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Abstract 

The study of Hilbert functions and Betti numbers of Gorenstein algebras is an old topic in 

commutative ring theory. We consider the following two important open problems. 

PROBLEM 1. What are the possible Hilbert functions of Gorenstein algebras? 

PROBLEM 2. vVhat are the possible Betti numbers of Gorenstein algebras? 

At a time when there were not many known examples of Hilbert functions of Artinian 

Gorenstein algebras, it was conjectured that all Artinian Gorenstein algebras have unimodal 

Hilbert functions , that is, the Hilbert function (ho) h l , ... ) hs ) of any Artinian Gorenstein 

algebra has the property ho :s; hI :s; ... :s; ht 2: ht+l 2: ... 2: hs . However the first 

counterexample to this conjecture was given by R. Stanley [36, Example 4.3]. This example 

has codimension thirteen. Later, D. Bernstein and A. Iarrobino [2, Theorem 1] gave some 

examples of such Artinian Gorenstein algebras with codimension five. and further M. Boij 

and D. Laksov constructed a large class of Artinian Gorenstein algebras, including the 

examples of R. Stanley and D. Bernstein-A. Iarrobino (d. [5] and [6]) . Most of these 

algebras have non-unimodal Hilbert functions with many extremal values. In the case 

of co dimension three, the possible Hilbert functions of Gorenstein algebras are completely 

characterize.d by a numerical condition, and it is well-known that there ar no non-unimodal 

Hilbert function s. This famous characterization theorem was obtained by R. Stanley [36, 

Theorem 4.2] . The method of his proof make use of the well-known st ructure theorem for 

Gorenstein ideals of height three due to D. A. Buchs baum and D. Eisenbud [8, Theorem 2.1]. 

The study of unimodality is closely related to the problem of characterizing the possible 

f-vectors of pure simplicial complexes (d. [4], [35] and [37]. for example). The question of 

unimodality has not yet settled in the following cases: codimension four, integral domains 

and licci algebras (i.e., a lgebras which are in the linkag class of a complete intersection). 

The Betti numbers give much more information of an algebra than the Hilbert function. 

Therefore it is natural that the study of Betti numbers gets more complicated than the 

study of Hilbert functions. But. thanks to D. A. Buchsbaum and D. Eisenbud:s structure 

theorem, the possible Betti numbers of Gorenstein algebras for codimension three are com­

pletely characterized and there are some well-known results on the problem of constructing 

Gorenstein algebras with given possible Betti numbers (d. [14]. [18] and [25]. for exam­

ple). J. Herzog, . V. Trung and G. Valla [25, page 6:3] constructed an explicit example 

of alternating matrixes defining Gorenstein algebras with given possible Betti numbers. S. 

J. Diesel [14 . Theorem 3.2] gave an algorithm of de 'cribing all possible Betti numbers of 

Gorenstein alo'ebras with a fixed Hilbert function. Hence we can observe that, in the ca e o 

of co dimension three, the Hilbert function of a Gorenstein algebra det rmine all possible 

Bett i numbers of the algebra. MoreO\'er, she gave a.n interesting observabon that there exist 



both the maximum and the minimum among all possible Betti numbers which determine 

the fixed Hilbert function. A. V. Geramita and J. C. Migliore [18, Theorem 2.1] showed 

that any set of given possible Betti numbers actually occurs for a "reduced" Gorenstein 

algebra of co dimension three. 

In this way, the study of the case of co dimension three is a very well developed area 

concerning the above problems. and the starting point for these results is the well-known 

structure theorem due to D. A. Buchsbaum and D. Eisenbud. But, in the case of any 

codimension which is greater or equal to four, there is no structure theorem 1 So we recall a 

basic fact of linkage theory [3:3, Remarque 1.4] that the sum of the saturated ideals of two 

geometrically linked arithmetically Cohen- Macaulay closed subschemes of projective space 

is the saturated ideal of an arithmetically Gorenstein closed subscheme of codimension 

one greater than codimension of the previous closed subschemes . This provides a way to 

construct Gorenstein ideals of height one greater than height of these ideals from Cohen­

Macaulay ideals of smaller height. sing this construction. for example, w can get a 

special class of Artinian Gorenstein algebras constructed by the sums of the id als of two 

finite sets of points in projective space such that the intersection of thes ets i empty and 

the union is a complete intersection . 

In this paper, we study some systematic construction of such Artinian Gorenst in al­

gebras controlling two finite sets being geometrically linked. and show th following three 

main results on the above problems concerning Hilbert functions and B tti numb r . 

1) At first, we study Hilbert functions of certain Gorenstein algebras constructed by the 

linkag th ory. In the first main result of Section 3, for two given geometrically linked 

arithmetically Cohen-Macaulay closed subschemes of projective space, we can construct a 

number of Gorenstein algebras whose Hilbert functions can be recovered from the Hilbert 

functions of the given clos d subschemes (Theorem 3.2). This theorem is an important key 

of making our study concerning Hilbert functions and Betti numbers of Artinian Gorenstein 

algebras . By virtue of this theorem, we can observe that the Hilbert function of any Artinian 

Gorenstein algebra in the certain class obtained above is described in terms of the Hilber 

fun tions of the given finite sets of points in projective space. So we would like to find 

some algorithmic ways for calculating the Hilbert function of any finite set of points in 

proj ctive space. In fact, it is difficult to alculate the Hilbert function of any given finite 

set of points. But, in this paper. we construct finite sets of points called k-configurations 

which are in a special geometric confiO'uration. and using a similar idea of the proof of 

[16. Theorem .f .1], we can give an algorithmic way for calculating the Hilbert functions 

of these sets (Remarks 3.6 and 3.10). Consequently, as an application of Theorem 3.2. 

we can giye a new method of a.n explicit construction of Artinian Gorenstein algebras 

with a given possible Hilbert function for co dimension three (Theorem 3.7). Then, by 

virtu of R. Stanley's characterization theorem, we can show that the sequence associated 

with the Hilbert function of an Artinian Gorenstein algebra is always the Hilbert function 

of a finite set of points in projective plane (Remark 3.4). This observation is a key to 

prove Theorem 3.7. Hence using th algorithmic way obtained by R mark 3.6. we can 

construct a k-configuration whose Hilbert function is equal to the sequence associated with 

any given possible Hilbert function, and further using Th orem 3.2, we can produce a 

desired Artinian Gorenstein algebra as the sum of the two ideals of this k-configuration 

and another controlled set. Later, A. V. Geramita, M. Pucci and Y. S. Shin [19] made an 

interesting observation to our construction, that is, they observed that th Betti numbers of 

Artinian Gorenstein algebras constructed by Theor m 3.7 are maximum among all possible 

Betti numbers which determine the same Hilbert function. Furthermol' , using a similar 

idea of Theorem 3.7 to the case of codimension four, we give some examples of unimodal 

Gorenstein sequences of codimension four (Proposition 3.11 and Corollary :3.12). 

2) vVe say that a finite sequence of positive integers is an SI-sequence if this sequence 

is symmetric and the first difference of the "first half' is an O-sequence (Definition 3.1). 

Here we can check that there exist Gorenstein SI-sequences which can not be constructed 

by the construction of Section 3 (Example 3.1:3). In Section 4, we go further. and gi\-e a 

method of an explicit construction of Artinian Gorenstein algebras whose Hilbert functions 

are equal to any given SI-sequence (Lemmas 4.4 and 4.6). We can get this construction 

by making use of an algebraic technique of the proof of [41, Theorem 3.8] controlling two 

geometrically linked sets of points in projective space, as a similar idea of the construction 

of Section 3. Also, the notion of "weak Stanley property" for Artinian algebras, which 

is introduced by J. Watanabe [41], plays an important role in a process of constructing 

Artinian Gorenstein algebras with a given SI-sequence. Cosequently, w can get the main 

result (Theorem 4.2) of Section 4 which give a characterization of Hilb rt functions of 

Artinian Gorenstein algebras with th weak Stanley property. That is, it is showed that a 

given finite sequence of positive integers i the Hilbert function of an Artinian Gorenstein 

algebra with the weak Stanley property if and only if this sequence is an SI-sequence. J. 

vVatanabe discovered a large class of Artinian Gorenstein algebras with unimodal Hilbert 

functions [41, Theorem 3.8 and Example 3.9]. That is, he showed a very interesting result 

that most Artinian Gorenstein algebras have a property which is stronger than this weak 

Stanley property. Hence, combining these results, we can observe that Hilbert functions of 

most Artinian Gorenstein algebras are SI-sequences. 

3) The famous characterization theorem due to R. Stanley [:36, Theorem 4.2] says thaL in 

th case of codimension three, a symmetric sequence is the Hilbert function of an Artinian 

Gorenstein akebra if and only if the first difference of the "first half' i an O-sequence. b v 

The main purpose of Section 5 is to gi ve an algebraic explanation of the ence of this 

formulation in terms of the first diff renee. At first, we can give a new m thod of an explicit 

construction of Artinian Gorenstein algebra with given possible Betti numb rs for codi­

mension three (Theorem 5.4). This construction is obtained by studying the construction 



of Theorem 3.7 in detail. That is, we consider special finite sets of points in projective 

plane (called pure configurations) which are in configuration of lattice points, and describe 

minimal generators of Artinian Gorenstein ideals which are obtained as the sums of the 

ideals of two geometrically linked pure configurations in projective plane (Lemma 5.5) . In 

the proof of this lemma, we can give a geometric observation that a pure configuration is 

the finite set of points defined by a li fting of an Artinian ideal generated by monomials. 

Hence we can see that all Artinian Gorenstein ideals of Lemma 5.5 are the sums of liftings of 

two geometrically linked monomial ideals, and this observation is a key for proving Lemma 

5.5. Next, using a similar idea of Lemmas 4.4 and 4 .5, we add the following important 

observation to this construction of Theorem 5.4, that is , we show that for any Artinian 

Gorenstein algebra of codimension three, there exists an Artinian Gorenstein algebra with 

the weak Stanley property which has the same Hilbert function (Theorem 5.8 and Remark 

5.12). Consequently, by virtue of th is observation, we can give another proof of the fa­

mous theorem due to R. Stanley which gives a characterization of the Hilb ert functions of 

Gorenstein algebras of codimension three (Theorem 5.11). In this proof, we see an algebraic 

explanation of the essence of R. Stanley's formulation. 

Key words. Graded ring, Graded algebra. Artinian ring Artinian algebra, Cohen­

Iacaulay ring , Cohen- ivIacaulay algebra, Gorenstein ring, Gorenstein algebra. Hilbert 

function, Gorenstein sequence, U nimodality, Free resolution, Betti numbers, Linkage, \Neak 

Stanley property. 
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1 Introduction 

1-1 Hilbert functions and Betti numbers 

We begin by introducing some standard notation and terminology of graded algebras that 

will be used throughout this paper. 

Let A be a standard graded algebra over a field k, namely, A is a graded ring EB i~o Ai 

satisfying Ao = k, A = k[AI] and dimk Al < 00. This means that there exists a positive 

integer n such that A = Rj I where R = k[xo, Xl, ... ,xn ] is the polynomial ring with the 

standard grading, i.e., each deg Xi = 1, and I is a homogeneous ideal of R. 
The Hilbert function of A is defined by the numerical function H (A, -) : N ---7 N with 

H(A,i) = dimkAi for all i 2: 0, 

in particular H(A, 0) = 1. The Hilbert function H(A, i) measures the dimension of the i-th 

homogeneous piece of a graded algebra A. The Hilbert series of A is defined by the formal 

power serIes 
ex) 

F(A, "\) = L H(A, i),,\i E Z[["\]]. 

