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Finite-size energy gap in weak and strong topological insulators
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The nontrivialness of a topological insulator (TI) is characterized either by a bulk topological invariant or by
the existence of a protected metallic surface state. Yet, in realistic samples of finite size, this nontrivialness does
not necessarily guarantee the gaplessness of the surface state. Depending on the geometry and on the topological
indices, a finite-size energy gap of different nature can appear, and, correspondingly, exhibit various scaling
behaviors of the gap. The spin-to-surface locking provides one such gap-opening mechanism, resulting in a
power-law scaling of the energy gap. Weak and strong TIs show different degrees of sensitivity to the geometry
of the sample. As a noteworthy example, a strong TI nanowire of a rectangular-prism shape is shown to be more
gapped than that of a weak TI of precisely the same geometry.
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I. INTRODUCTION

The nontrivialness of a topological insulator (TI) is often
characterized by the presence of a gapless surface state.1,2

A one-to-one correspondence can be established between
the (non)trivialness of a bulk topological invariant and the
presence vs absence of the gapless surface state (bulk-surface
correspondence). However, precisely speaking, for such a
gapless state to exist, both the trivial and nontrivial sides
are semi-infinite, separated by an infinitely large interface.
The above distinction can be made, therefore, only in such
an idealized situation. TI samples, in reality, occupy only
a finite domain of the space, and also have a variety of
shapes surrounded generally by a curved or folded surface(s).
In experiments, it is also the case that some TI samples of
nanometer scale size exhibit a clear gapless surface state,
while other samples of the same chemical composition but
of a different geometrical shape do not necessarily exhibit a
clear signature of topological nontriviality. Such an issue will
be addressed in this paper.

The main scope of the paper is concomitant with the obser-
vation that there are three different gap-opening mechanisms
effective in the samples of finite size. The most primitive
among them is the one due to mixing of the surface electronic
wave functions on the opposing sides, e.g., of an infinitely
large slab-shaped sample. Such an energy gap, associated with
the finite thickness of the gapped bulk, decays exponentially
as a function of the thickness of the slab and is, in practice,
almost irrelevant except in extremely thin film samples.3 The
low-energy (surface) electronic spectrum in the slab geometry
suffers, indeed, only from this type of exponentially small
finite-size energy gap.4–7 The second mechanism to open a gap
in the surface electronic spectrum, which is also more relevant
in magnitude, is the so-called spin-to-surface locking.8–11 The
electronic spin in the a priori gapless surface state on a curved
surface of TI has a tendency to be locked in-plane to the
local tangent of the surface. In the cylindrically symmetric
case, the spin-to-surface locking results in the half-integral
quantization of the orbital angular momentum along the axis
of the cylinder. The half-odd integer quantization gaps out
the spectrum, and this gap decays only algebraically; it is
qualitatively more relevant than the gap of the previous type.

Indeed, the spin-to-surface locking leads to opening of the gap,
irrespective of the presence of cylindrical symmetry, e.g., in a
prism-shaped sample.

Another aspect of the topological insulator which we aim
to explore in this paper is the role of anisotropy, especially in
the weak topological insulator (WTI) phase. This is strongly
related to the third mechanism of gap opening, which occurs
due to the interplay of the anisotropy of WTI and the specific
geometry that we will focus on (i.e., the case of the prism-
shaped geometry). In three spatial dimensions (3D), the Z2

topological insulator is known to be characterized by four Z2

indices,12–14 the principal (strong) index ν0, and other “weak”
indices ν1,ν2,ν3, instead of a single Z2 index in the case of
2D. The principal index ν0 is used to distinguish a strong
topological insulator (STI) (ν0 = 1) from trivial and weak
topological insulators (ν0 = 0). In a WTI, at least one of its
weak indices exhibits a nontrivial value (=1). A WTI shows
generally an even number of helical Dirac cones on its surfaces,
but on the surface normal to its “weak vector,” �ν = (ν1,ν2,ν3),
it shows no Dirac cone. The WTI can be viewed as stacked
layers of 2D Z2 topological insulators. In this regard, the
set of weak indices (ν1ν2ν3) can be regarded as the Miller
index of such stacked layers. Since gapless surface states are
expected to form only at the edge of the stacked layers, one
can naturally understand that no Dirac cone is formed on a
surface normal to �ν in this picture. To summarize, the WTI
bears two Dirac cones on surfaces parallel to �ν and no Dirac
cone on surfaces normal to �ν. When this characteristic feature
is combined with the specific (rectangular) prism geometry,
the anisotropy of a WTI manifests as an alternating size
dependence of the energy gap; the magnitude of the gap is
qualitatively different whether the number of “stacked layers”
is even or odd. It will be demonstrated that weak and strong
TIs show different degrees of sensitivity to the geometry of the
sample.

The periodic table of topological insulators and super-
conductors classifies them by the nature of strong indices
characterizing the system. The weak indices are not shown,
at least explicitly on the table.15,16 Showing an even number of
Dirac cones on its surfaces, WTI is a priori considered not to
be robust. But recently, a few counter examples to this common
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belief have been proposed. One is the existence of protected
gapless helical modes along a dislocation line in the WTI.17,18

More recently, a couple of papers have demonstrated that an
even number of Dirac cones on the surface of WTI are actually
not that fragile against disorder.19,20 Here, we point out that in
a specific situation in the prism-shaped geometry, the surface
state of a WTI is, in a sense, “more strongly protected” from a
finite-size energy gap than that of a STI.

The paper is organized as follows. In Sec. II, we introduce
our effective model Hamiltonian for 3D anisotropic topologi-
cal insulators. The phase diagram of the model is determined
by the calculation of topological numbers in the bulk. In
Sec. III, we discuss different origins of the finite-size energy
gap, highlighting the role of spin-to-surface locking in the
cylindrical geometry. In Sec. IV, we demonstrate that in the
more realistic rectangular-prism geometry, three types of gap
opening appear and disappear by a small change of model
parameters, leading to an intricate size dependence of the gap.
Section V is devoted to conclusions.

II. MODEL AND ITS PHASE DIAGRAM—ENGINEERING
THE WEAK INDICES

As a concrete realization of strong and weak topological
insulators with specific strong and weak indices, ν0 and
�ν = (ν1,ν2,ν3), we consider, as given in Eq. (1), a Wilson-
Dirac-type effective Hamiltonian for a 3D topological insulator
implemented on a cubic lattice.21,22 Since we will be interested
in the analysis of WTI phases with anisotropic weak indices,
we choose the mass parameters m2x , m2y , m2z appearing in
the Wilson term [see Eq. (2)] to be anisotropic.

A. The Wilson-Dirac-type effective Hamiltonian

Let us consider the following Wilson-Dirac-type effective
Hamiltonian for a 3D topological insulator implemented on a
cubic lattice:

Hbulk = ε(k)1 + τxm(k) + τyσμAμ sin kμ, (1)

where ε(k) is an even function of k, and

m(k) = m0 + 2m2μ(1 − cos kμ). (2)

In Eqs. (1) and (2), a summation over the repeated index
μ (=x,y,z) is not shown explicitly. The model specified by
this couple of equations can be regarded as a tight-binding
model with only the nearest neighbor hopping, determining the
structure of the energy bands over the entire 3D Brillouin zone
(BZ). Equation (1) can be regarded as a 4 × 4 matrix, spanned
by two types of Pauli matrices σ and τ , each representing
physically real and orbital spins, respectively. Compared with
a more generic representation of the Dirac Hamiltonian in
terms of the “γ matrices,” we have chosen in Eq. (1) “γ0”
coupled to the mass term m(k) associated only with an orbital
spin τx .

The mass term (2) represents (a half of) the band gap at
time-reversal invariant momenta (TRIM), k = k0, satisfying
−k0 = k0 + G, with G being a reciprocal lattice vector,
corresponding either to a normal or an inverted gap, depending
on the relative sign of m0 and the coefficient of the quadratic
(Wilson) term at a given TRIM. By investigating this feature

of band inversion at the eight TRIM as varying the mass
parameters, one can identify23 various weak and strong TI
phases characterized by strong and weak indices, ν0 and
�ν = (ν1,ν2,ν3). Phase boundaries between such topologically
distinguishable insulating phases correspond necessarily to
closing of the bulk energy gap.

