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Abstract 

It is well known that the magnetic field bnes system can be tr ated as a IIamilLonian 

system, however a full exploitation of this fact has been hindered by the difficulty of 

finding the proper canonical variables or by their inconv ni nce for th solution of practical 

problems. There would be many advantages in having a HamiHonian formulaLion of the 

problem of the magnetic field lines flow, because for Hamiltonian systems many th Ol'eticai 

results, like for example conservation theorems, are known. Moreover, in recent years the so 

called symplectic numerical integration schemes have been developed, and th se schemes 

are particularly designed for Hamiltonian dynamical systems. These methods are very 

important for the magnetic field lines problem, because to obtain a detailed description of 

the field lines system it is necessary to follow their winding around the torus many times, 

typically for 105 
rv 106 revolutions, and this results, when traditional integration methods 

like the Runge-Kutta are used, in the accumulation of secular errors that make the results 

unreliable. On the other hand, symplectic methods are free from secular errors. 

In this thesis we investigate possible Hamiltonian formulations for the toroidal helical 



magnetic field in the vacuum and study the obtained models by means of a new linear 

symplectic integration scheme developed by us. 

We first derive a Hamiltonian for the cylindrical limit approximation of the field. The 

Hamiltonian is derived until the second perturbative order and it is obtained by using a 

perturbation theory based on the Lie transform. This perturbation theory is a theory in 

which all the relations are expressed in operational form, resulting in superior efficiency 

and compadness when compared to the classical perturbation theory. The Lie transform 

based perturbation theory forms the core of our theoretical study of all the Hamiltonian 

models treated in this thesis. 

We th n study the general toroidal case and derive for it two different Hamiltonian 

models, th fir t on correct until the third perturbative order , the second one correct until 

the s condo The second model is an integrable model, while the first one is not. This 

apparent discrepancy is connected with the use of the perturbation expansion and can be 

xplained by noticing that the canonical variables used for the two models are different. 

rvforeov r, the perturbation th ory yields expressions that are only asymptotic, so some care 

must be x rcis d when u ing it. The second, iIltegrable model, of course is not able to 

r produce the chaotic region of the real field, but in the first model we are able to show that 

th charad 1'i tic formation of magnetic surfaces, islands and chaotic regions is reproduced. 

\Ne tb r fore proceed to th d velopment of a new linear symplectic integration method. 

Thi has be n motivat d by th ob ervation that most of the symplectic methods existing 

11 

." in the literature are intended for quite special Hamiltonian systems and are therefore not 

useful in our case. The ideas underlining lts const.ruction are explain d, and stability and 

accuracy analyses are also presented. Finally w present the numerical l' suIts, showing that 

the third order Hamiltoninan is able to fully reproduce the r gular and chaotic regions of 

the toroidal helical field. The present study concludes that the IIamiltonian approach is 

feasible and that a sui table Hamiltonian integrated by a sympl dic method can b a cheap 

way to study with good accuracy the transition region between order and chao. 
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Chapter 1 

Introduction 

1.1 The Reasons of this Work 

The toroidal helical magnetic field possesses magnetic surfaces in the proximity of ,the 

magnet.ic axi , while in regions far from the magnetic axis such surfaces do not exist. The 

domain in which magn tic surfaces do not exist is called magnetic chaos domain, and 

betw 'n Lh magnetic axis and the magnetic chaos domain lies the outermost magnetic 

surface, whose position is an important information from the point of view of magnetic 

conftn ment. 

in e th di vergenc of the magn tic field is zero, the magnetic field lines system can 

be treated a a Hamiltonian system. For Hamiltonian syst ms the phase space structure 

is subdivided into chaotic and regular regions, and this subdivision has a correspondence 

3 
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4 CHAPTER 1. INTRODUCTION 

with the magnetic chaos domain and the magnetic surfaces domain discussed above. 

The existing research in thi field is based on numerical calculation about the tructure 

of the magnetic field, but in these methods numerical error are inherently present and 

this poses limitations on the accuracy by which the properties of the out.ermost magnetic 

surface are investigated. To enhance the accuracy it is n cessary t.o track many times 

the magnetic field lines around the torus, typically for 10 5 
"-J 106 l'('volutions, but there 

are indications that this procedure causes a shrink of th surfa e towards th magnetic 

axis and that the accumulat.ion of secular errors mak s the interpretation of th r suI ts 

problematic. A possible explanation of this fact is that the divergenc -free natur of 1,h -' 

magnetic field is not fully respected in thes num rical methods. In other word, many 

numerical calculations do not respect the intrinsic Hamiltonian natnr(' or the magnetic field 

lines system, in the sense that the numerical schemes utilized are not symplectic, while the 

flow of the magnetic field lines system is symplectic. With this background in mind, we 

think that in order to further advance this kind of research it is necessary to approach the 

problem from the point of view of Hamiltonian theory, in which the div rgenc -fr e property 

is rigorously respected. Besides, it is important to notice that for Hamil tonian syst ms it is 

possible to use symplectic int gration techniques to solve th equation of motion, techniques 

which are free from secular) or dissipative errors. Symplectic integration schemes have b n 

developed in the past few years and seem to be the best way to numerically investigate the 

I properties of Hamiltonian systems. 
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The research approaching the toroidal helical magnetic field problem from the Hamil­

tonian point of view ends with works done more than ten years ago (refs. [1], [2] and 

[3]), partly because of the strong push towards research on tokamaks. However, we have 

two good reasons to revive the Hamiltonian approach to the toroidal helical magnetic field 

problem: 

]). The Japanese Ministry of Education is pushing the research concerning the helical 

systems approach to magnetic confinement and the LHD (Large Helical Device) is in phase 

of construction. 

2). The last ten years have seen an impetuous development of chaos physics, and time 

is ripe for research about the chaotic properties of the toroidal helical magnetic field lines 

system. 

Recently T. IIatori and T. Watanabe (ref. [4]) have obtained an explicit form for the 

Booz r's magnetic coordinates in the first order toroidal correction to the cylindrical helical 

magn tic confignration. In this work a more systematic procedure (Lie perturbation ex­

pansion technique) is used to proceed to higher orders and a new linear symplectic method 

is onstructed and used to integrate numerically the equations of motion. 

----------

6 CHAPTER 1. fNTRODUCTION 

1.2 Overview 

The remaining part of this thesis is subdivided into fiv chapt rs and an appendix. 

In chapter 2 we first review those concepts from Hamiltonian mechanics which will be 

relevant to our work and describe the Hamiltonian nature of the magnetic field lines system. 

Then the concept of Lie transform is introduced and its utilization for a p rturbation th ory 

that is more efficient than the classical one is described. 

In chapter 3 we present th calculations that allow us 1,0 constru t a Hamiltonian for the' 

magnetic field lines system. Th Hamiltonian is obtained for Lh cylilldrical approximation 

of the field and for the toroidal case. 

In chapter 4 we will discuss in detail symplectic integration schemes and the development 

of a new linear symplectic integration scheme which will be used to solve the IIamilton's 

equations derived in chapter 3. 

In chapter 5 some numerical results and their discussion is presented. Of particular 

interest is that our Hamiltonian, yet of simple form, is abl to reproduce fully the regular 

and the chaotic region of the field. 

In chapter 6 the concluding remarks are given. 

