponding circuit graph. After that, we insert

registers just before O nodes with negative potentiality sothat the potentiality of

the corresponding O nodes turns into a zero. Since the potentiality of the corre-

sponding O nodes now is 0, it can be converted into an equivalent ARAM-free

circuit according to our Theorem4.5.1.
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4.7 Concluding Remarks

The main contribution of this chapter was to convert a circuit with ARAMs into

an equivalent circuit with no ARAMs for the current FPGA considering both read

and write operations of the memory blocks (RAMs), however, in our previous

work, described in Chapter3, we consider only read operation of the memory

blocks (ROMs). For the purpose of converting into ARAM-freecircuits, we have

presented a rewriting algorithm and five rewriting rules in this chapter. In fact, we

improved our previous research work, described in Chapter3, where RAMs can

be used as the additional circuit elements to the given inputcircuits. Although, it

is not trivial to convert a sequential circuit with ARAMs into an equivalent fully

synchronous circuit with no ARAMs for supporting the modernFPGA architec-

ture, however, our algorithm did it automatically.
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Chapter 5

A Modified Circuit Rewriting

Algorithm for the Circuits with

Cycles

The main contribution of this chapter is to show a modified circuit rewriting al-

gorithm to convert a circuit with cycles using AROMs supporting asynchronous

read operation into an equivalent circuit with cycles usingSROMs supporting

synchronous read operation for implementing in FPGAs. In Chapter3 and Chap-

ter 4, we have presented circuit rewriting algorithms to converta circuit with

asynchronous ROMs or asynchronous RAMs into an equivalent circuit with syn-

chronous ones. The resulting circuit with synchronous ROMsor synchronous

RAMs can be embedded into FPGAs. However, these circuit rewriting algorithms

can handle circuits represented by a directed acyclic graphand do not work for

those with cycles. In this chapter, we succeeded in relaxingthe cycle-free con-
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dition of circuits. More specifically, we present an algorithm that automatically

converts a circuit with cycles using asynchronous ROMs intoan equivalent cir-

cuit using synchronous ROMs. We also briefly discuss the techniques to improve

performance of the AROM-free resulting circuit.

5.1 Introduction

We present a modified circuit rewriting algorithm to consider cyclesin the given

input circuits with AROMs. The rewriting approaches, presented in Chapter3 and

Chapter4 have a strict limitation in terms of input circuits that onlywork for the

circuits whose underlying graphs haveno cycles. However, practical circuits have

cycles. We are inspired to convert the real world practical circuits. Hence, the

main contribution of this chapter is to overcome this strictlimitation in terms of

input circuits. More specifically, we present a modified circuit rewriting approach

in this chapter which is able to convert a circuit withcyclesusing AROMs into an

equivalent circuit withcyclesusing SROMs for implementing in FPGAs.

In this chapter, we also focus the asynchronous and synchronous read operations

of memory blocks, as illustrated in Chapter3. For the benefit of readers, we recall

these operations as follows:

Asynchronous read operation

The memory block outputs the data specified by the address given to the

address port. When the address value is changed, the output data is updated

immediately within some delay time. In other words, the output data port
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always outputsM[d], which is the data stored in the input address valued.

Synchronous read operation

Even if the address value is changed, the output data is not updated. The

output data is updated based on the address value at the rising edge of clock.

More specifically, the output data port outputsM[d], whered is the address

data at the previous point of rising clock edge.

In other words, we say that asynchronous ROMs (AROMs) and synchronous

ROMs (SROMs) support asynchronous and synchronous read operations respec-

tively. In asynchronous read operation, the value of a specified address can be

obtained immediately. However, in synchronous read operation, one clock cy-

cle is required to obtain it. Hence, latency of asynchronousread operation is 0,

while synchronous read operation is 1. To understand clearly, readers may re-

fer to Figure5.3 that shows the timing chart of AROM and SROM supporting

asynchronous and synchronous read operations respectively. Embedded block

memories in most modern FPGAs support synchronous read operation, but do

not support asynchronous one. Hence, users who design circuits embedded into

FPGAs can not use asynchronous read operation. However, circuit design using

asynchronous one is easier, because it has 0 latency.

The main contribution of this chapter is to provide one of thepotent approaches

to resolve this problem. Suppose that user design a circuit with cycles using

ROMs supporting asynchronous read operation (AROMsfor short). We present

an algorithm that automatically converts this circuit intoan equivalent circuit with

cycles using ROMs supporting synchronous read operation (SROMsfor short).

The resulting circuit can be implemented into FPGAs.
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Our circuit rewriting approach, presented in this chapter is devoted to convertan

asynchronous circuitconsisting

Combinational Circuits (CCs), Registers (Rs), and ROMs with asyn-

chronous read operations (AROMs)

into an equivalent synchronous circuitconsisting

Combinational circuits (CCs), Registers (Rs), and ROMs with syn-

chronous read operations (SROMs).

Note that, most of the current FPGAs support synchronous read operation, but do

not support asynchronous one. We are thinking the followingscenario to use our

circuit rewriting algorithm:

• An asynchronous circuit designed by a non-expert, or quickly designed by

an expert is given.

• Our circuit rewriting algorithm converts it into an equivalent synchronous

circuit.

• The resulting synchronous circuit can be implemented in FPGAs.

In other words, designers can design a circuit for FPGAs under the assumption

of asynchronous read operation, which is simpler and easierthan one with syn-

chronous read operation.

We will show a simple example illustrating that the circuit design is simpler if

AROMs are available. Suppose that for an inputX0, we need to computeXn =

Xn−1 + f (Xn−1) for everyn ≥ 1. We assume that the functionf is computed using

a ROM. More specifically, we use a ROM such that addressi is storing a value of
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f (i). Figure5.1 (a) illustrates a circuit with an AROM to computeX1,X2, . . . for

an inputX0. An AROM is used to compute the value off (Xn) for a givenXn. It

should be clear that this circuit outputsX1,X2, . . . in every clock cycle. Figure5.1

(b) shows a circuit with an SROM. Since one clock cycle is necessary to read

the value off (Xn) for input Xn, we need to insert a register to synchronize two

inputsXn and f (Xn) of the adder as illustrated in the figure. This circuit outputs

X1,X2, . . . in every two clock cycles. Hence, the circuit in Figure5.1 (b) needs

double clock cycles over the circuit in Figure5.1 (a). Using our algorithm to the

circuit in Figure5.1 (a), we can obtain the circuit in Figure5.1(c) automatically.

In the circuit with an SROM in Figure5.1 (c), X1,X2, . . . is output in every clock

cycle. Thus, the timings of the circuits in Figure5.1(a) and (c) are identical.

AROM

R

f (Xn)

+

(a) A circuit with an AROM (b) A circuit with an SROM
by a non-expert

(c) The converted circuit with an SROM

X0

SROM

R

f (Xn)

+

X0

R SROM
f (Xn)

+

X0

R

Xn Xn Xn

Figure 5.1: An example of circuits with cycles using an AROM and an SROM

Obviously, we can minimize the number of clock cycles in the AROM-free re-

sulting circuits by our rewriting algorithm, as illustrated in Figure5.1 (c), but it
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is not trivial for the non-expert or quickly designed by an expert to minimize the

number of clock cycles to obtain circuit in Figure5.1(c). However our algorithm

can do it automatically.