Known examples of 3D topological insulators are layered
materials, exhibiting, in the leading-order approximation,
uniaxial anisotropy in the crystal c axis.24–28 To reflect this
feature in the effective tight-binding model, i.e., in Eqs. (1)
and (2), we assume that our model parameters have the same
uniaxial anisotropy.21 In particular, the three mass parameters
m2x , m2y , and m2z are classified into two types, m2‖ and m2⊥,
depending on whether the corresponding hopping direction is
parallel or perpendicular to the stacked layers of the crystal.
Clearly, the correspondence depends on the relative orientation
of the crystal growth axis and our Cartesian coordinates; e.g.,
when the crystal c axis is oriented to the direction of the z axis,

m2⊥ = m2z, m2‖ = m2x = m2y,
(3)

A⊥ = Az, A‖ = Ax = Ay.

Independently of this choice of the relative orientation,
our control parameters for specifying topologically different
phases are relative magnitudes of m0, m2⊥, and and m2‖. Then,
by studying the feature of band inversion at eight TRIM as a
function of these control parameters,23 one can deduce the
phase diagram of the model. Figure 1 shows such a phase
diagram depicted in the (m0/m2‖,m2⊥/m2‖) plane.

B. Phase diagram

Figure 1 shows the phase diagram of the Wilson-Dirac-type
effective tight-binding Hamiltonian given in Eqs. (1) and (2).
The uniaxial anisotropy of the hopping parameters, as given by
Eqs. (3), is taken into account. Each of the STI and WTI phases
are characterized by four Z2 indices. The calculated winding
number N3 (see Appendix A) is also shown. Solid lines,
separating neighboring topologically distinct phases, indicate
closing of the bulk energy gap. Duplicate lines appearing at the
phase boundary correspond to simultaneous formation of two
bulk 3D Dirac cones. The duplication is due to the uniaxial
choice of the hopping parameters. To see such specific features,
let us focus below on a few particular examples of the STI and
WTI phases.

Let us first concentrate on the isotropic line m2⊥/m2‖ =
1 in the phase diagram (indicated as a thick green line in
Fig. 1). The change of the winding number N3 on this line
is shown in Fig.11(a). Notice that on this line, different STI
and WTI phases show only symmetric weak indices. At the
phase boundaries between the STI and WTI phases, a double
and single solid lines cross, indicating simultaneous closing
of three Dirac cones in the bulk. This occurs at X, Y , Z:
kX = (π,0,0), kY = (0,π,0), kZ = (0,0,π ), three symmetric
points (TRIM) in the 3D BZ.

Stopping at m0/m2‖ = −1, let us now vary m2⊥/m2‖, i.e.,
introduce anisotropy in the mass parameters. On the line
m0/m2‖ = −1 (thick red line in Fig. 1), the system is in a STI
phase with ν0 = 1 and �ν = (0,0,0) when m2⊥/m2‖ > 1/4. The
anisotropy appears in the weak indices below this critical value,
m2⊥ = −m0/4, corresponding to band crossing that occurs at
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FIG. 1. (Color online) The phase diagram of the Wilson-Dirac-
type effective tight-binding Hamiltonian given in Eqs. (1) and (2). No-
tice the anisotropy of our hopping parameters [see Eqs. (3)]. In each
of the strong (STI) and weak (WTI) topological insulator phases, to-
gether with the nature of the specific phase, the fourZ2 indices νj (j =
0,1,2,3) and the winding number N3 are shown, as N3(ν0,ν1ν2ν3) [See
Eq. (A4) for the definition of N3]. The solid lines representing the
phase boundaries correspond to closing of the bulk energy gap.

the Z point, and the system enters a WTI-A phase with ν0 = 0
and �ν = (0,0,1) when m2⊥/m2‖ < 1/4. In later sections, we
will quantify various manifestations of this quantum phase
transition in the finite-size effects. The situation is similar
on the line m0/m2‖ = −5 (thick blue line in Fig. 1), above
and below the critical point m2⊥/m2‖ = 1/4, although in this
second example, the transition occurs from an isotropic to an
anisotropic WTI phase, each named, respectively, the WTI-B
and WTI-C phase.

III. DIFFERENT ORIGINS OF THE FINITE-SIZE
ENERGY GAP

A single Dirac cone on the surface of a STI is topologically
protected2 and also robust against disorder.29,30 In reality,
TI samples always have a finite thickness between the two
surfaces of opposing sides. Imagine a slab-shaped sample
(cf. Table I), which we assume infinitely large, neglecting the
existence of side surfaces. In such a slab geometry, STI bears
a pair of surface Dirac cones, each localized in the vicinity of
the two opposing surfaces. These two “Dirac cones” do not
communicate, and consequently remain gapless, as far as the
thickness of the slab is much larger than the penetration of the
surface state into the bulk (see Appendix B for an extensive

TABLE I. Definition of the surfaceless, slab, (rectangular) prism,
and cubic geometries. Here, to avoid confusion in the terminology,
we define these different types of geometries in terms of the
switching on and off of the periodic boundary conditions (PBCs)
in the x, y, and z directions. In the Table, 1 and 0 signify that the
PBC in the corresponding direction is, respectively, on and off. In
the latter case, the PBC is replaced by the fixed boundary condition
(FBC).

Geometry x-PBC y-PBC z-PBC

Surfaceless 1 1 1
Slab 1 1 0
(Rectangular) prism 0 1 0
Cubic 0 0 0

discussion of the penetration of the surface wave function in
the slab geometry; see also Refs. 4–7).

In a sense, this gaplessness is also protected by the very
slab geometry. In the case of a sample of more realistic shape
with typical side surfaces (cf. the cases of a prism and a
cube; see Table I), the same protection is no longer valid.
The side surfaces open a priori gapless channels, allowing
for communication between the two initial Dirac cones on two
surfaces of the slab. Since this communication through gapless
side surfaces is much stronger than the one through the gapped
bulk (cf. the case of the slab geometry), it leads to opening of
a size gap qualitatively more relevant than the latter case.

Of course, the effects of such side surfaces appear in the
transport characteristics only when an electron can really
“see” the ends of the sample. In a macroscopic sample in
which the (single-particle) relaxation length, determined, e.g.,
by the inelastic scattering length, does not exceed the size
of the system, finite-sizes effects corresponding to a length
scale smaller than the former are naturally smeared out. In
the following sections, we consider nanowire samples that
have a nanometer-scale cross section, with its circumference
sufficiently smaller than the relaxation length. Here, we
concentrate on the cylindrical geometry, imposing additionally
a rotational (cylindrical) symmetry. We also assume that the
system is extended to infinity or (by taking only two of
four end surfaces into account) periodic in the remaining
direction. A symptom of the effects we discuss in this section
may be observed experimentally in a transport measurement
analogous to the one in Ref. 31.

A. Spin-to-surface locking on the cylindrical surface

The protected surface state of a topological insulator is often
cited with another adjective: helical. The word helical stems
from a specific feature, often referred to as spin-to-momentum
locking,32 that the helical state exhibits in momentum space.
Here, we highlight another characteristic of the helical surface
state, the “spin-to-surface locking,” which manifests in real
space and when the surface is curved. The electronic spin in
a helical state on such a curved surface is shown to be locked
in-plane to the local tangent of the surface.8–11

The spin-to-surface locking can be also regarded as a
consequence of the (spin) Berry phase of π . In the case of
rotationally symmetric (cylindrical) wire, the orbital angular
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momentum along the axis of the wire is quantized to be
half-odd integers. This half-odd integral quantization gaps out
the spectrum of electronic motion along the wire. The spin-to-
surface locking leads, indeed, irrespective of the presence of
rotational symmetry, to opening of the Dirac spectrum.

