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We study a Dirac neutrino mass model of Davidson and Logan. In the model, the smallness of the

neutrino mass is originated from the small vacuum expectation value of the second Higgs of two Higgs

doublets. We study the one-loop effective potential of the Higgs sector and examine how the small vacuum

expectation is stable under the radiative correction. By deriving formulas of the radiative correction, we

numerically study how large the one-loop correction is and show how it depends on the quadratic mass

terms and quartic couplings of the Higgs potential. The correction changes depending on the various

scenarios for extra Higgs mass spectrum.
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I. INTRODUCTION

The smallness of the neutrino mass compared with the
other quarks and leptons is one of the mysteries of nature.
Recently, a new mechanism generating small Dirac mass
terms for neutrino has been proposed [1–3]. The similar
mechanism generating the small neutrino Dirac mass term
for the TeV seesaw mechanism is also proposed in [4] and
phenomenology is studied in [5,6]. There are also models
with radiatively generated Dirac mass term in [7,8]. The
interesting feature of the model proposed in [1,2] is the tiny
vacuum expectation value for an extra Higgs SU(2) doublet
[9]. The small neutrino mass is realized without introduc-
ing tiny Yukawa coupling for neutrinos. A softly broken
global U(1) symmetry guarantees the tiny vacuum expec-
tation value for the extra doublet. In addition to the small
softly breaking mass parameter, the mass squared parame-
ter for the extra Higgs is chosen to be positive so that the
light pseudo Nambu-Goldstone bosons due to the softly
broken global symmetry do not appear. This is a contrast to
the mass squared parameter for the standard model like
Higgs boson.

In the present paper, we study the global minimum of the
tree level Higgs potential by explicitly solving the sta-
tionary conditions. There are many studies of the tree level
Higgs potential of general two Higgs doublet model
[10–15]. (See also [16] for recent review of two Higgs
doublet model). It has been shown that the charge neutral
vacuum is lower than the charge breaking vacuum [10].
Also, the vacuum energy difference of two neutral minima
was derived [12,14]. We make use of the results and
identify the vacuum of the present model. When the U(1)
symmetry breaking term is turned off, the tree level Higgs
potential and the phase structure of the present model is
rather similar to the model with Z2 discrete symmetry
[17,18]. In contrast to Z2 symmetric case, it is essential
to keep the soft breaking term when finding the true
vacuum. If we set the symmetry-breaking term at zero,

then the order parameter corresponding to the softly bro-
ken U(1) symmetry becomes redundant parameter and can
not be determined. We treat the soft breaking term as small
expansion parameter and obtain the vacuum expectation
values and the vacuum energies in terms of the parameters
of the Higgs potential.
The constraints on the parameters of the model for

which the desired vacuum can be realized are derived
and they are rewritten in terms of Higgs masses and a
few coupling constants, which can not be directly related
to the Higgs masses. These constraints are fully used when
we study the radiative corrections to the vacuum expecta-
tion values numerically.
Beyond the tree level, we study the radiative correction

to the Higgs potential and the vacuum expectation values
of Higgs. Since the neutrino masses are proportional to the
vacuum expectation value of one of Higgs, one can also
compute the radiative corrections to neutrino masses. As
already noted in [1], the radiative correction to the softly
breaking mass parameter is logarithmically divergent and
it is renormalized multiplicatively. We derive the formulas
for the one-loop corrected vacuum expectation values for
two Higgs doublets by studying one-loop corrected effec-
tive potential. The corrections are evaluated numerically
by exploring the parameter regions allowed from the
global minimum condition for the vacuum. We show how
the radiative corrections change depending on the extra
Higgs spectrum. The radiative corrections are also eval-
uated for the case that a relation among the coupling
constants is satisfied.
The paper is organized as follows. In Sec. II, we derive

the condition for the desired vacuum being global mini-
mum. In Sec. III, one-loop effective potential is derived,
and one-loop corrections to the vacuum expectation values
are obtained in Sec. IV. In Sec. V, the corrections are
evaluated numerically for various choices of parameters
of the Higgs potential. Section VI is devoted to summary
and discussion.
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II. MODEL FOR DIRAC NEUTRINO WITH ATINY
VACUUM EXPECTATION VALUE

The model of the Dirac neutrino is proposed in [1].
In [1], two Higgs SU(2) doublets are introduced,
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where �1’s vacuum expectation value is nearly equal to
the electroweak breaking scale and the second Higgs
�2 has a small vacuum expectation value, which gives
rise to neutrino mass. The Higgs potential in [1] is:
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Uð1Þ0 charge is assigned to the second Higgs. The Uð1Þ0
global symmetry is broken softly with the term m2

12. In
this paper, we introduce the following real O(4) repre-
sentation for each doublet, because this parametrization
is convenient when computing the one-loop corrected
effective potential.
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Using the notation above, the tree level effective poten-
tial introduced in Eq. (2) can be written as:
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where one can choose m2
12 real and positive. With the

notation of Eq. (3), the softly broken global symmetry
Uð1Þ0 corresponds to the following transformation on �a
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�1 does not transform under Uð1Þ0. Therefore, Uð1Þ0 is
broken softly when m2

