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2 1 INTRODUCTION 

1 INTRODUCTION 

1.1 Lattice B Physics 

Study of the B meson systems, which contain single b-quark ( mass mb "'"' 4.1-4.5 Ge V 

), is referred as B physics, and is one of the most important subjects of current particle 

physics. In the framework of the standard model, weak decays of B mesons are governed 

by the Cabibbo-Kobayashi-Maskawa (CKM) matrix, the unitary matrix which causes 

the mixing among quark generations [1, 2]. Thus precise measurements of the CKM 

matrix elements are necessary to test a validity of the standard model and to search a 

new physics beyond the standard model [3]. Detection of CP violation in B 13 system 

will give us detailed information on the complex phases of the CKM matrix, which 

would shed light on the baryon asymmetry problem of the universe [3]. For this aim, B 

Factories, dedicated accelerators to study B decay modes, are under construction and 

will start to work near future [4]. 

To extract the CKM matrix element precisely from experimental data, it is crucial 

to evaluate relevant hadronic matrix elements which suffer nonperturbative effect of the 

quantum chromo dynamics (QCD). On this point, recent progress of the heavy quark 

effective theory (HQET) has much proceeded the understanding of the dynamics of 

the heavy-light systems [6]. However there still remains large uncertainties, since the 

HQET predicts only relations among the matrix elements. The lattice simulation enables 

us evaluation of these matrix elements incorporating the nonperturbative effect from 

the first principle. In fact, much effort has been payed for the lattice studies of the 

weak matrix elements, as well as the mass spectrum and the decay constants of B 

mesons. For example, on the decay constant of B meson, fE, current lattice results in 

the quenched approximation agree within 20 %, and successive works with and without 

the dynamical quarks will give more reliable answer [14]. On the other hand, calculation 

of the semileptonic form factors still remains a challenging subject, and requires more 

works with development of computational procedures [12,13, 14]. This work deals with 

a lattice calculation of the hadronic matrix element of the semileptonic weak decay 

B -t- 7rlD (Fig. 1). 

In principle, lattice simulations can compute any hadronic matrix elements from 

the first principle. There is, however, a problem in treating a heavy quark with mass 

mQ on the lattice with currently available computer power. A typical lattice cutoff 

accessible in current simulations, a- 1 "'"' 1 - 3 Ge V, is much less than the b-quark mass, 

mb "'"' 4 Ge V. This causes unacceptably large systematic errors of order of amQ. Thus the 

early lattice calculations of the B systems using the standard Wilson or clover actions 

involved an extrapolation in the heavy quark mass from the charm quark mass regime 
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Figure 1: Semileptonic decay process B -t- rriD. 

to the b-quark mass assuming a heavy quark mass scaling law, which could introduce 

a potential systematic error. An alternative approach is to use effective theories, such 

as the nonrelativistic QCD [24] and the Ferrnilab action [35J, in which large mass scale 

of. order mQ is removed from the dynamics. These theories are not models but the 

systematic expansions of the original QCD in a sense that one can reproduce the same 

results as in QCD within a given order of, e.g. 1/mQ in NRQCD. In this work, we use 

the lattice nonrelativistic QCD (NRQCD) up to O(l/mQ) corrections, thus it enables 

direct simulations at the physical b-quark mass. 

As an calculation of the weak decay form factors, this work is the first application 

of NRQCD. As mentioned above, previous calculations involve an extrapolation from 

the charm quark region to the B meson scale with a help of HQET scaling law. Since 

this extrapolation leads potential uncertainties, direct simulation on the b-quark mass 

is required to study the matrix element in detail. One of the goals of this exploratory 

study is to test an applicability of NRQCD to these semileptonic processes and to clarify 

the problems which should be considered in future calculations with higher statistics and 

improvements. The procedures used in this work is easily applicable to calculations of 

other processes, such as B -+ p and B -+ K·, which should also play important roles in 

future B physics. 

This thesis is organized as follows. The rest of this section contains a brief survey 

of theoretical ideas concerning B -+ rr decays, and current lattice works on this process. 

In the next section, we summarize the NRQCD formulation and numerical method to 

calculate the matrix elements. The details of our numerical simulation is described in 
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4 1 INTRODUCTION 

Section 3. There we point out the subtleties in extracting the form factors: the definition 

of the heavy meson energy, the choice of the two independent matrix elements to deter

mine f+ and fa, and the procedure of chiral extrapolation. We study the uncertainties 

due to the extraction and explain what is the best procedure. Physical implications of 

numerical results are discussed in Section 4. We study 11mB dependence of the matrix 

elements and q2 dependence of the form factors. The prediction from the soft pion the

orem is compared with our data. In Section 5, we examine the systematic uncertainties 

contained in this work. Section 6 is devoted to our conclusion. 

1.2 B meson decays and basic theoretical ideas 

In this subsection we briefiy summarize basic quantities and notions in B physics. We 

also include ideas of heavy quark effective theory and heavy meson effective theory in 

this subsection for later use. 

Form factors The hadronic matrix elements of the B ---7 -rr semileptonic decay are 

expressed in terms of two form factors f+ and fa as 

(1) 

where qp. = Pp. - kp.- These two form factors correspond to the scalar and the vector 

particles exchange modes respectively. The covariant normalization of the meson fields 

is employed in this paper: 

(2) 

From the condition that the matrix element is not singular at q2 = 0, the form factors 

satisfy f+(O) = fO(O). The kinematical end point q!ax = (mB -mrr )2 corresponds to the 

zero recoil limit, where the lattice simulation works most efficiently. 

For the massless lepton cases, f+(q2) dominates the decay rate, so that 

(3) 

where Vub is the Cabibbo-Kobayashi-Maskawa matrix element, G F the Fermi weak cou

pling constant, and 

(4) 

The decay rate vanishes at q2 = q!ax' where the lattice simulation is most reliable. For the 

larger momentum transfer the lattice calculation suffer from the larger systematic error 
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of O((ap)2). In order to determine IVubl model independently, therefore, it is essential to 

calculate f+(q2) in a q2 region where the experimental data will become available and 

the systematic error does not spoil the reliability of a simulation. 

Recently CLEO Collaboration reported the first measurement of this decay mode, 

which gave the branching fraction of this process (1.8 ± 0.4 ± 0.3 ± 0.2) x 10-4 [5]. 

Though current statistics of the experimental data (2.84 x 106 BE pairs) is not enough 

to determine IVubl precisely, B Factories will provide enough statistics (lOB BB pairs). 

Heavy quark effective theory Heavy quark effective theory (HQET) has much 

advanced our understanding of the heavy-light systems [6]. Especially in the case of 

semileptonic decays B ---7 D, D*, six form factors are expressed in terms of single uni

versal function known as the Isgur-Wise function. In a system containing single heavy 

quark, the momentum transfer between the heavy quark and the light degrees of free

dom are of order AQCD and much less than M Q , hence the velocity of the heavy quark is 

almost unchanged. In the limit of mQ ---7 00, the dynamics does not depend on the fiavor 

(mass) and spin of the heavy quark ( 'heavy quark symmetry' ). HQET makes use of 

this fact to remove the large mass scale mQ from the dynamics and to incorporate the 

l/mQ power correction. The nonrelativistic QCD, which we use in this work to describe 

the heavy quark, can realized as a special case of HQET with the vanishing heavy quark 

classical velocity. 

In the case of B ---7 -rr decay, HQET predicts that the properly normalized matrix 

element has a static limit, which depends only on the velocity of the heavy meson, 

vJl. = pJl.lmB, and the mass and the momentum of the pion [7]: 

(-rr(k)IVJIB(p)) = e1(v . k)vJl. + e2 (v . k)~. (5) 
JmrrmB V· k 

The finite mass correction enters into this expression as the power series of the inverse 

heavy meson mass, 11mB. Evaluation of this correction is one of main topics of this 

work. 

heavy meson effective theory In HQET, the fundamental degree of freedom is that 

of the heavy quark. One can use, alternatively, the meson degrees of freedom such as B 

and B* , in the same manner as in the chiral effective theory [8, 9, 10]. This heavy meson 

effective theory, together with the chiral effective theory for the light mesons, can give 

the form factors of various matrix elements with several phenomenological parameters. 

Applying it to the case of B ---7 -rr leads [10] 

f±(q2) = ~ fB [1 _ fB· {A (1 + v . k) + (AI _ A2)~} 2mb(: . k ~ mE)]. (6) 
2 f-rr fB 2mb mb q - mB· 
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where v . k = (m~ + m'; - q2)/2mB' and mb is the b-quark mass. A, AI, A2, and A are 

phenomenological parameters to be fixed comparing with experiments. 1+ and 1- are 

defined as 
(7) 

Eq. (6) implies that near the zero recoil point , dominant contribution to 1+(q2) comes 

from the B* pole. In Section 4.2, we discuss that to what extent this pole behavior is 

observed in our numerical result. It is generally believed that the heavy meson theory 

is applicable only in the region where the momentum transfer is order of AQcn , and not 

reliable in the hard scattering region. 