To be explicit, let us consider the continuum limit of
Eqs. (1) and (2), or an effective k · p Hamiltonian at the �

point (k = 0),

Hbulk = ε( p)1 + τxm( p) + Aτyσμpμ, (4)

where m( p) = m0 + m2 p2. Here, we focus on the isotropic
case: m2μ = m2 and Aμ = A for μ = x,y,z. We also assume
ε( p) = 0, for simplicity. We then consider the eigenvalue
problem for Eq. (4), i.e.,

Hbulk|ψ〉〉 = E|ψ〉〉, (5)

in the cylindrical coordinates:

r =
√

x2 + y2, φ = arctan
y

x
. (6)

Note that our TI sample occupies the interior of a cylinder of
radius R. As shown in Appendix C, any surface solutions |α〉〉
of Eq. (5) can be expressed as a linear combination of the two
basis solutions,

|r+〉〉dv = ρ(r)|τz+〉|r+〉dv, |r−〉〉dv = ρ(r)|τz−〉|r−〉dv,

(7)

where |τz±〉 is an eigenstate of τz with the corresponding
eigenvalue ±1 and

|r±〉dv = 1√
2

[
e−iφ/2

±eiφ/2

]
(8)

are two real-spin eigenstates pointing either to the centrifugal
(+r) or to the centripetal (−r) direction. In Eqs. (7), ρ(r) is the
radial part of the surface wave function localized in the vicinity
of the surface of the cylinder, given explicitly in Eq. (C12).
In Eqs. (7) and (8), the subscript dv is added to make explicit
that these spinors are double valued. In terms of |r±〉〉dv, the
surface solution |α〉〉 reads

|α〉〉 = α+(φ)|r+〉〉dv + α−(φ)|r−〉〉dv. (9)

Here, the explicit form of the coefficients α±(φ) is determined
by solving the eigenvalue problem for the following surface
effective Hamiltonian:

Hsurf = A

[
− 1

R

(
−i

∂

∂φ

)
σx + pzσy

]
, (10)

i.e.,

Hsurfα(φ) = Eα(φ), (11)

where

α(φ) =
[

α+(φ)
α−(φ)

]
. (12)

Notice here that thanks to the rotational symmetry with respect
to the axis of the cylinder, the orbital angular momentum
Lz is a good quantum number, which can be simultaneously
diagonalized with Hsurf and pz. In the following, we focus on

such surface eigenstates of Lz, which can be represented in
terms of α(φ) introduced in Eqs. (11) and (12) as

α(φ) = αLz,pz
(φ) =

[
α+(φ)
α−(φ)

]
= eiLzφ

[
α+(0)
α−(0)

]
. (13)

Here, α±(0) is specified by the orientation of the surface
crystal momentum specified by pz and pφ = Lz/R. The
corresponding eigenenergy E of Hsurf is then specified by
pφ and pz as

E = E(pφ,pz) = ±A

√
p2

φ + p2
z . (14)

The state |α〉〉 thus given, and specified by the α(φ)
given in Eq. (9), signifies a simultaneous eigenstate of Hbulk,
Lz, and pz, which may be also represented as |Lz,pz〉〉.
Equation (9) implies that such a state is an equal-weight super-
position of the centrifugal and the centripetal spin components
given in Eqs. (8), since |α+(0)| = |α−(0)|. This signifies that
when an electron is on the surface of the cylinder at an angle φ

in the configuration space, its spin state is constrained onto the
local tangent of the cylinder at this position (spin-to-surface
locking). While an electron travels around the cylinder in
the configuration space, the corresponding spin frame also
completes a 2π rotation in the spin space.

B. Half-integral quantization of the orbital angular momentum
and the resulting finite-size energy gap

Let us reconsider the statue of the angle φ in different steps
of the formulation. In the original bulk effective Hamiltonian
(4), the angle φ purely specifies the position of an electron in
the configuration space. This is also the case in its eigenstate
|α〉〉. Therefore, |α〉〉 must be single valued with respect to the
2π rotation of φ,

|α〉〉|φ→φ+2π = |α〉〉. (15)

On the contrary, φ in |r±〉dv specifies the direction of real
SU (2) spin. Therefore, |r±〉〉dv is double valued with respect
to the 2π rotation of φ,

|r±〉〉dv|φ→φ+2π = −|r±〉〉dv. (16)

In Eq. (9), these two boundary conditions are compatible, only
if

α(φ + 2π ) = −α(φ), (17)

i.e., the coefficients α±(φ) are also antiperiodic. In light of
Eq. (13), this requires

Lz = ± 1
2 , ± 3

2 , . . . , (18)

i.e., the orbital angular momentum Lz is quantized to be half-
odd integers.

Notice also that the double-valued quality of |r±〉〉dv is
not essential for the half-integral quantization of Lz. One can
equally employ the single-valued version of Eq. (8),

|r±〉sv = 1√
2

[
1

±eiφ

]
, (19)

which is related to |r±〉〉dv by a simple phase factor,

|r±〉sv = eiφ/2|r±〉dv. (20)
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In this single-valued basis, the surface effective Hamiltonian
acquires an additional phase factor π , the spin Berry phase, as

H̃surf = A

[
− 1

R

(
−i

∂

∂φ
+ 1

2

)
σx + pzσy

]
. (21)

Then, if one employs the same representation (13) for the
coefficients α, Lz takes formally integral values, Lz = 0,±1,

±2, . . . . The corresponding eigenenergy E = E(pφ,pz) can
be also written formally in the same way as in Eq. (14). But,
in that case, pφ in the same formula must be reinterpreted as

pφ = Lz + 1/2

R
. (22)

We have so far seen that whether one employs the double-
valued [Eq. (8)] or the single-valued [Eq. (19)] basis, one finds,
as expected, the same gapped spectrum given by Eq. (14) with
either (i) pφ = Lz/R with half-odd Lz [Eq. (18)], or (ii) pφ

given as in Eq. (22) with Lz = 0,±1,±2, . . . . The magnitude
of the energy gap is given by twice of

E0 = E

(
1

2R
,0

)
= A

2R
∝ R−1. (23)

This energy gap due to spin-to-surface locking, or eventually
to the doubling of the original two Dirac cones through
“side surfaces” of the cylinder, decays only algebraically as
a function of (inversely proportional to) the circumference of
the cylinder. This enhanced finite-size energy gap is in marked
contrast to that of the slab due to mixing of the two surface
wave functions sitting mainly on the opposing sides of the slab
and separated by the bulk energy gap.

IV. CASE OF THE RECTANGULAR PRISM GEOMETRY

In the previous section, we have considered an idealized
case of the cylindrical geometry to demonstrate how spin-
to-surface locking leads to opening of the finite-size energy
gap. With the rotational (cylindrical) symmetry hypothesized,
the cylindrical geometry was best suited for analytic consid-
erations of the surface state. Here, we attempt to realize an
equivalent situation in numerical experiments in terms of the
tight-binding simulation. For that purpose, we consider rather
prism-shaped samples whose cross section on the plane normal
to the axis of the (right) prism is a rectangle rather than a
circle. From the viewpoint of topology, such a rectangular
prism shape is a natural implementation11 of the cylinderlike
geometry on the cubic lattice.

In addition to that aspect as a substitute of a cylinder,
there is also a more positive reason that we focus on this
rectangular-prism geometry. In the previous section, through
the comparison of the slab and cylinder, we have seen that
preventing the communication of two Dirac cones sitting on
the opposing sides of the sample helps protect the gaplessness
of Dirac cones. We have so far discussed such switching on and
off of this communication channel by changing the system’s
(global) geometry. Here, in this section, a new element comes
into play: the weak indices. As mentioned in Sec. I, the weak
indices have the potential to exclude a gapless Dirac cone from
a surface oriented in a particular direction, i.e., that of the weak
vector �ν = (ν1,ν2,ν3).