12 does not vanish. Without loss of

generality, one can choose thevacuumexpectationvalues of
Higgs with the form given as
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where the range for �0 is ½0; 2�Þ and the range for� and� is
½0; �2�. We call the four order parameters as ’I ¼
ðv;�; �; �0Þ, (I ¼ 1, 2, 3, 4). Whenm12 vanishes, by taking
� ¼ �0 in Eq. (5), one can rotate �0 away in Eq. (6). For the
most general case, in total, there are four independent order
parameters when Uð1Þ0 symmetry is broken.
For completeness of our discussion, we give the con-

straints on the quartic couplings from condition that the
tree level potential is the bounded below[1,10,19]:
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In addition to the conditions on the quartic terms, one can
constrain the parameters, including the quadratic terms so
that the desired vacuum satisfies the global minimum con-
ditions of the potential. About the global minimum of the
tree potential, it was shown that the energy of charge
neutral vacuum is lower than that of the charge-breaking
vacuum [10]. We therefore set � zero. We also require the
vacuum expectation value of the second Higgs is much
smaller than that of the first Higgs, which implies that tan�
is small. In terms of the parametrization in Eq. (6) with
� ¼ 0, the potential can be written as

Vtreeðv;�; �0Þ ¼ Að�Þv4 þ Bð�; �0Þv2; (10)

where

Að�Þ ¼ �1

8
cos4�þ �2

8
sin4�þ

�
�3

4
þ �4

4

�
cos2�sin2�;

Bð�; �0Þ ¼ m2
11

2
cos2�þm2

22

2
sin2��m2

12 cos�
0 cos� sin�:

(11)

We first find the global minimum of Vtree. The stationary

conditions @Vtree

@’I
¼ 0 (I ¼ 1, 2, 4), are written as

vð2Av2 þ BÞ ¼ 0; (12)

2r4 ¼ sin2�
ð1� r1r2Þ cos2�þ r2 � r1r3

r2cos
22�þ ðr3 þ 1Þ cos2�þ r2

; (13)

m2
12 sin�

0 sin2� ¼ 0; (14)

where riði ¼ 1� 4Þ are defined as,
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The stationary conditions in Eq. (12) and (13) correspond
to Eq. (36) of [14]. Here we solve them explicitly by
treating the soft breaking term m12 as perturbation. The
nonzero solution for v2 in Eq. (12) is written as
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where �34 ¼ �3 þ �4. Substituting it into Vtree, one
obtains,
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For nonzero m2
12 and sin2�, the solution of Eq. (14) is

sin�0 ¼ 0. One still needs to find � among the solutions
of Eq. (13), which leads to the minimum of Vmin. We
solve Eq. (13) and determine � by treating r4ðm2

12Þ as a
small expansion parameter. One can easily find the
approximate solutions as:

8>>>>>><
>>>>>>:

ð1Þ sin� ¼ �1m
2
12

jm2
22
�1�m2

11
�34j ; cos�0 ¼ signðm2

22�1 �m2
11�34Þ;

ð2Þ cos� ¼ �2m
2
12

jm2
11
�2�m2

22
�34j ; cos�0 ¼ signðm2

11�2 �m2
22�34Þ;

ð3Þ cos2� ¼ m2
11
ð�34þ�2Þ�m2

22
ð�34þ�1Þ

m2
11
ð��34þ�2Þþm2

22
ð��34þ�1Þ þOðr4Þ:

(18)

Corresponding to each solution, ð1Þ � ð3Þ of Eq. (18), the vacuum expectation value v2 and the minimum of the potential
are obtained.
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The leading terms of the vacuum expectation values agree
with those obtained in Z2 symmetric model [18]. If
sin2� ¼ 0, then r4 must be vanishing and cos�0 ¼ 0
from Eq. (13) and (14). The vacuum energies of the non-
zero sin2� solutions are shown in Tables I. In Table II, the
vacuum energies of the solutions with sin2� ¼ 0 are
summarized.

Next, we derive the constraints on the parameters so that
the solution corresponding to (1) in Table I becomes the

global minimum of the potential. Since the other cases
(2)–(5) do not have desired properties, we restrict the
parameter space so that these solutions can not be a global
minimum. Since v must have large positive vacuum ex-
pectation value, m2

11 must be negative. In order that the
vacuum energy of (1) is lower than that of (4),

m2
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11�34 > 0; ðcos�0 ¼ 1Þ: (20)

When Eq. (20) is satisfied and the solution (1) does exist,
one can show that the vacuum energy of solution (3) is
higher than that of (1). Furthermore, when m2

22 > 0, the
solutions corresponding to (2) and (5) are not realized.
Then one can state the region of parameter space, which

TABLE I. Classification of the solutions with nonzero sin2�
of the stationary conditions of Higgs potential. For (3), Oðr4Þ
correction is not shown.
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TABLE II. Classification of the solutions with sin2� ¼ 0.
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is consistent with the case that the vacuum (1) becomes
global minimum is

m2
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Next, we consider the case with negative m2
22. In this case,

we impose the additional condition so that the vacuum
energies corresponding to (2) and (5) are higher than that
of (1):
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In the following sections, we explore the regions for the
parameters obtained in Eq. (21), (23), (8), and (9).

III. EFFECTIVE POTENTIAL IN ONE-LOOP
AND RENORMALIZATION

In this section, we derive the effective potential within
one-loop approximation. We introduce a real scalar fields
with eight components as �i ¼ ð�1
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loop effective action is given as
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defined as

�1 ¼
0 1

1 0

 !
: (26)

In Eq. (26), 1(0) also denotes a four by four unit (zero)
matrix. In modified minimal subtraction scheme, the finite
part of the one-loop effective potential becomes
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Vc denotes the counterterms and the derivation of Vc can be
found in Appendix A.

