
A deterministic two-way multi-head
finite automaton can be converted

into a reversible one with the
same number of heads

Kenichi Morita

Hiroshima University

The Fourth Workshop on Reversible Computation
(RC 2012), Copenhagen, July 2, 2012



Contents

1. Introduction:

A multi-head finite automaton (MFA)

2. Converting a deterministic MFA into

a reversible one

3. Applying the conversion method to

Turing machines



1. Introduction:
A multi-head finite automaton



Multi-head finite automaton (MFA)

• It is a simple classical model of an acceptor for

a formal language.

• It consists of a finite-state control, an input

tape, and k read-only heads (MFA(k)).

� b a a a b b a �

Input tape

Heads:

Finite-state controlq

▲
h1

▲
h2

▲
h3



Past studies on reversible MFAs

• A two-way reversible MFA was introduced, and

its basic properties were shown. [Morita, 2011]

• The class of two-way reversible MFAs is exactly

characterized by the class of deterministic (and

reversible) logarithmic space. [Axelsen, 2012]

• A one-way reversible MFA was studied, and its

accepting capability was investigated.

[Kutrib, Malcher, 2012]



Formal definition of a two-way MFA(k)

M = (Q, Σ , k, δ, �, �, q0, A, R)

Q: a nonempty finite set of states
Σ : a nonempty finite set of input symbols
k: a number of heads (k ∈ {1,2, . . . })
�, �: left and right endmarkers (�, � �∈ Σ)
q0: the initial state (q0 ∈ Q)
A: a set of accepting states (A ⊂ Q)
R: a set of rejecting states (R ⊂ Q, A ∩ R = ∅)
δ: a transition relation, which is a subset of

Q × ((Σ ∪ {�, �})k ∪ {−1,0,+1}k) × Q



The transition relation δ of an MFA(k)

• δ is a set of “triples” of the form [p, x, q].

p : a present state (p ∈ Q)
x : symbols read (x ∈ (Σ ∪ {�, �})k), or

shift directions (x ∈ {−1,0,+1}k)
q : a next state (q ∈ Q)

• [p, s, q] is called a read-rule if s ∈ (Σ ∪ {�, �})k.

• [p, d, q] is called a shift-rule if d ∈ {−1,0,+1}k.

Note: Quintuple formulation is also used: [p, s, d, q]



Determinism of an MFA M

• An MFA M is called a deterministic MFA iff

∀ r1 = [p, x, q] ∈ δ, ∀ r2 = [p′, x′, q′] ∈ δ

((r1 �= r2 ∧ p = p′) ⇒
(x �∈ {−1,0,+1}k ∧ x′ �∈ {−1,0,+1}k

∧ x �= x′))

• It means that for every pair of rules r1 and r2,

if the present states of them are the same, then

(1) r1 and r2 must be read-rules, and

(2) the symbols x and x′ must be different.



Reversibility of an MFA M

• An MFA M is called a reversible MFA iff

∀ r1 = [p, x, q] ∈ δ, ∀ r2 = [p′, x′, q′] ∈ δ

((r1 �= r2 ∧ q = q′) ⇒
(x �∈ {−1,0,+1}k ∧ x′ �∈ {−1,0,+1}k

∧ x �= x′))

• It means that for every pair of rules r1 and r2,

if the next states of them are the same, then

(1) r1 and r2 must be read-rules, and

(2) the symbols x and x′ must be different.



Notations for deterministic and reversible

MFAs

• DMFA: Irreversible and deterministic MFA.

• RDMFA: Reversible and deterministic MFA.

• DMFA(k): DMFA with k heads.

• RDMFA(k): RDMFA with k heads.

Note: We do not consider a nondeterministic MFA

hereafter.