Conversely, the readers may think that the resulting AROM-free circuit has large

propagation delay and low clock frequency, because our rewriting algorithm moves

registers towards the output ports, whenever possible. Hence, in general, the re-

sulting circuit may have the longest path from input ports toregisters/SROMs

or from registers/SROMs to registers/SROMs or from registers/SROMs to output

ports. Therefore, the circuit performance degrades. If this is the case, then it is

possible to improve circuit performance of the AROM-free resulting circuit. We

will briefly describe the techniques to improve the performance of the AROM-free

resulting circuit in terms of the latency and clock frequency, although performance

improvement of the AROM-free resulting circuit is beyond ofthis dissertation.

The techniques are as follows:

• In order to minimize latency in the AROM-free resulting circuit, we first

need to define redundant registers. The redundant registersare the registers

which are connected to output ports of the AROM-free resulting circuit. For

minimizing latency, we may remove all the redundant registers, if they do

not create the timing problems for a circuit connected to theoutput port.

• Clock performance of the AROM-free resulting circuit degrades due to the

longest path from input ports to registers/SROMs or from registers/SROMs

to registers/SROMs or from registers/SROMs to output ports. For this case,

we can add registers appropriately in the AROM-free resulting circuit so that

the longest path becomes shorter. Hence clock performance is increased in
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the AROM-free resulting circuit.

The outlines of our idea are described as follows:

• We usea Negative Register(NR) which is originally introduced in Chapter3.

The NR is an imaginary register latching a future input data.

• We define simplesix rulesthat rewrite a circuit.

• The rewriting algorithm that we propose just repeats applying these rules

until no more rules can be applied. When the rewriting algorithm terminates,

we have an equivalent AROM-free circuit to the original circuit.

We use the key and innovative idea of introducing Negative Register (NR). For the

reader’s benefit, we briefly describe the behavior of our rewriting algorithm. In

our rewriting algorithm, a circuit with AROMs is first converted into an AROM-

free circuit with negative registers. After that, our algorithm continues to rewrite

circuit such that all NRs are removed. When the algorithm terminates, all neg-

ative registers will be removed if possible and the resulting circuit becomes an

equivalent to the original circuit. The readers may refer tothe Section5.5 for the

details about the behavior of our rewriting algorithm.

A circuit implementation with AROMs is better than SROMs implementation,

because of less power consumption, easy to design etc. However, it is small in

size so that it can not support the designer’s demand, more expensive, and less

speedy. However, it is not supported by the current FPGAs.

On the other hand, a circuit implementation with SROMs is dominating, although

it has some drawbacks to design like clock distribution, more power consumption

etc. As a result, we should use SROMs when we need a function ofROMs.
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The main contribution of this chapter is to modify the circuit rewriting algorithm,

presented in Chapter3 to process practical circuits with cycles. More specifically,

our new circuit rewriting algorithm can convert any circuitrepresented by a di-

rected reachable graph (DRG), illustrated in Figure5.2 (2). A directed reachable

graph is a directed graph such that, for every internal node,there exists a directed

path from an input node to an output node which includes it. Note that, one node

and/or one directed path may appear twice or more in a directed path. For exam-

ple, (B,E,H, I , F,E,H,K,N,O) is a directed path. It should not have any difficulty

to confirm that, every internal node in Figure5.2 (2) is included. Clearly, a class

of the DRG includes that of the DAG. Also, almost all practical circuits can be

represented by a DRG. If there exists a node that is not in the directed path from

an input node to an output node, the directed graph is not a DRG. Clearly, circuit

elements corresponding nodes that are not in the directed path to an output node

make no sense because such circuit elements do not affect the outputs. However,

practical circuits may have circuit elements corresponding nodes that are not in

the directed path from an input node. We will show that, even if a circuit graph

has such nodes, we can convert it to an equivalent AROM-free circuit graph.

Our results have several significant points as follows:

• The correctness of our algorithm is proved in a rigorous manner.

• Our algorithm works for the practical circuits. In particular, we handle prac-

tical circuits which have cycles.

• Our circuit rewriting algorithm moves all redundant registers toward the

output ports. They can be removed to decrease the latency of the circuit.

Therefore, the circuit that obtained has minimum latency inthe sense that
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all redundant registers are deleted. Readers may refer to Chapter 6 for an

example.

• We also briefly discuss a technique to improve the clock frequency by in-

serting registers in the AROM-free resulting circuit appropriately.

• We will additionally describe a technique to generate AROM-free circuit

even if the input circuit is beyond the DRG circuit. Particularly, if the input

circuits have such elements which are not in the path of DRG circuits, we

can also convert those circuits into the equivalent AROM-free circuits as

illustrated in Section5.7of this chapter.

• FPGA vendors may think that they will support asynchronous read operation

for next-generation FPGAs satisfying low latency circuitswith forfeiting the

high clock frequency. If this is the case, our rewriting approach is useless.

However, our results suggest to the FPGA vendors that support of asyn-

chronous read operation is not necessary, because it can be automatically

converted into synchronous one using our algorithm.

This chapter is organized as follows: Section5.2briefly describes the related work

so far. We briefly review the circuits and their equivalence in Section5.3. In Sec-

tion 5.4, we describe our rewriting algorithm, circuit graph and also explain the

equivalence for our rewriting rules. For the reader’s benefits, Section5.5 shows

how our circuit rewriting algorithm works for circuit graphs. Section5.6presents

the proof of the correctness of our rewriting algorithm. Section 5.7 shows how

we handle nodes that are not in the path from an input node. Finally Section5.8

concludes this chapter.
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5.2 Related Work

In this section, briefly we will describe about the related work. However, there is

no related work except our previous one, described in Chapter3. Hence, we will

briefly summarize our previous work in Chapter3 as a related one such that read-

ers may compare our contribution in the current work, described in Section5.1

with the previous one in Chapter3. Note that, we are providing an innovative ap-

proach for implementing asynchronous read operation in thecurrent FPGAs. We

assume that the input circuit with AROMs supporting asynchronous read opera-

tion, designed by users is given. However, we can not implement this circuit into

the current FPGAs, because current FPGAs have SROMs supporting synchronous

read operation. For this purpose, we provide one of the potent circuit rewriting

approaches to implement circuits with AROMs supporting asynchronous read op-

eration in the current FPGAs. In our previous work in Chapter3, we have pre-

sented a circuit rewriting approach for circuits represented by a directed acyclic

graph (DAG), illustrated in Figure5.2(1) which has no directed cycle. This graph

has 3 input nodes and 3 output nodes, each of which corresponds to input ports

and output ports of the circuit, respectively. The other internal nodes correspond

to circuit elements such as combinational circuits, registers, and ROMs. The pre-

sented circuit rewriting approach converts a circuit with combinational circuits,

registers and AROMs represented by a DAG, illustrated in Figure5.2 (1) into an

equivalent AROM-free circuit with combinational circuits, registers and SROMs

for implementing in the current FPGAs.

However, the circuit rewriting approach presented in Chapter 3 has a strict re-

striction in terms of input circuits. It works only for a circuit whose underlying
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graph is a DAG, illustrated in Figure5.2 (1). Although most of practical circuits

have cycles, it can not handle such circuits as illustrated in Figure5.2 (2). To

overcome this problem, a modified circuit rewriting algorithm is presented in this

chapter. More specifically, our new circuit rewriting algorithm can convert any

circuit with AROMs, represented by directed reachable graph (DRG) as illus-

trated in Figure5.2 (2) into an equivalent circuit with SROMs for implementing

in current FPGAs.
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(2) Directed Reachable Graph (DRG)(1) Directed Acyclic Graph (DAG)

Figure 5.2: A directed acyclic graph (DAG) and a directed reachable graph (DRG).

