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Antiferroquadrupole order and magnetic field induced octupole in CeB6
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We have studied the antiferroquadrupole ordered phase of CeB6 in magnetic fields by resonant x-ray diffraction.
By analyzing the significant change in the energy spectrum on reversing the field direction along [1̄ 1 0], we
have deduced field dependencies of the antiferro components of magnetic dipole, electric quadrupole, and
magnetic octupole moments which are simultaneously induced in the Ce 4f orbital with a propagation vector
( 1

2 , 1
2 , 1

2 ). The data treatments are based on theoretically calculated spectral functions. The existence of the
field-induced octupole is also concluded for other field directions. We also show direct evidence for the formation
of a linear-combination-type antiferroquadrupole order parameter in magnetic fields, which is expressed as
〈αOyz + βOzx + γOxy〉 and changes continuously with the field direction (α,β,γ ). A possibility of observing
the quadrupolar fluctuation is also pointed out.
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I. INTRODUCTION

Higher rank multipole moments in f electron systems have
recently been recognized as important factors in a rich variety
of electronic ordered phases realized at low temperatures.1,2

When the crystalline electric field (CEF) ground state has
a non-Kramers degeneracy, electric quadrupole, magnetic
octupole, and even higher rank multipole degrees of freedom
can arise. These multipoles may be viewed as an entangled
state of spin and orbital degrees of freedom as a result of the
strong spin-orbit coupling of the f electrons.

The exchange interaction between higher rank multipoles
can be as large as that between magnetic dipole moments. A
typical example is the case in CeB6, in which the Ruderman-
Kittel-Kasuya-Yosida (RKKY) type exchange interaction is
predominant. The RKKY interaction involving spin and orbital
degrees of freedom was first studied by Ohkawa so as to be
applied to the case of CeB6,3,4 and was later reformulated by
Shiina et al. using the concept of multipole moments.5

CeB6 crystallizes in the cubic CaB6-type structure (space
group Pm3̄m, No. 221), where the Ce ion and the B6 octahedral
unit form a CsCl-type structure. The CEF ground state is
the �8 quartet, and the �7 excited state is well separated at
540 K.6 CeB6 exhibits two phase transitions at zero field.7–15

One is an antiferroquadrupole (AFQ) order at TQ = 3.3 K
and the other is an antiferromagnetic (AFM) order at TN =
2.3 K.16,17 One of the anomalous features of these ordered
phases is that the AFQ phase is stabilized and TQ increases
in magnetic fields.9–18 It is now considered that the main
origin of this anomalous behavior lies in the antiferro-type
interaction between the magnetic octupole moments induced
by the magnetic field.5,19–22 This is well evidenced by the
analysis of the NMR line splittings.12–14,19–23

Resonant x-ray diffraction (RXD) is a promising probe
to observe ordered structures of higher rank multipoles.24–26

With respect to the observation of the AFQ order in CeB6,
several works, including nonresonant diffraction, have already
been reported.27–30 With respect to the field-induced antiferro

octupole (AFO) in the AFQ phase, we have reported that the
signal is reflected in the difference of the electric quadrupole
(E2) resonance intensity on reversing the field direction.31

We analyzed this asymmetric behavior as caused by the
interference between the scatterings from even and odd rank
order parameters, and extracted the field dependencies of the
AFQ and AFO moments. The significance of the observation
by RXD in a different sense from NMR, which probes the
transferred hyperfine field at the boron nucleus via the spin
polarization of the 2p and 2s conduction electrons,32,33 is also
described in Ref. 31.

However, our analysis in Ref. 31 remained incomplete
because we used the simplest form of the scattering amplitude
which does not consider the energy dependence properly. The
treatment in Ref. 31 is called the fast collision approximation,
which is not suited to our case where the interference between
different spectral functions is of fundamental importance. This
situation is explained in Ref. 34 in detail. The authors have
made a spectral analysis based on a more solid theory and
gave an explanation to the field reversal effect of the resonance
spectrum.

The purpose of the present paper is to analyze the energy
spectrum and its field reversal effect using the theory and
spectral functions given in Ref. 34. We extract the field
dependencies of the AFQ and AFO moments for the field along
[1̄ 1 0] in the same way as before, but the data treatments are
now theoretically more justified. The simultaneously induced
AFM dipole is also extracted by analyzing the difference
in the electric dipole (E1) resonance intensity on the field
reversal. The validity of the spectral analysis will be shown
also for other field directions. We also show that the AFQ
order parameter in magnetic fields can be expressed by a
linear combination of 〈αOyz + βOzx + γOxy〉, where α, β,
and γ are the direction cosines of the magnetic field. Although
this has been theoretically predicted and was indirectly
confirmed by the NMR analysis,20,23 we consider that the
direct evidence provided by the present RXD experiment is
of great significance.
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FIG. 1. (Color online) Left: Schematic drawing of the sample ro-
tator inside the superconducting magnet. Right: Scattering geometry
in the reciprocal space.