Soft pion theorem In the chirallimit, in which the pion mass vanishes, the soft pion 

theorem relate 1° at the zero recoil to the B meson decay constant, IB [9, 10, 11]: 

f O( 2) IB 
qmax = f7r' (8) 

where 17r = 131 Me V is the pion decay constant. This relation should be satisfied if the 

numerical simulations correctly reproduce the chirallimit. As mentioned below, we use 

the standard Wilson action to describe the light quark, which breaks chiral symmetry 

explicitly. Thus this relation plays an important role to examine proper incorporation 

of the chiral symmetry on the lattice. For the finite light quark mass case, with a help 

of the heavy meson effective theory, the relation between 10( q!.J and IB becomes [10] 

O( 2) mB IB 
I qmax = mB + m7r f7r 

(9) 

This expression is helpful to argue the chiral extrapolation of the results obtained at 

finite light quark masses. 

1.3 The Lattice Simulations for the semileptonic decay form 
factors; status and the present work 

Here we briefly survey lattice works of semileptonic form factors which have been done 

and are now under investigation and then state our simulation condition in comparison 

with them. Several remarks on the notation used in this thesis is also given. 

Status of lattice works Here we summarize the current status of works on the 

semileptonic B -+(light meson) decays. Calculations of these processes, such as B -+ 
7r P K* can be treated in almost same manner, while photodecay b -+ S'"" channels 

" , I 

requires the values at q2 = 0 for physical applications. Table 1 summarize the works 
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performed previously and now under going. Until now all calculations are in the quenched 

approximation, in which virtual quark polarization effect is not included. 

The early works include an extrapolation from the charm mass region to the b-quark 

mass scale. ELC [15], APE [16], and UKQCD [19, 20, 21] Collaborations make use of 

the HQET prediction, Eq. 5, to assume the extrapolation form. On the other hand, 

Wuppertal group [22] first fit their results to several pole-type functions in the charm 

region, then extrapolate I( q2 = 0) to the B meson mass with several functional form. 

These extrapolation inevitably cause systematic uncertainties, thus the direct simulation 

at b-quark mass is essentially important to get reliable answer. 

To carry out direct simulations at b-quark with currently available computer power, 

certain effective theory is called for. In this work, we describe the heavy quark using 

NRQCD up to O(I/mQ). NRQCD has been applied to the heavy-heavy systems [28] 

and the heavy-light systems [14, 29], and obtained successful results . 

An alternative approach is use of the clover action with realization as an effective 

theory, i.e. the Fermilab action [35]. This procedure is employed by FNAL [12] and 

JLQCD [23] collaborations. Fermilab action is realized as the expansion of QCD in the 

quark's momentum, and its leading order and next-to-leading order expressions corre

spond to the Wilson and the clover actions respectively. An advantage of the Fermilab 

action is applicability to an arbitrary mass values, so that it is convenient for the cal

culations around c-quark mass. On the other hand, further improvement beyond the 

clover action is much more difficult than in NRQCD, where O(I/m6) correction is easily 

incorporated. Of course the results from these approaches should be consistent if the 

lattice simulations reliably reproduce the continuum physics. 

The effective theory approaches are no longer necessary when sufficiently large com

puter is available to deal with a lattice cutoff much larger than mb. However, even if 

such calculations are possible for quenched lattice, present lattice algorithms to simulate 

dynamical quarks require further enormous computer power for such a lattice as large 

as we could not reach in forthcoming decade. Therefore the use of effective theories 

is essential to make use of the lattice results, at least with dynamical quarks, for the 

analysis with experimental data from the B Factories. In addition, the effective theory 

approaches enable us to carry out efficient calculations on rather small computers. 

Summary of the lattice setup Now we turn to the summary of our lattice setup in 

the present investigation. We calculate the matrix elements of B -+ 7r process using the 

heavy quark described by NRQCD up to O(I/mQ) terms and the Wilson light quark. 

The simulation is carries out on a lattice of size 163 x 32 at f3 = 5.8, in the quenched 

approximation. The lattice cutoff at this f3 is a-l = 1. 7 Ge V, which is obtained using p 
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Group f3 Actions (heavy-light) mQ mq Refs. 

ELC 6.4 Wilson-Wilson I'V me chirallimit [15] 

APE 6.0 clover-clover rv me chirallimit [16,17] 

LANL 6.0 Wilson-Wilson rv me chirallimit [18] 

UKQCD 6.2 clover-clover rv me rv mil [19, 20, 21] 

Wuppertal 6.3 Wilson-Wilson rv me chirallimit [22] 
FNAL 5.9 clover-clover me, mb, 00 rv mil [12] 

Hiroshima 5.8 NRQCD-Wilson me-mb chiral limit this work 

JLQCD 5.9 clover-clover mc-mb chirallimit [23] 

Table 1: Current works on semileptonic decays of B -t(light meson). The results from 
JLQCD Collaboration is preliminary. 

meson mass. This lattice spacing is somewhat coarse compared with currently available 

lattices, but convenient for an exploratory study at various masses and various momenta. 

Instead the p meson mass, a-I from the string tension amounts a-I rv 1.4 Ge V, which 

shows an scale ambiguity caused by the use of quenched approximation and the use of 

rather coarse lattice. 

We investigate the heavy quark mass dependence of the form factors, by taking the 

mass of the heavy quark to cover a range of 1.5-8 Ge V. In the range around the charm 

quark mass, O(l/m~) correction would be large. The use of the Wilson light quark 

leads a O( aAqCD ) uncertainty, which is one of most significant systematic error of this 

simulation. In future calculation, the clover action is called for to reduce this effect 

to O( a2 A~cD).F To investigate the whole feature of the form factors, we measure more 

values of initial and final state momenta than previous works, which amount 20 points 

of q2. 

To obtain the physical values of the matrix elements, we need two additional pro

cedures, the renormalization correction and the chiral extrapolation. The former is 

perturbatively evaluated in Section 2.3. For reasons mentioned in Section 2.3, this is 

only for a estimation of the size of the correction. The chiral extrapolation is discussed 

at the end of Section 3. It is found that these two procedures are crucial to obtain 

the physics results. Besides these, there are several subtle problems, which should be 

clarified in future calculations. 

Notations We denote the heavy-light and the light-light pseudoscalar mesons as B 

and 7r mesons, respectively, regardless of actual masses of their heavy and light quarks 

for simplicity. The momenta of B meson and pion is always expressed by the symbols p 

and k respectively. 
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Without specifying, from now on we describe the all quantities in the lattice unit. 

For example, the number '2.6' in the expression 'mQ = 2.6' is in the lattice unit and 

a-I must be multiplied to express in the physical unit. When we denote them in the 

physical unit, the unit, e.g. 'Ge ~, is used explicitly. To convert lattice results into the 

physical unit, we use the inverse lattice spacing a - I = 1.714(63) Ge V determined from 
the p meson mass on our lattice. 
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2 LATTICE FORMULATION 

This section describes NRQCD formulation of the heavy quark, and how we evaluate the 

matrix element in the numerical simulation. 

The lattice actions for the gauge field and the light quark field are most standard 

ones [34]. The gauge field action is 

Sgauge = f3 L:: (1 - ~ReTrUJ.Lv(x)) , 
X,I.tV 3 

where UJ.Lv(x) = UJ.L(x)Uv(x + f-t)US(x + v)U~(x). The coupling parameter f3 
adjusts the lattice spacing implicitly. 

The light quark is described with the Wilson action: 

Slight = f3L::q(x)K(x,y)q(y), 
xy 

(10) 

(11) 

K(x,y) = 5xy - K. L [(1 - 'J.L)UJ.L(x)5x +p.,y + (1 + IJ.L)U~(X - f-t)5x -p. ,y] , (12) 
J.L 

where I'\, is the hoping parameter which controls the light quark mass. For the light quark 

field normalization, we adopt tadpole improved form /1 - 3K./4I'\,c [37], where I'\,c is the 

critical hopping parameter which corresponds to the vanishing quark mass limit. 

Present calculation is performed in the quenched approximation, in which the dy

namical quark effect is neglected. In this case, the expectation value of an operator F[U] 
i& expressed as 

(F) = J 'DUF[U] exp(-Sgauge). (13) 

In the simulation, this expectation values are evaluated on the configurations which are 

generated in the weight exp( -Sgauge). 

2.1 Lattice NRQCD action 

The lattice NRQCD [24] has been extensively used for the investigations of the heavy

heavy systems [28] and hadrons containing a single heavy quark [14, 29]. It is designed 

to remove the large mass scale mQ from the theory using the l/mQ expansion and to 

reproduce the same results as of the relativistic QCD up to a given order of l / mQ. The 

NRQCD action is derived by applying the Foldy-Wouthuysen-Tani transformation to the 

Dirac spin or field. One of the best advantages of the NRQCD is that the l/mQ correc

tions can be easily incorporated. In fact , NRQCD including the O(I/m~) corrections 

has been applied to the spectroscopy and the decay constant of the heavy-light system, 

as well as to those of the quarkonium system. 

2.1 Lattice NRQCD action 11 

In this work, we employ the lattice NRQCD action including the O(l/mQ) terms 1 

[ 
1) -n ( 1 ) -n 1 

SNRQCD = ~ Qt(x) (1 - 2n Ho U4 1 - 2n Ho Q(x + 4) - (1 - 5H)Q(x) , 

(14) 

where 

Ho __ 1_~(2) 
2mQ ' 

(15) 

1 
5H = ---O"·B 

2mQ ' 
(16) 

and Q( x) is the effective two component spinor field, which describes the heavy quark. 

