Universality of one-dimensional reversible and number-conserving cellular automata

Kenichi Morita Hiroshima University

18th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA & JAC 2012), La Marana, Corsica, France, September 20, 2012. Published in EPTCS **90**, pp.142–150 (2012).

Outline of the Talk

- Objective: Finding universal 1-d reversible and number-conserving CAs (RNCCAs).
- We give a method of converting a 2-neighbor s-state reversible partitioned CA (RPCA) into a 4-neighbor 4s-state RNCCA.
- Since there is a universal 2-neighbor 24-state RPCA [Morita, 2011], we can obtain a computa-tionally universal 4-neighbor 96-state RNCCA.

Contents

1. Preliminaries

- Number-Conserving CAs (NCCAs)
- Reversible NCCAs (RNCCAs)
- Partitioned CAs (PCAs)
- 2. Converting a reversible PCA (RPCA) into an RNCCA

1. Preliminaries

- Number-Conserving CAs (NCCAs)
- Reversible NCCAs (RNCCAs)
- Partitioned CAs (PCAs)

Number-Conserving CA (NCCA)

- An abstract spatiotemporal model having a property similar to the conservation laws in physics.
 - Each cell has an integer value.
 - Their sum in a configuration is conserved.

Sum

$$t \quad \cdots \quad 0 \quad 0 \quad 5 \quad 2 \quad 11 \quad 3 \quad 7 \quad 0 \quad 0 \quad \cdots \quad 28$$

$$t+1$$
 \cdots 0 0 3 4 9 4 5 3 0 \cdots 28

 So far, several definitions and characterization of NCCAs have been given [Boccara, Fuks, 2000], [Durand, et al., 2003].

Several Notions on NCCAs

- Periodic-number-conserving
- Finite-number-conserving
- Number-conserving (for infinite configurations)

Durand, Formenti, Róka (2003) proved the above are all equivalent.

• Note: In our proof, we use the definition of *finitenumber-conserving* CAs.

Finite-Number-Conserving CAs

Definition [Durand, et al., 2003]

- Let A be a 1-d CA whose state set is $Q = \{0, \dots, s-1\}.$
- Let F be the global function of A.
- Let Conf_{fin}(Q) be the set of all finite configurations over Q.

A is called *finite-number-conserving*, if the following condition holds.

$$\forall \alpha \in \mathsf{Conf}_{\mathsf{fin}}(Q) : \sum_{x \in \mathbb{Z}} \alpha(x) = \sum_{x \in \mathbb{Z}} F(\alpha)(x)$$

Reversible Cellular Automaton (RCA)

- It is a CA whose global function is one-to-one.
- Hence, there is no pair of configurations that go to the same configuration.

• In the following, we investigate *reversible NCCAs* (RNCCAs).

Past Studies on 1-D RNCCAs

- 2-neighbor (radius 1/2) case: Every RNCCA is a *shift-identity product CA*.
 [García-Ramos, 2012]
- 3-neighbor (radius 1) case:
 Some RNCCAs show nontrivial behaviors.
 [Imai, Martin, Saito, 2012]

2-Neighbor (Radius 1/2) RNCCAs

They are all shift-identity product CAs (SIPCAs).
 [García-Ramos, 2012]

In a SIPCA, signals do not interact each other.Hence, it cannot be computationally universal.

Past Studies on 1-D RNCCAs

 2-neighbor (radius 1/2) case: Every RNCCA is a *shift-identity product CA*.
 [García-Ramos, 2012]

3-neighbor (radius 1) case:
 Some RNCCAs show nontrivial behaviors.
 [Imai, Martin, Saito, 2012]

3-Neighbor (Radius 1) RNCCAs

• Some RNCCAs show nontrivial behaviors.

[Imai, Martin, Saito, 2012]

• In these CAs, signals can interact each other.

• It is not known whether there is a universal one.

Studies on 1-D RNCCAs

- 2-neighbor (radius 1/2) case: Every RNCCA is a *shift-identity product CA*.
 [García-Ramos, 2012]
- 3-neighbor (radius 1) case:
 Some RNCCAs show nontrivial behaviors.
 [Imai, Martin, Saito, 2012]
- 4-neighbor (radius 3/2) case: In this talk, we will show there is a *universal* RNCCA.

Partitioned Cellular Automaton (PCA)

1-d 3-neighbor PCA

f: local function

• To construct an RCA, it is sufficient to give a PCA whose local function f is one-to-one.