Let d = dim A. It is a classical result that F (A,"\) is a rational function in ,,\ of the form 

for certain integers ho , hI , ... , hs satisfying 2:::=0 hi i- 0 and hs i- O. Furthermore H ( A, i) 
is a polynomial for i sufficiently large values and the degree of this polynomial is d - 1. vVe 

call the sequence 

the h-sequence (or the h-vector) of A. A sequence (h o. hI, ... , hs) of non-negative integers 

is said to be a Gorenstein sequence if this sequence is the h-sequence of some Gorenstein 

algebra. A sequence is unimodal if there exists an integer t such that 

We note that if a E Au is not a zero-divisor , then F(AjaA,"\) = (1 - ,,\U)F(A, "\). Hence 

we get 

for any linear regular sequence {aI"" 1 an}. Furthermore we note that if k' IS a field 

containing k, then 

F(A k k' ,,\) = F (A . "\). 

Therefore we can study all possible Hilbert functions for Cohen-Macaulay algebras by 

studying only the Hilbert functions for Artinian algebras. at least when there is a linear 
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maximal regular sequence, e.g., for infinite fields. vVhen A 

algebra, we put 

c(A) = Max{i I Ai =1= (O)} 

EB i~O Ai IS an Artinian 

and we call c( A) the socle degree of A. In this case, we denote by the finite sequence 

H(A) = (H(A,O),H(A,I), ... , H(A,c(A))) 

the Hilbert function of A. Obviously this finite sequence is the h-sequence of A. 

Let 
br b1 

o ---t EB R( - j)t'r.J ---t .. . ---t EB R( - j)t'l .J ---t R( 0) ---t A ---t 0 
j=1 )=1 

be a graded minimal free resolution of A as a graded module over R, where R(f) i = Re+i 
for all i 2 O. The numbers {,Bi,j} are uniquely determined by A namely, 

for all (i,j) . So we call {,Bi,j } the (i,j)-th graded B etti numbers of A. We note that if 

y E Al is not a zero-divisor , then 

,R/YR rv R TOl i (A/yA. k) = Tor i (A, k) 

where Y E Rl is a pre-ilnage of '!J . Furthermore if k' is a field containing k, then 

TorR®kk'(A ()() k' k') ~ TorR (A k) !VI k' ! _ k , !' yy k . 

Therefore we can also study all possible graded Betti numbers for Cohen-lvlacaulay algebras 

by studying only the Betti numbers for Artinian algebras. 

The Betti numbers of A determine the Hilbert ser ies (i.e., the Hilbert function) of A by 

The converse is not necessarily true. But it is also well-known that the Hilbert function of 

an algebra give some restrictions on th Betti numb ers of the algebra. For example, the 

Hilbert function of a Gorenstein algebra of co dimension three determine all possible Betti 

numb ers of the algebra (d. Diesel [14] for the details). The Bett i numbers provide much 

more information about a graded algebra than just the Hilbert funct ion . We are not only 

given the number of generators in various degree, but also their relations due to the module 

st ructure over a polynomial ring. Therefore it is natural that the study of Betti numbers 

gets more complicated than the study of Hilbert functions . 

In th following s ction , we recall some well-known results on the problem of character­

izing possible Hilbert funct ions and Betti numbers for a subclass of graded algebras . No 
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doubt , we see that it is very hard to find a characterization of a subclass of O'raded alO'ebras b b 

like Gorenstein algebras, Gorenstein domains. Cohen-Macaulay domains. 

1-2 Characterization of possible Hilbert functions and Betti numbers 

A central obj ect of the study about Hilb ert functions and Betti numb ers of graded algeb ras 

and the numerical invariants deri ved from them is to see what kind of conditions the 

structure of an algebra A imposes on the numerical invariants of A, and conversely what 

we can deduce about A from knowledge of the numerical invariants of A. 

lv'lany results is known abou t the problem of characterizing poss ible Hilbert fun ctions 

and Betti numbers for a subclass of graded algebras. 

1) HILBERT FUNCTIO S OF GRADED ALGEBRAS: A characterization of Hilbert functions 

of graded algebras was first made by F .S. Macaulay. If a and i are positive integers then a 

can be written uniquely in the form, called the i-binomial expansion of a, 

( ni ) (n i
-

1
) ( nj ) a= i + i-I + .. . + j , 

where ni > ni-l > ... > nj 2 j 2 1. We put O< i> = 0 and 

<i> _ ( ni + 1) (n i - I + 1 ) ( nj + 1 ) a - . + + ... + . 
z+l i j+1 

A finite or infinite sequence (ao aI"") of positive integers is called an O-sequence if ao = 1 

and ai+l :::; a'fi> for all i 2 1. 

F.C . lvlacaulay described all possib le Hilbert functions of graded algebras by a numeri cal 

condition . That is, he showed that a given sequence of positive integers is the Hilb ert 

funct ion of a graded algebra if and only if this sequ nee is an O-sequence (d. [30], [36, 

Theorem 2.2] and [7, Theorem 4 .2.10]) . In the proof of this theor m, he showed that the 

Hilbert function of a graded algebra ar ises as the Hi lbert function of a po lynomial ring 

modulo an ideal which is defined by monomials. 

2) HILBERT FUNCTIONS OF GORENSTEI:\f ALGEBRAS OF CODINIE SIO THREE: At 

some stage, it was conjectured that all Artinian Gorenstein algebras have unimodal Hilbert 

functions. R. Stanley and A. Ianobino independ ently conjectured that a sequence (ho· hI' 

.. . , hs ) is a Gorenstein sequence if and only if 

(i) hs - i = hi for all i = 0,1, . .. , [s/2] . i.e .. this sequ nce is symmetric, and 

(ii) (ho. hI - ho , h2 - hI . .. . , ht - ht-d is an O-sequ nce, wher t = [s/2]. 

For details see [35 Conjecture 2] and [36. page 6]. Here we note that any sequence 

sat isfying the above conditions (i) and (ii) is always unimodal. We call a sequence sat isfying 

the conditions (i) and (ii) an Sf-sequ ence. 



R. Stanley [36, Theorems 4.1 and 4.2] showed that all Gorenstein sequences satisfy the 

condition (i) , and further by using D. A. Buchsbaum and D. Eisenbud's structure theorem 

[8, Theorem 2.1] for Gorenstein ideals of height three, that this conjecture is true if hI ~ 3. 

Hence we can observe that there exist no Artinian Gorenstein algebras with non-unimodal 

Hilbert functions for codimension three. 

3) UNIMODALITY OF GORENSTEIN SEQUENCES: The above conjecture is not necessarily 

true in general. The first example (1,13,12,13,1) of a non-unimodal Gorenstein sequence 

was found by R. Stanley [36. Example 4.3]. Later, D. Bernstein and A. Iarrobino [2 , 
Theorem 1] gave some examples of non-unimodal Gorenstein sequences with codimension 

five. The case of codimension four is still open now . On the other hand, it is well-known that 

there exist some classes of Artinian Gorenstein algebras with unimodal Hilbert functions 

(cf. [1], [4], [34], [35], [36], [37]). For example, R . Stanley [37] showed, by using the Hard 

Lefschetz Theorem, that the h-vector of a Gorenstein algebra. which is the Stanley-Reisner 

ring of a simplicial polytope, satisfies the conditions (i) and (ii) above. The conver e was 

proved by L. J. Billera and C. W. Lee [4] . 

4) GORENSTEIN PROPERTY FOR Co HE -NIACAULAY DOMAI S: R . Stanley howed the 

beautiful theorem [36 Theorem 4.4] characterizing graded Gorenst in domains by their 

Hilbert functions. Precisely speaking, if A is a graded Cohen-::VIacaulay domain f Krull­

dimension d, then the following conditions are equivalent. 

(a) A is Gorenstein. 

(b) There exists an integer p such that F(A, 1/ ),,) 
sequence of A is symmetric. 

(- l)d ,VF(A,)..) that IS, the h-

5) HILBERT FUNCTIONS OF REDUCED ALGEBRAS: The O-sequence {bd is called differ­

entiable if its first difference {cd, where Co = 1 and Ci = bi - bi- 1 for all i ~ 1. is again an 

O-sequence. 

A. V. Geramita, P . Maroscia and L. Roberts [16, Theorem 4.1] characterized Hilbert 

functions of reduced algebras as follows : A given O-sequence {bd is the Hilbert function 

of a reduced algebra if and only if {bi } is differentiable . 

6) HILBERT FUNCTIONS OF GORE STEIN DOMAI S OF CODIMEl SIO I THREE: Let 

(ho, hI"'" hs ) be a Gorenstein sequence with hI = 3. We put 

Then E. de Kegri and G. Valla showed in [32, Theorem 5] that there exists a Gorenstein 

domain of codimension three which has this sequence as the h-sequence if and only if the 

following conditions are satisfied: 
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(i) qi ~ 0 for every i such that a ~ i ~ [5/2] + 1, and 

(ii) it does not happen that qt < 0, qu = 0 and qr < 0 with a ~ t < v < r < [5/2] + 1. 

7) BETTI UMBERS OF GORENSTEI ALGEBRAS OF COD[ME SION THREE: There are 

some well-known results on the problem of constructing Artinian Gorenstein algebras hav­

iner an assigned set of erraded Betti numbers which are possible for some Artinian Gorenstein o 0 

algebra of codimension three (cf. [14], [18] and [25], for example). An explicit construc-

tion can be found in the paper by J. Herzog, . V. Trung and G. Valla [25, page 63] and 

the paper by S. J. Diesel [14, Proposition 3.1]. sing this construction, we can give an 

explicit example of alternating matrixes defining Gorenstein algebras with given possible 

Betti numbers. Furthermore, S. J. Diesel [14. Theorem 3.2] gave an algorithm of describ­

ing all possible Betti numbers of Gorenstein algebras with a fixed Hilbert function . As a 

result of this theorem, we can observe that in the case of codimension three, the Hilbert 

function of a Gorenstein algebra determine all possi ble Betti numbers of the algebra. A. 

V. Geramita and J. C .. figliore [18, Theorem 2.1] showed that any set of given possible 

Betti numbers in fact occurs for a reduced set of points in p 3. 

1-3 Main results 

We consider the following two important open problems concerning Hilbert functions and 

Betti numbers of Gorenstein algebras. 

PROBLE~I 1. What are the possible Hilbert functions of Gorenstein algebras? 

PROBLE1[ 2. What are the possible Betti nUlnb rs of Gorenstein algebras? 

As can be seen from the above section, thanks to the well-known D. A. Buchsbaum and 

D. Eisenbud's structure theorem [8, Theorem 2.1]' the study of the case of codimension 

three is a very well developed area concerning these problems. But , in the case of any 

codimension which is greater or equal to four, our knowledge is much more limited because 

there is no structure theorem. So, we recall a standard fact of linkage theory [33, Remarque 

1.4] that the sum of the saturated ideals of two geometrically linked arithmetically Cohen­

Macaulay closed subschemes of projective space is the saturated ideal of an arithmetically 

Gorenstein closed subscheme of codimension one greater than codimension of the previou 

closed subschemes. This fact is a starting point for our study concerning Hilbert functions 

and Betti numbers of Artinian Gorenstein algebras. 

