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Abstract

Background: Granulovacuolar degeneration (GVD) is one of the pathological hallmarks of Alzheimer’s disease (AD), and it is
defined as electron-dense granules within double membrane-bound cytoplasmic vacuoles. Several lines of evidence have
suggested that GVDs appear within hippocampal pyramidal neurons in AD when phosphorylated tau begins to aggregate into
early-stage neurofibrillary tangles. The aim of this study is to investigate the association of GVDs with phosphorylated tau
pathology to determine whether GVDs and phosphorylated tau coexist among different non-AD neurodegenerative disorders.

Methods: An autopsied series of 28 patients with a variety of neurodegenerative disorders and 9 control patients were
evaluated. Standard histological stains along with immunohistochemistry using protein markers for GVD and confocal
microscopy were utilized.

Results: The number of neurons with GVDs significantly increased with the level of phosphorylated tau accumulation in the
hippocampal regions in non-AD neurodegenerative disorders. At the cellular level, diffuse staining for phosphorylated tau
was detected in neurons with GVDs.

Conclusions: Our data suggest that GVDs appear in relation to hippocampal phosphorylated tau accumulation in various
neurodegenerative disorders, while the presence of phosphorylated tau in GVD-harbouring neurons in non-AD
neurodegenerative disorders was indistinguishable from age-related accumulation of phosphorylated tau. Although GVDs
in non-AD neurodegenerative disorders have not been studied thoroughly, our results suggest that they are not incidental
findings, but rather they appear in relation to phosphorylated tau accumulation, further highlighting the role of GVD in the
process of phosphorylated tau accumulation.
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Introduction

Granulovacuolar degeneration (GVD) is one of the pathological

hallmarks of Alzheimer’s disease (AD) [1] and is defined as

electron-dense granules within double membrane-bound cytoplas-

mic vacuoles, mainly in the hippocampal pyramidal neurons [2].

Attempts to define the molecular composition of GVDs by

immunohistochemical methods led to the identification of a large

number of possible protein constituents, suggesting a link between

GVD and AD-related neurodegeneration. For example, the tau

protein found in GVD complexes is antigenically related to that

found in paired helical filaments in AD, although antibodies to

other forms of tau do not recognize GVDs [3,4,5,6]. Activation of

caspase 3, an apoptotic effector protease involved in cleavage of

tau [7] and amyloid precursor protein [8], has been found in

GVDs, but rarely in other pathological structures [9,10,11,12].

The protein kinases glycogen-synthase kinase 3 and casein kinase

1, which phosphorylate tau, are also markers of GVD

[13,14,15,16,17]. Phosphorylated pancreatic endoplasmic reticu-

lum kinase, a marker of a cellular stress response to unfolded

protein, which is increased in AD, is associated with GVD [18].

Intraneuronal dot-like structures morphologically similar to GVDs

were also labelled by phosphorylation-dependent TAR DNA

binding protein (TDP43) antibody [19], in line with the abnormal

TDP43 immunoreactivity reported in AD [20,21,22,23,24,25].

Furthermore, both proteasome and endosome pathway dysfunc-

tion may be present in GVD-containing cells, as GVD has been

detected by antibodies to a cellular marker of proteasome

degradation, ubiquitin (Ub) [2,26], to intermediaries in the

ubiquitin system, phospho-b-catenin [27] and Pin1 [28], and to
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the endosome-related protein charged multivesicular body protein

2b (CHMP2B) [29,30]. In relation to other pathognomonic

features, several lines of evidence have suggested that GVDs

appear within the hippocampal pyramidal neurons in AD when

phosphorylated tau begins to aggregate into early-stage neurofi-

brillary tangles (NFTs) [11,15,18,31].

However, GVDs are not AD-specific hallmark: they have been

reported within the hippocampal pyramidal neurons in normal

aged brain [32], as well as in other diseases such as progressive

supranuclear palsy (PSP) [33], pantothenate kinase-associated

neurodegeneration (PKAN) [34], corticobasal degeneration (CBD)

[35] and Pick’s disease (PiD) [36]. Given that all these disorders

can present with pathological lesions containing phosphorylated

tau protein, these findings raise the possibility that GVDs may also

appear in relation to the hippocampal phosphorylated tau

accumulation in non-AD neurodegenerative disorders.

