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Cross-sectional shape optimization of
whispering-gallery ring resonators

Akihiro Takezawa, Mitsuru Kitamura

Abstract—Optimal cross-sectional shapes of whispering-gallery
ring resonators with prescribed emission wavelength and reso-
nance mode are generated using topology optimization based on
the finite element method. The two critical performance indices,
the quality factor (Q factor) and mode volume of a resonator,
are treated as the objective functions in the optimization. In
our numerical study, characteristics of optimal configurations
are identified and analyzed. Since the Q factor and mode volume
have a trade-off relationship,i.e., an increasing Q factor increases
mode volume, a Pareto-optimal set of solutions can be identified
under certain device specifications. These configurations achieve
better performances than existing shapes in producing both a
high Q factor and low mode volume.

I. I NTRODUCTION

Micro-ring resonators have tremendous potential in optics
with applications to low threshold microcavity lasers and light-
matter systems for quantum networking [1], [2], [3], [4]. The
optical modes, set up in these devices by emissions from
input light, form circular continuous closed beams governed
by internal reflections along the boundary of the resonator.
The circular mode shape is called a whispering-gallery (WG)
mode. Optical resonators exploiting WG modes have been
attaining high levels in the important typical-performance
criteria for resonators,i.e., high quality factor (Q factor) which
measures the inverse of the decay rate of the energy and low
mode volume which signifies the spatial confinement of the
light [5]. In other words, the light wave is trapped within a
very small volume during WG mode emission.

Both performance criteria depend on emission wavelength,
refraction index of the material, and device shape. In designing
novel devices with existing dielectric materials under a speci-
fied emission wavelength, device shape must be paramount.
The search for novel device geometry can be assisted by
accurate numerical performance analysis using the finite-
element method (FEM). In particular, due to the circular
shape of the device and the optical mode, axisymmetric
models are effective at simulating the WG resonance mode
in ring resonators. Details are explained in [6]. Using FEM,
simple geometric parametric studies have been performed for
disc shapes [7] and toroidal shapes [8]. Rough relationships
between geometry, WG mode order and performance indices
were established, such that the larger radius of the device
yields larger Q factor and high mode volume. However, a
detailed search for an ideal device shape remains an open
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problem. Moreover, since varying the device shape varies the
resulting WG mode order and emission wavelength, a detailed
search for an optimal shape is quite challenging for a specified
wavelength. Thus, integrating existing parametrical studies and
detailed shape optimization provides a means to develop high
performance devices that would be available for a wide variety
of uses.

Topology optimization [9] has contributed to optimal de-
signs in novel wave propagation devices in photonics [10],
[11], [12], [13], [14], [15]. In the approach, the designed de-
vices are represented as distributions of the dielectric material
or metal in the analysis model. By updating the distribution
by the gradient-based optimization method, the generated
distribution represents the shape of devices that attain specific
performance criteria.

In this research, we study and identify optimal shapes
for WG micro-ring resonators using FEM-based topology
optimization. The systematic procedure helps to find opti-
mal device shapes with fixed design performance given a
prescribed emission wavelength and WG resonance mode.
The analysis domains and the equations of state for the
WG mode ring resonators are first considered. The Q factor,
mode volume, and emission wavelength are formulated as
objective functions and an equality constraint. The proposed
geometrical optimization is implemented as a distribution
optimization of the dielectric material using the solid isotropic
material with the penalization (SIMP) method of topology
optimization [9]. The optimization algorithm is constructed
based on the two-times FEM analysis, sensitivity analysis
for each objective function and density function constraint,
and sequential linear programming (SLP) with a phase field
method [16]. Finally, numerical examples are provided as a
validation of the proposed methodology. As a compromise is
required between the two important performance indices, Q
factor and mode volume,i.e. increasing the Q factor increases
the mode volume, a Pareto-optimal set of solutions [17] can
be identified once given device specifications. Optimization
maximizing Purcell factor [18], a practical design parameter
for resonators, is also performed.