In this paper, we study Hilbert functions and B tti numbers of Artinian Gorenstein 

algebras constructed by the linkag theor', and show the following three main re ults 

concerning the above problems. 
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The main results of this paper to the first problem are: 

1) We st udy Hilbert functions of Gorenstein algebras with t.he ideals constructed .from 

Cohen-l\IIacaulay ideals of smaller height by the above fact. A main purpose of SectIOn 3 

is for two given geometrically linked arithmetically Cohen-Macaulay closed subschemes, 

t~ give a way to construct a number of Gorenstein algebras whose Hilbert functions can b.e 

recovered from the Hilbert functions of the given closed subschemes (Theorem 3.2). ThIS 

theorem provides a way to construct rnany Gorenstein algebras with unimodal Hilb.e~t 
functions. As an application of this construction, we give a new method of an explIclt 

construction of Artinian Gorenstein algebras achieving all possible Hilbert functions for 

codimension three (Theorem 3.7). A key idea for finding this construction is to construct 

a finite set of points, called a k-configuration which is a special geometric configuration. 

with a given differentiable O-sequence. Consequently, we can construct a desired Artinian 

Gorenstein algebra as the sum of the two ideals of this k-configuration and another con­

trolled set. This idea of Theorem 3.7 was further exploited by A. V. Geramita. M. Pucci 

and Y. S. Shin [19] to find good points in the parameterizing space for Gor nstein alg bras 

of codimension three. Furthermore using a similar idea of Theorem 3.7. w give some ex­

amples of unimodal Gorenstein sequences of codimension four. But we can check that there 

exist Gorenstein SI-sequences which can not be constructed by this con tru tion (Example 

3.13). In Section 4. we go further and give a method of an explicit construction of rtinian 

Gorenstein algebras with a given SI-sequence. 

2) At some stage
1 
it was conjectured that all Artinian Gorenstein algebras have unimodal 

I-Iilbert functions. However. in the cases of any co dimension which is greater or equal to 

fi\ e. it is showed that there exist some examples of Artinian Gorenstein algebras with 

non-unimodal Hilbert functions (d. [2], [5], [6] and [36]). For example. :VI. Boij [5] gave 

ome examples of Artinian Gorenstein algebras having non-unimodal Hilbert functions with 

many extremal values. On the other hand. J. Watanabe discovered a large class of Artinian 

Gorenst in algebras with unimodal Hilbert functions [41, Theorem 3.8 and Example 3.9] . 

That is, he showed a very interesting result that most Artinian Gorenstein algebras have the 

strong Stanley property. In Section 4. we study Hilb ert functions of rtinian Gorenstein 

algebras with a property which is weaker than this Stanley property. The main purpose of 

this section is to give a characterization of Hilbert functions of Artinian Gorenstein algebras 

with the weak Stanley property. That is, we show that a given sequence of integers is the 

Hilb rt function of an Artinian Gorenstein algebra with the weak Stanley property if and 

only if this sequence is symmetr ic and the first difference of the ~'first half" is an 0-

sequence (Theorem 4.2). An idea for proving this characterization is to use the technique 

of the proof of [.fl. Theorem 3.8] controlling two geometrically linked sets of points in 

projective space. Then using this idea. w can gi\'e a method of an explicit construction of 

Artinian Gorenstein algebra.s whose Hilbert functions are equal to any given SI-s quenc 

(Lemmas 4.4 and 4.6). and we can be led to this theorem. Hence. combining thes results, 
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we can observe that most unimodal Gorenstein sequences satisfy these conditlons. But 

the author does not know whether there exists an Artinian Gorenstein algebra with a 

unimodal Hilbert function not satisfying these conditions. And further, it remains open an 

important question of characterizing unimodal Gorenstein sequences. The author believe 

that all unimodal Gorenstein sequences are always SI-sequences. 

As for the second problenl, the main result of this paper is: 

3) In the final section, we give a new method of an explicit construction of Artinian 

Gorenstein algebras achieving all possible graded Betti numbers for codimension three 

(Theorem 5.4). This construction is obtained by studying the construction of Theorem 3.7 

in detail controlling two geometrically linked finite sets of points in projective plane, called 

pure configurations which are in configuration of lattice points. Using this construction 

we can produce our Artinian Gorenstein algebras as the sums of ideals of two geometrically 

linked pure configurations formulated completely in terms of the diagonal degrees defined 

by given graded Betti numbers. Hence we can observe that all possible resolutions for 

Gorenstein ideals of height three can be obtained as those of the sums of two geometrically 

linked Cohen-Macaulay ideals of height two. Moreover, we add an important observation 

to this construction, that is, we show that for any Artinian Gorenstein algebra of codi­

mension three, there exists an Artinian Gorenstein algebra with the weak Stanley property 

which has the same Hilbert function (Theorem 5.8 and Remark 5.12). Hence, as a result of 

this observation, we can give another proof of the famous theorem due to R. Stanley [36 

Theorem 4.2] which gives a characterization of the Hilbert functions of Artinian Gorenstein 

algebras of co dimension three (Theorem 5.11). In this proof, we see an algebraic explana­

tion of the essence of R. Stanley's formulation (in terms of the first difference) for Hilbert 
functions. 
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2 Prelimjnarjes 

This section is devoted to recall some standard facts of linkage theory and basic properties 

of Hilbert functions of arithmetically Cohen-Macaulay (aCM for short) closed su bschemes 

of projective space p n = Pk that will be used later. 

Throughout this paper, we assume that k is always an infinite field. Let X be a closed 

subscheme of p n and let I(X) be the saturated homogeneous ideal defining X in the 

homogeneous coordinate ring R = k[xo,xl,'" ,Xn] of p n. 

2-1 S orne standard facts of linkage theory 

Linkage was first formally introduced by Peskine and Szpiro in [33], however essentially 

equivalent ideas have been studied since the nineteenth century. Linkage provides a tech­

nique to construct large and interesting classes of C-M ideals and of Gorenstein ideals (see 

e.g. [27], [38] and [39]). 

Definition 2.1 (d. Pesbne and Szpiro [33]). (1) Let I and J be two homogeneous ideals 

of R = k[xo, Xl"'" xn]. Then I and J are said to be (algebraically) linked (with respect to 

(a)) if there exists a homogeneous R-regular sequence a = {aI , ... , ag } in In J such that 

J = (a) : I and I = (a) : J. Furthermore I and J are said to be geometrically linked if I 

and J are linked and if in addition I and J have no common associated primes . 

(2) Let X and Y be two closed subschemes of pn. Then X and Yare said to be 

(algebraically) linked (with respect to (a)) if the two ideals I (X) and I (Y) are linked. 

Furthermore X and Yare said to be geometrically linked if I(X ) and I (Y) are geometrically 
linked. 

The following three lemmas are well-known , so we omit the proofs (d. [33]). 

Lemma 2.2 Let X and Y be closed subschemes ofpn which are linked with respect to (a ). 
Then we have the following. 

(1) I(X) and I(Y) are unmixed ideals of the same grade. Furthermore we have 

Ass(Rj(a)) = Ass(Rj I(X)) U Ass(Rj I(Y)). 

(2) X is aCM if and only if Y is aCM. 

Lemma 2.3 Let X and Y be d-dimensional aCM closed subschemes of pn which have no 

common irreducible components. Then the following conditions are equivalent) and in this 
case X and Yare linked with respect to I (X U Y). 

(a) X and Yare geometrically linked. 
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(b) X U Y is a complete intersection, i. e., I(X U Y) is generated by a homogeneous 

R-regular sequence. 

Lemma 2.4 Let X and Y be d-dimensional aCN/ closed subschemes of p n which are 

geometrically z.inked. Then A = Rj I(X) + I (Y) is a d-dimens'ional Gorenstein graded 

algebra. 

This standard fact of linkage theory, providing a way to construct Gorenstein ideals from 

Cohen- Macaulay ideals of smaller height , is a starting point for the main results of this 

paper. 

2-2 Some basic properties of Hilbert functions 

Let X be a closed subscheme of p n. The Hilbert function of X is defined by 

Furthermore we put 

{ 
H (Rj I (X),i) 

H (X, i) = 
o 

for all 'i 2:: 0, 

for all i < O. 

tlH(X, i) = I :(X, i) - H (X, i-I) 

for i = O. 

for all i 2:: 1, 

for all i < O. 

Inductively, for all t 2:: 2, we put 

~t H (.X: . i) = ~ (~t-l H (X . i)) for all i. 

The Hilbert series of X is defined by F(X.)., ) = F (R j I (X), ).). vVe denoted by e(X) the 

multiplicity of X. If X is ad-dimensional aCNI closed subscheme of p n, then we put 

c(X) = 1ax{i I ~d+IH(X . i) i O}. 

Furthermore, if I( X) = (FI ,... Fn - d ) for some Fi E Re. (1 S; i S; n - d), then X 

is said to be d-dimensional complete intersection of type (el . . ' .. en-d) (writ ten as X = 
C.I.( el ," " en-d)). 

We state some basic properties of Hilbert functions of aCM closed subschemes . Refer to 

[12] for the proof, for example. 

Lemma 2 .5 Let X be ad-dim ensional aCi\II closed subscheme of p n. 

(1) If a = {al ," " ad is a l'inear sequence in Rl wh ich is regular on R j I ( X), then 

H (R j (I (X ), a), i) = ~ t H (X, 'i) fo r all i . 
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(2) ~dH(X,i) < 6,dH(X ,i + 1) for all a:s; i < c(X). 

(3) !ld H(X, i) = e(X) for all i ?: c(X). 

(4) If X is a a-dimensional reduced closed subscheme. then 

e(X) =1 X I and c(X) = Nlin{-i I H(X, 'i) =1 X I}, 

where I X I denote the number of points in X. 

(5) IfY be ad-dimensional aClVl closed subscheme of X , then c(Y) :s; c(X). 

0 7:1d(1 - ,\e,) 
(6) If X = C.1.(el'···' en-d), then F(X, '\ ) = (1 _ ,\)n+l . 

(7) If X = C.l .(el, " " en-d), then e(X) = Oi==-ld ei and c(X) = el + ... + en-d - (n - d). 

The following lemma is an important result concern ing Hilbert funct ions under linkage. 

By the duality of Gorenstein algebras we can prove this lemma see [13] for details . 

Lemma 2.6 (cf. Davis, Geramita and Orecchia [1 :3, Theorem 3]). Let X and Y b 

d-dimensional aC-'\t[ closed subschemes of p n which are linked with respect to (a). Put 

c = Max{i I ~d+IH(R/(a),i) =I a}. Then 

6,d+ l H (R/(a), i) = ~d+l H (X, -i) + !ld+l H (Y, c - i) 

for all i. 

The following is clear from Lemmas 2.3 and 2.6. 

Corollary 2.7 Let X and Y be d-dimensional aCvl closed subschemes of p n which are 

geometrically linked. Then 

fo r all i. 

Let X and Y be d-dimensional aCM closed subschemes of p n which are geometrically 

linked. Then there is the following well-known exact sequence preserving degree : 

a ---+ R / I (X u Y) ---+ R / I (X) EB R / l (Y) -+ R / l (X) + I(Y) ---+ a. 

Combining this exact sequence and the preceding corollary, we get in the following section 

that if 2c(X) :s; c( )( UY) -1 , then the Hilbert function of R/ J(X) +I(Y) can be described 

completely by the Hilb ert funct ions of X and Y (Theorem 3.2). This theorem, which is 

an important key of making our study of Hilbert funct ions and Betti numb ers , is also an 

interesting result concerning Hilb ert functions under linkage. 

1a 

3 Some examples of UnilTIodal Gorenstein sequences 

We consider the following finite sequences stated in Introd uction 1-2. 

Definition 3.1 An SI- sequence is a finite sequence h = (ho, h l , ... , hs ) of positive integers 

which satisfi es the following two conditions: 

(i) hi = hs- i for all a :s; i :s; s, i.e., h is symmetric; 

(ii) (hol hI - ho , h2 - hI, .. . , ht - ht - d is an O-sequence. where t = [s /2]. 

Here we note that every SI-sequence is always unimodal. 

In this sect ion , which is the major part of the paper [21]. we study h-sequences of certain 

Gorenstein algebras obtained by the construction of Lemma 2.4, and const ruct a large class 

of unimodal Gorenstein sequences. Consequently, for a given SI-sequence with hI = 3, we 

construct explicit examples of Artinian Gorenstein algebras whose Hilbert funct ions are 

this SI-sequence. Furthermore using a similar idea, we give some examples of Gorenstein 

SI-sequences with hI = 4. 