IV. ONE-LOOP CORRECTIONS TO THE VACUUM
EXPECTATION VALUES

In this section, we compute the one-loop corrections to
the vacuum expectation values. Using the symmetry of the
model, in general, one can choose ’I ¼ ðv;�;�; �0Þ as the
vacuum expectation values of Higgs potential. Their values
are obtained as the stationary points of the one-loop cor-
rected effective potential V ¼ Vtree þ V1loop,
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¼ 0: (28)

By denoting the vacuum expectation values as sum of
the tree level ones and the one-loop corrections to them,
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where M2
D is a diagonal 8� 8 tree level mass squared

matrix of Higgs sector and LIJ is 4� 4 matrix given by
the second derivatives of the tree level Higgs potential
with respect to the order parameters,
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The diagonal Higgs mass matrix squared M2
D is related

to 8� 8 Higgs mass matrix squared M2
T in Eq. (25).
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where M2
T0 is obtained by substituting the vacuum expec-

tation values toM2
T .O is shown in Appendix D. SinceMD is

the 8� 8 diagonalmatrix which elements correspond to the
Higgs masses and zero mass of the would be Nambu-
Goldstone bosons, one may write Eq. (29) in a simple
form. The Higgs masses squared in Eq. (31) are given by
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where 	 is an angle with which one can diagonalize the 2� 2 mass matrix for CP-even neutral Higgs. tan2	 is given as
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To compute Eq. (29), we still need to calculateOT @M2

@’I
O and LIJ. They are shown in Appendix C. Using Eqs. (29) and (C1),

one can find the quantum corrections for � and �0 vanish:
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where L0 is

L0 ¼ L11 L12

L12 L22

� �
: (36)

The elements of L0 are shown in Eq. (C4). Equation (35) corresponds to the one-loop exact formulas and is a main result
of the present paper. In the leading order of the expansion with respect to the symmetry breaking term m2

12, the
correction to v becomes
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The Higgs masses in the formulas are the ones in the limit of m12 ! 0,
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where v is related to m2
11 as,
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11: (39)

The approximate formulas for the physical Higgs masses in Eq. (38), which are valid to the limit m12 ! 0, agree with
the ones given in [1] except the notational difference of MH and Mh. The one-loop correction to � in the leading order
expansion of m2

12 is given as

QUANTUM CORRECTION TO THE TINY VACUUM . . . PHYSICAL REVIEW D 85, 055002 (2012)

055002-5



�ð1Þ ¼ � �

32�2

�
2

�
�2 � �4 � �3ð�3 þ �4Þ

�1

�
M2

Hþ

M2
A

�
ln
M2

Hþ

�2
� 1

�
þ
�
�2 � ð�3 þ �4Þ2

�1

��
ln
M2

A

�2
� 1

�

þ
�
3�2 þ

�
2�� �3 þ �4

�1

�
ð�3 þ �4Þ

�
M2

h

M2
A

�
ln
M2

h

�2
� 1

�
� 2ð1þ �Þð�3 þ �4ÞM

2
H

M2
A

�
ln
M2

H

�2
� 1

��
; (40)

where

� ¼ lim
m12!0

	

�
¼ M2

A �M2
H

�3þ�4

�1

M2
H �M2

A

: (41)

Equation (40) shows that the quantum correction is also
proportional to the soft-breaking parameter m2

12, which is
expected. We also note that the correction depends on the
Higgs mass spectrum and quartic couplings. The correla-
tion to Higgs spectrum is studied in the next section.

V. NUMERICAL CALCULATION

In this section, we study the quantum correction to� and
v numerically. As shown in Eq. (37) and (40), the quantum
corrections are written with four Higgs masses and the four
quartic couplings. Since the neutral CP even and CP -odd
Higgs of the second Higgs doublet are degenerate asMA ¼
Mh in the limit m12 ! 0 (See Eq. (38)), the three Higgs
masses ðMH;MA;MHþÞ are independent. Moreover, for a
given charged Higgs mass and neutral Higgs mass, �1 and
�4 are given as

�1 ¼ M2
H

v2
; �4 ¼ 2

M2
A �M2

Hþ

v2
: (42)

�2 and �3 are the remaining parameters to be fixed. The
lower limit of �3 obtained from Eq. (8) and (9) is written as

Max

�
�MH

v

ffiffiffiffiffiffi
�2

p
;�MH

v

ffiffiffiffiffiffi
�2

p �2
M2

A�M2
Hþ

v2

�
<�3: (43)

One can also write �3 with the charged Higgs mass
formulas,

�3 ¼ 2

v2
ðM2

Hþ �m2
22Þ: (44)

Depending on the sign of m2
22, the upper bound and the

lower bound of �3 can be obtained for a given charged
Higgs mass. Combining it with Eq. (43), the constraints for
positive m2

22 case are,

Max

�
�MH

v

ffiffiffiffiffiffi
�2

p
;�MH

v

ffiffiffiffiffiffi
�2

p � 2
M2

A �M2
Hþ

v2

�
< �3

<
2M2

Hþ

v2
; ðm2

22 > 0Þ: (45)

When m2
22 � 0, in addition to the lower bound on �3, the

constraint on �2 in Eq. (22) should be satisfied:

2M2
Hþ

v2
� �3;

ffiffiffiffiffiffi
�2

p
>

�
�3 � 2

M2
Hþ

v2

�
v

MH

;

ðm2
22 < 0Þ: (46)

Now we study the quantum corrections numerically. We
fix the standard model like Higgs mass as MH ¼
130 ðGeVÞ. There are still four parameters to be fixed
and they are �2, �3, MA, and MHþ . Focusing on the
Higgs mass spectrum of the extra Higgs, we study the
radiative corrections for the following scenarios for
Higgs spectrum and the coupling constants.