Example: An RMFA(2) that accepts all

strings of length 2m (m = 0,1, . . .) [Morita, 2011]

M2m = ({q0, q1, . . . , q5, qa, qr}, {1},2, δ2m, �, �, q0, {qa}, {qr})
δ2m = { [q0, [�, �], [0,+], q1],

[q1, [�,1], [0,+], q1], [q1, [�, �], [+,−], q2],
[q2, [1,1], [0,−], q3], [q2, [1, �], [−,+], q4],
[q2, [�, �], [0,0], qr],
[q3, [1,1], [+,−], q2], [q3, [1, �], [−,0], q5],
[q4, [1,1], [−,+], q4], [q4, [�,1], [+,−], q2],
[q5, [�, �], [0,0], qa], [q5, [1, �], [0,0], qr] }

• M2m divides n by 2 repeatedly and checks if the

remainders are all 0s till the dividend becomes 1.
t state tape

0 q0 � 1 1 1 1 1 1 1 1 �
▲
▲

40 qa � 1 1 1 1 1 1 1 1 �
▲
▲

t state tape

0 q0 � 1 1 1 1 1 1 1 1 1 1 �
▲
▲

36 qr � 1 1 1 1 1 1 1 1 1 1 �
▲

▲



An RDMFA can be realized as a garbage-less

reversible logic circuit

• A rotary element (RE) is a reversible logic ele-

ment with 2 states and 4 symbols. [Morita, 2001]

State H State V

� �

��

�

��

�

n n′

e

e′

s′ s

w′

w � �

��

�

��

�

n n′

e

e′

s′ s

w′

w

t

� �
��

�

��

�

t + 1

� �
��

�

��

�

t

� �
��

�

��

�

t + 1

� �
��

�

��

�

(a) parallel case (b) orthogonal case



Reversible logic circuit realizing M2m

— Initial configuration for the input n = 2 —



Reversible logic circuit realizing M2m

— Final configuration for the input n = 2 —



2. Converting a deterministic MFA

into a reversible one



A DMFA(k) is simulated by an RDMFA(k)

Theorem 1 For any DMFA(k) M , we can con-

struct an equivalent RDMFA(k) M†. Hence,

L[RDMFA(k)] = L[DMFA(k)].

Remark: L[RD1MFA(k)] ⊆
 L[D1MFA(k)].

[Kutrib, Malcher, 2012]

Notation:

L[M]: The class of languages accepted by M.

1MFA: A one-way MFA



Assumptions on DMFA for proving Theorem 1

(M1) The initial state q0 does not appear as the

third component of any rule in δ.

(M2) All the accepting and rejecting states are

halting states.

(M3) Every states other than the initial state ap-

pears as the third component of some rule in δ.

(M4) The DMFA performs read and shift opera-

tions alternately.

(M5) Each head must not go beyond the endmark-

ers both in forward and backward computation.

It is easy to modify a DMFA to satisfy them.



Proof outline of Theorem 1

• RDMFA(k) M† traverses a computation graph

of M using additional states.
qa

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q5 q6

q4

q2 q3

q0 q1

�
�

�

�

�

� �

A case M halts. A case M loops.

Note: Each node represents a configuration of M . But,

here, only a state of the finite-state control is written.



Traversing a computation graph reversibly

• M† has the following states for each q of M .

q is for the forward simulation.

qj is for the backward simulation, where
j is used to distinguish the incoming edges.

q

qi1 qi2 qi3

� ��

�
q
�

qi1

�
qi2

� qi3

�
q1

�

q2

�

q3

	

Irreversible transitions of M .



The case M halts in an accepting state (1)

qa

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q0

�

q2
�q

3
6

	

q1
3 �

q3
�

q6

�
q2
a

	

q1
7

�

q1
4 �

q4
�q

2
7

	

q1
5 �

M† starts to traverse the computation graph from

the initial configuration of M .



The case M halts in an accepting state (2)

qa

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q5
�

q7
�

qa�

q̂1
a

�

If M enters an accepting state qa, then M† keeps

the fact by the states of the form q̂.



The case M halts in an accepting state (3)

qa

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q̂1
6

�

q̂1
1 �

q̂1

�
q̂2
6

�

q̂1
2

�
q̂1
0

M† finally goes back to M ’s initial configuration in

the accepting state q̂10.