77



5.3 Review of the Circuits and Their Equivalence

In this section, we shortly review the circuits and their equivalence for the benefit

of readers. The readers may refer to Chapter3 for details.

Let us consider a sequential circuit that consists of input ports, output ports, com-

binational circuits (CCs), registers (Rs), read only memories (ROMs), a global

clock input (clock), and a global reset input (reset).

A combinational circuit (CC) is a network of fundamental logicgates with no

feedback. So, it can compute Boolean functions representedby Boolean formulas,

such asF = A · B+ B ·C andG = B ·C as illustrated in Chapter3. Once inputs

are given, the outputs are computed in small delay.

A register has a clock input and a reset input as illustrated in Chapter3. It can

store fixed bits of data. If reset is 1, then theb-bit data is initialized by 0. If reset

is 0, the stored data is updated by the value given to the inputportd at every rising

clock edge. The data stored in the register is always output from portq.

A ROM (Read Only Memory) has a (address) inputd and a data outputq as

illustrated in Chapter3. It is storing 2b words such asM[0], M[1], . . ., M[2b − 1],

whereb is the number of address bits. We deal with two types of ROMs interms

of read operations as follows:

• Synchronous ROM (SROM)An SROM has a clock input and a reset input.

If reset is 1 then the stored value is initialized by 0. The read operation is

performed at every rising clock edge when reset is 0. The output q is the

value ofM[d] at the latest rising clock edge.
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• Asynchronous ROM (AROM) An AROM has no clock input and no reset

input. The value ofM[d] is continuously output from portq.

For the reader’s benefit, we also recall the Figure5.3 from the Chapter3, specifi-

cally to understand a new example of an equivalence clearly (we will show later).

The Figure5.3 shows a timing diagram of reading operations of the R, SROM,

AROM and NR (Negative Register). In the figure, time 0, 1, 2,. . . correspond to

rising edges of the periodic clock input. Initially global reset is 1 and it drops to 0

just before time 0. Datad0, d1, d2, . . . are given to the input portd. The value of

output,q of R and SROM is 0 at time 0. Also, at time 1, 2,. . . the values of output,

q of R and SROM ared0, d1, d2, . . . andM[d0], M[d1], M[d2], . . ., respectively.

For the AROM, the dataM[d0], M[d1], M[d1], . . . are taken from the output port,

q immediately at time 0, 1, 2,. . ., respectively.

We will describe a behavior of a circuit element using a sequence of output at

every rising clock edge for theperiodic clock(clock is inverted into a fixed fre-

quency), andinitial reset(initially, reset is 1 and drops to 0 before the first rising

clock edge) as illustrated in Figure5.3. The behavior of each circuit element is

described by the output sequences as follows:

• Combinational Circuit (CC) For simplicity, we assume 3-input 2-output

combinational circuit which is shown in Chapter3. There is no difficulty to

extend the definition for generalm-inputn-output combinational circuit. We

assume that, at timei (i ≥ 0), ai, bi, andci are given to the 3 input portsA, B,

andC. Let f andg be the two functions with three arguments that determine

the value of output portsF andG. The output sequences ofF andG are as

follows:
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reset 00 d0M [d0℄q (NR) d3 d4d1 d2

Figure 5.3: Recall a timing chart of a register (R), an SROM, an AROM and a negative

register (NR) from Chapter 3.

CC(F):〈 f (a0,b0, c0), f (a1,b1, c1), f (a2,b2, c2), . . .〉

CC(G):〈g(a0,b0, c0),g(a1,b1, c1),g(a2,b2, c2), . . .〉

• Register (R)Let di denotes an input value given to an input portd at timei

(i ≥ 0). The output sequence is described as follows:

R: 〈0,d0,d1,d2, . . .〉

• Synchronous and Asynchronous ROMs (SROMs and AROMs)Let M[ j]

denotes the value stored in addressj ( j ≥ 0) of the ROM. The output se-

quences of SROM and AROM are as follows:

SROM:〈0,M[d0],M[d1],M[d2], . . .〉

AROM: 〈M[d0],M[d1],M[d2],M[d3], . . .〉
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In this chapter, we assume that a fully synchronous circuit has data inputs, data

outputs, a global clock input, a global reset input, combinational circuits (CCs),

registers (Rs), SROMs, AROMs, and their interconnects. Thereaders should refer

to Figure5.4for illustrating an example of a fully synchronous circuit.The global

clock and the global reset are directly connected to the clock input ports and the

reset input ports of all Rs and SROMs. Also, we assume that a circuit has cycles.

clock
reset

CC

AROM

R

CC

data input

data output

I

CC

AROM

R

O

CC

0

-1

-1

0

0

0

Figure 5.4: An example of a fully synchronous circuit with cycle and the corresponding

circuit graph with potentiality.

Let us definean equivalenceof two fully synchronous circuits for the periodic

clock and initial reset. We say that two circuitsX and Y are anequivalentif,

for any input sequence, the output sequences are the same except for first several

outputs. For the reader’s benefit, we will show an example of the equivalence. Let

us consider a circuit SROM+R, that is, the output of the SROM is connected to the

input of the R as illustrated in Figure5.5. We also consider a circuit R+SROM,

in which the output of the R and the input of the SROM are connected. In this
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regard, we consider another circuit which consists two registers (two Rs) and an

AROM. The output of the R is connected to the input of the AROM whereas

the output of the AROM is connected to the input of the other R,as illustrated

in Figure5.5. For the periodic clock with initial reset, the output sequences of

SROM+R, R+SROM, and R+AROM+R are as follows (The readers may refer to

Figure5.3for better understanding):

SROM+R: 〈0,0,M[d0],M[d1], . . .〉

R+SROM:〈0,M[0],M[d0],M[d1], . . .〉

R+AROM+R: 〈0,M[0],M[d0],M[d1], . . .〉

Since these three circuits have the same output in time 2, 3,. . ., they are an equiva-

lent. Note that the outputs in time 0 and 1 are not equal. In this chapter, we ignore

first several clock cycles when we determine an equivalence of the circuits.

Suppose that a circuitX with AROMs is given. The main contribution of this

chapter is to show

• a necessary condition such that an AROM-free circuit,Y can be generated,

which is an equivalent toX, and

• an algorithm to deriveY if the necessary condition is satisfied.

We will introducea negative register(NR), which is a nonexistent device used

only for showing our algorithm to deriveY and related proofs. This is originally

introduced in Chapter3. Recall that, a regular register latches the input at the

rising clock edge.A negative registerlatches a future input. The Figure5.3 also

shows a timing diagram of a negative register (NR). An NR latches the value

of input d at the rising edge of two clock cycles later as illustrated inFigure5.3.
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Figure 5.5: A new example of three circuits such as SROM+R, R+SROM, and

R+AROM+R for showing an equivalence.

Thus, the NR has the following output sequence for a periodicclock with an initial

reset:

NR: 〈d1,d2,d3, . . .〉.

In our algorithm to derive an AROM-free circuitY, circuits with NRs will be used

as interim results.