Folded surfaces of the rectangular-prism geometry are
more adapted for implementing a weak vector as a means to
eradicate the “dangerous” gapless channels from the targeted
side surfaces. Another characteristic of the WTI surface state
is that it exhibits an even number of Dirac cones. These two
features combine to make the gaplessness of the surface state
of a prism-shaped WTI a rather subtle issue, which depends
intricately on the geometry and on the nature of weak indices.
Depending on the relative orientation between the weak vector
and the surfaces of the rectangular prism and on the size of
the prism, noncompatibility of the surface wave function with
a specific boundary condition imposed by the geometry leads
to, or does not lead to, opening of a finite-size energy gap.

The system we consider here has a shape of rectangular
prism extended in the ŷ direction. We assume that the prism is
infinitely long, or periodic, without end surfaces. Each cross
section of the system at fixed y is restricted to a rectangular
area of size Nz × Nx in the (z,x) plane:

1 � z � Nz, 1 � x � Nx. (24)

The system has two surfaces (x̂ surfaces) at x = 1 and x = Nx

normal to x̂ = (1,0,0), and two others ( ẑ surfaces) at z = 1
and z = Nz normal to ẑ = (0,0,1). We assume translational
symmetry in the ŷ direction; ky is a good quantum number. As
for the anisotropy of bulk topological insulators, we consider
the case of mass parameters with uniaxial-type anisotropy, as
given in Eq. (3). In the WTI phase, this corresponds to the case
of stacked 2D TI layers piled up in the z direction.

In the following, we will mainly focus on the WTI phase
with a specific weak vector �ν = (0,0,1) normal to the ẑ
surfaces. Then, gapless Dirac cones are completely eliminated
from these surfaces, at least in the limit of infinitely large
surfaces. In the prism geometry (24), the wave function of the
corresponding surface state has a finite amplitude only on x̂
surfaces, and barely penetrates into the ẑ side. The Dirac cones
forced to be localized in each of the x̂ surfaces are subject to
a particular boundary condition imposed by this combination
of the prism geometry and the weak vector. Compatibility
or noncompatibility of the surface wave function with this
specific boundary condition leads to an even/odd feature with
respect to Nz (width of the x̂ surfaces) of the finite-size energy
gap in the WTI phase. After reviewing three typical situations
that we encounter in the analysis of the size gap in the WTI
and STI phases, we describe the nature of the even/odd feature
in the spirit of the k · p approximation.

A. Even/odd feature in the WTI phase

The three typical situations we investigate are the cases of
(i) WTI with Nz even,
(ii) WTI with Nz odd, and
(iii) STI.
The three cases are also listed in Table II. In our model,

given by Eqs. (1) and (2), and in the geometry employed,
the three situations can be realized by a small change of
parameters. As for the concrete choice of parameters, we
use here the following double standard.33 We first use the
“theoretical values” that vary on the lines indicated in Fig. 1
for the demonstration of crossover from type (iii) to type (i),
and from type (iii) to type (ii) behaviors. We believe that the use
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TABLE II. Three typical behaviors of the finite-size energy gap in the rectangular-prism-shaped samples.

Cases Type of phase Parity of Nz Size gap; Nz dependence Gap-opening mechanism

(i) WTI even N−1
z doubling of Dirac cones due to confinement

(ii) WTI odd 0 (exponentially small) mixing of the opposing sides through gapped bulk
(iii) STI irrelevant (Nz + Nx)−1 spin-to-surface locking

of these theoretical values helps in understanding the nature
of the phenomenon in light of the phase diagram. Then, in the
actual computation of the size gap, we also use “experimental
values” of the parameters that are deduced from experimental
data for Bi2Se3.21,34

The three situations can be easily contrasted by the shape
of the surface wave function. In the WTI phase (Figs. 2 and 3),
the amplitude of the surface wave function concentrates on
the two x̂ surfaces. The weak vector �ν is here pointed in the
direction ẑ, and expels the surface state from the sides normal
to ẑ. In the STI phase (Fig. 4), on the contrary, the surface state
is extended over all four surfaces. In these figures, the square
of the total amplitude of the surface wave function,

|ψ(z,x)|2 =
4∑

j=1

|ψj (z,x)|2, (25)

is plotted at each point on a cross section (the system is
translationally invariant in the y direction).

Let us focus on more detailed structures of the shape of
the surface wave function in the WTI phase, and compare the
cases of Nz even (Fig. 2) and Nz odd (Fig. 3). On the two x̂
surfaces, the wave function shows a regular pattern, vanishing
practically at every other layer, when Nz is odd, whereas in
Fig. 2, it is concave shaped (case of Nz even).

This even-odd feature appears more clearly in the behavior
of the finite-size energy gap (see Fig. 5). On the (red) line

m0/m2‖ = −1 of the phase diagram (Fig. 1), slightly below
[WTI-A: (0,100)] and above [STI: (1,000)] the phase boundary
at m2⊥/m0 = −1/4 the gap is plotted as a function Nz (the
number of stacking layers). In the WTI case: m2z/m2‖ = 0.2,
E0 = E0(Nz) shows an even/odd feature, and for Nz even, the
gap scales as ∼(Nz + 1)−1. In the STI case: m2z/m2‖ = 0.3,
a weak even/odd feature for small Nz is washed out as Nz

increases, and the gap scales as ∼(Nz + Nx)−1. In a sense,
depending on the parity of the number of stacked layers,
the system becomes either trivial (gapped, when Nz even) or
gapless (when Nz odd). Physically, this even/odd feature stems
from the fact that WTI can be viewed as stacked layers of 2D
quantum spin Hall states (here, stacked in the z direction).

B. Effective surface k · p theory

A single Dirac cone cannot be confined (cf. Klein tun-
neling). This applies to the STI phase we have considered in
Sec. III, in which any surface state, instead of being terminated
at the end of a plane, continues to the adjacent ones, covering
the entire surface. In the WTI phase, typically two Dirac cones
appear on its surfaces, i.e., there are “valleys.” In that case, one
can confine them in a finite area of the surface. Let us sketch
explicitly how this is possible.

A typical situation we focus on below is the case in which
two side faces of the prism are normal to the weak vector �ν,
implying that there is no Dirac cone on these surfaces. In such

FIG. 2. (Color online) Surface wave function in the rectangular prism geometry [Eq. (24)]; WTI phase (m2z/m2‖ = 0.2) with Nz even.
(a) The square of the wave function, |ψ(z,x)|2, with Nz = 20, Nx = 20, and ky = 0 plotted in the (z,x) plane. Spin and orbital indices are
summed over; A⊥ = A‖ = 1. (b) |ψ(x,y,z)|2 is plotted in the 3D (x,y,z) space. The front, upper, and right surfaces correspond, respectively,
to the ones normal to (−1,0,0), (0,1,0), and (0,0,1). Fixed boundary condition (FBC) in the z and x directions. PBC in the y direction.
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FIG. 3. (Color online) Plots of the surface wave function in the rectangular-prism geometry analogous to Fig. 2. Case of Nz odd (Nz = 19).
WTI phase. Nx = 20, ky = 0, A⊥ = A‖ = 1. FBC in the z and x directions. PBC in the y direction.

a situation, the wave function of the WTI surface state has a
finite amplitude only on the remaining two surfaces parallel
to �ν, and barely penetrates into the side normal to �ν. The
key observation here is that the latter can be regarded as a
“boundary condition” for the wave function that lives mainly
on the primary parallel surfaces.

Let us consider a simple and concrete example. In the
WTI-A phase, shown in Fig. 1, only two x̂ surfaces are
compatible with the presence of gapless Dirac cones; the
remaining ẑ surfaces are normal to �ν = (0,0,1). We consider
the reciprocal space of a x̂ surface, spanned by ky and kz; here,
we tentatively disregard the presence of ẑ surfaces, pretending
as if the translational symmetry in the z direction is still present.
Then, on this k = (ky,kz) plane, two Dirac points appear in the
spectrum at k1 = (0,0) and k2 = (0,π ). The spectrum of the

rectangular prism is obtained, in a crude approximation, by
projecting E = E(ky,kz) in the (ky,kz) plane onto the ky axis.
When two Dirac cones are superposed in this projection, a
more careful treatment on the boundary condition at the corner
to the ẑ surfaces is needed (see below).