The case M halts in a non-accepting state (1)

qr

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q0

�

q2
�q

3
6

	

q1
3 �

q3
�

q6

�
q2
r

	

q1
7

�

q1
4 �

q4
�q

2
7

	

q1
5 �

M† starts to traverse the computation graph from

the initial configuration of M .



The case M halts in a non-accepting state (2)

qr

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q5
�

q7
�

qr�

q1
r

�

Since M does not enter an accepting state, M†
uses only the states without “ˆ”.



The case M halts in a non-accepting state (3)

qr

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q1
6

�

q1
1 �

q1

�
q2
6

�

q1
2

�
q1
0

M† finally goes back to M ’s initial configuration in

the rejecting state q10.



The case M loops (1)

q5 q6

q4

q2 q3

q0 q1

�
�

�

�

�

� �
q0

�
q2
2

�
q1
3

�

q1
1 �

q1

�

M† starts to traverse the computation graph from

the initial configuration of M .



The case M loops (2)

q5 q6

q4

q2 q3

q0 q1

�
�

�

�

�

� �

q2
3

�

q1
6

�

q1
5

�

q1
2

�
q1
0

Though it is not a tree, M† finally goes back to

M ’s initial configuration in the rejecting state q10.

This is because an RDMFA always halts.



An RDMFA always halts

Lemma 1 [Morita, 2011] If M is an RDMFA,

then M eventually halts for any input w.

Note: Here, we assume the condition (M1) that the initial

state q0 of M does not appear as the third component of

any rule of M (i.e., q0 has no predecessor state).



Example of an irreversible DMFA(3)

The following irreversible DMFA(3) Mp accepts all

strings whose length is a prime number.

Mp = (Q, {1},3, δ, �, �, q0, {qa}, { })
Q = {q0, q1, . . . , q16, qa}
δ = { [q0, [�, �, �], q1], [q1, [0,+,0], q2], [q2, [�,1, �], q3], [q3, [0,+,0], q4],

[q4, [�,1, �], q5], [q5, [+,−,+], q6], [q6, [1,1,1], q5], [q6, [1, �,1], q7],
[q6, [�,1,1], q9], [q6, [�, �,1], q9], [q7, [0,+,−], q8], [q8, [1,1,1], q7],
[q8, [1,1, �], q5], [q9, [0,+,−], q10], [q10, [�,1, �], q14], [q10, [�,1,1], q11],
[q11,[−,+,−],q13], [q12, [−,0,0], q13], [q13, [1,1,1], q11], [q13, [1,1, �], q12],
[q13, [�,1, �], q3], [q14, [0,+,0], q15], [q15, [�, �, �], qa], [q15, [�,1, �], q16],
[q16, [0,−,0], q10] }

t state tape

0 q0 � 1 1 1 1 1 1 1 �
▲
▲
▲

273 qa � 1 1 1 1 1 1 1 �
▲
▲

▲



An RDMFA(3) M
†
p that simulates Mp

M †
p = (Q†, {1},3, δ†, �, �, q0, {q̂1

0}, {q1
0})

Q† = {q, q̂, q1, q̂1 | q ∈ Q} ∪ { q2
3, q2

10, q
2
13, q̂

2
3, q̂2

10, q̂
2
13 }

δ† = δ1 ∪ · · · ∪ δ6 ∪ δ̂1 ∪ · · · ∪ δ̂5 ∪ δa ∪ δr

δ1 = { [q1, [0,+,0], q2], [q3, [0,+,0], q4], [q5, [+,−,+], q6], [q7, [0,+,−], q8],
[q9, [0,+,−], q2