~ (2) denotes the three dimensional Laplacian, 

~(2)Q(x) = ~ [Ui(x)Q(x + i) + U}(x - i)Q(x - i) - 2Q(x)] . ( 17) 
t 

0" is the Pauli matrices, and B is the standard clover-leaf type chromomagnetic field, 

Bi = EijkFjk/2, with 

(18) 

where P( x, f-Lv) means four plaquette which open at the site x and lie in (f-L, v) plane. 

The operator I(M) make a matrix (-iM) hermitian and traceless: 

M - Mt 1 
I(M) = 2i - 3"Im[TrM]. (19 ) 

This action generates the following evolution equation 

GQ(;v,t = 1) 1 )n ( 1 )n (1- 2nHo u1 1- 2nHo GQ(;v,t = 0) , (20) 

(1 - 2~ Ho ) n u1 (1 - 2~ Ho) n (1 - 5 H) G Q ( ;v , t) . (21 ) 

To avoid the singular behavior of high frequency modes in the evolution equation, the 

stabilizing parameter n is chosen to satisfy the condition 11- Ho/2nl < 1, which leads to 

n > 3/2mQ. From a viewpoint of the perturbation theory, further constraint, Ho/ 2n < 1, 

is necessary to avoid singularities in some of vertices derived from the action (14). This 

point is again discussed in the last part of this section in connection with our choice of 

n in the simulation and the perturbative calculation. 

IThis action differ from that we used in our previous study of fB [30]. which is organized to remove 
O(aAQCD / mQ) error , at the cost of simulation speed. 
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We apply the tadpole improvement procedure to this evolution equation according 

to [36], 

u,..( x) -t U,..( x )/uo, (22) 

where Uo is plaquette-defined mean field value of link variable, Uo = (TrUplaq /3)1/4 . 

The four component spinor field 'lj;( x) of the heavy quark is expressed in terms of two 

component spinor field Q( x) as 

(23) 

where Ll is the symmetric lattice covariant derivative , 

(24) 

O(l/mQ) correction appears in the lower component of 'lj;( x), which affects the heavy

light current. 

2.2 Correlation functions 

We employ the standard simulation technique to calculate the hadronic matrix elements 

of the semileptonic decay. We calculate the three-point correlation functions 

C~3)(p,k;tf,ts,~) = LLe-iP'~/e-i(k-p) ' :l!6 (OIOB(:l!f,tf)VJ(:l!$)ts)O~(O,~) I O ), (25) 
:l! f :l!. 

where OB and O-rr are the interpolating operators for Band 7r mesons, respectively, and 

V,.. = ql"''lj; is the heavy-light vector current. Figure 2 shows our setup of the source , the 

current, and the sink operators. 

As mentions in Section 1.3, we denote the heavy-light and the light-light pseudoscalar 

mesons as Band 7r, respectively, regardless of their mass parameters K and mQ for 

simplicity. For tf » ts » ~ the correlation function Eq. (25) becomes 

where EB(p) and E-rr(k) denote the energy of B meson and pion, respectively. The 

exponent EqQ (p) is not the total energy but the binding energy of the B meson, because 

the heavy quark mass mQ is subtracted in the NRQCD. We use the local interpolating 

operators for both of Band 7r, 

(27) 

2.2 Correlation function s 13 

and 

ZB(p) = (010 B (0) IB(p) ), (28) 

are their matrix elements. 

In calculating Eq. (25) we vary t f with fixed ti and ts in order to find out the region 

where the correlation functions are dominated by the ground state. The fixed ts is chosen 

so that the pion two-point correlation function is dominated by the ground state, as is 

shown in Section 3. 

Using the quark propagators, Eq. (25) is expressed as 

C (3) ( k t t f.) ~ ~ e-iP'~1 e-i(k-p).:l!/J ,.. p, ;f,,,,'-i = ~~ 

where spinor and color indices are suppressed. Sq is the light quark propagator, which 

is obtained by solving the equation K(y, x)Sq(x, xd = ox ,x; with suitable iterative solver 

algorithm. The heavy quark propagator, SQ, has 2 X 2 components in spinor space, hence 

relevant components of Sq are selected . 

The computational steps are as follows: (i) determine the light quark propagator 

with the source (O,ti), (ii) at the time slice ts, obtain b(x) by multiplying the current 

matrix, heavy quark correction operator, and momentum transfer factor to the light 

quark propagator Sq(x,,): 

b( ) - -i(k-p).:l!. (1 + 1 Dt) S ( ) x" - e --, . I,.. q x s , Xi , 
2mQ 

(30 ) 

(iii) then using b(x s ) as the source, solve the heavy quark evolution equation, (iv) finally 

at the sink (:l! f' t f) combine the heavy with the light qaurk propagator and multiply 

exp( -ip . :l! f) , and sum up. 

To obtain EqQ(p), E-rr (k), ZB(p) and Z-rr(k)' we also calculate the two-point correla

tion functions with finite momenta 

e1') (p; t j, til ~ e -ip'" t (OB (Xj )01 (x;)) -+ ~;~7~; exp( - E,Q(p) (t j - t ill ,(31) 

Z (k)2 
C~2 ) (k;tf,ti) = ~e-ik ' :l!/(07r(Xf)O~(X i )) -t 2;-rr(k) exp(-E-rr(k)(tf - ti))' (32) 

f 

Combining Eqs.(26), (31), and (32), one can easily see that the matrix element is 

expressed as 
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q 

Diriclet Boundary 

Figure 2: The three-point correlation function to obtain the matrix element. 

for tf » t3 » it, where Z = Z/-J2E. As expressed in Eq. (33), we use the two

point correlation function itself to cancel the exponentially decaying factor of pion, while 

use the values of EqQ obtained by fits to cancel the B meson's. One reason of this 

asymmetric procedure is that the pion two-point function is constructed from the light 

quark propagator with a point source at ti = 4, which is what we used to calculate the 

three-point function (25), and then we expect the statistical fluctuation mostly cancels 

between (25) and (32), while for the B meson exponential function, such a cancellation 

is not expected. In addition, as we mention in the next section, the two-point correlation 

function of B meson with the point source (31) requires larger time separation to reach 

the plateau than the three-point function (25), for which the heavy quark source is 

effectively 'smeared' at t3' 

2.3 Perturbative corrections 

Beyond the tree level, certain renormalization prescription is required to obtain a physical 

quantity from the result of lattice calculation. We evaluate the perturbative corrections 

to the current and the heavy quark mass, using the lattice perturbation theory at the 

one-loop level. 

To relate the matrix element in the lattice theory to that in the continuum QeD, 

operator matching is required [26]. We have calculated the perturbative renormalization 

factor ZVpo for the vector current [31] 

(34) 

2.3 Perturbative corrections 15 

(mQ, n) A B GV4 GVi 

(5.0,1) 0.0759 0.0124(4) 0.0210 (11) -0.0790(10) 
(2.6,2) 0.0668 0.0353(3) 0.0004(9) -0 .0780(7) 
(2 .1 ,2) 0.0623 0.0449(3) -0.0068 (9) -0.0757(7) 
(1.5,3) 0.0528 0.0623(2) -0.0192(8) -0 .0734(6) 
(1.2,3) 0.0446 0.0757(1) -0.0283(8) -0.0707(6) 
(0.9 , 6) 0.0309 0.0933(1 ) -0.0428(8) -0.0687(5) 

Table 2: The tadpole improved one-loop coefficients for the perturbative corrections Eo, 
Zm, ZV4' and ZVi' Quoted errors represent the numerical uncertainties in the evaluation 
of loop integrals. The uncertainty of A is less than 10-4 • 

where q is the Wilson light quark and 'Ij; is defined in Eq. (23). Zv is the ratio of the 

on-shell S-matrix elements in the continuum theory with MS scheme and that in the 

lattice theory. In our definition, Zv contains the leading logarithmic term, cdog(mQa), 

which comes from the continuum renormalization factor. 

In calculating Zv we use the massless Wilson quark and the external momenta are 

taken to be zero. We did not take into account the one-loop operator mixing with 

higher derivative operators, since there are already O( a) errors at tree-level from the 

Wilson quark action. The one-loop coefficient is modified with the tadpole improvement 

[36]. For the mean link variable we use Uo = (TrUp1aQ /3)1/4 except for the light quark 

wave function renorrnalization, for which we use another possible definition, Uo = 1/8",c 

[37]. Their one-loop perturbative expressions are used to determine the perturbative 

coefficients of Zv: . po 

The results for the one-loop coefficient Gvpo in 

(35) 

are presented in Table 2 for several values of (mQ, n). These values contain the leading 

logarithmic contribution, log( mQa) / 47r 2
• The values of ZVpo with two choices of the lattice 

coupling constant g~(7r/a) = 2.19 and g~(1/a) = 3.80 are plotted as a function of 1/mQ 

in Fig. 3. ( These coupling values are explained at the end of this section. ) We observe 

that the spatial component of the vector current receives larger perturbative corrections 

than the temporal one. On the other hand, the l/mQ dependence is rather stronger for 

Zv. than for Zv,. 