The x̂ plane on which we focus is bounded by the ẑ surfaces.
Penetration of a surface state into the ẑ sides is incompatible
with the weak vector, �ν = (0,0,1). This may be described by
a boundary condition on the surface wave function ψ(y,z) on
the ẑ side,

ψ(y,z = 0) = 0, ψ(y,z = Nz + 1) = 0. (26)

In the k · p approximation, the wave function ψ(y,z) can
be constructed by superposing contributions from one valley
surrounding a Dirac point at k1 and another located at k2.

FIG. 4. (Color online) Plots of the surface wave function in the STI case (m2z/m2‖ = 0.3); plots similar to Figs. 2 and 3. Here, the surface
wave function is extended over all four facets of the prism.
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(a) (b)

FIG. 5. (Color online) Even/odd feature in the finite-size energy gap (case of WTI). The mass parameters are on the (red) line m0/m2⊥ = −1
of the phase diagram (Fig. 1), (a) slightly below (WTI-A case) and (b) above (STI case) the phase boundary at m2‖/m2⊥ = 1/4. The gap is
plotted as a function Nz. (a) In the WTI-A case: m2z/m2‖ = 0.2, E0 = E0(Nz) shows an even/odd feature, and for Nz, even the gap scales as
∼(Nz + 1)−1. (b) In the STI case: m2⊥/m2‖ = 0.3, a weak even/odd feature for small Nz is washed out as Nz increases, and the gap scales as
∼(Nz + Nx)−1. Nx = 20. A⊥ = A‖ = 1.

As our system is translationally invariant in the y direction,
ψ(y,z) is expressed in the form of

ψ(y,z) = eikyyχ (z), (27)

where χ (z) should be chosen to satisfy the boundary conditions
(26). This is allowed only when the y components of k1 and k2

are identical as k1 = (k0,k1) and k2 = (k0,k2). This is indeed
the case in the WTI-A phase, where k0 = 0, k1 = 0, and k2 =
π . The superposition yields

χ (z) = ei(k1+p1)z − ei(k2+p2)z, (28)

where p1 and p2 are small displacements from the corre-
sponding Dirac points. Note that this automatically satisfies
the boundary condition at z = 0. If χ (z) with p1 = p2 = 0
(i.e., the superposition of the wave functions just at the
two Dirac points) is compatible with the other boundary
condition at z = Nz + 1, then the resulting wave function has
the zero-energy eigenvalue at ky = k0, resulting in the gapless
surface states. This occurs typically at Nz odd, and in the
WTI-A phase with k1 = 0 and k2 = π . Contrastingly, if finite
displacements (i.e., p1,p2 
= 0) are necessary to satisfy the
boundary condition, then a finite-size gap inevitably appears.
Naturally, the latter applies to the case of Nz even. These
two contrasting behaviors explain the nature of the even/odd
feature demonstrated in Fig. 5.

Let us further quantify the case of Nz even. To fulfill the
requirement of Eq. (26), we set p1 = −p2 = q. The boundary
condition at z = Nz + 1 is satisfied, if

q = ± n

2(Nz + 1)
π, (29)

and n is an odd integer. The lowest-energy solution with n = 1
determines the energy gap to be

E0 = A

2(Nz + 1)
π, (30)

i.e., E0 scales as (Nz + 1)−1 for Nz even within the range
of validity of the k · p approximation. Equation (30) allows
for comparing the above simple effective theory with the
calculated spectrum. This is done in Fig. 5 by plotting

the energy gap obtained by numerical diagonalization of
the corresponding tight-binding model against the postulated
scaling of Eq. (30).

A similar comparison can be made for the shape of the
surface wave function. Plugging Eq. (29) with n = 1 back into
Eq. (28), one finds

|χ (z)|2 = 4 sin2

[
Nzπ

2(Nz + 1)
z

]
. (31)

The shape of this envelop function is to be compared with
the calculated value of the amplitude of the surface-state
eigenspinor at x = 1, which is shown in Fig. 6.

It is suggestive to apply the above k · p effective theory
to the case of WTI-B and WTI-C phases (see Fig. 1). These
two topologically different WTI phases appear on the blue line
m0/m2‖ = −5 in the phase diagram with the phase boundary
at m2⊥/m2‖ = −1/4. The crossover of the finite-size energy
gap at the transition between these two WTI phases is precisely

Ψ

FIG. 6. (Color online) Shape of the surface wave function: tight-
binding model vs k · p approximation. |ψ(z)|2, the squared amplitude
of the surface state wave function at x = 1 (and in the case of kz = 0),
is plotted for the case of Nz even (Nz = 30, blue points). A continuous
red curve is the prediction of k · p theory [cf. Eq. (31)]. As in Fig. 2,
the mass parameters are chosen to be m0/m2‖ = −1, m2⊥/m2‖ = 0.2;
other parameters are also set as in Fig. 2.
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FIG. 7. (Color online) Surface wave function in the presence of disorder. Comparison of the WTI and STI cases: (a) m2z/m2‖ = 0.2 vs
(b) m2z/m2‖ = 0.3. Here, the simulation is done for a system of size Nx × Ny × Nz = 10 × 10 × 10; i.e., Nz is even.

in parallel with the one between the STI and WTI-A phases
(on the red line: m0/m2‖ = −1 in Fig. 1) that we have
considered so far. In the case of the WTI-B and WTI-C
phases, the constituent surface Dirac cones on the k = (ky,kz)
plane appear at k1 = (π,0) and k2 = (0,π ) in the WTI-B
phase, and at k1 = (π,0) and k2 = (π,π ) in the WTI-C phase.
Here, the relative position of the two Dirac cone is essential.
In the case of the WTI-C phase, one can construct the surface
wave function (28) compatible with the specific boundary
condition (26) precisely in parallel with the previous case of
the WTI-A phase, simply by replacing k0 = 0 with k0 = π ,
leading to the same even/odd feature. Notice that the surface
Dirac cone in the WTI-C phase appears in the spectrum of
prism geometry, E = Eprism(ky) at ky = π .

In the case of the WTI-B phase, the two Dirac cones at
k1 = (π,0) and k2 = (0,π ) are projected onto a different point
on the ky axis, making the previous construction [Eqs. (27) and
(28)] impossible. This is, of course, consistent with the fact
that in the WTI-B phase, the surface states are not confined
to the x̂ surfaces. This observation, in turn, reveals that the
relative orientation of the two (even number of) Dirac cones in
the WTI is indeed imposed by the weak indices. On surfaces
parallel to the weak vector �ν, they must appear in line in the
direction of �ν.

C. Effects of disorder

Let us comment here on the robustness of the surface
states discussed in the previous sections against disorder. A
motivation for this is that since disorder leads generally to
repulsion of the energy levels, one naturally questions whether
the finite-size effects discussed so far are still meaningful when
the size gap is perturbed by the effects of level repulsion by
disorder. The effects of disorder are taken into account by
introducing a random potential V (r), which obeys a uniform
distribution in the period [−W/2,W/2] at each site r of the
cubic lattice, i.e., a scalar random potential, ∝1 in the real and

orbital spin space, which is also cite diagonal:

V =
∑

r

V (r)1 ⊗ |r〉〈r|, V (r) ∈ [−W/2,W/2] (32)

is added to the tight-binding Hamiltonian (1) represented in the
real space. In Eq. (32), the summation over r should be taken
over all the lattice sites on the cubic lattice, r = (x,y,z) with
x = 1,2, . . . ,Nx , y = 1,2, . . . ,Ny , and z = 1,2, . . . ,Nz. In the
actual computation, we set W = 1, m0 = −1, A⊥ = A‖ = 1
in units of m2‖ (which is set to be unity).

In Fig. 7, plots similar to Figs. 2–4 performed in the
presence of disorder are shown. In Fig. 7(a) (WTI case),
the surface wave function is localized mainly on one facet of
the prism. This is in contrast to the clean cases (Figs. 2 and 3)
and to the STI case [Fig. 7(b)], in which the surface state is
extended over all four facets of the prism. The stripe-shaped
structure is also still visible, indicating that the surface wave
functions of a specific shape discussed in the previous section
possess some robustness against disorder.