Recently, we have shown that an antibody to CHMP2B can

specifically detect GVDs within hippocampal pyramidal neurons in

AD [29]. The high sensitivity and specificity of this antibody were

later confirmed by another group [30]. CHMP2B is a component of

the endosomal sorting complex required for transport III (ESCRT-

III), which is involved in endocytic trafficking of proteins [37].

ESCRT-III drives the formation and specifically the scission of

intraluminal vesicles in multivesicular bodies, and under certain

conditions remains associated with them.

To better understand GVD formation, particularly focusing on

its relationship with the accumulation of phosphorylated tau, we

examined GVDs in non-AD neurodegenerative disorders. The

aims of the present study were: (1) to compare the CHMP2B

immunopositivity of the hippocampal GVDs in several neurode-

generative disorders that can present with pathological lesions

containing phosphorylated tau protein; and (2) to investigate the

association of CHMP2B-positive GVDs with tau pathology, to

determine whether CHMP2B-positive GVDs and phosphorylated

tau coexist among non-AD neurodegenerative disorders.

Results

CHMP2B-positive granules correspond to GVDs in the
hippocampal neurons from patients with several
neurodegenerative disorders

Immunohistochemical localization of CHMP2B was investigat-

ed in the hippocampus of several neurodegenerative disorders,

including MyD, ALS-D, PDD, MSA, PiD, PSP and PKAN cases.

As reported, CHMP2B immunoreactivity was observed as

granules in pyramidal neurons. No immunoreactivity was detected

in glial cells. CHMP2B-positive granules were often surrounded by

a clear halo and were morphologically similar to the classic

granules of GVD.

To confirm the GVD nature of these CHMP2B-positive

granules, sections were stained once with hematoxylin and eosin

(Fig. 1A, B, E, F, I, J). After observing GVDs in the hippocampus,

these stained sections were de-stained in absolute ethanol, and

processed for CHMP2B immunohistochemical analysis (Fig. 1C,

D, G, H, K, L). Most neurons with GVDs showed CHMP2B-

positive granules and these CHMP2B-positive granules corre-

sponded to GVDs. Together with our previous results, this

suggested that CHMP2B could be used as a molecular label to

study GVD in non-AD neurodegenerative disorders. The numbers

of neurons with CHMP2B-positive GVDs/mm2 in each case are

listed in Table S1.

CHMP2B-positive GVDs colocalize with pSmad2/3 and
ubiquitin

Since GVDs have been reported to be immunoreactive for

pSmad2/3 [38] and Ub [2,26], we assessed the colocalization of

CHMP2B-positive GVDs and these markers using double

immunofluorescent labeling. In the hippocampus of several

neurodegenerative disorders, including MyD, ALS-D, PDD,

MSA, and PKAN cases, almost all CHMP2B-positive GVDs

were also immunopositive for pSmad2/3 and Ub (Fig. 2). The

colocalization of CHMP2B-positive GVDs and these markers

could also be observed even in PSP (Fig. 2J, K, L, JJ, KK, LL) and

MSA-C cases (Fig. 2G, H, I, GG, HH, II), in which hematoxylin

and eosin staining revealed relatively few GVDs that we could not

confirm the GVD nature of CHMP2B-positive granules.

To investigate the reliability of using CHMP2B as a molecular

label to study GVDs, we next examined the correlation between

the number of neurons with CHMP2B-positive GVDs and the

number of neurons with granules immunopositive for pSmad2/3

or Ub. As shown in Figure 3A, immunohistochemistry with the

anti-CHMP2B antibody detected GVDs in a similar number of

cells to those immunoreactive for pSmad2/3 or Ub within the

hippocampal region in each of the diseases studied.

CHMP2B-positive GVDs correlate with hippocampal tau
pathology phosphorylated at Ser-202 and Thr-205

Our research interest was the association of CHMP2B-positive

GVDs with tau pathology in the hippocampus, including the

subiculum, CA2 and CA1 subfields, where GVDs were found in

high number in AD as well as non-AD cases [18,39]. Therefore we

directly compared the number of hippocampal neurons with

CHMP2B-positive GVDs with the number of neurons positive for

phosphorylated tau. The number of neurons positive for

phosphorylated tau was assessed using our method for scoring

tangle densities (for details see the Material and Methods). We also

investigated the association between neurons with CHMP2B-

positive GVDs and classic Braak NFT stage. The phosphorylated

tau score (p-tau score) and Braak stage score in each case are listed

in Table 1, right column.