3-1 Hilbert functions of certain Gorenstein algebras 

In the following theorem, which is one of the main results of this sect ion , we construct 

a number of Gorenstein algebras with Hilbert functions described in terms of the Hilbert 

functions of two given aC I closed subschemes. 

Theorem 3.2 Let X and Y be d-dimensioTwl aCNl closed subschemes of p n which are 

geometrically linked. Furthermore. let (ho .... : hs ) be thE h-sequence of R/l(X) + I (Y). 

Then we have the follo wing. 

(1) R / l (X) + I (Y) is ad-dimensional Gorenstein graded algebra. 

(2) hi = ~dH(X,i) + 6,dH (X,c( X U Y) -1 - i) - e(X) fo r all a :s; i:S; s. 

(3) c( R / l (X) + I (Y)) = c(X U Y) -1. i.e .. s = c(X U Y)-l. 

(4) Assume that 2c(X) :s; c( X U Y) - 1. Then h(R/ l ()C) + I (Y)) is a Gorenstein SI­

sequence as follo 'ws: 

1 
~d H (X, i) 

hi = e(.L\') 

~d H (X c(X U Y) - 1 - i) 

for all a :s; i :s; c(X) - 1. 

for all c(X):S; i:S; c(X u Y) -1- c(X), 

for all c(X U Y) - c(X):S; 'i:S; c(X U Y)-1. 
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PROOF. (1) This follows from Lemma 2.4. 

(2) From Corollary 2.7, we obtain 

for all i. Therefore 

t t t 

L ~ d+l H(X U Y, i) = L!:l d+l H (X, c(.Y U Y) - i) + L!:l d+l H(Y, i) 
i=O i=O i=O 

for every t ~ O. Hence 

t 

L ~d+ l H(X, c(X U Y) - i) = !:ld H(X U Y, t) - !:ld H(Y, t) . 
i=O 

Furthermore~ by using Lemma 2.5 (3), 

c(XuY) 

L !:ld+ l H ()C 'i) = ,6.dH (X, c(X U Y)) = e(X), 
i=O 

because c(X) ~ c(X U Y). Therefore 

t c(XuY) c(XUY)-l-t 

L ~d+l H (X , c(X U Y ) - i) = L !::,. d+ l H (X, i) - L !::,.d+l H(X i) 
i=O i=O i=O 

= e(X ) - !:ld H(X. c(X U Y) - 1 - t ). 

Hence it turns out that 

!:ld H (X U Y, t) _!:ld H (Y, t) = e(X) _!:ld H (X , c(X U Y ) - 1 - t ). 

On the other hand , since the ring Rj J(X U Y ) is a d + I-dimensional CM standard graded 

algebra, there exists a homogeneous sequence a = {al," . , ad} C Rl which is regular on 

Rj J(X U Y). Put R = Rj aR, and let 7, J and J{ be the images of J(X) , J(Y) and J(X U Y) 
respect ively. Then, by virtue of [27, Lemma 1.10], the two ideals 7 and J are geometrically 

linked with respect to K, and a is a regular sequence on Rj J(X) + J(Y) . We note that 

Rj7 + 1 is Artinian, and 

hi = H (Rj7 + J , i) for all 0 ~ -i ~ s. 

Furthermore from the following exact sequence 

o -+ Rj J{ -+ Rj I ffi Rj J -+ Rj 7 + J -+ 0, 

it follows that 

H (Rj7 + 1, i) = H (Rj 7, i) + H(R j J , i) - H(Rj J(, 'i) . 
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Hence we conclude 

hi = !:ld H (X, i) + !:ld H(Y, i) - !:ld H (Rj J(X u Y), i) 

= !:ldH(X, i) + !:ldH(X,c(X U Y) -1- i) - e(X) . 

(3) We note that 

c(Rj J(X) + J(Y)) = c(R j I + J). 

Therefore it is enough to show that 

H(Rj 7 + 1, c(X u Y) - 1) =1= 0 and H (Rj 7 + 1, c(X u Y) ) = O. 

When i = 0, we have from (2) 

ho = ~dH(X, O ) + ~dH (X,c(X U Y) -1) - e(X) . 

Since ho = 1 and !:ldH (X, 0) = 1, it follows that ~dH(X,c(X U Y) -1 ) = e(X) . Hence 

when i = c(X U Y ) - 1, we obtain 

H (Rj 7 + J , c( X U Y) - 1) = !:ld H (X , c(X U Y ) - 1) + 6,d H(X, 0) - e( X) 

= e( X ) + 1 - e(X) 

== 1. 

Furthermore when i = c(X U Y ). it turns out that 

H (Rj 7 + 1, c(X U Y )) = 6,dH(X, c(X U Y )) + 6,dH(X, -1) - e( X ) 

= e(X) + 0 - e( X ) 

== o. 

(4) From 2c(X) ::; c(X U Y) -1 , we see c(X) ~ c(X U Y) -1 - i for all 0 ::; i ::; c(X)-l. 

Therefore 

!:ldH (X,c(X U Y ) - 1 - i) = e( X) for all 0 ~ i ~ c(X)-1. 

Hence , by using (2) , 

Furthermore we note that 

!::,.dH()(,i ) = e(.Y) and !::,.dH (X, c( X U Y) -1- i) = e(X) 

for all c( X) ~ i ~ c(X U Y) - 1 - c( X). Therefore we have from (2) 

hi = e( X ) for all c(X) ~i ::; c(X U Y) - 1 - c(X). 
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Also since 6.d H(X , i) = e(X) for all i ~ c(X U Y) - c(X), it follows that 

hi = 6 d H(X, c(X U Y) - 1 - i) for all c(X U Y) - c(X) :::; i :::; c(X U Y) - 1. 

~ext we note that [( c(X U Y) -1 )/2] :::; c(X U Y) -1 - c(X), because 2c(X) :::; c(X U Y)-l. 

Hence, the above equation irnplies that 6.h i = 6.d+1H(X,i) for all 0:::; i:::; [(c(X U Y)/2J. 

That is, (6.ho, 6.h 1 ) · · " 6.h[( c(XUY)/2]) is an O-sequence. Also it is clear from the above 

equation that h(R/1(X) + I(Y)) is syrnn1etric. Thus h(R/1(X) + I(Y)) is a Gorenstein 

SI-sequence. Q.E.D. 

CON] ECTURE. Let)( and Y be aCM closed subschemes of p n which are geometrically 

linked. Then the h-sequence of R/1(X) + I(Y) is an SI-sequence . 

3-2 Gorenstein sequences of co dimension three 

The aim of this subsection is to give a new method of an explicit construct ion of Artinian 

Gorenstein algebras whose Hilbert functions are a given SI-sequence with hI = 3. 

Definition 3.3 Let h = (ho, hI , .... hs) be an SI-sequence, and put bi = hI for each 

o :::; i :::; [s/2J and bi = h[s/2] for all i > [s/2J. We call this sequence {bd the sequence 

associated with h. 

Remark 3.4 It is clear that the sequence {bd above is a O-dimensional differentiable 0-

sequence (in the terminology of [16 . Definitions 2.8 and 2.9]). i.e. ,bi = bi+1 for all i ~ 0 

and the sequence (bo, b1 - boo b2 - b1 , •.. ) is an O-sequence. 

ext we consider the configurations of points in p2 as follows. 

Definition 3.5 (d. Roberts and Roitman [34]). A finite set X of points in p2 which 

satisfi s the following conditions is called a k- configurat-ion. 

There exist integers 1 :::; d1 < d2 < ... < dm , subsets X I , . .. , ... X"m of X, and distinct lines 

L11 ... , Lm such that 

(i) X is the union of the .>C ·s. 

(ii) 1 Xi 1= dL for each 1 :::; i :::; m, where 1 Xi 1 denote the number of points in Xi, 

(iii) Any point of Xi lies on Li for each 1 :::; i :::; m, and 

(iv) Li(l < i :::; m) does not contain any point of Xj for all j < i. 

In this case, the type of X is defined b) type(X) = (d1 , .. . , dm ). 

In the following remark. using a similar idea of [16, Theorem 4.1], we give an algorithmic 

wa\' for calculatin~ the Hilb rt functions of k-confio·urations in p 2. 
~ '-' . 0 
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Remark 3.6 (1) All k-configurations in p 2 of type (d1, .... dm ) have the same Hilbert 

function, which will be denoted by H(d 1 , •• • ,dm ). H(dl , ... ,dm ) can be obtained as follows: For 

any d ~ 1, let T(d) be the infinite sequ nee 1,2, ... , d, d, -+ (continuing with this constant 

value d). Write down the sequences T(dd, ... , T(dm ), successively shifted to the left and 

add: 
1,2, ... ,dl , -+ 

1, 2 3, ... , d2 . -+ 

1,3, . . . 

Therefore we obtain 
771 

H (d1 , ... . dm)Ci) = LT(dj)(j + ·i - m). 
j=l 

Furthermore it follows that 

and 

min{i 1 H(d1 ... ·,dm)(i) =1 X I} = dm - 1. i.e .. c(X) = dm - l. 

(2) Let b = (bo) b1 1 b2 . ... ) be a O-dimensional differentiable O-sequence with b1 = 3. Then 

there exist integers 1 :::; dl < .. . < dm such that H( dl , .... dm ) (i) = bi for all i ~ O. Since the 

integers dl , .. . ,dm for a given O-dimens ional O-sequence b are uniquely determined, we call 

(d1 ... 1 dm ) the type of b, which will be denoted by type( b) . The proof of [16) Theorem 4.1] 

gives a process of calculating the type of b. Thus if )C is a k-configuration in p 2 of type 

(d I1 •• • ) dm ): then we obtain H ()C, i) = bi for all ·i ~ O. 

Now as an application of Theorem 3.2. we prove the following theorem. 

Theorem 3.7 Let h = (ho ,hl ..... hs ) be a'n SI-sequence wdh hI = 3, and let b = {bd 

be the sequence associated with h. Furthermore let type(b) = (dr ) ... , dm ) be the type of b. 

Then we have the follow ·ing. 

(1) There ex.zst a k-configuration, )C of type (d1 , .... dm ) in p2 and a find set Y of points 

in p2 such that X n Y = cp and X U Y = C. 1. (el ' e2)' where el = dm and e2 = s + 3 - dm · 

(2) Moreover the h-sequence of R / 1(X) + J(Y) is eq'ual to the given S1-sequence h. 

PROOF. (1) It is enough to show m :::; el and dm :::; e2 ' Since 1 :::; d1 < ... < dm . we 

have m :::; el' Furthermore we note that b[s /2] = dl + ... + dm · Therefore by Remark 3.6. 

dm - 1 :::; [s/2]' i.e. , 2(dm - 1) :::; S. Hence dm < e2' 

(2) vVe note that ceX") = dm - 1 and c( xu Y) = el + e2 - 2. Since dm :::; el < e2) we have 

2(dm - 1) :::; e l + e2 - 3. Therefore 2c(X) :::; c(X U Y) - 1. Hence it follows by Theorem 
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3.2 that H(RjJ(X) + J(Y) ,i) = H(X,i) = bi for all 0 ~ i ~ el + e2 - 2 - dm · Also it is 

easy to show that [sj2] ~ e l + e2 - 2 - dm . Therefore H(Rj J(X) + J(Y ), i) = bi = hi for 

all 0 ~ i ~ [sj2]. Hence since e l + e2 - 3 = s, we conclude H(Rj J(X) + J(Y), i) = hi for 

all 0 ~ i ~ s. Q.E.D. 

