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SUMMARY

Recently, FPGAs (Field Programmable Gate Arrays) are widséd to implement al-
gorithms with circuits for accelerating computation. Citalesign that minimizes the
number of clock cycles is easy if we use asynchronous reachtipe. However, em-
bedded blocks of memories in the most modern FPGAs suppochsynous read and
synchronous write operations, but do not support asyndusnead operation. Hence,
we can not implement circuits with memories supporting abyonous read operation
in FPGAs. Because of the above background, this dissertatiows circuit rewriting
algorithms to convert circuits with memories supportingraironous read operation
into the equivalent circuits with memories supporting syionious read operation for
implementing in FPGAS, as follows:

In the domain of digital circuit design, one of the most intpot tasks is to make
circuit design easy to the designers. We say that circuigddgbhat minimizes the num-
ber of clock cycles is easy if we use asynchronous read aperatiowever, embedded
block RAMs (Random Access Memories) of the most FPGAs sugyochronous read
and synchronous write operations, but do not support asgnols read operation. To
resolve this problem, the first main contribution of thiss#igation is to presentarcuit
rewriting algorithmwhich is used to convert a designed circuit with AROMs (Asyn-
chronous Read Only Memories) into an equivalent circuihvBROMs (Synchronous
Read Only Memories). More specifically, a circuit using AR®Mupporting asyn-
chronous read operation designed by a non-expert or quaddygned by an expert is
given. Ourcircuit rewriting algorithmconverts this circuit with AROMs into an equiva-
lent circuit with SROMs supporting synchronous read opensautomatically. Finally,

the resulting circuit with SROMs can be embedded into FPGAs.



Circuits designed by users may have ARAMs (Asynchronous RASdpporting
bothasynchronous read and synchronous write operations thsfe@dROMs support-
ing asynchronous read operationly. However, embedded block RAMs of the most
modern FPGASs support synchronous read and synchronowsapérations but do not
support asynchronous read operation. The second maintmaidn is to present air-
cuit rewriting algorithmto resolve this problem. Therefore, present@duit rewriting
algorithm which is devoted to convert automatically a circuit using A®&s into an
equivalent circuit with SRAMs (synchronous RAMSs) suppagtbothsynchronous read
and synchronous write operations in order to embed thetregudircuit in FPGASs.

Many practical circuits, designed by users may haxaes Howevercircuit rewrit-
ing algorithms presented as the first and second main contributions atdeut@pro-
cess those circuits withycles Our third main contribution of this dissertation is to
propose anodified circuit rewriting algorithnwhich is able to process circuits witly-
cles More specifically, a circuit witltyclesusing AROMs designed by users is given.
Ourmodified circuit rewriting algorithntonverts it into an equivalent circuit wittycles
using SROMs. Finally, the resulting circuit witlyclesusing SROMs can be embedded
into FPGAs.

By our circuit rewriting algorithms most of the registers move towards the output
ports, whenever possible. Hence, in general, the resuttiegits may have the longest
paths from input ports to registg8BROMgSRAMSs or from registefSROM3$SRAMs
to registersSROM$SRAMSs or from registefSROMg$SRAMSs to output ports. Perfor-
mance of the resulting circuits therefore may be degradéelrins oflatencyandclock
frequency However, it is easier to improve the performance of the ltegpcircuits

than minimizing the number of clock cycles by the designers.
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Chapter 1

Introduction

1.1 Background and Motivation

In the context of accelerating computation, many paralfel distributed computing
methods are proposed by the researchers. One of the widetypegallel computing
methods with a multi-core apgk multi-processor computer is presentedéhdnd other
one B, is presenting the distributed computing method using rapater cluster. On
the other hand, FPGAs (Field Programmable Gate Arrays) gm®grammable VLSI
which can be used for implementing parallel and hardwarerdatgns. As a device
for low cost pseudo-specialized LSI, FPGAs are attractitgnéion to the researchers.
With the development of LSI device fabrication, FPGAs aresen by the researchers
for implementing their applications. For the technical noyement of LSI production,
their size, capabilities, and speed have been increasedp&ethwith parallel and dis-
tributed computing, the computation granularity of congtian using FPGAs would be
the finest. Considering programmability, FPGAs can be camnsil as hardware that

has an ability of software. Recently, FPGAs are widely useitniplement algorithms



with circuits for accelerating computation. Circuit desipat minimizes the number of
clock cycles is easy if we use asynchronous read operatiowekkr, embedded blocks
of memories in the most modern FPGAs support synchronous aed synchronous
write operations, but do not support asynchronous readatiper Hence, we can not
implement circuits with memories supporting asynchroneagl operation in FPGASs.
Because of the above background, we are inspired to pregenttaewriting algo-

rithms to convert circuits with memories supporting asyocious read operation into
the equivalent circuits with memories supporting syncrgread operation for imple-
menting in FPGAs. For this purpose, this dissertation showesit rewriting algorithms

which are as follows:

A Circuit Rewriting Algorithm for Converting Asynchronous ROMs

into Synchronous Ones for FPGAs

A circuit rewriting algorithmthat is used to rewrite a given circuit with AROMs (Asyn-
chronous Read Only Memories) until an equivalent circuthvBROMSs (Synchronous
Read Only Memories) is generated for implementing in FPGWare specifically, a cir-
cuit, X with AROMs is given. Oucircuit rewriting algorithmgenerates a circuit, with
SROMs which is an equivalent % with AROMs for implementing in the current FP-
GAs. FPGAs have Configurable Logic Blocks (CLBs) to implememhbinational and
sequential circuits and block RAMs to implement Random Asddemories (RAMS)
and Read Only Memories (ROMSs). Circuit design that minimibesnumber of clock
cycles is easy if we use asynchronous read operation. Howewvdedded memories
of the most FPGAs support synchronous read and synchrongigsoperations, but do

not support asynchronous read operation. Hence, the mainitmation of this chapter



is to present a potent circuit rewriting approach to resdtive problem. We assume that
a circuit using asynchronous ROMs (AROMSs) designed by aaxqrert or quickly de-
signed by an expertis given. Our goal is to convert this dcirvith asynchronous ROMs
into an equivalent circuit with synchronous ones (SROMdpmauatically. Finally, the
resulting circuit with synchronous ROMs can be embedded FRGAs. We briefly
discuss the techniques to improve performance of the AR@Mfesulting circuit and
also describe a technique for applying our rewriting altjon even if a user designs a

circuit with pipeline structure.

A Circuit Rewriting Algorithm to Obtain Circuits with Synchronous

RAMs for FPGAs

A circuit rewriting algorithm presented in this chapter is devoted for converting a
circuit with RAMs supporting asynchronous read and synebus write operations
(ARAMS) into an equivalent circuit with RAMs supporting ssiironous read and syn-
chronous write operations (SRAMS); more specifically, @uwiir using asynchronous
RAMs (ARAMS) designed by a non-expert or quickly designedabyexpert is given.
This rewriting algorithm converts it into an equivalentatiit using synchronous RAMs
(SRAMS) for implementing in FPGASs. In our previous work, niened earlier (fol-
lowed by the ChapteB), we considerednly read operationof the memory blocks
(ROMs). Particularly, presented circuit rewriting algbrn was used to convert a circuit
with AROMs into an equivalent circuit with SROMs. The resuif circuit can be em-
bedded into FPGAs. However, this circuit rewriting alglonit, presented in this chapter
considersboth read and write operationsf the memory blocks (RAMS). In fact, we

improved our previous research work, where RAMs can be us#éueeadditional circuit



elements to the given input circuits. The conversion of aisatjal circuit with ARAMs
into an equivalent fully synchronous circuit with no ARAMsr fsupporting the modern
FPGA architecture is not trivial. However, our algorithrmaodo it automatically. We
also briefly discuss the techniques to improve performanteecARAM-free resulting

circuit.

A Modified Circuit Rewriting Algorithm for the Circuits with Cycle s

A modified circuit rewriting algorithms used to convert a circuitith cyclesusing
AROMs into an equivalent circuit using SROMs for implemaegtin FPGAs. The main
contribution of this chapter is to consider a given cirauith cyclesusing AROMs. Par-
ticularly, our new circuit rewriting algorithm can be usexddonvert circuits which have
cycles. In our previous works, mentioned above (followedh®s ChapteB and Chap-
ter 4), we have presented circuit rewriting algorithms to cobtvecircuit with asyn-
chronous ROMs or asynchronous RAMs into an equivalent ttikgith synchronous
ones. The resulting circuit with synchronous ROMs or synnbus RAMs can be em-
bedded into FPGAs. However, these circuit rewriting aldpons can handle circuits
represented by a directed acyclic graph (DAG) and do not iarkhose with cycles.
By the work in this chapter, we succeeded in relaxing theesfide condition of circuits.
More specifically, we present an algorithm that automaiiaanverts a circuitvith cy-
clesusing asynchronous ROMs into an equivalent circuit usimgyonous ROMs. We
also briefly discuss the techniques to improve performafteescAROM-free resulting

circuit.



Performance Improvement of the Resulting Circuits

In this chapter, we mainly discuss about the performanceaugment of the AROM-
free and ARAM-free resulting circuits. Basically, our retvrg algorithms move regis-
ters towards the output ports, whenever possible. Hengenaral, the resulting circuits
may have the longest paths from input ports to regisBROMgSRAMS or from regis-
tergSROMg$SRAMS to registerl'SROM$SRAMSs or from registefSROMgSRAMSs to
output ports. Therefore, the resulting AROM-free or ARAK€ circuit has large prop-
agation delay and low clock frequency. Hence, we say thépeance of the resulting
AROM-free or ARAM-free circuit may be degraded in terms aklacy and clock fre-
guency. However, it is easier to improve the performancédefresulting circuits than
minimizing the number of clock cycles. For the reader’s bgngerformance improve-
ment techniques in terms of latency and clock frequency efrédsulting circuits are

described in Chapted, although these ateeyond of this dissertation

1.2 Dissertation Organization

This doctoral dissertation is organized as follows: Thekgaound with motivation and
the introduction of this dissertation are presented in Géraptin Chapter2, we briefly

introduce an FPGA. Chapt&rdescribes aircuit rewriting approachto convert a cir-

cuit with AROMs into an equivalent circuit with SROMs for it@menting in FPGAs.
Chapterd describes a@ircuit rewriting approachto convert a circuit with ARAMs sup-
porting asynchronous read and synchronous write opermatidn an equivalent circuit
with SRAMSs supporting synchronous read and synchronoug wpgerations. In Chap-

ter5, amodified circuit rewriting approacks described to convert a circuit with cycles



using AROM s into an equivalent circuit with cycles using S®&©for implementing in
FPGAs. Technigues to improve performance of the resultirguits are described in

Chapter6. Finally, this dissertation is concluded in Chapier



Chapter 2

FPGA

An FPGA (Field Programmable Gate Array) is a programmabl&WMh which a hard-
ware designed by users can be embedded instantly. In mid'sl98e first commer-
cially viable FPGA has been invented. At first, since the siza hardware that can
be embedded on an FPGA was small and the speed was slow. Hpbeations of
FPGAs were limited to a specific area, such as digital signagssing, prototyping
ASIC, and computer hardware emulation. With technical inmproent of LSI produc-
tion, however, their size, capabilities, and speed hava meeased. Recently, because

of their flexibility, they are widely used for various apgitons.

2.1 FPGA Architecture Basics

Typical FPGASs consist of an array of programmable logic @ets, distributed memory
blocks, embedded multipliers, IngGutput Block and programmable interconnections
between them. Figur.1shows an example of FPGA hardware fabric. The logic block

usually contains either a logic function or a multiplexedaeveral flip-flops. An exam-



ple of a logic block is illustrated in Figur2.2 The distributed memory block is usually
a dual-port RAM (Random Access Memory) on which a word of dataossibly dis-
tinct addresses can be readtten at the same time. Note that, a RAM can be treated as
ROM by selecting the write enable input of a RAM as low. The edded multipliers
can compute multiplication much faster than multiplierstttonsists of logic elements.
The user’'s hardware logic design can be embedded into theAERGIng the design
tools supplied by the FPGA vendors. Using design tools segdly FPGA vendors,
a hardware logic designed by users can be embedded into BA$-PHowever, de-
signed circuits by users with AROMs (Asynchronous ROMs)mupng asynchronous
read operation or ARAM (Asynchronous RAMSs) supporting ayonous read and
synchronous write operations can not be implemented in FfGAcause, embedded
blocks of memories in FPGAs support synchronous read andhsynous write op-
erations. Hence, our goal is to provide circuit rewriting@ithms that can convert
circuits with AROMs or ARAMs into the equivalent circuits thisynchronous ones for
implementing in FPGAs. In particular, circuits consist egjisters (Rs), combinational
circuits (CCs) and AROMs or ARAMSs are converted automatidaylyur circuit rewrit-
ing algorithms into the equivalent circuits having registéRs), combinational circuits

(CCs) and SROMs or SRAMs for implementing in FPGAs.
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Figure 2.2: An example of a logic block.



Chapter 3

A Circuit Rewriting Algorithm for
Converting Asynchronous ROMSs into

Synchronous Ones for FPGAS

The main contribution of this chapter is to present a ciroewmtriting algorithm to con-
vert a circuit with AROMs supporting asynchronous read afien into an equivalent
circuit with SROMs supporting synchronous read operatmnirfplementing in FP-
GAs. Most of FPGAs have Configurable Logic Blocks (CLBs) to iempent combina-
tional and sequential circuits and block RAMs to implemeanh&m Access Memories
(RAMs) and Read Only Memories (ROMs). We say that circuiigleghat minimizes
the number of clock cycles is easy if we use asynchronousapathtions. However,
embedded memories of the most FPGAs support synchronodsarehsynchronous
write operations, but do not support asynchronous readatipes. This chapter pro-
vides one of the potent approaches to resolve this problem.a¥ume that a circuit

using asynchronous ROMs designed by a non-expert or quidigned by an expert
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is given. Our goal is to convert this circuit with asynchrasdROMs (AROMS) into an
equivalent circuit with synchronous ones (SROMs) autocadlti. The resulting circuit
with synchronous ROMs can be embedded into FPGAs. We briefuss the tech-
niques to improve performance of the AROM-free resultingwit and also describe
a technique for applying our rewriting algorithm even if seusglesigns a circuit with

pipeline structure.

3.1 Introduction

Our approach, presented in this chapter is devoted to coavercuits with AROMs
into an equivalent circuit with SROMSs for implementing inGRs. An FPGA is a
programmable VLSI (Very Large Scale Integration) in whichardware designed by
users can be embedded quickly. FPGAs may implement hundfeiiuits that work
in parallel. Therefore, they are used to accelerate usefuputations. Some circuit
implementations in FPGAs are describdd 2, 9, 14] to accelerate computation. For
example, a parallel implementatiof] [for the exhaustive verification of the Collatz
conjecture has been presented. In this implementationgptacessors embedded in a
Xilinx Virtex-2 Family FPGA perform the exhaustive verifiban in parallel.

In this chapter, we mainly focus the following asynchronand synchronous read

operations of memory blocks.

3.1.1 Asynchronous read operation

The memory block outputs the data specified by the address givthe address port.

When the address value is changed, the output data is updateetiiately within some

11



delay time. In other words, the output data port always astpid], which is the data

stored in the input address valde

3.1.2 Synchronous read operation

Even if the address value is changed, the output data is miatte. The output data is
updated based on the address value at the rising edge of ditate specifically, the
output data port outputs![d], whered is the address data at the previous point of rising
clock edge.

Let AROMsand SROMsdenote ROMs with asynchronous and synchronous read
operations, respectively. In general, the circuit desgyeimpler and easier to the de-
signers, in particular to the non-expert circuit designé’SROMSs are available. In
asynchronous read operation, the value of a specified aldeesbe obtained imme-
diately. However, in synchronous read operation, one ctycke is required to obtain
it. Nevertheless, block RAMs embedded in most of the curféiBAs do not support
asynchronous read operation for increasing its operatogkdrequency.

The main contribution of this chapter is to present a circentriting approach that

convertsan asynchronous circugonsisting

combinational circuits (CCs), registers (Rs), and ROMs witynakronous

read operations (AROMS)
into an equivalent synchronous circuibnsisting

combinational circuits (CCs), registers (Rs), and ROMs withchyonous

read operations (SROMS)

Note that, most of the current FPGAs support synchronous oparation, but do not

12



support asynchronous one. We are thinking the followinghade to use our circuit

rewriting algorithm:

e An asynchronous circuit designed by a non-expert, or quickdsigned by an

expert is given.
e Our circuit rewriting algorithm converts it into an equiealt synchronous circuit.
e The resulting synchronous circuit can be implemented in A£G

In other words, designers can design a circuit for FPGAs utiseeassumption of asyn-
chronous read operation, which is simpler and easier thawoth synchronous read
operation.

