




The effects of small x resummation on the spin 
structure function gl(X, Q2) 

0£Z~mIx 
Does leading In x resummatioJn predict the rise 
of gl at small x ? 

Yuichiro Kiyo, Jiro Kodaira, Hiroshi Tochimura 
Zeitschrift fur Physik C74 (1997) 631 

(1) On thermal phase structure of deformed Gross­
Neveu model 

Haru-Tada Sato, Hiroshi Tochimura 
Modern Physics Letters A 11 Nos.39&40 (1996) 3091 

(2) Renormalization of gauge-invariant operators for 
the structure function g2(X, Q2) 

Jiro Kodaira, Takashi Nasuno, Hiroshi Tochimura, Kazuhiro Tanaka 
and Yoshiaki Yasui 
Progress of Theoretical Physics 99 No.2 (1998) t~tx:ij(5E 

(3) Thermodynamic Gross-Neveu model in a con­
stant electromagnetic field 

Shinya Kanemura, Haru-Tad a Sato, Hiroshi Tochimura 
Nuclear Physics B t~tx:ij(5E 



The effects of small x reSllmmation on 
the spin structure function 91 ( x, Q2) 



CD 

The effects of small x resummation on the 
spin structure function gl (x, Q2) 

HIROSHI TOCHIMURA 
Dept. of Physics, Hiroshima University 

Higashi-Hiroshima 739-8526, JA.PA.N 



Abstract 

The double logarithmic terms a ln2 x are important to predict precisely the small x 
behavior of the spin structure function gl. \Ve consider the all-order resummation of 
these logarithmic terms. We numerically analyze th evolution of the flavor non-singlet 
gl structure function taking into account this resummed effect. Vve include not only 
the leading logarithmic corrections but also some known next- to-leading logarithmic 
corrections. It is pointed out that the next-to-leading logarithmic corrections produce 
an unexpectedly large suppression factor over the experirnentally accessible range of x 
and Q2. This fact implie that the next-to-leading logarithmic contributions are very 
important in order to obtain a definite prediction. 
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Chapter 1 

Introduction 

The polarized deep inelastic process is a po\verful tool to reveal the internal spin 

tructure of the nucleon. ~lany experimental and theoretical works have been devoted 

to this process [1]. Especially. it is important and de irable to get a reliable and 

precise prediction for the small (Bjorken) x behavior of gl (T. Q2) structure function in 

the light of the Bjorken [2] and Ellis-Jaffe sum rules [3]. Since the verification of these 

sum rules, which correspond to the fixed (first) mom nt of gl (Jo1 dXgl(X. Q2)), requires 

the knowledge of the structure function over the entire x region, one has to rely on the 

theoretical prediction in the experimentally inaccessible small x region. 

The small x region corresponds to the Regge limit and we naively expect that the 

Regge theory may explain the small T behavior of the structure function. Thus. the 

Regge prediction (gl rv xQ, O:S (} :S 0.5) [4] has u ually been as umed for the extrap­

olation of the experimental data to the small x region in the old analyses. However , 

the recent new data [5] show a clear departure of gl from the nearly constant behayior 

of the naive Regge prediction in the small x region . This means that although the 

Regge theory seems to work well at scales typical for the soft hadron physics, at larger 

scales. the prediction from this theory becomes unreliable. This fact ugge ts that the 

perturbative QCD effects may be very important. 

Thanks to the factorization theorem [6], we can apply the perturbative QCD to the 
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deep inelastic scattering. The factorization theorem guarantees t hat we can factor out 

t he short-distance part. namel~T the perturbati\'el~' calculable part from t he structure 

function. The structure function is given by the following factorized form 

gt (X , Q2) = . ~ [C,(x fy, 0 (1/), Q2 h1 2)~f' (Y'I/)' 
l=q ,q,g 

where C i is perturbatively calculable and ~fi(Y' {j,2) i the input (non-perturbative) 

polarized parton density (x is the Bjorken variable. a s is the strong coupling constant. 

Q2 is the virtuality of the photon and {L2 is the renorrnalization scale). If we give 

an appropriate initial parton den. ity and calculate Ci in perturbation theory, we can 

predict glover entire x region at scale Q2. It has been knovyn that there appear nyo 

types of logarithmic terms order by order in the perturbative calculation of Ci . One i 

the single logarithmic (8L) terms a s lnQ2 / {L2 and the other is the double logarithmic 

(DL) terms as ln2 x. The first type logarithmic terms originate from the ultra-violet 

ingularity or the mass singularities and these terms are easily summed to all-orders by 

Dokshizer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [7] or the renormaliza-

tion group equation. Recently, various extrapolations of the experimental data to the 

small x region have been proposed using this DGLAP equation [8] [9] [10]. Ho"wever, 

the DL terms seem to give large effects in the small x region and may lead to a drastic 

change in the the small x prediction from the usual DGLAP prediction. Therefore. if 

we consider the small x region uch that a sln2x '" 0(1 ) we need to re-sum th DL 

terms to all order in order to get more reliable predictions ( we call this procedure 

··re ummation';). 

The same problem has already appeared in variou QED processes. In the cas 

of QED vertex; we encounter the DL terms e2ln2f, (q is the photon momentum ), 

t hi logarithmic tern1 gives the large contribution when the absolute value of q2 is 

much larger than the external fermion mass m 2. Especially. when e21n2~ rv 0(1 ), 

the fixed order perturbation theory doe not give a good approximation. In order to 
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extract the correct behavior. we ne d to urn the e logarithmic ternl to all-orders . 

The ummation of these terms is con ide red b~' udakoy and it lead to the , o-called 

Sudakov form factor [11]. \\"e also encounter the large logarithlnic term in the casE' of 

two body scattering process , e.g .. the forward eT + e- - + 11 + + 11 - catt ring prorC', . 

One has the DL terms e2ln2 :2 ( is the square of the t otal initial -1-momentllnll /1 2 

is the arbitrary mass scale). This term again become .. important when s ---t x. The 

summation was considered in Ref. [12]. 

For gl structure function. Kirschner and Lipato,' [13] considered the all order re-

ummation of as In2 x series in the case of the virtual photon-quark forward scattering 

process. Its imaginary part corresponds to the deep inelastic scattering process on the 

parton target. Recently, Bartels. Ermolaev and Ryskin [14] have given the resummed 

expression for the partonic gfarton structure function by using the Infra-Red Evol u­

tion Equation and confirmed the results by Kirschner and Lipatov. In addition , they 

claim that the resummation of double logarithmic terms nlay lead to larger ffects than 

the usual DGLAP equation. But , when extracting the phy ical structure function of 

hadrons from the partonic one, there is possibility that a conclusion at the parton level 

is not necessarily true. Indeed. the recent numerical analysis by Bliimlein and Vogt [15] 

shows that there are no significant contributions to the evolution of gl from the r('­

summation of the leading logarithmic (LL) terms (which are the most dominant terms 

in the k-th order of perturbation rv a~ln2k- 2x, k = 1,2 . .. ) in the HERA kinematical 

region (x rv 10- 3,,-, -5) . 

The different conclusions between at partonic and hadronic level might be com­

ing from the fact that the re ummed part of the "coefficient function" (the pertu­

bative part when one chooses /12 = Q2 , Ci(x /Y, a s (Q2), 1)) is considered in Ref. [14] 

but not in Ref. [15]. Bliimlein and Vogt did not include the r summed part of th 

coefficient function because thi part turn out to fall in the next-to-leading logarith-



mic C,\LL) correction (which i Ie ingular terms cornpared with the leading one, 

rv (l:~ln2k -.3x, k = 2, ... ) and depends on the factorization , chrme adopted. It i also to 

be noted that, a slightly steep input density has been used in the analysis of Bliimlein 

and Vogt. The evolution. in general. strongly depends on the input parton densities. 

The x dependence of gl (x. Q2) is given by the con\'olution of the perturbatiye part 

Ci(x/y. a()12). Q2 / )12) and the input parton densitie ~.f(Yl )12) with respect to thr 

longitudinal momentum fraction y. A a result. the x shape of gl is determined b:v 

both the input parton density and the perturbative part C1 . For example , if we con id r 

a case in which both the input and the perturbative part have a power dependence on 

x, i.e. Ci rv x-a and ~f (x) rv x-A. we see that the teeper one determines the mall 

x behavior when x ---t O. Therefore. if one chooses a steep input function. the per­

turbative contribution will be completely washed away. One reason for the conclusion 

by Blumlein and Vogt may be due to this aspect. So it will be interesting to see the 

sensitivity of the results to the choice of the input densities. 

In the present thesis. we analyze the structure function gl by taking into account 

the In x resummation. One of the purpose of this thesis is to summarize our pre ent 

knowledge of the mall :r resummation physics bearing the future polarized HERA 

experiment in mind since we do not have data at very small x where the effect of 

the sInall x resummation will manifest itself. Thus, we do not make a quantitative 

test of the validity of the Bjorken sum rules etc .. And in pres nt thesis, we con ider 

the flavor non-singlet part only because we want to clarify the problem of the small 

x resummation physics by considering the kinernatically simple case. It should be 

straightforward to extend our analysis to the singlet case. 

In our analysis. we also take into account the effects of the coefficient function 

which can not be included consistently at present. ince the anomalous dimen ion has 

been calculated only at the LL order. The reason is because we could firstly clarify an 
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origin of different ('oneIu ion between the papers by Bliilnlein and \ 'ogt and BarteL. 