When we discuss the l i mB dependence of the renormalized matrix elements in Sec-
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Figure 3: Renormalization constant for the vector current with two scales for the cou
pling constant, q* = 1r / a and 1/ a. The open and filled symbols represent Zv" and ZVj' 
respectively. 

tion 4, we multiply the leading logarithmic factor 

( )

2/11 
8( / (PhYS)) _ av(mB) 

mB m B - ((PhY')) 
ay mB 

(36) 

to cancel the logarithmic divergence in the infinite heavy quark mass limit due to the 

anomalous dimension of the heavy-light current. 

The calculation of heavy quark self-energy leads to the energy shift Eo, heavy quark 

mass renormalization Zm, and the heavy quark field renormalization [25]. The first 

two quantities appeared in the mass relation of heavy-light meson, and the last one is 

necessary to calculate ZVJ." B meson mass is given through the binding energy of the 

heavy-light meson, EqQ(p = 0), as 

where Eo and Zm are obtained perturbatively 

(37) 

(38) 

(39 ) 

2.3 Perturbative corrections 17 

The tadpole improved coefficients A and B are also given in Table 2. These coefficients 

are determined by the numerical procedure proposed in [27]. 

For a historical reason , the stabilizing parameter we have used does not always satisfy 

t he condition n > 3/mQ, which is necessary to avoid divergent tree level vertices, while 

the simulation itself is stable with the condition n > 3/2mQ. We, therefore, quote the 

results at tree level in the later sections as our main results. We estimate the size of 

the renormalization effect with the one-loop coefficients obtained with the combinations 

of mQ and n, for which n's are larger than those we have used in the simulation and 

the perturbation theory exists. Although this estimation is certainly incorrect, it gives 

some idea for the one-loop effect, especially because the n-dependence of the simulation 

results is observed to be very small (Section 3.4). 

The values of coupling constant are determined as follows. Lepage and Mackenzie 

[36] pointed out that when we use appropriately defined coupling constant, the lattice 

perturbatation theory works better than as it had been considered. According to them, 

we adopt one of such definitions, av, which is defined with the expectation value of the 

plaquette using its two-loop perturbative expression , 

1 41r 
-In( -Up1aq ) = -av(3.41 /a)[ 1 - 1.19av ]. 

3 3 
( 40) 

In this work, we evaluate the perturbative corrections at two scales, 1r / a and 1/ a, to which 

av is made run using the two-loop (3 function. Using our numerical value, (Up1aq /3) = 

0.567633(35), we obtain aV(1r/a) = 0.1742, and av(l/a) = 0.3026, which give above 

val ues of gJ. 
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3 SIMULATION DETAILS 

In this section, we describe the numerical simulation in detail apart from discussions on 

physical implications of the results , which will be discussed in the next section. After 

summarizing the simulation parameters, two-point correlation functions of 7r and B 
mesons with finite momenta are discussed. We describe how to extract the matrix 

elements and the form factors from the three-point correlation functions. Finally, the 

chiral extrapolation of the matrix element is discussed. 

3.1 Simulation parameters 

The numerical simulations are performed on a 163 x 32 lattice with 120 quenched gauge 

configurations generated with the standard plaquette gauge action at /3=5.8. Each con

figuration is separated by 2000 pseudo-heat-bath sweeps [38] after 20000 sweeps for 

thermalization and fixed to the Coulomb gauge [39]. The Wilson quark action is used 

for the light quark at three K, values 0.1570, 0.1585 and 0.1600, which roughly lie in the -" 

range [m", 2m3 ], and the critical hopping parameter is K,c=0.16346(7). The boundary 

condition for the light quark is periodic and Dirichlet for spatial and temporal direc

tions, respectively. We obtain the light quark propagator using the BiCGStab algorithm 

[40] with the Incomplete LV decomposition preconditioning [41]. The light quark field 

is normalized with the tadpole improved form VI - 3K,/4K,c according to [37]. The tad

pole improvement is also applied for both the NRQCD action and the current operator 

with the replacement of Up. ---t Up./ Uo using the average value of a single plaquette 

Uo = (TrUp1aq /3)1/4 = 0.867994(13). 

The lattice scale is determined from the p meson mass as a- 1=1.71(6) GeV, although 

we expect a large O(a) error for mp with the unimproved Wilson fermion. The results 

for the 7r and the p meson masses and the pion decay constant are summarized in Table 

3. 
The heavy quark mass mQ and the stabilizing parameter n used in our simulation 

m-rr 

K, = 0.1570 

0.5677(30) 
0.6747(54) 
0.1496( 46) 

0.1585 

0.4933(33) 
0.6214(72) 
0.1380( 49) 

0.1600 

0.4118(37) 
0.567(11) 

0.1270(53) 
0.448 (17) 
0.1019(64) 

Table 3: The values of m-rr, mp , and pion decay constant without renorrnalization. Fitting 
range is t = 14 - 24. 
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are 

( r:Q) (5iO) , ( 2i6 ) , ( 2/ ) , ( 221 ) , ( \5 ) , ( 122 ) , ( \2 ) , ( °29 ) , 
(41 ) 

where mQ = 2.6 and 0.9 roughly correspond to b- and c-quark masses, respectively. 

For mQ=2.1 and 1.2 we performed two sets of simulations with different values of 

n, though the statistics is lower (=60) for (mQ,n) = (2.1,2) and (1.2,3). Since the 

different choice of n introduces the different higher order terms in a in the evolution 

equation, the choice of n should not affect the physical results for sufficiently small a. 

The small dependence of the numerical results on n is also crucial for our estimation of 

the perturbative corrections. 

The spatial momentum of the B meson (p) and the pion (k) is taken up to Ipl, 
Ikl ~.J3. 27r/16, which corresponds to the maximum momentum of f"'V 1.2 GeV in the 

physical unit. We measure the three-point correlation function at 20 different momentum 

configurations (p, k) as listed in Table 4. The momentum configurations which are 

equivalent under the lattice rotational symmetry are averaged, and the number of such 

equivalent sets are also shown in Table 4. 

The light quark propagator is solved with a local source at ti=4, which is commonly 

used for the two-point and three-point functions. The heavy-light vector current is placed 

at t3 = 14, which is chosen so that the pion correlation function is dominated by the 

ground state signal. The position of the B meson interpolating operator is varied in a 

range t f = 23 - 28, where we observe a good plateau as shown later. 

3.2 Light-light meson 

In order to obtain the form factors reliably, it is crucial to extract the ground state of 

the B meson and the pion involving finite momentum properly. In Fig. 4 we show the 

effective mass plot of pions with finite momentum at K, = 0.1570 and 0.1600. The spatial 

momentum k = (k;x, ky, kz) is understood with the unit of 27r /16. This notation will be 

used throughout this paper. Although higher momentum states are rather noisy, we can 

observe a plateau beyond t = 14. We fit the data with the single exponential function 

to obtain the energy E-rr (k) shown by the horizontal solid lines in Fig. 4. 

Figure 5 shows the energy momentum dispersion relation of pion, where the solid 

lines represent the relation in the continuum E-rr( k)2 = m; + k 2. We observe a small 

discrepancy between the above relation and the data, which indicates the discretization 

error. However the disagreement is about 1-1.5 standard deviation and only a few 

percent. 
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tq p2 k 2 q2 P k -q = k - p ~ (p, k) 

1 ° ° ° ( 0, 0, ° ) ( 0, 0, ° ) ( 0, 0, ° ) 1 

2 1 1 ( 0, 0, 1 ) ( 0, 0, 1 ) 6 
3 2 2 ( 0, 1, 1 ) (0,1,1) 12 

4 3 3 ( 1, 1, 1 ) (1,1,1) 8 

5 1 ° 1 ( 0, 0, 1 ) ( 0, 0, ° ) ( 0, 0, -1 ) 6 

6 1(~) 2 (0,1,0) ( 0, 0, 1 ) ( 0, -1, 1 ) 24 

7 l(tt) ° ( 0, 0, 1 ) ( 0, 0, 1 ) ( 0, 0, ° ) 6 
8 l(tt ) 4 ( 0, 0, -1 ) ( 0, 0, 1 ) (0,0,2) 2 

9 2(~) 3 ( 1, 0, ° ) ( 0, 1, 1 ) ( - 1, 1, 1 ) 24 
10 2 1 ( 0, 0, 1 ) (0,1,1) (0,1,0) 24 
11 3 2 ( 0, 0, 1 ) ( 1, 1, 1 ) (1,1,0) 24 
12 3 6 ( 0,0, -1 ) (1,1,1) ( 1, 1, 2 ) 8 

13 2 ° 2 ( 0, 1, 1 ) ( 0, 0, ° ) ( 0, -1, -1 ) 12 

14 1( 1.) 3 (1,1,0) ( 0, 0, 1 ) ( -1, -1, 1 ) 24 

15 1 1 ( 0, 1, 1 ) ( 0, 0, 1 ) ( 0, - 1, ° ) 24 
16 2(~) 4 (0,1,-1) (0,1,1) ( 0, 0, 2 ) 4 
17 2( tt) ° ( 0, 1, 1 ) (0,1,1) ( 0, 0, ° ) 12 
18 2 2 ( 1, 1, ° ) (0,1,1) (-1,0,1) 48 
19 2 6 ( 1, -1, ° ) ( 0, 1, 1 ) (-1,2,1) 16 
20 3 ° 3 ( 1, 1, 1 ) ( 0, 0, ° ) ( -1, -1, -1 ) 8 

Table 4: The momentum combinations (p, k) used in the simulation. In this table, the 
values of p, k, and q are expressed in the unit of 27f /16. The set which is equivalent with 
another under the lattice rotational symmetry is identified with the same iq-number , and 
a representative is shown in the fifth through seventh columns . The last column shows 
the numbers of equivalent combinations. The symbols in the third column denote the 
direction of k against p as follows: ~: orthogonal, tt: parallel, tt : anti-parallel, and 
oblique for others. The set iq = 12 gives the minimum q2 value among the sets in this 
table. 
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Figure 4: Effective mass plot of pion at "- = 0.1570 and 0.1600 . The horizontal solid 
lines represent the fitted values and the fitting range with the statistical errors (dotted 
lines) . 
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o K=0 .1570 

• 0.1585 
6. 0.1600 

0.0 0.1 0.2 0.3 0.4 0.5 

k2 

Figure 5: Dispersion relation for pion. The solid lines represent the relation E;( k) = 
m; + k 2 with m7r the rest mass obtained in the simulation. For K, = 0.1585 and 0.1600 , 
symbols are slightly shifted in horizontal direction for clarity. 

