Erratum: Phase structure of finite temperature QCD in the heavy quark region [Phys. Rev. D 84, 054502 (2011)]

H. Saito, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa, H. Ohno, and T. Umeda (Received 23 February 2012; published 9 April 2012)

DOI: 10.1103/PhysRevD.85.079902

PACS numbers: 12.38.Gc, 11.15.Ha, 12.38.Mh, 99.10.Cd

Because of an error in the analysis program developed for [1], the values of β for the transition point at $\kappa > 0$ are slightly shifted. The values of κ_{cp} as well as the conclusions and discussions are not changed.

The error was in a coefficient of a constant term for $dV_{\rm eff}/dP$. This causes slight constant shifts in the results of $dV_{\rm eff}/dP$ at $\kappa > 0$ and thus in the values of $\beta_{\rm trans}$ and $\beta_{\rm cp}$ at $\kappa > 0$. Accordingly, Figs. 3 and 9, Table II, and Eq. (20) should be replaced by those given below:

FIG. 3 (color online). Derivative of the effective potential at nonzero κ in two-flavor QCD.

FIG. 9 (color online). β_{trans} as a function of κ (left) and κ^4 (right) for $N_f = 2$. Also shown are the results of the critical point (β_{cp}), which are obtained by linearly extrapolating β_{trans} in κ (left) or κ^4 (right) to κ_{cp} determined by V_{peak} (diamonds), ΔP (triangles), or $d^2 V_{\text{eff}}/dP^2$ (squares).

	K _{cD}	β_{cp}	
Method	1	к fit	κ^4 fit
V _{peak}	0.0647(06)	5.6824(02)	5.6823(03)
ΔP	0.0662(04)	5.6818(01)	5.6814(02)
$d^2 V_{\rm eff}/dP^2$	0.0685(72)	5.6808(30)	5.6798(50)
Total	$0.0658(03)(^{+4}_{-11})$	5.6819(1)(5)	

TABLE II. Critical point κ_{cp} a	and $\beta_{\rm cp}$ defined by V	$V_{\rm peak}, \Delta P \text{ and } d^2 V_{\rm eff}/dP^2$
--	-----------------------------------	---

$$\beta_{\rm cp} = 5.6819(1)(5). \tag{20}$$

On the other hand, this error does not propagate to $d^2 V_{\rm eff}/dP^2$. Therefore, the discussions and the conclusions of the paper, including the values of $\kappa_{\rm cp}$ as well as other figures and tables, are not affected.

 H. Saito, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa, H. Ohno, and T. Umeda, Phys. Rev. D 84, 054502 (2011).