Errnolaev and Ryskin and secondly get some idea about the magnitude of XLL order 

corrections in the resummation approach. \Ve con ider three different input densities: 

one is a fiat density corresponding to the naive Regge prediction and others are steep 

ones in the mall x region. 

This thesis is organized as follows. In chapter 2. the basic knowledge of the deep 

inelastic lepton nucleon scattering process is summarized. In chapter 3. we make a 

brief review on the resummation of In x series and present an explicit expres ion for 

g{vs. In chapter 4, we show our numerical r suIts and discuss the effects of the \"LL 

corrections . We also give the interpretation of the numerical results. Summary "will 

be given in chapter 5. 
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Chapter 2 

The basic knowledge of deep 
inelastic scattering 

2.1 T he kinematics of deep inelastic scattering 

We consider the lepton (I (k))- nucleon eN (p)) inelastic scattering process. 

l (k) + -.N (p) --+ I (k') + )t (p x ) 

where X represents the system of hadrons produced t hrough this process . Experimen­

tally. only the outgoing lepton is detected. The Feynman diagram for this proce s is 

depicted in Fig.1 ,where we assume only one photon exchange between the lepton and 

the nucleon. 

x 

N 

Figure 2.1: 
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This is a reasonable approximation at present since the a\·erage momenturn transfrr 

(Q2) of the experiments is not. 0 large, (Q'2) ~ 10 Gf1 r2. It is convenient to define thE' 

several kinematical variables for this process. the ,"ariable s = (p + k)2 corre ponds to 

the total energy squared of the lepton-nucleon ysteln in the center of mas frame, the 

momentum transfer Q2 == _q2 = -(k - k')2. the energy transfer v = p . q/JI and the 

Bjorken variable x == Y2 :2 • 
p.q 

The scattering amplitude i given by. 

(2.1) 

where s(s ) is the polarization vector of the initial(final) lepton. S is the polarization 

vector of the initial hadron and jJ-L is the hadronic electromagnetic current. Here, we 

mention the spin 4-vector briefly. The spin of fermion is described by a 3-vector 8 in 

its rest frame. So we introduce a 4-vector sJ-L \\'hich reduce to sJ-L = (0.8) in the rest 

frame. Since we normalize 3-vector 8 as 8 2 = 1 , S2 = -1 . The momentum k of the 

fermion is kJ-L = (m,O) in the rest frame, thus, k • s = O. This spin 4-vector sJ-L in an 

arbitrary Lorentz frame is obtained by boo ting sJ-L = (0.8) from the re t frame. ThE' 

explicit form of sJ-L is, 

sJ-L = (k. 8 . 8 + k (k . 8) ) (2.2) 
m m(kO + m.) 

with Lorentz invariant conditions, k . s = 0, S2 = -1. The spin vector is related to 

the spinors as. 

By using the scattering amplitude Tfi Eq. (2.1), the differential cross section is given 

by , 

7r 4~ '24 --e L/Tfi/5 (PX -p-q) 
4k· P x 

1 e J-LV r 

( 

2 ) 2 

k . p 41fQ2 L H J-LV 

8 
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where e i. the charge of the electron. In Eq.(2.3). the leptonic ten. or LJ.LV is defined by 

(2.-1 ) 

where we u ed the standard spin projection operator. 

( ) ( ) ( ) 1 + 15 if 
u k, silk, s = ¥ + m ~-

Gsing the Lorentz covariance, current conservation of the QED current. and time 

rever al and parity invariance. the hadronic ten. or HTJ.LV can be parameterized in term 

of four structure functions. 

TXT - TPS . TTTr\. 
rv J.LV = V V J.LV + 1 H J.LV • 

with 

W;v - (91'v - q;;v) Wd (PI' - P/ql') (PV - P/qv) ;~ , 
WI': CI'VAul' {SUj,IG j + (p. qSU - q . SpU)£-} . 

where AI is the mass of the nucleon. These structure function are related to the 

dimensionless scaling structure functions as follows, 

These are the functions of x and Q2. 

In the target rest frame, the scattering process is conveniently visualized in 

Fig.(2.2). The kinematical variables in Fig.(2.2) are defined as follows: a is the angle 

between the spin vector of the target (S) and incident electron beam(k ), ¢ is the az­

imuthal angle between the plane defined by k and k' and (J' is the scattering angle. The 

cross ection is calculated from Eq. (2.3) by contracting LJ.L~I with V\lTJ.Lv. For the leptonic 
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tensor Ll1v. \ve can use the following approximation. rn s f.1 hlkl1( helicity hI ±) 

because Eq.(2.2) reduces to 

sl1 = ±~(k, 0, 0. kG) 
m 

for the longitudinally polarized state, and the lepton mass is negligible, mlepton ~ O. 

The cross sections can be written as a h/5 = (j+hl~a where (j is the spin independent 

cross section and .6a is the spin dependent cross section. 

and 

~ 
........................................... X 

s 
--+ 

k 

............................................ 

Figure 2.2: 

The differential cross section reads 

d6a 
dxdyd(j) 

41f~~2 {cosa{[l- ~ - ~(K-1)] gl(X,Q2) - ~(K-1)g2(X,Q2)} 

SinaCOS1>~ (K -1) (1- y - ~2 (K -1)) (~gl(X,Q2) + g2(X,Q2))} (2.5) 

(2.6) 

asymmetry which is the difference between the cross section for the nucleon's spin being 
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parallel to the lepton's (tt) and the nucleon' .. spin being anti-parallel to the lepton's 

(-: J-) : 

where the azimuthal angle qJ has been integrated out, since the longitudinal asymmetr~r 

is independent of cb. :\otice that g2(X. Q2) come in with a factor K - 1 = (2~:r~ . So 

when Q2 is large , we can neglect g2 (x, Q2) in this expre~,sion. Thus. the longitudinal 

asymmetry can be used to measure the structure function g1 (x. Q2) . 

2.2 Sum rules 

The first moment of.91 structure function is related to interesting sum rules, the Ellis-

Jaffe sum rule [3], and the Bjorken sum rule [2]. In the naive parton model: gl structure 

function is written as. 
nf 2 

gl(X) = l: ~ (~qi(X) + ~qi(X)) 
i=l 

(2.7) 

where ~qi = q; - qi- (t1qi = qt - qi) is the polarized parton (anti-parton) density, the 

difference of parton densities whose spins are parallel and anti-parallel to the nucleon's 

spin. ei is the electric charge of the quark (flavor i) and n f is the number of quark 

flavors involved. The first moment of gl becomes for three flavors from Eq. (2.7). 

(2.8) 

and . from isospin invariance, 

(2.9) 

where ~q = f01 dX6q(x) 1 ~q =: fo1 dX6q(x) are the first moment of the polarized parton 

densities in the proton. By taking the appropriate combination of the first moment 

6qi, we can rewrite Eqs.(2.8.2.9) as 

p(n ) 1 [ 1 1 1 r = - +(-)a3 + -a8 + -~~L 
1 12 3 9 (2.10) 
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where 

a3 ~11 + ~71 - (~d + ~d) 

a ~u + .6.71 + ~d + ~d - 2 ( ~. + ~s) . 

The combination a3 is related to the neutron /3-decay constant Ig.4/ g'V I. Gnder the 

SU(3) flavor symmetry, a3 and a8 are related to the symmetric and anti-symmetric 

weak SU(3)J couplings F and D , 

a3 I

g
.4 1= F + D gv 

a8 3F - D 

There i no theoretical prediction for ilE. However. if we assume that the strange sea 

in the nucleon is unpolarized .6.8 = 0, a8 = ~E and Eq.(2.10) lead to the Ellis-Jaffe 

sum rule : 

rp (n ) = +( - )~(F + D) + 5 (3F - D). 
1 12 36 (2.11) 

The yiolation of this prediction for the proton found by the E:\IC [16] is one reason of 

the revived interests in the polarized deep inelastic cattering. 

The Bjorken sum rule is obtained from Eq.(2.10) as . 

(2.12 ) 

This sum rul was derived by Bjorken from t he light cone current algebra and isospin 

invariance. 

::'\ow the above sum rules should be receive QeD corrections. Therefore it is in-

teresting and important to see how the QeD corr ctions modify the above sum rules. 

There are two i sues when one tackles this problem. The first is the QeD correction, 

to the right-hand side of Eq.(2.10). For exalnple. thi corrections to the Bjorken sum 
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rule. now is calculated up to O(Q~) [17J [18]. 

ri - r? = ~ I:: 1 [1 - :s -3.58 (:s r -202 (: r + .. -J . (2.13) 

The second issue is how to obtain the moment from the experimental data ,,\'hich 

have information on only restricted values of x. In order to settle these problems. it is 

inevitable to study the QCD effects on gl structure function itself. In the next chapter, 

we consider the QCD effects on the g] structure function. 
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Chapter 3 

The resummation of logarithmic 
terms 

3 .1 The necessity of the resumm«ltion 

The flavor non-singlet part of the polarized structure function gi's is given by the 

formula. 

gf S (Q2 , x ) = (;) [; eNS (Cts ( Q2). x/y)6qNS (Q2 , y) , (3.1 ) 

where 6.qNS is t he fl avor non-singlet combination of the polarized parton densities , 

and e NS is the coefficient function. n f is the number of active flavors with electric 

charge eil (e2
) = L e; Inf · The perturbative evolution of the parton density i. con-

t rolled by the DGLAP equation. 