We illustrate this theorem with the following example. 

Example 3.8 When n = 5, 6 or 7, h = (1. 3. 5, n , 5, 3, 1) is an SI-sequence, and the sequence 

b associated with h is 1,3,5,n.n , -+. By the construction in [16, Theorem 4.1]' we obtain 

{ 
(2 3) if n = 5 

type(b)= (' ) 
n - -1:,4 if n = 6 or 7. 

Then we put , as in Theorem 3. { 

el = { 
3 if n = 5 
4 if n = 6 or 7 { 

6 if n = 5 
and e2 = 

5 if n = 6 or 7 

For n = 5, let X be the following set of points in p 2 

000 

o 0 

and let Y be 
• • • 
• • • • 
• • • • • • 

For n = 6, let X be the following set of points in p2 

000 0 

o 0 

and let Y be 

• 
• • • 
• • • • • 
• • • • • 

Furthermore for n = 7, let X b the following set of points in p:2 

000 0 

000 

and let Y be 

• 
• • 
• • • • • 
• • • • • 

Then we have, by the construction in Theorem 3.7 (2), 

where A = k[x, y, z]j J(X) + J(Y) . 

Recently, this idea of Theorem 3.7 was further exploited by A. V. Gerarnita, M. Pucci and 

Y. S. Shin [19] to find good points in the parameterizing space for Gorenstein codimension 

three ideals. 

3-3 Unimodal Gorenstein sequences of codimension four 

In this subsection, using a similar idea of Theorem 3.7, we give some examples of unimodal 

Gorenstein sequences of co dimension four. 

First we introduce the notion of k-configurations of points in p 3 as follows. 

Definition 3 .9 A finite set X of points in p 3 which satisfies the following conditions is 

called a k- configuration. 

There exist subsets Xl, .... Xu of X and distinct hyperp lanes HI , ... , H u such that 

(i) X is the union of the X i ·s. 

(ii) For each i = 1, . . . , 'U. any point of Xi li es on Hi. 

(iii) Hi (1 < i ~ u) does not contain any point of Xj for all j < i and 

(iv) X i(l < i ~ u) is a k-configuration in Hi of type (di1, ... ,dim ,) with dim, < mi+1 for 

1 ~ i < u. 

In this case, the type of X is defined by type(X) = (d ll ,. .. dIm):"'; dub' .. ) dumJ. For 

the simplicity of notation, (dij ) denote the integers (d ll . ...• dIml : .... dul , ... , dumJ with 

dim , < mi+ 1 for 1 ::; i < 'U . 

In the following remark. we give an algorithmic way for calculating the Hilbert functions 

of k-configurations in p 3. 

Remark 3.10 (1) All k-configurations in p 3 of type (d ij ) have the same Hilbert function , 

which will be denoted by H(d,) ) . H (d,)) can be obtained as follows. Let (}( i) be the Hilbert 

function of a k-configuration of type (dil , . . . , di m,) . Then, following the same way as in 

the Remark 3.6 (1), we obtain 

u 

H( d'))(-i) = L (}(dj) (j + i - u). 
j=l 
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Hence it turns out that 

H(d'J)(i) =1 X 1 for all i ~ 0, 

min{i 1 H(d' ;)(i) =1 X I} = dumu - 1 

and c(X) = dumu - 1. 

(2) Let b = (bo, b1 , b2 , ... ) be a O-dimensional differentiable O-sequence with b1 = 4, and 

we put 

a( b) = min {, I bi < ( 3 7' )} 
(i( b) = min {i I bi - ( 2 7' ) > bi+1 - ( 2 7 ~ ~ 1 )} 

and ,(6) = min{i 1 6i = bi+d . 

Then by the construction in [16. Theorem 4.1] . there exist integers (du , ... . d1m1 · . .. ;dul , 

... ,dumJ with u = a(b), mu = fJ(b) + 1 and dumu = ,(b) + 1 such that H(d'J)(i) = 6i for 

all i ~ O. The proof of [16, Theorem 4.1] gives a process of calculating the integers (dij ) 

associated with the sequence b. Hence if X is a k-configuration in p 3 of type (dij ), then 

we have H(X, i) = bi for all i ~ O. 

Proposition 3.11 Let h = (ho .... , hs ) be an Sf-sequence wdh hI = 4, and put 

a( h) = min {i I hi < ( 37' )}. 
i3(h) =min{i I hi - (27') > hi+1 - (27~: 1 )} 

and ,(h) = min{i I hi ~ hi+d. 

If a(h) + J(h) + "y(h) :; s + 2. then h is a Gorenstein sequence. 

PROOF. Let 6 = {bt} be the sequence associated with h. Then by Remark 3.10 (2), 

there exist integers (dll , .... dIm!;',,; dul , ... , dumJ with 'U = a(b), mu = fJ( 6) + 1 and 

dumu = ~((b) + 1 such that H (d';)(i) = b! for all i ~ O. On the other hand, put el = 'u. 

e2 = 3(b) + 1 and e3 = s + 3 - a(6) - fJ(b). Noting that a(h) = a(6), fJ(h) = fJ( b) and 

,(h) = "(b), it follows from the assumption that a(h) + fJ(h) + ,(h) :; s + 2, mu :; e2 and 

dumu :; e3' Hence it is clear that there exist a k-configuration X of type (d ij ) in p 3 and a 

finite set Y of points in p 3 such that X n Y = (j) and )( u Y = C.I.(el ' e2. e3) . ext we 

note that c(X) = dumu - 1 = ,(h) and c(X U Y) = el + e2 + e:3 - 3 = s + 1. Therefore 

from ~/ (h) :; [s/2]' i.e., 2,(h) :; s. we obtain 2c(X) :; c(X U Y) - 1. Hence it follow s 

from Theorem 3.2 (4) that H( R/ I ( X) + I (Y) . i) = bi for all 0 :; ·i :; s - ,( h). That is, 

H(R / I(X) + I(Y), i) = h! = hi for all 0 :; i :; [s/21, because [~/2) :; s - ,(h). Thus since 

c(X U 1' ) - 3 = s.-1. we conclude H(R/I(X) + I (Y),i) = hi for all 0:; i:; s. Q.E .D. 

1 

Corollary 3.12 Let h = (ho, hI,"" h-y, ... 1 h-y+B-I, h-y+B,"" hs ) be an SI-sequence with 
hI = 4 and ho < .. . < h-y = ... = h-y+B-l > ... > hs . If a(h) + {3(h) :; ~/(h) + f) + l. 
a( h) :; f) + 1 or fJ( h) :; f), then h is a Gorenste'in sequence. 

PROOF. In this case, it is clear from Definition 3.1 of the SI-sequences that s = 2~( + f) - 1. 

Since, = ,(h), it is also obvious that the two conditions "a(h) + fJ(h) + ,(h) :; s + 2" 

and "a(h) + fJ(h) :; ,(h) + f) + I" are equivalent. Hence by noting a(h) :; ,(h) + 1 and 

fJ(h) :; ,(h), it is easy to show our claim. Q.E.D. 

The following example shows that there exists a Gorenstein SI-sequence with hI = 4 

which can not be constructed by Proposition 3.11. 

Example 3.13 When n = 4,5, ... ,10, it is easy to show that h = (1. 4, 71" 4.1) is an 

SI-sequence. Then 

a ( h) = {2 (71, i= 10) {3 ( h) = {1 (71, = 4, 5, 6) an d ,( h) = {I (71, = 4) 
3 (71, = 10) , 2 (71, = 7,8,9,10) 2 (71, =1= 4) . 

Therefore 

a(h) + 8(h) + ,(h) = { ~ess than 7 (71, =1= 10) 
( (71, = 10) . 

Hence when n = 4 .. . .. 9. it follows by Proposition 3.11 that (l. 4, 71" 4,1) is a Gorenstein 

sequence. But (1 4,10,4,1) is also a Gorenstein sequence. In fact, we put 

C[x, y,::, w] 
A= ~----------------~~~~----------------

x 3 X2~ -, ;L.2W , y3 

y2_ 
~, y2w, XZ2, y::;2 

_3 xw2, yw2, :3 - , W 

2·2y - y::;w, xy2 - x::;w. ::;2w _ xyw, ::;w2 - xyz 

Then we have F(A,,\) = 1 + 4'\ + 10,\2 + 4,\3 + ,\4 and 

A = k EB Rl EB R 2 . (kxy::; ffi k;l'Yw kx::;w EB kyzw) EB kxy::;w . 

1 ext we show that the standard graded algebra A is Gorenstein. It is enough to show that 

Soc(A) = k;J;y::;w, where Soc(A) = {a E A 1 xa = 0, ya = O. za = 0 and wa = J }. 

It is easy to check that Soc(A) = kxy::;w . so we omit the proof. 

In the following section, we go further and show how to construct Artinian Gorenstein 

algebras whose Hilbert functions are a given SI-sequence with any codimension. The notion 

of "weak Stanley property" for Artinian graded algebras. which is introduced in [41] by J. 

vVatanabe. plays an important role in a process of constructing these Artinian Gorenstein 

algebras. One of the key ideas for finding our construction is to make use of the technique 

of the proof of [4 1, Theorem 3.-']. 
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4 Artinian Gorenstein algebras with the weak Stanley property 

In this section we study Hilbert functions of Artinian Gorenstein algebras with the following 

property. For details of the background and motivation concerning this property: see [29] , 
[ 41 ] and [42]. 

Definition 4.1 (d. J. vVatanabe [41)). Let A = EBi=o A i be an Artinian algebra, where 

Ae =1= (0). We say that A has the weak Stanley property (WSP for short) if A satisfies the 

following two conditions: 

(i) The Hilbert function of A is unimodal , 

(ii) There exists 9 E Al such that the k-vector space homomorphism 9 : Ai ------r Ai+I 

defined by f ~ 9 f is either injective or surjective for every 0 :::; i :::; c - 1. 

In this case, we say that the pair (A, g) has the vVSP. 

The main purpose of this section is to prove the following theorem which is the main 

result of the paper [22]. 

Theorem 4. 2 Let h = (ho, hI' . . . , hs ) be a sequence of posdiv integers. Th en h i th 

Hilbert junction of an Artin£an Gorenstein algebra with the WSP if and only I] h i an 
SI-s quence. 

First we reca ll some basic propert ies of Hilbert funct ions of points in p n. The following 

lemma is clear from Lemma 2.5 and [16], so we omit the proof. 

Lemma 4.3 Let X be a finde set of points in p n. 

(1) H(X,i) < H (X ,i + 1) for all 0:::; i < c(X) . 

(2) H(X,i) =1 X 1 for all i 2 c(X), where 1 X 1 denote the number of points in X. 

(3) IfY C X~. then c(Y) :::; c(X) . 

(4) 1 X 122 ¢:::::} c(X) 2 l. 

(5) Iin{i 1 6.H(X, 'i) = O} = c(X) + 1. 

(6) (~H(X, 0), .. . . 6..H(X, c(X)) is an O-seque nce. 

4-1 A construction of a number of Artinian Gorenstein algebras with the weak 

Stanley property 

\\'e prepar the following four lemmas which are the key to the proof of T heorem .,1.2 . T hat 

is. for two given geometrically linked sets of points. we give a construct ion of a number of 
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Artinian Gorenstein algebras with the WSP whose Hilbert functions can be recovered from 

the Hilbert functions of the given sets. 