A. Case for MA ¼ MHþ; degenerate charged Higgs
and pseudoscalar Higgs and a relation for vanishing

quantum correction �ð1Þ

We first study the corrections for degenerate charged
Higgs and pseudoscalar Higgs. In this case, for a given
degenerate mass, one can identify the values of coupling

constants �2 and �3, for which �ð1Þ vanishes. With MA ¼
MHþ , the relation for coupling constants which satisfies

�ð1Þ ¼ 0 is

�2¼ �2
3

3�1

8<
:2þ M2

H

M2
H�M2

Hþ

0
@1� M2

H

M2
Hþ

log
M2

H

�2 �1

log
M2

Hþ
�2 �1

1
A
9=
;

��3

3

0
@ M2

Hþ

M2
H�M2

Hþ
� M2

H

M2
H�M2

Hþ

M2
H

M2
Hþ

log
M2

H

�2 �1

log
M2

Hþ
�2 �1

1
A:

(47)

The set of coupling constants ð�3; �2Þ, which satisfy the
relation Eq. (47), are shown in Table III. We note that when
�2 is as large as 10, �3 is at most about 3. If �2 is 1, �3 is
lies in the range 0:55� 0:7.

TABLE III. The coupling constants ð�3; �2Þ which satisfy the
relation, Eq. (47) for the three degenerate masses MHþ ¼ MA ¼
100, 200 and 500 (GeV).

�2 �3 (MHþ ¼ 100) �3 (MHþ ¼ 200) �3 (MHþ ¼ 500)

0.14 0.19 0.16 0.18

0.28 0.28 0.28 0.28

0.56 0.41 0.47 0.42

1.0 0.55 0.69 0.59

10 1.8 2.8 2.0
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B. Non-Degenerate case MA � MHþ with the coupling
constants satisfying Eq. (47)

Next we lift the degeneracy by shifting the pseudoscalar
Higgs mass from the charged Higgs mass and study the

effect on �ð1Þ and vð1Þ. The nondegeneracy of the charged
Higgs mass and the pseudoscalar Higgs mass is con-
strained by 
 parameter. We change the pseudoscalar
Higgs mass within the range jMA �MHþj< 100 ðGeVÞ
allowed from the electro-weak precision studies. The cou-
pling constants ð�3; �2Þ are chosen from the sets of their
values satisfying the relation Eq. (47). In Fig. 1, we show
�ð1Þ
� as a function of MA with charged Higgs mass MHþ ¼
100 ðGeVÞ. When MA ¼ 100 ðGeVÞ, the correction van-
ishes exactly. As we increase MA from 100 (GeV) (the
mass of charged Higgs), the correction becomes nonzero
and is negative. The corrections are at most about 1.3%
when �2 � 1. By increasingMA further, we meet the point
around at MA ’ 200 ðGeVÞ corresponding to that the cor-
rection vanishes again. In Fig. 2, we study the correction

�ð1Þ with larger charged Higgs mass case, MHþ ¼
200 ðGeVÞ. In contrast to the case for MHþ ¼
100 ðGeVÞ, by increasing MA from 200 (GeV) where the
correction vanishes, it increases and becomes positive. We
also note that the correction tends to be larger than the
lighter charged Higgs mass case. When �2 � 1, increasing
the pseudoscalar Higgs mass from 200 (GeV) to
300 (GeV), the correction is about 10%. As the pseudo-
scalar Higgs mass decreases from 200 (GeV) to 100 (GeV),
the correction becomes negative for 0< �2 � 1. With
the larger value �2 ¼ 10, we meet the point around at

MA ’ 150 ðGeVÞ where the correction vanishes again. In
Fig. 3, we study the further larger charged Higgs mass case,
i.e., MHþ ¼ 500 ðGeVÞ. With MA ’ 600 ðGeVÞ, the cor-
rection is positive and about 100%. The correction stays
small for 0< �2 � 1when decreasingMA from 500 (GeV)
to 400 (GeV).

100 120 140 160 180 200
MA GeV

0.02

0.01

0.01

0.02

x 1 x

FIG. 1. The quantum correction �ð1Þ
� (gray lines) and vð1Þ

v (black
lines) due to the nondegeneracy of charged Higgs and pseudo-
scalar Higgs masses. The pseudoscalar Higgs mass MA ðGeVÞ
dependence of the quantum corrections xð1Þ

x (x ¼ �, v) is shown,

while the charged Higgs mass is fixed as MHþ ¼ 100 ðGeVÞ.
The set of parameters ð�3; �2Þ are chosen so that the correction
�ð1Þ vanishes for the degenerate case; MHþ ¼ MA ¼
100 ðGeVÞ. The values ð�3; �2Þ are taken from Table III and
they are (0.19, 0.14) (solid line), (0.28, 0.28) (dashed line), (0.41,
0.56) (dotted line), (0.55, 1) (dotdashed line), and (1.8, 10)
(thick solid line).

150 200 250 300
MA GeV

0.08

0.06

0.04

0.02

0.02

0.04

0.06

x 1 x

FIG. 2. The quantum correction �ð1Þ
� (gray lines) and vð1Þ

v (black
lines) due to the nondegeneracy of charged Higgs and pseudo-
scalar Higgs masses. The pseudoscalar Higgs mass MA ðGeVÞ
dependence of the quantum corrections xð1Þ

x (x ¼ �, v) is shown

while charged Higgs mass is fixed as MHþ ¼ 200 ðGeVÞ. The
set of parameters ð�3; �2Þ are chosen so that the correction �ð1Þ
vanishes for the degenerate case; MHþ ¼ MA ¼ 200 ðGeVÞ.
The values ð�3; �2Þ are taken from Table III and they are
(0.16, 0.14) (solid line), (0.28, 0.28) (dashed line), (0.47, 0.56)
(dotted line), (0.69, 1) (dotdashed line), and (2.8, 10) (thick solid
line).