II. PROBLEM SETTINGS

A. Analysis model

Using cylindrical coordinates, we model a WG ring res-
onator centered on the origin in free space as illustrated in Fig.
1. The coordinate system composed of components(z, φ, r)
are the axial, azimuthal, and radial coordinates respectively.
The vertical cross-sectional shape of the device in thez-
r plane, is treated as the design target; we obtain the final
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axisymmetric form by generating the solid of revolution. The
domain is enclosed by a so-called perfect matched layer (PML)
domain.

z

o

Design target

r

φ

Fig. 1. The analysis and design domain as described by cylindrical
coordinates

B. Equations of state

The equations of state representing resonance-mode wave
propagation within the domain are the 3D vector Helmholtz
equations. If the resonator medium is isotropic, the Helmholtz
equation for the magnetic fieldH, as derived from Maxwell’s
equation, is written as follows:

∇×
(
1

ε
∇×H

)
− 1

c2
∂2H

∂t2
= 0 (1)

where ε is the relative permittivity andc the speed of light.
Here, the time harmonic function is assumed in the form
H(x, t) = H(x)eiωt and the above equation is solved as an
eigenvalue problem by FEM, whereω = 2πf is the angular
resonance frequency given resonance frequencyf . To suppress
spurious modes in the analysis, a weak penalty term [19] is
introduced to yield the following modified equation used in
[6]:

∇×
(
1

ε
∇×H

)
− α∇ (∇ ·H) +

ω2

c2
H = 0 (2)

whereα is a coefficient. The following two types of boundary
conditions for the above equation are considered:

H × n̂ = 0 on Γpmc (3)

n̂×∇×H + ikn̂× n̂×H = 0 on Γabc (4)

wherek is the wave number in free-space andn̂ is the unit
vector normal to the boundary; the former describing perfect
magnetic conduction and the latter first-order absorption on
the boundary.

The state variable is the set comprising the time-dependent
radial, azimuthal, and axial components of the magnetic field
vectorH(r, t). We factorize the azimuthal-dependence from
the variable using the cylindrical coordinate system; that is,

H(r) = eiMφ[Hr(r, z), iHφ(r, z),Hz(r, z)]
T (5)

whereM is the azimuthal mode order.

C. Performance criteria

In our analysis, the performance criteria in designing WG
ring resonator are the Q factor and the mode volume. In
calculating the Q factor, we consider only the radiation loss
for which, Qrad is calculated as follows [5], [8]:

Qrad =
Re(f)
2Im(f)

(6)

where Re(·) and Im(·) represent respectively the real and
imaginary parts of the variable. In the analysis for the do-
main surrounded by the PLM domain, the real part of the
frequency represents the total energy of the domain, whereas
the imaginary part represents the rate of energy absorption by
the PLM domain,i.e. the radiation loss (Chapter 5 in [20]).

In addition, the mode volume is formulated as follows [5],
[8]:

Vmode=

∫
Ω
ε|E|2dx

max(ε|E|2)
(7)

whereΩ denotes the analysis domain andE is the electric field
vector calculated from the Maxwell-Ampère equation without
the current density term as follows:

∇×H = ε
∂E

∂t
(8)

D. Topology optimization

Topology optimization is performed based on density or
SIMP interpolation schemes; here SIMP stands for solid
isotropic material with penalization [9]. The relative permittiv-
ity over the design domain is expressed in terms of a density
function ρ, (0 ≤ ρ ≤ 1):

ε = εAir + ρ(εGaAlAs − εAir ). (9)

The optimal cross-sectional shape of the device can then be
specified as a distribution inρ.

During optimization, we target the following three tasks:
1) Maximization of the Q factor associated with emissions

as expressed by equation 6.
2) Minimization of the mode volume as expressed by

equation 7.
3) Specification of the emission wavelengthλ = c/Re(f),.

Task 3) is first assumed to be satisfied by introducing the
corresponding equality constraint. In the eigenfrequency anal-
ysis, assuming normalized eigenmodesH (

∫
Ω
|H|2dx = 1),

the total electric energy over the analysis domain equals the
square of the angular eigenfrequency (

∫
Ω
ε|E|2dx = Re(ω)2)

[21], [22]. That is, by pre-specifying emission wavelength and
azimuthal mode order, both numerators in the expressions for
the Q-factor and mode volume are constant during optimiza-
tion. Thus, the objective functions for Task 1,JQ, and Task
2, JV , and the equality constrainth for Task 3 are formulated
as follows:

minimize
ρ

JQ(ρ) = Im(f) (10)

or

minimize
ρ

JV (ρ) = −max(ε|E|2) (11)
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subject to

h(ρ) = λ− λ0 = 0 (12)

with λ0 denoting the specified wavelength.

E. Numerical implementation and algorithm

We solve the eigenvalue problem in equation 2 by FEM.
To perform the iterating numerical optimization based on the
FEM result, the target WG eigenmode is required to be au-
tomatically selected from the numerous resulting eigenmodes.
The two-step analysis proposed in [6] is introduced to specify
the target mode during the optimization iteration. First, we
solve the small closed finite-element model composed of the
device surrounded by a perfect magnetic wall, as drawn in Fig.
2(a), to obtain the eigenfrequency of the target WG mode. The
first eigenmode of the model corresponds to the target WG
mode. Second, we solve for the original model surrounded
by PLM domains, as drawn in Fig. 2(b), specifying the target
eigenfrequency obtained by the closed model.