In the appendix the coefficients that characterize our method are explicitly calculated. 
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1.2.1 Notation 

Vie have tried to avoid a rigorous, but heavy notation , in the the hope that the context 

will help the reader to decipher the notation. We do not use boldface character for vectors, 

so a symbol like P could indicate a single variable or the vector (PI,' .. ,Pn)' The Einstein 

summation convention is used extensively. When the indexes are Latin the sum is from 1, 

when the indexes are Greek the sum is from O. For the partial derivative both the symbols 

:x and ax are used. 

-- ------

.... 

8 CHAPTER 1. INTRODUCTION 
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2.2 Hamiltonian Mechanics 

In classical mechanics a syst m of particles is describ d by the NC'vvt.on equations 

(2.1 ) 

Chapter 2 where i = 1, ... , N and Pi is the total force acting on th ith point of mass m i . If con traint 

that limit the motion of the system are present (for xample the motion may be constrained 

to occur on some surface or curve), then the coordinates r}, . .. ,rN are not ind pend nt 

The Lie Transform 
of each other. However, if the constraints are holonomic, that is if they are expr ssibl by 

equations of the type 

j=l, ... ,I<, (2.2) 

2.1 Introduction 
then it is possible to change the coordinates from rIl"" rN to a new set of independent 

coordinates qI, ... , qn, with n = 3N - I{, which are called generalized coordinates. For 

conservative systems, that is for systems such that the forces are derivable from the gradient 

In (,his chapLer we will first reVlew those aspects of Hamiltonian mechanics which will of a potential function V(rl,"" rN), then a Lagrangian L( qIl .,. ,qn) = T - V, where T is 

b r 1 vant t.o our work. In particular the notion of canonical transformation and the the total kinetic energy of the system, can be constructed, 1 and the equations of motion 

sym} lectic nature of the flow of Hamiltonian systems will be described. Then the equation for the generalized coordinates are gi ven by 

for the magnetic field lines will be put into a form which is equivalent to Hamilton 's 

equation. In thfinal section the concept of Lie transform will be introduced. The Lie 
d 8 8 
--L--L=O. 
dt 8qj 8qj 

(2.3) 

transform can b us d a a basis for a perturbation theory which is more efficient and 1 vVe observe that a Lagrangian can be constructed also for the electromagnetic forces on moving charges , 

1 gant than the clas ical one. though in that case the forces are derivable from a velocity-dependent potential. 

9 
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Once a Lagrangian has been constructed for a given system, we can construct the Hamil-

Lonian fun ction II , defined as 

H(q,p, t) = L qiPi - L(q, q, t), (2.4) 

where P = PI"'" Pn ar called generalized momenta and are defined by Pi = 8~i L. 

By this procedure the n coordinates ql , "" qn are substituted by the 2n coordinates 

q}, ... , qn, Pl, ... ,Pn and the n, second order Lagrange equations by the 2n, first order 

II amilton equations 

. 8 H qi = -8 ' Pi 
. 8 H 

Pi = --8 . 
qi 

Th IIamilton equations can be derived also from the variational principle 

5 J dt(L-,Piqi - H(q,p, t)) = O. 

(2.5) 

(2.6) 

This variational principle will allow us to compare the equations for the magnetic field 

line now with the I1amilton equations and to identify the magnetic field line system as a 

Hamiltonian system. 

Sol ving analyLi ally the Hamilton equations is in general not possible except in very 

jJccial, t.hough v ry important , cases. Often it is useful, even if we want to proceed to 

a numeri al inL gration of eqs. (2.5), to make a transformation of variables in order to 

simplify th quaLion or in order to reveal some symmetry of the physical system. 

to Q = (Ql Q2, ... Q ), P = (PI P2 , ... ,PN) , it is desirable that the equations of motion 

12 CHAPTER 2. THE LIE TRANSFORM 

in the new variables Q, P be in the same form as (2.5), that is ther must exist a function 

K( Q, P, t) such that Qi = 8~J{ , Pi = - 8~i K, which is in general not true for arbitrary 

coordinate transformation. A transformation which preserves the form of Hamilton's qua-

tions is called a canonical transformation. V-le now state the onditions under which the 

tr ansformation 

(2.7) 

is canonical. If M is the Jacobian of th transformation (2.7) 

M = ( ;qQ ;q p), 
8 Q 8 P 

8p 8p 

and J the skew-symmetrical matrix 

(2.8) 

then a necessary and sufficient condition for the transformation (2.7) to be canonical is 

that the condition Mt J M = J is satisfied (ref. [5], pag. 391-397). This condition is called 

symplectic condition. 

While when changing coordinates it is often convenient to change coordinates by mans 

of a canonical transformation , this is not strictly necessary, for som systems are better 

understood using noncanonical variables. However canonical transformations manifest their 

importance when we consider the time evolution of the system. In fact , let us suppose that 

q = q( qo , Po , t) and p = p( qo , Po, t) are a solution of Hamilton 's equations. Then it can be 
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shown that the coordinate transformation (qo, Po) -t (q: p) is a canonical transformation, We conclude this section by putting the variational principl (2.6) in a form which will 

that is the symplectic condition Mt J M = J holds, where be useful later. Let us introduce in the phase space the new variables zi, i = 1, ... , 2n, with 

i = qi and zi+n = Pi, for i = 1, ... , n. We also d fin the quantities Ii = Pi, IHn = 0, 

i = 1, ... ,n. Then, with these notations, (2.6) becomes 

The time evolution of a Hamiltonian system satisfies therefore the sympledic condition, and 
(2.10) 

this fact has important practical consequences, as we will see when we discuss symplectic 

integration m thods. 
If we also set zO = t, 10 = -H, then 2.10 takes the very compact form 

An important property of Hamiltonian systems is the conservation of phase space volume, 

a fact known as Liouville th orem. Liouville theorem is easily proved: if we define a veloci ty 
(2.11) 

vector v = (q, p), then the di vergence of this vector is where the dot denotes the derivative with respect to time. Hamilton's equations are found 

by carrying out the variation in (2.11). Since the int grand of (2.11) is a scalar, if we 
\1. v 

change coordinates, 

(2.9) 
(2.12) 

t.hat is, if we consider the motion of the points of the phase space as composing a fluid, this 
then the new equations of motion are again obtained from (2.11). If the coordinate trans-

nuid i incomprcssi ble. Actually the conservation of phase space volume is a particular case 
formation is canonical, then the equations of motion in the new variables will be in Hamil-

of a more general th orem, which says that the flow of a Hamiltonian system preserves the 
tonian form. If the coordinate transformation is not canonical, the equations of motion 

diff l'ential form w = dpl 1\ dq l + ... + dpn 1\ dqn and the exterior powers w\ ... ,wn. 2 This 
obtained from (2.11) will not be in Hamiltonian form. Under the coordinate transformation 

thcorem i equivalent to the fad that th time evolution of a Hamiltonian system satisfies 
(2.12) the I-form lp,dzP, will become fp,dZP, and in general the compon nts fn+i' i = 1, ... ,n 

thc sympl di . condition. The Liouville theorem corresponds to the conservation of w n . 
will not be zero. However, if the transformation is canonical then we will have r n+i = 0, 

2H i al 0 ajd that the flmv of a Hamiltonian system is symplectic. 
i = 1, ... , n. This can also be taken as a definition of canonical transformation: a canonical 
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transformation is a transformation (2.12) such that r n+i = 0, i = 1, ... , n . which has to be compared with (2.10). We see that -A3 plays the role of the Hamiltonian 

Let us now see how the equations for the magnetic field lines flow can be put into for the magnetic field lines system and that Zl and z2 are canonical1y conjugate variables. 