450 500 550 600
MA GeV

2

1

1

x 1 x

FIG. 3. The quantum correction �ð1Þ
� (gray lines) and vð1Þ

v (black
lines) due to the nondegeneracy of charged Higgs and pseudo-
scalar Higgs masses. The pseudoscalar Higgs mass MA ðGeVÞ
dependence of the quantum corrections xð1Þ

x (x ¼ �, v) is shown

while charged Higgs mass is fixed asMHþ ¼ 500 ðGeVÞ. The set
of parameters ð�3; �2Þ are chosen so that the correction �ð1Þ
vanishes for the degenerate case;MHþ ¼ MA ¼ 500 ðGeVÞ. The
values ð�3; �2Þ are taken from Table III and they are (0.18, 0.14)
(solid line), (0.28, 0.28) (dashed line), (0.42, 0.56) (dotted line),
(0.59, 1) (dotdashed line), and (2, 10) (thick solid line).
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C. The correction vð1Þ
v

In Figs. 1–3, we also show the correction vð1Þ
v as functions

of MA. v
ð1Þ is independent of �2 and does not necessarily

vanish at the same points where�ð1Þ vanishes. With �3 � 2
and MHþ � 200 ðGeVÞ, when the pseudoscalar Higgs
mass is much larger than that of charged Higgs mass; we
find a very large correction to v. In Fig. 4, we show that the

two dimensional surface, which corresponds to vð1Þ ¼ 0.
We find that the interior of the surface corresponds to the

region of the positive correction vð1Þ > 0, while the exte-
rior region of the surface corresponds to the negative

correction vð1Þ < 0.
In Fig. 5, we have shown the regions of (MHþ ;MA)

which correspond to that the corrections of jvð1Þj and

j�ð1Þj have the definite values (0, 0.01, 0.1). The dark
gray shaded area corresponds to the region where both

vð1Þ and �ð1Þ can vanish with taking account of the
conditions in Eqs. (7)–(9). We note that for MHþ ;MA >
200 ðGeVÞ, the quantum corrections vanish around the
region where the charged Higgs degenerates with the
pseudoscalar Higgs. When the corrections become larger,
the larger mass splitting of the pseudoscalar Higgs and
charged Higgs is allowed. However, as the average mass of
the charged Higgs and pseudoscalar Higgs increases, the
allowed mass splitting becomes smaller.

VI. DISCUSSION AND CONCLUSION

In this paper, the Dirac neutrino mass model of
Davidson and Logan is studied. In the model, one of the
vacuum expectation values of two Higgs doublets is very
small and it becomes the origin of the mass of neutrinos.
The ratio of the small vacuum expectation value v2 and
that of the standard-like Higgs v1 is tan� ¼ v2

v1
. Therefore,

tan� is very small and typically it is Oð10�9Þ. The small-
ness of tan� is guaranteed by the smallness of the soft
breaking term of Uð1Þ0.
We have treated the soft-breaking term as perturbation

and calculated, in particular, the vacuum expectation of
Higgs in the leading order of the perturbation precisely. As
summarized in Table I, only by including the soft breaking
terms, one can argue which of the local minima minimizes
the potential and becomes the global minimum. We have
studied the global minimum of the tree-level Higgs poten-
tial, including the effect of the soft breaking term as
perturbation.
Beyond the tree level, we study the quantum correction

to the vacuum expectation values and tan� in a quantitative
way. In one-loop level, we confirmed that tree-level vac-
uum is stable, i.e., the order parameters which vanish at
tree level do not have the vacuum expectation value as
quantum correction. In one-loop level, we derived the
exact formulas for the quantum correction to � in the
leading order of expansion of the soft breaking parameter
m2

12. We have confirmed not only that the loop correction to

tan� is proportional to the soft breaking term, but also
found that the correction depends on the Higgs mass
spectrum and some combination of the quartic coupling
constants of the Higgs potential. Technically, we carried
out the calculation of the one-loop effective potential by
employing O(4) real representation for SU(2) Higgs
doublets.
Dependence of the corrections on the Higgs spectrum

is studied numerically. We first derive a relation of the

FIG. 4. The two dimensional surface for vð1Þ ¼ 0.

100 200 300 400 500
100

200

300

400

500

MH Gev

M
A

G
ev

FIG. 5. The regions of ðMHþ ;MAÞ, which correspond to

ðj vð1Þ
v j; j �ð1Þ

� jÞ ¼ ð0; 0Þ (dark gray), (0.01, 0.01) (gray), and

(0.1, 0.1) (light gray).
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coupling constants, which corresponds to the condition
that the correction to � vanishes for degenerate extra
Higgs masses. Next, we study the effect of nondegeneracy
of the charged Higgs and pseudoscalar Higgs on the
correction. If the charged Higgs mass is as light as
100 ðGeVÞ � 200 ðGeVÞ, allowing the mass difference
of charged Higgs and pseudoscalar Higgs is about
100 (GeV), the quantum corrections to both � and v
are within a few % for ð�3; �2Þ � ð0:5; 1Þ. If the charged
Higgs is heavy MHþ ¼ 500 ðGeVÞ, a slight increase of
the pseudoscalar Higgs mass from the degenerate point
leads to very large corrections to � and v.