2 8 (2 (1 dy 2 , 2 
Q 8Q26.q Q 1 x ) = ix -yP(as(Q ), x ly)!J.q(Q ,y) . (3.2) 

In the above equation and in the following, we suppress the superscript NS which 

means the flavor non-singlet part. The coefficient function e (as, y) and the splitting 

function P( a s y) are both calculable in the QeD perturbation theory. \t\~hen x is finite. 

it may be enough to compute them to the fixed-order of perturbation. In the small x 

region , however , the fixed-order calculation becomes questionable since there appear 
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Inn x corrections in the higher orders of the trong coupling constant as. If thesr Inn .1' 

terms comppnsate the smallness of as. we must resum l-he perturbatiye eries to the 

all orders to get a reliable prediction. 

To see what terms shov\' up at small x. it will be conypnient to take the :'.Iellin 

transform of Eq.(3.1). 

where 

C(a s (Q2), N) 

flq(Q2, N) 

fal dxxN-1gI (Q2 x) 

(~) C(O:s(Q2), N)~q(Q2. JII) , 

l XN
-

1C(O:s(Q2).X) , 

l XN
-

1t:"q(Q2, x) . 

The DGLAP evolution equation Eq.(3.2) becomes, 

Here the anomalous dimension r is the moment of the splitting function, 

Eq.(3.4) is easily solved to give, 

where {3 is the beta function, 

The first two coefficients of the B function are. 

15 
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(3.4) 



with CYF = (~V1- 1)/2 ~Vc and CA = _Vc for the SCCYc) color group and TR = 1/2 . 

The coefficient function C (0: 8 • ~V) and the anomalous dimension ') (Q s . _V) Inay be 

expanded in the powers of as. 

oc 

1 + L ck(~V)a~~ . 
k=l 

oc 

1 (n S 1 ~V) = L 1 k OV)n; . 
k=l 

where (and in the following) we use the abbreviation. 

The singular behaviors of the coefficient and splitting functions as x ---+ ° appear as 

the pole singularities at JV = ° in t he moment space since the singularities in Jov-m 

correspond to t he In
m

-
1 (~) singularities. The explicit next-to-Ieading order (~LO) 

calculations of the coefficient function [18] and the anornalous dimension [19] in the 

~IS scheme show a strong singularity at N = 0, 

(3.5) 

whereas the leading order anomalous dimension looks like , 

at small N. These strong singularities (double logarithmic corrections) will persist to 

all orders of perturbative series. Indeed, at the k-th loop, the anomalous dimension 

and the coefficient function are expected to behave as, 

(3.6) 

Our task is to resum these terms to all-orders in the perturbative expansion. In the 

next section, we will explain how to resum these leading singular terms to all-orders 
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of the perturbative expan. ion . Before di cu ing the details of the resnmmation pro-

cedure. it may be worth mentioning the difference between the polarized (unpolarized 

flavor non-singlet) and the unpolarized flavor singlet structure function [20]. :\ ai\'d~' 

one expects for the unpolarized structure function that the anomalou. dimension be-

have like "', rv Ci~ j.V2k - 1 at the k-th loop* because there exi t extra infra-red and 

collinear singularities. In the case of the unpolarized flavor singlet structure func-

t ion '. however. many of them are canceled and the true behavior at the k-th loop is 

'"'i rv (Ci.s/-V)k . These term can be resummed by the Balitskii-Fadin-Kuraev-Lipato\' 

(BFKL) [21] equation. On t he other hand. above strong singularities survive in the 

polarized structure function. This fact uggests that the polarized structure function 

will receive large perturbative corrections at small T. 

3 .2 The double logarithmic approximation (DLA) 
for flavor non-singlet gl structure function 

Consider the virtual photon (mass Q2) quark forward scattering process whose imag-

inary part corresponds to t he structure function of parton. Let us explain which term 

is important in various kinematical region in perturbation theory. For this purpose. it 

is important to note that, in the perturbative calculation. we obtain. in general, the 

following types of logari thms order by order in Cis expansion 

(3.7) 

/12 is the virtuali ty of t he initial parton. Firstly consider the kinematical region. T rv 

0(1) and large Q2. In this case. the only large logarithm is lnQ2 //12 , since lnx ~ 

0(1). Therefore to get a reliable prediction, \ye must sum up these large logarithms 

(lnQ2 / /1 2 )n to all orders. And the result of this summation coincide with the results 

of DGLAP evolution equation. The Feynman diagram of the ladd r type ( Fig.3.1) 

*\Ve follow the convention of Ref. [34]. 
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corresponds to this summation. These terms come from the kinematical region where 

the transverse momenta kjT of yirtual partons (quark and gluons) are strongl,Y ordered. 

(3.8) 

Indeed 1 the Leading Order (LO) DGLAP result has been reproduced by calculating 

thi ladder diagram under the strong ordering Eq. (3.8) [22] [23]. 

:« 
y 

I 
I 
I 

. I 

o(f(f~(f(f6l 

Figure 3.1: 

:« 
y 

On the other hand, in the small x region, the most important terms are double 

region we must sum these terms to all-orders as already explained in the previous 

section, and this will give a reliable approximation. \\Ve call this approximation the 

double logarithmic approximation ( DLA ). As \vell known([12], we will see later), 

the ordering Eq. (3.8) is not valid for evaluating the leading double logarithmic terms 

in this kinematical region. Furthermore. one must consider not only the ladder type 

Fe:vnman diagrams but also non-ladder type Feynman diagrams. Before going to the 
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somewhat complicated QeD case. let us go back to the QED proce s which giYrs t hr 

same logarithmic terms [24]. 

Consider the one-loop diagram for the QED yertex Fig.3.2. The analytical form is 

Figure 3.2: 

:\"" ow, we assume the following condition, 

(3.10) 

This condition means , 

(3.11) 

In the following calculation, we will use the Sudakov decomposition [11] for the loop 

momenta k, 

k = al + {3p + kT (3.12) 

where kT is the transverse component of the vector k orthogonal to the vectors p and 

l. kT . P = kT . l = O. The DL term comes from the region in which the internal photon 

momentum becomes soft , namely, 

k = al + {3p + kT rv O. 
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This means that 

101·131 «1. kT ~ O. (3.13) 

Then, we can neglect k in the numerator of the integrand. r~ becomes. 

(3.14) 

/ 
~k 

II = [(I - k)2 - m2 + iE][(p - k)2 - m2 + iE][P + icl· (3.15) 

Eq.(3.14) can be simplified, if we note that when r~ appears in diagrams it is ahvays 

multiplied by the matrices (V+ m) and w+ m): 

(V+ m)r~0I+ m) (3.16) 

By using the condition Eq.(3.11). we obtain , 

thus, 

(3.18) 

where 

t = q2 rv - 2 (p . l) (3.19) 

\'"ext , we consider the calculation of II' From the conditions Eq.(3.13), we can approx-

imate the denominator, 

(3.20) 

loti, l/3tl » p » /12 
(3.21 ) 

(p == -k~ > 0 since kr is space-like 4-vector) 

(l- k)2 = ((1- o)l- 3p- kr )2 rv -3t (3.22) 
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(p - k) 2 = (-ol + (1 - 3)p - kT ) "-' -cd (3.23) 

Thrn 

II = -~ J dp do: ~i3 
21tl p + tn:3 - iE n 3 

(3.2-1) 

where we used the relation. d4 k rv ~1fltldad J. In accordance \"ith the condition 

Eq.(3.21). we carry out the integration with respect to p. 

Io
min['tG"l t,B l] dp . {II} ilT . 

B . = logmzn -I I' -IBI + ~-[1 - szgn(tad)] o p + ta - ZE a i.~ 
(3.25) 

Since the first term vanishes after integration with respect to a or B, only the second 

term survives. The integral regions for the a and 3 an) given by the condition of 

Eqs.(3.22,3.23) (aBt < 0 p2jq2 < lal < 1. l2jq2 < 131 < 1) Finally, we obtain thr 

double logarithmic term , 
') 2 

1 aQED q~ q 
fJ.L = ---2-'YJ.L ln -l2 ln 2· 

87r p 

In the kinematical region when q2 ---+ 00, this logarithmic term gives large contribution 

and the fixed order perturbation is not applicable. In order to get a correct asymptotic 

behavior, we must consider the sum of these DL terms over the entire perturbation 

series. Sudakov considered the summation of the DL terms for the QED vertex and 

obtained the so-called Sudakov form factor ; 

(3 .26) 

\'" ext example is the e+ e- ---+ J1+ J1 - forward scattering process. The DL terms come 

from the region in which the internal fermions and photon\:;: become soft. This fact may 

be understood easily from the explicit calculation of a lower order diagram. \iVithin 

the one-loop corrections for this process, Figs.3.3 and Fig.3.4 give the DL contribution. 
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(a) 

+ e 

e 

(b) 

Figure 3.3: 

Figure 3.4: 

(c) 

+ 
J.1 

Firstly, consider Figs. 3.3. It is easily under tood that t he DL term comes from 

the region in which the virtual photon momentum becolnes soft. (The dashed lin 

in Figs.3.3 represents the oft photon.) Indeed, Fig.3.3a giYe the DL term e2ln 28/ p2 

since this diagram includes r1 we have calculated already. Calculating the diagram 

taking into account the virtual photon being soft, we obtain the DL term 

(3.27) 

(11 2 is the arbitrary mass scale) for Fig.3.3c and 

(3.28) 

for Fig.3.3b. :-Jow, since t r-v 112, Fig.3.3b does not contribute. Figs.3.3a,c contribute 

when s -t 00. The amplitude 111811 for Fig.3.4 is given by, 

(3.29) 
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The DL contribution froIn jIll come from the region In \\'hIch the fermion momenta 

becomes soft. namely, 

This means that 

lal·IBI «L kr ~ 0. (3.30) 

Therefore: we can use the following approximation for the denominator of Eq.(3.29). 