D. STI more gapped than WTI

We finally discuss the Nx dependence of the size gap. As
shown in Table II, there are three different types of behaviors in
the Nx dependence of the size gap, each corresponding to the
three different gap-opening mechanisms we have highlighted
in this paper. Here, let us focus again (cf. Fig. 5) on the
(red) line m0/m2‖ = −1 in the phase diagram (Fig. 1) slightly
above and below the phase boundary at m2⊥/m0 = −1/4,
and compare the STI: (1,000) and WTI-A: (0,001) phases.
In the following demonstrations (Figs. 8–10), however, we
use a slightly different set of parameters inspired by the
corresponding material parameters of Bi2Se3,21 but focus
on the same phase boundary between STI and WTI-A.
Here, the tight-binding parameters are specially adjusted34 to
reproduce the band structure in the vicinity of the Z point
obtained by the first-principles calculation. The employed
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FIG. 8. (Color online) Finite-size energy gap in the rectangular-
prism geometry plotted as a function of the “width” Nx . Comparison
between the WTI (blue points) and STI (red points) regimes in the
case of prism thickness Nz odd (Nz = 9). The logarithm of the energy
gap E0 is plotted vs Nx for demonstrating that E0 = E0(Nx) decays
exponentially, showing actually an exponentially damped oscillation
in the WTI phase. The corresponding solutions of Eq. (B10) are a pair
of complex numbers (see main text for details). The model parameters
employed are also given there.

parameters are given explicitly as

m0 = −0.1, m2z ≡ m2⊥ = 0.1, m2‖ = 1,
(33)

Az ≡ A⊥ = 0.1, A‖ = 0.3.

Here, the parameters are normalized in units of m2‖ �
2.60 eV. This set of parameters corresponds to the case of the
STI phase. To achieve a weak phase, we modify the value of
m2⊥ in Eq. (33) as m2⊥ → 0.01. This indeed falls on the WTI-
A phase in Fig. 1. The spectrum of the strong phase is “gapped,”
showing a finite-size energy gap due to spin-to-surface locking,
which decays only algebraically, E0 ∼ (Nz + Nx)−1 
= 0. In
the weak phase, and in the case of Nz odd considered here, the
spectrum is “gapless,” decaying exponentially as a function
of the distance ∼Nx between the two ideally gapless patches
(log E0 ∝ −Nx , E0 � 0). This is indeed a comparison of the

FIG. 9. (Color online) Size dependence of E0 = E0(Nx) in the
case of Nz odd (Nz = 9). A plot similar to Fig. 8, but in the case of
model parameters, yielding, as solutions for ρ in Eq. (B10), two real
solutions given in the main text. The data points for the WTI and STI
cases are shown, respectively, in blue and red.

FIG. 10. (Color online) Size dependence of E0 = E0(Nx) in the
case of Nz even (Nz = 10). The mass and velocity parameters are
chosen to be the same as in the case of Fig. 8. Here, the vertical axis
for E0 is in the linear scale. For Nz even, E0(Nx) shows at most a
power-law decay, whether the system is in the STI or WTI phase (see
Table II). The data points for the WTI and STI cases are as shown
before, respectively, as blue and red filled circles.

cases (ii) and (iii) in Table II. In Fig. 8, the logarithm of the
energy gap E0 is plotted vs Nx , taking into account such an
expected exponential decay in the WTI-A phase. But here, a
systematic deviation from a simple exponential decay can be
clearly seen, implying that this is rather a damped oscillation.

As mentioned in Appendix B, the magnitude of the finite-
size energy gap in the slab is directly related to the (complex)
penetration depth of the surface wave function, or ρ1,2 given
in Eq. (B10). One can indeed verify

E0(Nx) ∝ ∣∣ρNx+1
1 − ρ

Nx+1
2

∣∣. (34)

Recall that in the WTI-A phase considered here, two Dirac
cones, one at k1 = (0,0) and the other at k2 = (0,π ), are well
grounded on the x̂ surfaces. The corresponding surface wave
functions exhibit different penetration depths at each Dirac
point, which are specified by Eq. (B10). The solutions of
Eq. (B10) at k1 = (0,0) are

ρ = ρ1,2(k1) � 0.826 ± 0.238 i, (35)

while they are given by

ρ = ρ1,2(k2) � 0.843 ± 0.166 i, (36)

at k2 = (0,π ), i.e., in the two cases, they become a pair of
complex numbers. In the slab, the finite-size energy gap is k =
(kz,kx) resolved; E0 = E0(k), simply the minimal value of
which determines the actual magnitude of the finite-size energy
gap. In the case of a rectangular prism, contributions from
k = k1 and k = k2 are superposed to cope with the boundary
condition. Notice also that here the surface wave functions at
k = k1 and k = k2 are both oscillatory [Eqs. (35) and (36)].
These two features combine to give the oscillatory pattern of
log E0 in the WTI case in Fig. 8. In the figure, two “theoretical”
curves for log E0 are shown in solid curves for comparison,
not showing a quantitative agreement with the actual data. The
two curves correspond to the finite-size energy gap given as
in Eq. (34) at k = k1 (green) and k = k2 (cyan), which are
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estimated under the hypothesis that the system is slab shaped.
The actual Nx dependence of log E0 is somewhere in between.

Figure 9 is a plot similar to Fig. 8, making the same
comparison of the STI and WTI-A phases for the same Nz odd
case, except that the model parameters are slightly modified
from Eq. (33). We replace one of the velocity parameters A2‖
with A2x = 0.7, leaving A2y = 0.3 (the same value as be-
fore). This replacement makes the corresponding solutions of
Eq. (B10) two real solutions, indicating that the surface wave
function exhibits a simple exponential decay. In the WTI-A
phase, we have chosen, as before, m2⊥ = 0.01. The behavior
of log E0 in the WTI case is qualitatively different from the
previous case. At the two Dirac points, k = k1 and k = k2, in
the WTI phase, the solutions of Eq. (B10) are

ρ1(k1) � 0.821, ρ2(k1) � 0.587, (37)

at k1 = (0,0), while they are given by

ρ1(k2) � 0.905, ρ2(k2) � 0.532, (38)

at k2 = (0,π ). The actual magnitude of the size gap is
determined by the largest value of ρ1,2, which is the value
of ρ1 at k = k2. Indeed, the actual Nx dependence of log E0

approaches to this scaling behavior [E0 ∝ ρ1(k2)Nx , shown in
a solid straight line in Fig. 9] for large enough Nx .

Through these two examples, we can convince ourselves
that in this configuration imposed by the combination of the
prism geometry and a specific choice of the weak vector,
which can be achieved by adjusting the crystal growth direction
with respect to the prism, the strong topological insulator is
qualitatively more gapped than a weak topological insulator.

In Fig. 10, we make a comparison between the cases (i)
and (iii) in Table II, in contrast to the previous plots, i.e., the
ones in Figs. 8 and 9. The model parameters are the same as
in Fig. 8, but here the number Nz of stacking layers is even
(Nz = 10). In the STI case, the size gap shows a power-law
decay, E0 ∼ (Nz + Nx)−1 
= 0, due to spin-to-surface locking.
In the WTI-A phase, the size gap implied by Eq. (30) does not
scale as a function of Nx , but is given simply by

E0 = Az

2(Nz + 1)
π = 0.1 × π

22
. (39)

In Fig. 10, this value is indicated as a horizontal grid line (in
blue). For sufficiently large value of Nx , the data looks almost
constant at a value not far from the one of Eq. (39).

We have seen so far that from the viewpoint of the scaling
behavior of a finite-size energy gap, the statue of the strong and
weak phases could be reversed. Here, to illustrate this feature,
we have considered only a very representative range of parame-
ters, but the same feature is generic to the vicinity of transitions
between the STI and WTI phases with a suitable choice of the
surface directions and the number of quintuple layers.