5.4 Circuit Graph with Cycles and Rewriting Rules

In this section, we will describe circuits, represented by Directed Reachable Graphs

(DRGs) and the necessary circuit rewriting rules. We simplyuse a directed graph

to denote the interconnections of a fully synchronous circuit. We call such graph

as a circuit graph. A circuit graph consists of a set of nodes and a set of directed
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edges for connecting two nodes. Each node is labeled by either I (Input port), O

(Output port), CC (Combinational Circuit), R (Register), NR (Negative Register),

AROM, or SROM. A node with label I is connected with one or moreoutgoing

edges. A node with label O is connected with exactly one incoming edge. A node

with label CC has one or more incoming edges and one or more outgoing edges.

A node with label R, NR, AROM, or SROM has one incoming and one outgoing

edge. We also assume that a circuit graph is a directed reachable graph (DRG),

such that for every internal node, there exists a directed path from an input node to

an output node which includes it. Figure5.2(2) illustrates an example of a DRG.

Note that nodes with label I, R, NR, AROM, or SROM has only one outgoing

edge. The readers may think that one outgoing edge is a too stringent restric-

tion because it does not allow two or more fan-outs. However,we can implement

multiple fan-outs by attaching a simple Combinational Circuit (CC) that just du-

plicates the input. For example, a CC with one input portA and two output ports

F andG such thatF = A andG = A is used to implement fan-out 2, as illustrated

in Chapter3.

For a given circuitX with AROMs, we will show an algorithm to derive an

AROM-free and NR-free circuit,Y by rewriting circuits. We assume thatX is

given as a circuit graph. We will define rules to rewrite a circuit graph. The

readers should refer to Figure5.6 for illustrating the rules, where P and S denote

predecessor and successor nodes respectively. The nodes between predecessor

and successor nodes are rewritten as follows:

Rule 0 AROM node is rewritten into SROM+NR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, thatis, they
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Figure 5.6: Rules to rewrite a circuit graph with cycles.

are removed.

Rule 2 R+SROM is rewritten into SROM+R.

Rule 3 If all the incoming edges of a CC node are connected to an R node,then

Rs are moved to all the outgoing edges of the CC node.

Rule 4 NR+SROM is rewritten into SROM+NR.

Rule 5 If one of the incoming edges of a CC node is connected to an NR node,

then the NR node is removed, an R node is added to all the other incoming

edges, and the NR node is moved to all the outgoing edges of theCC node.

Let us confirm that, after applying one of the rewriting rules, an original circuit
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and the resulting circuit are equivalent. Letai, bi, ci, anddi (i ≥ 0) denote inputs

given from the predecessor node at timei.

Rule 0 Both AROM and SROM+NR have the output sequence〈M[d0], M[d1],

M[d2], M[d3], . . .〉, and thus they are an equivalent.

Rule 1 R+NR and NR+R have the output sequences〈d0, d1, d2, d3, . . .〉 and

〈0,d1,d2,d3, . . .〉, respectively. Also, NULL circuit has the output sequence

〈d0,d1,d2,d3, . . .〉. Thus, they are an equivalent.

Rule 2 R+SROM and SROM+R have the output sequences〈0, M[0], M[d0],

M[d1], . . .〉 and〈0, 0, M[d0], M[d1], . . .〉, respectively and thus they are an

equivalent.

Rule 3 The output sequences of the left-hand side of the rule are〈 f (0,0,0),

f (a0,b0, c0), f (a1,b1, c1), . . .〉 and〈g(0,0,0), g(a0,b0, c0), g(a1,b1, c1), . . .〉.

Those of the right-hand side are〈0, f (a0,b0, c0), f (a1,b1, c1), . . .〉 and 〈0,

g(a0,b0, c0), g(a1,b1, c1), . . .〉. Thus, they are an equivalent.

Rule 4 NR+SROM and SROM+NR have the output sequences〈0, M[d1], M[d2],

M[d3], . . .〉 and〈M[d0],M[d1],M[d2],M[d3] . . .〉, respectively and thus they

are an equivalent.

Rule 5 The output sequences of the left-hand side of the rule are〈 f (a1,b0, c0),

f (a2,b1, c1), f (a3,b2, c2), . . .〉 and 〈g(a1,b0, c0), g(a2,b1, c1), g(a3,b2, c2),

. . .〉. Those of the right-hand side are〈 f (a1,b0, c0), f (a2,b1, c1), f (a3,b2, c2),

. . .〉 and〈g(a1,b0, c0), g(a2,b1, c1), g(a3,b2, c2), . . .〉. Thus, they are an equiv-

alent.

We are now in position to describe the rewriting algorithm. Suppose that an input
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circuit graph has nodes with labelsI, O, R, AROM, SROM, andCC. The following

rewriting algorithm generates a circuit graph, equivalentto the original circuit

graph.

Find a minimum i such that Rule i can be applied to the current circuit

graph. Rewrite the circuit graph using such Rule i. This rewriting

procedure is repeated until no more rewriting is possible.

In other words, our algorithm invokes the Rulei (i varies from 0 to 5) and applies

(whenever applicable) as a priority basis to the current circuit graph until no more

applying is possible. For example, Rule 0 has higher priority than Rule 1, Rule 1

has higher priority than Rule 2 and so on. When no rule is applicable to the current

circuit graph, we have an equivalent AROM-free and NR-free resulting circuit

graph to implement into the current FPGAs for the given inputcircuit graph with

AROMs.

For the reader’s benefit, we will show more concrete description of our rewriting

algorithm. Our rewriting algorithm repeatedly changes a circuit graph. Let#nodes

denote the number of nodes of the current circuit graph, andv0, v1, . . . , v#nodes−1

denote all the nodes. Note that, the number of nodes may change by applying

a rule. If this is the case, we assume that the value of#nodesis automatically

updated. Our rewriting algorithm can be described as follows:

START:

for i ← 0 to 5 do

for j ← 0 to #nodes− 1 do

if Rule i can be applied forvj or vj with its neighbors

87



begin

Apply Rule i for vj or vj with its neighbors

goto START

end

It should be clear that, when a rule is applied, our rewritingalgorithm starts over.

Thus, our rewriting algorithm repeatedly applies Rulei, wherei be the minimum

possible number.

5.5 Behavior of Our Circuit Rewriting Algorithm

This section mainly describes the behavior of our rewritingalgorithm. Let us

observe the behavior of our circuit rewriting algorithm.

• First, Rule 0 is applied to all AROM nodes, and they are rewritten into

SROM+NR. After that, Rule 0 is never applied.

• Rules 1 is applied and adjacent R and NR nodes are removed whenever

possible.

• R nodes are moved towards the output nodes using Rules 2 and 3 whenever

possible.

• NR nodes are moved towards the output nodes or are rotated in cycles using

Rules 4 and 5.

Let us see how our circuit rewriting algorithm works using anexample of a circuit

in Figure5.7, which shows the interim and resulting circuit graphs. First, Rule 0
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is applied to the AROM, it is converted into SROM+NR. After that, Rule 3 is

used to move the R, and two Rs are generated. Rule 5 is applied to move the NR

and it is duplicated. Finally, adjacent R and NR are removed by Rule 1.
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Figure 5.7: Interim and resulting circuit graphs obtained by our rewriting algorithm for

a circuit graph with cycles.