When age at death was controlled, strong correlations were

observed between both the number of neurons with CHMP2B-

positive GVDs and p-tau score (r = 0.63, p,0.01) as well as

CHMP2B-positve GVDs and Braak NFT stage (r = 0.77, p,0.01)

across the entire sample. Strong correlations were also observed

when we excluded AD cases from the analysis (r = 0.60, p,0.01,

Fig. 3B, r = 0.73, p,0.01, Fig. 3C, respectively).

We next investigated the correlation between CHMP2B-

positive GVDs and phosphorylated tau at the cellular level. For

immunohistochemistry, we used the AT8 antibody, which

recognizes tau phosphorylated at Ser-202 and Thr-205. In

addition to NFTs, in AD and other neurodegenerative diseases

AT8 stains some non-tangle-bearing pyramidal neurons, indicative

of hyperphosphorylated tau in a pre-tangle stage [40]. While no or

very few CHMP2B-positive GVDs were observed in neurons with

NFTs immunoreactive for AT8, diffuse staining for phosphory-

lated tau was observed in neurons with CHMP2B-positive GVDs

in several neurodegenerative disorders, except for the cases in

which immunohistochemistry revealed relatively few CHMP2B-

immunoreactive neurons (Table S1 and Fig. 4). Together, these

data indicate that CHMP2B-positive GVDs appear in association

with the accumulation of phosphorylated tau in several neurode-

generative disorders.

GVDs in Various Neurodegenerative Disorders
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Discussion

In this study, we demonstrated that CHMP2B-positive granules

corresponded to GVDs in a variety of neurodegenerative

disorders. The GVD nature of these CHMP2B-positive granules

was demonstrated on morphological grounds and because of the

strong co-localization upon both HE staining and with other GVD

markers including pSmad2/3 [38] and Ub [2,26]. In addition, the

number of CHMP2B-positive GVDs was comparable with that of

neurons with granules immunopositive for the GVD markers

(pSmad2/3 and Ub) among the different diseases. Indeed, while

GVDs are often assumed to be a pathological entity associated

with AD, they have been described within the hippocampus in a

number of neurodegenerative diseases; in a preceding investiga-

tion, other GVD markers including CK1 delta [17] and p-SAPK/

JNK [41] also confirmed the presence of GVDs in the brains of

patients with non-AD neurodegenerative disorders. Compared

with p-SAPK/JNK, with which immunohistochemistry revealed

pathological accumulations of NFTs in addition to GVDs [41], the

advantage of CHMP2B as well as CK1 delta as a GVD marker is

that it specifically stains GVDs but no other coexisting structures.

Taken together, it is reasonable to argue that along with CK1

delta, CHMP2B is a robust marker of GVD in that it specifically

detected GVD in AD as well as in non-AD neurodegenerative

disorders.

In AD, several lines of evidence have suggested that GVDs

appear within the hippocampal pyramidal neurons when phos-

phorylated tau begins to aggregate into early-stage NFTs

[11,15,18,31]; however, whether one can adapt this relationship

to non-AD diseases had not yet been systematically examined [42].

In this study, we showed that the number of neurons with

CHMP2B-positive GVDs increased in association with phosphor-

ylated tau accumulation in the hippocampus not only in AD but

also in a wide range of non-AD neurodegenerative disorders. In

addition, we provided direct evidence that diffuse staining for

phosphorylated tau could be detected in neurons with CHMP2B-

positive GVDs in most of the non-AD cases including PSP and

PDD. The pathological forms of tau from AD and PDD patients

demonstrate four bands on western blots (72, 68, 64, and 60 kDa;

Type I pattern) [43,44], while pathological tau from PSP [45]

demonstrates three bands (72, 68, and 64 kDa; Type III pattern).