Hamiltonian form. Writing the magnetic field as B = 'V 1\ A, then [or the magnetic field The variable Z3 is the analogous of time. The variational principl (2.14) can also be written 

lines we have the equations as 

dx 
('V 1\ A) 1\ dA = 0, (2.13) (2.19) 

where A is an arbi trary parameter. If now we consider the variational principle (ref. [11]) which has the same form as (2.11). The field line flow is then obtained by applying 

(2.14) 
Hamilton 's equations to - A3 . 

then from the calculus of variations we know that we must have 
The vector 1M will be called I-form (more precisely the 1-form i th quantity Ip.dz M). 

The addition of the derivative of an arbitrary function S to the] -form does not change th 
d 8g 8g _ 0 

dA 8Xk - 8Xk - , (2.15 ) equations of motion obtain d by carrying out the variation of (2.11), that is the l-forms 

where 9 = Ap.(x)dxM/dA and the dot denotes the derivative with respect to A. We thus IP, and IP, + 8p,S are equivalent. 

obtain 

(2.16) 

which is the sam as (2.13). We now perform a gauge transformation A~ = Ap. + 8p,S in 

order to eliminate one of the component of the vector potential, say the component A~. 

lhcn, we obtain (omitting the prime) 

(2.17) 

and introducing th new variable p = A1(z\Z2,z3) to replace Z2, we arrive at 

(2.18) 
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2.3 The Lie Transform 

In classical perturbation theory for Hamiltonian systems, in general a generating function 

F is used to perform a canonical transformation from the old variables q, p to the new 

vari abIes Q, P. This generating function depends on both the old and the new variables, 

and as a consequence the transformation itself and the relation between the old Hamiltonian 

II and the new one K appear in a mixed form. For example, if the generating function is 

of Lhe type F( q, P, l), then [or the coordinates we have the relations 

and for the IIamiltonians 

o 
Q(q, P, t) = opF, 

o 
p(q, P, t) = oq F, 

o 
K(Q, P, t) = H(q, p, t) + at F. 

(2.20) 

(2.21 ) 

\¥ s ~ that (2.20) is in a mixed form, while what we actually need are the relations 

Q(q, p, t) and P(q,p, t), and that (2.21) is a relation between the functions Hand I{ at 

corr sponding points in phase space. When (2.20) and (2.21) are used as the basis for 

a p rturbation analysis the result are very lengthy formulas even for very low orders. It 

would be prcf ra.ble to hav a formalism that yields directly the new variables in terms 

of th old one or vic -vel' a, and such that th relation between Hand I{ is a relation 

bet vve n fun tion . 

This formali m has been developed by researchers working in celestial mechanics ([6], 

[7], [] [9]), and ha b en pres nted in the review articles [10] and [11]. It is a formalism 

18 CHAPTER 2. THE LIE TRANSFORM 

based on the so called Lie transform, which is a sp cial kind of coordinate transformation. 

The perturbation theory based on the Lie transform has a number of advantages. It is 

canonically invariant and it is possible to give a direct expansion of any function of the old 

variables in terms of the new variables. We present in this section a brief account of th ' 

perturbation theory based on the Lie transform. 1 he great majority of the results are not 

derived, and the reader is referred especially to ref. [11] for a rigorous pres ntation of th 

theory. 

Let us consider the coordinate transformation 

(2.22) 

from the variables Zl, . .. ,zn, to the variables Z\ ... ,zn, wher c is a small pararn ,t '1' and 

Zr, Zf, ... are functions of n variables. W will use the compact notation 

(2.23) 

The transformation (2.23) is called a Lie transformation when the differential equation 

together with the initial condition ZI-i( z, 0) = zl-i, is satisfied by the functions ZI-i. The 

vector gl-i is called the generator of the Lie transform, and compiet ly charact rizes it. 

Let us now see how coordinates and scalars transform under a Lie transform. We first 

introduce the operator Lg which maps scalar functions into scalar functions according to 

(2.24) 
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Notice that this is a functional relationship, so the symbol for the independent variables is 

a dummy, and it could be z/1- or Z/1- or any other. It is then found that the old and the new 

coordinates are related by 

(2.25 ) 

while a scalar s( z) transforms in the opposite way, that is 

(2.26) 

W will be particularly interested in the transformation properties of the expansion, ac-

cording to a smallness parameter c:, of a I-form 

o 1 2 2 , =, + c:, + c:, +"', (2.27) 

which could represent, for instance, the magnetic vector potential or some other physical 

quantity. Th - uperscript in the ,'s indicate the order in L The I-form (2.27) is better 

treat d by a composition of individual Lie transforms, each of them characterized by its 

gen rator g/1-, In the following the lower index will represent the perturbative order, so 

that we will write g~ to indicate the generators of the nth Lie transform, of order c:n , and 

Ln will nmv indicat the operator such that, if (7 is an arbitrary I-form, then (Ln(7)v = 

g~(fjlt(7l1-fjv(7/1-)' 3 Jotice that the convention is the opposite for the I-form: for the I-form 

th superscript r presents the pcrturbative order. Our aim is to transform (2.27) into an 

3We have horten the notation by writing Ln instead of Lg", 
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expression of the form 

(2.28) 

r 2 l' obtained where r 1 is obtained by a Lie transform characterized by the generator 91 

by a Lie transform characterized by the generator 92 and so on. It is found that, and r 

are related by 

r = T, + dS, (2.29) 

where 

(2.30) 

with 

(2.31 ) 

and dS is a total differential which represents a gauge transformation or the l-form and 

therefore does not affect the equations of motion. Expanding in powers of c: we obtain 

(2.32) 

(1- c:L1 + ~E2Li + ... ), + dS. 

Collecting the terms and using also the expansions for, and r we obtain 

(2.33) 
S L 0 2 L 1 + 1 L2 0 d 2 - 2, +, - 1, 2 l' , 
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and so on. Here S represents a gauge function that will not alter the equations of motion. The general form of r is therefore 

The coordinate transformation associated with the transformation of the I-form is found 
(2.41) 

observing that the coordinat.e transform controvariantly, that is 

where Gn is a I-form calculated from , .. ,t and the r suIts of the preceding lower order 

(2.34) 
calculations. The generator is contained in the term Ln/D• The expressions of G1, G2 and 

where 

T - 1 - T-1r.-1r.-1 
- 1 2 3 "', (2.35) 

with (2.4 2) 

(2.36) 
It is possible to choose g~ = 0 to all orders, and this corresponds to th fad that usually we 

Again, expanding and collecting the terms, we obtain 
do not want to transform also the time when we change coordinat s. The 2N compon nts 

(2.37) g~ and the scalar Sn can be chosen as to bring the 2N + 1 compon nts of r n , where N is 

To simplify the notation it is convenient to introduce the tensor w, called Lagrange tensor, 
the number of degrees of freedom, into some desired form. We want a form in which on ly 

and defined by (~ is a I-form) the temporal component of r , which will be the <p-component in our case, is not zero, and 

(2.38) 
this can be done choosing 

so that w can write 
(2.43) 