We will show a simple example illustrating that the circugsign is simpler if
AROMs are available. Suppose that for an inpyt we need to comput¥, = X, 1 +
f(Xn-1) for everyn > 1. We assume that the functidris computed using a ROM. More
specifically, we use a ROM such that addressstoring a value of (i). Figure3.1(a)
illustrates a circuit with an AROM to compute,, X,, ... for an inputXy,. An AROM
is used to compute the value 6fX,) for a givenX,. It should be clear that this circuit
outputsX;, X, ... in every clock cycle. Figur&.1(b) shows a circuit with an SROM.
Since one clock cycle is necessary to read the valug¥f) for input X,,, we need to
insert a register to synchronize two inpsand f (X,) of the adder as illustrated in the
figure. This circuit outputsy, X,, ... in every two clock cycles. Hence, the circuit in
Figure3.1(b) needs double clock cycles over the circuit in FigBua). Using our algo-
rithm to the sub-circuit with solid lines (wires) in Figugel(a), we can obtain the circuit
in Figure3.1(c) automatically. In the circuit with an SROM in FiguBel(c), Xi, Xo, ...

is output in every clock cycle. Thus, the timings of the citeun Figure3.1(a) and (c)

13



: y :
AROM | R |SROM| i R |BROM
FOG)| Fa)| 7(Xa)
R R
Xn Xn X’ﬂ
(a) A circuit with an AROM (b) A circuit with an SROM  (c) The converted circuit with an SROM

by a non-expert

Figure 3.1: An example of circuits using an AROM and an SROM.

are identical.

It is not trivial for the non-expert designers to minimizethumber of clock cycles
to obtain circuit as illustrated in Figui@1(c). However, our algorithm can do it auto-
matically. Although, clock performance may degrade in tbeverted circuit due to the
moving of registers (Rs) towards the output ports by our itigm; however, designers
can make a tradefobetween the maximum delay and number of clock cycles for thei
designs. The readers should refer to FigBr2for an illustration. In Figure3.2, the
number of clock cycles is increased as well as the maximumydsldecreased by in-
serting the pipelined registers. In general, the insertibtine pipelined registers is not
difficult. On the other hand, our algorithm may decrease the nuoflzock cycles by
removing redundant registers. Although it may increaserthgimum delay, sometimes
the resulting circuit takes smaller total computing timeaRers may refer to Chaptér

for details about performance improvement techniques.
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\by our technique

Maximum delay

by inserting
pipelined registers

Number of clock cycles

Figure 3.2: A relation between the maximum delay and the raermabclock cycles.

The outlines of our new idea are as follows:

1. We introducea negative registe(NR), which is an imaginary register latching a

future input data.
2. We define simpldive rulesthat rewrite a circuit.

3. The rewriting algorithm that we propose just repeats apgjyhese rules until no
more rules can be applied. When the rewriting algorithm taatas, we have an

equivalent AROM-free circuit to the original circuit.

The key and innovative idea is to introduce a negative regish our rewriting algo-
rithm, a circuit with AROMs is first converted into an AROMete circuit with negative
registers. After that, our algorithm continues to rewritecgit such that all NRs are
removed. When the algorithm terminates, all negative regiswill be removed if pos-
sible, and the resulting circuit becomes an equivalenteatiginal circuit.

A circuit implementation with AROMs is better than SROMs iempentation, be-
cause of less power consumption, easy to design etc. Busistime problems like

small in size so that it does not support the designer’s demaore expensive, and less

15



speedy 8, 10, 11]. To cut the clock distribution power, an asynchronousugirdesign
in FPGAs is very much suitable, described 188, 19]. However, it is not supported
by the current FPGAs.

On the other hand, a circuit implementation with SROMs is ohating the mod-
ern digital circuit design industry, because it supports itodern FPGA architecture,
although it has some drawbacks to design like clock distioiby more power consump-
tion etc B, 11]. Therefore, we should use SROMs when we need a function M&KO

One of the research works described the implementationyofcisonous circuit in
FPGA [16]. In this research work, they described the problems likeahds, timing
constraints, state holding elements, analog componedtdesomposition of the asyn-
chronous circuit implementation in FPGA. Another reseandrk described a novel
FPGA architecture for implementing various styles of asynoous logic 7]. They
implemented a full-adder circuit in two fierent logic styles. While in synchronous
circuits a clock globally controls the activity where as agyronous circuit activity is
locally controlled using communication channels to detketpresence of data at their
inputs and outputs. An asynchronous module communicatidéseach other using re-
guests and acknowledgek7]. Some dedicated FPGAs have also been developed to
test asynchronous designs. Unfortunately, these FPGAda@gely associated to a style
of design. For instance, PGA-STQJ] and MONTAGE [16] are based on an asyn-
chronous design, GALSA4] and STACC [L5] are globally asynchronous FPGAs but
locally synchronous and PAPA] is a fully asynchronous FPGA dedicated to optimize
pipeline circuits.

To the best of our knowledge, there is no previous researak wo our topic. It

is well known that the architecture of the current FPGASs &s ltlest suited for digital
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synchronous circuit designs. Unfortunately, they do neehiaslock RAMs supporting
asynchronous read operations. It is also known that ARONhi@emented in LUTS
which is easy to use because of the immediate output of dadaveter, it is small in

size and costly. Therefore, our target is to generate an ARf@® fully synchronous
sequential circuit from a sequential circuit with AROMSs whiis an equivalent to the
original circuit so that it can support the modern FPGA asatture.

We summarize several significant points of our results deviat:

¢ Negative registers (NRs) are newly introduced as a key amavative idea. Fur-

ther, the correctness of our algorithm is proved in a rigerowanner.

e Our circuit rewriting algorithm moves all redundant regis towards the output
ports. They can be removed to decrease the latency of thdatciidherefore, the
circuit that obtained has minimum latency in the sense theg@dundant registers
are deleted. We will discuss a technique to minimize latenfcthe resulting

circuits in Chapteb.

e Clock performance may degrade in the resulting circuit by @writing algo-
rithm. However, we can improve the clock performance by ritisg registers
appropriately, although this is beyond of this dissertatieor the benefit of read-
ers, a technique to improve clock performance of the resyltircuit will be

discussed in Chapté

e FPGA vendors may think that they will support asynchron@airoperation for
next-generation FPGAs satisfying low latency circuitshniibrfeiting the high
clock frequency. If this is the case, our rewriting appro&chseless. However,

our results suggest to the FPGA vendors that support of &sgnous read opera-
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tion is not necessary, because it can be automatically cea/ato synchronous

one using our algorithm.

The readers may think that circuits dealt with this chaptertao restricted where
as circuits in real-world are more complicated. Howevemdy be possible to
extract a sub-circuit from the complicated circuit. We chart apply our circuit

rewriting algorithm to this sub-circuit.

Even if a user designs a circuit with pipeline structure, algorithm moves
pipeline registers towards the output ports and destrogsptheline structure.
However, it may be possible to perform AROM-free converdmeally without
collapsing a global pipeline structure. For this purpose,nged to extract sub-
circuits in the original circuit such that it contains no @lipe register. By using
our algorithm for each sub-circuit, it can be converted emcAROM-free circuit.
Since the timing of each sub-circuit is not changed, the wiecohverted circuit is
identical to the original circuit. In this way, our algonthmay be applicable to

the pipelined circuits.

This chapter is organized as follows: Sect®a briefly describes the circuits and their

equivalence. In SectioB.3, we describe our rewriting algorithm, circuit graph andoals

explain the equivalence for our rewriting rules. Sect®a presents the proof of the

correctness of our rewriting algorithm. Finally Secti®® concludes this chapter.

3.2 Circuits and Their Equivalence

This section briefly describes the circuit elements suchoasbinational circuit (CC),

registers (R), read only memory (ROM) and their equivalenicet us consider a se-
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guential circuit that consists of input ports, output pocsmbinational circuits (CCs),
registers (Rs), read only memories (ROMSs), a global clogkiir{clock), and a global
reset input (reset). The following subsections descrikecticuit elements such as com-

binational circuit (CC), register (R), read only memories (R).

3.2.1 Combinational Circuit (CC)

A combinational circuit (CC) is a network of fundamental logetes with no feedback.
So, it can compute Boolean functions represented by Bodt@amulas, such a§ =
A-B+B-CandG = B- C as illustrated in Figur8.3. Once inputs are given, the outputs
are computed in small propagation delay.

A B C

Figure 3.3: An example of a combinational circuit (CC).

3.2.2 Regqister (R)

Register is a memory element that can store data or infoomath b-bit register has a
clock input and a reset input. It can storb-ait data as shown in Figui&4. If reset is

1, then theb-bit data is initialized by 0. If reset is O, the stored datapslated by the
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value given to the input pod at every rising clock edge. The data stored in the register
is always output from por.

d

Y

b-bit register (R)

clock —

reset —j

clock —

reset —j

Figure 3.4: A register (R), a synchronous ROM (SROM) and gme&wonous ROM

(AROM).

3.2.3 ROM (Read Only Memory)

ROM is also known as a memory element where data or informatén be stored
permanently. A ROM (Read Only Memory) had-it inputd and ac-bit data output
g. It is storing 2 words such asf[0], M[1], ..., M[2° — 1] with c bits each. We deal

with two types of ROMs in terms of read operations as follows:

e Synchronous ROM (SROM)An SROM has a clock input and a reset input. If

reset is 1 then the stored value is initialized by 0. The rgatation is performed
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at every rising clock edge when reset is 0. The outpstthe value oM[d] at the

latest rising clock edge.

e Asynchronous ROM (AROM) An AROM has no clock input and no reset input.

The value ofM[d] is continuously output from pod.

The Figure3.5shows a timing diagram of reading operations of the R, SRORIOM
and NR. In the figure, time 0, 1, 2,. correspond to rising edges of the periodic clock
input. Initially global reset is 1 and it drops to O just befdime 0. Datady, di, d, ...
are given to the input pod. As shown in the figure, the value of outpgtof R and
SROM is 0 at time 0. Also, at time 1, 2,. the values of outputy of R and SROM
aredy, di, do, ... andM[do], M[d;], M[d2], ..., respectively. For the AROM, the data
M[do], M[d;], M[d4], ... are taken from the output pod,immediately at time O, 1, 2,
..., respectively.

In current FPGAs, an SROM can be implemented in embedde#& BAd1s. How-
ever, an AROM is implemented in LUTSs, which are very costlgnide, we should use
SROMSs when we need a function of ROMs. On the other hand, ARO&Asy to use,
because we can get output data from the AROM immediately.

We will describe a behavior of a circuit element using a seqaef output at every
rising clock edge for theeriodic clock(clock is inverted into a fixed frequency), and
initial reset (initially, reset is 1 and drops to O before the first risingak edge) as
illustrated in Figure8.5. The behavior of each circuit element is described by thpudut

sequences as follows:

e Combinational Circuit (CC) For simplicity, we assume 3-input 2-output com-
binational circuit which is shown in Fig.3. There is no diiculty to extend the

definition for generaim-input n-output combinational circuit. We assume that, at
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time 0 1 2 3

clock
reset _I I I

d do X d X do ¥ ds |

e
4(R) 0><do><d1 d2$<

¢ (SROM) 0 ><M [do] ><M[d1>< [da] ><

g(AROM) M[dg]XM[d1><M[d2]><M[d3];><

¢ (NR) d1%><d2%><d3%><d4%><

Figure 3.5: Atiming chart of a register (R), an SROM, an AROM @& negative register

(NR).

timei (i > 0), &, b, andc; are given to the 3 input pori, B, andC. Let f andg
be the two functions with three arguments that determinedhee of output ports

F andG. The output sequences BfandG are as follows:

CC(F)«f (a0, bo, Co), f(as, bs, C1), f(az, by, C2),...)

CC(G)<g(aO’ b09 CO)7 g(al9 bla Cl)a g(aZa b2’ C2)7 .. >

¢ Register (R)Letd; denotes an input value given to an input pbat timei (i > 0).

The output sequence is described as follows:
R: <Oa d09 dla dZa .. >
e Synchronous and Asynchronous ROMs (SROMs and AROMsl.et M[ j] de-

notes the value stored in addrgsg > 0) of the ROM. The output sequences of
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SROM and AROM are as follows:

SROM:(0, M[do], M[d1], M[d5], .. .)

AROM: (M[do], M[d;], M[d], M[ds], . ..)

In this chapter, we assume that a fully synchronous cir@stdata inputs, data out-
puts, a global clock input, a global reset input, combinaicaircuits (CCs), registers
(Rs), SROMs, AROMs, and their interconnects. The readessldirefer to the Fig-
ure 3.6 for illustrating an example of a fully synchronous circuitie global clock and
the global reset are directly connected to the clock inputspand the reset input ports

of all Rs and SROMSs. Also, we assume that a circuit has no loop.

data input
| O, O,

AROM AROM l ¢

) 1 )1

clock

reset

Figure 3.6: An example of a fully synchronous circuit and toeresponding circuit

graph with potentiality.

Let us defineequivalenceof two fully synchronous circuits for the periodic clock
and initial reset. We say that two circu¥sandY are anequivalentif, for any input

sequence, the output sequences are the same except foeviesalsoutputs. For the
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clock —
b b-bit register AROM
reset —
lock —
cloe SROM = b = c
reset — 4 )\
clock —
¢ AROM c-bit register
reset —
q q

Figure 3.7: An example of three circuits such as SROMAROM, and AROM-R for

showing an equivalence.

reader’s benefit, we will show an example of the equivalence.

Let us consider a circuit RAROM, that is, the output of R is connected to the input
of AROM as illustrated in Figur&.7. We also consider a circuit AROMR, in which
the output of AROM and the input of R are connected. For thegdarclock with initial

reset, the output sequences of SROMAROM, and AROM+R are as follows:

SROM: (0, M[dg], M[dh], M[dy], .. .)
R+AROM: (M[0], M[do], M[d4], M[d5], . ..)

AROM-R: (0, M[dg], M[ch], M[d5], . ..)

Since these three circuits have the same output in time.1,,2hey are an equivalent.
Note that the outputs in time O are not equal. In this chapterjgnore first several
clock cycles when we determine an equivalence of the cscuit

Suppose that a circuk with AROMs is given. The main contribution of this chapter

is to show

e a necessary condition such that an AROM-free circditan be generated, which
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is an equivalent te, and
e an algorithm to derivé if the necessary condition is satisfied.

For later reference, we will introduce negative registefNR), which is a nonexis-
tent device used only for showing our algorithm to deriand related proofs. Recall
that, a regular register latches the input at the risinglcledge. A negative register
latches a future input. The FiguB5also shows a timing diagram of a negative register
(NR). An NR latches the value of inpdtat the rising edge of two clock cycles later as
illustrated in Figure3.5. Thus, the NR has the following output sequence for a peasiodi

clock with an initial reset:
NR: (dl, dz, d3, .. >

In our algorithm to derive an AROM-free circu¥, circuits with NRs will be used as

interim results.

3.3 Circuit Graph and Rewriting Rules

This section shows a circuit with its underlying directertait graph and also describes
five rewriting rules in details. We simply use a directed dgrap denote the intercon-
nections of a fully synchronous circuit. We call such gragta circuit graph A circuit
graph consists of a set of nodes and a set of directed edgesatorg two nodes. Each
node is labeled by either I (Input port), O (Output port), CCRanational Circuit), R
(Register), NR (Negative Register), AROM, or SROM. A nodéwabel | is connected
with one or more outgoing edges. A node with label O is coreetith exactly one

incoming edge. A node with label CC has one or more incomingedgd one or more
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outgoing edges. A node with label R, NR, AROM, or SROM has ogerining and one
outgoing edge. We also assume that a circuit graph is a daestyclic graph (DAG),
that is, it has no directed cycles. The Fig®# illustrates an example of a directed
graph. Note that nodes with label I, R, NR, AROM, or SROM haly @me outgoing
edge. The readers may think that one outgoing edge is a fogestit restriction because
it does not allow two or more fan-outs. However, we can imgatrmultiple fan-outs
by attaching a simple combinational circuit (CC) that justldigtes the input. For ex-
ample, a CC with one input po& and two output port§ andG such that- = A and

G = Ais used to implement fan-out 2 as illustrated in Figare@

A

Figure 3.8: A combinational circuit to implement fan-outigait.

For a given circuitX with AROMs, we will show an algorithm to derive an AROM-
free and NR-free circuity by rewriting circuits. We assume thitis given as a circuit
graph. We will define rules to rewrite a circuit graph. Thedea should refer to
Figure 3.9 for illustrating the rules, where P and S denote predecemsdrsuccessor
nodes respectively. The nodes between predecessor aressacaodes are rewritten

as follows:

Rule 0 AROM node is rewritten into SROMNR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, tigtthey are
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Figure 3.9: Rules to rewrite a circuit graph.
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removed.

Rule 2 R+SROM (or NR+SROM) is rewritten into SROMR (or SROMtNR).

Rule 3 If one of the incoming edges of a CC node is connected to an NR,ribdn
the NR node is removed, an R node is added to all the other imgpadges, and

the NR node is moved to all the outgoing edges of the CC node.

Rule 4 If all the incoming edges of a CC node are connected to an R tioeie all the

Rs are moved to all the outgoing edges of the CC node.

Let us confirm that, after applying one of the rewriting rylas original circuit and

the resulting circuit are an equivalent. L&t b;, ¢, andd; (i > 0) denote inputs given
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from the predecessor node at time

Rule 0 Both AROM and SROMNR have the output sequen@d[do], M[d,], M[d_],

M[ds], ...), and thus they are an equivalent.

Rule 1 R+NR and NR:R have the output sequences, d;, d;, ds, ...) and(0, dy, d,, ds, .. .),
respectively. Also, NULL circuit has the output sequetdigd,, d,, ds, .. .). Thus,

they are an equivalent.

Rule 2 R+SROM and SROMR have the output sequencgs M[0], M[dy], M[d4],
...y and(0, 0, M[do], M[d4], ...), respectively and thus they are an equivalent.
On the other hand, NRSROM and SROMNR have the output sequence}
M[d;], M[d], M[ds], ...) and(M[do], M[d,], M[d;], M[d3] .. .), respectively and

thus they are an equivalent.