3.3 Heavy-light meson 

To compute the B meson two-point correlation functions, we employ the smeared source 

for heavy quark as well as the local source, with the local sink for both cases. The 

smearing function for the heavy quark is obtained with a prior measurement of the wave 

function with the local source. In Fig. 6 we plot the effective mass for both the local

local and the smeared-local correlation functions at mQ = 2.6 and K, = 0.1570, 0.1600. 

The plateau is reached beyond t = 16 for the local-local, while the smeared-local exhibits 

clear plateau from even earlier time slices. 

We obtain the binding energy with a fit range [16,24] for both types of the correlation 

functions and for all momenta, and the results are consistent in all cases. The binding 

energy averaged over the results fitted from the local and the smeared sources are listed in 

Table 5 together with the values in the chirallimit. In Table 5, we also listed the binding 

energy for the vector meson B· measured with the local-local correlation function , which 

are used in later discussions on the B· pole contribution to the form factors. It is also 

worth to note that the values of EqQ obtained with different stabilizing parameter n is 

consistent with each other within their statistical errors . 

3.3 Heavy-light meson 
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Figure 6: Effective mass plot of B meson at mQ = 2.6 and", = 0.1570 , 0.1600. Results 
with the smeared source (filled symbols) are shown for Ipl2 = 0,1 as well as the results 
with the local source (open symbols). The horizontal solid lines express t he average 
values over the results of single exponential fit of the local-local and the smeared-local 
correlation functions. The statistical errors of the fitted values are displayed at the right 
end of the lines . For all mQ , "' , and momentum, the fi t ranges are set to t = 16 - 24. 
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(mQ, n) 

(5.0,1) 
(2.6,1) 
(2.1,1) 
(2.1 ,2) 
(1.5,2) 
(1.2,2) 
(1.2,3) 
(0.9,2) 

(mQ, n) 
(5.0,1) 
(2.6,1) 
(2.1,1) 
(1.5 ,2) 
(1.2,2) 
(0.9 ,2) 

3 SIMULATION DETAILS 

Pseudoscalar meson binding energy: EqQ(p = 0) 

K, = 0.1570 0.1585 0.1600 
0.6304(69) 0.6084(83) 0.585 (11) 
0.6268(48) 0.6041(56) 0.5809(71) 
0.6247(45) 0.6014(52) 0.5777(65) 
0.6279(53) 0.6056(62) 0.5834(80) 
0.6180(42) 0.5940(48) 0.5696(59) 
0.6135( 40) 0.5889( 46) 0.5640(56) 
0.6142(51) 0.5899(56) 0.5655(68) 
0.6058(39) 0.5805(43) 0.5551(51) 

Vector meson binding energy: EqQ' (p = 0) 

K, = 0.1570 0.1585 0.1600 
0.649 (12) 0.628 (14) 0.604 (19) 

0.6502 (62) 0.6287 (76) 0.6065 (99) 
0.6501 (56) 0.6279 (68) 0.6047 (88) 
0.6488 (52) 0.6257 (61) 0.6014 (79) 
0.6484 (51) 0.6249 (59) 0.6002 (76) 
0.6470 (50) 0.6231 (57) 0.5982 (73) 

I\, c 

0.535 (15) 
0.530 (10) 
0.5260(91) 
0.534 (11) 
0.5162(81) 
0.5095(75) 
0.5117(92) 
0.4991(68) 

0.555 (27) 
0.559 (14) 
0.555 (13) 
0.550 (11) 
0.547 (11) 
0.545 (10) 

Table 5: The binding energy of the pseudoscalar and vector heavy-light mesons. The 
single exponential fit is applied with the fitting range t = 16 - 24. For the pseudoscalar 
we average the values obtained from the local-local and the smeared-local correlation 
functions. For the vector mesons we use the local-local only, and there is no data available 
for (mQ,n) = (2.1,2) and (1.2,3). 

The dispersion relation for the B meson takes the following nonrelativistic form 

( 42) 

where the kinetic mass mkin should agree with the rest mass mB (37) in the continuum 

limit. Since we use the NRQCD action correct up to O(I/mQ), including higher order 

terms in l/mB in Eq. (42) does not make sense. In Fig. 7 EgQ (p) is shown as a function 

of p2 at mQ = 2.6. The solid lines represent the relation (42) with mkin = mB determined 

through the tree level relation mE = mQ + EijQ(O), which reproduce the data quite well. 

With the one-loop correction (37) the agreement becomes even better as presented with 
the dashed lines in the figure. 
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Figure 7: Dispersion relation for the B meson at mQ = 2.6 and K, = 0.1570, 0.1600. The 
solid lines represent the relation EqQ(p) = EqQ(O) +p2 /2mB, for which mB is determined 
with the tree level formula mB = mQ + EgQ(O). Dashed lines represent the same relation 
with the renormalized mB at the scale q* = 1/ a. 

3.4 Three-point function and matrix elements 

Figure 8 is the effective mass plot of the three-point function at mQ = 2.6 and K, = 0.1570, 

0.1600. The horizontal axis represents the time slice on which the B meson interpolating 

operator is put, and the vertical axis corresponds to the binding energy of the B meson. 

The horizontal solid lines represent the binding energy EqQ (p) determined from the two

point correlation functions. The figures display that the three-point correlation functions 

are dominated by the ground states beyond t = 23, and there they give the consistent 

values for EqQ (p) with ones extracted from the two-point functions. Therefore, in this 

region we can use Eq. (33) together with the results of the two-point correlation functions 

to extract the matrix elements. 

It is useful to define the quantity V~ as 

(43 ) 

because it is defined only through the residue of the two- and three-point correlation 

functions without the knowledge how one defines the meson energies. Since there are 

uncertainties in the light-light and heavy-light meson dispersion relations, it is better to 
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q2 i'4 
x 

Uk 1,q Up 
1 7.071 (20) 1.014 (34) 
2 6.280 (19) 0.844 (26) 0.878 (41) 

3 5.609 (19) 0.754 (50) 0.695 (61) 
4 5.017 (18) 0.612 (87) 0.57 (10) 

5 7.044 (20) 0.999 (36) 0.0475(28) 
6 6.247 (19) 0.832 (28) 0.0366( 4 7) 0.860 (41) 
7 6.555 (19) 0.930 (30) 1.009 (46) 1.009 (46) 
8 5.938 (19) 0.750 (34) -0.702 (48) 0.702 (48) 
9 5.571 (19) 0.742 (49) 0.040 (12) 0.674 (59) 

10 5.880 (19) 0.827 (55) 0.790 (68) 0.767 (66) 
11 5.283 (18) 0.66 (10) 0.65 (12) 0.63 (11) 
12 4.666 (18) 0.544 (68) -0.39 (12) 0.477 (82) 
13 7.017 (20) 0.992 (42) 0.0467(30) 
14 6.214 (19) 0.825 (34) 0.0360( 48) 0.848 (45) 
15 6.523 (19) 0.923 (38) 0.517 (26) 0.997 (51) 
16 5.534 (19) 0.757 (76) 0.052 (53) 0.670 (82) 
17 6.151 (19) 0.920 (67) 0.863 (77) 0.863 (77) 
18 5.842 (19) 0.820 (58) 0.412 (36) 0.758 (68) 
19 5.225 (19) 0.669 (52) -0.266 (41) 0.587 (61) 
20 6.990 (20) 0.968 (58) 0.0454 (33) 

Table 6: V4 , Up, and Uk in the lattice unit at mQ = 2.6 and K, = 0.1570. iq denotes the 
set of momentum (p, k) summarized in Table 4. In the evaluation of q2, the B meson 
mass is determined through the tree level relation mB = mQ + EqQ(O). 

deal with the quantity which is free from the ambiguity. Moreover, Vt-' is the quantity 

which has the infinite mass limit in the heavy quark effective theory. When the pertur-

bative correction is incorporated, e(mBlm~h1')) given by Eq. (36) is multiplied to Vw 
Therefore V~ is suitable quantity to study the 1/mQ dependence. 