One can argue the size of the quantum corrections to the
neutrinomass of themodel, because the ratio of the tree level
neutrino mass and one-loop correction can be written as

mð1Þ
�

m�

¼ vð1Þ

v
þ �ð1Þ

�
; (48)

where we take account of the corrections only due to Higgs
vacuum expectation values. The formulas in Eq. (48) imply
that radiative correction to neutrino mass is related to the
Higgs mass spectrum. Therefore, once Higgs mass spectrum
is measured in LHC, one can compute the radiative
correction to the mass of neutrinos using the formulas
of Eq. (48).
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APPENDIX A: DERIVATION OF ONE-LOOP
EFFECTIVE POTENTIAL

In this appendix, we give the details of the derivation of
the one-loop effective potential and the counterterm in
Eq. (27). One can split M2ð�Þij in Eq. (25) into the

diagonal part and the off-diagonal part as �M2ð�Þij ¼
M2ð�Þij �M2ð�Þii�ij. The divergent part of V1loop can be

easily computed by expanding it up to the second order of
�M2,

V1loop ¼ Vð1Þ þ Vc;

Vð1Þ ¼ �4�d

2

Z ddk

ð2�Þdi TrLnfðD
0–1
ii þM2

iið�ÞÞ�ij þ �M2
ij � �1m

2
12g

¼ X8
i¼1

�4�d

2

Z ddk

ð2�Þdi lnfD
0–1
ii þM2

iið�Þg � X8
i;j¼1

�4�d

4

Z ddk

ð2�Þdi Diið�M2 � �1m
2
12ÞijDjjð�M2 � �1m

2
12Þji þ . . . ;

(A1)

where

D�1
ii ¼ D0–1

ii þM2
iið�Þ;

¼
�
M2

ii þm2
11 � k2 ð1 � i � 4Þ;

M2
ii þm2

22 � k2 ð5 � i � 8Þ: (A2)

The diagonal parts of the propagators are given as,

Dii ¼
8<
:

1
M2

iiþm2
11�k2

ð1 � i � 4Þ;
1

M2
iiþm2

22�k2
ð5 � i � 8Þ: (A3)

In the modified minimal subtraction scheme, Feynman
integration is carried out with help of the well known
formulas of dimensional regularization

�4�d 1

2

Z ddk

ð2�Þdi logðm
2 � k2Þ

¼ � 1

64�2 �
m4 þ m4

64�2

�
log

m2

�2
� 3

2

�
; (A4)

and

�4�d
Z ddk

ð2�Þdi
1

ðm2
i � k2Þðm2

j � k2Þ
��������div

¼ 1

16�2

1

�
;

(A5)

with 1
� ¼ 1

 � log4� and  ¼ 2� d
2 . The divergent part of

Vð1Þ is
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Vð1Þ
div ¼ � 1

64�2 �

�X4
i¼1

ðM2
ii þm2

11Þ2 þ
X8
i¼5

ðM2
ii þm2

22Þ2
�
� 1

64�2 �

X8
i�j¼1

ð�M2 �m2
12�1Þijð�M2 �m2

12�1Þji;

¼ � 1

32�2 �

�
m2

11

X4
i¼1

M2
iið�Þ þm2

22

X8
i¼5

M2
iið�Þ þ 2ðm4

11 þm4
22Þ
�
� 1

64�2 �
Tr½ðM2ð�Þ �m2

12�1ÞðM2ð�Þ �m2
12�1Þ�;

¼ � 1

64�2 �
Tr½M4

T�: (A6)

The trace of Eq. (A6) is calculated in Eq. (B6) and (B11) of Appendix B, and the result is,

Vð1Þ
div ¼ � 1

32�2 �
½m2

11f6�1ð�y
1�1Þ þ 2ð2�3 þ �4Þð�y

2�2Þg þm2
22f2ð2�3 þ �4Þð�y

1�1Þ þ 6�2ð�y
2�2Þg�

þ 2m2
12

64�2 �
½ð2�3 þ 4�4Þð�y

1�2 þ�y
2�1Þ� � 8m4

12 þ 4ðm4
11 þm4

22Þ
64�2 �

� 1

64�2 �

h
ð12�2

1 þ 4�3�4 þ 4�2
3 þ 2�2

4Þð�y
1�1Þ2 þ ð12�2

2 þ 4�3�4 þ 4�2
3 þ 2�2

4Þð�y
2�2Þ2

þ ð12�1�3 þ 4�1�4 þ 8�2
3 þ 4�2

4 þ 12�2�3 þ 4�2�4Þð�y
1�1Þð�y

2�2Þ
þ ð4�1�4 þ 16�3�4 þ 8�2

4 þ 4�2�4Þj�y
1�2j2

i
: (A7)

Now the counterterms for the one-loop effective potential are simply given by changing the sign of the divergent part of
Eq. (A7),

Vc ¼ �Vð1Þ
div ¼

1

64�2 �
Tr½M4

T�: (A8)

Using Eq. (A8) and (A4), one can derive the finite part of the one-loop effective potential given in Eq. (27).

APPENDIX B: DERIVATION OF EQ. (A7)

In this section, we present the derivation of Eq. (A7). We start with the quartic interaction terms of the Higgs potential,

Vð4Þ ¼ �1

8

�X4
i¼1

�2
i

�
2 þ �2

8

�X8
i¼5

�2
i

�
2 þ �3

4

�X4
i¼1

�2
i

��X8
j¼5

�2
j

�

þ �4

4
ðð�1�5 þ�2�6 þ�3�7 þ�4�8Þ2 þ ð�1�6 þ�3�8 ��2�5 ��4�7Þ2Þ: (B1)

By taking the derivatives of Vð4Þ, one can obtain the mass squared matrixM2ð�Þ. One first computes the first derivative of
Vð4Þ with respect to �i,

@Vð4Þ

@�i

¼

8>>>>>>>><
>>>>>>>>:

�1

8 2

�P
4
j¼1 �

2
j

�
2�i þ �3

2 �i

P
8
j¼5 �

2
j þ �4

2 fð�1�5 þ�2�6 þ�3�7 þ�4�8Þ�iþ4

þ ð�1�6 þ�3�8 ��2�5 ��4�7Þð�1i�6 � �2i�5 þ �3i�8 � �4i�7Þg; ð1 � i � 4Þ
�2

8 2

�P
8
j¼5 �

2
j

�
2�i þ �3

2 �i

P
4
j¼1 �

2
j þ �4

2 fð�1�5 þ�2�6 þ�3�7 þ�4�8Þ�i�4

þ ð�1�6 þ�3�8 ��2�5 ��4�7Þð��5i�2 þ �6i�1 � �7i�4 þ �8i�3Þg: ð5 � i � 8Þ:

(B2)

The second derivatives are given as
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@2Vð4Þ

@�i@�j

¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1

2

�
�ij

P
4
k¼1�

2
kþ2�j�i

�
þ�3

2 �ij

�P
8
k¼5�

2
k

�
þ�4

2 f�jþ4�iþ4

þð�1j�6��2j�5þ�3j�8��4j�7Þð�1i�6��2i�5þ�3i�8��4i�7Þg; ð1� i;j�4Þ;
�3�i�jþ�4

2

�
�iþ4�j�4þP

4
k¼1�iþ4;j�k�kþ4þð��5j�2þ�6j�1��7j�4þ�8j�3Þ

�ð�1i�6��2i�5þ�3i�8��4i�7Þþð�1�6þ�3�8��2�5��4�7Þ
�ð�1i�6jþ�3i�8j��2i�5j��4i�7jÞ

�
; ð1� i�4;5� j�8Þ;

�3�i�jþ�4

2

�
�i�4�jþ4þP

4
k¼1�i�4;j�k�kþ4þð�1j�6��2j�5þ�3j�8��4j�7Þ

�ð��5i�2þ�6i�1��7i�4þ�8i�3Þþð�1�6þ�3�8��2�5��4�7Þ
�ð�1i�6jþ�3i�8j��2i�5j��4i�7jÞ

�
; ð5� i�8;1� j�4Þ;

�2

2

�
�ij

P8
k¼5�

2
kþ2�j�i

�
þ�3

2 �ij

�P
4
k¼1�

2
k

�

þ�4

2 f�j�4�i�4þð��5j�2þ�6j�1��7j�4þ�8j�3Þ
�ð��5i�2þ�6i�1��7i�4þ�8i�3Þg; ð5� i;j�8Þ:

(B3)

With Eq. (B3), the diagonal sums of M2 are given as

X4
i¼1

M2
ii ¼ 3�1

X4
i¼1

�2
i þ 2�3

X8
i¼5

�2
i þ �4

X8
i¼5

�2
i ¼ 6�1�

y
1�1 þ ð4�3 þ 2�4Þ�y

2�2; ð1 � i � 4Þ;

X8
i¼5

M2
ii ¼ 3�2

X8
i¼5

�2
i þ 2�3

X4
i¼1

�2
i þ �4

X4
i¼1

�2
i ¼ 6�2�

y
2�2 þ ð4�3 þ 2�4Þ�y

1�1; ð5 � i � 8Þ: (B4)

The counterterm in Eq. (A8) includes the following contribution:

Tr ½ðM2ð�Þ �m2
12�1ÞðM2ð�Þ �m2

12�1Þ� ¼ Tr½M2ð�ÞM2ð�Þ � 2m2
12�1M

2� þ 8m4
12: (B5)

The second term of Eq. (B5) is proportional to

Tr ½m2
12�1M

2� ¼ ð2�3 þ 4�4Þð�1�5 þ�2�6 þ�3�7 þ�4�8Þm2
12 ¼ ð2�3 þ 4�4Þð�y

1�2 þ�y
2�1Þm2

12: (B6)

The first term of Eq. (B5) can be decomposed as

Tr ½M2ð�ÞM2ð�Þ� ¼ X4
i;j¼1

M2ð�ÞijM2ð�Þji þ 2
X4
i¼1

X8
j¼5

M2ð�ÞijM2ð�Þji þ
X8
i;j¼5

M2ð�ÞijM2ð�Þji: (B7)

Each term of Eq. (B7) is given as

X4
i;j¼1

M2ð�ÞijM2ð�Þji ¼ 3�2
1

�X4
i¼1

�2
i

�
2 þ 3�1�3

X4
i¼1

�2
i

X8
j¼5

�2
j þ �1�4

�X8
i¼5

�2
i

X4
j¼1

�2
j þ ð�1�5 þ�2�6 þ�3�7 þ�4�8Þ2

þ ð�1�6 þ�3�8 ��2�5 ��4�7Þ2g þ �3�4

�X8
i¼5

�2
i

�
2 þ �2

3

�X8
i¼5

�2
i

�
2 þ �2

4

2

�X8
i¼5

�2
i

�
2

¼ 12�2
1ð�y

1�1Þ2 þ ð12�1�3 þ 4�1�4Þð�y
1�1Þð�y

2�2Þ þ 4�1�4j�y
1�2j2

þ ð4�3�4 þ 4�2
3 þ 2�2

4Þð�y
2�2Þ2; (B8)
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X4
i¼1

X8
j¼5

M2ð�ÞijM2ð�Þji ¼ �2
3

X8
i¼5

�2
i

X4
j¼1

�2
j þ 2�3�4

�X4
i¼1

�i�iþ4

X4
j¼1

�j�jþ4 þ ð�1�6 ��2�5 þ�3�8 ��4�7Þ2
�

þ �2
4

2

�X4
i¼1

�2
i

X8
j¼5

�2
j þ 2

�X4
i¼1

�i�iþ4

�
2 þ 2ð�1�6 ��2�5 þ�3�8 ��4�7Þ2

�

¼ ð4�2
3 þ 2�2

4Þð�y
1�1Þð�y

2�2Þ þ ð8�3�4 þ 4�2
4Þj�y

1�2j2; (B9)