1-D 2-Neighbor PCA

 It is a special case of a 3-neighbor PCA where the left state set is a singleton.

A 2-Neighbor RPCA Can Simulate a 3-Neighbor RPCA [Morita, 1992]

3-Neighbor PCA P₃

2-Neighbor PCA P₂

Computationally Universal 1-D Reversible CAs

- On infinite configurations:
 24-state 2-neighbor RPCA
- On finite configurations:
 98-state 3-neighbor RPCA

[Morita, 2011]

[Morita, 2007]

A 24-State 1-D 2-Neighbor RPCA That Simulates Any Cyclic Tag System

t																																								
0	—	n	—	y	-	—	—	*	—	n	—	n			—	*	—	y	-	_	—	*	N	—	Y	-	Y		—		\boldsymbol{Y}		Y	—	Y	—	Y	—	Y	-
1	—	*	—	n	—	y	—	—	—	*	—	n	—	n	—	—	—	*	—	y	-	—	—	/	Y	—	\boldsymbol{Y}	—	—	—	\boldsymbol{Y}	—	\boldsymbol{Y}	—	Y	—	Y	—	Y	-
2	—	—	-	*	—	n	—	y	—	—	—	*	—	n	—	n	—	—	—	*	—	y	—	—	Y	/	Y	—	—	—	\boldsymbol{Y}	—	Y	—	Y	—	Y	—	Y	-
3	—	y	—	—	—	*	—	n	—	y	—	—	—	*	—	n	—	n	—	—	—	*	—	y	Y	—	Y	/	—	—	Y	—	Y	—	Y	—	Y	—	Y	=
4	—	*	-	y	-	—	-	*	-	n	-	y	—	—	—	*	—	n	—	n	-	—	—	*	Y	y	Y		+	n	Y	—	Y	—	Y	_	Y	—	Y	=1
5	—	_	-	*	-	y	-	—	—	*	—	n	—	y	—	_	—	*	—	n	-	n	—	_	+	/	Y	y	_	+	Y	n	Y	—	Y	_	Y	_	Y	=1
6	—	n	-	—	-	*	—	y	—	—	—	*	—	n	—	y	—	_	—	*	-	n	—	n	—	+	Y	/	_	y	Y	+	Y	n	Y	_	Y	_	Y	=
7	—	n	-	n	-	—	-	*	-	y	-	—	—	*	_	n	—	y	_	—	-	*	—	n	—	n	Y	+	+	n	Y	y	Y	+	Y	n	Y	_	Y	=1
8	—	*	-	n	-	n	_	_	-	*	-	y	—	_	_	*	—	n	_	y	-	—	-	*	_	n	Y	n	+	+	Y	n	Y	y	\overline{Y}	+	Y	n	Y	=1
9	—	—	-	*	-	n	_	n	-	_	-	*	—	y	_	—	—	*	_	n	-	y	-	—	_	*	Y	n	N	*	Y	+	Y	n	\overline{Y}	y	Y	+	Y	n
10	—	y	-	_	-	*	-	n	-	n	_	_	_	*	_	y	_	_	_	*	-	\overline{n}	—	y	_	_	+	/	N	n	+	/	\overline{Y}	+	\overline{Y}	n	\overline{Y}	\overline{y}	\overline{Y}	+
11	—	n	-	y	-	_	-	*	-	n	_	n	_	_	_	*	_	y	_	_	-	*	_	n	_	y		+	N	/	\overline{N}	*	\overline{Y}	/	\overline{Y}	+	\overline{Y}	n	\overline{Y}	\overline{y}
12	_	*	-	$\frac{1}{n}$	-	y	-	_	-	*	_	n	_	n	_	_	_	*	_	y	-	_	_	*	_	\overline{n}	_	y	\overline{N}	+	\overline{N}	/	+	/	\overline{Y}	/	\overline{Y}	+	\overline{Y}	\overline{n}
13	_	_	-	*	-	$\frac{1}{n}$	-	y	-	_	_	*	_	n	_	n	_	_	_	*	-	y	_	_	_	*	—	\overline{n}	\overline{N}	\dot{y}	\overline{N}	+	+	y	\overline{Y}	/	\overline{Y}	/	\overline{Y}	+
14	_	y	-	_	-	*	-	n	-	y	_	_	_	*	_	n	_	n	_	_	-	*	_	y	—	_	—	*	\overline{N}	\overline{n}	\overline{N}	y	+	+	\overline{Y}	y	\overline{Y}	/	\overline{Y}	7