Our circuit rewriting algorithm may not terminate for a circuit graph that has no

way to convert an equivalent AROM-free circuit. Figure5.8 shows an example

of such circuit graph. It has a cycle with two AROMs and one R. Intuitively, one

R is necessary to convert an AROM into an SROM. Thus, this circuit graph can

not be converted into an equivalent AROM-free circuit. Let us see how our circuit

rewriting algorithm works for the circuit graph in Figure5.8. After applied Rule 0

and Rule 1, the interim circuit graph has an NR in the cycle. Rule 5 is applied
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to move the NR, and a new R is generated between the I node and the CC node.

After that, the NR jumps over the SROM by Rule 4. Rule 5 is applied again, and a

new NR is generated between the CC node and the O node. Again, the NR jumps

over the SROM by Rule 4. The readers should have no difficulty to confirm that,

while the NR is rotated in the cycle, one new R is generated between the I node

and the CC node and one new NR is generated between the CC node andthe O

node. Rule 5 and Rule 4 can be repeated applied in the same way.In general,

after Rule 5 and Rule 4 applied 2n times, newn R’s andn NR’s are generated,

and our circuit rewriting algorithm never terminates.
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Figure 5.8: An example of a circuit graph with cycles for which our rewriting algorithm

does not terminate.

For the purpose of clarifying the condition such that our rewriting algorithm can

generate AROM-free and NR-free circuit graph, we definethe potentiality of the

nodesin a circuit graph. Suppose that a nodev of a circuit graph hasm (≥ 0)
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incoming edges such as (u1, v), (u2, v), . . . , (um, v). Let us definethe potentiality

p(v) of a nodev as follows:

• If v is I, thenp(v) = 0.

• If v is O or SROM, thenp(v) = p(u1).

• If v is AROM or NR thenp(v) = p(u1) − 1.

• If v is R thenp(v) = p(u1) + 1.

• If v is CC, thenp(v) = min(p(u1), p(u2), . . . , p(um)).

From the definition, the potentiality of a node can be determined if the potentiality

of all predecessor nodes are determined. Unfortunately, aswe will show next, we

may not determine the potentiality of every node by the abovedefinition, if a

circuit graph has a cycle.

Let us discuss the potentiality for a circuit graph with a cycle using three circuits

in Figure5.9. Let the potentialityp(a) of the CC nodea bek. From the definition

of the potentiality, we can write the equations of potentiality for Figure5.9(1) as

follows:

p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) + 1, p(d) = p(c), p(e) =

p(c) + 1, andp( f ) = p(d).

From these equations, we have,p(e) = p(c) + 1 = p(b) + 2 and thus,p(b) =

min(k, p(b) + 2). Hence, we can determine the value ofp(b) such thatp(b) = k.

Further, we can determine the potentiality of the other nodes as follows:p(c) =

p(d) = p( f ) = k+1, andp(e) = k+2. Intuitively, the equationp(b) = min(k, p(b)+
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2) means that the cycle is apositive cyclebecause the cycleb− c−d−e increases

the potentiality by+2.

We can do the same discussion for Figure5.9(2) as follows:

p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) + 1, p(d) = p(c), p(e) =

p(c) − 1, andp( f ) = p(d).

From these equations, we have,p(b) = min(k, p(b)). Regardless the value ofp(b),

this equation is satisfied. If this is the case, we assume thatp(b) = k. We can then

determine the potentiality of the other nodes as follows:p(c) = p(d) = p( f ) =

k + 1, andp(e) = k. Similarly, from the equationp(b) = min(k, p(b)), we can

think that the cycle is azero cycle.

Figure5.9 (3) shows an example of anegative cycle. We have the equations as

follows:

p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) − 1, p(d) = p(c), p(e) =

p(c) − 1, andp( f ) = p(d).

From these equations, we have,p(b) = min(k, p(b) − 2). If p(b) , k thenp(b) =

p(b)−2. Hencep(b) = k must be satisfied. If this is the case,p(b) = min(k, k−2) =

k− 2, a contradiction. Therefore,p(b) = min(k, p(b) − 2) has no solution.

From this observation, we definethe potentiality of a cycleas follows: Letv0, v1, . . . , vm(=

v0) be a cycle such that there is a directed edge (vi , vi+1) (0 ≤ i ≤ m−1). We define

the potentialityp′(vi) of nodevi (1 ≤ i ≤ m) with respect to the cycle startingv0

as follows:

• p′(v0) = 0.
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Figure 5.9: The potentiality for circuits with a cycle

• If vi+1 is CC or SROM, thenp′(vi+1) = p′(vi) (0 ≤ i ≤ m− 1).

• If vi+1 is AROM or NR thenp′(vi+1) = p′(vi) − 1 (0≤ i ≤ m− 1).

• If vi+1 is R thenp′(vi+1) = p′(vi) + 1 (0≤ i ≤ m− 1).

We say thatthe potentiality of the cycleis p′(vm). For example, the potentialities

of the cycles in Figure5.9(1), (2), and (3) are 2, 0, and -2, respectively.

We have the following theorem.

Theorem 5.5.1 Our rewriting algorithm generates an AROM-free and NR-free

circuit graph, equivalent to the original circuit graph, ifall O nodes and all cycles

of a circuit graph have non-negative potentiality.

In other words, we can determine a fully synchronous circuitthat can be converted

into an AROM-free circuit by evaluating the potentiality ofall O nodes and all

cycles of the corresponding circuit graph. Also, the potentiality of all O nodes and

all cycles are non-negative, our rewriting algorithm generates an AROM-free and
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NR-free circuit graph, and the corresponding fully synchronous circuit is AROM-

free and an equivalent to the original fully synchronous circuit. For the reader’s

benefit, we will explain two examples as shown in Figure5.7 and Figure5.10.

In Figure5.7, the potentiality of the O node and cycle are non-negative. Hence,

our rewriting algorithm generates an AROM-free and NR-freecircuit graph. In

Figure5.10, the potentiality of the O node is negative, however the potentiality

of the cycle is non-negative. Hence, our rewriting algorithm does not generate an

AROM-free and NR-free circuit graph. In fact, we recall the Figure 5.7 with a

slight modification as illustrated in Figure5.10to understand the failure case of

our rewriting algorithm. A slight modification is that we just move the position

of the AROM and R nodes in the designed input circuit graph as illustrated in

Figure5.10. It is observed in Figure5.10that the resulting circuit graph has an

NR node and hence we say, our rewriting algorithm fails to remove all NRs.
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Figure 5.10: A circuit with a cycle and its corresponding circuit graph with a slight

modification of the Figure 5.7 that can not be converted into an AROM-free circuit.
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5.6 Proof of Theorem5.5.1

The main purpose of this section is to show a proof of Theorem5.5.1. We will

show several lemmas for a proof of Theorem5.5.1.

First, let us observe how the potentiality of nodes is changed by our rewriting

algorithm. We focus the potentiality of successor nodes. Let P andS denote the

predecessor and successor nodes for Rules 0, 1, 2 and 4. Also,let P1, P2, P3, and

S1, S2 be the three predecessor and two successor nodes in Rules 3 and 5. We

compute the potentiality of each successor node both beforeand after applying

the rules as follows.

Rule 0 p(S) = p(P) − 1.

Rule 1 p(S) = p(P).

Rule 2 p(S) = p(P) + 1.

Rule 3 p(S1) = p(S2) = min(p(P1) + 1, p(P2) + 1, p(P3) + 1) = min(p(P1),

p(P2), p(P3)) + 1.

Rule 4 p(S) = p(P) − 1.