Rule 3 The output sequences of the left-hand side of the ruléfdes, by, ¢o), f(az, by, C1),
f(as, b2, C2), ...) and{(g(as, bo, Co), g(az, b1, c1), 9(a@s, b, c2), ...). Those of the
right-hand side aréf(ay, bo, Co), f(az, b1, C1), f(as, by, C2), ...) and{g(ay, by, Co),

g(az, by, c1), g(as, by, Cy), ...). Thus, they are an equivalent.

Rule 4 The output sequences of the left-hand side of the ruléfg@e0, 0), f (ao, bo, Co),
f(az, by, ¢1), ...y and(g(0, 0, 0), g(ao, bo, Co), g(as, b1, ¢1), .. .). Those of the right-
hand side ar€0, f(ao, bo, Co), f(as, b1, 1), ...) and(0, g(ao, bo, Co), 9(au, br, ¢1),

...). Thus, they are an equivalent.

We are now in position to describe the rewriting algorithmupfose that an in-
put circuit graph has nodes with labé|9O, R, AROM SROM andCC. The following
rewriting algorithm generates a circuit graph which is anieglent to the original cir-
cuit graph.
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Figure 3.10: Interim and resulting circuit graphs obtaitgdour rewriting algorithm

for a circuit graph.

Find a minimum i such that Rule i can be applied to the currardudat

graph. Rewrite the circuit graph using such

Rulei. This rewvgtprocedure

is repeated until no more rewriting is possible.

The readers should refer to Figu810 for illustrating interim and resulting circuit

graphs obtained using our rewriting algorithm.

highlighted.
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Let us observe the behavior of our rewriting algorithm. Eiesir rewriting algorithm
repeats the applying Rule 0 to all AROM nodes until all AROMiIas are rewritten into
SROM+NR. After that, NR nodes are moved towards the output nodieg iRules 2
and 3. Similarly, R nodes are moved towards the output nodeg Rules 2 and 4
whenever possible. Also, adjacent pairs of R and NR are rechty Rule 1. Thus,
intuitively, all NR nodes in the resulting circuit graph ar®ved and placed just before
the output nodes.

For the purpose of clarifying the condition such that ourméing algorithm can
generate NR-free circuit graph, we defitlee potentiality of the nodem a circuit
graph. Suppose that a nodef a circuit graph hag (> 0) incoming edges such as

(ug, V), (U, V), ..., (U, V). Let us definghe potentiality |v) of a nodev as follows:

If vis I, thenp(v) = 0.

If vis O or SROM, themp(v) = p(uy).

If vis AROM or NR thenp(v) = p(u,) — 1.

If vis R thenp(v) = p(u) + 1.

If vis CC, thenp(v) = min(p(uy), p(U), ..., p(uk)).

The Figure3.6also shows the potentiality of each node.

We have the following theorem.

Theorem 3.3.1 All O nodes of a circuit graph have non-negative potenyalit and
only if our rewriting algorithm generates an AROM-free and-Né&e circuit graph,

equivalent to the original circuit graph.
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In other words, we can determine a fully synchronous cirthat can be converted into
an AROM-free circuit by evaluating the potentiality of allf@des of the correspond-
ing circuit graph. Also, the potentiality of all O nodes a@nregative, our rewriting
algorithm generates an AROM-free and NR-free circuit gragid the corresponding
fully synchronous circuit is an AROM-free and an equivalenthe original fully syn-
chronous circuit. For example, in Figu81Q the potentiality of the right O node is
negative. Hence, the resulting circuit graph has an NR nodear rewriting algorithm

fails to remove all NRs.

3.4 Proof of Theorem3.3.1

The main purpose of this section is to show a proof of TheoBeBnl We will show
several lemmas for a proof of Theore8.1

Let us observe how the potentiality of nodes is changed byewriting algorithm.
We focus the potentiality of successor nodes. RetndS denote the predecessor and
successor nodes for Rules 0, 1, and 2. AlsoPgtP,, P3;, andS;, S, be the three
predecessor and two successor nodes in Rules 3 and 4. We teotheyotentiality of

each successor node both before and after applying theasiliedlows.
Rule 0 p(S) = p(P) — 1.

Rule 1 p(S) = p(P).

Rule 2 p(S) = p(P) + 1 if Randp(S) = p(P) — 1 if NR.

Rule 3 p(S1) = p(S2) = min(p(P1) — 1, p(P2), p(P3)) = min(p(P1), p(P2) + 1, p(Ps) +
1)-1.
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Rule 4 p(Si1) = p(Sz) = min(p(Py) + 1, p(P2) + 1, p(P3) + 1) = min(p(Py.), p(P2),

p(Ps)) + 1.

Thus, the potentiality of every successor node is nevergiiby applying the rules.

In every rule, O nodes can only be successor nodes. Thus,wee ha

Lemma 3.4.1 The potentiality of every O node of the resulting circuitgnas the same

as that of the corresponding O node of the original circuigin.

In Figure3.10 the potentialities of the left and the right O nodes are 0-ahgrespec-
tively, and these values are never changed.

In a circuit graph, led segmenbe a directed pathy, U, .. ., U such thaty;, anduy
are either I, O, SROM, or CC, ang, ..., u.; are either R or NR. Note that, K= 2

then it represents a null segment with u,. We also have the following lemma.

Lemma 3.4.2 Let u be an NR node ard, v) be its outgoing edge in the resulting circuit
graph. Node v must be either NR or O node. Also, all NR nodes lmus segments

ending at O node.

Proof If vis an R, SROM, or CC node then Rules 1, 2, or 3 can be applied.e Sinc
no more rules can be applied to the resulting circuit grapimust be either NR or O
node. Since the successor of NR nodes must be NR or O nodeRalbNes must be in

segments ending at O node.

From Lemma3.4.2 we will prove that all SROM and CC nodes in the resulting

circuit graph have zero potentiality.

Lemma 3.4.3 All SROM and CC nodes in the resulting circuit graph have negative

potentiality.
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Proof Since the resulting graph is AROM-free, nodes follow NR reodan have nega-
tive potentiality. Since no segment ending at SROM or CC hasbldres, their poten-

tiality must be non-negative.

Similarly, we have the following lemma.

Lemma 3.4.4 All SROM and CC nodes in the resulting circuit graph have nosHpe

potentiality.

Proof We assume that the resulting circuit graph has a SROM or CCwildeositive
potentiality, and show a contradiction. Lebe a first SROM or CC node with negative
potentiality, that is, all SROM and CC nodes in all directethpancoming tov have

non-positive potentiality and SROM or CC nodéas positive potentiality.

Case 1 vis an SROM node
Let (u,v) denotes the incoming edge. Ufis either R or NR, then Rule 2 can be
applied. Since no more rules can be applied to the resultmagitgraph, it must
be either I, SROM, or CC. If this is the casp(u) = 0 and thus,p(v) = 0, a

contradiction.

Case 2 vis a CC node
Let (ug, V), (Uz,V),. .., (U, V) (k > 1) denote the incoming edges. From Lem3né& 2
none ofuy, Uy, ..., Ux IS an NR node. If all of them are R nodes, then Rule 4 can
be applied. Thus, at least one of them is not an R node. Iivislihat at least
one of them is either I, SROM, or CC node. From the assumpttma pbten-
tiality of such node is non-positive, Hence, the potenyiadf v is non-positive, a

contradiction.
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We are now in position to show the proof of Theor@&3.1 From Lemma3.4.3
and3.4.4 all SROM and CC nodes in the resulting circuit graph have petentiality.
Hence, if the potentiality of one of the O nodes in the resgltircuit graph is negative,
a segment ending at O node in the resulting graph should hRvidih Lemma3.4.2
Similarly, if the potentiality of all the O nodes is non-néiga, no segment ending at an
output node has NR in the resulting circuit graph. From Len3#al the potentiality
of O nodes does not change by our rewriting algorithm. Thisowput nodes of a
circuit graph have negative potentiality, if and only if aewriting algorithm generates
the resulting circuit graph with NR nodes. This completesgloof of Theoren3.3.1

data input | @0 @0

{ }

| AROM | | AROM |

)1 [

clock

$o |
reset @0 @0

data output @ 0

Figure 3.11: A circuit an almost equivalent to that of Fig@té that can be converted

into an AROM-free circuit.

From Theoren8.3.], it is not always possible to have an equivalent AROM-free ci
cuit to the original one. However, we may modify a circuit stlat it can be converted

into an almost equivalent AROM-free circuit. For this pusppwe compute the poten-
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tiality of all O nodes in the corresponding circuit graph.té&fthat, we insert registers
just before O nodes with negative potentiality so that thepimality of the correspond-
ing O nodes turns into a zero. Since the potentiality of theesponding O nodes now
is 0, it can be converted into an equivalent AROM-free circyi our TheorenB.3.1
The readers should refer to the Figudd1for illustrating an example. Note that, the
resulting circuit is not an equivalent to the original citciHowever, the dierence is the
latency of the output. Thus, we can say that the resultirguitirs an almost equivalent

to the original circuit.

3.5 Concluding Remarks

The main contribution of this chapter was to present a ravgitlgorithm and five
rewriting rules to convert a circuit with AROMs into an egalgnt circuit with no
AROMs for the current FPGA. Using our rewriting algorithnrmyasequential circuit
with AROMs can be converted into an equivalent fully synctmas sequential circuit
with no AROMs to support the modern FPGA architecture. Alitjlo this conversion is
not trivial. However, our approach, presented in this caagtd it automatically. We
also described a technique for applying our rewriting atipon even if a user designs a

circuit with pipeline structure.
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Chapter 4

A Circuit Rewriting Algorithm to
Obtain Circuits with Synchronous

RAMs for FPGAS

We present a circuit rewriting algorithm to generate an egjent circuit with Syn-
chronous Random Access Memori&RAMs for shojtfor a circuit with Aynchronous
Random Access MemorieARAMs for sholtsuch that generated circuit with SRAMs
can be embedded into FPGAs. The main contribution of thiptelnas to consideboth
the read and write operationsf the memories (RAMs) for the algorithm. The con-
tribution, described in Chaptd&, was to consideonly read operatiorof the memry
blocks (ROMs). More specifically, presented algorithm waslitain an equivalent cir-
cuit with SROMs supporting synchronous read operation Herdircuit with AROMs
supporting aynchronous read operation. However, thisitirewriting algorithm, pre-
sented in this chapter, is used to obtain an equivalentitimath SRAMs supporting

both synchronous read and synchronous write operationthéocircuit with ARAMs
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supporting aynchronous read and synchronous write opesatWe say that that circuit
design that minimizes the number of clock cycles is easy ige asynchronous read
operations. However, embedded memories in FPGAs suppochsynous read and
synchronous write operations, but do not support asyndusmnead operations. To re-
solve this problem, we provide one of the potent approaah#ss chapter. We assume
that a circuit using asynchronous RAMs designed by a nomxp quickly designed
by an expert is given. Our goal is to convert this circuit waynchronous RAMSs into
an equivalent circuit with synchronous ones. The resultimguit with synchronous
RAMs can be embedded into the FPGAs. We also briefly disciessetthniques to

improve performance of the ARAM-free resulting circuit.

4.1 Introduction

Recall the contribution, presented in Cha@svhich was concerned witbnly read op-
erationof the memory blocks such ROMs in FPGAs. More specificallgspnted algo-
rithm in Chaptei3, was used to convert a circuit with AROMs supporting asyonbus
read operation into an equivalent circuit with SROMs sugipgrsynchronous read op-
eration. However, algorithm, presented in this chaptemigaioncerns bothead and
write operationf the memory blocks. Particularly, presented algorithimsed to con-
vert a circuit using asynchronous RAMs (ARAMS) designed Iopa-expert or quickly
designed by an expert into an equivalent circuit using ssorabus RAMs (SRAMS) for
implementing in FPGAs. For the benefit of readers, we rechllief description of a
memory block. The memory block is a dual-port RAM which canf@en read angbr
write operations for a word of data to two distinct or sameradsdes in the same time.

In this chapter, we consider single-port RAM which can be edued into a dual-port
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block RAM of the current FPGAs. Usually, the dual-port RAMpports synchronous
read and synchronous write operations. The read and wréeatipns are performed at
the rising clock edges. FPGAs can be used to implement dessigircuits by users. For
the benefit of readers, we recall some examples of circuitampntations in FPGAs,
described in], 2, 9, 14] to accelerate computation.

In this chapter, we mainly focus on the asynchronous rea;spnous read and

synchronous write operations of memory blocks as follows:

Asynchronous read operation
The memory block outputs the data specified by the address ¢vthe address
port. When the address value is changed, the output data &agommediately
within some delay time. In other words, the output data plevags outputdV|[a],

which is the data stored in the input address value

Synchronous read operation
Even if the address value is changed, the output data is miatteg. The output
data is updated based on the address value at the rising étlgeaock. More
specifically, the output data port outpu¥4{a] on the rising edge of the clock,

wherea is the address data at the previous point of the rising cldgee

Synchronous write operation
The memory block stores the input data, given to the datagyothe rising edge
of the clock only when write enabigeis high. Even though, the input data value
is changed and the rising edge of the clock is available,ntiesiess write enable
weis low, the input data value is not written into the memorydiloParticularly,

the input data valud is only written into the memory oM[a] on the rising edge
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of the clock when write enableeis high, wherea, d andwe represent address
data value, input data value and write enable respectitahegprevious point of

the rising clock edge.

In this chapter, we consider asynchronous RAMs (ARAMS) ayrickronous
RAMs (SRAMs). They have a data input p@t an address input po#&, clock
input port clock, write enable input powe and data output po® as shown in
Figure4.1L ARAMs and SRAMs support asynchronous and synchronous read
operations respectively. Also they both support synchusnarite operation. In
general, the circuit design is simpler and easier to thegtkess, more specifically

to the non-expert circuit designers if ARAMSs are availalbbleasynchronous read
operation, the value of a specified address can be obtaineedmtely. How-
ever, in synchronous read operation, one clock cycle isirequo obtain it. Nev-
ertheless, block RAMs embedded in most of the current FPGAsad support

asynchronous read operation for increasing its clock feegy.

In our previous work in Chapted, we have presented a circuit rewriting approach
for Directed Acyclic Graph (DAG) circuits considering onfgad operations of
the memory blocks (ROMs). However, this chapter considetls lead and write
operations of the memory blocks (RAMs). Note that, a RAM cartreated as
a ROM when write enablgve is low. It is not trivial to convert a circuit with
ARAMs into an equivalent circuit with synchronous ones. Hwoer, it is auto-

matically done by our algorithm.
The main contribution of this chapter is to present a circentriting approach
that convertan asynchronous circugonsisting

Combinational Circuits (CCs), Registers (Rs), and RAMs with -asyn
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chronous read and synchronous write operations (ARAMS)

into an equivalent synchronous circuibnsisting

Combinational circuits (CCs), Registers (Rs), and RAMs with syn

chronous read and synchronous write operations (SRAMS)

Note that, most of the current FPGAs support synchronousaparation, but do
not support asynchronous one. We are thinking the follovgicegnario to use our

circuit rewriting algorithm:
e An asynchronous circuit with ARAMs designed by a non-exparguickly
designed by an expert is given.

e Our circuit rewriting algorithm converts it into an equiealt synchronous

circuit with SRAMSs.

e The resulting synchronous circuit can be implemented in A8G

The outlines of our work are as follows:

e We use a Negative Register (NR) which is originally introeldign our pre-
vious ChapteB. The NR is an imaginary register that is used for latching a

future input data.
¢ We define simple five rules that rewrite a circuit.

e The rewriting algorithm just repeats applying these rulesl mo more rules
can be applied. When the rewriting algorithm terminates, axetan equiv-

alent ARAM-free circuit to the original circuit.

Our results have several significant points as follows:
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e The correctness of our algorithm is proved in a rigorous neann

e Our algorithm works for the circuits with RAMs. In particujaour cir-
cuit rewriting algorithm is used to generate an equivalérmudt with Syn-
chronous Random Access Memori&RAMs for shojtfor a circuit with
Aynchronous Random Access MemoriéddAMs for shoitsuch that gen-

erated circuit with SRAMs can be embedded into FPGASs.

e Our circuit rewriting algorithm moves all redundant regist toward the
output ports. They can be removed to decrease the latendyedfitcuit.
Therefore, the circuit that obtained has minimum latencthm sense that
all redundant registers are deleted. Readers may refer tpt@tfor an

example.

e Since, our rewriting algorithm moves registers towards dlput ports,
whenever possible. Hence, in general, the resulting cimmaly have the
longest path from input ports to registt&3® AMs or from registefSRAMs
to registersSRAMs or from registefSRAMs to output ports. Hence, clock
performance of the resulting circuit may degrade. Howelas, easier to
improve clock performance of the resulting circuit than mmizing number
of clock cycles. Clock performance of the resulting circ@hde improved
by inserting registers (Rs) appropriately. In this regavd,refer the readers
to Chaptei6, where we have shown an example for improving clock perfor-

mance of the resulting ARAM-free circuit.

This chapter is organized as follows: Sect@ briefly describes random access
memory (RAM). We briefly review the circuits with RAMs and alshow their

equivalence in SectioA.3. In Section4.4, we describe our rewriting algorithm,
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circuit graph with RAMs and also explain the equivalencedor rewriting rules.
For the reader’s benefits, Sectidrb shows how our circuit rewriting algorithm
works for circuit graphs with RAMs. Sectioh.6 presents the proof of the cor-

rectness of our rewriting algorithm. Finally Sectidr¥ concludes this chapter.