This paper is organized as follows. After describing the
experimental procedure in Sec. II, the experimental results
and analyses are presented in Sec. III. First, in Sec. III A,
we show evidence for the linear-combination-type AFQ order
parameter. Next, in Sec. III B, the results of a mean-field model
calculation are summarized for reference, which consistently
explains the conclusion of Sec. III A. In Sec. III C, we
analyze the energy spectra and establish the observation
of the AFO moments. The information in Sec. III B will
also be useful for a qualitative interpretation of the spectral
analysis. Finally, in Sec. IV, we discuss the possibility of
observing the quadrupolar fluctuation, evidence for octupolar
interaction, and the AFQ order parameters in magnetic fields.
The theoretical framework used in the analysis is summarized
in the Appendix.

II. EXPERIMENTAL PROCEDURE

A single crystal of CeB6 was grown by a floating-zone
method using an image furnace with four xenon lamps.35 A
slice of the sample with a (331) surface was prepared by
spark cutting, and the surface was finally mirror polished.
RXD experiments have been performed at beam line 3A of
the Photon Factory in the High Energy Accelerator Research
Organization (KEK). Magnetic field was applied using a
vertical field 8 T superconducting magnet equipped on a
two-axis diffractometer. By rotating the sample around the
[331] axis using a gear-driven rotator as illustrated in Fig. 1,
the azimuthal angle (ψ) can be changed, which simultaneously
means the change in the field direction. We define ψ = 0◦
when k × k′ coincides with the [1̄ 1 0] direction. The incident
beam was π polarized (electric field ‖ the scattering plane),
and the final polarization (σ ′ or π ′) was analyzed using a Mo
(200) crystal. The measurement was performed around the Ce
L3 absorption edge, where a 2p3/2 ↔ 5d resonance (E1) or
a 2p3/2 ↔ 4f resonance (E2) occurs. All the data presented
in this paper are on the ( 3

2 , 3
2 , 1

2 ) superlattice reflection and the
temperature is at 2.5 K in the AFQ phase.

III. RESULTS AND ANALYSIS

A. AFQ order parameter in magnetic fields

We first demonstrate that the AFQ order parameter of
CeB6 in magnetic fields is expressed by a linear combination
of 〈αOyz + βOzx + γOxy〉 as has been previously consid-
ered through the analysis of NMR line splitting,20,23 where
(α,β,γ ) represents the unit vector along the magnetic-field

FIG. 2. (Color online) ψ dependencies of the integrated intensity
of the ( 3

2 , 3
2 , 1

2 ) reflection at the E1 resonance in magnetic fields
of 1 T and 4 T without polarization analysis. Solid lines are the
intensity curves represented by |αZyz + βZzx + γZxy |2, expected
for a single-domain linear-combination-type AFQ order. Dotted
line shows |αZyz|2 + |βZzx |2 + |γZxy |2, representing a selected
domain state depending on the field direction. Dashed line shows
(|Zyz|2 + |Zzx |2 + |Zxy |2)/3, representing a three-domain state with
equal populations. See text.

direction. This means that the AFQ order parameter changes
continuously as a function of the field direction. Although the
NMR analysis was performed consistently, it is still of great
significance to observe the AFQ order parameter directly by
RXD.

Figure 2 shows the ψ dependence of the E1 intensity
in the AFQ phase in magnetic fields of 1 T and 4 T. The
rocking scan was performed at each ψ , and the integrated
intensity was normalized by that of the (3, 3, 1) fundamental
reflection measured in the same scattering geometry using the
λ/2 contamination in the incident beam. The data points are
compared with the calculated curves for three models of the
AFQ structure. One is a single-domain linear-combination-
type order, where the order parameter is represented by
〈αOyz + βOzx + γOxy〉. In this case, the intensity should be
proportional to |αZyz + βZzx + γZxy |2, where Zyz, Zzx , and
Zxy represent the resonance structure factor Z

(2)
E1 (rank 2, E1)

for the 〈Oyz〉-, 〈Ozx〉-, and 〈Oxy〉-type AFQ order, respectively.
These are shown in Fig. 3. As shown by the solid lines in Fig. 2,
the data points for 1 T and 4 T can well be reproduced by
this single-domain linear-combination model. Note that both

FIG. 3. ψ dependencies of the calculated Z
(2)
E1 parameter (rank 2,

E1) for the Oyz-, Ozx-, and Oxy-type AFQ ordered state.
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π -σ ′ and π -π ′ contributions are added because the polarization
analysis is not performed.