Unfortunately, we could not show colocalization of CHMP2B-

positive GVDs with phosphorylated tau in PiD, which demon-

strates two bands (64 and 60 kDa; Type II pattern) on western

blots [46,47], probably because of the small number of neurons

with CHMP2B-positive GVDs. Therefore, our results suggested

that in most hippocampal neurons harboring GVDs, they appear

in relation to phosphorylated tau accumulation in non-AD

neurodegenerative disorders including the ‘tauopathies’. However,

further studies are needed to clarify whether GVDs appear in

relation to phosphorylated tau in tauopathies, irrespective of the

phosphorylated tau isoforms.

The most notable finding of the present study is the presence of

GVDs in the phosphorylated tau-containing neurons in various

neurodegenerative disorders other than AD. Although this finding

raises the possibility that there is a common mechanism for GVD

formation and phosphorylated tau accumulation, the cellular fates

of GVD-harboring neurons may differ between AD and non-AD

disorders. Previous studies have suggested that neurons harboring

GVDs with phosphorylated tau accumulation reflected ‘toxic’ or

‘apoptotic’ alterations in AD [11,18], based on their relationship

with phosphorylated tau, whose degree of accumulation correlates

with neuronal loss in the hippocampus [42,48,49], as well as the

hippocampal vulnerability, both of which have been extensively

characterized and documented in AD [50]. Moreover, an

exponential relationship exists between the number of GVDs

Figure 1. CHMP2B-positive granules correspond to GVDs. Cellular localization of CHMP2B (C, D, G, H, K, L) compared with hematoxylin and
eosin (HE) staining (A, B, E, F, I, J) in several neurodegenerative disorders is shown. CHMP2B-positive structures colocalized with the GVDs identified
by HE staining and surrounded by a clear halo. A, C, Alzheimer’s disease; B, D, myotonic dystrophy; E, G, amyotrophic lateral sclerosis with dementia;
F, H, Pick’s disease; I, K, multiple system atrophy with parkinsonism; J, L, pantothenate kinase-associated neurodegeneration. Scale bars represent
20 mm.
doi:10.1371/journal.pone.0026996.g001
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and neuronal loss observed in AD [42]. In contrast, a correlation

between tau accumulation and cognitive decline or neuronal loss

does not necessarily exist in other disorders [51,52], and it is not

known whether the same exponential relationship applies to non-

AD cases [42]. Therefore, it is unclear whether hippocampal

neurons harboring GVDs with tau accumulation observed in non-

AD disorders are pathognomonic for phosphorylated tau-related

neurodegeneration, or perhaps are an underlying toxic moiety.

It is unclear whether the presence of phosphorylated tau in the

hippocampus of non-AD cases is necessarily more than a result of

normal aging. Tau proteins can become insoluble with aging and

sometimes contaminate the preparations of the so-called patho-

logical tau aggregates [53]–indeed this contamination has been

described in several neurodegenerative diseases [54,55,56].

Moreover, the NFT burden to discriminate between the aging

and AD has been thought to be quantitative rather than

qualitative [57,58]. Therefore, given that our study lacks age-

matched controls, we are uncertain whether the presence of

phosphorylated tau in the hippocampus of non-AD cases reflects

aging, a substantial AD process, or a disease-specific finding.

Nonetheless, strong correlations were observed in our cases

between the number of neurons with CHMP2B-positive GVDs

and phosphorylated tau burden, even when we excluded AD cases

from the analysis. This suggests that, whatever the mechanism

involved in phosphorylated tau accumulation, GVDs appear in

relation to hippocampal phosphorylated tau accumulation in

various neurodegenerative disorders.