Rule 5 p(S1) = p(S2) = min(p(P1) − 1, p(P2), p(P3)) = min(p(P1), p(P2) +

1, p(P3) + 1)− 1.

Thus, the potentiality of every successor node is never changed by applying the

rules. In every rule, O nodes can only be successor nodes. Thus, we have,

Lemma 5.6.1 The potentiality of every O node of the resulting circuit graph is

the same as that of the corresponding O node of the original circuit graph.
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For this lemma, the readers may see the Figure5.7. In this figure, the potentiality

of the O node is 0 and this value is never changed. Similarly, we can prove the

following lemma:

Lemma 5.6.2 The potentiality of every cycle of the resulting circuit graph is the

same as that of the corresponding cycle of the original circuit graph.

In Figure5.7, we see that the cycle increases the potentiality by+1 and this value

is also never changed. Readers may refer to the Figure5.9for making clear about

the potentiality of the cycles in circuits.

In a circuit graph, leta segmentbe a directed pathu1, u2, . . ., um such that,u1

andum are either I, O, SROM, or CC, andu2, . . ., um−1 are either R or NR. Note

that, if m= 2 then it represents a null segment withu1, u2. We have the following

lemma:

Lemma 5.6.3 Once our circuit rewriting algorithm uses either Rule 4 or Rule 5

to move an NR node, it never applies Rule 2 and Rule 3 to move an Rnode.

Proof If either Rule 4 or Rule 5 is applied an interim circuit, both Rule 2 and

Rule 3 cannot be applied to it. If this is the case, all Rs are either (1) in the segment

of Rs ending at an O node, or (2) in the segment of Rs ending at a CCnode and

another incoming edge of the CC node is not connected to R (Figure 5.11). To

apply Rule 2 and Rule 3 later, the non-R node in Figure5.11must be an R node.

However, to be an R node, Rule 2 and Rule 3 must be used. Thus, both Rule 2

and Rule 3 are never applied.

We will prove that all NRs in a cycle with non-negative potentiality will be re-

moved by our rewriting algorithm.
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Figure 5.11: Illustration for the proof of Lemma 5.6.3.

Lemma 5.6.4 Suppose that all cycles in a circuit graph have non-negativepo-

tentiality, and Rule 0 are repeatedly applied to remove all AROMs. If a cycle has

m NRs, it also has at least m Rs. If either Rule 2 or Rule 3 is applied, the Rs

are moved and adjacent R and NR may be removed by Rule 1. If either Rule 4 or

Rule 5 is applied, the NRs are moved. Note that, from Lemma5.6.3, the Rs are

never moved, once either Rule 4 or Rule 5 is applied. In other words, the NRs are

moved along the cycle, while Rs are never moved. Thus, at some point, all NRs in

the cycle will be removed by Rule 1.

Note that, if there exists a cycle with negative potentiality, our circuit rewriting

algorithm does not terminate. As illustrated in Figure5.8, an NR moves along

the cycle and Rs and NRs are repeatedly generated. It should be clear that, there

exists no way to generate an equivalent AROM-free circuit for such circuit.

When our rewriting algorithm terminates and the resulting circuit graph is ob-

tained, we have the following lemma:

Lemma 5.6.5 Let u be an NR node and(u, v) be its outgoing edge in the resulting
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circuit graph. Node v must be either NR or O node. Also, all NR nodes must be in

segments ending at O node.

Proof If v is an R, SROM, or CC node then Rules 1, 4, or 5 can be applied. Since

no more rules can be applied to the resulting circuit graph,v must be either NR or

O nodes. Since the successor of NR nodes must be NR or O nodes, all NR nodes

must be in segments ending at O node.

The reader may refer to Figure5.10 for making clear about the proof of this

lemma. In this figure, the resulting circuit graph (circuit graph in where no rule is

applicable) has an NR which is in segment ending at O node.

A simple directed pathis a directed path if it has no repeated nodes. For example,

in Figure5.2(2), (B,E,H,K,N,O) is a simple directed path, but (B,E,H, I , F,E,H,K,N,O)

is not. We say that nodes areregular if it is on a simple directed path from an input

node to an output node. Note that nodes on a cycle in a DRG can bea non-regular

node. For example, nodesF andI are non-regular nodes.

From Lemma5.6.5, we will prove that all regular SROM and CC nodes in the

resulting circuit graph have zero potentiality.

Lemma 5.6.6 All regular SROM and CC nodes in the resulting circuit graph have

non-negative potentiality.

Proof Since the resulting graph is AROM-free, nodes follows NR nodes can have

negative potentiality. Since no segment ending at SROM or CC has NR nodes,

their potentiality must be non-negative.

Similarly, we have the following lemma.
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Lemma 5.6.7 All regular SROM and CC nodes in a simple directed path from

an input node to an output node in the resulting circuit graphhave non-positive

potentiality.

Proof We assume that the resulting circuit graph has a positive potentiality SROM

or CC node in a simple directed path from an input node to an output node, and

show a contradiction. Letv be a first SROM or CC node with negative poten-

tiality, that is, all SROM and CC nodes in all directed paths incoming tov have

non-positive potentiality and SROM or CC nodev has positive potentiality.

Case 1 v is an SROM node

Let (u, v) denotes the incoming edge. Ifu is either R or NR, then Rule 2 or

Rule 4 can be applied. Since no more rules can be applied to theresulting

circuit graph, it must be either I, SROM, or CC. If this is the case, p(u) = 0

and thus,p(v) = 0, a contradiction.

Case 2 v is a CC node

Let (u1, v), (u2, v), . . . , (uk, v) (k ≥ 1) denote the incoming edges. From

Lemma5.6.5, none ofu1,u2, . . . ,uk is an NR node. If all of them are R

nodes, then Rule 3 can be applied. Thus, at least one of them isnot an R

node. It follows that at least one of them is either I, SROM, orCC node.

From the assumption, the potentiality of such node is non-positive, Hence,

the potentiality ofv is non-positive, a contradiction.

We are now in position to show the proof of Theorem5.5.1. From Lemma5.6.6

and5.6.7, all SROM and CC nodes in a simple directed path from an input node to

an output node of the resulting circuit graph have zero potentiality. Hence, if the
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potentiality of one of the O nodes in the resulting circuit graph is negative, a seg-

ment ending at O node in the resulting graph should have NR from Lemma5.6.5.

Similarly, if the potentiality of all the O nodes is non-negative, no segment ending

at an output node has NR in the resulting circuit graph. From Lemma5.6.1, the

potentiality of O nodes does not change by our rewriting algorithm. Thus, from

Lemma5.6.4, if all output nodes and all cycles of a circuit graph have negative

potentiality our rewriting algorithm generates the resulting circuit graph with NR

nodes. This completes the proof of Theorem5.5.1.

From Theorem5.5.1, it is not always possible to generate an equivalent AROM-

free circuit. However, we may modify a circuit such that it can be converted

into an almost equivalent AROM-free circuit. For this purpose, we compute the

potentiality of all O nodes and all cycles in the corresponding circuit graph. After

that, we insert registers just before O nodes with negative potentiality so that

the potentiality of the corresponding O nodes turns into a zero. In this case, we

assume that all the cycles have non-negative potentiality.Since the potentiality

of the corresponding O nodes now is 0, it can be converted intoan equivalent

AROM-free circuit according to our Theorem5.5.1. The readers should refer to

Figure5.12for illustrating an example. Note that, the resulting circuit graph is not

an equivalent to the original circuit graph. However, the difference is the latency

of the output node. Thus, we can say that, the resulting AROM-free circuit is an

almost equivalent to the original circuit.