Another case is that the order parameter is fixed to 〈Oyz〉,
〈Ozx〉, or 〈Oxy〉, and forming domains. When the domain
population of each phase is equal to 1/3, the intensity should
be proportional to (|Zyz|2 + |Zzx |2 + |Zxy |2)/3 as shown by
the dashed line. When the domain population changes as a
function of the field direction similarly to the case of the
single-domain state, the intensity should be proportional to
|αZyz|2 + |βZzx |2 + |γZxy |2 as shown by the dotted line. We
can clearly see that these fixed-domain models cannot explain
the experimental results.

On the other hand, at zero field, the three-domain state of
〈Oyz〉, 〈Ozx〉, and 〈Oxy〉 with equal populations is presumably
realized. The transition from the three-domain state to the
single-domain state gives rise to anomalies in physical proper-
ties at around 0.1 T.36,37 The transition is also observed in our
RXD experiments as a steep increase in intensity from H = 0
to 0.1 T at ψ = 0◦ and 90◦.31,38 This change in intensity can
be explained as the transition from the dashed line to the solid
line shown for 1 T in Fig. 2. The mechanism of this transition
will be discussed later.

B. Mean-field calculation

In this subsection, we summarize the field-induced multi-
poles and the resonance structure factors that are expected
from a mean-field calculation. The calculated results are
consistent with the experimental result in Sec. III A, and will
also be useful in the spectral analysis performed in the next
subsection. We assume the following Hamiltonian which has
been considered realistic:20,23,39,40

H =
∑

i

{HCEF − gμB J(i) · H} −
∑

i,j

Kdip J(i) · J(j )

−
∑

i,j

∑

γ

KquadOγ (i)Oγ (j ) (γ = yz,zx,xy)

−
∑

i,j

KoctTxyz(i)Txyz(j ), (1)

where HCEF is the cubic CEF giving the �8 ground state.
Dipole, quadrupole, and octupole exchange interactions are
represented by Kdip, Kquad, and Koct, respectively. We treated
the Hamiltonian in a two-sublattice model. We assumed Kdip =
−0.6 K, Kquad = −2.92 K, and Koct = −0.022 K. With these
parameters, TQ = 3.3 K and 4.2 K are obtained for H = 0 T
and 4 T, respectively.

Figure 4 shows the ψ dependencies of the order parameters
at H = 4 T and T = 2.5 K. Each quadrupole component
oscillates sinusoidally, and the linear combination of 〈αOyz +
βOzx + γOxy〉 behaves as an antiferro-type order parameter.
With the ferromagnetic component 〈αJx + βJy + γ Jz〉, the
antiferro-type order of the 〈Txyz〉 octupole is always induced
almost independently of the field direction.

Once we know the wave function of the Ce ion from
the mean-field solution, we can calculate 〈z(ν)

μ 〉 in Eqs. (A3)
and (A4). Since the geometrical factors P (ν)

μ are uniquely
determined, we can calculate the resonance structure factors
Z

(ν)
E1 and Z

(ν)
E2. The calculated ψ dependencies of Z

(ν)
E1 and

Z
(ν)
E2 for π -σ ′ and π -π ′ at H = 4 T and T = 2.5 K are

FIG. 4. ψ dependencies of the mean-field solution at H = 4 T
and T = 2.5 K. AF and F represent antiferro and ferro components,
respectively.

shown in Fig. 5. It is noted that Z
(2)
E1 can be reproduced by

αZyz + βZzx + γZxy from Fig. 3. Figure 6 shows the H

dependence of the mean-field solution calculated for ψ = 0◦
and 90◦. The basic features are the same as those reported in
Refs. 39 and 40.

C. Spectral analysis

In this subsection, we analyze the energy spectra using
the theoretically obtained spectral functions, and assign the
origin of the spectral anomalies to specific multipole moments.

FIG. 5. ψ dependence of the calculated Z parameters for the
( 3

2 , 3
2 , 1

2 ) reflection at H = 4 T and T = 2.5 K for the mean-field
model described in the text. The dotted vertical lines indicate the
angle positions where the measurements have been made.
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FIG. 6. H dependence of the calculated order parameters for the
mean-field model described in the text. AF and F represent antiferro
and ferro components, respectively.

The intensities were obtained by measuring the rocking curve
(ω scan) at each energy and magnetic field. Although the
intensities are plotted on an arbitrary scale, they can be
compared between the figures.

Energy dependence of the absorption coefficient was
deduced from the fluorescence spectrum reported in Ref. 31.
It is noted that we used the same absorption coefficient at zero
field for all the spectrum in magnetic fields because the field
dependence of the absorption coefficient was negligibly small
in comparison with the change in intensity of the resonant
diffraction. In actuality, the absorption coefficient can be field
dependent and can even exhibit dichroism due to a ferro-type
ordering of the orbital moments induced by the field. However,
we confirmed that the effect was too small to be detected within
the present experimental accuracy; therefore, it is not necessary
to consider the field dependence of the absorption coefficient
in the present analysis.