4.2 Random Access Memory (RAM)

A RAM is an array of memory where information can be storedl|ydwer is
switched df. It hasb-bit data inputD, e-bit address inpuf andc-bit data output

Q, it can store 2words such a#/1[0], M[1], ..., M[2¢-1] with b bits each, shown

in Figure4.1L. A RAM can support asynchronous read, synchronous read and
synchronous write operations. These are described by tHosvfog subsections.

we we

Lo Lo

clock — ARAM clock — SRAM
Q Q

Figure 4.1: An asynchronous RAM (ARAM) and a synchronous RERAM).

4.2.1 Asynchronous read operation

A RAM continuously outputs the data specified by the addréssngo the ad-
dress portA. When the address valweis changed, the output data is updated

immediately within some delay time. In other words, the otigata port always
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outputsM[a], which is the data stored in the input address value

4.2.2 Synchronous read operation

Even if the input address valueis changed, the output data specified by the
address given to the address pArts not updated. The output data is updated
based on the address valat the rising edge of the clock. More specifically, the
output data porfQ outputsM[a] on the rising edge of the clock, wheeeis the

address data at the previous point of the rising clock edge.

4.2.3 Synchronous write operation

A RAM stores the input data valukwhich is given to the data poR on the rising
edge of the clock only when write enabieis high. Even though, the input data
valued is changed and the rising edge of the clock is available,niesess write
enableweis low, the input data valud is not written into the memory of[a].
Particularly, the input data valugis only written into the memory oM[a] on
the rising clock edge when write enableis high, wherea, d andwe represent
address data value, input data value and write enable resggat the previous

point of the rising clock edge.

For the reader’s benefit, we will describe two types of RAMo{sh in Figure4.1)

as follows:

Asynchronous RAM (ARAM):
An ARAM supports asynchronous read and synchronous wriggatjons.

It has a clock input clock and a write enable inpeg The clock input clock
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is only needed for write operation. The data valuebigé] are continuously
output from portQ. They do not depend on clock input clock. Only when
write enablewe is high, initial stored values dfl[a] are updated by input

data value, given to the data input poR at the latest rising clock edge.

Synchronous RAM (SRAM):
An SRAM supports synchronous read and synchronous writeatipas. It
has also a clock input clock and a write enable inpatThe read operation
of the SRAM is performed on every rising clock edge. The otutpus the
value of M[a] at the latest rising clock edge. The write operation for an
SRAM is the same as an ARAM. The readers may refer to the Figy@rier

read and write operations of an ARAM and an SRAM.

In this chapter, we consider Write After Read (WAR) mode fatad@andling of
the memory blocks. Now, we will discuss the WAR and RAW modky dor the
SRAM, because the SRAM supports synchronous read and syrals write

operations. The WAR and RAW modes of an SRAM are describedl@mss:

Write After Read (WAR) Mode:
First, currently stored data, specified by the address givethe address
port A outputs from the output po@ at the latest rising clock edge. Then
input data valual, given to the data porD is written into the memory of
M[a] at the latest rising clock edge only when write enalstss high. More
specifically, the output data pa@ outputs currently stored data df[a] on
the latest rising clock edge first. Then the input data valigewritten into
the memory ofM[a] on the latest rising clock edge only when write enable
weis high.
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>
e
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M[2] o 0 12 12 12 12
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Q (NR) 12 13

=
sl
STSZ

Figure 4.2: A timing chart of an ARAM, an SRAM, a register (R)d a negative

register (NR).
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Read After Write (RAW) Mode:
First, input data valud, given to the data poi is written into the memory
of M[a] at the latest rising clock edge when only write enabkeis high.
Then currently stored data, specified by the address gividretaddress port
A outputs from the output pofp at the latest rising clock edge. Particularly,
input data valual is written first into the memory oM[a] on the latest
rising clock edge only when write enabdeis high. Then stored data value

of M[a] outputs from the output po® at the latest rising clock edge.

The readers should refer to the Figute for the illustrations of the WAR and
RAW. Figure4.2shows a timing diagram of the ARAM, SRAM, register (R) and
negative register (NR). Initially global reset is 1 and ibps to O just before time
0. We assume that write enabe is high for the first several clock cycles from
the beginning (initiallyweis 1 and drops to 0 before the fourth rising clock edge).
Data 11, 12, 13-, —, —and 1, 2, 3, 1, 2, 3 are given to the input data dort
and address pow respectively. The dash (-) line represents any data which is
not necessary in our case. For simplicity, we have used tittewrdata values
at the memory content d¥1[1], M[2], M[3] for an SRAM to read again at the
latest rising clock edge at time 3, 4, 5 respectively. We lese used the written
data values at the memory contentMfl], M[2], M[3] for an ARAM to read
immediately at time 3, 4, 5 respectively. The edges at timg, @ of the clock
represent the latest rising edges for the stored data valube memory content
of M[1], M[2], M[3] respectively of an SRAM and ARAM. On the other hand,
the edges at time 0, 1, 2, 3, 4 of the clock represent the lasasg) edges for the

output data sequence of 0, 0, 0, 11, 12 respectively of an SRAKN it follows
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WAR. We assume that the stored valuedvjfy] are initialized by 0 of an SRAM
and an ARAM. For the case of an ARAM, the data values at the mgountent
of M[1], M[2], M[3], M[1], M[2], M]3] correspond to O, O, O, 11, 12, 13 are
taken respectively at time 0, 1, 2, 3, 4, 5 from the output gdimmediately
due to the asynchronous read operations. Therefore, tipaitosgquence of an
ARAM [Q(ARAM)] is: 0, O, 0, 11, 12, 13. According to the WAR, the output
sequence of an SRAMJ(SRAMWAR)]is: 0,0,0, 0, 11, 12 attime O, 1, 2, 3,
4, 5 respectively. On the other hand, according to the RA@/iltput sequence
of an SRAM [Q(SRAMRAW)] is: 0, 11, 12, 13, 11, 12 attime 0, 1, 2, 3, 4, 5
respectively. Note that, the output value of an SRAM at timei@itialized by 0.
The stored data at the memory contentMifL], M[2], M[3] of the time O, 1, 2,
3, 4, 5 are the same for an ARAM and an SRAM which Big]: 0, 11, 11, 11,
11, 11;M[2]: 0, 0, 12, 12, 12, 12 anM[3]: 0, 0, 0, 13, 13, 13. The output of R
is 0 attime 0. Also attime 1, 2, 3, 4, 5; the value of output Rlis12, 13,—, —
respectively. The value of output NR is 12, 13,—, —, — of thetime O, 1, 2, 3, 4,

5 respectively.

4.3 Circuits with RAMs and Their Equivalence

In this section, we mainly describe circuits with RAMs inding the behavior of
the circuit elements and their equivalence. Let us considgnchronous sequen-
tial circuit that consists of input ports, output ports, donational circuits (CCs),
registers (Rs), random access memories (RAMSs), a globekafgut (clock), a

global reset input (reset) and a write enable inpet For the benefit of read-
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ers, we recall a brief overview from the previous Chaf@about combinational
circuits (CCs), registers (Rs) as follows. However, RAM asraui element is

newly described.

A combinational circuit (CC) is a network of fundamental logiates with no
feedback. So, it can compute Boolean functions represéytBdolean formulas,
suchas = A-B+ B-C andG = B- C as illustrated in the previous Chap&r

Once inputs are given, the outputs are computed in smalggatmon delay.

A b-bit register has a clock input and a reset input. It can sidxbit data. If reset
is 1, then théb-bit data is initialized by 0. If reset is 0, the stored datapslated
by the value given to the input padtat every rising clock edge. The data stored
in the register is always output from pagt as shown in the previous Chapfter

About RAMSs, we refer readers to the Sectibi2 of this chapter.

4.3.1 Behavior of the Circuit Element

We will describe a behavior of the circuit elements usinggusace of output as
well as stored data at every rising clock edge for periodickl(clock is inverted

into a fixed frequency), initial reset (initially, reset isahd drops to O before the
first rising clock edge) and write enabhie (initially, weis 1 and drops to 0 before
the fourth rising clock edge) as illustrated in Figdr2. For the benefit of readers,
we recall the output sequences for combinational circ@Gs) and registers (Rs).
However, output sequences and stored data of RAMs will beritbesl newly. The

behavior of each circuit element is described by the outpgtiences and stored

data as follows:
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Combinational Circuit (CC):

For the benefit of readers, we recall the output sequencesarhainational
circuit (CC) from the previous Chapt&. For simplicity, we assume 3-
input 2-output combinational circuit, as illustrated i gorevious Chaptes.
There is no dficulty to extend the definition for generatinput n-output
combinational circuit. We assume that, at timg > 0), &, b;, andc; are
given to the 3 input portg\, B, andC. Let f andg be the two functions
with three arguments that determine the value of outpusgodndG. The

output sequences &f andG are as follows:

CC(F)<f (a0, bo, Co), f(as, b1, C1), f(az, b2, C2), .. )
CC(G)X9(a, bo, o), 9(au, by, €1), 9(az, b2, C2), - . .)
Register (R):
Let d; denotes an input value given to an input pprat timei (i > 0). As
shown in Figuret.2, the output sequence of the register (R) is described as
follows:
R:(0,11,1213 —,—,...)
Synchronous and Asynchronous RAMs (SRAMs and ARAMS):
Let M[j] denotes the value stored in addrggg > 0) of the RAM. Recall
that the initial data values o[ j] are O and the WAR mode of the SRAM is

considered. As shown in Figu#e?2, the output sequences and stored data of

an SRAM and ARAM of thetime O, 1, 2, 3, 4, 5 are as follows:

SRAM (output sequence}0,0,0,0,11, 12)
SRAM (stored data oM[1], M[2] and M[3]):

M[1]: (0,11,11,11 11 11). It means that memory content of the
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address value 1 is updated by 11 at time 1 and remains the same
until further updating.

M[2]: (0,0,12,12 12 12). It means that memory content of the
address value 2 is updated by 12 at time 2 and remains the same
until further updating and

M[3]: (0,0,0,13 13 13). It means that memory content of the ad-
dress value 3 is updated by 13 at time 3 and remains the sarhe unt
further updating.

ARAM (output sequence)0,0,0,11 12, 13)

ARAM (stored data oM[1], M[2] and M[3]):

M[1]: (0,11,11,11 11 11). M[2]: (0,0,12 12 12, 12) and M[3]:

(0,0,0,13 13 13). These have the same aforesaid explanations.

In this chapter, we assume that a fully synchronous circas thata input, data
output, a global clock input, a global reset input, a writal@e input, combina-
tional circuits (CCs), registers (Rs), SRAMs, ARAMs, and theterconnects.
The readers should refer to the Figute3 for illustrating an example of a fully
synchronous circuit. The global clock is directly connécte the clock input
ports of all Rs and SRAMs, ARAMs and the global reset is coteteto the re-
set input ports of all Rs. Also the write enable is directlynoected to the write
enable input ports of all SRAMs and ARAMs. We assume that@uttihas no

loop.
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Figure 4.3: An example of a fully synchronous circuit with ARs and the correspond-

ing circuit graph with potentiality.
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Figure 4.4: An example of three circuits such as SRAMy RRAM and ARAM + R

for showing an equivalence.



4.3.2 An Example of Circuits with RAMs to Show an Equiva-

lence

We will describean equivalencef the circuits with RAMs in terms of output
sequences and stored data. Let us defmequivalencef two fully synchronous
circuits for the periodic clock and initial reset. Note thah equivalencef the
circuits with RAMs is determined by the output sequencessameéd data. We say
that two circuits X and Y are an equivalent if, for any inpugjgence, the output
sequences and stored data at the same memory location® a@ntie except for

first several outputs and stored data.

For the periodic clock with initial reset and write enables butput sequences and
stored data in case of three circuits such as SRAMARAM and ARAM+R as
illustrated in Figure4.4 are as follows. The readers may refer to Figdrg for
better understanding. Figu#e5 shows timing diagram of the earlier mentioned

three circuits for illustratingn equivalence

SRAM (output sequence}, 0,0,0,11, 12)

SRAM (stored data oM[1], M[2] and M[3]):

M[1]: (0,11,11, 11,11 11), M[2]: (0,0,12 12 12,12) andM[3]: (0,0, 0,13, 13, 13.)
R+ARAM (output sequence)0,0,0,0,11, 12)

R+ARAM (stored data oM[1], M[2] and M[3]):

M[1]: (0,0,11,11 11, 11), M[2]: (0,0, 0,12 12,12) andM[3]: (0,0, 0,0, 13,13
ARAM +R (output sequence}0,0,0,0,11, 12)

ARAM +R (stored data oM[1], M[2] and M[3]):

M[1]: (0,11 11 11,11 11), M[2]: (0,0,12,12, 12 12) andM[3]: (0,0,0,13, 13, 13,)
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These have also the same explanations mentioned above.

Since, these three circuits have the same output in time ®),3,,4 and 5. Also
they have the same stored data at the memory locatidf{1]) of the time 2, 3, 4
and 5, at memory location 2/[2]) of the time 3, 4 and 5 and at the memory loca-
tion 3 (M[3]) of time 4 and 5. Thus, these three circuits areequivalentin this
chapter, we ignore first several clock cycles when we detem@min equivalence

of the circuits.

Suppose that a circuX with ARAMs is given. The main contribution of this

chapter is to show

e a necessary condition such that an ARAM-free circditan be generated,

which is an equivalent t&X, and

e an algorithm to deriveY if the necessary condition is satisfied.

Recall a Negative Register (NR), which is a nonexistent aevised only for
showing our algorithm to deriv¥ and related proofs. Recall again that, a regu-
lar register latches the input at the rising clock edge wéei@ negative register
latches a future input. An NR latches the value which is giteemput data port

D at the rising edge of two clock cycles later as illustratefigure4.2 Thus, an

NR has the following output sequence for a periodic clockwan initial reset.

NR: (12 13—, -, —,—,).

In our algorithm to derive an ARAM-free circu¥, circuits with NRs will be used

as interim results.
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Figure 4.5: A timing chart for showing an equivalence of these circuits such as

SRAM, R+ ARAM and ARAM + R.
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Figure 4.6: Rules to rewrite a circuit graph with RAMs (ARAMBd SRAMS).

4.4  Circuit Graph with RAMs and Rewriting Rules

This section will describe a circuit with RAMs whose undénty graph is di-
rected acyclic graph (DAG) and rules for generating an exjaiv ARAM-free
and NR-free circuit graph to the given input circuit grapthwhARAMs. We sim-
ply use a directed graph to denote the interconnections ofly $ynchronous
circuit. We call such graph as a circuit graph. A circuit gragonsists of a set of
nodes and a set of directed edges connecting two nodes. Bdehslabeled by

either | (Input port), O (Output port), CC (Combinational CitjuR (Register),
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NR (Negative Register), ARAM, or SRAM. A node with label | isrmected with
one or more outgoing edges. A node with label O is connectéd exactly one
incoming edge. A node with label CC has one or more incominge@agd one
or more outgoing edges. A node with label R and NR has one imgpand one
outgoing edge. A node with label ARAM or SRAM has three incognedges
and one outgoing edge. Note that, we assume a circuit grapthuea directed
acyclic graph (DAG), that is, it has no directed cycles. ThguFe 4.3 illustrates
an example of a directed graph. Note that nodes with label NR ARAM, or
SRAM has one outgoing edge. The readers may think that og@ioigtedge is a
too stringent restriction because it does not allow two orarian-outs. However,
we can implement multiple fan-outs by attaching a simple lwoational circuit
(CC) that just duplicates the input. For example, a CC with opeatiportA and
two output portd= andG such thaF = AandG = Ais used to implement fan-out
2 as illustrated in Chapt&. For a given circuitX with ARAMs, we will show an
algorithm to derive an ARAM-free and NR-free circuif,by rewriting circuits.
We assume thaX is given as a circuit graph. We will define rules to rewritea ci
cuit graph. The readers should refer to Figdréfor illustrating the rules, where
P and S denote predecessor and successor nodes respettiehodes between

predecessor and successor nodes are rewritten as follows:

Rule 0 ARAM node is rewritten into SRAMNR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, tistthey

are removed.
Rule 2 R+SRAM (or NR+SRAM) is rewritten into SRAM-R (or SRAM+NR).
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Figure 4.7: Interim and resulting circuit graphs obtaingdbr rewriting algorithm for

a circuit graph with RAMs (ARAMs and SRAMS).
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More specifically, if each incoming edge of an SRAM node isreried
to a R node, then all the Rs are moved to the outgoing edge @R#AM
node. On the other hand, if one of the incoming edges of an SRANE is
connected to an NR node, then the NR node is removed, a R nadeés
to all the other incoming edges, and the NR node is moved tottgoing

edge of the SRAM node.

Rule 3 If one of the incoming edges of a CC node is connected to an N,nod
then the NR node is removed, an R node is added to all the atbeming

edges, and the NR node is moved to all the outgoing edges @fGheode.

Rule 4 If all the incoming edges of a CC node are connected to a R nbdm, t

all the Rs are moved to all the outgoing edges of the CC node.

Let us confirm that, after applying one of the rewriting rylaa original circuit
and the resulting circuit are an equivalent. betb;, ¢, d;, a (address data) and

we (i > 0) denote inputs given from the predecessor node atitime

Rule 0 Both ARAM and SRAM+ NR have the same output sequences and
stored data.
ARAM/SRAM+NR (output sequence}0,0,0,11,12 13).
ARAM/SRAM+NR (stored data oM[1], M[2] and M[3]:
M[1]: (0,11,11, 11,11, 11), M[2]: (0,0,12 12, 12,12) andM[3]: (0,0, 0,13, 13, 13).