Since the density function is updated by gradient-based
algorithms, sensitivities for both objective function and con-
straint must be calculated. The sensitivity of the objective
function in equation (10) and the equality constraint in equa-
tion (12) can be calculated from only state variables without
solving the adjoint equation because the optimization problem
of the eigenfrequency is self-adjoint [23]. The sensitivity of
the objective function in equation (11) is expressible in terms
of the functions of the state variable and its adjoint; the adjoint
equation is as formulated in [24].

Fig. 3 shows a flowchart of the optimization procedure.
First, the closed model is solved by FEM to find the eigenfre-
quency of the target WG mode. Second, the original open
model is solved by FEM and the objective function and
the constraint are calculated. Sensitivities for both objective
function and constraint must be calculated. Next, the adjoint
equation is solved by FEM and the sensitivities of the objective
function and the constraint calculated. Finally, the design
variables are updated in the first stage of the optimization
by the SLP algorithm [25] as it is one of the more basic
methods that can handle equality constraints directly. However,
topology optimizations sometimes encounter issues related to
the gray unclear domain. These domains are hard to identify
as belonging to the optimal shape or the void. To prevent
such domains from occurring and to obtain a clear non-gray
shape, the density function is updated in the latter stage by
the phase field method [16] which is a boundary variation
methodology based on the density function. Note that the
equality constraint can be directly handled by SLP, whereas
it is handled indirectly in the phase field method by using
an augmented Lagrangian method [25]. These procedures
are repeated until the iteration limit is reached or certain
convergence criteria hold.

III. N UMERICAL EXAMPLES

To confirm the validity of the proposed methodology, some
numerical examples are studied. The detail of the computa-
tional model is first explained. Optimizations are performed

(a)

Design domain

z

r

Air domain

Center axis
Perfect magnetic wall

Design domain

z

r

Air domain

Center axis PML domain

First order absorbing boundary

(b)

Fig. 2. The analysis domains used in FEM. (a) Closed model. (b) Open
model.

with specified TE modes(p = 1, M = 10, 11 or 12). The
size of each is as follows: the air domains of both closed and
open models are 1.8µm × 3 µm and 4µm × 6 µm respec-
tively; the design domain which is identical in both models
is 1.5µm × 2 µm. The PLM domains are set for the upper,
lower and right-side of the open model and their thickness
are all 0.25µm. The design domain is meshed by 75× 100
square elements. The other domains are meshed by triangular
elements. Using the second-order Lagrange elements for the
formulation of each element, the total degrees of freedoms
are 105885 and 137052 in the closed model and the open
model respectively. The design variable is discretized as a
piecewise-constant function on the square finite elements of
the design domain. Assuming horizontal mirror symmetry of
the optimal shapes, only the upper half of the design domain
is optimized. Thus, the 7500 design variables are updated
during optimization in this problem. The media constituting
the resonator and surrounding domain are assumed to be
respectively isotropic GaAlAs withε = 11.2896 and air with
ε = 1. All FEMs are performed using a commercial software,
COMSOL Multiphysics.

A. Optimization for high Q factor

The first optimization is performed with the specified wave-
length λ0 = 1200nm and azimuthal mode orderM = 11
targeting to improve the Q factor using the objective function
in equation 10. Fig. 4 shows the optimal configuration, the
distribution of the electric energy densityε|E|2 and the electric
field intensity |E|2. These figures are shown in 1.5µm
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Set an initial value of density function ρ

Calculate the target eigenfrequency
from the closed model by FEM.

Calculate the eigenfrequency and the eigenmode
of the open model

specifying the target eigenfrequency.

Calculate the objective function and the constraints.

Update the design variable
by SLP or the phase field method.

Converged?

End
Yes

No

Calculate the sensitivities of
the objective function and the constraint.

Fig. 3. Flowchart of the optimization procedure

× 2 µm boxes for which the left side corresponds to the
center axis. The resulting Q factor and mode volume are
Qrad = 5.809 × 107, Vmode = 1.716 × 10−19. The optimal
shape has a large smooth convex form covering the electric-
field hot spot to reduce radiation losses.