(2.39) 
where J~j is the inverse of the spatial part of th Lagrange tensor. With this choice of the 

\\Then (J i one of the t rms of (2.27), then we will further simplify the notation by writing 
generators the temporal component of the I-form becomes 

w~v inst ad of w~:, so that, [or exan1ple (2.44) 

(2.40) where vt is the Poisson vector, defined as vd = J~jwgj' Voo = l. We stress that with the 
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choice (2.43) of the generators, the temporal component of the 1- form is the only one 

which survives after the transformation. 
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3.2 Magnetic Potential 

The general scalar potential satisfying the condi tion \72\]"1 0, regular at ~ 0, and 

allowing for an axial current is (refs. [12], [13]) 

+00 
\[J = Jcp + (1- ~COS7])1/2 L Qlm Ulm (e) ei l'1+im 'P, 

I,m=-oo 
Chapter 3 (3.1 ) 

where 

(3.2) 

Magnetic Field Lines Hamiltonian The coordinates ~, 7] and cp are toroidal coordinat s, in terms of whiclt Lh) arLesian 

coordinates are z = ~sin1]/(l- ~COS7]), x = (1- e)1/2coscp/(1 - ~COSTl), and y = (L -

e)1/2 sincp/(1- ~COS7]). Units are selected such that J = 1. Th co fficienLs Qlm are 

3. 1 Intro d uction arbitrary provided that Qlm = Q~(lm)' The [unction Q~ is the modified Legendre function 

of second kind. From the potential \[J the component for the vector potenti al for the 

divergence-free and curl-free magnetic field are obtained as explained in ref. [13] and the 

In t.his chapter we discuss Hamiltonian formulations for the magnetic field lines system. We vector potential can be written as 

Ilr t u 'e a gaug transforn1ation to eliminate the component 'Ij; of the vector potential and 

A = (2: QlmA~m, A~ + L QlmA~;\ 2: QIOA~), 
I ,m I,m I 

(3.3) 
then expa.nd t.be non vanishing components in Taylor series. Then we apply perturbation 

theory based on the Lie transform to transform syst matically to canonical variables . In where 

section 3..1 we how the procedure rather in detail for the cylindrical limit approximation of 1 - ~ cos 7] _ 1 - e cos 7] 
A~=(1/2)[(1-cosTl)-lln( 1 - ~ )+(1-COS7]) Iln( l+~ )], (3.4) 

the field. In ction 3.5 \'I'e d rive a Hamiltonian correct until the third perturbative order 

for the toroi dal h Ii cal ca and in the following section we discuss a different Hamiltonian. (3 .. 5 ) 

25 
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'/, 

Aim = e(1- e)8c(1 - eCOS7'l)1/2Ui (t)e i1'7+imcp 
'7 m(l - ecos 17) <, '/ m ~ , 

(3.6) 

A~ = - foe dx[x(l- XCOS7])t 1U/O(x)8'7(l- XCOs7])1/2e ii7J . (3.7) 

We select the ha.rmonics (I,m) and (/,0), that is we will consider the potential 

(3.8) 

where E = aim, E' = a/O. Now, in order to apply the Lie transform, we consider the I-form 

wh re S' is a ga.uge function. Exploiting the gauge freedom, we choose the gauge function 

in order to make the ~ component of the I-form to vanish, that is we choose the gauge 

fundion to be 

(3.10) 

and ther for the I-form becomes 

(3.11) 

\1\1 now introduce the new variable 0 = 7] + (m/l)cp, where l is the poloidal multipolarity 

and m is the number of field periods, so that we obtain 

[A~ + EA~m - t J de8'7A~mJdO 
+[E'A~ - (m/I)(A~ + EA;)m) 

-E J d~(8cpA~m - (m/l)8'7A~m)]dcp. (3.12) 
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The I-form is of the type i = iodO + 'Ycpdcp, wh r 

(3.13) 

and 

1'1' E'A~ - (m/I)(A~ + EA~m) - E J d~(8cpA~m - (m/I)87JA~n) 

= t'A~ - (m/l)'Yo - t J d~acpA~m. (3.14 ) 

In the next section we will expand the I-form in Taylor s ries in Lh variable ~ . 

3.3 Taylor Expansion of the Potential 

To apply the Lie transformation we need to have the I-form written as an expansion of the 

type (2.27). We will consider E, E' and ~ as smallness parameters of the same order, and 

we will expand the I-form in the variable ~ about the point e = O. W proce d first to the 

expansion of the quantities U1m(O. The functions Ulm(O admit the integral repr s ntation 

(ref. [13]) 

(3.15) 

Expanding (1 - e)-m/2 and (1 + e cos t)m-l-l/2) we can put (3.15) in the form 

(3.16) 
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where the normalization constants 131m have been incorporated into the constant quantities 

U~m' Uim' .... From now on we will set l = 2. For the other terms we obtain 

A2m = (2i/m)U~mee2if) + 1] 

(i/2m )cos 7]U~m(3e2if) + 

(i/m)(2Uim 2 - U~m)~4e2if) + "', 
(3.17) 

A2m e - (2/m)U~mee2if) + 

(l /2m )Ufm (2cos 7] - sin 7] )ee2i f) + ... , 

A20 = -iUfoee2i
1]-r.p 

(1/6)U~o(sin7] + 2icOS7])ee2i I7 + .... 

The quanLiLi lm are constant, and Lhe only values that we will need are Ufo = 1/2, 

Ufm = (m2)/ , Uio = 0, Ulm = 0 and Uia = 35/96. Putting all the terms together, 

introducing Lb n w variable 1jJ = (1/2)e and taking the real part of the various terms in 
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(3.17) we obtain, up to the third order, the following expansion for If) 

and for Ir.p 

,~ = 

I~ = 

I; = 

I~ = 1j;, 

IJ = (1 /3)(21j; )3/2 cos( (mrp) /2 - 0), 

I~ = (1/5)y21j;5/2(7 cos((mrp)/2 - 0) + cos((3m<p)/2 - 30)+ 

(1/(4m))c1j;2 (35 U~m - 48 Uim) sin(20), 

-(m1j;)/2, 

-(1/3)y2m1j;3/2 cos((m<p)/2 - 0)-

2 c'1jJ U~o sin(m <p - 20) + 2 c 1j; U~m sin(20), 

-(3/4)rn1jJ2 - (1/4)m1jJ2 cos(m <p - 20)-

(3.18) 

(3y2)-lc1jJ3/2U~m sin((mrp)/2 - 30) - (3y2)-lc'1jJ3/2Ufo sin((3m<p)/2 - 30)­

(1/ V2) c'1jJ3/2U~O sin( (mrp )/2 - 0) + (1/ V2)c1jJ3/2U~m sin( (m<p )/2 + 0), 

I~ -(I/(5y!2))m1jJ5/2 cos((3m<p)/2 - 30) - ((7m)/(5V2))1jJ5/2 cos((m<p)/2 - 0)+ 

(3/8) ell} U~m sin( m <p) - (3/8) c'1jJ2 U~a sin( m <p - 20)-

2 c'1j;2 Uia sin(m <p - 20) - 4 c 1jJ2 Ufm sin(2 0) + 8 c 1jJ2 Uim sin(20). 

(3.19) 
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3.4 Cylindrical Limit Approximation 

In this section we apply the Lie transform technique to the cylindrical limit approximation 

of the magnetic field, which is the approximation that neglects the toroidicity of the field. 