Thus they are an equivalent.

Rule 1 R+NR and NR-R have the following output sequences.

R+NR : (11,1213 —,—,-) and NR+R: (0,12 13 —,—, ). Also, NULL
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circuit has the following output sequence. NUKIL1, 12, 13 —, —, —). Thus,

they are an equivalent.

Rule 2 R+SRAM has the following output sequence and stored data.
R+SRAM (output sequence}0,0,0,0,0, 11)
R +SRAM (stored data oM[1], M[2] and M[3]:
M[1]: (0,0,11,11,11, 11), M[2]: (0,0, 0,12 12, 12) andM[3]: (0,0,0,0, 13, 13)
SRAM+R has the following output sequence and stored data.
SRAM+R (output sequencej0, 0,0,0,0, 11)
SRAM+R (stored data oM[1], M[2] and M[3]:
M[1]: ¢0,11,11, 11,11, 11y M[2]: (0,0,12 12,12 12y andM[3]: (0,0,0, 13,13, 13)
On the other hand, NR SRAM has the following output sequence and
stored data.
NR+SRAM (output sequence}0, 0,0, 0, 12, 13)
NR+SRAM (stored data oM[1], M[2] and M[3]:
M[1]: (0,12 12,12, 12,12), M[2]: (0,0, 13, 13,13,13) andM[3]: (0,0,0, —, —, —)
SRAM-+NR has the following output sequence and stored data.
SRAM+NR (output sequencej0, 0,0,0,12 13)
SRAM+NR (stored data oM[1], M[2] and M[3]):
M[1]: (0,0,12,12 12 12), M[2]: (0,0, 0,13, 13, 13) andM[3]: (0, 0,0,0, —, —)
Thus they are an equivalent.
For the Rule 2, we consider that an NR is connected to datd gt D
only. If an NR is connected to the address input godr write enable input

we an equivalencef the Rule 2 can be shown in similar way.
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Rule 3 The output sequences of the left-hand side of the rulg e, by, ),
f(ag, b1, 1), f(as, by, C2), ...) and(g(as, bo, Co), 9(ay, b1, 1), a(as, bz, Cy),
...). Those of the right-hand side ar&(as, b, ¢o), f(az, by, 1), f(as, by, Co),
...y and{g(as, bo, Co), g(az, b1, ¢1), 9(as, by, ¢y), .. .). Thus, they are an equiv-
alent.

Rule 4 The output sequences of the left-hand side of the rule(&f@ 0, 0),

f(a()’ b07 00)1 f(al9 bla Cl)! .. > and <g(0’ oa 0)1 g(aO’ b09 CO)1 g(a].’ bla Cl)! .. >
Those of the right-hand side at8, f(ag, bo, Cp), f(as, by, C1), ...) and(0,

d(ag, bo, Co), g(as, by, c1), ...). Thus, they are an equivalent.

We are now in position to apply the rewriting algorithm to tfieen input circuit.
Suppose that an input circuit graph has nodes with lah€s R, ARAM SRAM
andCC. The following rewriting algorithm generates a circuit ghawhich is an

equivalent to the original circuit graph.

Find a minimum i such that Rule i can be applied to the currémud
graph. Rewrite the circuit graph using such Rule i. This rewgt

procedure is repeated until no more rewriting is possible.

4.5 An Example to Show the Behavior of Our Algo-

rithm for the Circuits with RAMs

In this section, we will describe, how our rewriting algbnt works for the cir-

cuits with RAMs. Let us observe the behavior of the rewritadgorithm.

e First, the rewriting algorithm repeats the applying Rule @it ARAM nodes
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until all ARAM nodes are rewritten into SRAMNR. After that, Rule 0 is

never be applied.

e Rules 1 is applied and adjacent R and NR nodes are removedewdren

possible.

e R or NR nodes is moved towards the output nodes using Rule 8¢ 34

whenever possible.

Figure 4.7 shows one of the applications of our rewriting algorithmrsEiour
rewriting algorithm repeats the applying Rule 0 to all ARAMdes until all
ARAM nodes are rewritten into SRAMNR. After that, Rule 1 is used to re-
move adjacent R and NR. Then Rule 3, Rule 1, Rule 3, Rule 2, RiRelle 1 are
applied one after another. Thus, intuitively, all NR nodeshie resulting circuit

graph are moved and placed just before the output nodes.

For the purpose of clarifying the condition such that theriég algorithm can
generate NR-free circuit graph. We defthe potentiality of the nodes a circuit
graph. Suppose that a nodef a circuit graph hak (= 0) incoming edges such as

(ug, V), (U2, V), ..., (U, V). Let us definghe potentiality v) of a nodev as follows:

e If vis |, thenp(v) = 0.

If vis O, thenp(v) = p(uy).

If vis SRAM, thenp(v) = min(p(uy), p(uz), p(us)).

If vis ARAM, thenp(v) = min(p(uy), p(uz), p(us)) — 1.

If vis NR, thenp(v) = p(u;) — 1.

If vis R thenp(v) = p(uy) + 1.
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e If vis CC, thenp(v) = min(p(uy), p(uy), ..., p(Ux))-

Figure4.3shows the potentiality of each node.

We have the following theorem.

Theorem 4.5.1 All O nodes of a circuit graph have non-negative potentyalit
and only if our rewriting algorithm generates an ARAM-freelawR-free circuit

graph, equivalent to the original circuit graph.

4.6 Proof of Theorem4.5.1

The main purpose of this section is to show a proof of Theofiebil Let us
observe how the potentiality of nodes is changed by our tegralgorithm. We
focus the potentiality of successor nodes. BetP,, P; andS denote the prede-
cessor and successor nodes for Rules 0 andP &nd S denote the predecessor
and successor nodes for Rules 1. AlsoRetP,, P; andS;, S,, denote the pre-
decessor and successor nodes for Rules 3 and 4. We computetéméiality of

each successor node both before and after applying theasitiedlows.
Rule 0 p(S) = min(p(P1), p(P2), p(Ps)) — 1.
Rule 1 p(S) = p(P).

Rule 2 p(S) = min(p(P1)+1, p(P2)+1, p(P3)+1)) = min(p(P1), p(P2), p(Ps))+1
if all are R andp(S) = min(p(Py), p(P2), p(P3)—1)) = min(p(P1)+1, p(P,)+
1, p(P3)) — 1 if any of them is NR. In this case an NR is connected to data

input portD.
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Rule 3 p(S1) = p(S2) = min(p(P1) — 1, p(P2), p(P3)) = min(p(Py), p(P2) +

1, p(Ps) + 1) - 1.

Rule 4 p(S;) = p(S2) = min(p(P1)+1, p(P2) +1, p(P3) +1) = min(p(P1), p(P2),

p(Ps3)) + 1.

Thus, the potentiality of every successor node is nevergdtiy applying the

rules. In every rule, O nodes can only be successor nodes, Weuhave,

Lemma 4.6.1 The potentiality of every O node of the resulting circuit gnas

the same as that of the corresponding O node of the origimalitigraph.

In Figure 4.7, the potentialities of the left and the right O nodes are -@ @n

respectively, and these values are never changed.

In a circuit graph, lea segmenbe a directed path,, u,, ..., U, such thaty, and
U are either I, O, SRAM, or CC, ang, ..., u,_; are either R or NR. Note that, if
k = 2 then it represents a null segment with ul and u2. We alsothavellowing

lemma.

Lemma 4.6.2 Let u be an NR node ard, v) be its outgoing edge in the resulting
circuit graph. Node v must be either NR or O node. Also, all M&as must be in

segments ending at O node.

Proof If visan R, SRAM, or CC node then Rules 1, 2, or 3 can be appliedeSinc
no more rules can be applied to the resulting circuit graphust be either NR or
O node. Since the successor of NR nodes must be NR or O nodéRalbdes

must be in segments ending at O node.
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From Lemma4.6.2 we will prove that all SRAM and CC nodes in the resulting

circuit graph have zero potentiality.

Lemma 4.6.3 All SRAM and CC nodes in the resulting circuit graph have non-

negative potentiality.

Proof Since the resulting graph is an ARAM-free, nodes follow the hodes
can have negative potentiality. Since no segment endinAMsor CC has NR

nodes, their potentiality must be non-negative.

Similarly, we have the following lemma.

Lemma 4.6.4 All SRAM and CC nodes in the resulting circuit graph have non-

positive potentiality.

Proof We assume that the resulting circuit graph has a SRAM or CC waithe
positive potentiality, and show a contradiction. lkete a first SRAM or CC node
with negative potentiality, that is, all SRAM and CC nodes lirdaected paths
incoming tov have non-positive potentiality and SRAM or CC nadeas positive

potentiality.

Case 1 vis an SRAM node
Let (u, v), (up, v), and (i3, v) denote the incoming edges. From Lenmvn@.2
none ofuy, u, andus is an NR node. I}, u, andus, all are R, then Rule 2
can be applied. Thus at least one of them is not an R node.ldw®lthat
at least one of them is either | or SRAM or CC node. If this is thee;

p(u;) = 0 or p(uz) = 0 or p(uz) = 0 and thusp(v) = 0, a contradiction.
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Case 2 vis a CC node
Let (g, V), (Uz,V), ..., (U, V) (k > 1) denote the incoming edges. From
Lemma4.6.2 none ofuy, Uy, ..., U IS an NR node. If all of them are R
nodes, then Rule 4 can be applied. Thus, at least one of thaot sn R
node. It follows that at least one of them is either | or SRAMG& node.
From the assumption, the potentiality of such node is nasitpe, Hence,

the potentiality ofv is non-positive, a contradiction.

From Lemma4.6.3and4.6.4 all SRAM and CC nodes in the resulting circuit
graph have zero potentiality. Hence, if the potentialityoo of the O nodes in
the resulting circuit graph is negative, a segment endir@ mdde in the resulting
graph should have NR from Lemn#a6.2 Similarly, if the potentiality of all
the O nodes is non-negative, no segment ending at an outgdaethas NR in the
resulting circuit graph. From Lemm&6.], the potentiality of O nodes does not
change by our rewriting algorithm. Thus, all output nodesa ofrcuit graph have
negative potentiality, if and only if our rewriting algdnitn generates the resulting

circuit graph with NR nodes. This completes the proof of Tleen4.5.1

By the Theoremt.5.], it is not always possible to have an equivalent ARAM-free
circuit. However, we may modify a circuit such that it can lmaeerted into an
almost equivalent ARAM-free circuit. For this purpose, warpute the poten-
tiality of all O nodes in the corresponding circuit graph. t&fthat, we insert
registers just before O nodes with negative potentialityhst the potentiality of
the corresponding O nodes turns into a zero. Since the palignof the corre-
sponding O nodes now is 0, it can be converted into an equivaABAM-free

circuit according to our Theoredh 5.1
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4.7 Concluding Remarks

The main contribution of this chapter was to convert a ciredth ARAMs into

an equivalent circuit with no ARAMs for the current FPGA caesing both read
and write operations of the memory blocks (RAMS), howeverpur previous
work, described in Chapte8, we consider only read operation of the memory
blocks (ROMS). For the purpose of converting into ARAM-fi@ecuits, we have
presented a rewriting algorithm and five rewriting ruleshistchapter. In fact, we
improved our previous research work, described in Chapterhere RAMs can
be used as the additional circuit elements to the given iopctits. Although, it

is not trivial to convert a sequential circuit with ARAMs mtain equivalent fully
synchronous circuit with no ARAMs for supporting the mod&fGA architec-

ture, however, our algorithm did it automatically.
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Chapter 5

A Modified Circuit Rewriting
Algorithm for the Circuits with

Cycles

The main contribution of this chapter is to show a modifiedwir rewriting al-
gorithm to convert a circuit with cycles using AROMs supjragtasynchronous
read operation into an equivalent circuit with cycles us8igOMs supporting
synchronous read operation for implementing in FPGAs. Ing@#a& and Chap-
ter 4, we have presented circuit rewriting algorithms to conwertircuit with
asynchronous ROMs or asynchronous RAMs into an equivalenticwith syn-
chronous ones. The resulting circuit with synchronous RQ@visynchronous
RAMs can be embedded into FPGAs. However, these circuiitiagyalgorithms
can handle circuits represented by a directed acyclic gaagghdo not work for

those with cycles. In this chapter, we succeeded in relathiegcycle-free con-
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dition of circuits. More specifically, we present an algonit that automatically
converts a circuit with cycles using asynchronous ROMs artcequivalent cir-
cuit using synchronous ROMs. We also briefly discuss thenigcies to improve

performance of the AROM-free resulting circuit.

5.1 Introduction

We present a modified circuit rewriting algorithm to considgclesin the given
input circuits with AROMs. The rewriting approaches, prasel in Chapte8 and
Chapter4 have a strict limitation in terms of input circuits that omxprk for the
circuits whose underlying graphs have cycles However, practical circuits have
cycles. We are inspired to convert the real world practicaduits. Hence, the
main contribution of this chapter is to overcome this sthiictitation in terms of
input circuits. More specifically, we present a modified gitcewriting approach
in this chapter which is able to convert a circuit wayclesusing AROMs into an

equivalent circuit withcyclesusing SROMs for implementing in FPGAS.

In this chapter, we also focus the asynchronous and synchsoread operations
of memory blocks, as illustrated in Chap&r~or the benefit of readers, we recall

these operations as follows:

Asynchronous read operation
The memory block outputs the data specified by the address gwv the
address port. When the address value is changed, the outpusdgdated

immediately within some delay time. In other words, the otitppata port
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always outputdvi[d], which is the data stored in the input address value

Synchronous read operation
Even if the address value is changed, the output data is riztegp. The
output data is updated based on the address value at thgeetigre of clock.
More specifically, the output data port outpi$d], whered is the address

data at the previous point of rising clock edge.

In other words, we say that asynchronous ROMs (AROMSs) analspmous
ROMs (SROMSs) support asynchronous and synchronous readtmpes respec-
tively. In asynchronous read operation, the value of a $ipecaddress can be
obtained immediately. However, in synchronous read omerabne clock cy-
cle is required to obtain it. Hence, latency of asynchroreasi operation is O,
while synchronous read operation is 1. To understand gleaggdders may re-
fer to Figure5.3 that shows the timing chart of AROM and SROM supporting
asynchronous and synchronous read operations respgctizshbedded block
memories in most modern FPGAs support synchronous readtiqer but do
not support asynchronous one. Hence, users who designtsiesubedded into
FPGAs can not use asynchronous read operation. Howeveujtailesign using

asynchronous one is easier, because it has 0 latency.

The main contribution of this chapter is to provide one of plagent approaches
to resolve this problem. Suppose that user design a circitiit gycles using
ROMs supporting asynchronous read operatidBRQMsfor short). We present
an algorithm that automatically converts this circuit iatoequivalent circuit with
cycles using ROMs supporting synchronous read opera&®OMsfor short).

The resulting circuit can be implemented into FPGAs.
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Our circuit rewriting approach, presented in this chapsettevoted to convedn

asynchronous circuitonsisting

Combinational Circuits (CCs), Registers (Rs), and ROMs with -asyn

chronous read operations (AROMS)
into an equivalent synchronous circuibnsisting

Combinational circuits (CCs), Registers (Rs), and ROMs with syn

chronous read operations (SROMSs)

Note that, most of the current FPGAs support synchronousaparation, but do
not support asynchronous one. We are thinking the follovgicgnario to use our

circuit rewriting algorithm:

e An asynchronous circuit designed by a non-expert, or quidelsigned by

an expert is given.
e Our circuit rewriting algorithm converts it into an equieatt synchronous
circuit.

e The resulting synchronous circuit can be implemented in A8G

In other words, designers can design a circuit for FPGAs utite assumption
of asynchronous read operation, which is simpler and e#is&r one with syn-
chronous read operation.

We will show a simple example illustrating that the circuésin is simpler if
AROMs are available. Suppose that for an inpyt we need to comput¥,, =
Xn-1 + f(X,_1) for everyn > 1. We assume that the functidnis computed using

a ROM. More specifically, we use a ROM such that addrésstoring a value of

70



f(i). Figure5.1 (a) illustrates a circuit with an AROM to compulg, X,, . .. for

an inputX,. An AROM is used to compute the value bfX,) for a givenX. It
should be clear that this circuit outputs, Xo, ... in every clock cycle. Figuré.1

(b) shows a circuit with an SROM. Since one clock cycle is ssagy to read
the value off(X,) for input X,, we need to insert a register to synchronize two
inputs X, and f(X,) of the adder as illustrated in the figure. This circuit ougpu
X1, Xo, ... In every two clock cycles. Hence, the circuit in Figlsdl (b) needs
double clock cycles over the circuit in Figuel (a). Using our algorithm to the
circuit in Figure5.1(a), we can obtain the circuit in FiguBel (c) automatically.

In the circuit with an SROM in Figur&.1(c), Xy, Xo, ... is output in every clock

cycle. Thus, the timings of the circuits in Figusel (a) and (c) are identical.

Xo Xo Xo
AROM R |SROM R |BROM
f(Xn) f(Xn) f(Xn)
R R
Xn Xn Xn
(a) A circuit with an AROM (b) A circuit with an SROM (c) The converted circuit with an SROM

by a non-expert

Figure 5.1: An example of circuits with cycles using an AROMIan SROM

Obviously, we can minimize the number of clock cycles in tHRGM-free re-

sulting circuits by our rewriting algorithm, as illustratén Figure5.1(c), but it
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is not trivial for the non-expert or quickly designed by amper to minimize the
number of clock cycles to obtain circuit in Figusel (c). However our algorithm

can do it automatically.