1. ψ = 0◦, H ‖ [−1,1,0]

In our previous work of Ref. 31, we did not describe the
difference in intensity on field reversal at the E1 resonance
because it was very small below 2 T. In the present work, we
have extended the measurement up to ±6 T and investigated
the spectrum in more detail. As pointed out in Ref. 34, the
difference term can arise at the E1 energy, which is explicitly
shown in Eq. (A7). Figure 7 shows the energy spectra at H =
±5 T. In addition to the difference at the E2 resonance as has
already been reported in our previous work,31 we can clearly
observe a difference also at the E1 resonance. The average
and the difference spectra for H = ±5 T are shown in Fig. 8.
Here, we analyze the experimental spectra using the spectral
functions of α

(ν)
E1(ω) and α

(ν)
E2(ω) used in Ref. 34, regarding Z

(ν)
E1

and Z
(ν)
E2 as experimental parameters.

The situation at ψ = 0◦ is very simple, and provides us
with an ideal condition to extract various significant physical

FIG. 7. (Color online) X-ray energy spectra at H = ±5 T and
ψ = 0◦ after the absorption correction.

parameters. From the mean-field calculation, the antiferro
moments induced are 〈Jz〉, 〈Oyz〉 = −〈Ozx〉, 〈Txyz〉, 〈T α

z 〉,
〈Hα

x 〉 = 〈Hα
y 〉, and 〈Hβ

x 〉 = −〈Hβ
y 〉. With respect to the dipole

and quadrupole moments, the above information is supported
by the results of neutron diffraction,17 NMR analysis,20 and
also by our result that the intensity for π -π ′ channel vanishes.
Therefore, we can impose the following restrictions on the
rank 1 and rank 2 Z parameters: Z

(1)
E1/Z

(1)
E2 = P

(1)
E1,3/P

(1)
E2,3 =

−6.1 and Z
(2)
E1/Z

(2)
E2 = P

(2)
E1,3/P

(2)
E2,3 = −2.1. Thus, the six

Z parameters are reduced to four. In addition, P
(3)
E2,4, the

geometrical factor for 〈T α
z 〉, is less than 2% compared with

FIG. 8. (Color online) Average and difference spectra for the data
in Fig. 7. The solid lines are the fits to the data using the spectral
functions used in Ref. 34. The detailed spectral components are also
shown by the dotted, single-dotted, and double-dotted lines.
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P
(3)
E2,1 for 〈Txyz〉. Therefore, the contribution to the intensity

from 〈T α
z 〉 can be neglected.

The fitting results are plotted by the lines in Fig. 8. Both
Iave(ω) and �I (ω) can well be explained by properly choosing
the Z parameters. Since the original spectral functions in
Ref. 34 do not intend the best fit to the experimental data,
there remain differences in the resonance energy and the width.
But this is a trivial matter which does not affect our analysis.
A few points should be noted. First, the rank-4 contribution
to the spectrum was found to be negligibly small. The fitted
spectrum hardly depends on Z

(4)
E2. This means that we cannot

deduce Z
(4)
E2 properly. Therefore, in the fitting procedure, Z

(4)
E2

was fixed to a value that was reasonably expected from the
mean-field calculation. Second, the (Z(2)

E1)2 term accounts for
more than 98% of I ave

E1E1, whereas the (Z(1)
E1)2 term less than

2%. This shows that the E1 resonance reflects almost only
the AFQ moment. Third, among the four terms of �IE1E2 in
Eq. (A8), the Z

(2)
E1Z

(3)
E2 term accounts for more than 95% of the

total. In the same manner, the Z
(2)
E2Z

(3)
E2 term accounts for more

than 98% of �IE2E2.
Therefore, the following approximations are justified:

Iave(ω1) ≈ ∣∣α(2)
E1(ω1)

∣∣2(
Z

(2)
E1

)2
, (2)

�I (ω1) ≈ 2Im
{
α

∗(1)
E1 (ω1)α(2)

E1(ω1)
}
Z

(1)
E1Z

(2)
E1, (3)

�I (ω2) ≈ −2Im
{
α

∗(2)
E1 (ω2)α(3)

E2(ω2)
}
Z

(2)
E1Z

(3)
E2

− 2Im
{
α

∗(2)
E2 (ω2)α(3)

E2(ω2)
}
Z

(2)
E2Z

(3)
E2, (4)

FIG. 9. (Color online) Top: Magnetic-field dependence of the
E2 (left) and E1 (right) resonance intensity. Bottom: Average
(I+H + I−H )/2 (filled circles) and difference (I+H − I−H )/2 (open
circles) components of the intensity for the E2 (left) and E1 (right)
resonances. The jump in intensity at H = 0.1 T corresponds to the
transition from the three-domain state to the single-domain state
described in Sec. III A.