For the spatial components of V~, we also define the scalar products 

Up(p , k) = 
p. V(p,k) 

r\(p,k) = 
k· V(p,k) 

( 44) p2 , 
k 2 

In Table 6 we list the values of 114 , Up, and Uk for all momentum configurations (p, k) 
at mQ = 2.6 and K, = 0.1570. In this table, we also list the values of q2 determined with 

the tree level mass relation (37) for the B meson. 
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Figure 8: ( continued. ) 
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Figure 8: Effective mass plot for the three-point functions at rnQ = 2.6 and /'i, = 0.1570. 
The horizontal lines express the values obtained from the two-point correlation functions. 
Top and middle figures are for C~3), and bottom figure is for k . C(3). 
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We have investigated the n-dependence of VJ.L at mQ = 2.1 with n = 1 and 2 and at 

rnQ = 1.2 with n = 2 and 3, using the first 60 configurations on which (mQ,n) = (2.1,2) 

and (1.2,3) data are measured 2• For both of the heavy quark masses we observed small 

dependence on n, which is at most 1 %, 8% and 2% for V41 Up and Uk respectively, and 

smaller than their statistical error. In the present work, therefore, we regard them to 

be sufficiently small to estimate the size of the renormalization effect in the manner 

described in Section 2.3. 

3.5 Form fact ors 

To convert 114, Up , and Uk to the form factors, we need to assume certain dispersion 

relations for EB(p) and E-rr(k). One method is to use the values obtained from the 

dispersion relation measured in the simulation. This, however, suffers from the large 

statistical error for the finite spatial momenta. Alternatively, we adopt the following 

relativistic dispersion relations for both the B meson and the pion. 

( 45) 

where the measured rest mass is used for m-rr and mB' These relations well reproduce 

the measured data as shown in Figs. 5 and 7 for light-light and heavy-light mesons , 

respectively. 

U sing the relations Eq. (45), the form factors are easily constructed from Vw First, 

we calculate fO( q2) with 

( 46) 

and f +(q2) is similarly obtained from (p + k)J.LVJ.L substituting the value of fa determined 

above. 

For p =I 0 and k =I 0, fa and f+ are not uniquely determined from \%, Up, and Uk. 
In this case there is an additional relation among VI-' 's, which should be satisfied when 

the Lorentz symmetry is restored. For p 1.. k this relation reads 

(47) 

2We note that n-dependence should be studied on the same configurations. In some of the figures, 
there appear large deviations for the data with different n but the same mQ. However , in these graphs 
only the results for (mQ,n) = (2.1,2),(1.2,3) are obtained from the first 60 configurations and the 
results for the other combinations of (mQ, n) are obtained from the entire 120 configurations. It seems 
that these large deviations seem to arise from the statistical fluctuation caused by the remaining 60 
configurations for which there is no the data with (mQ , n) = (2.1,2), (1.2,3) . 
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Figure 9: Comparison of f4 to (EBUp + E7r Uk ) for iq = 6 at I), = 0.1570. 

We examine this condition for iq = 6,9,14 and 16 (iq is referred in Table 4). Figure 

9 compares LHS and RHS of Eq. (47) at 11, = 0.1570 for i q=6, with the tree level 

dispersion relation for EB . This figure exhibits a difference of about 15%. In other cases 

of i q , similar amount of the discrepancy is observed. The size of this systematic effect is 

consistent with the naive expectation for O( a) error. 

3.6 Chiral extrapolation 

To obtain the form factors at the physical pion and B meson masses, it is necessary 

to extrapolate the results to the chiral limit. There is, however, still a subtlety in the 

chiral extrapolation, because the light quark mass dependence of the matrix elements 

or the form factors are not well understood. In principle, the chirallimit of the matrix 

elements or the form factors must be taken using the result of the chiral effective theory 

as a guide for its functional form. For the B -+ 7r semileptonic decay the heavy meson 

effective theory with chiral Lagrangian gives such an example [8,9, 10j. 

At least the heavy meson effective theories tell us that the matrix elements or the 

form factors depend on v . k, where vJ.l is the 4-velocity of the B meson. At the zero 

pion momentum, the quantity v . k could potentially give linear dependence in m 7r , which 

could result in a ~ dependence. The zero recoil limit in the heavy meson effective 

3.6 Chiral extrapolation 
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Figure 10: Chiral extrapolation of the matrix elements for mQ = 2.6. V4 and k . V /J kJ2 
are shown for two momentum configurations iq = I, 2. The solid and the dashed lines 
represent the linear fit. 

theory gives the following relations for the matrix element and the form factor: 

( 48) 

Assuming the linear dependence of fB' f7r' and mB on m q , at least in the zero recoil limit 

the matrix element should have linear dependence on m q • In the following analysis, we 

take the chiral limit of the matrix elements assuming the linear dependence on mq in 

any case of (p, k), although there is no proof. 

Figure 10 shows the chiral extrapolation of the matrix element with the form 

( 49) 

where mq = 1/21), - 1/211,c. The data itself do not show any sign of nonlinear behavior at 

least around the strange quark mass. The form factors f+ (q2) and fO( q2) at the physical 

pion mass are extracted after extrapolating the matrix elements to the chirallimit using 

Eq .(49). 
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4 RESULTS AND PHYSICAL IMPLICATIONS 

In this section we discuss the physical implications of our results, which include the 11mB 

dependence of the B -7 11" matrix elements and the q2 dependence of the form factors. 

The prediction from the soft pion theorem is compared with our data. 

4.1 11mB dependence 

The heavy quark effective theory predicts that the properly normalized B -7 11" matrix 

element has a static limit, hence it can be described by an expansion in the inverse 

heavy meson mass 11mB whose leading order is a function of the heavy meson velocity 

vJ.l = pJ.llmB, 

\1I"(k)IVJIB(p)) =()l(v.k)v +()2(v.k) kJ.l. 
y'm 7rm B J.l v . k 

(50) 

Similar arguments for the heavy-light decay constant suggested that the quantity IB y'm.B 

has the static limit while numerical simulations have shown that the 11mB correction 

is very large. On the other hand, the 11mB dependence of the form factors have been 

studied only in the D meson region. Therefore it is important to study the 11mB 

dependence of the matrix elements at fixed values of v . k. 

Except for p = 0, fixing p is not quite identical to fixing v . k, since the velocity 

vJ.l changes depending on the heavy meson mass . Thus it is awkward to use the matrix 

elements with nonzero p. In the special case of p = 0, LHS of Eq. (50) is nothing but 

the matrix elements~, Up and Uk, defined in Eqs . (43), and (44), multiplied by the mB 

independent factor. 

In the following analysis, we confine ourselves to examine the following quantities for 

the sake of simplicity: 

( (1) (2) ) 
"C4(p = 0, k) V4(O) 1 + ~ + C4 2 + . . . , (51 ) 

mB mB 

( (1) (2) ) 
(h(p = 0, k) U~O) 1 + ~ + Ck 2 + . .. (52) 

mB mB 

Up(p = 0, k) lim Up(p, k) 
p2 -to 

( 53) 

1. ( e(l) e(2) ) 
_U/(O) l+-P-+~+ ... , 
mB p mB m B 

(54 ) 

for which we explicitly show the form of the 11mB expansion. All of the coefficients in 

these expansions are a function of k. 
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In Figs. 11 and 12 we show the 11mB dependence of 114 and Uk, respectively, at K, = 

0.1570. The limB correction is not significant for these quantities and almost negligible 

around the B meson mass. This result exhibits a sharp contrast to the mass dependence 

of the heavy-light decay constant fBJmB' for which the large 11mB correction to the 

static limit is observed. Results of the linear and quadratic fit in limB are listed in 

Table 7 for V4 and in Table 8 for Uk. 

linear quadratic 

K, ~q 
• (0) 
~ 

(1) 
C4 

• (0) 
~ 

(1 ) 
C4 

(2) 
C4 

0.1570 1 0.965(35) 0.184(55) 1.003( 4 7) -0.01(20) 0.21(18) 
2 0.826(29) 0.080( 47) 0.851(41) -0.06(17) 0.15(17) 
3 0.757(51) -0.038(59) 0.799(57) -0.30(20) 0.31(22) 
4 0.624(80) -0.25 (11) 0.79 (10) -1.29(36) 1.25(42) 

0.1585 1 0.982( 42) 0.165(63) 1.016(55) -0.00(23) 0.18(21) 
2 0.807(35) 0.075(57) 0.830( 48) -0 .06 (20) 0.14(19) 
3 0.758(76) -0.071(73) 0.830(81) -0.51(26) 0.51(29) 
4 0.62 (12) -0.40 (15) 0.89 (19) -1.83(50) 1.75(60) 

0.1600 1 1.003(53) 0.150(76) 1.023(66) 0.05(27) 0.10(25) 
2 0.768( 46) 0.088(76) 0.788(58) -0.04(26) 0.14(25 ) 
3 0.78 (14) -0.17 (10) 0.96 (17) -1.13( 40) 1.13( 46) 
4 0.70 (27) -0.64 (25) 1.22 (55) -2.45(80) . 2.26(94) 

Table 7: Parameters for the linear and quadratic :fits of V4 (p = 0, k). 

linear quadratic 
K, 'l,q • (0) 

Uk 
(1) 

Ck 
• (0) 

Uk 
(1) 

Ck 
(2) 

ck 

0.1570 2 0.945(39) -0.194(44) 0.967( 4 7) -0.30(19) 0.13(19) 
3 0.762(56) -0.257(53) 0.750(54) -0.17(22) -0.10(24) 
4 0.655(88) -0.364(91) 0.600(81 ) 0.08(43) - 0.54( 49) 

0.1585 2 1.004(52) -0.198(50) 1.023(58) -0.28(22) 0.10(23) 
3 0.808(92) -0.242(64) 0.769(80) 0.00(30) -0 .29(32) 
4 0.72 (15) -0.34 (14) 0.58 (12) 0.77(74) -1.34(80) 

0.1600 2 1.064(73) -0 .214( 62) 1.063(77) -0.21 (29) 0.00(30) 
3 0.92 (20) -0.219(90) 0.80 (16) 0.47(50) -0 .81(53) 
4 0.94 (37) -0.23 (26) 0.55 (23) 3.3 (23) -4.1 (24) 

Table 8: Parameters for the linear and quadratic :fits of Uk(p = 0, k). 
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We note here that x2 /dof are less than unity for most cases of "\14, Uk, and also Up, 
which will be mentioned in the next paragraph, though they do not exactly judge the 

goodness of the fits for such data, which are correlated for different mQ. 