Conversely, the readers may think that the resulting ARO&&-tircuit has large
propagation delay and low clock frequency, because ouitiegyalgorithm moves
registers towards the output ports, whenever possible.célan general, the re-
sulting circuit may have the longest path from input portgdgistersSROMs
or from register§SROMSs to registeySROMs or from registefSROMSs to output
ports. Therefore, the circuit performance degrades. ¥ thithe case, then it is
possible to improve circuit performance of the AROM-fresuléing circuit. We
will briefly describe the techniques to improve the perfonoaof the AROM-free
resulting circuit in terms of the latency and clock frequgratthough performance
improvement of the AROM-free resulting circuit is beyondtbis dissertation.

The techniques are as follows:

e In order to minimize latency in the AROM-free resulting aii; we first
need to define redundant registers. The redundant regatetbe registers
which are connected to output ports of the AROM-free resgltircuit. For
minimizing latency, we may remove all the redundant regssté they do

not create the timing problems for a circuit connected toaiput port.

e Clock performance of the AROM-free resulting circuit degradlue to the
longest path from input ports to regisg3ROMSs or from registefSROMs
to registersSROMSs or from registefSROMSs to output ports. For this case,
we can add registers appropriately in the AROM-free resgltircuit so that

the longest path becomes shorter. Hence clock performarioereased in
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the AROM-free resulting circuit.

The outlines of our idea are described as follows:

e \We usea Negative Regist¢dNR) which is originally introduced in Chapt8r

The NR is an imaginary register latching a future input data.
¢ We define simplsix rulesthat rewrite a circuit.

e The rewriting algorithm that we propose just repeats apypjythese rules
until no more rules can be applied. When the rewriting al¢poniterminates,

we have an equivalent AROM-free circuit to the original aitc

We use the key and innovative idea of introducing Negativgifter (NR). For the
reader’s benefit, we briefly describe the behavior of our ravg algorithm. In

our rewriting algorithm, a circuit with AROMSs is first conved into an AROM-
free circuit with negative registers. After that, our algiem continues to rewrite
circuit such that all NRs are removed. When the algorithm teates, all neg-
ative registers will be removed if possible and the resgliiircuit becomes an
equivalent to the original circuit. The readers may refethi® Sectiorb.5for the

details about the behavior of our rewriting algorithm.

A circuit implementation with AROMSs is better than SROMs iempentation,
because of less power consumption, easy to design etc. loweis small in
size so that it can not support the designer's demand, mgrensive, and less

speedy. However, it is not supported by the current FPGAs.

On the other hand, a circuit implementation with SROMs is thatting, although
it has some drawbacks to design like clock distribution, emwwer consumption

etc. As a result, we should use SROMs when we need a functiBObdfs.
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The main contribution of this chapter is to modify the cita@writing algorithm,
presented in Chapt&rto process practical circuits with cycles. More specifigall
our new circuit rewriting algorithm can convert any circugpresented by a di-
rected reachable graph (DRG), illustrated in Figbr2(2). A directed reachable
graph is a directed graph such that, for every internal nthaee exists a directed
path from an input node to an output node which includes iteNloat, one node
andor one directed path may appear twice or more in a directeu patr exam-
ple, B,E,H,I,F E, H,K, N, O)is adirected path. It should not have anffidulty
to confirm that, every internal node in Figuse2 (2) is included. Clearly, a class
of the DRG includes that of the DAG. Also, almost all pradticacuits can be
represented by a DRG. If there exists a node that is not initeetdd path from
an input node to an output node, the directed graph is not a.[R&arly, circuit
elements corresponding nodes that are not in the directibdti@an output node
make no sense because such circuit elements ddiiect ¢he outputs. However,
practical circuits may have circuit elements correspogdindes that are not in
the directed path from an input node. We will show that, ef¥endircuit graph

has such nodes, we can convert it to an equivalent AROM-freaitgraph.

Our results have several significant points as follows:

e The correctness of our algorithm is proved in a rigorous neann

e Our algorithm works for the practical circuits. In partieulwe handle prac-
tical circuits which have cycles.

e Our circuit rewriting algorithm moves all redundant regist toward the
output ports. They can be removed to decrease the latendyeditcuit.

Therefore, the circuit that obtained has minimum latencthim sense that
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all redundant registers are deleted. Readers may refer tpt@tafor an

example.

e We also briefly discuss a technique to improve the clock feagy by in-

serting registers in the AROM-free resulting circuit apprately.

e We will additionally describe a technique to generate AR@®&& circuit
even if the input circuit is beyond the DRG circuit. Partady, if the input
circuits have such elements which are not in the path of DRGuits, we
can also convert those circuits into the equivalent ARObBEfcircuits as

illustrated in Sectiorb.7 of this chapter.

e FPGA vendors may think that they will support asynchron@aslroperation
for next-generation FPGAs satisfying low latency circwith forfeiting the
high clock frequency. If this is the case, our rewriting apgeh is useless.
However, our results suggest to the FPGA vendors that sugbasyn-
chronous read operation is not necessary, because it canttmatically

converted into synchronous one using our algorithm.

This chapter is organized as follows: SectoBabriefly describes the related work
so far. We briefly review the circuits and their equivalent&ections.3. In Sec-
tion 5.4, we describe our rewriting algorithm, circuit graph andoaéxplain the
equivalence for our rewriting rules. For the reader’s baéagfectiorb.5 shows
how our circuit rewriting algorithm works for circuit graghSectiorb.6 presents
the proof of the correctness of our rewriting algorithm. &®t5.7 shows how
we handle nodes that are not in the path from an input nodallfFiSection5.8

concludes this chapter.
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5.2 Related Work

In this section, briefly we will describe about the relatedkvddowever, there is
no related work except our previous one, described in Ch&oteence, we will
briefly summarize our previous work in Chap8eas a related one such that read-
ers may compare our contribution in the current work, désatiin Sectiorb.1
with the previous one in Chapt8r Note that, we are providing an innovative ap-
proach for implementing asynchronous read operation irctineent FPGAs. We
assume that the input circuit with AROMs supporting asyoobus read opera-
tion, designed by users is given. However, we can not imphéitings circuit into
the current FPGAS, because current FPGAs have SROMSs suqgpsyhchronous
read operation. For this purpose, we provide one of the pafiecuit rewriting
approaches to implement circuits with AROMs supportinghasyonous read op-
eration in the current FPGAs. In our previous work in Chaf@ewe have pre-
sented a circuit rewriting approach for circuits represdrby a directed acyclic
graph (DAG), illustrated in FigurB.2(1) which has no directed cycle. This graph
has 3 input nodes and 3 output nodes, each of which corresgoridput ports
and output ports of the circuit, respectively. The otheeinal nodes correspond
to circuit elements such as combinational circuits, regsstand ROMs. The pre-
sented circuit rewriting approach converts a circuit withmbinational circuits,
registers and AROMs represented by a DAG, illustrated iufé&.2 (1) into an
equivalent AROM-free circuit with combinational circuitegisters and SROMs

for implementing in the current FPGAs.

However, the circuit rewriting approach presented in Chapthas a strict re-

striction in terms of input circuits. It works only for a cuit whose underlying
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graph is a DAG, illustrated in Figurg.2 (1). Although most of practical circuits
have cycles, it can not handle such circuits as illustrateBigure5.2 (2). To
overcome this problem, a modified circuit rewriting algbnt is presented in this
chapter. More specifically, our new circuit rewriting algbm can convert any
circuit with AROMSs, represented by directed reachable QrépRG) as illus-
trated in Figures.2 (2) into an equivalent circuit with SROMs for implementing

in current FPGASs.

Input nodes Input nodes

Output nodes Output nodes
(1) Directed Acyclic Graph (DAG) (2) Directed Reachable Graph (DRG)

Figure 5.2: A directed acyclic graph (DAG) and a directecchedle graph (DRG).
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5.3 Review of the Circuits and Their Equivalence

In this section, we shortly review the circuits and theirigglence for the benefit

of readers. The readers may refer to Chaftear details.

Let us consider a sequential circuit that consists of injputsp output ports, com-
binational circuits (CCs), registers (Rs), read only mens(ROMSs), a global

clock input (clock), and a global reset input (reset).

A combinational circuit (CC) is a network of fundamental logjates with no
feedback. So, it can compute Boolean functions represéytBdolean formulas,
suchass = A-B+ B-CandG = B-C as illustrated in Chapte. Once inputs

are given, the outputs are computed in small delay.

A register has a clock input and a reset input as illustrate@hapter3. It can
store fixed bits of data. If reset is 1, then it data is initialized by 0. If reset
is 0, the stored data is updated by the value given to the pqotitl at every rising

clock edge. The data stored in the register is always output portq.

A ROM (Read Only Memory) has a (address) inguand a data output as
illustrated in Chapte8. It is storing 2 words such a$/1[0], M[1], ..., M[2° — 1],
whereb is the number of address bits. We deal with two types of ROMsrims

of read operations as follows:

e Synchronous ROM (SROM)An SROM has a clock input and a reset input.
If reset is 1 then the stored value is initialized by 0. Thedreperation is
performed at every rising clock edge when reset is 0. Theutufps the

value ofM[d] at the latest rising clock edge.
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e Asynchronous ROM (AROM) An AROM has no clock input and no reset

input. The value oM[d] is continuously output from pouq.

For the reader’s benefit, we also recall the Figbu&from the ChapteB, specifi-
cally to understand a new example of an equivalence cleadywill show later).
The Figureb.3 shows a timing diagram of reading operations of the R, SROM,
AROM and NR (Negative Register). In the figure, time 0, 1,.2 correspond to
rising edges of the periodic clock input. Initially globalset is 1 and it drops to 0
just before time 0. Datdy, d;, do, ... are given to the input pod. The value of
output,gof R and SROM is 0 at time 0. Also, at time 1,.2, the values of output,

g of R and SROM arely, d;, dy, ... andM[dp], M[d,], M[d;], ..., respectively.
For the AROM, the datd[dy], M[d], M[d4], ... are taken from the output port,

g immediately at time 0, 1, 2, ., respectively.

We will describe a behavior of a circuit element using a segaeof output at
every rising clock edge for thperiodic clock(clock is inverted into a fixed fre-
guency), andnitial reset(initially, reset is 1 and drops to 0 before the first rising
clock edge) as illustrated in Figue3. The behavior of each circuit element is

described by the output sequences as follows:

e Combinational Circuit (CC) For simplicity, we assume 3-input 2-output
combinational circuit which is shown in Chapt@rThere is no diiculty to
extend the definition for generat-input n-output combinational circuit. We
assume that, at timgi > 0), a;, b;, andc; are given to the 3 input pori, B,
andC. Let f andg be the two functions with three arguments that determine
the value of output porté andG. The output sequences BfandG are as

follows:
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time 0 1 2 3
clock r

reset

d do d1 d2

d1§><d2§><

g (SROM) 0 §><M[do]§><M[d1 [d>

ds

gR) 0 do

o

g(AROM) M[d0]§><M[d1é><M[dg]§><M[d3]§><

q (NR) dlé><d2é><d3><d4é><

Figure 5.3: Recall a timing chart of a register (R), an SROMAROM and a negative

register (NR) from Chapter 3.

CC(F) :( f (ao, bo, Co), f(al, b]_, Cl), f(az, b2, Cz), .. >

CC(G){9(ao, by, Co), 9(a, b1, €1), g(az, by, c), . .. .)

e Register (R)Let d, denotes an input value given to an input pibét timei

(i = 0). The output sequence is described as follows:
R: <O’ do’ dl, d2’ .- >

e Synchronous and Asynchronous ROMs (SROMs and AROMd)et M[j]
denotes the value stored in addrgsgg§ > 0) of the ROM. The output se-
quences of SROM and AROM are as follows:

SROM: (0, M[do], M[d4], M[d5], . ..)

AROM: (M[do], M[d;], M[d], M[d3],...)
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In this chapter, we assume that a fully synchronous circast ¢ata inputs, data
outputs, a global clock input, a global reset input, comtiameal circuits (CCs),
registers (Rs), SROMs, AROMs, and their interconnects.réhders should refer
to Figure5.4for illustrating an example of a fully synchronous circuihe global
clock and the global reset are directly connected to thekdlmgut ports and the

reset input ports of all Rs and SROMs. Also, we assume thataithas cycles.

data input @

0
! (]
M

b
) @

y 0 /

clock | IE'

R
reset —

\ 0
CcC @
Vo
data output @

Figure 5.4: An example of a fully synchronous circuit withcyand the corresponding

circuit graph with potentiality.

Let us definean equivalencef two fully synchronous circuits for the periodic
clock and initial reset. We say that two circuXsandY are anequivalentif,

for any input sequence, the output sequences are the samyat éxcfirst several
outputs. For the reader’s benefit, we will show an examplé®gtguivalence. Let
us consider a circuit SROWR, that is, the output of the SROM is connected to the
input of the R as illustrated in Figu5. We also consider a circuit-F&ROM,

in which the output of the R and the input of the SROM are cotetecin this
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regard, we consider another circuit which consists twostegs (two Rs) and an
AROM. The output of the R is connected to the input of the AROMeveas
the output of the AROM is connected to the input of the othea®illustrated
in Figure5.5. For the periodic clock with initial reset, the output seqoes of
SROM+R, R+SROM, and RAROM+R are as follows (The readers may refer to

Figure5.3for better understanding):

SROM«R: (0,0, M[do], M[d4], ...)
R+SROM:(0, M[0], M[do], M[d4], ...)

R-+AROM+R: (0, M[0], M[do], M[d4], ...)

Since these three circuits have the same output in time. 2,,3hey are an equiva-
lent. Note that the outputs in time 0 and 1 are not equal. Bxdhapter, we ignore

first several clock cycles when we determine an equivalehtdeeccircuits.

Suppose that a circuX with AROMs is given. The main contribution of this

chapter is to show

e a necessary condition such that an AROM-free circtiitan be generated,

which is an equivalent t&X, and

e an algorithm to deriveY if the necessary condition is satisfied.

We will introducea negative registe(NR), which is a nonexistent device used
only for showing our algorithm to deriv¥ and related proofs. This is originally
introduced in ChapteB. Recall that, a regular register latches the input at the
rising clock edge A negative registelatches a future input. The Figuke3 also
shows a timing diagram of a negative register (NR). An NRHagcthe value

of inputd at the rising edge of two clock cycles later as illustrate&igure5.3,
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d d d

| | |

clock — clock — clock —
SROM b-bit register b-bit register
reset — reset — reset —
c = b = b
Y \ 4 Y
clock — clock —
c-bit register SROM AROM
reset — reset —
c c c
\ 4

q q clock —
c-bit register

A

q

reset —j

Figure 5.5: A new example of three circuits such as SR®&YI R+SROM, and

R+AROM+R for showing an equivalence.

Thus, the NR has the following output sequence for a periddick with an initial

reset:
NR: <d1, dz, d3, .. >

In our algorithm to derive an AROM-free circut, circuits with NRs will be used

as interim results.

5.4 Circuit Graph with Cycles and Rewriting Rules

In this section, we will describe circuits, represented lineEted Reachable Graphs
(DRGSs) and the necessary circuit rewriting rules. We simyslg a directed graph
to denote the interconnections of a fully synchronous d@irde call such graph

as a circuit graph A circuit graph consists of a set of nodes and a set of didecte
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edges for connecting two nodes. Each node is labeled byr ¢ithgut port), O
(Output port), CC (Combinational Circuit), R (Register), NRe@tive Register),
AROM, or SROM. A node with label | is connected with one or motggoing
edges. A node with label O is connected with exactly one inngradge. A node
with label CC has one or more incoming edges and one or mor@imgtg@dges.
A node with label R, NR, AROM, or SROM has one incoming and oumigoing
edge. We also assume that a circuit graph is a directed relecgeaph (DRG),
such that for every internal node, there exists a directdfufpam an input node to

an output node which includes it. Figuse? (2) illustrates an example of a DRG.

Note that nodes with label I, R, NR, AROM, or SROM has only onéjoing
edge. The readers may think that one outgoing edge is a togestit restric-
tion because it does not allow two or more fan-outs. Howevercan implement
multiple fan-outs by attaching a simple Combinational Cir¢GiC) that just du-
plicates the input. For example, a CC with one input pgoand two output ports
F andG such thatr = AandG = Ais used to implement fan-out 2, as illustrated

in Chapter3.

For a given circuitX with AROMs, we will show an algorithm to derive an
AROM-free and NR-free circuity by rewriting circuits. We assume that is
given as a circuit graph. We will define rules to rewrite a gitgyraph. The
readers should refer to Figube6 for illustrating the rules, where P and S denote
predecessor and successor nodes respectively. The nose=ehepredecessor

and successor nodes are rewritten as follows:

Rule 0 AROM node is rewritten into SROMNR.
Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, tigtthey
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SROM R NR R SROM NR SROM
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Rule 0 Rule 1 Rule2 Rule 4
NR NR R SROM R SROM NR
[y (sh DIES s
. — - 2
P P} P} P oipP P
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\
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' l VL 1
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Figure 5.6: Rules to rewrite a circuit graph with cycles.

are removed.
Rule 2 R+SROM is rewritten into SROMR.

Rule 3 If all the incoming edges of a CC node are connected to an R tiogie,

Rs are moved to all the outgoing edges of the CC node.
Rule 4 NR+SROM is rewritten into SROMNR.