(b)(a) (c)

Fig. 4. Optimal result obtained by maximization ofQrad with λ0 = 1200nm
andM = 11. (a) Optimal shape. (b) Electric field intensity|E|2 distribution,
with the white arrows indicating the electric field’s magnitude and direction
in the medial plane. (c) Electric energy densityε|E|2 distribution.

Next, the optimizations of the Q factor are performed
for different settings of M and λ0. Fig. 5 shows
the optimal configuration obtained by(λ0[nm],M) =
(1100, 11), (1300, 11), (1200, 10), (1200, 12). Table I shows
the comparison of the Q factors and the mode volumes of
these optimal shapes. Fig. 5 (b) has larger shapes than (a)
to get larger-wavelength light with the same azimuthal mode
order. The shapes (c) and (d) have the same characteristics.
However, according to Table I, smaller wavelength and larger

azimuthal mode order correspond to largerQrad. Since both
conditions lead to increases in wavenumber in the emission
mode, in terms of the mode volume, larger shapes have larger
values.

(b)(a)

(c) (d)

Fig. 5. Optimal shapes obtained by maximization ofQrad with
(a) (λ0[nm],M) = (1100, 11), (b) (λ0[nm],M) = (1300, 11), (c)
(λ0[nm],M) = (1200, 10) and (d)(λ0[nm],M) = (1200, 13)

B. Optimization for both high Q factor and low mode volume

The optimizations are performed with the view to increasing
Q factor and decreasing mode volume as far as possible.
The following objective function is introduced by integrating
equations 10 and 11 using weighting factorw:

minimize
ρ

J(ρ) = w ∗ Im(f)− (1− w) ∗max(ε|E|2) (13)

Varying the weighting coefficient from 0 to 1, six optimal
results are encountered; see Fig. 6. Result (a) corresponds
to that shown in Fig. 4. As a trade-off exists between Q-
factor and mode volume, the set of optimal solutions forms
a Pareto-optimal set [17]; betterQrad values must lead to
worseVmode and vice versa given the same wavelength and the
azimuthal mode order. Fig. 7 shows the electric field intensity
corresponding to shape (f). In contrast to high Q factor shape,
the low-mode-volume optimal shape has a small concave form
near the center to enhance the maximum electric energy.
The interpolated shapes (b)-(e) have both characteristics. The
concentrations of the electric field and the electric energy at the
center of the device are observed in shape (f) whereas shape
(a) has a wider hot spot. Moreover, to maintain the emission
wavelength for the same azimuthal mode order but different
shapes, the location of the cross-section moves off-center as
the cross-sectional area becomes smaller. With normalization
of the eigenmode, the square of the emission frequency equals
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TABLE I
COMPARISON OFQRAD AND VMODE AMONG OPTIMAL RESULTS

(λ0[nm],M) (1200,11) (1100,11) (1300,11) (1200,10) (1200,12)

Qrad 5.809× 107 5.943× 107 5.660× 107 1.018× 107 3.303× 108

Vmode 1.716× 10−19 1.342× 10−19 2.224× 10−19 1.526× 10−19 1.989× 10−19

the total electric energy of the resonator and fixed. Thus, the
total energy of the cross-section, which relates the area and
the diameter at the center of the cross-section, are inversely
related.
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Fig. 6. Optimal shapes and their performances, obtained by maximizingQrad
and minimizingVmodewith different weighting factor settings in equation (13).

C. Comparison with existing shapes

Our optimal results are compared with existing shapes.
Since the stays were eliminated during optimizations, shapes
shown in Fig. 6 have no support structure connecting the center
and the main cross-section. To make practical structures, 0.16
µm stays were added to shapes (a) and (b), specifically, 0.08

(a) (b)

Fig. 7. (a) Electric field intensity|E|2 distribution with black arrows
indicating the electric field’s magnitude and direction in the medial plane
and (b) Electric energy densityε|E|2 distribution of optimal result shown in
Fig. 6(f)

µm stays to (c) and (d), and 0.04µm stays to shapes (e)
and (f). In shapes (e) and (f), stays significantly affected the
performance index and the emission wavelength. Thus, re-
optimizations were performed for these two shapes. The results
are shown in Fig. 9 with each shape finally having almost the
same performance and mode shape as the corresponding shape
shown in 6. These are all compared with the two existing
shapes, the disc having trapezoidal cross-section studied in
[8] and the toroid having circular cross-section studied in [7].
A parametric study was performed varying the radiusr and
thicknesst in the disc device and the radiusr and diameter
of the side circled in the toroidal device, both of which are
schematically drawn in Fig. 8. The ranges and step sizes of
these parameters are shown in Table II. Both Q factor and
mode volumes are calculated for all cross-sectional shapes
and those results having a 1200[nm] emission wavelength
identified. Some of the more striking results are plotted in Fig.
9. The optimal solution obtained by the proposed methodology
achieved a better performance in both high Q factor and low-
mode volume ranges, since existing shapes do not have either
a semicircular shape for high Q factor or concave shape for
low mode volume.