X8
i;j¼5

M2ð�ÞijM2ð�Þji ¼ 3�2
2

�X8
i¼5

�2
i

�
2 þ 3�2�3

X8
i¼5

�2
i

X4
j¼1

�2
j þ �2�4

�X4
i¼1

�2
i

X8
j¼5

�2
j þ ð�1�5 þ�2�6 þ�3�7 þ�4�8Þ2

þ ð�1�6 þ�3�8 ��2�5 ��4�7Þ2
�
þ �3�4

�X4
i¼1

�2
i

�
2 þ �2

3

�X4
i¼1

�2
i

�
2 þ �2

4

2

�X4
i¼1

�2
i

�
2

¼ 12�2
2ð�y

2�2Þ2 þ ð12�2�3 þ 4�2�4Þð�y
1�1Þð�y

2�2Þ þ 4�2�4j�y
1�2j2

þ ð4�3�4 þ 4�2
3 þ 2�2

4Þð�y
1�1Þ2: (B10)

From Eqs. (B8)–(B10), one obtains,

Tr½M2ð�ÞM2ð�Þ� ¼ ð12�2
1 þ 4�3�4 þ 4�2

3 þ 2�2
4Þð�y

1�1Þ2 þ ð12�2
2 þ 4�3�4 þ 4�2

3 þ 2�2
4Þð�y

2�2Þ2
þ ð12�1�3 þ 4�1�4 þ 8�2

3 þ 4�2
4 þ 12�2�3 þ 4�2�4Þð�y

1�1Þð�y
2�2Þ

þ ð4�1�4 þ 16�3�4 þ 8�2
4 þ 4�2�4Þj�y

1�2j2: (B11)

Using Eqs. (B4)–(B6) and (B11), one can derive Eq. (A7).

APPENDIX C: ½OT @M2

@’I
O�jj AND LIJ

In this appendix, we show ½OT @M2

@’I
O�jj and LIJ, which are needed to calculate one-loop corrections to the order

parameters ’ð1Þ
I in Eq. (29). ½OT @M2

@’I
O�jj (I ¼ 1, 2, 3, 4) are given as

�
OT @M

2

@�
O

�
jj
¼ 0;

�
OT @M

2

@�0
O

�
jj
¼ 0: (C1)

�
OT @M

2

@v
O

�
jj
¼ 2v

�
OT @M

2

@v2
O

�
jj

¼ v

4

1
2 ð�1 þ �2 þ 6�3 � 2�4 � cosð4�Þð�1 þ �2 � 2ð�3 þ �4ÞÞÞ
1
2 ð�1 þ �2 þ 6�3 � 2�4 � cosð4�Þð�1 þ �2 � 2ð�3 þ �4ÞÞÞ
1
2 ð�1 þ �2 þ 6�3 þ 6�4 � cosð4�Þð�1 þ �2 � 2ð�3 þ �4ÞÞÞ

12f�2cos
2	sin2�þ cos2�sin2	�1g þ ð3 cos2ð�� 	Þ � cos2ð�þ 	Þ þ 2Þð�3 þ �4Þ

12f�1cos
2�cos2	þ sin2�sin2	�2g þ ð�3 cos2ð�� 	Þ þ cos2ð�þ 	Þ þ 2Þð�3 þ �4Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
; (C2)

and

�
OT @M

2

@�
O

�
jj
¼ v2 sin2�

2

�2cos
2ð�Þ � sin2ð�Þ�1 � cosð2�Þð�3 þ �4Þ

�2cos
2ð�Þ � sin2ð�Þ�1 � cosð2�Þð�3 þ �4Þ

�2cos
2ð�Þ � sin2ð�Þ�1 � cosð2�Þð�3 þ �4Þ

3�2cos
2ð	Þ � 3sin2	�1 þ 1

2 sin2� ðsinð2ð�þ 	ÞÞ � 3 sinð2ð�� 	ÞÞÞð�3 þ �4Þ
�3�1cos

2ð	Þ þ 3sin2ð	Þ�2 � 1
2 sin2� ðsinð2ð�þ 	ÞÞ � 3 sinð2ð�� 	ÞÞÞð�3 þ �4Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
: (C3)
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Next, we show LIJ in Eq. (30). Note that LIJ is symmetric LIJ ¼ LJI and its nonzero elements are:

L11 ¼ cos2�m2
11 þ sin2�m2

22 � 2 cosð�Þ sinð�Þm2
12 þ

1

2
½3v2f�1cos

4ð�Þ þ sin2ð�Þð2ð�3 þ �4Þcos2ð�Þ þ sin2ð�Þ�2Þg�;

L22 ¼ v2

�
� cos4�

4
ð�1 þ �2 � 2ð�3 þ �4ÞÞv2 þ cos2�

4
ð�2 � �1Þv2 þ 2m2

12 sin2�� cos2�ðm2
11 �m2

22Þ
�
;

L12 ¼ L21 ¼ v

�
� sin4�

4
ð�1 þ �2 � 2ð�3 þ �4ÞÞv2 þ 1

2
sin2�ð�2 � �1Þv2 � 2m2

12 cos2�� sin2�ðm2
11 �m2

22Þ
�

L33 ¼ � 1

8
v2 sinð2�Þðv2 sinð2�Þ�4 � 4m2

12Þ;
L44 ¼ v2 cosð�Þ sinð�Þm2

12: (C4)

APPENDIX D: ORTHOGONAL MATRIX O IN EQ. (31)

Here we show the orthogonal matrix O in Eq. (31).

O ¼

0 � sin� 0 0 0 0 cos� 0

� sin� 0 0 0 0 cos� 0 0

0 0 0 sin	 cos	 0 0 0

0 0 � sin� 0 0 0 0 cos�

0 cos� 0 0 0 0 sin� 0

cos� 0 0 0 0 sin� 0 0

0 0 0 cos	 � sin	 0 0 0

0 0 cos� 0 0 0 0 sin�

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: (D1)
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