(3.31) 

(3.32) 

lasl, 18s1 » Ik~1 » J12 (3.33) 

These approximations lead to , 

Taking into account the fermion being soft k ~ 0, the nurnerator is simplified as [12]. 

- 1 / 2 k~ u (p 1 ) ryJL ') (Y ') 1/ V (P2 ) V (P2 ) r 1/ "/ (Y "/ JL 11 (p 1 ) 

- 2k~u(P1 )')JL U (P2) v (P2)"/ JL U(Pl). (3.35) 

Therefore. we can extract the Born spin structure from the 1 loop box amplitude. 

where. 

(3.36) 

The aInplitude J1 becomes. 

J1 ~ _~! dad3dlk}llk}1 
16n3 (aBs - Ik?1 + ic)2cx3 
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where we change the measure. d-'tk = n~dodddlk!r . \Ye 11. e the relation for the llurner-

at or. 

2 2 IkTI = -(03s - Ikrl) + oJ, 

and neglect the second term because this part cancels sirn Ie poles Ct and 3 which lead 

to the logarithmic contribution . 

Then 1 we get 

J1 rv -~ J dad~dlk'fl 
16n3 a3(lk'fl- 038 - ic) 

In accordance with the condition Eq.(3.33). the integration over dlk}1 is taken fronl 0 

to the smaller one among I as I and I Bs I: the result is 

fomin(laSI)IBSI) dlk'fl . [Ill in 
Jo (lk}1 - oj3s + ic) = In m'tn ~l 181 + 2[1 + ign(sa3)] 

Since the first term vanishes after integration with respect to ex or fJ only the second 

term survives. The integral regions for a and B are given by the conditions of Eqs. (3.32) 

2 2 

(aj3s> 0 ~ < lal < 1, ~ < IJJI < 1) 

Finally we obtain the double logarithmic result , 

df3 ) 
(3 

The summation of these double logarithmic terms has been performed firstly in 

Ref. [1 2] for the e+e- --+ p,+ p,- forward scattering process utilizing the Bethe-Salpeter 

equations . 

~ow. we proceed to the summation of the DL terms for the photon-quark scattering 

proces [13]. Firstly, consider the DL approximation (DLA) of the quark-antiquark for­

ward scattering amplitude A(Sl t)l because this amplitude is a part of the photon-quark 
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scattering. Gsing the fact that the pin structure of the Born anlplitude i. rnaintained 

in the higher orders in the DLA (see the preyiouL box diagrarn calculation and Ref. [12]). 

we factor out the Born amplitude, 

A ( s. t) = bo (.';, t ) jI (.') , t ) 

where bo is the Born amplitude and we include g2 (g is the QeD coupling constant) into 

the definition }v1(s, t) . Before going to calculations of the amplitude. let us decOlnpose 

the amplitude into parts with definite quantum numbers of the gauge group SC( _Vc) 

in the exchange channel. Generally. in S -(-Vr). the amplitude can be decomposed into 

a singlet(O)state and a vector state(V) 

(3.37) 

a.b and a' l b' label the color states of the initial and final quarks. The projectors poa~g' 

and Pf/;~ are given respectively as 

(3.38) 

(3.39) 

In Born level , Mo and !vI\' are. 

(3.40) 

For the later convenience. we consider color structure for the diagram Figs.3.6. The 

color component of the blob can be written a vector. 

Then, the change of the color structure due to the additional gluon is given by multiply-

ing the amplitude by a certain matrix, in· AI. The matrices have different element for 
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the graphs of Fig.3.6a (s-channel gluon) .Flg.3 .6b(t-channel gluon) Fig.3.6c(u-channel 

gluon) 

where I is the 2 x 2 unit lnatrix. 

2V ~) f - y; 

_ ·ow; we proceed to the calculations of the amplitude. It is not difficult to appl~' 

the method developed in QED calculation [12] to QeD. Indeed. at one-loop level the 

calculation will be almost the same. However. \ve need to calculate more complicated 

higher order diagrams and it has been well-known that the application of this met hod 

to the negative signature amplitude (see.Eq. (3.43)) which is relevant to the polarized 

photon quark scattering is much more complicated [27]. Then. the more easier method 

has been developed in Ref. [13]. GenerallYl the infra-red singularities appear in the per-

turbative calculation if one consider the theory which include the mass-less particle. It 

is well-known that all infra-red singularities cancel by considering the inclusive process 

due to the Bloch-~ordsieck theorem and KL:\ (Kinoshita-Lee-:\auenberg) theorem. 

Thus, QED processes are free from infra-red singularitie.. However, in the process 

which include hadrons in the initial state e.g. deep inelastic scattering, one cannot 

get rid of the mas singularity arising from the initial state. This problem i avoided 

by the factorization theorem. According to thi theorem, the mass singularity factor 

out and it is absorbed into the non-perturbatiye part. ~ amely. for the perturbativ 

calculation of the forward virtual photon quark scattering. we obtain the cro s section, 

chematically writing. 

(3.-±1 ) 

where m 2 is a quark mass. The second term becomes singular when m 2 ---+ O. The 
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factorization theorem guarantee. that the cro~ .. ection hecolne the following 1'onn in 

which the rna s singularity i factoriz d, 

(3.42) 

The part including m 2 is absorbed into the distribution function. Anyway. we need 

to regulate the infra-red singularities by introducing thp infra-red cut off f1 in the 

calculation of quark scattering process. Since the QeD coupling constant is written at 

the leading order as, 

2 ( 2) _ 1 
9 f1 - (Join Q2 j.\bCD 

V\ e choose the value of {l as much greater than .\QC 0 so that perturbatiYe calculations 

are still applicable, 

\Ve have shown by explicit calculation of the QED proces that the DL term comes 

from the region in which the internal fermion and gauge particles become soft. This 

means that the momentum of this soft fermion can reach the infra-red cut off tj,2. The 

idea of Ref. [13] is the generalization of this I-loop discussion ,namely, their procedure 

consists in isolating the softe t virtual particle in the general diagrams. There arE' 

some good aspects in this procedure. It turns out that ,after isolating the softest 

particle. the remaining particles can be put on the mass-shell. Thereforejt is not 

necessary to consider the off-mass-shell amplitudes and to analyze complicated higher 

order graphs. ivloreover, we simply deal with gauge invariant set of graphs. because 

only the on-mass shell amplitudes appear in this approach. On the other hand, one 

hortcoming is the following. In this approach, all singularities are regularized by one 

scale {l2. 0 the factorization of mass singularities becomes implicit and ambiguous. 

\Ve will come back to this point in the next section. \Ve use the Feynman gauge in 

the following calculation. According to this method, we isolate the softest particle in 
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graphs. Firstly. let us consider the case that the softe t particle i a quark. In this 

case. the diagram in\'oh'ing the t\\'o quark line~ in the eros, ed channel Fig.3.5 gi\'es the 

DL contribution. The double logarithmic contribution arise from the region in which 

the loop momenta of these two quark lines become slnaller than the remaining loop 

momenta. 

s 

Figure 3.5: 

This fact may be understood easily by returning to the QED process calculation, 

because Fig.3.5 just reduces to Fig.3.4 at one loop order. ~otice that we can regard the 

blobs of Fig.3.5 as the on-mass shell amplitude with the cut-off k}, since the internal 

quark lines are nearly on the n1ass hell in the DL approximation. 

The amplitude of Fig.3.5 i given by 

AIP(s 2)/ = ~ J' s2dadj3d2kT( -2k}) JtJf(sOci /k}/) Aft (-s(3./k}/) 
~ ,/1 quark (27T)4 2(k}+aj3s+ic:)2 sa+ic: -s!3+ic 

where the soft quark approximation Eqs. (3.32) was used and the suffix i represent th~ 

color state. It is convenient to expand !vf into the partial waves f (N). The variabl 

_v corresponds to the angular momentum in the complex plane. In order to expre s 

the amplitude in term of partial waves and anal~Ttically continue to the complex ~y 

plane. one must divide it into symmetric and antis~rmn1etric part with respect to the 

tran formation s f--+ u ~ -S. 

MI = ~[M(s) ± Jill -8): (3.43) 
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The even (odd) part of the amplitude i related to the po. itiye (negatiye) ignature 

partial wave via the Sommerfeld-\Yat on transfonnation. 