The field becomes therefore a straight helical field. The calculabons will be carried out 

in great detail in order to illustrate with a simple example the use of the Lie transform. 

l h calculation scheme described below will be used, unchanged, when we will take into 

i1.ccount also the toroidicity of the field. In the case of the cylindrical limit approximation 

we have 

e AT -
'11-2"' (3.20) 

(3.21 ) 

(3.22) 

(3.23) 

'I'll ft( mO are Lhe modi ned Bessel functions, that is solutions of the equation 

(3 .24) 

and they admi L Lhe s ries expansion 

ft(m~) ( !?!.£. 2 k== ( T )2k 

2 ) L:k=O k!f(k+l+l) 
(3.25) 

t2(j(O) + t2j2 + t412 + 
~ I ~ (I) ~ (I) •.• , 

- ~ ---
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and, for I = 2, we have for the first two terms 

1(0) = ~(m)2 
2 2! 2 ' 

For the cylindrical limit case it is convenient to u e the formula 

[A~ + tA~m - t J d~8!]A~m]dO 
+[t'A~ - (m/l)(A~ + tA~m) 

-t J d~(8t,OA~m - (m/1)8!]Akm)]dcp, 

(3.26) 

(3.27) 

(3.28) 

and observe that 8t,OA~m - (m/ l)8'11At = O. Then, expanding th quanLit,jes A~, A~m, A~m 

in Taylor series about the point ~ = 0 , taking the real parts and introducing the variables 

'I/J = (1/2)~2 and () = 7] + (m/l)c.p, we obLain 

I~ = 1jJ, I~ = -(m/2)'I/J, 

I~ = c1jJ(m2/4) sin(2()), (3.29) 

From the expansion above we see that the lowest order part of the vector potential is 

(3.30) 

This expression is already in canonical form, () and cp play the role of canonical conjugate 

variables and the unperturbed Hamiltonian is H = (m/2)1jJ. Actually it was the introduc-

tion of the variable 'I/J = (l/2)e that put the lowest order potential in canonical form. The 

_ L _~ • L _ _ ___.. ... _.......-
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lowest order of the vector potential, and the corresponding Hamiltonian H = (m/2)'lj; will The Lagrange tensor is thcrefore the 3-dimensional matrix 

bc considered the unperturbed part of the potential. o o m/2 

We now recall, for convenience, the formulas for the generators of the Lie transform and o o - 1 

for thc temporal part of the transformed I-form. We have (see eqs. (2.43) and (2.44)) 
- m/2 1 0 

(3.31 ) and its spatial part is 

(3.32) (~ ~l 1 
whcre J~j is thc inverse of the spatial part of the Lagrange tensor and vt is the Poisson from which we obtain its inverse, the matrix J~j 

v cLor, defmcd as vd = J~jwgj' Va° = 1. In our calculations we have three variables: !.p, 

o and 'cPo Th variable!.p corresponds to the time, and therefore the temporal part of the 

I-form is tbe one corr sponding to !.p. Let us now see how eqs. (3.31) and (3 .32) appear in 
The Poisson vedor is now obtained from the formula vd = J~jwgj ' Accordingly 

our case . First we notc that the zeroth component of the transformed I-form is equal to 

th unperturb d one, that is 1 71/.1 - 0 Yo - , v,6 - m/2 0-, (3.37) 

r O = 'lj;dB - (m/2) 'lj; d!.p. (3.33) 
and we remind the reader that by definition Vact' = 1. Using these results, from eq. (3.31) 

VVe use this expr ssion to calculate the Lagrange tensor wo, the inverse of its spatial part we obtain 

J~j and th Poi sson vector vt. For the Lagrange tensor we obtain (3.38) 

(3 .34) (3.39) 

(3.35 ) 
and g'!t = 0 for every n. The expression (3.32) for r~ is given by 

o a 0 a 0_ 1 w01/.l = 0,,,,, - 1/.116 - - • (3.36) (3.40) 

- - -- -~-- --
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and substituting the Poisson vector, we obtain 

(3.41 ) 

VVe see that, for every order n, the basic formulas (3.38), (3.39) and (3.41) suggest two 

possible strategies: 

1) first we choose the g nerators. Then (3.38) and (3.39) give us the equations by which 

we determine the gauge function S. Substituting in (3.41) we obtain the transformed 

L-form. 

2) first we choose the gauge function S, then from (3.38), (3.39) and (3.41) we obtain 

th generators and the transformed l-form. 

The two strategies are completely equivalent, and using one or the other is a matter of 

choice. We will proceed according to 2), because choosing first the gauge function allows 

on to specify more directly the form of the transformed I-form. A typical choice would 

he to choose 5n such that the equation 

(3.42) 

wh re the brackets denote average, is satisfied. This corresponds to taking rn as the average 

of entp + (m/2)CnB over the sam variabl s as (3.42). 

Finally we tr ss that (3.3 ), (3.39) and (3.41) are derived under the requirement that 

only th t 111poral part of r that is rtp is not zero after the Lie transformation of coordi-

nates. 
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We now proceed to the calculation of the first. order contribution to ro. We start by 

taking r~ as the average over () of the quantity VtC1~ = ,~ + (m/2),J, which vanishes, 

smce 

(3.43) 

We have now to calculate the first order gauge function and the first order Lie generators, 

which will be necessary in order to calculate the second order component of the transformed 

I-form. To calculate the first order gauge function, we have to solve the equation 

A solution of this equation is a gauge function which does not depend on 'P, that is 

51 = (1/4)t'l/;cos20. 

The generators are obtained from eqs. (3.38) and (3.39) which explicitly read 

gf = -81/151 = -(1/4)tmcos 20, 

gt = 8eS1 + ,J = -(1/2)tm~sin 2(). 

( .44) 

(3A5) 

(3.46) 

(3.4 7) 

At the first order we see therefore that there is no contribution to the unperturbed Hamil­

tonian. Let us proceed to the second order calculations. From (3.41) w obtain 

(3.48) 

and therefore we now have to evaluate the 0 and 'P components of the quanti ty 

(3.49) 
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We have 

(3.55) 

(3.50) 

(3.56) 

Substituting these relations into (3.52) and (3.53) we obtain 

(3.57) 

= g1/1 a "VI + (Ja 1 
1 1/1 I c.p gl (Jlc.p 

(3.51 ) 
(3.58) 

Beside, we have 
Using these results we obtain 

(3.59) 

(3.52) 

(3 .60) 

(3.53) Averaging over e the quantity 

and ther [ore w hav to calculate first the components of the operator L1/°. We obtain 
(3.61 ) 

we obtain the second order contribution to the transformed I-form 

(3.54) (3.62) 

- ------

_~~~........_.L ....... _.:L_ L __ ~"' ... ""._ 
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Accordingly, the expression of the transformed I-form up to the second order is 

(3.63) 

Tn this expression the magnetic potential is expressed in canonical form, with 'ljJ and () 

playing the role of action angle variables. The Hamiltonian up to the second order is 

(3.64) 

The equations of the magnetic field lines flow are obtained directly from the above expres-

sion. This re ult is consistent with the result obtained in ref. [2]. 