Conclusions
In summary, using an antibody to CHMP2B as a molecular

label for GVDs [29], we have shown that GVDs appear

consistently with hippocampal phosphorylated tau accumulation

Figure 2. CHMP2B-positive GVDs colocalize with pSmad2/3 and ubiquitin. Hippocampal sections were stained with both anti-CHMP2B
antibody (A, D, G, J, M, AA, DD, GG, JJ, MM, green) and antibodies against pSmad2/3(B, E, H, K, N, red) or ubiquitin (BB, EE, HH, KK, NN, red).
CHMP2B-positive GVDs colocalized with pSmad2/3 and ubiquitin, although their colocalization rates varied. C, F, I, L, O, CC, FF, II, LL, OO, merged
images counterstained with Hoechst Dye (blue). A, B, C, AA, BB, CC, amyotrophic lateral sclerosis; D, E, F, DD, EE, FF, pantothenate kinase-
associated neurodegeneration; G, H, I, GG, HH, II, multiple system atrophy with cerebellar ataxia; J, K, L, JJ, KK, LL, progressive supranuclear palsy;
M, N, O, MM, NN, OO, Parkinson disease with dementia. Scale bars represent 20 mm.
doi:10.1371/journal.pone.0026996.g002
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Figure 3. Correlation between the numbers of CHMP2B-positive GVDs with numbers of GVDs immunoreactive for pSmad2/3 or Ub
and hippocampal tau pathology. A: Number of neurons with CHMP2B-positive GVDs plotted against those with GVDs immunoreactive for
pSmad2/3 (blue filled circles) or ubiquitin (Ub; red open circles). The Pearson correlation coefficient for pSmad2/3 and ubiquitin was 0.935 (p,0.01) and
0.888 (p,0.01), respectively, among all the cases studied. Each circle represents an individual hippocampus investigated. B: Relationship between
phosphorylated tau score (p-tau score) and the number of neurons with CHMP2B-positive GVDs in non-Alzheimer’s disease (AD) neurodegenerative
disorders. The number of neurons with CHMP2B-positive GVDs increased significantly with the score for phosphorylated tau pathology (r = 0.60,
p,0.01). Each closed circle represents an individual non-AD hippocampus investigated. Each open circle represents an individual hippocampus from
an AD case, for reference. C: CHMP2B-positive GVD burden in the hippocampus with respect to Braak NFT stage in non-Alzheimer’s disease (AD)

GVDs in Various Neurodegenerative Disorders
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in various neurodegenerative disorders. Although GVDs in non-

AD neurodegenerative disorders have not been studied thorough-

ly, our results suggested that they are not incidental findings but

rather they appear in relation to phosphorylated tau accumula-

tion, further highlighting the role of GVD in the process of

phosphorylated tau accumulation.

Materials and Methods

Ethics Statement
The protocols for neuropathological procedures and analysis

were approved by and performed under the guidelines of the

ethics committee of Hiroshima University Graduate School of

Biomedical Sciences. The neurodegenerative disorders and control

samples were obtained with the adequate understanding and

written informed consent of family members. For this study, all

samples were coded and personal information dissociated from the

test results. All the data were analyzed anonymously, and all

neuropathological procedures and analysis have been conducted

according to the principles expressed in the Declaration of

Helsinki.

Brain pathology and staining
Four cases of AD, five cases of myotonic dystrophy (MyD), eight

cases of amyotrophic lateral sclerosis, two cases of ALS with

dementia (ALS-D), three cases of Parkinson disease with dementia

(PDD), and one case each of multiple system atrophy with

parkinsonism, multiple system atrophy with cerebellar ataxia

(MSA-C), PiD, PSP, CBD, and PKAN, and nine control cases

without neurodegenerative disorders according to clinical history

and confirmed by thorough neuropathological examination were

selected (for case demographics see Table S1, postmortem delays

4–24 hours).

Formalin-fixed, paraffin-embedded tissues including the hippo-

campus and the parahippocampal gyrus were sliced at a thickness

of 7 mm. The sections were deparaffinized and then immuno-

stained with primary antibody. The primary antibodies used were

as follows: rabbit polyclonal antibody to CHMP2B (ab33174,

dilution 1:600; Abcam, Cambridge, UK); mouse monoclonal

antibody to ubiquitin (MAB1510, dilution 1:2,000; Chemicon,

Temecula, CA); goat polyclonal antibody to pSmad2/3 (sc-11769,

dilution 1:400; Santa Cruz Biotech, Santa Cruz, CA); and mouse

monoclonal antibody to phosphorylated tau (AT8, dilution 1:800;

Innogenetics, Gent, Belgium). For antigen retrieval, the slides were

microwaved in distilled water for 10 min then washed in

phosphate-buffered saline (PBS) for 5 min. Deparaffinized sections

were then incubated with 1% H2O2 in methanol for 20 min to

eliminate endogenous peroxidase activity. Each section was

incubated with primary antibody overnight at 4uC. After washing

in PBS, the sections were incubated with horseradish peroxidase

(HRP)-conjugated goat anti-mouse antibody or goat anti-rabbit

antibody (both diluted 1:100; DAKO, Glostrup, Denmark) for

30 min at room temperature. The sections were then washed three

times in PBS and incubated at room temperature with 3,39-

diaminobenzidine (DAKO). All sections were counterstained with

hematoxylin.