(3.-JA) 

\vhere 6 i. chosen so that the integration contour in Eq. (3.-14) i. on the right of the 

singularities of fP(_\T). The signature factor ~P i giyen by 

CP(N) _ 1( -inN P) "'-I { 1 j'J = +1 
~ - 2 e + "'-I _ ~ i 7f .Y j'J = -1 

Substituting the Sommerfeld integral expression(Eq.(3.-14)) into the double logarithmic 

amplitudes .11, and performing integration over 0'. J and kr [13] . we obtain the following 

soft quark contribution to the partial wave fCV) 

P I 1 1 (P( ) 2 fi (-""'l) quarks = 87r2 1V fi _V) . (3.45) 

Cntil now. we have considered only the diagram in \vhich the softest particle is a 

quark. However: the DL contributions is not exhausted by soft-quarks. ~ext consider 

the case that the softest virtual particle is a gluon, Figs.3.6. 

s 

t -7 

(a) (b) (c) 

Figure 3.6: 

It is not difficult to see that these diagrams contribute to the DLA ba ed on the same 

argument for the soft quark case. In the forward scattering process. the s-channel and 
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u-channel gluon diagrams among Fig .3.6 contribute to the DLA and t-channel gluon 

diagram doe not give the DL term. Thi fact will be ullder. tood from the pre,"ious 

calculation in the case of QED. since these diagrams are sanle as Fig.3.3. The amplitude 

including both Fig.3.6a and Fig.3.6c is written down as. 

-ig
2 

2 J ? s'2 dad3d'2kr . jfP(s, Ik~l) 
(2n)4 2(saB + ky + iE)(sQ(l + 3) + k} TiE) 

x [ 
ins mu 1 

- S (a - 1) B + k} + iE + - s (0' + 1) 3 + k} + iE 

Again. we obtain the soft gluon contributions by substituting the Sommerfeld-\\Tatson 

expressions for N! and by performing the integrations. The ans\ver depend on the 

signature of the partial wave . The soft gluon contribution to the positive signature 

partial wave is given by 

(3.46) 

And we obtain for the negative signature partial wave: 

:\ow. we can obtain the DLA expression for the quark-quark forward scattering 

amplitude. The equation for the DL amplitude is given by Fig.3.7. 

Figure 3.7: 

[sing the results for the soft quark and gluon contribution Eqs.(3.45,3.46 ,3.47). we are 

able to write down the equation giving DLA in terms of ff(.V). The positive signature 
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amplitude leads to 

(.3.-± ) 

The coefficients are given by 

('0 = o. c\ - = 1 

The equations for the color singlet negative signature amplitudes are. 

This equation is solved easily. \Ve obtain the ),Iellin amplitude for the color singlet 

channel , 

1 - g2UV~ - 1) (1 ___ 1 f -1:" ( 'V))) 
4 2 N y2 ? 2 Y ,~ . 1f ~ c~ _ 1f ~ 

where we choose the minus sign in the front of the square root from the requirement 

that , the solution has to match the Born approximaton for large N , ince the _N --+ 00 

means x -+ 1. The amplitude h-(N) is obtained by olving the Riccati type equation 

(3.48) . Csing the transformation . 

Eq. (3.48) reduces to the linear differential equation 

d2u du 1 
-- z---u=O 
dz2 dz 21'1(' 

where 

This equation is solved by a parabolic cylinder function. As a result. ft has the form: 

r(+)( T) V 2 d l ( z2 /4D ( ) ) . \- _\ = 1 cg dN n e - 1/ 2N; Z (3.49) 

31 



Dp( z) i the parabolic cylinder function [251. 

Finally. let u con ider the DLA for the yirtual photon - quark cattering ampli­

tude jJ.Ll/. The imaginary parts of this amplitude are related to the DIS process for a 

quark target. We can decompose TJ.L1/ into the ame tensor tructure. with the hadronic 

tensor 

The structure function for the quark target giuark is obtained from f3 as. 

quark _ 1 I + 
gl - - mJ.3 

'if 

:";otice that the amplitude T3 is anti-symmetric with respect to the replacement 5 -+ -

Indeed. the tensor TJ.L1/ is symmetric under the interchange of J1 and v and q -+ -q. 

But q -+ -q means x -+ - x . i.e. 5 -+ -5. Since the tensors in the front of 71 is 

anti-symmetric, T3 must be anti-symmetric. Accordingly, t3 belongs to the negative 

signature amplitude. In the following, we shall concentrate on this negative signature 

amplitude T3 which gives giuark
. If Q2 :::: f-l2 . namely, the external photons are nearl~' 

on the ma s-shell. the DLA equation for the photon-quark scattering is given by Fig.3.8. 

+ 

Figure 3.8: 
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The each blob repre ent th on-mas shell arnplitudc . Here, w introducr the 

Sommerfeld-\Vatson transformation for the photon-quark, cattering in the. arne \ya,' 

as Eq.(3.44). 

~ 16+wO d~Y ( :5 ) S T3(S'IL2) = -. 2" ~( -) Ii~.3( ~V) 
6-ioo 21fl f1 

(3.50) 

The expression in terms of the partial wave R for the ' econd diagram i obtained 

immediately by replacing 1 by R in Eq.(3.45). The DLA equation becomes 

C3 1 _ 
R3 CV) = ~V + 81f2 ~V 10 R3 CV). 

\vhere C3 is 2e~. 

The trivial solution of this equation is 1 

At small x in the deep inelastic scattering which means 8 » Q2 » fL2 , the virtuality 

Q2 of photon is not so small. Then we must divide the virtual photon quark scattering 

amplitude into two parts corresponding to the integration region /k}/ < Q2 and /k}1 > 

Q2 (Fig.3.9). 

+ 

Figure 3.9: 

The blobs with shade represent the virtual photon - quark scattering DL amplitude. 

The first diagram in Fig.3.9 corresponds to the region Ik}1 > Q2. Since the Q2 i very 

, mall compared with S. we can regard first term as the nearly on the mass hell photon-

quark scattering amplitude which we have already obtained. The second diagram is 

the soft quark contribution. Then, we get the following equation for Fig.3.9. 
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Transforming into the Sommerfeld-\IVatson representation. 

J dV ( 8 ) _ Q2 -. 2 R3 (.V.ln-
2

) 
2nz ~ ~ 

= J'djV(~) N W('VO) JdN_1 !.Q2 dlkf l (~_) 
2ni Q2 3 1, + 2ni 8n2 . /1 2 I kj-, I k~~ 

and by factoring out J !:ri (8/Q2) 1\' from the both side. we have 

(3.51) 

This equation is solved easily by differentiating with respect to ~2. Indeed. from 

Eq.(3 .51) . we obtain. 

The solution of this differential equation is. 

Then. we get from Eq.(3.50) 

A 2/,&+iE d]\! ( 8 ) . 
T3 = 2e · --

2 " • Q? &-iE .t.n1 -

In order to obtain a final result. giuark
, we have to take the discontinuity in s. \Vith 

the signature factor ~- = in lV/2 and the variable x rv Q2/8 and Q2 we arrive at 

e2 &+iE dN (Q2)fo-( )/( ,,2) _V 
quark ( Q2) 2/, - N 

gl x , =? '_ -2' X -2, V' -'---f--(-\-T)-/-8-2' 
O.J &-k. 7rZ ~ _ v • O . 7r 

(3.52) 

In the next section, we discuss the physical implication of this DLA formula for giuark
. 
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3.3 The expansion of DLA formulla 

The solution of Eq.(3.4) with the fixed coupling (}~ become .. 

(3.53) . 

where we identify Q6 = f-L2. Since the initial parton density ~q(J1,2. _V) in the case of 

the quark target is one. we obtain the moment space expression Eq.(3.3) for the parton 

as follows: 

quark(Q2 V) = eTC
( 7\.T) (Q2) 'Y(Q.s .. V) 

gl , ~ 2 a s ·-, f-L2 (3.5c±) 

In comparison with Eq. (3.52). we can identify the resumn1ed anomalous dimen" ion A 

and the coefficient function C to be. 

1(as : N) 

C(aSl N) 

(3.55) 

(3.56) 

\'"ow it will be instructive to re-expand Eqs.(3.55,3.56) in terms of Os to see whether 

these formulae sum up the most singular terms of the pert rbative series. The expres-

, ions expanded up to O( a~) read. 

(3.57) 
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32Cf (-'C3 -C'j C F C 1 5 1 3 \T) (0..., \ ~ + . F { F + 10 - + 2- - -± F -L -- + - - + -' - \ Y y 2 'J y :3 'J T (_y 2 ) 
- (' - C - - (' - - c 

I -,- ... 

(3.58) 

These results coincide with the previous expectation of Eq.( 3.6). Furthermore. noting 

the relation 

which holds in SG (}Vc) . we can see that the re ummed expreSSIons Eqs.(3.55 ,3.56) 

reproduce the known ~LO results Eqs. (3.5) in the ~IS scheme. Therefore, it is quite 

plausible that Eqs. (3.55 ,3.56) correctly sum up the "leading" singularities to all orders. 

Here a comment is in order concerning the cherne dependence. It is well-kno\yn 

that the anomalous dimension and the coefficient function individually depend on the 

factorization scheme and only an appropriate combination of them becomes chenle 

independent. \i\Then one considers the higher order corrpctions in the perturbation 

theory, therefore. one must specify t he scheme adopted. This means that \VP mu t 

be careful when considering the resummed quantities. In particular , the re ulnmed 

"coefficient function" does not have any physical meaning until the scheme dependent 

part of the anomalous dimension is calculated in the same scheme. To clarify thi. is ue. 

it is convenient to write the above re ults in the form which corresponds to the so-called 

DIS scheme [26]. The DIS scheme is defined so that the naive parton model relation 

is true to all orders in perturbation theory. The polarized parton densities become 

physical observable in this scheme. The parton densit.ies and anomalous dimension in 

the DIS scheme are obtained by making the transformations , 
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LL :,\LL 

I 0(0:) 
I I 

I I I 

I Y 

0 ( 0
2

) 
1 1 1 

- -

lV3 S"2 Y 

o( 0:3) 
1 1 1 

-

LV-1 ~y.1 
. .. 