Lemma 4.4 Let X and Y be two finite sets of points in pn such that X n Y = ¢ and 

Xu Y is complete intersection. and P'ut A = Rj J(X) + J(Y). Furthermore put a = c(X), 

b = c(X u Y) - c(X) - 1 and c = c(X u Y) - 1. Assume that 2c(X) :::; c(X u Y) - 1 and 

1 X 12 2. Then H(A) is a Gorenstein SI-seq'uence as follows . 

j 
H(X, i) for all 0 :::; i :::; a-I , 

H(A, i) = 1 X 1 for all a :::; ·i :::; b, 

H(X,c-i) for all b+ 1:::; i:::; c, 

(4.4 .1) 

i.e ., H(A) = (I, hI"' " ha - 1 , 1 X 1, ··.,1 X I, ha - I , ·· ·, hI, 1), where hi = H(X, i) , and we 
have c(A) = c(X U Y) - 1. 

PROOF. It follows from Lemma 2.:3 that the given X and Yare O-dimensional closed 

subschemes of p n which are geometrically linked . Hence Theorem 3.2 (4) implies the 

equality (4.-1.1). Furthermore H( A) is an SI-sequence . Q.E.D . 

Lemma 4 .5 Wdh the same notation as in. Lemma 4.4. let L c p n be a hyperplane defined 

by a polynom'ial G E R I , and let 9 E Al be the image of G. Assume that 2c( X) :::; 

c(X U Y) - 1 and X n L = cD. Then (A,g) has the vVSP. 

PROOF. It is enough to show that 9 : Ai ------r Ai+l is either injective or surjective for every 

i. Put B = Rj J(X) = ffi i~oBi' and let G E Bl be the image of G. Consider the following 

commutative d iagram: 

Bo 
G 

Bl 
G G 

Be 
G 

Be+l -+ -+ -+ -+ 

rpl tpl rpl tpl 

Ao 9 
Al 

9 9 Ac 
9 0 -+ -+ -+ -+ 

where tp is the canonical homomorp hism B ------r A . It fo llows immediately from X n L = ¢ 
that G is not a zero-divisor in B . Therefore since G : B i ------r Bi+I is injective for all -t. 

we have from Lemma 4.3 (2) that H(B . i) =1 X 1 for all i 2 a . Hence G : Bi ------r Bi+1 

is bijective fo r all i ~ a. Fur thermore we get from (4.4.1) that H (A,i) = H(B i) for all 

o :::; i :::; b. Hence since t he homogeneous part of t he canonical homomorph ism tp : B ------r A 

is surjective, rp : B i ------r Ai is bijective for all 0 :::; i :::; b. T hus it fo llows immediately that 

(4 .5.1) j 
injective 

9 : A! ---7 A!+1 is bij~cti~e 

sUl'jectlve 
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for all 0 :::; i :::; a-I) 

for all a :::; i :::; b - 1, 

for all b :::; ·i ::; c. 

Q.E.D. 



Lemma 4.6 With the same notation as in Lemma 4.5, let d be an integer such that 

1 ~ d ~ c(X U Y) - 1 - 2c(X) and let (0 : gd) denote the homogeneous ideal generated 

by homogeneous elements f E A s'uch that gd f = O. Then H (A/( O : gd) ) is a Gorenstein 

SI-seq'uence as follo'Ws, 

(4.6.1) H (A/( O : gd), i) = I X I for all a :S i ~ b - d, 

1 
H(X , £) for all 0 ~ 'i ~ a- I , 

H(X, c - i-d) for all b + 1 - d ~ i :S c - d, 

and c(A/(O: gd)) = c(X U Y) - 1- d. 

PROOF. Put A = A/ (0 : gd). ote that the i-th graded piece of A is Ad ker[gd : Ai --+ 

Ai+d]. Since 1 ~ d ~ c(~X" u Y) - 1 - 2c(X). i. e., a ~ b - d, we obt ain from (4.5 .1) that 

gd : A i --+ A i+d is .. {

inj ective 

surJecbve 

Therefore we get the following identifi cation 

(4.6.2) 

Obviously c(A) = c - d = c(X U Y) - d and 

fo r all 0 ~ i ~ b - d, 

for all i 2 b + 1 - d. 

{ 
H (A, i) 

H(A. i) = 
for all 0 ~ i ~ b - d. 

H(A. i + d) for all b + 1 - d ~ -i ~ c - d. 

Hence from (4.4 .1). we are led to the equality (4 .6.1 ). Thus H (A) is an SI-sequence. 

Next we check that A is Gorenstein. Put Soc(A) = {y E A I AIy = (D)}, where y is the 

image of yEA. vVe note that c(A) = c - d and dimk (A)c- d = 1. It is enough to show that 

S oc(A ) = (A)c-d. Let y E Ai (y E Ai, i < c-d) be an element such that y E Soc(A). Th n 

A1y C (0 : gd ). Since Soc(A) = Ac. we have ygd E Ac. On the other hand, ygd E A i +d· 

Since i + d < c, we get ygd = O. i. e., y = O. Thus Soc(A) = (A)c-d. Q.E.D. 

Lemma 4.7 With the sam e notation as in Lemma 4.6, letg be th e image ofg in Aj(O: gd) , 

Then (Aj(O : gd), g ) is an Artinian GOTen tei'Tl algebra wdh th e VVS'P . 

PROOF. It is enough to show that 9 : A i --+ Ai+d is either injective or surjective for every 

i. ~oting the identification (1.6 2) . it is asy t show th t the multiplica tion 9 : A --+ A 

is describ ed as follows 

at1 
Therefore the only pa.rt which is not clear is Ab- d 9 -+ Ab+I' But , by us ing (4.5 .1 ), we have 

gd t 1 

Ab- d -+ Ab+I is surjective. because b - d 2 a. Q.E.D, 
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Remark 4.8 Let X b e a finite set of points in p n and let j be an integer. Then it is 

easy to construct a finit e set Y of points in p n such that .X" n Y = d>, X u Y is complete 

intersection and c(X U Y) 2 j. For example we construct Y as follows. vYe may assume 

that X n L = cP, where L is the hyperplane defined by the equat ion Xo = O. Obviously 

there exist distinct elements ai,j E k (1 ~ i ~ n, 1 ~ j ~ m) such that X C Z, where 

Z = {[I; aI ,j; .·· ; an,j] I 1 ~ j ~ m} . Then it turns out that Z is complete intersect ion 

and c( Z) = nm - n. Furthermore for a sufficiently large m, we get c( Z) 2 j. vVe put 

y = {P E ZIP t/:. X}. Then Y satisfy the conditions above. 

4-2 A characterization of Hilbert functions of Artinian Gorenstein algebras with 

the weak Stanley property 

'vVe now start to prove Theorem 4.2. 

PROOF OF THEOREM 4.2. Assume that h is the Hilbert function of an Artinian Gorenstein 

algebra (A , g) with the vVSP. Then the Hilbert function of A/ gA is the sequence ( 17,0 ) hI -

17,017,2 - h1,· .. ,ht - ht- d, where hi = H (A , 'i) and t = min{.z I H(A ,-i) 2 H (A,i +1)}. 

Furthermore from [36 . Theorem 4.1], 17, is symmetric. Hence h = H (A) is an S1- sequence. 

Conversely assume that h is an S1-sequence. 

If hI = 1. then it i easy to show that hi = 1 for all 0 ~ ·i :S s . Hence h is the Hilb ert 

function of A = k[xo]/ (xg+l) which is an Artinian Gorenstein algebra with the vVSP. 

Assume hI 2 2. vVe put t = min{ 'i I hi 2 hi+d. Hence h = (1. hI .. · · , ht-I . ht, . . . , ht , 

ht - 1 , . .. , hI, 1). Furthermore, by virtue of the proof of [16, Theorem 4.1]. there exists a 

finite set X of po ints in p hl -I whose Hilb ert function is the O-dimensional differentiable 

O-sequence associated with h. vVe may assume that X n L = cP . where L is the hyperplane 

defined by the equation Xo = O. Furthermore by Remark 4. , there exists a finite set Y of 

points in p n such that X n Y = (J) , ~X" U Y is complete intersection and c(X U Y ) 2 s + 1. 

Since 2t ~ sand c(X) = t . it follows that 2c(X) ~ c(X U Y) - 1. Put A = R/ J(X) + J(Y ) 

and d = c(~X" u Y) - s -1 . and let g be the image of Xo in A. Note that d 2 O. Furthermore. 

we put a = c(X) - 1. b = c(X U Y) - c(X) - 1 and c = c(~X" U Y ) - 1. Then. by adding 

Lemma -1 .4 and Lemma -1.6. we get 

1 
H ()C 'i) 

H (A/( O:g d) . i)= IXI . 
H (X , c - I, - d) 

for all 0 ~ i ~ a-I . 

for a ll a :S -i ~ 6 - d, 

for all b + 1 - d ~ i ~ c - d. 

where gO = 1. It is easy to show that a ~ [5 / 2] ~ b - d. Therefore H (A/( O : gd),i) 
H (X,i ) = bi = hi for a.ll 0 :S i ~ [5/2]. Hence since H(A j( O : gd)) is ymmetri c and 

c - d = s, it follows immediately that H (A/(O : gd)) = h. Furthermore by Lemma 4.5 and 

Lemma. 4.7, A /( O : gd) is an Ar t inia.n Gorenstein algebra with the vVSP. Q.E.D. 



Remark 4.9 In the final of this section. we pose a few conjectures concerning "unimodal­

ity" for Gorenstein sequences and "weak Stanley property" for Artinian Gorenstein alge­

bras. 

We conjecture the following which remains open as an important question on character­

ization of unimodal Gorenstein sequences. 

CO . JECTl"RE. Unimodal Gorenstein sequences are always SI-sequences. 

It is not known whether there exists a Gorenstein sequence which is not an SI-sequence. 

But we believe that unimodal Gorenstein sequences are always SI-sequences. 

~ ow it is clear that the Hilbert functions of Artinian Gorenstein algebras with the weak 

Stanley property are always unimodal. Therefore it is natural to ask a question of whether 

Artinian Gorenstein algebras with unimodal Hilbert functions have the weak Stanley prop­

erty. H. Ikeda [29, Example 4.4 ] constructed an example of a unimodal Artinian Gorenstein 

algebra of codimension four not having the weak Stanley property. Here we note that the 

Hilbert function of this example is an SI-sequence. But the case of codimension three is 

still open now. That is, it is not known whether there exists an Artinian Goren tein alge­

bra of codimension three not having the weak Stanley property. Furthermore we are much 

interested in the following question for the case of any codimension. 

QUESTIO~. What sort of Artinian Gorenstein algebras have the weak Stanley property? 

There ar a few answers to this question (see [2 ], [41]. [42] and [4:3] . for details). 

Co JECTuRE. The Artinian Gorenstein algebras arising from the construction of Lemma 

2..! have the weak Stanley property. 

If this conjecture is true, then the following conjecture is also true , Because it follows easily 

that every complete intersection ideal can be obtained as a sum of two geometrically linked 

Cohen- Iacaulay ideals. 

CONJECTl"RE. Complete intersections have the weak Stanley property. 

Anoth r tempting conjecture (d. [18. Remark 2.3]) is that for any Artinian Gorenstein 

ideal] C R (i.e., R/] is Artinian Gorenstein) with an SI-sequence. there exists a Cohen­

r.lacaulay ideal I' such that 

I' c I, dimR / I' = 1 and H(R/ I'.i ) = H (R / I.i) 

for all 0 :S i :s:; [c(R/1)/2]. But, while this conjecture seems to be true. it is not true in 

general. One ch ck ea ily that most complete intersections offer counterexamples. On the 

other hand. th re ar some affirmative answers to this conject Llre for the case of codimension 

thre (se [28]) . 
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5 Artinian Gorenstein algebras of co dimension three 

In this section, we give a new method of an explicit construction of Artinian Gorenstein 

algebras achieving all possible graded Betti numbers for codim nsion three, which is the 

major part of the paper [23]. Furthermore we add an important observation to this con­

struction, that is, we show that for any Artinian Gorenstein algebra of codimension three. 

there exists an Artinian Gorenstein algebra with the weak Stanley property which has 

the same Hi lbert function. Consequently we give another proof of the famous theorem 

of Stanley [36, Theorem 4.2] which gives a characterization of Gorenstein sequences for 

codimension three. 