As we have discussed, our circuit rewriting algorithm does not terminate for a cir-

cuit graph with a negative cycle. We can modify our circuit rewriting algorithm

that always terminates as follows: First, we compute the potentiality of every cy-

100



I

CC

AROM R

O

CC

Rule 0
0

0

0-1

-1

0

I

CC

CC

0

0

0

-1

R
SROM

NR

0

-1

Rule 5
I

CC

O

CC

0

0

0

R

SROM

0

-1

NR -1

0

Rule 1
I

CC

O

CC

0

0

0

SROM

0

0

R 0

O
0

R 0

0

0

NR

R

clock
reset

CC

AROM R

CC

data input

data output

R

Figure 5.12: An almost equivalent circuit with cycle and it corresponding circuit graph

to that of Figure 5.10 that can be converted into an AROM-freecircuit.

cles. If one of them is negative, we do not execute our circuitrewriting algorithm.

Since it is impossible to generate an equivalent AROM-free circuit if this is the

case, it is not reasonable to execute our circuit rewriting algorithm.

5.7 How to handle nodes that are not in a path from

an input node

In this section, we will describe for understanding how to handle nodes corre-

sponding circuit elements that are not in a path from an inputof the circuits. For

this purpose, we include a no input practical circuit such ascounter in conjunction

with DRG circuit as a designed input circuit instead of DRG circuit only. By this

addition, in fact, we relax a restriction to the designed circuit by users in terms
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of input circuits. However, we assume that our no input practical circuit has no

memory elements such as ROMs. It consists of Registers (Rs) and Combinational

Circuits (CCs).

For the benefit of readers, we will show an example of a no inputpractical circuit

as illustrated in Figure5.13(a). The circuit in Figure5.13(a) has one Register

(R) and one adder. Register (R) has a reset input and a clock input as illustrated

in Section5.3. Readers may also refer to the Section5.3for details about Combi-

national Circuit (CC). Initially stored data value in R is 0 if reset is 1. When reset

is 0, then stored data value is updated by the data value givento the input port at

every rising clock edge.

Let us recall the circuit, shown in Figure5.13(a). In this figure, we see that we

may have output data sequence 0, 1, 2,. . . of the time 0, 1, 2,. . ., respectively.

If this is the case, then we say that the output sequence of thecircuit as shown

in Figure 5.13 (a) is deterministic which is similar to other inputs of the DRG

circuit. Hence, we treat this citcuit as illustrated in Figure 5.13(a) as a dummy

input to the DRG circuit, as shown in Figure5.13 (b). Readers may refer to

Figure5.13(a), where dotted circle is indicating the dummy input for the DRG

circuit as shown in Figure5.13(b) in which the dummy input is connected to the

adder of the DRG circuit. Note that, in Figure5.13 (b), DRG circuit is shown

by enclosed dotted line. If this is the case, then we considerwhole circuit in

Figure5.13(b) as an input circuit for our algorithm. Since, the dummy input can

be treated as the same as other inputs to the DRG circuit, our rewriting algorithm is

applied to the whole circuit, instead of only considering DRG circuit, as illustrated

in Figure5.13 (b) by enclosed dotted line. For the benefit of readers, we have
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shown an application of our rewriting algorithm in Figure5.13(c). Figure5.13(c)

represents a converted circuit (by our rewriting algorithm) with no AROMs for the

circuit, shown in Figure5.13(b). It is noted that one Register (R) is generated to

the connecting edge from the dummy input to the adder (CC) of theDRG circuit

by our algorithm, shown in Figure5.13 (c). Obviously, we can conclude from

the converted circuit in Figure5.13(c) for an input circuit in Figure5.13(b) that

users can design their input circuit in wider range instead of only considering

DRG circuit, shown in Figure5.13(b) by enclosed dotted line.
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Figure 5.13: An example to extend the input circuit with cycle for our algorithm.

5.8 Concluding Remarks

In this chapter, we have presented a rewriting algorithm andsix rewriting rules to

obtain the equivalent circuits with Synchronous ROMs (SROMs) for thepracti-
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cal circuitswith Asynchronous ROMs (AROMs). The practical sequential circuit

with AROMs represented by a directed reachable graph (DRG) can be converted

by our rewriting algorithm into an equivalent fully synchronous sequential circuit

with no AROMs to support the architecture of the most FPGAs. We also de-

scribed a technique to extend the input designed circuits byusers in wider range

rather than DRG circuits. It is not trivial to convert the practical sequential circuits

with AROMs into the equivalent fully synchronous circuits with no AROMs for

supporting the modern FPGA architecture. However, our algorithm did it auto-

matically.

104



Chapter 6

Performance Improvement of the

Resulting Circuits

In this chapter, we will discuss about the performance improvement of the result-

ing circuits. First, we will recall our main contribution ofthis dissertation. The

main contribution of this dissertation is to minimize the number of clock cycles

in the designed circuits by users. We say that circuit designthat minimize the

number of clock cycles is easy if we use asynchronous read operation. However,

embedded memories in the most modern FPGAs support synchronous read and

synchronous write operations but do not support asynchronous read operation. To

resolve this problem, we provide circuit rewriting approaches to convert a circuit

using AROMs (Asynchronous Read Only Memories) or ARAMs (Asynchronous

Random Access Memories) into an equivalent circuit using SROMs (Synchronous

Read Only Memories) or SRAMs (Synchronous Random Access Memories) for

implementing in FPGAs. More specifically, a circuit designed by users consists
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of registers (Rs), combinational circuits (CCs), AROMs supporting asynchronous

read operation or ARAMs supporting asynchronous read and synchronous write

operations is given. Our circuit rewriting approaches automatically convert the

given circuit with AROMs supporting asynchronous read operation or ARAMs

supporting asynchronous read and synchronous write operations into an equiva-

lent circuit with SROMs supporting synchronous read operation or SRAMs sup-

porting synchronous read and synchronous write operations. Therefore, the re-

sulting circuit can be embedded into the most modern FPGAs.

However, performance of the resulting circuits may degrade, because, by our

rewriting algorithms, registers in the circuits are moved towards the output ports,

whenever possible. Although, Performance improvement of the resulting circuits

is the beyond of this dissertation. However, we will discussseveral techniques to

improve the performance of the resulting circuits as follows:

6.1 Circuit Performance

Circuit performance can be measured in terms of latency and clock frequency.

Basically, our rewriting algorithms move registers towards the output ports, when-

ever possible. Hence, in general, the resulting circuits may have the longest paths

from input ports to registers/SROMs/SRAMs or from registers/SROMs/SRAMs

to registers/SROMs/SRAMs or from registers/SROMs/SRAMs to output ports.