-
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3.5 Helical Toroidal Potential 

We now proceed to the calculation of the transformed I-form in the toroidal ca ,along the 

same line followed for the cylindrical limit approximatlon. The starting pOlnt is again the 

expansion of the magnetic potential, which we r port for conv niencc until the first order 

(3.65) 

it (l/3)(2'ljJ?/2 cos((mcp)/2 - ()) , 

-(m'ljJ)/2, 

i~ = -(1/3)V2m'ljJ3/2 cos((mcp)/2 - 0) - (3.66) 

2 t ' 'ljJ U~o sin(m cp - 20) + 2 t 'ljJ U~m sin(20). 

We note that the zeroth order term is equal to the zeroth order term of the cy lindrical limit 

approximation. The zeroth order in the expansion is the unperturbed part of the potential 

o m 
, = 'ljJ d8 - - 'ljJ dcp , 

2 
(3.67) 

and it is in canonical form, with 8 and 'ljJ playing th rol of action angle variables and -i~ 

playing the role of the Hamiltonian for the unperturbed syst m. We now proceed to t he 

calculations of the transformed I-form to the various perturbative orders. For the zeroth 

order we have that the I-form is left unchanged, that is 

r O = ,0 = 'ljJ d8 - (m/2)'ljJdcp. (3.68) 

_~_~"""~.>.L'''''''''''-....... ,.."".,.-........... ~~_ ~ _ ~ ~_ 
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\Ve also note that this is the same expression that we obtained in the cylindrical limit 

approximation , therefore the Lagrange tensor wO, the Poisson vector VIJo and the tensor J~j 

are the same as for the cylindrical limit approximation of the field, that is we have 

w~o = 0, w~1/J = m/2, w~1/J = -1, (3.69) 

and 

(3.70) 

This means that eqs. (3.41) , (3.38) and (3.39) are left unchanged, and therefore for the 

first order transformed I-form we have to calculate the expression 

(3.71 ) 

In the above equation we can choose the gauge function to be zero, so that the expression 

[or r ~ becomes 

r~ = ,~ + (m/2),~, (3.72) 

and, using th T'aylor expansion for, we obtain 

r~ = -21f;c'Ugo sin(mcp - 2B) + EU~m sin(2B) . (3.73) 

l·or the fir t order generators we have 

(3.74) 

(3 .75) 

-
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Since Sl = 0 and C11/J = 0 \ive obtain 

gf = 0, (3.76) 

(3.77) 

The equation for the second order contribution is 

(3.78) 

which becomes, after substituting the values of the Poisson vector 

(3.79) 

For the second order we need therefore to evaluate the quantity C2 = ,2 - L 1,1 + (l/2)Li,o. 

The calculations of the explicit expression of the operators L's are straightforward but the 

algebra is quite lengthy, so we give only the results 

_(21/ 2/3)7jJ3/2 cos(m/2cp - B) X 

(2 1/ 2m1f;1/2 cos( m/2cp - B) + 4tU~o sin( mcp - 20) -

4t'Ugm sin(20)), (3.80) 

(3.81 ) 

~.~~.~-~~~- - - ~., ..... --~ 
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(1/2)( Li'/) <p = - (2/3)m'lj} cos( (m/2)r.p - fJ)2, (3.82) 

(4/3)m1j} cos( (m/2)r.p - fJ)2. (3 .83) 

The equation for r~ is 

(3.84) 

and, choosing again the second order gauge function to vanish, we obtain 

(3.85) 

For th second order g nerators we obtain from eq. (2.43) 

(3 .86) 

(3.87) 

Since "2 = 0 and C2,p = 0 we obtain 

g~ = 0, (3.88) 
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(3.89) 

To proceed to the calculations of the third order we have to calculate now the quantity 

(3.90) 

Calculating the above expression and choosing again the gauge [unction to vanish, we find 

for r 3 the following expression 

2E'lj;2Uim sin(2fJ). 

Up to the third order the Hamiltonian is given by 

JI = - r <p = - r~ - r~ - r~ - r!. 

For convenience we collect below the various contributions. 

JIo = 
m'lj; 

2 ' 

2 E' 'Ij; ugo sin( m r.p - 2 fJ) - 2 E'Ij; ugm sin(2 fJ), 

E 'Ij;~ U~m sin(¥ - 30) 

J2 
E' 'Ij;~ ugo sin(~ - 3 fJ) 

Vi 

(3.91 ) 

(3.92) 

(3.93) 

(3.94) 

(3.9,5) 
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3.6 Integrable Model 

In this section we discuss a dilTerent Hamiltonian for the toroidal helical magnetic field. We 

observe that the perturbation theory based on the Lie transform allows a certain freedom of 

choice in selecting the transformed variables. In fact it can be noticed from eq. (3.41) that 

choosing a different gauge function would lead to different Hamiltonians. However there 

is no contradiction in this fact, since the different Hamiltonians are expressed in terms of 

differenL variables. In the same sense, when we perform a canonical transformation we 

are free to s I ct arbitrarily the generating function, 1 leading to different Hamiltonians 

expressed in tern1S of different canonical variables. For the same physical system, depending 

on th choice of the canonical variables, we can have completely different Hamiltonians, 

one being tim -dependent and one being time-independent, or one being the energy of the 

syst m and one being not, and so on. 2. All these different Hamiltonians describe the same 

pbysical syst m. 

Let 11S consider now eq. (3.41) for n = 1 and let us choose the gauge function such that 

the quation 

(3.97) 

ITh choice of the gauge function is, however, subject LO the restriction that it must be bounded in the 

variabl <po 

2 For a nice di cu Ion ee [5], sec. 8.2. 
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is satisfied. We then obtain 

and, consequently, introducing the variable 7] = () - (m/2)<p, we obtain 

r~ = 2c'U~o1j;sin 27]. 

For the first order generators we obtain 

() 0 2t 0 
91 = -U2m -cos 2 , 

m 

cP _ 0 4c1j; . 3/2 cos 7] 
91 - -U2m --;:;:;-Slll 20 + (21j;) 3' 

(3.98) 

(3.99) 

(3.100) 

(3.10 I) 

For the second order we need therefore Lo evaluate Lhe quantity C2 = ,2 - fJl, 1 + (1 /2)Li,o. 

After some lengthy algebra we arrive at the result 3 

(3.102) 

Therefore, up to the second order, we have the following expression for the Hami Itonian 

- H = r cP = r~ + r~ + r~, (3.103) 

that is 

If 

(3.101) 

3We develop these calculations in ref. [14]. 
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It can be seen that this Hamiltonian is time-independent, and therefore is integrable and 

cannot exhibit chaotic behavior. For another discussion on this problem, see ref. [1 5], pag. 

130 

3.7 Conclusion 

'vVe have derived in this chapter an expression for the Hamiltonian for the toroidal helical 

n1agnctic field li nes system up to the second perturbative order for the cylindrical limit 

approximation of the field and up to t he third perturbative order in the toroidal case. 

Going to higher orders will be a straightforward application of the same procedure used in 

thi s work, and t he only difficulty to be expected is algebraic complication. The particu­

lar lIarnil tonian we have deri ved is not the only possible choice, since we can manipulate 

the Lie transformation in order to get different Hamiltonians, and we have discussed this 

point in section 3.6 , where a different Hamiltonian has been given up to the second order. 