FIG. 10. (Color online) Magnetic-field dependencies of the
antiferro-type multipole order parameters of CeB6 for H ‖ [1̄ 1 0] in
the AFQ phase at 2.5 K. The dashed line shows the field dependence of
the dipole moment measured by neutron diffraction (Ref. 41) whose
absolute value was deduced from the NMR analysis (Ref. 23). The
solid lines for quadrupole and octupole moments are guides for the
eyes.

where ω1 = 5.724 keV and ω2 = 5.718 keV. There-
fore,

√
Iave(ω1) is proportional to 〈Oyz − Ozx〉 and

�I (ω1)/
√

Iave(ω1) is proportional to 〈Jz〉. Since Z
(2)
E2 is

proportional to Z
(2)
E1, and over 98% of Z

(3)
E2 arises from

〈Txyz〉 because of the dominant P factor, �I (ω2)/
√

Iave(ω1) is
proportional to 〈Txyz〉. Figure 9 shows the experimental results,
from which these treatments are performed. The procedure is
the same as in Ref. 31, but the field range is extended to ±6 T.

Figure 10 shows the field dependencies of the multipole
order parameters obtained by the above procedure. The scale
is arbitrary. With respect to the dipole moment, the absolute
antiferromagnetic moment obtained from neutron diffraction
and NMR analyses are plotted on an absolute scale.23,41 The
data points of 〈Jz〉 seem to follow this curve.

FIG. 11. (Color online) X-ray energy spectra at H = ±5 T and
ψ = 90◦ for π -σ ′ and π -π ′ after the absorption correction.
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FIG. 12. (Color online) Average and difference spectra for the
π -σ ′ data in Fig. 11. The solid lines are the fits to the data using the
spectral functions used in Ref. 34. The detailed spectral components
are also shown by the dotted, single-dotted, and double-dotted lines.

2. ψ = 90◦, H ‖ [−1/6, − 1/6,1]

Figure 11 shows the energy spectra at H = ±5 T and ψ =
90◦ for the π -σ ′ and π -π ′ channels. As shown in the Z

(2)
E1

parameter in Fig. 5, the E1 intensity at E = 5.724 keV for
π -π ′ is much stronger than that for π -σ ′. However, we could
hardly observe a field reversal asymmetry in the π -π ′ channel.
The asymmetry was weakly detected in the π -σ ′ channel. In
Fig. 12, we show the average and difference spectra for π -σ ′.

We have also tried to fit these spectra using the same spectral
functions. The fitting results are shown by the lines in Fig. 12.
In spite of the drastic change in the spectrum from that at
ψ = 0◦, especially the appearance of the negative peak at
5.72 keV in �I , the whole spectra can well be explained by
properly tuning the Z parameters. As for ψ = 0◦, almost all
the contributions to I ave

E1E1, �IE1E2, and �IE2E2 were found to
be due to the (Z(2)

E1)2, Z(2)
E1Z

(3)
E2, and Z

(2)
E2Z

(3)
E2 terms, respectively.

Because of the change in sign of Z
(2)
E2, which is expected from

Fig. 5, �IE2E2 exhibits a negative peak at 5.718 keV. This
peak cancels the positive peak of �IE1E2 at 5.718 keV, but
makes a negative peak apparently at 5.72 keV as a result of
the interference with �IE1E2. Thus, we can conclude that
the antiferro dipole, quadrupole, and octupole moments are
induced also in this field direction.

3. ψ = 40◦, H ‖ [−1.03,0.7,1]

Figure 13 shows the energy spectra at H = ±5 T and ψ =
40◦ for the π -σ ′ and π -π ′ channels. As shown in the Z

(2)
E1

parameter in Fig. 5, the E1 intensity at E = 5.724 keV is
much weaker than those for other field directions. This result
is consistent with Fig. 2. A very anomalous feature in this

FIG. 13. (Color online) X-ray energy spectra at H = ±5 T and
ψ = 40◦ for π -π ′ and π -σ ′ after the absorption correction.

field direction is that the E2 resonance peak appears only for
negative fields, which can be observed in Fig. 13. This can be
well explained again if we analyze Iave and �I using the same
spectral functions. The fitting results are shown in Fig. 14. In
this case also, the appearance of the negative peak in �I at
5.72 keV, in between the E1 and E2 energies, is a result of the
interference between �IE1E2 and �IE2E2.

For ψ = 90◦ and 40◦, unfortunately, we could not separate
the contributions from different kinds of multipole moments
because of the complex ingredients of the Z parameters. For
these angles, all kinds of multipoles are induced as shown
in Fig. 4. Furthermore, the relations with the geometrical P

factors do not give simple proportionality as in the case for
ψ = 0◦. We can just mention from the spectral analysis that
the quadrupole and octupole moments as large as those at

FIG. 14. (Color online) Average and difference spectra for the
π -π ′ data in Fig. 13. The solid lines are the fits to the data using the
spectral functions used in Ref. 34. The detailed spectral components
are also shown by the dotted, single-dotted, and double-dotted lines.
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ψ = 0◦ are induced also at ψ = 40◦ and 90◦. More precise,
complete, and careful measurements are necessary to extract
the detailed order parameters for these angles.