10], [q11, [−,+,−], q2
13], [q12, [−,0,0], q13], [q14, [0,+,0], q15],

[q16, [0,−,0], q10] }
δ2 = { [q0, [�, �, �], q1], [q2, [�,1, �], q2

3], [q4, [�,1, �], q5], [q6, [1,1,1], q5],
[q6, [1, �,1], q7], [q6, [�,1,1], q9], [q6, [�, �,1], q9], [q8, [1,1,1], q7],
[q8, [1,1, �], q5], [q10, [�,1, �], q14], [q10, [�,1,1], q11], [q13, [1,1,1], q11],
[q13, [1,1, �], q12], [q13, [�,1, �], q3], [q15, [�, �, �], qa], [q15, [�,1, �], q16] }

δ3 = { [q1
2, [0,−,0], q1

1], [q1
4, [0,−,0], q1

3], [q1
6, [−,+,−], q1

5], [q1
8, [0,−,+], q1

7],
[q1

10, [0,−,+], q1
9], [q2

10, [0,+,0], q1
16], [q1

13, [+,−,+], q1
11], [q2

13, [+,0,0], q1
12],

[q1
15, [0,−,0], q1

14] }
δ4 = { [q1

1, [�, �, �], q1
0], [q1

3, [�,1, �], q1
2], [q2

3, [�,1, �], q1
13], [q1

5, [�,1, �], q1
4],

[q1
5, [1,1,1], q1

6], [q1
5, [1,1, �], q1

8], [q1
7, [1, �,1], q1

6], [q1
7, [1,1,1], q1

8],
[q1

9, [�,1,1], q1
6], [q1

9, [�, �,1], q1
6], [q1

11, [�,1,1], q1
10], [q1

11, [1,1,1], q1
13],

[q1
12, [1,1, �], q1

13], [q1
14, [�,1, �], q1

10], [q1
16, [�,1, �], q1

15], [q1
a , [�, �, �], q1

15] }
δ5 = { [q1

1, [�, �,1], q1], [q1
1, [�, �, �], q1], . . . , [q1

16, [�, �, �], q16] }
δ̂i = { [p̂,x, q̂] | [p,x, q] ∈ δi } (i = 1, . . . ,5)
δ6 = { [q2, [�, �, �], q1

2], [q2, [�, �,1], q1
2], . . . , [q15, [�, �, �], q1

15] }
δa = { [qa, [0,0,0], q̂1

a] }
δr = { }



Simulating the DMFA Mp by the RDMFA M
†
p

Mp: t state tape

0 q0 � 1 1 1 1 1 1 1 �
▲
▲
▲

273 qa � 1 1 1 1 1 1 1 �
▲
▲

▲

t state tape

0 q0 � 1 1 1 1 1 1 �
▲
▲
▲

32 q10 � 1 1 1 1 1 1 �
▲

▲
▲

36 q10 � 1 1 1 1 1 1 �
▲

▲
▲ ...

M
†
p: t state tape

0 q0 � 1 1 1 1 1 1 1 �
▲
▲
▲

2016 q̂1
0 � 1 1 1 1 1 1 1 �

▲
▲
▲

t state tape

0 q0 � 1 1 1 1 1 1 �
▲
▲
▲

118 q1
0 � 1 1 1 1 1 1 �

▲
▲
▲



3. Applying the conversion method
to Turing machines



Two-tape Turing machine (TM)

• A model suited for studying space complexity.

• It consists of a finite-state control, a read-only

input tape, a storage tape, and two heads.

Input tape (read-only)

� a b a a b c b a a b a �

q Finite-state control

Storage tape

� a b a a b # # # # # # # #



Relation between DSPACE(s(n)) and

RDSPACE(s(n))

Proposition [Lange, McKenzie, Tapp, 2000]

DSPACE(s(n)) = RDSPACE(s(n))

• (R)DSPACE(s(n)) : The class of languages

accepted by an s(n) space-bounded (R)DTM.

n is the length of the input, and s(n) is a space function.

• But, the simulation method given by them is

rather complex.



The method of converting DMFAs to

RDMFAs can be applied to DTMs simply

Theorem 2 For any DTM T , we can construct

an equivalent RDTM T † such that the following

holds.