Di fferent expressions for the Hamiltonian could be of interest when analyzing particular 

problems, or [or Lh appli cation of symplectic integration schemes to the solution of Hamil­

Lon' equations. 
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Chapter 4 

Symplectic Integration 

4.1 Introduction 

Ilamiltonian systems possess in general many invariant, or conserved, quantities, which, 

depending on the particular system under consideration, may be the energy, the angular 

momentum and so on. Another invariant which is common to all Hamiltonian system 

i the phase space volume, which is a consequence of the conservation of differential form 

w = dpll\. dql + ... + dpn I\. dqn and the exterior powers w 2 , ••• ,wn by the flow of Hamiltonian 

systems. Notice that th conservation of w prevents Hamiltonian systems from exhibit ing 

di ipativc dynamics. 

Since only very seldom it i po sible to find an analytical solution for the Hamilton 

quations, (h - u of numerical methods to integrate the equations of motion is common, 

49 
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and it is natural to look for numerical methods that guarantee that apart from round­

off errors, the conserved quantities of a giv n Hamiltonian syst mare conservcd also in 

the numerical integration process. Sincc the differential form w is an invariant for all 

Hamiltonian systems, in the recent years much attention has b n given to numerical 

schemes that conserve w (see refs. [16], [17], [18], [19], [20], [21], [22]). These num rical 

schemes are usually called symplectic schemes, b caus the cons rvation of w is quivalclIt 

to the request that the transformation (qn, Pn) -4 (qn+l, Pn+l) b tw en two uccessive tirne­

steps is canonical (canonical transformations are also called symplectic transformations). 

It should be noted here that for non integrabl Hamiltonian systems it i. not possible 

to have symplectic algorithms that conserve also th energy. In fact, if II is conserved by 

the numerical flow and if the original system has no other indep nclent int.egrals then for a 

symplectic algorithm the approximate and real flows are the same up to a r parametrization 

of t ime, and we would thus have solved the equations of motion (ref. [23]). 1 

However, even if the energy is not conserved by the sympl ctic method, there is no 

secular error in the energy, that is the error on the energy do s not increase steadily wi th 

time, but is bounded, as a consequence of the fact that symplectic numerical schemes are 

by themselves Hamiltonian systems. 

The symplectic integration of Hamiltonian systems is by now an established technique, 

IThis remark does not apply to linear Hamiltonian systems and to one-degree of freedom, Lime-

independent Hamiltonians, which are integrable. For these systems it is Lherefore possible to have sym­

plectic algorithms that conserve also the energy. 

...... -......o...-..oo.....~~ .... ______ ~ _~_ ~ ... ~~L....- , .. 
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however many symplectic schemes are applicable only when the Hamiltonian is separable in a Runge-Kutta form. Another characteristic of our cherne is that it i ymplectic with 

(that is of the form H(p~ q) = T(p) + V(q)), or are not of very high order, and often a respect to linear Hamiltonian systems. This is discussed in section 1.6. h coefficients 

discussion of the numerical stability properLies of the method lacks (a comparison of the that characterize our methods are given in the Appendix. 

accuracies of some symplectic integrators can be found in ref. [30]). While some merits 

of symplectic integration schemes are clearly demonstrated (refs. [16], [17], [20]) in a 4.2 Symplectic Methods 
constant tep-size environment, it is still not clear if it will be possible to keep the benefits 

of symplccticity in a variable step-size environment (ref. [22]). With this background in 
Consider the Hamiltonian system 

dqi oH 
dt - OPi' 

i = 1,2, ... , N. (4.1 ) mind, we think that it is useful to look for new numerical methods applicable to Hamiltonian 

systems, as well as to ordinary differential equations. 
We know that when we transform the coordinates from q = (q], q2, ... ,qn), P = (PJ, P2, "·,Pn) 

]n tllis chapt r we will describe a new numerical scheme (ref. [24]) for the solution of 

ini tial value problems for ordinary differential equations. This work represents an attempt ical if and only if the condition Mt J M = J is atisfi d. Here M is the' Jacobian of the 

to modify, and possibly to improve, an algorithm developed by T. Watanabe et al. (refs. transformation and J is the matrix that has been defined in eq. (2.8). Also, we discuss d in 

[25], [26]), call'd HID MAS, with an eye towards applications in the field of Hamiltonian section 2.2 that, if q = q(qo, Po, t), P = p(qo,Po, t) is a solution of Hamilton's equations, then 

syst m. The result of our efforts is a new numerical scheme of very high order and in the coordinate transformation (qo,Po) ~ (q,p) is a canonical transformation, and therefore 

possess of good stability properties. The principal difference with respect to HIDMAS is 
the symplectic condition J\1 t J M = J is satisfied. In this case the Jacobian is gi ven by 

that while in IllDMAS all the grid points are chosen in a way similar to a collocation Runge-

KuLta, in our schem we have a number of fixed grid points and other grid points chosen 

in analogy to HIDMAS. This results in a higher order of accuracy with less computational In numerical integration methods, the coordinates after an integration step are given by a 

eiTort. \~1 will de crib practically our algorithm until the order 14, and we will show that mapping Wh in phase space that effects the transition (Pn+b qn+l) = Wh(Pn, qn)' Thus the 

it i A-stable until th ord r 12. In section 4.5 we show how it is possible to put the scheme method is canonlcal if and only if the Jacobian of the above transformation is such that 

-

~.--~--~ ~""'""'-~-""""-~'-'--' • u_-<t. 
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the symplectic condition holds, that is it must be We see that at each time step the value of the energy i multiplied by the factor (1 + h2
), 

that is the system has been artificially excited by th num rical n1cthod. This kind of 
(4.2) 

error, increasing steadily with time, is called a secular lTor. The use of a higher order, 

where we have introduced the notation z = (q, p). When we are dealing with the numerical non symplectic method, like the classical fourth order Rung -Kutta, docs not make things 

integration of Hamilton's equations, the use of non symplectic numerical methods may much better. It is in fact found in that case that (ref. [31)) 

have a number of undesired consequences. Let us consider a simple example. For the 
(4.7) 

one-dirnensional harmonic oscillator with Hamiltonian II = (1/2)(p2 + q2) we know the 

analytic solution and we also know that the energy is conserved. Suppose now that we so that we have an artificial damping of the system. Th artificial damping is of much more 

want to integrate numerically the equation of motion for q and p and let us use the Euler small amplitude than the artificial excitation provok d by the uler method is, but after 

method (non sympledic), which for a system of differential equations of the type many integration steps its effects will become evident anyway. For symp lccLi chemes in 

a 
8x Y = F(y), 

general the energy is not conserved, but there is no s cular incr as in th error. This is 

(4.3) 
because a symplectic scheme is a Hamiltonian system itself, and therefore the muneri al 

makes usc of the mapping trajectory must lie on a surface of constant HN, where HN is the numerical Hamiltonian. 

yl = Y + hF(y). ( 4.4) 

4.3 The Difference Scheme 
Then, w find that an application of the Euler method to the harmonic oscillator problem 

gi yes, aft r on time step of length h To illustrate the difference scheme of our method, let us suppose that the equation to 

be integrated is of the form yl(X) = F(x, y(x)). Then, first the integration time step 

ql = q + hp, pI = P - hq, (4.5) 

is subdivided into n subintervals of equal length by placing in the interval the points 

and th I' for we have 0, h, 2h, ... , nh . The number of unknowns is therefore 2(n + 1), since we consider unknowns 

(4.6) the quantities Yo, ylo, y}, yll, ... , yIn. We have one initial condition (th value of yo) and 