Vo 

o( o:k) 
1 y2 1 y3~ 

~ LV ~V2k ~ ~V2k L ~yk 

I 

Table 3.1: 

Gsing the resummed ~ and (; Eqs.(3.57.3.58). we get the resummed part of the anoma-

lou dimension in the DIS scheme. 

(3.59) 

where the second terms come from the resummed coefficient function and dk are nu-

merical numbers independent of TV. The above equation tells us that the re ummed 

coefficient function belongs to the ~LL order corrections in the context of the res llm-

mation approach (see. Table[3.1]). The scheme dependence should be cancel among th 

terms which have the same singularity in each power of a s. This fact implies that 

the LL resummed anomalous dimension 1 being scheme independent and the anal:v i 

including only this part leads to a theoretically consi tent result. This is the reason 

'why the authors in Ref. [15] throwaway the coefficient function. On the other hand. 

one must include the . TLL order anomalous dimension which has not yet been available 

to " e the effects of the coefficient function . To calculate the :,\LL order anomalou 

dimension. one must establish a factorization theorem explicitly. In the method to 

re urn the double logarithmic corrections to all orders explained in section 3.2. the 

factorization of the mass singularities is unfortunately quite obscure since both the 
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mass and infra-red singularitie. are regularized by a con1mon . cale p'2. Therefore it 

i impossible to calculate the \""LL order anomalou. dinlension in the method of sec­

tion 3.2 . In fact, it has been pointed out by several people that the resummed results 

Eqs.(3 .57,3.58) do not correspond to results in any known scheme beyond the \""LO. 

It is very important and urgent to establish an appropriate factorization theorem a la 

"High-Energy Factorization Theorem" [34] for the unpolarized tructure functions. 
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Chapter 4 

Numerical analysis 

. Tumerical analysis of the spin structure function g!'vs in the small x region was done in 

the context of the mall x resummation approach in Ref. [15]. They obtained the result 

that the small x resummation effect is not significant despite of a naive expectation 

discussed in Ref. [14]. In this chapter we numerically reanalyze the behavior of grS 

structure function to shovl how the final results are sensitive to the choice of the input 

parton densities. In conjunction vvith the claim in Ref. [14]. we also consider the effects 

from the resummed coefficient function. As already discussed in chapter 3, we can not 

include the coefficient function in a theoretically consistent way. However w believe 

that the inclusion of the coefficient function could shed some light on the size of the 

\"LL corrections in the re ummation approach. [28] 

4.1 The numerical Mellin inversiolrl technique 

In this section, we explain our method to estimate the gl S structure function numeri-

cally. Our starting point is the expres ion, 

(4.1) 
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The anomalous dimension ",Dl ' which includes the re. UIlIIllation of lnnx term L orga-

nized as follows. 

where ~( 1,2 and c1 are respectivel:v the usual anomalous dirnension and coefficient funC'-

tion at the one and two-loop fixed order perturhation theory. K(~V. Cl: s ) (H(_Y, as)) 

is the resummed anomalous dimension Eq.(3.57) (Eq.(3.58)) with k = L 2 (k = 0,1) 

term being subtracted because those term hayp already been included in the usual 

anomalous dimension and coefficient function. 

K(IV, as) 

H(N, as) 

It should be noted here that the anomalous dimen ion at _V = 1 plays a special role 

for the non-singlet gl structure function. In a language of the operator product expan­

sion, ry( N = 1) is the anomalous dimension of the (non-singlet) axial vector current. 

Since the (non-singlet) axial vector current is conserved, the corresponding anomalous 

dimension should vanish. The perturbation theor:v guarantees this symmetry order by 

order in the as expansion. However. the resummation of the leading singularities in 

_v does not respect this symmetry. Therefore, we need to restore this symmetry "by 

hand" . In thi paper, we multiply K(N, as) by (1 - ~V) [29], 

which satisfies the condition of limN41 K(lV, as) = 0. Of course, this is not a unique 

prescription and one can choose other procedure .e.g. 

This procedure also fulfills the aboye condition. Although we haye tried the analysis 

with thi procedure. our final conclusion remain. the same qualitatively. 
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_ ow let us explain how to perform the ~lellin inver. ion Eq. (-1.1) which i .. t hr inTegral 

in the complex lY-plane. At first. \ye must know the ~Iellin tran fonn of the input 

function 91(Q6. N). It is easy to obtain an analytic form for it in the complex _V-plane 

ince ,,-e assume a sirnple function (see below) for the input density. ~ ~ext we need 

an analytically continued expression of the anomalou. dimension ,",( DIS in the cornplex 

.V-plane. For the gl structure function. only odd rnoments are defined. So we replace 

(_I)N by (-1) in the expression of the anomalous dimension obtained in Ref. [19]. 

The integration contour in the ~1ellin inversion should be on the right of the rightrnost 

singulari ty of the integrand . The contour of t he integration in Eq. (4.1) is displayed in 

Fig. (4 .1) and denoted by Co. The contour integration along the imaginary axis from 

c- ioo to c+ioo is numerically inconvenient due to the slovv convergence of the integral 

in the large I_NI region . 

" " " " " " 

ImN 

Figure 4.1: 

ReN 

To get rid of this problem. we deformed the contour to the line which have an angle 

cb (cfJ > TI /2) from the real _V axis. The integration along this deformed contour C1 • 
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· yields the same result as t he original one as long a. no i ngulari tic, of g l ( Q 2 . _Y) an" 

enclosed b:v Co - C1. By using a relation g;(Q2. Y ) = gd Q2. _V*) ( '* ' denotes the 

complex conjugation)l Eq.(4.1 ) can be written. for the contour charact rized by c and 

Q in Fig.4.1 

By this change of the contour, we have a damping factor exp(ln(lj.x) z cosm ) ·which 

strongly suppresses the contrihution from the large I_VI region . In t he int gration along 

this new contour; we will be able to cut the large I~Y I region. namely 0 ::; Z ::; Zmax. 

Finally we have checked the stability of results by changing the contour parameter 

Zmax · c. 9· One can fi nd the details of this technique in Ref. [30]. 

4.2 The small x behavior of gl strllcture function 

In this section. we present our numerical results for gl structure function by using the 

technique of the previous section. 

\'Te choose the tarting value of the evolution to be Q6 == 4Ge 1 '2. \Ve calculate the 

Q2 evolution for three types of the input densities A. Band C: A is a function which is 

fiat at small x (xQ 1 a rv 0). B is slightly steep (a I"'V -0.2) which is essentially the arne 

as one (a rv -0.17) in Ref. [15], and C rises more steeply (~ I"'V -0.7). The explicit 

parameterization used in thi paper i [9] , 

where ~V is a normalization factor such that J dx~V xQ (1 - x) ,6 (1 + ax) 1 and 

1] = ~g.41 gv (gAl gv = l.26) in accordance with the Bjorken sum rule. A. Band 

C correspond to the following values of parameters. 

A : (}' = +0.0 , [3 = 3.09 . a = 2.23 , 
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B 0 = -0.2 , 3 = 3.15 . (1 = 2./2 . 

C 0 = -0.5. J = 2Al . a = 0.02 

In our analysis we put the flavor number n f = 4 and .\Q(']) = 0.23Ge 1'. 

First we estimate the case which includes onbr the LL correction i. The evolution 

kernel in this case is obtained by dropping H( lY. Q s ) in Eq.(4.2). This is a consistent 

approximation in the re ummation approach. Fig.4.2a (4.2b.4.2c) hows the result 

(dashed curves) after evolving to Q2 = 10. 102. 104Ge1 r2 fro111 the A (B. C) input 

density (dot-dashed line). The solid curves are the predictions of the ~LO-DGLAP 

evolution. These results show a tiny enhancement compared with the );LO-DGLAP 

analysis and are consistent with those in Ref. [15]. In addition, we have also calculated 

gl 'with the same input function as one used by Blumlein and Vogt and could reproduce 

their results. In the case of C. we can not discriminate a difference betv,reen the LL 

and DGLAP results. The enhancement is, as expected. bigger \vhen the input density 

is flatter. However any significant differences are not seen between the results froln 

different in pu t densi tie . 

_ Text. we include the ~ iLL corrections coming froln the resummed "coefficient func­

tion':. VVe show the re ults in Fig.4.3 by the dashed curve. (Other curves are the 

same as in Fig.4.2.) The results are rather surprising. The inclusion of the coefficient 

function leads to a strong suppression on the evolution of the structure function at 

small x. Since the effects from the coefficient function fall in the :\LL level, the LL 

terms are expected to (should) dominate in the small 1'. Howeyer our result impl~' 

that the LL approximation is not sensible in the small T region we are interested in. 