Therefore, the resulting AROM-free or ARAM-free circuit has large propagation

delay and low clock frequency. Hence, we say that performance of the result-

ing AROM-free or ARAM-free circuit may be degraded. However, it is easier
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to improve the performance of the resulting circuit than minimizing the number

of clock cycles by the designers. For the reader’s benefit, performance improve-

ment techniques in terms of latency and clock frequency of the resulting circuit

are described as follows:

6.1.1 Minimizing latency by eliminating redundant registers

We will describe here how to minimize latency of the resulting circuit. For

this purpose, we first defineredundant registersin the resulting AROM-free or

ARAM-free circuit. The registers which are connected to theedges ending at O

nodes are called redundant registers. For the benefit of readers, we have shown

an example of a resulting circuit, as illustrated in Figure6.1, where the redun-

dant registers are highlighted. Essentially, the redundant registers only work just

as buffers for the output nodes. Thus, the latency of each output port can be de-

creased by eliminating redundant registers if they do not cause a timing problem

for a circuit connected to the output port. Also, we can say that, after removing

all redundant registers, the latency is minimized, becauseno other registers can

be deleted.

On the other hand, if all edges ending at O nodes have equal number of redundant

registers (Rs), we can eliminate those redundant registers(Rs) in a sense that

there is no timing problems at O nodes of the resulting circuits. In this regard,

readers may refer to the Figure6.1. In this figure, it is shown that every edge

ending to O node has one equal number of redundant registers (Rs) such that

these redundant registers (Rs) can be eliminated for minimizing latency. If this is

the case, the latency must be minimized as well as performance of the resulting
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circuit is improved definitely.
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data input

data output

Area under this dotted curve represents 
any circuit  with its circuit elements

SRAM

Figure 6.1: An example to minimize latency in the AROM-free or ARAM-free circuit

by eliminating redundant registers.

6.1.2 Increasing clock frequency by adding registers

Here, we will describe about the clock performance improvement of the AROM-

free or ARAM-free resulting circuit. Recall that, by our rewriting algorithms,

registers in the circuits are moved towards the output ports, whenever possible.

Hence, resulting circuit may have the longest path. The maximum clock fre-

quency depends on the longest path from input ports to registers/SROMs/SRAMs
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or from registers/SROMs/SRAMs to registers/SROMs/SRAMs or

from registers/SROMs/SRAMs to output ports. For the benefit of readers, we

have shown the longest path in Figure6.2(a) and in Figure6.3(a) by highlighting

the arrows. Figure6.2(a) represents an AROM-free resulting circuit and Fig-

ure6.3(a) represents an ARAM-free resulting circuit. Due to the longest path in

the clock dependent circuits (i.e. circuits with Rs, CCs and SROMs or SRAMs in

our case), clock performance of those circuits must be degraded. To overcome of

this problem, we need to divide the AROM-free or ARAM-free resulting circuit

(when no rule is applicable) into several layers so that the longest path becomes

shorter. Designers can select the layers properly in order to make the longest

path into shorter for getting optimum clock performance. Infact, proper selection

of the layers in the AROM-free or ARAM-free resulting circuit for getting opti-

mum clock performance may be another research work. This topic is beyond of

this dissertation. For the benefit of readers, we have shown two examples in Fig-

ure6.2(a) and in Figure6.3(a). Figure6.2(a) and Figure6.3(a) show the examples

of two layers. The cutting points (created by layers and edges) are highlighted by

the bullet circles in these figures. After that, registers are added at every cutting

point in the AROM-free or ARAM-free resulting circuit such that longest path

of the AROM-free or ARAM-free resulting circuit becomes shorter, as illustrated

in Figure6.2(b) and Fig.6.3(b). Due to shorter path instead of the longest path,

the clock performance of the AROM-free or ARAM-free resulting circuit must be

improved definitely. In this case, we can ignore the latency of the added registers

in the AROM-free or ARAM-free resulting circuit.
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Figure 6.2: An example for improving the clock performance in the AROM-free circuit.
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111



Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have presented circuit rewriting algorithms to convert

circuits with memories supporting asynchronous read operation or circuits with

memories supporting asynchronous read and synchronous write operations into

the equivalent circuits with memories supporting synchronous read operation or

equivalent circuits with memories supporting synchronousread and synchronous

write operations for implementing in FPGAs.

First, we have shown acircuit rewriting approachfor converting circuit with asyn-

chronous ROMs into an equivalent circuit with synchronous ROMs for imple-

menting in FPGAs. For the purpose of circuit conversion, we have presented a

circuit rewriting algorithmandfive rewriting rules. In fact, our algorithm invokes

the rules and applied repeatedly in the current circuit until no applying is possible

such that we have an AROM-free circuit to implement in the current FPGAs. Us-
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ing our rewriting algorithm, any sequential circuit with AROMs can be converted

into an equivalent fully synchronous sequential circuit with no AROMs to support

the modern FPGA architecture. Although, this circuit conversion by our approach

is not trivial. However, our circuit rewriting algorithm can do it automatically. We

briefly discuss the techniques to improve performance of theAROM-free result-

ing circuit and also describe a technique for applying our rewriting algorithm even

if a user designs a circuit with pipeline structure.

Next, we have presented acircuit rewriting algorithm and five rewriting rules

to convert a circuit with ARAMs into an equivalent circuit with no ARAMs for

the current FPGA consideringboth read and write operationsof the memory

blocks (RAMs). However, in our previous work mentioned earlier (followed by

Chapter3), we consideredonly read operationof the memory blocks (ROMs). In

fact, we improved our previous work, described in Chapter3, where RAMs can be

used as the additional circuit elements to the given input circuits. It is not trivial

to convert a sequential circuit with ARAMs into an equivalent fully synchronous

circuit with no ARAMs for supporting the modern FPGA architecture. However,

our algorithm is able to do it automatically. We also briefly discuss the techniques

to improve performance of the ARAM-free resulting circuit.

Next, amodified circuit rewriting algorithmis presented to convert a circuitwith

cyclesusing AROMs into an equivalent circuitwith cyclesusing SROMs for im-

plementing in FPGAs. In fact, our modified circuit rewritingalgorithm is able

to convert practical circuits which havecyclesusingsix rewriting rules. In our

previous works, mentioned above (followed by the Chapter3 and Chapter4), we

have presented circuit rewriting algorithms to convert a circuit with asynchronous
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ROMs or asynchronous RAMs into an equivalent circuit with synchronous ones.

The resulting circuit with synchronous ROMs or synchronousRAMs can be em-

bedded into FPGAs. However, these circuit rewriting algorithms can handle cir-

cuits represented by a directed acyclic graph (DAG) and do not work for those

with cycles. The work in this chapter , we succeeded in relaxing the cycle-free

condition of circuits. More specifically, we present an algorithm that automati-

cally converts a circuit with cycles using asynchronous ROMs into an equivalent

circuit using synchronous ROMs. We briefly discuss the techniques to improve

performance of the AROM-free resulting circuit and also describe a technique

to generate AROM-free circuit even if the input circuit is beyond of the directed

reachable graph (DRG) circuit.

Finally, we have discussed several techniques to improve the performance of the

resulting circuits. By our rewriting algorithms, performance may degrade of the

resulting circuits, because, our rewriting algorithms move registers towards the

output ports, whenever possible. Hence, in general, the resulting circuits may

have the longest paths from input ports to registers/SROMs/SRAMs or from regis-

ters/SROMs/SRAMs to registers/SROMs/SRAMs or from registers/SROMs/SRAMs

to output ports. As a result, performance of the resulting circuits may be degraded

in terms of latency and clock frequency. However, it is possible to improve circuit

performance of the AROM-free or ARAM-free resulting circuit as illustrated in

Chapter6, which is easier than minimizing the number of clock cycles,although

performance improvement of the AROM-free or ARAM-free resulting circuit is

beyond of this dissertation.
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