In addition, we performed double staining on sections including

those of the hippocampus and the parahippocampal gyrus of the

disease cases. We applied the same primary antibodies as

described above. These primary antibodies were detected with

the following secondary antibodies (dilution 1:500; Molecular

Probes, Eugene, OR): Alexa Fluor 488 donkey anti-rabbit IgG,

Alexa Fluor 546 donkey anti-mouse IgG, Alexa Fluor 546 donkey

anti-goat IgG, Alexa Fluor 488 goat anti-mouse IgG, and Alexa

Fluor 546 goat anti-mouse IgG. 0.5% Sudan black in 70% ethanol

was used to quench autofluorescence before mounting the

paraffin-embedded sections. The slides were mounted with

Vectashield (Vector Laboratories, Burlingame, CA), and observed

under a fluorescence microscope (BIOREVO BZ-9000; Keyence,

Osaka, Japan) or an LSM510 confocal laser scanning microscope

(Carl Zeiss AG, Oberkochen, Germany).

We assessed the staining specificity by replacing the primary

antibodies with an appropriate amount of non-immune rabbit

serum or PBS containing 3% bovine serum albumin or by pre-

incubating the primary antibodies with an excess of peptide

immunogen. No reaction products were seen in the sections thus

treated (data not shown).

Quantitative analysis
For all cases, we counted the number of neurons with

CHMP2B-positive GVDs and neurons with granules immunopo-

sitive for pSmad2/3 and Ub in the hippocampus at 4006
magnification. For the analysis of the correlation to the tau

pathology, the number of neurons with CHMP2B-positive GVDs

was expressed as neurons/mm2; we used a mean number of three

independent measures using light microscopy at 4006magnifica-

tion and the images of total hippocampal area in each case were

measured by the Image J (NIH) software.

The accumulation of phosphorylated tau in the hippocampus

was evaluated using the grading score of Mölsä with some

modifications [59]. Briefly, AT8-stained sections including the

hippocampus were scanned using light microscopy at 1006
magnification. Five randomly selected fields, each measuring

0.92 mm2, were selected, and the mean number of neurons

positive for phosphorylated tau in each field was calculated

(Table 1). A lesion score was then assigned, ranging from 0 to 10.

Table 1. Scoring system used to quantify neurons with
phosphorylated tau.

Structures per field
phosphorylated tau score
(p-tau score)

0 0

1–2 1

3–4 2

5–9 3

10–14 4

15–19 5

20–24 6

25–29 7

30–34 8

35–40 9

. 40 10

doi:10.1371/journal.pone.0026996.t001

neurodegenerative disorders. The number of neurons with CHMP2B-positive GVDs increased significantly with respect to Braak NFT stage (r = 0.73,
p,0.01). Each closed circle represents an individual non-AD hippocampus investigated. Each open circle represents an individual hippocampus from
an AD case for reference.
doi:10.1371/journal.pone.0026996.g003
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For example, if the lowest neurons with phosphorylated tau

density were 10–14 and the highest 26–30, the range would be 10–

30, giving a midpoint of 20 and phosphorylated tau score (p-tau

score) of 6. If the highest density were over 40, the arbitrary figure

of 45 was used when calculating the midpoint. Braak staging was

determined by AT8 immunostaining of neurofibrillary tangles in

hippocampus and isocortical brain regions [60].

Statistical evaluations were performed with the SPSS 14

software package (SPSS, Chicago, Illinois). Due to the exploratory

nature of our investigation, the level of significance was set to .05

(two-tailed tests). To avoid effects of aging, we used partial

correlations to analyze the relations between number of neurons

with CHMP2B-positive GVDs and phosphorylated tau accumu-

lation. Partial correlation analysis reduces the potential for

misleading interpretation of data and in the current study,

provided a more rigorous investigation of the relationships

between the variables. We interpreted coefficients ..5 as strong

correlations [61].

Supporting Information

Table S1 Description of cases studied.

(DOC)
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