5-1 The possible diagonal degrees 

When] is a Gorenstein homogeneous ideal of height three in R = k[XQ. Xl,"" In] . it is 

well-known that a graded minimal free resolution of A = R/] has the form 

2m+1 2m+1 

o ---t R( -s) ---t EO R( -Pi) --+ EO R( -qi) ---t R(O) --+ A --+ O. 
i=l i=l 

where ql :s:; . .. :s:; q2m+1 and PI 2:: .. . 2:: P2m+1 (d. [8]). Here we call this sequence 

the n'umerical characters of A . and in particular. we put s(A) = s. 

D efinition 5.1 (d. Buchsbaum and E isenbud [8]), 'VVith the notation as above. we define 

a new sequence {Ti}, where 

ri = Pi - qi for all 1:S:; i :s:; 2m + 1. 

We call t hi s sequence the diagonal degrees of A. 

Vie recall a relation between the possible numerical characters and the possible diagonal 

degrees . 

It follows frOll1 [8, page 466] that the diagonal degrees of A compl tely determine the 

numerical characters of A. that is, 

2m+ l 

(BEl) s = L Ti, 

i=1 

1 1 
(BE2) q' = - (s - r ') = - ~ T ' 

! 2 1 ') L ), 
~ rf i 

1 
(BE3) Pi = s - qi = -(5 + l'i) . 

2 

2,3 



Therefore there is a one-to-one correspondence between the possible numerical characters 

and the possible diagonal degrees. Hence it turns out that there is a one-to-one correspon­

dence between the possible graded Betti numbers and the possible diagonal degrees. 

Furthermore it follows from [14, Proposition 3.1] that the diagonal degrees of A must 

satisfy the following three conditions: 

(D2) the integers ri are all even or all odd, 

Conversely, every sequence of integers satisfying the conditions (D 1), (D2 ) and (D3) is 

realized as the diagonal degrees of a Gorenstein ideal of height three . This fact follows, for 

example from [14, Proposition 3.1], [18, Theorem 2.1] and [25. Section 5]. 

5-2 A construction of Artinian Gorenstein algebras achieving all possible Betti 

numbers for codimension three 

vVe prepare the following notation and definitions to state Theorem 5A which is one of the 

main results of this section. 

Let R = k[x, y, ::;] be the homogeneous coordinate ring of p 2. vVe consider the following 

finite ets of points which are in position of lattice points in p 2. 

Definition 5.2 (1) A finite set X of points in p2 is called a basic config'uration of type 

(d, e) if there exist disbnct elements bj , Cj in k such that 

d € 

J(X) = ( II (x - b)::). II (y - Cj::) ). 

j=1 

We write X = B(d , e). Obviously B(d, e) is complete intersection and 1 B(d, e) 1= de . 

(2) A finite set X of points in p 2 is called a pure configuration if there exist finite basic 

configurations B(d1 el ) .... , B (drn , ern), where tl > ... > ern, which satisfy the following 

three conditions: 

(i) B(d i , ed n B(dj , ej) = dJ if i -I], 

(ii) X = B(d l , el) U ... U B(dm. em), 

(iii) <.p(B(d;,e;)) ::::> cp( B (d;+I,e;+r)) for alII:::; i:::; m -1 , where cp : P 2\{(1 O,D)} -t pI 

is the map defined by sending the point (1' . y, ::;) to the point (y. ::;). 

26 

Notation and Definition 5.3 For a sequence {/l~"" 12m+d of integers satisfying the 

conditions (D1), (D2) and (D:3) above, we define the following integers: 

1 
di 2"(lrn+2-i + Irn+Hi) for all 1 :::; -£ :::; m, 

1 
2"( 11 + I m+l), 

1 
2"( 11 + 12m+d, 

1 
2"(/m+l-i +rm+l+d for alII:::; i:::; m -1, 

e 

d = 

It follows from the condibon (D2) that all of di and ei are integers. Furthermore we can 

check from the conditions (Dl) and (D3 ) that 

d; > ° for all i . and el > e2 > ... > em > 0. 

~ ow there are a number of pairs 

rn 

( .x = U B(d;, e;) . B = B(d, e) ) 
;=1 

of pure and basic configurations such that X c B. For such pairs ()C, B ), we put 

Y = {P E B 1 PriX}. 

and we consider the pairs (X Y). We call such pairs (X . Y) the G-pairs of {I;}. 

vVe state the main theorelTI of this subsection. 

Theorem 5.4 Let (X, Y) be a G-pair of a sequence {II," . . r2rn+d of integels satisfying 

the conddions (Dl) (D2 ) and (D3). and p'ut A = Rj J( X) + J(Y) . Then the diagonal 

deglees of the Artinian Gorenstein algebra Ais equal to the given sequence {r;}. 

Thus we can produce our Gorenstein algebras as the sums of the ideals of two geometrically 

linked pure configurations formulated completely in terms of the given diagonal degrees. 

In order to prove this theorem, we prepare a lemma. 

i\fotation. Let X = Ui~l B(d;, e;) be a pure configuration . Then there exist elements bj , c) 

in k such that 
u, € , 

J(B(d;,e;))=( II (x -bj ::;), II (:Y-Cj::)), 
j =1 
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where Ua = 0 and Vi = d1 + ... + di for all 1 ::; oj ::; m. We put 

V I 

gi = II (x - bj::) and hi = 

for all 1 ::; i ::; m, where em+ l = O. ote that deg gi = di and deg hi = ei - ei+ l for all i . 

Furthermore let B = B ( d, e) be a basic configuration such that d > L~l d i , e = el and 

X c B. Obviously there exist elements bj (vrn + 1 ::; j ::; d) in k such that 

d e 

J(B(d, e)) = ( II (x - bj ::), II (y - Cjz) ). 
j =1 

We put 
d m 

gm+l = II (1: - bj::) and dm +1 = d - L di . 

i=l 

In the following lemma. we describe a set of m inimal generators of an Artinian Gorenstein 

ideal of height three which is constructed as the sum of the ideals of two geometrically linked 

pure configurations in p 2. 

Lemma 5.5 With the notation as above , we put Y = {P E B I P rf: X}. 

(1) J( X ) is minimally gen erated by th e (m + 1) maximal minors of the m x (m + 1) 

matrix U = (Uij) as follows: 

o 
U= 

o 

(2) J(X) + J(Y) is an ArtiT/'ian Goren,stein ideal of height three , minimally generated by 

the (2m + 1) pfaffians of th e (2m + 1) x (2m + 1) alternating matrix vI = (fij) as follows: 

For i ::; j. 

if 1 ::; 'i :S m and j = m + t for 1 :S t :S m + 1. 

if i = m + 1 and j = 2m + 1, 

otherwise. 

P ROO F . (1) The set of all maximal minors of [ is 

2 

Hence we show that J( X) is minimally generated by B . Let J be the ideal generated by 

B . Furthermore we consider the monomial ideal J in S = k[x, y] generated by the (m + 1) 

maximal minors of the following matrix: 

Xd1 y e1 - e2 

Xd2 y e2-e3 
o 

o 
That is , J is generated by the (m + 1) monomials 

. . . , 

Since el > e2 > ... > em > 0 and 0 < VI < 'U2 < ... < Um , it is easy to see that J is 

minimally generated by the above (m + 1) monomials . Moreover: it follows by virtue of the 

proof of [15, Theorem 2.2] that J is a lifting of J (see [15, Definition 1.7] for the definition 

of . lifting ') . That is, J is the radical ideal, minimally generated by the (m + 1) maximal 

minors of U. And further we can easily check that 

X = {P E p 2 I F (P ) = 0 for all F E J}. 

Thus we get J = J(X). 

(2) First of all , it fo llows from Lerruna 2,4 that J(X) + J(Y) is an Artinian Gorenstein 

ideal of height three, 

Next we note that Y is a pure configuration. Hence similarly, it follows from (1) that 

J(Y ) is minimally generated by the (m + 1) maximal minors of the matrix 

o 

o 

I.e .. 

Now let Fi be the pfaffian of the alternating matrix obtained by eliminating the i-th row 

and the i- th colurrm from hI for all 1 ::; i :S 2m + 1. Then we can check that 

PI = g2g3" . gm+l, F2 = hlg3 ' . . gm+l, . . , , Fm = hI . . . hm-1gm+l . 

Fm+l = hI h2 ,·,hm, 
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Hence BuB' is the set of all pfaffians of 1\11. Thus we show that J(X) + J(Y) is minimally 

generated by BUB'. We divide the proof of this claim into three cases. 

Case 1. If Fi E (B u B'\ {Fd)R for some 1 :::; 'l :::; m, then we have Fi E 9iR + hiR. 

Hence taking a point Q such that 9i( Q) = hi( Q) = 0, we get FJ Q) = O. But obviously, 

Fi( P) =f. 0 for all P E p2 such that 9i( P) = hi( P) = O. This is a contradiction . 

Case 2. If Fm+1 E (B u B'\ {Fm+d )R, then we have Fm+1 E 91R + 9m+lR. Hence 

taking a point Q such that 91(Q) = 9m+1(Q) = 0, we get Fm+1(Q) = O. But obviously, 

Fm+dP) =f. 0 for all P E p2 such that 91(P) = 9m+1(P) = O. This is a contradiction. 

Case 3. If Fm+Hi E (B u B'\ {Fm+Hd)R for some 1 :::; i :::; m, then we have Fm+Hi E 

9i+1R+hiR. Hence taking a point Q such that 9i+1(Q) = hi( Q) = 0, we get Fm+1+i(Q) = O. 

But obviously, Fm+Hi(P) =f. 0 for all P E p2 such that 9i+1(P) = hi( P) = O. This is a 

contradiction. Q.E.D. 

We now start to prove Theorem 5.4. 

PROOF OF THEOREM 5.4. We prove this theorem with the notation introduced as above. 

From Lemma 5.5, the degrees of {Fi} are as follows: 

deg F1 = d2 + d3 + ... + dm + I , deg F2 = (e1 - e2) + d3 + ... + dm + 1, 

deg F3 = (e1 - e3) + d4 + ... + dm+1 . . .. . degFm = (e1 - em) + dm+11 

deg Fm+1 = ell deg Fm+2 = d1 + e2, deg Fm+3 = d1 + d'2 + e3, .. . 1 

degF2m = d1 + ... + dm- 1 + em. deg F2m+1 = d1 + d2 + ... + dm. 

For the sake of convenience we put 

for all 1 ::; i :::; m + 1. 

for all m + 2 ::; i ::; 2m + 1. 

Hence from the definitions of di and ei, a quick calculation gives that 

1 1 
degG i = - L7'j = -(1'1 + ... + li-1 + 7'i+1 + .,. + 1'2m+1) 

2 ' -J. ' 2 
Jr~ 

for all 1 ::; i :::; 2m + 1. Thus from the condition (D1) of the sequence {/d. 

ext we show that 
2m+1 

s(A) = L 1'i· 
1=1 

Let 
2m+1 2m+1 

o ~ R( -s(A)) ~ ED R( -Pi) ~ ED R( -qi) ~ R(O) ~ A ~ 0 
i=l i=1 
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be a graded minimal free resolution of A, where 

Then we have 
2m+1 2m+l 

(1- ,\)3F(A,'\) = 1- L ,\q, + L ,\ Pt - ,\s(A). 

i=O i=O 

On the other hand, it follows from the definition of Hilbert series that 

etA) 

F(A,'\) = L H(A ,j),\j. 
j =O 

Therefore 
e(A) 2m+1 2m+1 

(1 - ,\)3 L H(A ,j) ,\ j = 1 - L ,\q, + L ,\Pt - ,\s(A). 

j=O i=O 

Also we note that 

( A) = Pi + q i fa r all 1::; i :::; 2 m + 1 

(cf. [8, page 466]). and hence we get 

c; ( A) > q i an d s ( A) > Pi (1 ::; 'l ::; 2 m + 1) . 