In order to do the same discussion for Up, which is defined in the p2 ~ 0 limit, we 

extrapolate the finite p results to the vanishing p point as shown in Fig. 13. There is 

little p2 dependence observed and we employ a linear extrapolation in p2. In Fig. 14 we 

plot mBUp as a function of limB at K, = 0.1570. In contrary to the other matrix elements 

we observe a sizable limB dependence. Table 9 summarizes the results of linear and 

quadratic fit of mBUp • 

Here we briefly discuss the effect of one-loop correction to these quantities. Figure 

15 shows the renormalized values of V4(iq = 1), Uk(iq = 2), and mBUp(iq = 1) at 

K, = 0.1570. As mentioned at the end of Section 2, the leading logarithmic factor is 

multiplied to Vw As mentioned at the end of Section 2, the leading logarithmic factor 

Eq. (36) is multiplied to V/-L' We also list the results of linear fits of the~ ip._T3:bl~ 10. A_~. 
we discussed previously, the 1/mQ dependence of the one-loop coefficient is significant 
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Figure 13: Extraction of Up(p = 0, k) is shown for mQ = 2.6 and 1.5 at K, = 0.1570. The 
extrapolation is carried out linearly in p2. For k = 0, iq = 5,13,20 are used. For k = 1, 

Up(O, k) is determined using iq = 6,14, for which p and k are perpendicular. 
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only for ~ and almost negligible for Vi. As a result, the limB dependence of ~ is largely 

affected by the renormalization effect, and it even changes the sign of the slope in 1 1m B. 

The limB dependence of ~ is still mild after the renormalization effect is included. For 

Uk and mBUp the 11mB dependence is not affected by the one-loop correction, while 

their amplitudes decrease by at most 30%. 

Figure 14: Up multiplied by mB at K, = 0.1570 as a function of limB' The values of mB 
are determined with the tree level formula. The solid and the dashed lines represent the 
linear and the quadratic fits, respectively. 

linear quadratic 
fi, 2q (1'(0) 

P 
c(1) 

P 
(;,(0) 

P 
c(1) 

P 
c(2) 

p 

0.1570 1 0.0887(80) 2.61(39) 0.0717(95) 4.5(12) -1.55(76) 
2 0.089 (14) 1.29(38) 0.072 (13) 2.7(11) -1.31(88) 

0.1585 1 0.0872(94) 2.65(47) 0.066 (11) 5.3(17) -2.1 (10) 
2 0.093 (20) 0.98( 42) 0.080 (18) 2.0(12) - 1.0 (11) 

0.1600 1 0.088 (12) 2.72(59) 0.059 (15) 6.7(27) -3 .1 (17) 
2 0.104 (33) 0.67(47) 0.097 (27) 1.1(15) -0.4 (15) 

Table 9: Parameters for the linear and quadratic fits of Up(p = 0, k). 
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Figure 15: One-loop renormalized V4 , [h, and Up as a function of 1/ mB. The solid, the 
dashed, and the long dashed lines represent the linear fits. 
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lI4(p = O,h = 0) ( iq = 1 ) 

q* = 7f / a q* = 1/ a 

K, Vt(O) (1 ) 
C4 V}O) (1 ) 

C4 

0.1570 1.002(36) 0.052(55) 1.088(39) -0.209( 47) 
0.1585 1.019( 44) 0.039(63) 1.105( 46) -0.216(55) 
0.1600 1.039(55) 0.030(77) 1.126(58) -0.219(66) 

[h(p = 0, Ihl = 1) ( iq = 2 ) 

q* = 7f / a q* = 1/ a 

/Ii, 
A (0) 

Uk 
(1 ) 

Ck 
A (0) 

Uk 
(1) 

Ck 

0.1570 0.732(31) 0.013( 61) 0.609(27) 0.081(70) 
0.1585 0.778(42) 0.005(68) 0.649(36) 0.070(78) 
0.1600 0.826(59) -0.019(84) 0.689(50) 0.043(96) 

Up(p = 0, h = 0) ( iq = 1 ) 

q* = 7f / a q* = 1/ a 
A (0) c(1) A (0) c(1) K, Up Up p p 

0.1570 0.0466( 66) 6.3(12) 0.0268(58) 11.3(30) 
0.1585 0.0453(77) 6.5(15) 0.0256(68) 11.8(38) 
0.1600 0.045 (10) 6.7(19) 0.0248(87) 12.5(53) 

Table 10: Parameters for the linear fit of the renormalized matrix elements lI4(p = 0, h = 

0), (h(p = 0, Ihl = 1), and Up(p = 0, h = 0). 
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4.2 q2-dependence of the form factors 

First we study for which q2 region our present statistics allow us to compute the form 

factors with reasonable statistical errors. The q2 dependence of the form factors f+ and 

f O are shown in Figs. 16 and 17 at mQ=2.6 and 1.5, respectively. We find that for 

K, = 0.1570(mq '" 2m.,), the range of q2 in which the form factors have good signal covers 

almost the entire kinematic region for D meson and one third of the kinematic region for 

B meson. For K, = 0.1600 (mq rv ma ), the signal becomes much noisier, but still the form 

factors have marginally good signal for half and one fourth of the kinematic region for 

D meson and B meson, respectively. Although our present results are very noisy after 

the chiral extrapolation, this will be improved by future high statistics studies. This is 

encouraging in view of the fact that the future B Factories can produce 108 B-B pairs 

and the branching fraction of B -7 7rlv from CLEO is (1.8 ± 0.4 ± 0.3 ± 0.2) x 10- 4 [5] . 

It is reasonable to expect that there is a possibility of observing B -7 7rlv events in the 

q2 regime which the present lattice calculation can cope with. 

Secondly we study the q2 dependence to see whether the contribution from the B* 
resonance to the form factor can actually be observed in the simulation data. At the chiral 

limit, unfortunately, the results are too noisy to discuss their q2 dependence, therefore 

we use the finite mass results only in the following analysis of the q2 dependence. As 

shown in Figs. 16 and 17, the lattice results are available only in the large q2 region, at 

which the recoil momentum of pion is small enough. Therefore it is justified to express 

the functional form of the form factors by an expansion around the zero recoil limit. For 

this purpose we use the inverse form factors 1/ f+(q2) and 1/ fO(q2): 

(55 ) 

Figure 18 shows the inverse form factors at mQ = 2.6 as well as their fitted functions 

with this form. The numerical results of the fit with and without the condition C2 = 0 

are given in Table 11 for mQ = 2.6, 1.5, and 0.9. 

The pole dominance model corresponds to a special case C2 = 0, which seems to 

describe the data very well as shown in Fig. 18. The mass of the intermediate state 

is given by m;ole = q!ax + 1/ (Cl f+ (q!aJ), which corresponds to the vector (B*) meson 

mass in the pole dominance model. Precisely speaking, the more consistent analysis is to 

impose the condition m po1e = mE- for the fit by Eq. (55). This constrained fit is shown 

with the long dashed line in Fig. 18. It is found that now the fit do not quite agree with 

the data, but the deviation is about 10 %. 
In Fig. 19 we also compare m po1e and the measured vector meson mass as a function of 

mE· Again we find that there is a discrepancy between mpole from the unconstrained fit 
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Figure 16: Form factors at mQ = 2.6 and K, = 0.1570, 0.1600. The solid curves represent 
the fit to single pole functions. 



42 

C\J 

U --'+-

C\J 

U --'+-

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
0.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
0.0 

4 RESULTS AND PHYSICAL IMPLICATIONS 

mo=1.5, K=O .1570, Tree 

o fO(q2) 

o t (q2) 

2.0 4.0 6.0 8.0 10.0 
q2 [GeV 2 ] 

ma=1.5, K=O.1600, Tree 

o fO (q2 ) 

o t (q2) 

2.0 4.0 6.0 8.0 10.0 
q2 [GeV 2 ] 

Figure 17: Form factors at mQ = 1.5 and K, = 0.1570, 0.1600. 
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dashed line represents the linear fit with the constraint m po1e = mE", where mE is the 
B* meson mass obtained from the two-point correlation function. 
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Figure 19: mE" obtained from the two-point correlation function of the B* meson and 
the pole mass from the linear fit of 1/ f+. 