15	_	*		y	-	_	-	*	-	$\frac{1}{n}$	_	y	_	_	_	*	_	n	_	n	-	_	_	*	_	y	—	_	_	/	N	$\frac{1}{n}$	\overline{Y}	*	\overline{Y}	+	\overline{Y}	$\frac{y}{y}$	\overline{Y}	$\overline{7}$
16^{-10}	_	_		*		y	_	_	_	*	_	$\frac{1}{n}$	_	y	_	_	_	*	_	n	-	n	_	_	_	*	_	y	_	/	\overline{N}	/	\overline{Y}	n	+	7	\overline{Y}	+	\overline{Y}	$\frac{y}{y}$
17	_	n	_	_	_	*	_	\boldsymbol{y}	_	_	_	*	_	$\frac{v}{n}$	_	\boldsymbol{y}	_		_	*	_	\overline{n}	_	n	_	_	_	*	_	y	\overline{N}	_	\overline{Y}	/	\overline{N}	/ *	\overline{V}	/	$\frac{1}{V}$	+
18	_	\overline{n}	_	n	_	_	_	*	_	\boldsymbol{y}	_		_	*	_	$\frac{v}{n}$	_	\boldsymbol{y}	_		_	*	_	n	_	\overline{n}	_		_	*	\overline{N}	\boldsymbol{y}	\overline{V}	/ 	\overline{N}	/	+	/	$\frac{1}{V}$	7
10	_	*		$\frac{n}{n}$		\overline{n}		_	-	*	_	\boldsymbol{u}	_	_	_	*	_	$\frac{v}{n}$	_	\boldsymbol{u}			_	*	_	$\frac{n}{n}$	_	\overline{n}	_	_	_	/	$\frac{1}{V}$	\boldsymbol{u}	\overline{N}	/	+	$\frac{1}{y}$	$\frac{1}{V}$	$\frac{1}{7}$
$\frac{10}{20}$	_	·		*		$\frac{n}{n}$		\overline{n}	-	_	_	*	_	\boldsymbol{v}	_	· _	_	*	_	$\frac{b}{n}$	-	\boldsymbol{u}	_	· 	_	*	_	$\frac{n}{n}$	_	\overline{n}	_	/	V	/	\overline{N}	\boldsymbol{u}	_	+	$\frac{1}{V}$	$\frac{1}{y}$
$\frac{20}{21}$.	_	<i>u</i>		· _		*	_	$\frac{n}{n}$	_	n	_	· _	_	*	_	u	_		_	*	_	$\frac{b}{n}$	_	u	_	· 	_	*		$\frac{n}{n}$		\overline{n}	V	/	\overline{N}	/	_	$\frac{1}{u}$	$\frac{1}{V}$	+
$\frac{21}{22}$	_	$\frac{g}{n}$	_	U	_	·	_	*	_	$\frac{n}{n}$	_	\overline{n}	_	_	_	9 *	_	U	_	·	_	*	_	$\frac{g}{n}$	_	U	_	-		*		$\frac{n}{n}$	$\frac{1}{V}$	\overline{n}	$\frac{1}{N}$	/	+	$\frac{\partial}{\partial n}$	$\frac{1}{V}$	$\frac{1}{u}$
$\frac{22}{23}$.	_	*	_	9 n	_	11			_	*	_	$\frac{n}{n}$	_	n	_		_	9	_	11	_		_	*	_	$\frac{\partial}{\partial n}$	_	11	_			*	$\frac{1}{V}$	$\frac{n}{n}$	\overline{M}	n	_	+	$\frac{1}{V}$	$\frac{\partial}{\partial n}$
40		T		10		9				T		10		10				T		9				T		10		9				T	1	10	IV	10				10

A 24-State 1-D 2-Neighbor RPCA That Simulates Any Cyclic Tag System (Colored version)

How can we convert it into an RNCCA?

2. Converting a reversible PCA (RPCA) into an RNCCA

Main Result

Lemma

• Let $P = (\mathbb{Z}, (C, R), (0, -1), f)$ be a 1-d RPCA.