IV. DISCUSSION

A. Quadrupolar fluctuation

We first discuss the field dependencies of the multipole
order parameters shown in Fig. 10. With respect to the
AFQ and AFO moments, the overall features seem to be
consistent with the mean-field calculation shown in Fig. 6.
In the single-domain state above 0.1 T, the 〈Oyz − Ozx〉
quadrupole increases concavely from a finite value and the
〈Txyz〉 octupole increases convexly from zero like a Brillouin
function. According to the mean-field calculation, the concave
increase of 〈Oyz − Ozx〉 at low fields is due to the exchange
interaction between dipoles competing with the octupolar
interaction. If Kdip = 0, it increases convexly.

However, it should be noted that the increase of 〈Oyz −
Ozx〉 from 0.5 to 0.9 in Fig. 10, a nearly 1.8 times increase from
the minimum to the maximum, is larger than that expected
from the mean-field calculation shown in Fig. 6. This means
that 〈Oyz − Ozx〉 is more suppressed at low fields. This may
be due to the fluctuation of the quadrupolar order parameters
which becomes more significant at low fields.42–44 Figure 4
of Ref. 44 theoretically demonstrates this effect. To establish
the existence of quadrupolar fluctuation in CeB6, however,
more careful analysis of the H -dependence curve in Fig. 10
is necessary. It is also important to investigate the temperature
dependence of the intensity near TQ more precisely.

On the other hand, it is quite natural that the H dependence
of 〈Txyz〉 behaves like a Brillouin function and seems to follow
the mean-field calculation. When we estimate from Fig. 10
the ratio between the AFO and AFQ moments, 〈Txyz〉/〈Oyz −
Ozx〉, it increases linearly from zero at H = 0 T and becomes
constant above H ∼ 1.5 T as shown in Fig. 15. This plot
corresponds to Fig. 5 of Ref. 44, which shows that this behavior
is universally observed whether the fluctuation exists or not.

FIG. 15. (Color online) Ratio of the 〈Txyz〉-AFO to the 〈Oyz −
Ozx〉-AFQ order parameters for H ‖ [1̄ 1 0] plotted as a function of
uniform magnetization taken from Ref. 10. The units of the vertical
axis are arbitrary. The solid line is a guide for the eyes.

The fluctuation effect is less reflected in 〈Txyz〉, which starts
from zero at H = 0.

B. Evidence for octupolar interaction

It is noteworthy that the plot of Fig. 15 corresponds well
to the plot of Fig. 5 of Ref. 44 for finite values of ε, which
represents the deviation of quadrupolar interaction from the
SU(4)-symmetric limit. When there is no octupolar interaction,
corresponding to the case of ε = ∞, the AFO to AFQ
order-parameter ratio becomes proportional to the uniform
magnetization. This means that a magnetic field necessarily
induces the AFO order on the AFQ order even if there is no
AFO interaction. Therefore, the convex curvature of the plot
of Fig. 15 is a clear evidence for the existence of the AFO
interaction.

C. Quadrupolar order parameter in the AFQ phase

Recently, a reinvestigation of the anisotropy of the
AFQ phase has been performed by a magnetostriction
measurement.45 The report questions the AFQ order because
no new anisotropic behavior appears in the ordered phase.
However, it should be remarked that no anisotropy itself is
the essence of the AFQ phase of CeB6 in magnetic fields
above 0.1 T. The experimental data reported in Ref. 45 can be
understood quite naturally by considering that the AFQ order
parameter is expressed as a linear combination of 〈αOyz +
βOzx + γOxy〉, which we proved clearly in Sec. III A. As
shown in Fig. 4, all the parameters vary continuously with the
field direction, keeping constant the uniform magnetization
〈αJx + βJy + γ Jz〉, AFQ moment 〈αOyz + βOzx + γOxy〉,
and the AFO moment 〈Txyz〉. The single-domain state of
the AFQ phase above 0.1 T is quite isotropic. This is an
important outcome of the AFO interaction, realizing the easy
and continuous reorientation of the AFQ moment. As a result,
the ψ dependence of the 〈O20〉 ferro component shown in
Fig. 4, which is related to l/ l0 along [001], is almost the
same as that in the paramagnetic phase. The data in Ref. 45
support our present picture of the AFQ phase. With respect
to the magnetic susceptibility, anisotropic behavior is clearly
observed if one performs the measurement below 0.1 T with
domain distributions.46

D. Low-field transition in the AFQ phase

The mechanism of the domain motion from the three-
domain state at zero field to the single-domain state above
0.1 T may be an important problem. In actuality, the AFQ
domain state at zero field is sensitive to subtle external strains,
and the actual domain state at the sample surface might not be
the three-domain state.47 Whatever the zero-field AFQ domain
state, however, the field dependence of the intensity between
0 T and 0.1 T is worth discussion. If we look at the data at low
fields for H ‖ [1̄ 1 0], which is more clearly shown in Refs. 31
and 38 though without polarization analysis, we notice that the
intensity varies linearly from H = 0 to the transition field and
is continuously connected to the single-domain state with the
order parameter 〈Oyz − Ozx〉/

