Erratum: Phase structure of finite temperature QCD in the heavy quark region [Phys. Rev. D 84, 054502 (2011)]

H. Saito, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa, H. Ohno, and T. Umeda

(Received 23 February 2012; published 9 April 2012)
DOI: 10.1103/PhysRevD.85.079902
PACS numbers: $12.38 . \mathrm{Gc}, 11.15 . \mathrm{Ha}, 12.38 . \mathrm{Mh}, 99.10 . \mathrm{Cd}$

Because of an error in the analysis program developed for [1], the values of β for the transition point at $\kappa>0$ are slightly shifted. The values of κ_{cp} as well as the conclusions and discussions are not changed.

The error was in a coefficient of a constant term for $d V_{\text {eff }} / d P$. This causes slight constant shifts in the results of $d V_{\text {eff }} / d P$ at $\kappa>0$ and thus in the values of $\beta_{\text {trans }}$ and $\beta_{\text {cp }}$ at $\kappa>0$. Accordingly, Figs. 3 and 9 , Table II, and Eq. (20) should be replaced by those given below:

FIG. 3 (color online). Derivative of the effective potential at nonzero κ in two-flavor QCD.

FIG. 9 (color online). $\quad \beta_{\text {trans }}$ as a function of κ (left) and κ^{4} (right) for $N_{\mathrm{f}}=2$. Also shown are the results of the critical point $\left(\beta_{\mathrm{cp}}\right)$, which are obtained by linearly extrapolating $\beta_{\text {trans }}$ in κ (left) or κ^{4} (right) to κ_{cp} determined by $V_{\text {peak }}$ (diamonds), ΔP (triangles), or $d^{2} V_{\text {eff }} / d P^{2}$ (squares).

TABLE II. Critical point κ_{cp} and β_{cp} defined by $V_{\text {peak }}, \Delta P$ and $d^{2} V_{\text {eff }} / d P^{2}$

	$\kappa_{\text {cp }}$	κ fit	$\beta_{\text {cp }}$
Method	$0.0647(06)$	$5.6824(02)$	κ^{4} fit
$V_{\text {peak }}$	$0.0662(04)$	$5.6818(01)$	$5.6823(03)$
ΔP	$0.0685(72)$	$5.6808(30)$	$5.6814(02)$
$d^{2} V_{\text {eff }} / d P^{2}$	$0.0658(03)\left({ }_{-11}^{+4}\right)$		$5.6798(50)$
Total		$5.6819(1)(5)$	

$$
\begin{equation*}
\beta_{\mathrm{cp}}=5.6819(1)(5) . \tag{20}
\end{equation*}
$$

On the other hand, this error does not propagate to $d^{2} V_{\text {eff }} / d P^{2}$. Therefore, the discussions and the conclusions of the paper, including the values of κ_{cp} as well as other figures and tables, are not affected.
[1] H. Saito, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa, H. Ohno, and T. Umeda, Phys. Rev. D 84, 054502 (2011).