A,~ the resummed coefficient function is only a part of the :\LL correction, we can 

not pre ent a definite conclusion on the (full) _ TLL correction. But it is obvious that 

the ~LL correction is very important at the experimentally accessible region of x. In 

the following section. we explain why the coefficient function lead to uch. uppr ssion . 
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Figure 4.2: The LL evolution as compared to the DGLAP results with the fiat input 
A (Fig. 4.2a) and steep ones B (Fig. 4.2b) and C (Fig. 4.2c). 
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Figure 4.3: The 1\"LL evolution as compared to the DGLAP results with the fiat input 
A (Fig. 4.3a) and steep ones B (Fig. 4.3b) and C (Fig. 4.3c) . 
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4.3 Discussion 

In rhp prrvious . pction. we hcl\-e . hm\'n that although thp LL re, urnrned effpct is Y('r~-

small at the experimentally accessible region of :r. a part of the :\"LL re ummed contri-

but ion from the coefficient function drastically change. the prediction _ In this section. 

\\'e discu s why such a suppression factor come frolll t he ~LL corrections. 

To understand what is going on. it will be helpful to remember the perturbative ex­

pansion of the resummed anolllalous dimension and coefficient function Eqs.(3.57.3.58). 

By using the explicit values _Yc = 3. CF = -1/ 3. we obtain for the anomalous dimen. ion 

in the DIS scheme Eq.(3.59). 

i D1S = N [-0.212 C~~) 
- 0.068 (;~ r -0.017 C~~ r -0.029 (;~ r + ... j 

+ -"12 [0.141 (~~ r + 0.119 C~~ r + 0.069 (;~ r + ... j (.1.3) 

+ 

Here note that: (1) the perturbative coefficients of the LL terms (the first part of 

Eq. (4.3)) are negative and those of the higher orders are rather small number. Thi. 

implies that the LL corrections push up the structure function compared to the fixed-

order DGLAP evolution. but deviations are expected to be small. (2) the perturbativp 

coefficients from the :\,"LL term (the second part of Eq. (4.3)). however. are po itive 

and somehow large compared with those of the LL terms. This positivity of the :\LL 

terms has the effect of decreasing the structure function. This fact that the coefficient 

with both sign appear in the anomalous dimension should be contrasted with the case 

of the unpolarized structure function [31]. 

- ~ O\'T it might be al 0 helpful to assume that the saddle-point dominates the ~Iellin 

inversion Eq. (4.1). \J\,Te have numerically estimated the approximate position of the 
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saddle-point and found that the . addle-point stay. around _Y p '"'-J 0.31 in the region of 

.1' '"V 10-.5 to 10-2
. (Of course the precise 1:alue of the addle-point depends on x. Q6 

and Q2.) By looking at the explicit values of the coefficients in Eq. (4.3), the position of 

the saddle-point seems to sugge t that the. TLL terms can not be neglected. Since the 

coefficients from the higher order terms are not 0 large numerically. it is also expected 

that the terms which lead to sizable effects on the evolution may be only first few terrn 

in the perturbative series in the region of x we are interested in. \Ve have checked that 

the inclusion of the first few terms in Eq. (4 .3) already reproduces the re ults of section 

4.2. 

5.0 12.0 

Q2=102Gey2 
10.0 Q2= 102Gey2 

4.0 
NLL NLL 
o(u/) O(Us

4
) 

o(us
3) 

8.0 . 
o(us

3) 

o(us
2) o(u/) 

3.0 LL LL 

6.0 

2.0 

4.0 

, , 
1.0 

./ 

/ 
-.,., 2.0 

"-
"-

"----...-.,. 

0'~0-5 10-3 10-' 0'~0 -5 10 3 10 ' 
X X 

(a) (b) 

Figure 4.4: Contributions from the fixed order term in the :\LL resummation with 
the flat input A (Fig. 4.4a) and steep one B (Fig. 4.4b). 

Fig.4.4a (4.4b) shows the numerical results of the contribution from each terms of 
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the _ -LL correction. in Eq.(4.3) at Q2 = 102Ce' -2 with the A (B ) type input den. in'. 

The . olid (dot-dashed) line correspond to the \,"LL (LL) re~ ult. The long-dashed. 

dashed and dotted lines correspond respectively to the ca e in which the term. up to 

thr order ex;: ex~. ex;. are kept in the :\"LL contributions. One can see that the dotted 

line already coincides with the full ~LL (solid) line . These' considerations could help us 

to understand why the ~LL correction turns out to giye large effects on the evolution 

of the gl structure function. 

The final discussion concerns the convergence issue of thr perturbative series. A .. 

discussed in Refs. [32] [33], one must be careful ,\'hen applying the perturbative ap­

proach to the small x evolution. The integrand in Eq.(4.1) ha a singularity in the 

moment space. This (rightmost) singularity is equal to that of fo (N). The numerical 

value 1'10 of the singularity position is No I"V 0.304. This means that .N can not become 

so small. On the other hand, the approximation scheme in the resummation approach 

is sensible only for small .N. This apparent contradiction will be solved by analyzing 

the evolution in x space [32]. By explicitly solving the evolution in x space, it has be n 

pointed out [33] that the saddle-point method is not a good approximation in the ca e 

of t he unpolarized structure function. Although we have not used the addle-point 

approximation to solve the evolution. the previous explanation relying on thi method 

can be misleading. So according to Refs. [32] [33]. we have also tried to solve the 

evolution in x space with first several terms of the perturbative expansion being kept 

and what we found is that the conclusion does not change. The numerical result are 

essentially the same as Fig.4.4. 
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Chapter 5 

Summary 

We have numerically studied the small x behavior of the flavor non-singlet gl (x. Q2) 

structure function by taking into account the resummed effE'cts of Ci s ln2x . After giying 

a basic kinematics of the process we are interested in . in chapter 3 we gave a brief 

review of the resummation procedure of Ci s ln2x terms firstly developed by Kirschner 

and Lipatov [13], and gave the resummed expression for the partonic structure function 

gfarton. We extracted the resummed anomalous dimension and coefficient function from 

this resummed partonic structure function. By expanding t his expression in term of 

as, we verified t he resummed result reproduces the known corrections up to o( Ci; ). We 

pointed out that the resummed coefficient function belongs to the XLL corrections in 

the context of the resummation approach. In chapter 4, we explained the method of 

numerical YIellin-inversion in detail and showed our lllunerical results. Our anal~rsis 

including only t he LL terms supports the results by Bliimlein and Vogt [15]. ~ amely. 

there i no significant contribution from the resummed tenms even at x rv 10-.3. We 

aL 0 studied the Q2 evolution from various input densities. steep and flat and found 

that t here is no significant difference between the results fr01n different input densities. 

:\ext we have performed the analysis which includes the resummed coefficient function 

in the light of the assertion of Bartels. Ermolaev and Ryskin [14]. though this i. not 

theoretically consistent as pointed out in chapter 3. Our results suggest that the LL 
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approximation is un table in the sense that a large . llppression effect come. frorn the 

resummed coefficient function \,'hich hould be the ~LL correctioIl. In the final. ection 

of chapter 4, we have discussed why the inclusion of a part of the :\"LL correction lead 

to such unexpected results. 

Finally, the future polarized HERA experiment will provide u with many data 

on gl at small x. However, the theoretical study which takes into account the small 

x resummation is still premature for the polarized structure function compared with 

the unpolarized structure function. As alread~' pointed out in chapter 3. there is 

no factorization theorem concerning the lnx singularities for the polarized structure 

function which should correspond to the High-energy factorization theorem [34] for 

the unpolarized structure function. Since our re ults show that we need a full ~ -LL 

analysis to make a definite prediction at small x. the establishment of an appropriate 

factorization theorem is an urgent subject in this field. 
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Appendix A 

QeD Lagrangian and Feynman 
rules 

The QCD Lagrangian is given by 

where. 'lJ) is a quark field: A~ is a gluon fie ld and X C~) is a ghost (anti-ghost) field. 

F~v is the field strength tensor: 

The covariant derivative Dp, is. for the fundamental representation, 

and 

for the adjoint representation. Feynman rules for QCD are given by follows, 

• Propagators 

. quark 

p 

a i ---... ..--- ~ j 
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gluon 

k 

~ a 0fooolfoolfoo' v b 

. ghost 

k 

a -----~----- b 

• Vertices 

quark-gluon vertex 

ai ~ j 

. 3-g1uon vertex 

where, 
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zg' a(3 ij 



· 4-gluon vertex 

where, 

wa1a2a3a4 
/.1.11.1.2/.1.3/.1.4 

(f 13.24 _ f14,32)g 9 + (f12. ;34 ._ f14,23)g 9 
/.1.1/.l.2 /.1.3/.1.4 /.1.1/.1.3 /.1.2/.1.4 

+ (f 13.42 _ f12,34)g 9 
/.1.lf.1.4 /.1.3/.l.2 

with 

gluon-ghost vertex 
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Appendix B 

The anomalous dimensioJn and the 
coefficient function 

\"/e give the coefficients of the anomalous dimension , ,1. ,2 and the coefficient function 

c
1 

for the flavor non-singlet part used in chapter 3.4 and introduce the useful formula 

given in Ref. [30] . The coefficients of the anomalous dimension are given by [19]. 

(B.l) 

~/ (N) 

(B.2) 
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For the coefficient function part, c1 i given by [1 1 

Here , group factors for color SU(~Vc) are. CF = .~l,\~ l C-\ = ~Vc and nJ i the actin) 

flavor number. In above pxpre sions, we defined the following sums. 