√
2. No discontinuous jump is

observed within the experimental accuracy. There also seems
no hysteresis.
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It should be remarked that the three domains of 〈Oyz〉,
〈Ozx〉, and 〈Oxy〉 have the same intensities at ψ = 0◦, as is
expected from the calculated structure factors in Fig. 3 and
also from the dashed and dotted lines in Fig. 2. The linear
increase in intensity cannot be explained by considering only
the domain redistribution among the three individual domains.
It is necessary to consider a gradual increase in the fraction
of the 〈Oyz − Ozx〉/

√
2 linear-combination state. A simple

scenario may be that the domains at zero field change to
the 〈Oyz − Ozx〉/

√
2 state through a domain-wall motion,

resulting in a gradual increase in the volume fraction. In this
case, weak hysteresis should be observed. Of course, there is
a possibility that it was too weak to be detected in our x-ray
diffraction experiment.

Another possible scenario is a gradual mixing of the
〈Oyz − Ozx〉/

√
2 component into the zero-field state. If we

presume the three-domain state, the order parameter of the
〈Oyz〉 domain, for example, is expressed as 〈aOyz − bOzx〉,
and the coefficient (a,b) changes gradually from (1,0) to
( 1√

2
, 1√

2
). It changes from (0,1) to ( 1√

2
, 1√

2
) in the 〈Ozx〉 domain.

The 〈Oxy〉 domain is expressed as 〈aOxy + b(Oyz − Ozx)〉,
and (a,b) changes from (1,0) to (0, 1√

2
). The gradual mixing of

different quadrupole components can be viewed as quadrupole
rotation. In the present case of CeB6, the rotation is probably
controlled by the energy gain due to the AFO interaction
which becomes significant in magnetic fields. The critical field
of 0.1 T corresponds to the energy of the AFO interaction
to overcome the quadrupole-strain coupling which stabilizes
the AFQ domain state at zero field. In addition, the mixing
mechanism is not necessarily accompanied by a domain-wall
motion. Therefore, a hysteresis may not be observed. In any
case, the present experimental data are not sufficient to prove
the mechanism of the low-field transition in CeB6. More
detailed measurement with polarization analysis is necessary.

Finally, with regard to the AFQ order, the recent discovery
of the inelastic resonant peak at ( 1

2 , 1
2 , 1

2 ) by neutron scattering
is quite significant.48 Although the mechanism of the peak has
not been clarified, we think that it must be strongly associated
with the AFQ order.49

V. CONCLUSION

We have studied the AFQ phase of CeB6 in magnetic
fields by RXD, where various kinds of higher rank multipole
moments are induced. First, we have directly shown that the
AFQ order parameter in magnetic fields is expressed by a linear
combination of 〈αOyz + βOzx + γOxy〉. This means that the
AFQ order parameter rotates continuously as a function of
the field direction. Second, we have analyzed the asymmetric
behavior of the energy spectrum with respect to the field
reversal more systematically than the previous report. The
data treatment to extract the multipole moments has been more
solidly justified by using the theoretically calculated spectral
functions. Thus, the field dependencies of the AFM, AFQ, and
AFO ordered moments have been deduced simultaneously for
the field direction along [1̄ 1 0]. A possibility of observing
the quadrupolar fluctuation at low fields was pointed out.
Finally, from the plot of the AFO to AFQ ratio as a function of

the uniform magnetization, we also pointed out experimental
evidence for the AFO interaction.
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APPENDIX: THEORETICAL FRAMEWORK

In this section, we briefly review the theoretical framework
of Ref. 34 that is necessary to analyze the experimental
results. The observed intensity at an x-ray energy E = h̄ω

is proportional to |FE1(ω) + FE2(ω)|2, where FE1 and FE2

are the resonant scattering amplitudes for the E1 and E2
processes, respectively. They are expressed as follows:

FE1(ω) =
2∑

ν=0

α
(ν)
E1(ω)

2ν+1∑

μ=1

P
(ν)
E1,μ(ε,ε′)

〈
z(ν)
μ

〉
, (A1)

FE2(ω) = k2

9

4∑

ν=0

α
(ν)
E2(ω)

2ν+1∑

μ=1

P
(ν)
E2,μ(ε,ε′,k̂,k̂′)

〈
z(ν)
μ

〉
. (A2)

z(ν)
μ is the operator equivalent of the μth component of the

rank-ν multipole tensor, which are defined in Table I of
Ref. 50. Conventional notations of multipoles such as T α

x also
follow the table. Note that 〈z(ν)

μ 〉 for the ( 3
2 , 3

2 , 1
2 ) reflection

represents the antiferro component of the expectation value.
The ferro component does not contribute to the intensity of the
superlattice reflection. P

(ν)
E1,μ and P

(ν)
E2,μ are the geometrical

factor of the component μ and rank ν for E1 and E2
resonances, respectively, which are fully written in Refs. 34
and 50. The most important point in these expressions is that
the rank-dependent energy profiles, α

(ν)
E1(ω) and α

(ν)
E2(ω), are

explicitly included. This point plays an important role in the
analysis.