Rule 5 If one of the incoming edges of a CC node is connected to an N,nod
then the NR node is removed, an R node is added to all the atbeming

edges, and the NR node is moved to all the outgoing edges GfGheode.

Let us confirm that, after applying one of the rewriting rylaa original circuit
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and the resulting circuit are equivalent. la&thb;, ¢, andd; (i > 0) denote inputs

given from the predecessor node at time

Rule 0 Both AROM and SROMNR have the output sequen@d[dy], M[d,],

M[d.], M[dg], ...), and thus they are an equivalent.

Rule1 R+NR and NR-R have the output sequence@h, d,, d, ds, ...) and
(0,dy,dy, ds, .. .), respectively. Also, NULL circuit has the output sequence

(do, d1, dy, ds, ...). Thus, they are an equivalent.

Rule 2 R+SROM and SROMR have the output sequencés M[0], M[d],
M[dy], ...) and(0, 0, M[do], M[dy], ...), respectively and thus they are an

equivalent.

Rule 3 The output sequences of the left-hand side of the rule( &f@ O, 0),

f (a0, bo, Co), f(as,b1,¢), ...) and(g(0, 0, 0), g(av, bo, Co), 9(as, by, c1), - . .).
Those of the right-hand side a(8, f(ag, bo, Co), f(as, by, cy), ...) and(0,

g(ag, bo, Co), g(as, by, ¢1), ...). Thus, they are an equivalent.

Rule 4 NR+SROM and SROMNR have the output sequeng@sM[d;], M[d;],
M[dz], ...) and(M[do], M[d,], M[d], M[d3] .. .), respectively and thus they
are an equivalent.

Rule 5 The output sequences of the left-hand side of the rule &aa, by, ),
f(ag, b1, 1), f(as, by, Cy), ...) and(g(as, bo, Co), 9(ap, b1, 1), 9(as, bz, Cy),
...y. Those of the right-hand side af&(a;, by, Co), f(az, by, c1), f(az, by, o),
...yand{g(as, bo, Co), g(az, b1, ¢1), 9(as, by, ¢y), .. .). Thus, they are an equiv-

alent.

We are now in position to describe the rewriting algorithmapfose that an input
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circuit graph has nodes with labél<€O, R, AROM SROM andCC. The following
rewriting algorithm generates a circuit graph, equivalenthe original circuit

graph.

Find a minimum i such that Rule i can be applied to the currémcud
graph. Rewrite the circuit graph using such Rule i. This rewgt

procedure is repeated until no more rewriting is possible.

In other words, our algorithm invokes the Rul@ varies from 0 to 5) and applies
(whenever applicable) as a priority basis to the currerudigraph until no more
applying is possible. For example, Rule 0 has higher pyighian Rule 1, Rule 1
has higher priority than Rule 2 and so on. When no rule is agbléto the current
circuit graph, we have an equivalent AROM-free and NR-fregutting circuit
graph to implement into the current FPGAs for the given inprduit graph with

AROMs.

For the reader’s benefit, we will show more concrete desonpif our rewriting
algorithm. Our rewriting algorithm repeatedly changesrawt graph. Le#nodes
denote the number of nodes of the current circuit graph,\gnd, . . . , Vinodes 1

denote all the nodes. Note that, the number of nodes may ehayngpplying
a rule. If this is the case, we assume that the valugnaidesis automatically

updated. Our rewriting algorithm can be described as fatow

START:
fori < O0to5do
for j « O to #odes- 1 do

if Rule i can be applied foy; or v; with its neighbors
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begin
Apply Rulei for v; or v; with its neighbors
goto START

end

It should be clear that, when a rule is applied, our rewrituhgprithm starts over.
Thus, our rewriting algorithm repeatedly applies Ryleherei be the minimum

possible number.

5.5 Behavior of Our Circuit Rewriting Algorithm

This section mainly describes the behavior of our rewritalgorithm. Let us

observe the behavior of our circuit rewriting algorithm.

e First, Rule 0 is applied to all AROM nodes, and they are rdamitinto

SROM+NR. After that, Rule O is never applied.

e Rules 1 is applied and adjacent R and NR nodes are removedewdren

possible.

¢ R nodes are moved towards the output nodes using Rules 2 ahdrg&wer

possible.

¢ NR nodes are moved towards the output nodes or are rotategdlesaising

Rules 4 and 5.

Let us see how our circuit rewriting algorithm works usingexsample of a circuit

in Figure5.7, which shows the interim and resulting circuit graphs. t-iRule 0
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is applied to the AROM, it is converted into SRGMR. After that, Rule 3 is
used to move the R, and two Rs are generated. Rule 5 is appliadie the NR

and it is duplicated. Finally, adjacent R and NR are removweRWle 1.

0

Rule 0 0 Rule 3 0 Rule 5 0 Rule 5 0 Rule 1
O—0O—0O0—0O0—0O—
| o

{1 { o { o | o

AROM | SROM | | SROM | | SROM | | SROM |
b b b bo ¥ o 1 Yo

(<9 w9 e—[r]
0o/ I, :

of
S

©

NG
@ -
B
B

o
—_—
o
=

®

-
o
'
IEI @
o
-
o
-
o

Figure 5.7: Interim and resulting circuit graphs obtaingdlr rewriting algorithm for

a circuit graph with cycles.

Our circuit rewriting algorithm may not terminate for a amtgraph that has no
way to convert an equivalent AROM-free circuit. Figuse8 shows an example
of such circuit graph. It has a cycle with two AROMs and onerRuitively, one
R is necessary to convert an AROM into an SROM. Thus, thisitigraph can
not be converted into an equivalent AROM-free circuit. Lessee how our circuit
rewriting algorithm works for the circuit graph in Figuge8. After applied Rule O

and Rule 1, the interim circuit graph has an NR in the cycleleRuis applied
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to move the NR, and a new R is generated between the | node ar@mode.
After that, the NR jumps over the SROM by Rule 4. Rule 5 is aggpigain, and a
new NR is generated between the CC node and the O node. AgaiNRlumps
over the SROM by Rule 4. The readers should have fiacdity to confirm that,
while the NR is rotated in the cycle, one new R is generateddxt the | node
and the CC node and one new NR is generated between the CC notleeadd
node. Rule 5 and Rule 4 can be repeated applied in the samelwggneral,
after Rule 5 and Rule 4 appliech2imes, newn R’s andn NR'’s are generated,

and our circuit rewriting algorithm never terminates.

Rule5, Rule 4 Rule5, Rule 4 _RuleS, Rule 4 are applied

@ Rule 0, Rule 1 @ , @ ' Cl) 2(n-1) times @

o8 o N

\ ]
I AROM | I AROM | | SROM | @ @\ @

! T ‘\

1/
/ ¥ am\o |\ &

© ©

n
8
Z\
P4
Y
[%2)
Py
o
!

Figure 5.8: An example of a circuit graph with cycles for whmur rewriting algorithm

does not terminate.

For the purpose of clarifying the condition such that ourngiag algorithm can
generate AROM-free and NR-free circuit graph, we deflmepotentiality of the

nodesin a circuit graph. Suppose that a nodef a circuit graph hasn (> 0)
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incoming edges such asy(V), (U, V), ..., (Uy, V). Let us definghe potentiality

p(v) of a nodev as follows:

If vis I, thenp(v) = 0.

If vis O or SROM, themp(v) = p(uy).

If vis AROM or NR thenp(v) = p(u;) — 1.

If vis R thenp(v) = p(uy) + 1.

e If vis CC, thenp(v) = min(p(uy), p(uz), ..., p(Um)).

From the definition, the potentiality of a node can be deteediif the potentiality
of all predecessor nodes are determined. Unfortunatelyeasill show next, we
may not determine the potentiality of every node by the aldenition, if a

circuit graph has a cycle.

Let us discuss the potentiality for a circuit graph with aleyasing three circuits
in Figure5.9. Let the potentialityp(a) of the CC node bek. From the definition
of the potentiality, we can write the equations of potenydbr Figure5.9(1) as

follows:

p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) + 1, p(d) = p(c), p(e) =
p(c) + 1, andp(f) = p(d).

From these equations, we haygg) = p(c) + 1 = p(b) + 2 and thus,p(b) =
min(k, p(b) + 2). Hence, we can determine the valuep@b) such thatp(b) = k.
Further, we can determine the potentiality of the other saaefollows: p(c) =

p(d) = p(f) = k+1, andp(e) = k+2. Intuitively, the equatiop(b) = min(k, p(b)+
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2) means that the cycle igmsitive cycldecause the cycle— c—d—eincreases

the potentiality by+2.

We can do the same discussion for Figare(2) as follows:

p(@) = k, p(b) = min(p(a), p(€)), p(c) = p(b) + 1, p(d) = p(c), p(e) =
p(c) - 1, andp(f) = p(d).

From these equations, we haygh) = min(k, p(b)). Regardless the value ptb),
this equation is satisfied. If this is the case, we assumeptbat k. We can then
determine the potentiality of the other nodes as follop&) = p(d) = p(f) =
k+ 1, andp(e) = k. Similarly, from the equatiomp(b) = min(k, p(b)), we can

think that the cycle is @ero cycle

Figure5.9 (3) shows an example of megative cycle We have the equations as

follows:

p(@) =k, p(b) = min(p(@), p(e)), p(c) = p(b) — 1, p(d) = p(c), p(e) =
p(c) - 1, andp(f) = p(d).

From these equations, we haygb) = min(k, p(b) — 2). If p(b) # k thenp(b) =

p(b)-2. Hencep(b) = k must be satisfied. If this is the cag€b) = min(k, k—2) =

k — 2, a contradiction. Thereforg(b) = min(k, p(b) — 2) has no solution.

From this observation, we defitiee potentiality of a cyclas follows: Letv, vy, . . ., V(=
Vp) be a cycle such that there is a directed edgei(1) (0 < i < m—1). We define
the potentialityp’(v;) of nodev; (1 < i < m) with respect to the cycle starting

as follows:

e P'(Vo) =0.
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Figure 5.9: The potentiality for circuits with a cycle
e If vi;; is CC or SROM, therp'(vi;1) = p'(vi) (0O <i<m-1).
e If vi;; iIs AROM or NR thenp’(viy1) = pP'(vi) —1 (0<i <m-1).

o If viipisRthenp'(vi;1) = p'(vi) +1(0<i<m-1).

We say thathe potentiality of the cycls p’(vn). For example, the potentialities

of the cycles in Figur®.9(1), (2), and (3) are 2, 0, and -2, respectively.

We have the following theorem.

Theorem 5.5.1 Our rewriting algorithm generates an AROM-free and NR-free

circuit graph, equivalent to the original circuit graph,afl O nodes and all cycles

of a circuit graph have non-negative potentiality.

In other words, we can determine a fully synchronous cirtwat can be converted

into an AROM-free circuit by evaluating the potentiality af O nodes and all

cycles of the corresponding circuit graph. Also, the patdity of all O nodes and

all cycles are non-negative, our rewriting algorithm gextes an AROM-free and
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NR-free circuit graph, and the corresponding fully synctoes circuit is AROM-
free and an equivalent to the original fully synchronousuwit: For the reader’s
benefit, we will explain two examples as shown in Figbré and Figure5.10

In Figure5.7, the potentiality of the O node and cycle are non-negativendd,
our rewriting algorithm generates an AROM-free and NR-fcgeuit graph. In
Figure5.10Q the potentiality of the O node is negative, however the micéty

of the cycle is non-negative. Hence, our rewriting algarittioes not generate an
AROM-free and NR-free circuit graph. In fact, we recall thigdre 5.7 with a
slight modification as illustrated in Figug10to understand the failure case of
our rewriting algorithm. A slight modification is that we jusiove the position
of the AROM and R nodes in the designed input circuit graphlastiated in
Figure5.10Q It is observed in Figur®.10that the resulting circuit graph has an

NR node and hence we say, our rewriting algorithm fails tooeerall NRs.

0

. 0 0 0
data input @ Rule 0 @ Rule 5 @ Rule 1 @

Iy

AROM R | clock ﬂ
— reset AROM SROM SROM
_ 1
@ |
GD
data output g} f f

\ N\
Figure 5.10: A circuit with a cycle and its correspondingcait graph with a slight

modification of the Figure 5.7 that can not be converted imt&ROM-free circuit.
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5.6 Proof of Theorem5.5.1

The main purpose of this section is to show a proof of Thedbsebil We will

show several lemmas for a proof of Theorérb.1

First, let us observe how the potentiality of nodes is chdnigye our rewriting
algorithm. We focus the potentiality of successor nodes.A.endS denote the
predecessor and successor nodes for Rules 0, 1, 2 and 4l&tlBg, P,, P3;, and
Si1, S, be the three predecessor and two successor nodes in Rules53 ake
compute the potentiality of each successor node both befwdeafter applying

the rules as follows.

Rule 0 p(S) = p(P) - 1.

Rule1 p(S) = p(P).

Rule2 p(S) = p(P) + 1.

Rule3 p(S1) = p(Sz) = min(p(Py) + 1, p(P2) + 1, p(Ps) + 1) = min(p(Py),
P(P2), p(Ps)) + 1.

Rule4 p(S) = p(P) - 1.

Rule 5 p(S1) = p(S2) = min(p(P1) — 1, p(P2), p(Ps)) = min(p(P1), p(P2) +
1LpPs)+1)-1.

Thus, the potentiality of every successor node is nevergdtiy applying the

rules. In every rule, O nodes can only be successor nodes, Wauhave,

Lemma 5.6.1 The potentiality of every O node of the resulting circuit ghnas

the same as that of the corresponding O node of the origimalitigraph.
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For this lemma, the readers may see the Figureln this figure, the potentiality
of the O node is 0 and this value is never changed. Similarycan prove the

following lemma:

Lemma 5.6.2 The potentiality of every cycle of the resulting circuit ghais the

same as that of the corresponding cycle of the original ¢irgtaph.

In Figure5.7, we see that the cycle increases the potentiality bynd this value
is also never changed. Readers may refer to the Fig@d®r making clear about

the potentiality of the cycles in circuits.

In a circuit graph, lela segmenbe a directed path;, U, ..., Uy, such thatu;
andu,, are either I, O, SROM, or CC, and, ..., u,.1 are either R or NR. Note
that, ifm = 2 then it represents a null segment with u,. We have the following

lemma:

Lemma 5.6.3 Once our circuit rewriting algorithm uses either Rule 4 or R&l

to move an NR node, it never applies Rule 2 and Rule 3 to movenad&

Proof If either Rule 4 or Rule 5 is applied an interim circuit, botll& 2 and
Rule 3 cannot be applied to it. If this is the case, all Rs dreee(1) in the segment
of Rs ending at an O node, or (2) in the segment of Rs ending at acd€ and
another incoming edge of the CC node is not connected to Rrg®al). To
apply Rule 2 and Rule 3 later, the non-R node in Figudel must be an R node.
However, to be an R node, Rule 2 and Rule 3 must be used. ThilsRiode 2

and Rule 3 are never applied.

We will prove that all NRs in a cycle with non-negative potatity will be re-

moved by our rewriting algorithm.
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Figure 5.11: lllustration for the proof of Lemma 5.6.3.

Lemma 5.6.4 Suppose that all cycles in a circuit graph have non-negatioe
tentiality, and Rule O are repeatedly applied to remove &OMs. If a cycle has
m NRs, it also has at least m Rs. If either Rule 2 or Rule 3 isiegppthe Rs
are moved and adjacent R and NR may be removed by Rule 1.df &ithe 4 or
Rule 5 is applied, the NRs are moved. Note that, from Lem@8& the Rs are
never moved, once either Rule 4 or Rule 5 is applied. In othedsythe NRs are
moved along the cycle, while Rs are never moved. Thus, at saintegll NRs in

the cycle will be removed by Rule 1.

Note that, if there exists a cycle with negative potentgalitur circuit rewriting
algorithm does not terminate. As illustrated in Fig&r& an NR moves along
the cycle and Rs and NRs are repeatedly generated. It sheubar that, there

exists no way to generate an equivalent AROM-free circuistach circuit.

When our rewriting algorithm terminates and the resultingui graph is ob-

tained, we have the following lemma:

Lemma 5.6.5 Let u be an NR node ar{d, v) be its outgoing edge in the resulting
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circuit graph. Node v must be either NR or O node. Also, all M&es must be in

segments ending at O node.

Proof If vis an R, SROM, or CC node then Rules 1, 4, or 5 can be appliede Sinc
no more rules can be applied to the resulting circuit graphust be either NR or
O nodes. Since the successor of NR nodes must be NR or O ndld¢R, modes

must be in segments ending at O node.

The reader may refer to Figu®10 for making clear about the proof of this
lemma. In this figure, the resulting circuit graph (circuiagh in where no rule is

applicable) has an NR which is in segment ending at O node.

A simple directed patls a directed path if it has no repeated nodes. For example,

in Figure5.2(2), (B, E, H, K, N, O) is a simple directed path, blB(E, H, I, F, E, H, K, N, O)
is not. We say that nodes aegularif it is on a simple directed path from an input

node to an output node. Note that nodes on a cycle in a DRG cambe-regular

node. For example, nodésand| are non-regular nodes.

From Lemmab.6.5 we will prove that all reqular SROM and CC nodes in the

resulting circuit graph have zero potentiality.

Lemma 5.6.6 All regular SROM and CC nodes in the resulting circuit grapéa

non-negative potentiality.