V. CONCLUSIONS

We have studied the finite-size energy gap in 3D weak and
strong topological insulators. Employing the standard Wilson-
Dirac-type effective model, we have developed both numerical
and analytical considerations. It has been demonstrated that
anisotropy of the model and the geometry of the system
are among other model parameters crucial elements for

determining the qualitative nature of the finite-size energy
gap. The two elements manifest in a correlated manner. The
weak topological insulator (WTI) has a specific property of
(i) expelling the gapless surface state from surfaces normal
to its weak vector �ν (� weak indices), i.e., no Dirac cone
on the surface normal to �ν, but (ii) on surfaces parallel to
the weak vector, it bears two Dirac cones [more Dirac cones
than a strong topological insulator (STI)]. We have seen
in this paper through the study of finite-size effects that these
two, seemingly competing, characteristics of the WTI operate,
in fact, in a cooperative way (cf. the k · p description of the
surface state in the WTI phase; Sec. IV B). The condition of
no Dirac cone on the side normal to �ν imposes the relative
orientation of the two Dirac cones on the side parallel to �ν.
The weak indices are also much related to the anisotropy of the
model parameters. To encompass different scaling behaviors
of the finite-size energy gap, we have manipulated the weak
indices by varying the model parameters, guided by the phase
diagram shown in Fig. 1.

Spin-to-surface locking is a characteristic feature of the
topological insulator surface state, operational both in the
WTI and STI phases, leading also to a finite-size energy
gap that exhibits a specific power-law decay as a function
of the system’s linear dimension. Clearly, this is more relevant
than a usual exponential decay associated with the overlap
of two surface wave functions, e.g., sitting on the opposing
sides of the slab geometry. By its nature, the finite-size
energy gap due to spin-to-surface locking is not effective
in the slab, but is effective in the prism-shaped geometry.
In the prism-shaped WTI samples, the interplay of these
three ingredients, i.e., the weak vector, the spin-to-surface
locking, and the rectangular-prism geometry, leads to intricate
finite-size effects, depending on the model parameters. Three
different gap-opening mechanisms pointed out in this paper,
i.e., mixing of the surface wave functions [case (ii) in Table II],
spin-to-surface locking [case (iii) in Table II], and commen-
surability with the boundary condition [case (i) in Table II],
are all effective in determining the intricate size dependence
of the energy gap in the rectangular-prism geometry.
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APPENDIX A: TOPOLOGICAL NUMBERS

Notice that our model specified by Eqs. (1) and (2) has
inversion symmetry. This allows us to find the strong and
weak Z2 indices with the use of Fu-Kane’s formula.23 Here,
we mention that in the specific case of ε(k) = 0 (in most
of the analyses in this paper, we employ this condition for
mathematical simplicity), one can introduce a Z-type winding
number N3. The strong index ν0 is related to N3 as ν0 =
N3 mod 2.
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(a) (b)

(c)

FIG. 11. (Color online) The winding number N3 [given in Eq. (A4)], evaluated on a horizontal or vertical line in Fig. 1. In (a), m2⊥/m2‖
is fixed at the isotropic point (m2⊥/m2‖ = 1), with m0/m2‖ being varied, while in the remaining panels, m0/m2‖ is fixed (b) at m0/m2‖ = −1
and (c) at m0/m2‖ = −5 with m2⊥/m2‖ being varied. The lines are shown in the same color in the phase diagram (see Fig. 1).

In terms of the periodic table,15,35–39 our starting bulk
effective Hamiltonian (1) falls on the class AII. This class
of models has the symmetry �2 = −1, C2 = 0, and �5 = 0,
where �, C, and �5 represent, respectively, the time-reversal,
particle-hole, and chiral symmetries, and in this terminology
“0” indicates that the system does not possess that type of
symmetry. The periodic table says that class AII models are
characterized by Z2-type bulk topological invariants in 3D.
For the specific case of ε(k) = 0 in our model, the symmetry
of the model is upgraded to the class DIII, i.e., �2 = −1,
C2 = 1, and �5 = 1, where for the specific Hamiltonian, given
by Eq. (1), C and �5 are given by C = σyτyK and �5 = τy .
This symmetry class allows for the Z-type bulk topological
classification in 3D, characterized by aZ-type winding number
N3, to be defined below.

To construct the winding number N3 explicitly, let us first
represent the bulk Hamiltonian (1), using an explicit matrix
representation for the orbital Pauli matrices τx and τy as

Hbulk =
[

0 m(k) − iPμ(k)σμ

m(k) + iPμ(k)σμ 0

]
, (A1)

where we have introduced Pμ(k) = Aμ sin kμ. Dividing the
Hamiltonian by (the magnitude of) its own eigenvalue E(k),
one can also flatten the spectrum of the Hamiltonian as

H̃ (k) = Hbulk(k)

|E(k)| =
[

0 Q(k)
Q†(k) 0

]
, (A2)

where E(k) = ±√
m(k)2 + Pμ(k)2, and

Q(k) = m(k) − iPμ(k)σμ

|E(k)| . (A3)

Note that the matrix Q defined above is a 2 × 2 SU (2)
matrix, satisfying Q†Q = 1 and det Q = 1. Then, one can
introduce an integral winding number N3,40–42 characterizing
the mapping of the 3D Brillouin zone onto thisSU (2) matrix as

N3 = 1

24π2

∫
BZ

d3k εμνλTr[�μ�ν�λ], (A4)

where �μ = Q†∂kμ
Q. The integration should be done over

the entire 3D Brillouin zone. We have evaluated this winding
number numerically over the entire range of parameters
shown in Fig. 1 to verify that

ν0 = N3 mod 2 (A5)

indeed holds. The explicit values of N3 in the different STI
and WTI phases are also shown in Fig. 1. The same calculated
value is also shown continuously in Fig. 11 as a function of
a control parameter, either m0/m2‖ or m2⊥/m2‖, on a few
specific lines in Fig. 1.

APPENDIX B: PENETRATION OF THE SURFACE WAVE
FUNCTION IN THE SLAB GEOMETRY

To quantify the surface electronic state in the slab geometry,
let us concentrate on one surface of the slab. Also, we choose
this flat surface normal to the x̂ direction. To find the wave
function which is localized in the vicinity of the surface, we
divide the bulk Hamiltonian (1) into two parts:

Hbulk(k) = H‖(k‖) + H⊥(kx), (B1)

where k‖ = (ky,kz), and

H‖(k‖) = τxm‖(k‖) + τy(σyAy sin ky + σzAz sin kz), (B2)
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with m‖(k‖) defined as

m‖(k) = m0 + 2m2x + 2m2y(1 − cos ky) + 2m2z(1 − cos kz),

(B3)

and

H⊥(kx) = −2τxm2x cos kx + τyσxAx sin kx. (B4)

This and the following procedure are in parallel with the
case in which we deal with the continuum model, a more
standard situation in the context of a k · p approximation,
discussed in Appendix C, but here we solve the lattice model
directly without taking the continuum limit.43,44 Physically,
the decomposition (B1) is based on the picture that each
(y,z) plane described by H‖(k‖) is coupled by H⊥(kx) to the
neighboring layers. In the present geometry, k‖ = (ky,kz) is
a good quantum number. Here, we assume that the system
is extended in the half space, x � 1, and impose a boundary
condition, ψ(x = 0) = 0. A surface solution in such a geom-
etry can be constructed by composing a linear combination of
base solutions of the form ψ(x) = ρxψ0 (|ρ| < 1). For such
damped (instead of plane-wave) solutions, Eq. (B4) modifies
to

H⊥(ρ) = −2τxm2x

ρ + ρ−1

2
+ τyσxAx

ρ − ρ−1

2i
. (B5)

In the surface energy spectrum E = E(k‖), protected gapless
Dirac points can appear at any of the four TRIM: kTRIM =
(0,0),(π,0),(0,π ),(π,π ). At such TRIM of the surface BZ, the
hopping terms in H‖(k‖) become inert:

H‖(k‖ = kTRIM) = τxm‖(kTRIM). (B6)

This significantly simplifies the derivation of ψ(k‖) at k‖ =
kTRIM. Notice also that Eq. (B2) with (B3) can be regarded
as a lattice Hamiltonian for a 2D Z2 TI with an effective
mass parameter m2D = m0 + 2m2x . Here, m2D < 0 (m2D > 0)
corresponds, respectively, to the nontrivial (ν = 1) vs trivial
(ν = 0) phases, where ν is the 2D Z2 index. A situation
described by this couple of equations is realized in the limit
Nx → 1.