d/3

r

d
d/3

r

d
r

t o26

r

t o26

(a) (b)

Fig. 8. Settings of design parameters in existing shapes used in the
comparison with optimal shapes. (a) Disk shape. (b) Toroidal shape.
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TABLE III
COMPARISON OF THEPURCELL FACTOR AMONG OPTIMAL RESULTS AND EXISTING SHAPES.

Optimal shape Optimal shapes in Fig. 9

in Fig. 10 (a) (b) (c) (d) (e) (f) Disc Toroidal

FP (×10−3) 1.210 1.171 0.997 0.821 0.489 2.335× 10−2 2.247× 10−2 0.657 0.335
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Fig. 9. Optimal shapes with stays obtained by maximizingQrad and
minimizingVmode and their performances in comparison with existing shapes.

D. Optimization of the Purcell factor

In real applications, such as micro laser resonators, the Q
factor and the mode volume are not treated independently.
The Purcell factor [18] is an integrated index that dictates
spontaneous emission rates in devices:

FP =
3

4π2

(
λ

n

)3 (
Q

Vmode

)
(14)

where n is the refractive index of the device material. For
example,FP maximization leads to low threshold lasers. Since
the emission wavelength is specified by the equality constraint

TABLE II
PARAMETER SETTINGS FOR EXISTING SHAPES SHOWN INFIG. 8

Type Parameter Interval Step size

Disk r[m] 7.5× 10−7 ≤ r ≤ 1.15× 10−6 5× 10−8

t[m] 2× 10−7 ≤ t ≤ 1.5× 10−6 2× 10−8

Toroidal r[m] 7.5× 10−7 ≤ r ≤ 1.25× 10−6 5× 10−8

d[m] 2× 10−7 ≤ d ≤ 1.5× 10−6 2× 10−8

in the proposed methodology, maximization via equation 14
can be reduced to maximization of the ratio betweenQ and
Vmode. Thus, in combining equations 10 and 11, we use the
following objective function:

minimize
ρ

JQ
JV

= −max(ε|E|2)
Im(f)

. (15)

The optimal configuration is shown in Fig. 10. Table III
shows a comparison of the Purcell factor for the result with
the previous optimal results. From the results for disk- and
toroidal-type devices shown in Fig. 9, the optimal choices of
shape are those witht = 7.5 × 10−7, t = 1.02 × 10−6 and
t = 7.5 × 10−7, t = 4 × 10−7. Since the shape shown in
Fig. 10 was best of all, the validity of the proposed objective
function is confirmed. However, the difference between the
results for the shapes given in Fig. 10 and Fig. 9(a) is slight,
indicating that the effect of the term pertaining to Q factor
is much larger than the one pertaining to mode volume in
equation 15. Table III also indicates a higher Q factor leads
to a higher value of Purcell factor. Thus, considering the Q
factor could be enough to maximize the Purcell factor under
the condition that the emission wavelength and the azimuthal
mode order are both specified.

Fig. 10. Optimal shape obtained by maximizing Purcell factor.

IV. CONCLUSION

In this research, we studied and identified optimal shapes for
WG micro-ring resonators having high Q factor and low mode
volume. The systematic procedure helps to find optimal device
shapes with certain designed performance given prescribed
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emission wavelength and WG resonance mode. As a basic
principle for designing WG micro-ring resonators, we found
that large convex shapes produced high Q factors; small
concave shapes produced low mode volumes. By compar-
ing these optimal shapes obtained numerically with existing
shapes, better performances were clearly observed. Moreover,
we performed an optimization of the Purcell factor, which has
practical relevance in design that includes Q factor and mode
volume. However, maximization of Q factor alone yields an
almost identical result indicating that Q-factor maximization
results in the maximization of the Purcell factor given emission
wavelength and WG resonance mode.

Manufacturing conditions were ignored in this study. Be-
cause of the nature of etching processes and surface tensions
used to make micro-resonators, experimental micro-resonators
must have sharp edges. In particular, deep cusps such exhibited
in the low mode volume shape are hard to manufacture. Thus,
the shapes found in this study will be difficult to investigate
experimentally. However, the fundamental finding we obtained
from optimization will enable better practical design shapes.
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