1. T † uses exactly the same numbers of storage

tape squares and tape symbols as T . (Thus, it

is a bit stronger result than that of Lange et al.)

2. T † with w ∈ Σ∗ always halts, provided that T

with w uses finitely many storage squares.

(We need not know T ’s space function s(n).)



Example of an irreversible DTM

The DTM Teq accepts all strings over {a, b}∗ such

that the number of a’s is equal to that of b’s.

Teq = (Q, {a, b}, {a, b}, δ, �, �, q0,#, {qa}, { })
Q = {q0, q1, . . . , q6, qa}
δ = { [q0, �, [�, �], q1], [q1,+,+, q2], [q2, a, [#, a], q1],

[q2, b, [#,#], q3], [q2, �, [#,#], q4], [q3,+,0, q2],
[q4,−,−, q5], [q5, b, [a, b], q4], [q5, a, [a, a], q6],
[q5, �, [�, �], qa], [q5, a, [�, �], q6], [q6,−,0, q5] }

t = 0
Input tape (read-only)

� a b a a b b a b b a a b �

q0

Storage tape

� # # # # # # #

t = 53
Input tape (read-only)

� a b a a b b a b b a a b �

qa

Storage tape

� b b b b b b #



An RDTM T
†
eq that simulates Teq

T
†
eq = (Q†, {a, b}, {a, b}, δ†, �, �, q0,#, {q̂10}, {q10})

Q† = {q, q̂, q1, q̂1 | q ∈ Q} ∪ { q22, q25 }
δ† = δ1 ∪ · · · ∪ δ6 ∪ δ̂1 ∪ · · · ∪ δ̂5 ∪ δa ∪ δr
δ1 = { [q1,+,+, q22], [q3,+,0, q2], [q4,−,−, q25], [q6,−,0, q5] }
δ2 = { [q0, �, [�, �],q1], [q2, a, [#, a],q1], [q2, b, [#,#],q3],

[q2, �, [#,#],q4], [q5, b, [a, b],q4], [q5, a, [a, a],q6],
[q5, �, [�, �],qa], [q5, a, [�, �],q6] }

δ3 = { [q12,−,−, q11], [q22,−,0, q13], [q15,+,+, q14], [q25,+,0, q16] }
δ4 = { [q11, �, [�, �],q10], [q11, a, [a,#],q12], [q13, b, [#,#],q12],

[q14, �, [#,#],q12], [q14, b, [b, a],q15], [q16, a, [a, a],q15],
[q1a, �, [�, �],q15], [q16, a, [�, �],q15] }

δ5 = { [q11, �, [#,#],q1], [q11, �, [a, a],q1], . . . , [q16, �, [b, b],q6] }
δ̂i = { [p̂,x, q̂] | [p,x, q] ∈ δi } (i = 1, . . . ,5)
δ6 = { [q2, �, [�, �],q12], [q2, �, [#,#],q12], . . . , [q5, �, [b, b],q15] }
δa = { [qa,0,0, q̂1a ] }
δr = { }



Simulating the DTM Teq by the RDMFA T
†
eq

Teq: t = 0
Input tape (read-only)

� a b a a b b a b b a a b �

q0

Storage tape

� # # # # # # #

t = 53
Input tape (read-only)

� a b a a b b a b b a a b �

qa

Storage tape

� b b b b b b #

T
†
eq: t = 0

Input tape (read-only)

� a b a a b b a b b a a b �

q0

Storage tape

� # # # # # # #

t = 185
Input tape (read-only)

� a b a a b b a b b a a b �

q̂1
0

Storage tape

� # # # # # # #



Concluding remarks

The following relations are proved.

• L[RDMFA(k)] = L[DMFA(k)] (k = 1,2, . . .).

• L[RDTM(s(n))] = L[DTM(s(n))].

The constructed RDTM is garbage-less, and

uses the same number of storage tape symbols.

The proposed converting method can be used to

many other memory-bounded computing models,

e.g. a marker automaton, a space-bounded Turing

transducer, etc.