We write the resonance structure factor as follows:

Z
(ν)
E1 =

2ν+1∑

μ=1

P
(ν)
E1,μ(ε,ε′)

〈
z(ν)
μ

〉
, (A3)

Z
(ν)
E2 =

2ν+1∑

μ=1

P
(ν)
E2,μ(ε,ε′,k̂,k̂′)

〈
z(ν)
μ

〉
. (A4)

By changing the external conditions of temperature, magnetic
field, and field direction, 〈z(ν)

μ 〉 changes. Another important
point in our analysis is that the odd rank tensor changes its sign
when the field direction is reversed. The even rank tensors do
not change signs with the field reversal. Therefore, the intensity
at +H and −H is expressed as

I (ω, ± H ) = ∣∣α(2)
E1(ω)Z(2)

E1(H ) + α
(2)
E2(ω)Z(2)

E2(H )

+α
(4)
E2(ω)Z(4)

E2(H ) ± i
{
α

(1)
E1(ω)Z(1)

E1(H )

+α
(1)
E2(ω)Z(1)

E2(H ) + α
(3)
E2(ω)Z(3)

E2(H )
}∣∣2

. (A5)
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Then, the difference and average spectra are expressed as
follows:

�I (ω,H ) ≡ {I (ω, + H ) − I (ω, − H )}/2

= �IE1E1 + �IE1E2 + �IE2E2, (A6)

�IE1E1 = 2Im
{
α

∗(1)
E1 α

(2)
E1

}
Z

(1)
E1Z

(2)
E1, (A7)

�IE1E2 = 2Im
{
α

∗(1)
E1 α

(2)
E2

}
Z

(1)
E1Z

(2)
E2 − 2Im

{
α

∗(2)
E1 α

(3)
E2

}
Z

(2)
E1Z

(3)
E2

− 2Im
{
α

∗(2)
E1 α

(1)
E2

}
Z

(2)
E1Z

(1)
E2

+ 2Im
{
α

∗(1)
E1 α

(4)
E2

}
Z

(1)
E1Z

(4)
E2, (A8)

�IE2E2 = 2Im
{
α

∗(1)
E2 α

(2)
E2

}
Z

(1)
E2Z

(2)
E2 − 2Im

{
α

∗(2)
E2 α

(3)
E2

}
Z

(2)
E2Z

(3)
E2

+ 2Im
{
α

∗(1)
E2 α

(4)
E2

}
Z

(1)
E2Z

(4)
E2

+ 2Im
{
α

∗(3)
E2 α

(4)
E2

}
Z

(3)
E2Z

(4)
E2. (A9)

Iave(ω,H ) ≡ {I (ω, + H ) + I (ω, − H )}/2

= I ave
E1E1 + I ave

E1E2 + I ave
E2E2, (A10)

I ave
E1E1 = ∣∣α(1)

E1

∣∣2(
Z

(1)
E1

)2 + ∣∣α(2)
E1

∣∣2(
Z

(2)
E1

)2
, (A11)

I ave
E1E2 = 2Re

{
α

∗(1)
E1 α

(1)
E2

}
Z

(1)
E1Z

(1)
E2 + 2Re

{
α

∗(2)
E1 α

(2)
E2

}
Z

(2)
E1Z

(2)
E2

+ 2Re
{
α

∗(1)
E1 α

(3)
E2

}
Z

(1)
E1Z

(3)
E2 + 2Re

{
α

∗(2)
E1 α

(4)
E2

}
Z

(2)
E1Z

(4)
E2,

(A12)

I ave
E2E2 = ∣∣α(1)

E2

∣∣2(
Z

(1)
E2

)2 + ∣∣α(2)
E2

∣∣2(
Z

(2)
E2

)2 + ∣∣α(3)
E2

∣∣2(
Z

(3)
E2

)2

+ ∣∣α(4)
E2

∣∣2(
Z

(4)
E2

)2 + 2Re
{
α

∗(1)
E2 α

(3)
E2

}
Z

(1)
E2Z

(3)
E2

+ 2Re
{
α

∗(2)
E2 α

(4)
E2

}
Z

(2)
E2Z

(4)
E2. (A13)

It is of essential importance to consider different spectral
functions for different rank multipoles. Otherwise, the �IE1E1

and �IE2E2 terms vanish, and the experimental data can never
be explained.
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