Thus it turns out that 

s(A) = c(A) + 3. 

Furthermore Theorem 3.2 (3) and Lemma 2.5 (7) imply that 

c(A) = c("~ u Y) - 1 = c(B(d, e)) - 1 = d + e - 3. 

Hence we get 

m+l 

s(A) d + e = { L dd + e1 
i=l 

m+l m-1 2m+1 
{L dd + {L (ei - ei+d} + em = L Ii· 

i=1 i=l i=l 

Now let {1'~, .. . . 1';m+l} be the diagonal degrees of A. Then by noting that deg G1 < 
. .. :::; degG2m+1 • it follows from the conditions (BEl) and (BE2) that 

< = s(A) - 2 deg Gi 

for all 1 :::; i :::; 2m + 1. Thus we conclude 

'2m+l < - L 1') - L Ij = 1'i· 
j=1 

Q,E.D . 
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We illustrate this theorem with the following example. 

Example 5.6 S. J. Diesel described in [14, Example 3.7] all possible numerical characters 

among all Artinian Gorenstein ideals with the Hilbert function 

T = (1,3,6,10,12,12,10,6.3,1). 

1.e., all sequences {rd of integers satisfying the conditions (D 1) (D2) and (D3) which 

determine T: 
{4,4,4}: {4,4,4,2.-2}; {4,4.4,0,0}; 

{4, 4. 4. 2. 2. -2, -2}; {4, 4, 4, 2, O. 0, -2}; 

{4, 4, 4,2,2,0,0, -2 , -2}. 

Here using our construction of Theorem 5.4, for example, we construct an example of an 

Artinian Gorenstein algebra with the diagonal degrees {4. 4, 4, 2. 0, 0, -2} i.e .. with the 

numerical characters . 

{4.4.4.5,6,6,7:8.8.8,7,6,6.5;12}. 

So we put. as in Definition 5.3. 

and e = 5. 

. 'ow, as a G-pair ()(. Y) of {4, 4.4,2,0, O. -2}. we take the following two pure configurations 

X = B(1,5)UB(2,3)UB(1, 1) and Y = B(3.5 )UB(l,4 )U B (2,2) such that XuY = B(7,5): 

o • • • • • • Y 
o • • • • • • 

000 • • • • 

000 • • • • 

_~ 0 0 0 0 • • • 

Then it follows from Theorem 5.4 that Rj J(X) + J(Y) is an Artinian Gorenstein algebra 

with the diagonal degrees {4,4.4,2.0,0, -2}. 

We saw that all possible resolutions for Gorenstein algebras of codimension three can be 

obtained by using the standard fact of linkage theory stated in Lemma 2.4. Therefore it is 

natural to ask whether all Gorenstein ideals (of height three) can be so obtained. We do 

not know any answers to this question (d. [18. Remark 2.2]). 

5-3 Artinian Gorenstein algebras defined by the satu rated diagonal degrees 

In this subsection, first we add an important observation to the construction of Theorem 

5.4, that is we show in Theorem 5.8 that an Artinian Gorenstein algebra defined by a set 
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of saturated diagonal degrees has the weak Stanley property and that the Hilbert function 

of the algebra is described in terms of the Hilbert functions of the corresponding G-pair. 

We recall the definition of saturated diagonal degrees in [14]. 

Definition 5.7 (d. Diesel [14, page 376]). For a sequence {rl,' .. , r2m+d satisfying the 

conditions (D1), (D2) and (D3), we say that {1'd is sat'umted if 

ri + r2m+3-i = 2 for all 2::; i ::; 2m + l. 

We see from [14, section 3] that if the Hilbert function T is fixed, we can exhibit all 

sets of possible Betti numbers which determine T, as Example 5.6. Then we can easily 

check that the saturated diagonal degrees correspond the maximum Betti numbers among 

all possible Betti numbers which determine the same Hilbert function. 

Theorem 5.8 Let (X, Y) be a G-pa-ir of a saturated sequence {rl ... . r2m+d. and put A = 
Rj J(X) + J(Y). Furthermore put a = c(X). b = c(X U Y) - c(X) -1 and c = c(X U Y)-l. 
Then A has the weak Stanley property and the Hilbert function of A is recovered from the 

Hilbert function of X as follows: 

H()(' i) for all 0::; i ::; a-I: 

H (A,i) = 1)( 1 for all a ~ i::; b, 

H ()(, c - i) for all b + 1 ::; i ::; c, 

i.e .. H (A) = (1, hI, ... , ha - 1, 1 X 1, .. ·.1 )( I, ha - 1 ..... hI, 1,0, ... ), where hi = H (X, i) . 

We need the following lemma to prove Theorem 5 .. 

Lemma 5.9 Let X = U~ l B ( di • eJ be a p'ure configuration. 

(2) c(X) = Max{ei + Ui - 211 ::; i::; m}. 

PROOF. (1) We prove the equality by the induction on m. For the case m = 1. our 

assertion follows from Lemma 2.5 (6). Let m > 1. It follows from Lemma 5.5 (1) that 

m-l 
I ( U B (d i , ei)) = (hI' .. hm, gl h2 ... hm . g1g2 h3 ... hm · ... ,gl . .. gm-2 hm-l hm' gl ... gm-d· 

i=l 

Therefore we have 

m -l 

J( U B(d i , ei)) + I (B(dm. em)) = (gl'" gm-l,gm, hm), 
i=1 



and see the following exact sequence 

m-l 

o -t R/I(X) -t R/I( U B(di,ei)) ffi RjI(B(dm,em)) -t Rj(gl .. ·gm-1,gm,hm) ---+ O. 
i=1 

Hence 

m-l 
F(X ).) = F(RjI( U B(di,ei)),)')+F(Rjl(B(dm,em)),)')-F(Rj(gl" ·gm-l,gm,hm),).). 

i=l 

On the other hand, by the induction hypothesis, 

Also since 

it follows that {gl'" gm-l, gm, hm} is a homogeneous regular sequence. Hence by using 

Lemma 2.5 (6), it yields that 

F(Rjl(B(dm, em),).) - F(R j(gl' ··gm-l,gm,hm),).) 

(1- ).dm )(l_ ). em ) (1- ), um -l)(l_ ).dm )(l_ ). em ) 

(1-).)3 (1-).)3 

),um -l(1 _ ).d m )(1 _ ). em ) 

(1 - ).)3 

Thus we get the equality of (1). 
(2) It follows from (1) that 

m m 

F(X.).) = L ). Ut-l F(B(d i , ei), ).), i.e ., H(X,j) = L H(B(d i , ei),j - vi-d · 
i=1 i=l 

Here we put 

Then by adding Lemma 2.5 (4) and (7), we see that 

TU) - Vi-l = c( B (d i . ei)) = di + e, - 2. I.e .. T(£) = e! + Vi - 2 . 

Hence we can check that 

m 

c(X) = Min{j I H(X ,j) = L I B(di,ei) I} = Iax{ei + Vi - 2 11 :::; i:::; m} . 
i=l 
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Q.E.D. 

PROOF OF THEOREM 5.8. If 2c(X) < c(X U Y) - 1. then our assertion follows from 

Lemmas 4.4 and 4.5. So we show that 

2c(X) :::; c(X U Y) - 1. 

Since {/d is saturated, we obtain di = 1 for all 1 :::; i :::; m, i.e., Vi = i. Therefore from 

el > e2 > ... > em, it follows that ei + Vi -1 ~ ei+ l + Vi+l - 1. Hence from Lemma .5.9 (2) 
and the definition of el, we have 

1 
c( X) = el + VI - 2 = el - 1 = (- L r';) - l. 

2 . ...;. +1 I,m 

Furthermore from Lemma 2.5 (7) and Definition 5.3, 

m+l 2m+l 
c(X U Y) - 1 = d + e - 3 = (L di) + el - 3 = ( L Ii) - 3. 

i=1 i=l 

Also we see that Tm+l > 0, because rm+l ~ Tm+2 and rm+l + Tm+2 = 2. Thus it yields that 

c()C U Y) - 1 - 2c( X) = T m+ 1 - 1 ~ O. 

Q.E.D. 

Remark 5.10 For any G-pair (X,Y) of any sequence {Td satisfying the conditions (D1). 

(D2) and (D3), the author conjectures that A = R / I ( .. Y) + I(Y) has the weak Stanley 

property. But, in general, A does not satisfy the equality concerning Hilbert functions 

stated in Theorem 5 .8. For example, as a G-pair (X, Y) of {4,4,4}, we take the following: 

0000 . • • • Y 
0000 . • • • 

0000 . • • • 

,Y 0 0 0 0 • • • • 

Then it follows from Example 5.6 that 

H(A) = (1,3,6,10,12.12.10,6.3,1). 

On the other hand, from Lemma 5.9 (1), 

H(X) = (1.3,6,10.13,15, 16.16, ~). 

Hence we see that H(A) and H(X) do not satisfy the equality of Theorem 5. 

ow, combining Theorem 5.S and the preceding Theorem :3.7, we can give another proof 

of the following famous theorem due to R. Stanley. 
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Theorem 5.11 (d. R. Stanley [36, Theorem 4.2]). Let h = (ho , hI, .. . ,hs) be a sequence 

oj non-negative integers satisJy-ing hI ::; :3. The 'n the Jollowing co'nddions are equivalent. 

(a) There exists an A rti'17:iarz Goren,stein gmded algebm wdh the H£lbert Junction h. 

(b) hi = hs- i Jor all 0 ::; i ::; [s/2] and the sequence (ho, hl-ho, h2-hl , .. · , h[s/2]-h[s/2]-d 

is the Hilbert Junction oj an A rtin'ian gmded algebra. 

PROOF. (a) =? (b): We can easily check that there is a unique saturated sequence {rd 
which determines h (d. [14, Theorem 3.2] for example). So we take a G-pair (X, Y) of {rd, 
and put A = k[x, y, zl/ I(X) + I(Y). We note that H(A ) = h. From Theorem ,5.8, it is easy 

to see that H(A, i) = H(A. s - i) for all 0 :::; i :::; [5/2]. Furthermore from Theorem 5. 1 we 

have that (A , g) has the weak Stanley property, that is. (ho. hI - hOI h2 - hI , . . . ,h[s/2] -

h[s/2]-1) is the Hilbert function of A/gA. 

(b) =? (a) follows from Theorem 3.7. Q.E.D. 

Remark 5.12 In the proaf of Theorem 5.1 L we get an algebraic explanation of the es ence 

of Stanley's formulation (in terms of the first difference ) for Hilbert functions. That is, for 

any Artinian Gorenstein algebra of codimension three. there exists an Artinian Goren tein 

algebra with the weak Stanley property which has the same Hilbert function . Th r for 

it is natural to ask. in view of Stanley's formulation. a question whether every Artinian 

Gorenstein algebra of codimension three has the weak Stanley property (d. [28], [41] and 

[43]). And further we pose the following. 

QUESTION. For an Artinian Gorenstein algebra with a unimodal Hilbert function does 

there exist an Artinian Gorenstein algebra with the weak Stanley property which has th 

same unimodal Hilbert function ? 

If the answer to this question is affirmative. then we can gi ve an answer to an important 

question on characterization of unimodal Gorenstein sequences. that is. we conclude that 

all unimodal Gorenstein sequences are always SI-sequences. 
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