Let us construct the surface wave function,

ψ(k‖,x) = ρxψ0(k‖), (B7)

explicitly at k‖ = kTRIM. At TRIM, ψ0(k‖) satisfies

Hbulkψ0 = [τxm‖(kTRIM) + H⊥(ρ)]ψ0 = 0, (B8)

i.e., ψ0 is a zero-energy eigenstate of

τxHbulk = m‖(kTRIM) − m2x(ρ + ρ−1) + τzσx

Ax

2
(ρ − ρ−1).

(B9)

Similarly to the case of the continuum model (see
Appendix C), this zero-energy condition is proven to
be necessary40 for constructing a surface solution compatible
with the boundary condition at x = 0 in the form of Eq.
(B12). Clearly, any of the four simultaneous eigenstates of τz

and σx , ψ±± = |τz±〉|σz±〉, is an eigenstate of the reduced
operator (B9). Then the zero-energy condition can be used, in

turn, to determine ρ as

ρ =
m‖ ±

√
m2

‖ − 4
(
m2

2x − A2
x

/
4
)

2(m2x ± Ax/2)
≡ ρ1,2, (B10)

where

m‖ = m‖(kTRIM) ≡ m0(kTRIM) + 2m2x. (B11)

Here, m0(kTRIM) represents the magnitude of the bulk energy
gap at k = kTRIM. In Eq. (B10), the meaning of two double
signs may need some explanation; the one in the numerator
is arbitrary, with each choice corresponding to ρ1,2. The
one in the denominator represents + for ψ0 = ψ++ and
ψ−−, whereas, the same sign represents − for ψ0 = ψ+−
and ψ−+. The structure of Eq. (B9) with the understanding
that τzσx = ±1 indicates that if ρ satisfies the zero-energy
condition, then so does ρ−1. With a suitable choice of ψ0,
satisfying both |ρ1| < 1 and |ρ2| < 1, the surface solution can
be constructed as

ψ(x) = (
ρx

1 − ρx
2

)
ψ0. (B12)

In a separate paper,45 we study in detail various aspects of
the finite-size effects in a slab-shaped sample. The magnitude
of the finite-size energy gap in the slab is determined by
the overlap of the two surface wave functions sitting on
the opposing sides of the slab. It is, therefore, naturally
expected that the magnitude of the gap (in a slab of width
Nx) is essentially determined by the penetration depth, or the
amplitude of the wave function (B12) at the depth of x = Nx .
Here, in this model, one can verify that the correlation of
theses two quantities is a bit stronger than this. The magnitude
of the size energy gap E0(Nx) is indeed directly proportional
to |ψ(Nx)| as given in Eq. (34).

APPENDIX C: DERIVATION OF THE EFFECTIVE
SURFACE HAMILTONIAN IN THE CYLINDER

GEOMETRY

To find the surface effective Hamiltonian on the cylinder
in the spirit of a k · p approximation,7,11,21 one first divides
the bulk 3D effective Hamiltonian (4) into two parts; one
is perpendicular and the other is parallel to the cylindrical
surface:

H = H⊥(pr ) + H‖(pφ,pz), (C1)

where H⊥ = H |pφ=pz=0, and pr = −i∂/∂r . H⊥ and H‖ read,
explicitly,

H⊥ = m⊥τx + Aprτy(σx cos φ + σy sin φ)

= τx [m⊥ + iAprτz r̂ · σ ] , (C2)

H‖ = m‖τx + Aτy[pφ(− sin φσx + cos φσy) + pzσz]

= m‖τx + Aτy[pφφ̂ · σ + pzσz], (C3)

where

m⊥ = m0 − m2

[
∂2

∂r2
+ 1

r

∂

∂r

]
, (C4)

and m‖ = m2(p2
φ + p2

z ), with

pφ = −i
1

r

∂

∂φ
, pz = −i

∂

∂z
. (C5)
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We have also introduced r̂ = (cos φ, sin φ) and φ̂ =
(− sin φ, cos φ).

We then consider a solution of the eigenvalue equation,

H⊥|ψ⊥〉〉 = E⊥|ψ⊥〉〉, (C6)

of the form ψ⊥ ∼ eκ(r−R), i.e., we set pr = −iκ (κ > 0) in
Eq. (C2). E⊥ is the value of the energy eigenvalue at the
Dirac point. In order to cope with the boundary condition
|ψ⊥〉r=R = 0 on the surface of the cylinder, one can verify that
this must be zero (E⊥ = 0).11,40 This implies

τxH⊥|ψ⊥〉〉 = 0. (C7)

Notice that in the second line of Eq. (C2), r̂ · σ can be
diagonalized by pointing the real-spin spinor in the direction
of r̂ as Eqs. (8). Then, one can satisfy Eq. (C7) by four
simultaneous eigenstates of τy and r̂ · σ , i.e.,

|ψ⊥〉〉 = ρ(r)|τz±〉|r̂±〉dv, (C8)

if κ is a solution of

E⊥ = m⊥ ± Aκ = m0 − m2κ
2 ± Aκ = 0. (C9)

Here, |r̂±〉dv has been given in Eqs. (8). The double sign in
Eq. (C9) signifies + (−) when the combination of the two signs
in |τy±〉|r̂±〉 in Eq. (C8) are the same (opposite). One has to
consider a linear combination of the eigenstates of the form

ρ(r) ∼ eκ1(r−R) − eκ2(r−R), (C10)

where κ1 and κ2 are solutions of Eq. (C9) with E⊥ = 0, i.e.,

κ = ±A ±
√

A2 + 4m0m2

4m2
≡ κ1,2, (C11)

where the double sign in front of A corresponds to the one
in Eq. (C9). The second one is arbitrary, with each choice
determining the subscript of κ1,2. Here, the surface state
should be localized in the inner vicinity of the surface of
the cylinder. For that, one needs a solution of the form of

Eq. (C10) with κ1,2 whose real parts are both positive. This is
in one-to-one correspondence with

(i) the choice of + sign in front of A in Eq. (C11), assuming
that A/m2 is positive, and

(ii) the condition m0m2 < 0.
Thus, the two basis solutions that span the subspace of

the surface solutions of Eq. (5) that are also compatible with
the boundary condition are identified as |r̂±〉〉dv, introduced in
Eqs. (7). For preciseness, we normalize Eq. (C10) as

ρ(r) =
√

κ1κ2(κ1 + κ2)

πR

eκ1(r−R) − eκ2(r−R)

|κ1 − κ2| . (C12)

Any surface solution |α〉〉 of Eq. (5), satisfying

H‖|α〉〉 = E|α〉〉, (C13)

can be expressed as a linear combination of these two basis
solutions as

|α〉〉 = α+|r+〉〉dv + α−|r−〉〉dv, (C14)

or as in Eq. (9).
Finally, following the prescription of the standard degener-

ate perturbation theory, we consider the secular equation for
Eq. (C13), i.e.,[ 〈〈r + |H‖|r+〉〉 〈〈r + |H‖|r−〉〉

〈〈r − |H‖|r+〉〉 〈〈r − |H‖|r−〉〉
] [

α+
α−

]
= E

[
α+
α−

]
,

(C15)

where we have omitted the subscript dv, for simplicity. We
define the coefficient matrix 〈〈r ± |H‖|r±〉〉 in the secular
equation (C15) as the surface effective Hamiltonian Hsurf .
Noticing the relations such as

〈r̂ ± |φ̂ · σ |r̂±〉 = σy, (C16)

〈r̂ ± |σz|r̂±〉 = σx, (C17)

the explicit form of Hsurf is found as given in Eq. (10).
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