(BA) 

(B.5) 

(B.6) 

(B.?) 

The analytic continuations of {I, {2, c1 in N, is required in order to perform the ).Iellin 

inversion numerically. The above non-trivial ums ~s continued in the following way. 

Sl(N) 

S2(1V) 

S3(N) 

G1 (1V) 

S(IV) 

with 

{E+'ljJ(N+1), {E = 0.577216 

((2) - v'(iV + 1) , 
7(2 

= ((2) = 6 
1 

((3) = l.202057 ((3) + 2'l/'(~V + 1), 

~ { S~ (N) + S2 (N) } 

G(~V) == '4J(N/2 + 1/2) - 'ltJ CV/2). 

Li2 (x) = - {X ~ln(l - z )dz 
io z 
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(B .8) 

(B.9) 

(B.10) 

(B .11) 

(B.12) 

(B.13) 

(B.14) 



Although the integral in Eqo(Bo12) involying the pence funct ion Li2(X') cannot be 

reduced to a known analytic function anymore. the simple and, ufficiently accurate 

expression was given as follows; 

Li2 (x) 2 3 -1 ~ 
-- ~ l.010x - 00846x + l.155X' - l.070tr + 00550X'0 
l+x (Bo15 ) 

The various V functions and their derivative appearing in the aboye expressions were 

calculated, for Rez ~ 10 , with the help following asymptotic expansion 

111 1 
'1fJ(z) ~ lnz - 2z - 12z2 + 120z4 - 256z6 (Bo16) 

I rv 1 1 1 1 1 1 
1/J (x) = ~ + 2Z2 + 6z3 - 30z5 + 42z7 -- 30z9 (Bo17) 

" rv 1 1 1 1 1 2: 5 
w (z ) = - Z2 - z3 - 2Z4 + 6z6 - 6z + 10zlO - 6z 12 (B o18) 

For Rez < 10 we have used the recursion relation 

(Bo19) 

in order to reach 1/J(n) with R ez ~ 100 

57 



Bibliography 

[1] H.Bottcher hep-ph/9712458. 

[2] J.D.Bjorken,Phys. Re'".148 (1966) 1467:ibid. Dl (19701) 1376. 

[3] J.Ellis and R.L.Jaffe.Phys. Rev.D9 (1974) 1444:ibid. DI0 (1974) 1669. 

[4] R. L. Heimann. ~iVuc1. Phy . B64 (1973) 429. 

[5] J . Ashman et al. Phys. Lett. B206 (1988) 364: 

\T. W. Hughes et al. Phys. Lett. B212 (1988) 511: 

B. Adeva et al. Phys. Lett. B302 (1993) 553' B320 (1994) 400: 

D. Adams et al., Phys. Lett. B329 (1994) 399; B336 (1994) 125; 

P. L. Anthony et al. Phys. Rev. Lett. 71 (1993) 959; 

K. Abe et al. Phys. Rev. Lett. 74 (1995) 346: ibid. 75 (1995) 25: ibid. 76 (1996) 

587. 

[6] For a general review of QCD factorization ee. for example. J. C. Collins. D. E. 

Soper and G. Sterman. in Perturbative Quantum Chrornodynamics. edited b~v A. 

H. ~1ueller (World Scientific, Singapore. 1989). 

[71 G. Altarelli , Phys. Rep. 81 (1982) 1 and references therein. 

[8] G. Altarelli , R. D. Ball, S. Forte and G. Ridolfi _\Tuc1. Phys. B496 (1997) 337. 

[9] R. D. Ball, S. Forte and G. Ridolfi, _iVuc1. Phys. B44Ll (1995) 287; Phys. Lf'tt. 

B378 (1996) 255. 

[10] :\1. Gluck. E. Reya and \Y. ,"ogel ang. Phy . Lett. B359 (1995) 201; 

\1. Gluck. E. Reya 1 \1. Stratmann and \V. \ Togelsang. Phy . Rev. D53 (1996) 

4775 . 

[11 ] \ T. V. Sudakov. Sov. Phys. JETP 3 (1956) 65. 

58 



121 V. G. Gor. hko\". \T. ~. Griho\". L. \'. Lipato\". and G. \T.Frolov. Sor.J.~ ·ucl.Phy .. 

6 (1967) 95. 

[13J R. Kirschner and L. ~. Lipatov, ~Vuc1. Phys. B213 (1983) 122. 

[14] J. Bartels. B. I. Ermolaev and :\1. G. Ryskin. Z. Ph!,".'). C~70 (1996) 273: ibid. C72 
(1997) 627. 

[15] J. Bliimlein and A. Vogt .Ph}TS. Lett. B370 (1996) 149 : Acta.Phys.Polonica B27 
(1996) 1309; 

J. Bliimlein, S. Riemersma and A. Vogt. hep-ph/9608470. 

[16] E~IC,J .Ashman et al. ,Phys. Lett.B206 (1988) 36-1.: ~\Tuc1. Phys.B328 (1989) 1. 

[17] S.A.Larin, F.V. Tkachev. and J.A.1\1. Vermaseren. Ph.vs. Re,-. Lett.66 (1991) 862: 

S.A.Larin and J.A.:V1. Vermaseren, Phys. Lett.B259 (1991) 345. 

[18] J. Kodaira, S. ~atsuda, T. ~uta. K. Sasaki and T. eematsu, Phys. Rev. D20 
(1979) 627; 

J. Kodaira, S. :vlatsuda, K. Sasaki and T. Cematsu. _Vuc1. Phys. BI59 (1979) 99. 

[19] E. G. Floratos) D. A. Ross and C. T. Sachrajda. ~Yuc1. Phys. BI29 (1977) 66: (E): 

BI39 (1978) 545; BI52 (1979) 493; 

A. Gonzalez-Arroyo, C. Lopez and F. J. Yndurain. _\Fuel. Phys. BI53 (1979) 161: 

A. Gonzalez-Arroyo and C. Lopez. _7\luc1. Phys. BI66 (1980) 429: 

E. G. Floratos, C. Kounnas and R. Lacaze. ~\·uc1. Phys. BI92 (1981) 417: Phys. 

Lett. B98 (1981) 89: 

G. Curci, W. Furmanski and R. Petronzio, ~\Tuc1. Phys. BI75 (1980) 27; 

"T. Furmanski and R. Petronzio, Phys. Lett. B97 (1980) 437 : Z. Phys. ell 
(1982) 293 : 

R. ;vlertig and \V. L. van ~eerven. Z. Phys. C70 (1996) 637. 

[20] B. 1. Ermolaev. S. 1. :\tlanayenkov and ~1. G. R:vskin. Z. Phys. C69 (1996) 259. 

~ 21 ] L. ~ T. Lipatov, Sov. J. ~\Tuc1. Phys. 23 (1976) 338: 

E. A. Kuraev, L. );. Lipatov and V. S. Fadin. So"\'-. Phys. JETP 45 (1977) 199: 

Ya. Balitskii and L. \'. Lipatov, SOy. J. lVuc1. Phys. 28 (1978) 822. 

[22J Yu. L. Dokshizer, Sov. Ph.vs. JETP 46 (1977) 64l. 

59 



f231 \" .. -. Grihov and L . . -. Lipatoy. Sov.J .. \ "uc1.Phy,. 15 (1972) 438. 675. 

[24~ E. ~I. Lifshitz and L. P. Pitae\'skii. Relati vistic Q71 ont1.1rn Th eory ection.13 (Perg­

amon Press Ltd.1974). 

[25] 1. S. Gradshtein and 1. ~I. Ryzhik. Table of Integrals. Series and Product (DVW, 
Berlin) Section 9.24-9.25 . 

[26] G. Altarelli. R. K. Ellis and G. ~Iartinelli . . Vuc1. Phy . B157 (1979) 46l. 

[27J V. G. Gor hkov. L. ;\. Lipatov and ~!I. ~1. _ Testero\'. Yad.Fiz. 9 (1969) 122l. 

[28J ·Y. Kiyo. J. Kodaira and H. Tochimura, Z.Phys. C74 (1997) 631:hep-ph/9711260. 

(29] K . Ellis. F. Hautmann and B. \\Tebber. Phys. Lett. B3~18 (1995) 582. 

[30] ~f. Gli.ick, E. Reya and A. Vogt. Z. Phys. C48 (1990) 471: 

D. Graudenz. ~1. HampeL A. Vogt and Ch. Berger. Z. Phys. C 70 (1996) 70. 

[31] S. Catani. Z. Phys. C 70 (1996) 263. 

[32] R. D. Ball and S. Forte. Phys. Lett. B351 (1995) 313. 

[33] J. R. Forshaw, R. G. Roberts and R. S. Thorne. Phys. Lett. B 356 (1995) 79. 

[34] S. Catani and F. Hautmann. ~Vucl. Phys. B427 (1994) -175 and references therein. 

tReviews and text books for the perturbative QeD. 

[35] J.Kodaira,Prog. Theor. Phys. Suppl.No.120(1995) 37. 

~36 ] T.:Vfuta. Foundations of Quantum, Chromodynamics (vVorld Sientific.1987). 

[37] G.Sterman et.aL Handbook of perturbative QCD Rev. i\lod. Phys. 67 (1995) 157. 

[38] R.L.Jaffe.hep-ph/9602236. 

60 