• We can construct a 1-d RNCCA

 $A = (\mathbb{Z}, \tilde{Q}, (-2, -1, 0, 1), \tilde{f}, 0)$ that simulates P, such that $\tilde{Q} = \{0, 1, \dots, 4|C| \cdot |R| - 1\}.$

Proposition [Morita, 2011] There is a computationally universal 1-d 2-neighbor 24-state RPCA.

Theorem There is a computationally universal 1-d 4-neighbor 96-state RNCCA.

How to Construct an RNCCA from an RPCA — A Proof Outline of the Lemma —

Given: A 1-d 2-neighbor s-state RPCA $P = (\mathbb{Z}, (C, R), (0, -1), f)$

Construct: A 1-d 4-neighbor 4*s*-state RNCCA $A = (\mathbb{Z}, \tilde{Q}, (-2, -1, 0, 1), \tilde{f}, 0)$

Example:

If $C = \{Y, N, P, M\}$ and $R = \{y, n, +, -, *, /\}$, then $\tilde{Q} = \{0, ..., 95\}$, and \tilde{f} is determined as below.

Heavy and Light Particles for the States in C and R

 $P = (\mathbb{Z}, (C, R), (0, -1), f)$

• If $C = \{Y, N, P, M\}$ and $R = \{y, n, +, -, *, /\}$, then prepare the following 4 sets of integers: $\hat{C} = \{0, 12, 24, 36\}, \ \hat{R} = \{0, 1, 2, 3, 4, 5\}$ $\check{C} = \{84, 72, 60, 48\}, \ \check{R} = \{11, 10, 9, 8, 7, 6\}$ Elements of $\hat{C} \cup \check{C}$ are heavy particles. Elements of $\hat{R} \cup \check{R}$ are light particles.

Each number represents the *mass* of the particle.

Correspondence among $C, R, \widehat{C}, \widecheck{C}, \widehat{R},$ and \widecheck{R}															
$P = (\mathbb{Z}, (C, R), (0, -1), f)$															
C	$C = \{Y, N, P, M\}, R = \{y, n, +, -, *, /\}$														
$\hat{\varphi}_C: C \to \hat{C}, \ \check{\varphi}_C: C \to \check{C} \qquad \qquad \hat{\varphi}_R: R \to \hat{R}, \ \check{\varphi}_R: R \to \check{R}$															
С	Y	N	P	M	r	$\mid y$	n	+	—	*	/				
$\widehat{\varphi}_C(c)$	0	12	24	36	$\widehat{\varphi}_R(r)$	0	1	2	3	4	5				
$\check{\varphi}_C(c)$	84	72	60	48	$\check{arphi}_R(r)$	11	10	9	8	7	6				
$\widehat{\varphi}_C(c)$	\widehat{Y}	\widehat{N}	(\hat{P})	\widehat{M}	$\widehat{\varphi}_R(r)$	\widehat{y}	\widehat{n}	$(\widehat{+})$	$\widehat{-}$	(*)	\bigcirc				
$\check{\varphi}_C(c)$	(\check{Y})	(\check{N})	(\check{P})	(\tilde{M})	$\check{arphi}_R(r)$	(\check{y})	Ň	$(\tilde{+})$	$\tilde{-}$	(×	\bigcirc				

Hereafter, we use notations (c), (c), (r), (r).
(c), (c) and (r), (r) are complementary pairs, since (c) + (c) = 84 and (r) + (r) = 11.

Simulating RPCA P by RNCCA A (1)

 $A = (\mathbb{Z}, \tilde{Q}, (-2, -1, 0, 1), \tilde{f}, 0)$

- Each cell of A keeps one c and one r.
- A light particle r always moves rightward at the unit speed.
- A heavy particle c is stationary.

Simulating RPCA P by RNCCA A (2)

• If a complementary pair of light particles (\hat{r}, \hat{r}) meets that of heavy particles (\hat{c}, \hat{c}) , state transition of P is simulated. Then, new pairs of complementary particles are created.

• In all other cases, a light particle r simply moves rightward without interacting heavy particles.

Simulation Process of P by A $A = (\mathbb{Z}, \tilde{Q}, (-2, -1, 0, 1), \tilde{f}, 0)$

• A precise proof on number-conserving property and reversibility of A is found in the proceeding.

Concluding Remarks

• Result:

A universal 4-neighbor 96-state RNCCA exists, in spite of the strong constraints of reversibility and number-conservation.

• Open problem:

- Is there a universal 3-neighbor RNCCA?