44 4 RESULTS AND PHYSICAL IlVIPLICATIONS 

linear fit quadratic fit 

(mQ,n) K, f-l(q:aJ Cl f-l(q: aJ Cl C2 

(2.6, 1) 0.1570 1.373(54) 0.126(70) 1.386(52) o .058( 64) 0.046(53) 
0.480(21) 0.264(38) 0.470(20) 0.335(40) - 0.051 (37) 

0.1585 1.436 (70) 0.109(88) 1.438(64 ) 0.098(91) 0.007(81) 
0.445(24) 0.272(47) 0.434(22) 0.366(59) - 0.068(54) 

0.1600 1.531(94) 0.09 (11) 1.512(86) 0.22 (16) - 0.09 (14) 
0.407(27) 0.276( 61) 0.395(26) 0.44 (10) -0.115(86) 

(1.5,2) 0.1570 1.167(38) 0.209(81) 1.185(37) 0.086(80) 0.119 (87) 
0.597(25) 0.472(64) 0.587(22) 0.548(60) - 0.075 (78) 

0.1585 1.213(50) 0.19 (10) 1.224( 4 7) 0.10 (12) 0.08 (14) 
0.559(28) 0.493(78) 0.545(24) 0.623(92) - 0.13 (12) 

0.1600 1.283( 67) 0.17 (14) 1.279(62) 0.21 (20) - 0.04 (24) 
0.516(32) 0.52 (10) 0.496(29) 0.77 (17) - 0.26 (20) 

(0.9,2) 0.1570 1.011(28) 0.360(88) 1.027(27) 0.208(85) 0.19 (13) 
0.685(28) 0.753(90) 0.690(26) 0.713(75) 0.05 (13) 

0.1585 1.041(36) 0.35 (11) 1.056(35) 0.19 (13) 0.20 (21) 
0.647(33) 0.79 (11) 0.640(28) 0.86 (12) - 0.09 (21) 

0.1600 1.090(49) 0.33 (15) 1.096( 48) 0.26 (24) 0.10 (35) 
0.599(37) 0.85 (14) 0.577(32) 1.12 (23) - 0.36 (36) 

Table 11: Parameters for the fit f- 1 (q2) = f- 1 (q:aJ + Cl (q!ax - q2) + C2( q;ax - q2) 2, where 
C2 is set to zero for the linear fit. For each (mQ,n) and K" numbers in upper and lower 
rows correspond fO and f+, respectively. In all the cases, X2/ dof are less than unity. 

and the measured mE', which is around few hundred MeV. Nevertheless, it is remarkable 

that the deviation remains the same order and the mass dependence of m p o1e has the same 

trend with mE'. We have not yet understood whether the above discrepancies can be 

explained from the remaining systematic errors such as the discretization error . But at 

least qualitatively judging from the size of the uncertainty in our calculation, our data 

is not inconsistent with the picture that there is a sizable contribution from the B* pole 

to the form factor f+ near q;ax' 

So far the discussion have been based on the tree level study. Let us now study how 

one-loop renormalization changes the form factors. Because the one-loop correction is 

different for V4 and Vi, the shape of the form factors may change significantly. Figure 20 

shows the form factors for mQ = 2.6 and K, = 0.1570 with renormalization factors. The 

leading logarithmic factor Eq.(36) is not multiplied in the present case. We find that 

the renormalized f + has stronger q2 dependence than that of at the tree level , while fO 
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receives only a small change. The renormalization makes the B* pole fit even worse. In 

fact, the deviation of the constrained fit from our renormalized f + data is as large as 25 

% near q!ax' This is still within the typical size of O( a) errors. It is very important to 
perform the analysis with larger (3. 
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Figure 20: Renormalized form factors at mQ = 2.6 and K = 0.1570. Upper and lower 
figures are obtained with g~(7rla) and g~(lla), respectively. The solid lines represent 
the results of the linear fit. For f+ (q2), X2 I dof are 1.9 and 4.1 for q* = 7r I a and II a 
respectively. X2 Idof for fO(q2) are less than 0.5 in the both cases. 
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4.3 Soft pion theorem 

Applying the soft pion theorem to the B --t 7r matrix element, fO(q!aJ is related to the 

B meson decay constant [9, 10, 11] 

( 56) 

in the massless pion limit. This relation is examined in Fig. 21. For the values of 

fB' we refer our work on fB [30], which is obtained with an evolution equation of a 

slightly different form from that of the present work. We observe a large discrepancy 

between fO and the decay constant both for the 11mB dependence and for the value 

itself. fB increases rapidly toward heavier heavy quark masses, while fO( q!aJ almost 

stays constant. 

The discrepancy still remains significant when the renormalization effect is incor

porated. In evaluating the renormalized values of fB' we use one-loop perturbative 

coefficient obtained in the same manner as in Section 2.3 [31]. The leading logarithmic 

factor Eq.(36) is multiplied to both fO(q!aJ and fB. 

One may argue that the observed discrepancy can be explained by the uncertainty in 
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Figure 21: Comparison of fO( q!aJ with fBI f-rr multiplying the factor yfmB in the chiral 
limit. Open and filled symbols are at the tree level and at the one-loop with g~(1 I a), 
respectively. 
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Figure 22: jO(q;,ax) and (jB/j71")mB/(mB +m71") for light quark masses. Two cases of 
mQ, 2.6 and 1.5, are displayed at the tree level. 

the extrapolation procedure. To study this possibility, we compare fO(q!"J and fBI f71" 
also in finite light quark mass cases, in the light of the heavy meson effective theory 

which implies the relation (48). They are compared in Fig. 22 as a function of 1/K,. The 

difference between them are remarkable even for finite light quark mass cases. 

The reason why these differences occur is not clear. Since our present results suffer 

from various systematic uncertainties, as described in the next section, further study 

with better control of systematic errors is necessary to clarify the origin of the problem. 

49 

5 EXAMINATION OF SYSTEMATIC ERRORS 

In this section, we qualitatively discuss on the systematic uncertainties associated with 

the lattice regularization. The following is a list of the main sources of systematic errors: 

• O( a) errors: The characteristic size of 0 (aAQCD ) error arising from the unimproved 

'Nilson quark action at (3 = 5.8 is 20-30%. This effect is large enough to explain 

the discrepancy between EB(p)Up + E71"(k)Uk and ~, mentioned in Section 3. Use 

of the O(a)-improved Clover action for the light quark will reduce this error to the 

level of 5 %. 

• O( ap) error: The systems with finite momentum may suffer from the discretization 

errors more seriously than that at the zero recoil point. The analytic estimate of 

the momentum dependent error [12J shows that the effect is about 20 % at Ipi rv 1 

Ge V even one uses the O( a)-improved current. In general, the use of the Wilson 

action for the light quark could introduce such a error of order O( ap) in practical 

nonperturbative case. 

• Perturbative corrections: The one-loop correction could become significant espe

cially for small (3 values. Strictly speaking, our calculation does not treat the 

one-loop effects correctly, because the stabilizing parameter n does not have cor

rect values. This problem must be removed in the future studies. In estimating the 

one-loop corrections, we did not include the effect of the operator mixing, which 

was reported to be significant in the case of fE [33]. This effect also should be 

included to obtain reliable results. 

• O(1/m8) effects: We described the heavy quark with the NRQCD action including 

the order l/mQ terms. Further precise calculations may need to include O(l/m~) 

corrections, although the effect was shown to be small[30, 32] for fB. 

The finite volume effect may also be important. 

Since the all above systematic errors can be large, there is no advantage of giving 

quantitative estimates of each error at this stage. The use of the O( a)-improved (clover) 

action for light quark, as well as the simulation at higher {3 values will reduce most 

of the above systematic errors. The simulation with dynamical quarks is also of great 

importance for reliable predictions of the weak matrix elements. 
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6 CONCLUSION 

In this paper, we present the results of the study of B --+ 7r form factors using NRQCD 

to describe the heavy quark with the Wilson light quark. Clear signal is observed for 

the matrix element in a wide range of heavy quark mass containing the physical b-quark 

mass. They are extrapolated to the chiral limit, although the result is so noisy for 

quantitative conclusion. 
The l/mB dependence of the matrix elements are studied and it is clarified that 

the temporal component and the part of the spatial component proportional to the 

pion momentum have fairly small dependencies on mQ. On the other hand, the part 

of the spatial component proportional to the B momentum has a significant O(l/mB) 

correction. 
The q2 dependence of the form factors in the finite light quark masses are studied. We 

find that the q2 dependence of the form factor f+ ( q2) near q!"" becomes much stronger 

for larger heavy quark mass. Model independent fit of 1/ f+(q2) near q!ax _shQws tha_L 

the tree level results are consistent with the pole behavior for large q2 range, and the 

difference of fitted pole mass and the measured mB. is around few hundred MeV for all 

the heavy quark masses. 

The values of f O at the zero recoil point are compared with the prediction of the soft 

pion theorem, and the significant discrepancy is observed . 

The size of the renormalization corrections are estimated by the one-loop perturbative 

calculation. They almost does not affect their l/mQ dependence, but decrease Vi much 

more than 114, which drastically change the shape of f+ . Our present result suffers from 

large systematic uncertainties, and the most important one is O( a) error. It is very 

important to study at higher {3 with improved actions . 
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