Proof Since the resulting graph is AROM-free, nodes follows NRe®cdan have
negative potentiality. Since no segment ending at SROM or 8&CNR nodes,

their potentiality must be non-negative.

Similarly, we have the following lemma.
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Lemma 5.6.7 All regular SROM and CC nodes in a simple directed path from
an input node to an output node in the resulting circuit grdq@ve non-positive

potentiality.

Proof We assume that the resulting circuit graph has a positiverpiality SROM
or CC node in a simple directed path from an input node to anubutpde, and
show a contradiction. Let be a first SROM or CC node with negative poten-
tiality, that is, all SROM and CC nodes in all directed pathsoming tov have

non-positive potentiality and SROM or CC nodéas positive potentiality.

Case 1 vis an SROM node
Let (u, v) denotes the incoming edge. Ufis either R or NR, then Rule 2 or
Rule 4 can be applied. Since no more rules can be applied teesiodting
circuit graph, it must be either I, SROM, or CC. If this is theegxu) = 0

and thusp(v) = 0, a contradiction.

Case 2 visa CC node
Let (ug, V), (U, V),...,(w,V) (k > 1) denote the incoming edges. From
Lemmab.6.5 none ofu, Uy, ..., U is an NR node. If all of them are R
nodes, then Rule 3 can be applied. Thus, at least one of thaot sn R
node. It follows that at least one of them is either I, SROMC& node.
From the assumption, the potentiality of such node is nasitpe, Hence,

the potentiality ofvis non-positive, a contradiction.

We are now in position to show the proof of Theor&mb.1 From Lemmab.6.6
and5.6.7, all SROM and CC nodes in a simple directed path from an inpdé o

an output node of the resulting circuit graph have zero fd@kty. Hence, if the
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potentiality of one of the O nodes in the resulting circudygjn is negative, a seg-
ment ending at O node in the resulting graph should have NR fremma5.6.5
Similarly, if the potentiality of all the O nodes is non-néga, no segment ending
at an output node has NR in the resulting circuit graph. Framina5.6.], the
potentiality of O nodes does not change by our rewriting algm. Thus, from
Lemmab.6.4 if all output nodes and all cycles of a circuit graph haveatizg
potentiality our rewriting algorithm generates the reisigitcircuit graph with NR

nodes. This completes the proof of Theorgrb.1

From Theoren®.5.], it is not always possible to generate an equivalent AROM-
free circuit. However, we may modify a circuit such that inche converted
into an almost equivalent AROM-free circuit. For this pusppwe compute the
potentiality of all O nodes and all cycles in the correspagdiircuit graph. After
that, we insert registers just before O nodes with negatotergiality so that
the potentiality of the corresponding O nodes turns intora.zén this case, we
assume that all the cycles have non-negative potentigityce the potentiality
of the corresponding O nodes now is O, it can be convertedantequivalent
AROM-free circuit according to our Theoret5.1 The readers should refer to
Figure5.12for illustrating an example. Note that, the resulting citguaph is not
an equivalent to the original circuit graph. However, thifedence is the latency
of the output node. Thus, we can say that, the resulting ARE@d-ircuit is an

almost equivalent to the original circuit.

As we have discussed, our circuit rewriting algorithm doestarminate for a cir-
cuit graph with a negative cycle. We can modify our circuivrgng algorithm

that always terminates as follows: First, we compute thematlity of every cy-
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Figure 5.12: An almost equivalent circuit with cycle andar@sponding circuit graph

to that of Figure 5.10 that can be converted into an AROM-&ieeuit.

cles. If one of them is negative, we do not execute our cirewtiting algorithm.
Since it is impossible to generate an equivalent AROM-frieeud if this is the

case, it is not reasonable to execute our circuit rewritiggrthm.

5.7 How to handle nodes that are not in a path from

an input node

In this section, we will describe for understanding how tmdiia nodes corre-
sponding circuit elements that are not in a path from an igptie circuits. For
this purpose, we include a no input practical circuit sucbaster in conjunction
with DRG circuit as a designed input circuit instead of DR ait only. By this

addition, in fact, we relax a restriction to the designea@uwir by users in terms

101



of input circuits. However, we assume that our no input pcattircuit has no
memory elements such as ROMs. It consists of Registers (fdsfambinational

Circuits (CCs).

For the benefit of readers, we will show an example of a no ippaxttical circuit
as illustrated in Figur®&.13(a). The circuit in Figures.13(a) has one Register
(R) and one adder. Register (R) has a reset input and a clpok @3 illustrated
in Section5.3. Readers may also refer to the Sectt&for details about Combi-
national Circuit (CC). Initially stored data value in R is O ibe# is 1. When reset
is 0, then stored data value is updated by the data value tvére input port at

every rising clock edge.

Let us recall the circuit, shown in Figuge13(a). In this figure, we see that we
may have output data sequence 0, 1,.20f the time O, 1, 2, .., respectively.
If this is the case, then we say that the output sequence dfifitigEt as shown
in Figure5.13 (a) is deterministic which is similar to other inputs of th&k0G
circuit. Hence, we treat this citcuit as illustrated in FHigb.13(a) as a dummy
input to the DRG circuit, as shown in Figutel3 (b). Readers may refer to
Figure5.13(a), where dotted circle is indicating the dummy input fog BRG
circuit as shown in Figur&.13(b) in which the dummy input is connected to the
adder of the DRG circuit. Note that, in Figusel3 (b), DRG circuit is shown
by enclosed dotted line. If this is the case, then we considere circuit in
Figure5.13(b) as an input circuit for our algorithm. Since, the dummgunhcan
be treated as the same as other inputs to the DRG circuiteauting algorithm is
applied to the whole circuit, instead of only considering®E&ircuit, as illustrated

in Figure5.13 (b) by enclosed dotted line. For the benefit of readers, we hav
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shown an application of our rewriting algorithm in Figdgd.3(c). Figure5.13(c)
represents a converted circuit (by our rewriting algorijwith no AROMs for the
circuit, shown in Figuré.13(b). It is noted that one Register (R) is generated to
the connecting edge from the dummy input to the adder (CC) 0bR& circuit

by our algorithm, shown in Figur6.13(c). Obviously, we can conclude from
the converted circuit in Figur®.13(c) for an input circuit in Figuréd.13(b) that
users can design their input circuit in wider range instedrdy considering

DRG circuit, shown in Figur®&.13(b) by enclosed dotted line.

data input data input
dummy input \ ' :

\ \ '
\ i
i 1
) R . ) .

\ dummy input ' dummy input ' SROM
N [ 1
- : :
- 1 1
' \
| 1
I |

4‘.‘ SROM

’ N ' . \
DRG circuit ~ ‘\ /: DRG Gircuit ‘\\

data output data output data output

(a) An example of no (b) A no input practical circuit as a (c) The converted circuit with no
input practical circuit dummy input to DRG circuit AROMs for the input circuit in (b)

Figure 5.13: An example to extend the input circuit with eyfdr our algorithm.

5.8 Concluding Remarks

In this chapter, we have presented a rewriting algorithmsaxidewriting rules to

obtain the equivalent circuits with Synchronous ROMs (SR kr thepracti-
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cal circuitswith Asynchronous ROMs (AROMSs). The practical sequentiaist
with AROMs represented by a directed reachable graph (DR@ e converted
by our rewriting algorithm into an equivalent fully syncimaus sequential circuit
with no AROMs to support the architecture of the most FPGAse aMso de-
scribed a technique to extend the input designed circuitssieys in wider range
rather than DRG circuits. Itis not trivial to convert the ptigal sequential circuits
with AROMs into the equivalent fully synchronous circuitgéghivno AROMs for
supporting the modern FPGA architecture. However, ourrélyo did it auto-

matically.
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Chapter 6

Performance Improvement of the

Resulting Circuits

In this chapter, we will discuss about the performance imgneent of the result-
ing circuits. First, we will recall our main contribution difiis dissertation. The
main contribution of this dissertation is to minimize thenmaer of clock cycles
in the designed circuits by users. We say that circuit de#figih minimize the
number of clock cycles is easy if we use asynchronous reactipe. However,
embedded memories in the most modern FPGAs support syralsaerad and
synchronous write operations but do not support asynclusnead operation. To
resolve this problem, we provide circuit rewriting apprbas to convert a circuit
using AROMs (Asynchronous Read Only Memories) or ARAMs (Adyronous
Random Access Memories) into an equivalent circuit usin@BIR (Synchronous
Read Only Memories) or SRAMs (Synchronous Random Accessavies) for

implementing in FPGAs. More specifically, a circuit desidr®y users consists
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of registers (Rs), combinational circuits (CCs), AROMs supipg asynchronous
read operation or ARAMs supporting asynchronous read andmsgnous write
operations is given. Our circuit rewriting approaches edtically convert the
given circuit with AROMs supporting asynchronous read agien or ARAMs

supporting asynchronous read and synchronous write apesanto an equiva-
lent circuit with SROMs supporting synchronous read openadr SRAMS sup-
porting synchronous read and synchronous write operatidiherefore, the re-

sulting circuit can be embedded into the most modern FPGAs.

However, performance of the resulting circuits may degrdukcause, by our
rewriting algorithms, registers in the circuits are movedards the output ports,
whenever possible. Although, Performance improvemerti@fésulting circuits

is the beyond of this dissertation. However, we will discsisgeral techniques to

improve the performance of the resulting circuits as foBow

6.1 Circuit Performance

Circuit performance can be measured in terms of latency amckdrequency.
Basically, our rewriting algorithms move registers towatie output ports, when-
ever possible. Hence, in general, the resulting circuitg hae the longest paths
from input ports to registefSROM$SRAMSs or from registefSROMg$SRAMs
to registersSROM$SRAMSs or from registefSROM$SRAMSs to output ports.
Therefore, the resulting AROM-free or ARAM-free circuithiarge propagation
delay and low clock frequency. Hence, we say that performariche result-

ing AROM-free or ARAM-free circuit may be degraded. Howewieris easier
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to improve the performance of the resulting circuit than imizing the number
of clock cycles by the designers. For the reader’s benefifppaance improve-
ment techniques in terms of latency and clock frequency efrésulting circuit

are described as follows:

6.1.1 Minimizing latency by eliminating redundant registers

We will describe here how to minimize latency of the resgticircuit. For

this purpose, we first definedundant registerin the resulting AROM-free or
ARAM-free circuit. The registers which are connected to ¢ages ending at O
nodes are called redundant registers. For the benefit oereade have shown
an example of a resulting circuit, as illustrated in Figété, where the redun-
dant registers are highlighted. Essentially, the redunhdamsters only work just
as bufers for the output nodes. Thus, the latency of each outputgaorbe de-
creased by eliminating redundant registers if they do nosea timing problem
for a circuit connected to the output port. Also, we can saf,thfter removing
all redundant registers, the latency is minimized, becawsether registers can

be deleted.

On the other hand, if all edges ending at O nodes have equdlenuhredundant
registers (Rs), we can eliminate those redundant regi§Rs} in a sense that
there is no timing problems at O nodes of the resulting ciscuin this regard,
readers may refer to the Figul In this figure, it is shown that every edge
ending to O node has one equal number of redundant regifs)sstch that
these redundant registers (Rs) can be eliminated for mamgpiatency. If this is

the case, the latency must be minimized as well as perforenahthe resulting
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circuit is improved definitely.

data input
Area under this dotted curve represen
any circuit with its circuit elements
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e =T

..........

data output

Figure 6.1: An example to minimize latency in the AROM-freeAdR AM-free circuit

by eliminating redundant registers.

6.1.2 Increasing clock frequency by adding registers

Here, we will describe about the clock performance improeetiof the AROM-
free or ARAM-free resulting circuit. Recall that, by our reting algorithms,
registers in the circuits are moved towards the output pevtenever possible.
Hence, resulting circuit may have the longest path. The mami clock fre-

guency depends on the longest path from input ports to BrgiSROM3SRAMSs
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or from registersSROM$SRAMs to registefSROM$SRAMSs or

from registersSROM$SRAMSs to output ports. For the benefit of readers, we
have shown the longest path in Fig@&(a) and in Figures.3(a) by highlighting
the arrows. Figureés.2(a) represents an AROM-free resulting circuit and Fig-
ure 6.3(@) represents an ARAM-free resulting circuit. Due to thegest path in
the clock dependent circuits (i.e. circuits with Rs, CCs an@BR or SRAMS in
our case), clock performance of those circuits must be diegraTo overcome of
this problem, we need to divide the AROM-free or ARAM-fresulting circuit
(when no rule is applicable) into several layers so that dmgést path becomes
shorter. Designers can select the layers properly in orlenake the longest
path into shorter for getting optimum clock performancefdct, proper selection
of the layers in the AROM-free or ARAM-free resulting circdor getting opti-
mum clock performance may be another research work. This tegpeyond of
this dissertation. For the benefit of readers, we have shawrekamples in Fig-
ure6.2(a) and in Figuré.3(a). Figure6.2(a) and Figuré.3(a) show the examples
of two layers. The cutting points (created by layers and sjlgee highlighted by
the bullet circles in these figures. After that, registers @ided at every cutting
point in the AROM-free or ARAM-free resulting circuit suchdt longest path
of the AROM-free or ARAM-free resulting circuit becomes steo, as illustrated

in Figure6.2(b) and Fig.6.3(b). Due to shorter path instead of the longest path,
the clock performance of the AROM-free or ARAM-free resuificircuit must be
improved definitely. In this case, we can ignore the laterfah® added registers

in the AROM-free or ARAM-free resulting circuit.
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Figure 6.2: An example for improving the clock performancéhie AROM-free circuit.
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Figure 6.3: An example for improving the clock performaneéie ARAM-free circuit.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have presented circuit rewritingodthms to convert
circuits with memories supporting asynchronous read djggrar circuits with
memories supporting asynchronous read and synchronots eperations into
the equivalent circuits with memories supporting syncbisiread operation or
equivalent circuits with memories supporting synchroneasl and synchronous

write operations for implementing in FPGAs.

First, we have shownd@rcuit rewriting approachfor converting circuit with asyn-
chronous ROMs into an equivalent circuit with synchrono@M® for imple-

menting in FPGAs. For the purpose of circuit conversion, \&eehpresented a
circuit rewriting algorithmandfive rewriting rules In fact, our algorithm invokes
the rules and applied repeatedly in the current circuitlumatiapplying is possible

such that we have an AROM-free circuit to implement in theeor FPGAs. Us-
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ing our rewriting algorithm, any sequential circuit with &R/1s can be converted
into an equivalent fully synchronous sequential circuthwio AROMS to support
the modern FPGA architecture. Although, this circuit casi@n by our approach
is not trivial. However, our circuit rewriting algorithm oalo it automatically. We
briefly discuss the techniques to improve performance o AR®M-free result-
ing circuit and also describe a technique for applying owriteng algorithm even

if a user designs a circuit with pipeline structure.

Next, we have presentedarcuit rewriting algorithm and five rewriting rules
to convert a circuit with ARAMSs into an equivalent circuittwvino ARAMs for
the current FPGA considerinigoth read and write operationsf the memory
blocks (RAMs). However, in our previous work mentioned ear(followed by
Chapter3), we considerednly read operatiorof the memory blocks (ROMSs). In
fact, we improved our previous work, described in Chaptevhere RAMs can be
used as the additional circuit elements to the given inpeuds. It is not trivial
to convert a sequential circuit with ARAMs into an equivdlérly synchronous
circuit with no ARAMSs for supporting the modern FPGA arcloitere. However,
our algorithm is able to do it automatically. We also briefigaliss the techniques

to improve performance of the ARAM-free resulting circuit.

Next, amodified circuit rewriting algorithms presented to convert a circuifth
cyclesusing AROMSs into an equivalent circuitith cyclesusing SROMs for im-
plementing in FPGAs. In fact, our modified circuit rewritiadgorithm is able
to convert practical circuits which hawyclesusingsix rewriting rules In our
previous works, mentioned above (followed by the ChaBtend Chapted), we

have presented circuit rewriting algorithms to convertrawit with asynchronous
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ROMs or asynchronous RAMs into an equivalent circuit withdyonous ones.
The resulting circuit with synchronous ROMs or synchronBdgVis can be em-
bedded into FPGAs. However, these circuit rewriting aldins can handle cir-
cuits represented by a directed acyclic graph (DAG) and dowaok for those
with cycles. The work in this chapter , we succeeded in relguthe cycle-free
condition of circuits. More specifically, we present an aitjon that automati-
cally converts a circuit with cycles using asynchronous ROMo an equivalent
circuit using synchronous ROMs. We briefly discuss the tephes to improve
performance of the AROM-free resulting circuit and alsoalié® a technique
to generate AROM-free circuit even if the input circuit isybed of the directed

reachable graph (DRG) circuit.

Finally, we have discussed several techniques to impray@énformance of the
resulting circuits. By our rewriting algorithms, performa@e may degrade of the
resulting circuits, because, our rewriting algorithms maegisters towards the
output ports, whenever possible. Hence, in general, thdtieg circuits may
have the longest paths from input ports to regig&ROM$SRAMSs or from regis-
tergSROMgSRAMS to registelSROM3SRAMS or from registefSROM$SRAMs
to output ports. As a result, performance of the resultingusis may be degraded
in terms of latency and clock frequency. However, it is plokesio improve circuit
performance of the AROM-free or ARAM-free resulting cirtas illustrated in
Chapter6, which is easier than minimizing the number of clock cyckd#jough
performance improvement of the AROM-free or ARAM-free ritisig circuit is

beyond of this dissertation.
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