--- ---

~--'--.-~---
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n+ 1 equations ylo = F(yo), ... , yIn = F(Yn), and therefore we need n more relations to close 

our scheme. To obtain the n relations we need to choose n points slh, ... , snh, each for every 
(4.13) 

sub-interval, and we write the equations yl(slh) = F(y(sth)), ... ,yl(Snh) = F(y(snh)). Vve 

now write the quantities y(slh), yl(Slh), ... , yl(snh) as 

n 

y( sh) = L [Cj(s)y(j h) + hdj(s)yl(jh)] , 
j=O 

(4 .8) 
1 = 0 .. , 2n + 1 

(4.9) where 8 is the Kronecker symbol, since we need 2(2n + 2) equations in order to determine 

The coeffici nts obey the relations 
all the coefficients in eqs. (4.10) and (4.11). This yields y( h) as an approximation of order 

O(h2n+2) to the true solution and yl(sh) as an approximation of order o(h2n+l). To make 

the approximation of y( sh) to be of the same order of tbe approximation of yl( sh) , we 

We now determine the coefficients by expansion of the right hand side of the preceding add one more equation for yl( sh), precisely the equation obtained letting I = 2n + 2 in eq. 

equations about the point sh, and then by equating the coefficients of the derivatives of y. (4.13) 

The Taylor expansion yi lds 

( 4.10) 

Since the coefficients dj ( s) and h( s) have already been determined (as functions of s ) frorn 

eqs. (4.12) and (4.13), eq. (4.14) is an equation of degree 2n + 1 in th variable s. The 

(4.11 ) 2n + 1 solutions are all real, and of these n + 1 correspond to the points s = 0,1, ... , n , since 

h coefficients hould be therefore det rmined by the relations 
in these points eq. (4.14) is automatically satisfied. The remaining n solutions correspond 

to points which lie in the n sub-intervals, as can be seen from Fig. 4.1. These n solutions 

( 4.12) 
give us n sets of coefficients, which characterize the method for the given order n. 
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4.3.1 Implementation where 

Once the coefficients have been obtained, we have to solve simultaneously the following 
n [1 1 1 8y(sh) = ~ Cj(s) (2n + 2)! (j - s)2n+2 + dj ( ) (2n + l)!(j - s)2n+l , 

system of equati.ons 

n 

Ii = 2:: [CikYk + hdikF(Xk) Yk)] , ( 4.15) 
k=O 

are problem independent coefficients. Plots for n=1,2,3,4,5,6 of 8y( h) and 8Yf(sh) are 

F( ih, Y:) = t [*9ikYk + fikF( Xb Yk)] , 
k=O 

shown in Fig. 4.2 and Fig. 4.3. 
( 4.16) 

with i = 1, .. . ,n, and the notation Y(Sih) = li is used. That is, after substitution of 

eq. (4 .1 5) into eq. (4.16) , we have to solve simultaneously a system of n equations from 4.4 Accuracy and Stability of the Method 

\vhi ch we get the n values Yb ... , Yn' As discussed in section 4.3 the order of the solution is 
To test the accuracy and the stability of the method we have appli d it to tb solution of 

O(h2n+2), and this is true for every value Yl , ... , Yn, in contrast with Runge-Kutta methods 
the test equation 

like the Gauss-Legendre method or the Lobatto methods, for which the intermediate values 
yf(X) = -AY(X), y(O) = 1, A E C, ( 4.17) 

ar of lower order wi th respect to the final value Yn' A more detailed comparison between 

t. bese methods and our method is presented in section 4.4. for the cases n = 1,2,3,4,5,6. Though eq. (4.17) is very simple, its us as a mod 1 

to predict the stability behavior of numerical methods for general nonlinear systems is 

4.3.2 Truncation Error very widespread. The exact solution of (4.17) is y(x) = exp(-Re(Ax)), and its module is 

Th expre sions for the truncation errors of y , yf are 
given by 1 y( x) 1= exp(-Re(Ax)) . The module of the exact solution is not increasing if 

R e( AX) 2: 0, therefore it is natural to require tbat a numerical method, when applied to 

(4.17), gives 

1 Yn+l 1:::;1 Yn I, ( 4.18) 
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if Re(),h) 2: o. By definition the region of absolute stability of the method is the region 

for which 1 y 1 < 1. If this region comprises the half-plane Re( h),) > 0, then the method is 

said to be A-stable (see ref. [32], pag. 374-378). 

Vole give below the expression for yl( x) in the case n = 5. The length of the step in this 

case is 5h. The solution yl( x) can be written as 

where 

A(),) 

A(),) 
y(5h) = A(-)')' 

9979200 - 24948000 h ), + 29862000 h 2 ), 2 - 22680000 h3 ),3 

+12199320 h4),4 - 4904550 h 5 ),5 + 1512075 h6 ),6 

The Taylor expansion of y(5h) - exp( -5h),) yields 

v"hich di ffers from th expansion of exp( - 5h),) to the order o( h 13). The accuracy is of the 

sam ord r also for the intermediate values of y. The discretization for n = 5 is of order 

O(h12) , but in this case when Vile solve for y the accuracy is raised by one. So, with respect to 

th t t equation, for a given n our method is accurate up to o(h2n+3 ), and we say that the 

met.hod ha order 2n + 2. Since for a given n we have to solve n simultaneous equations, 

as explain d in section 4.3.1, we can compare our method with Runge-Kutta schemes 

which r quire the simultan 01.1 solution of the same number of equations. Restricting 
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ourselves to the Gauss-Legendre and the Lobatto methods, it is known (ref. [33]) that 

the n-stages Gauss-Legendre and the (n + l )-stages LobatLo methods both require the 

simultaneous solution of n equations and have order of accuracy 2n. ThC'refore, for the 

same computational effort , our method provides a higher ord r than the aforernentioned 

methods. Besides, for our method the order is the same also for all th inLcrmeJiate values, 

in contrast to the Gauss-Legendre and LobaLto methods for which th order drops in the 

intermediate stages. 

We note that when), is pure imaginary, then I A~~l) 1= 1. This is reOect d also in 

Fig. 4.4, where we plotted the contours of y as a function of the complex argument )"'h 

corresponding to the values 1 y 1 = 0.5,1 , 1.5. In the figure the line corresponding to 

1 y 1= 1 is the straight line which corresponds to a pure imaginary )'h. It can b en that 

the method is A-stable for n = 1,2,3,4,5, while the A-stabili ty property is lost for n = 6. 

This is a consequence of the fact that the zeros of the denominator of the solution cross the 

axis Re(h),) = 0 for n = 6 (see Fig. 4.5). Investigation about the A-stability property for 

n > 6 has not been done, but Fjg. 4.5 suggests that the A-stability property may be lost 

for n > 6. This contrasts with Gauss-Legendre and Lobatto methods, which are A-stable 

for every order (ref. [33]). 

-.-~~-
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5 4.5 Runge-Kutta Formulation 

It is possible to put our method in the form of an implicit Runge-Kutta scheme, and this 

is particularly useful because in doing so we will be abl to u e many of the t.heoretical 

4 results concerning the class of Runge-Kutta type integration methods. Let us consider a 
CD 

~ 

CD 
system of D differential equations 

<D dy 
dt = F(y, L), ( 4.19) 

3 
cD CD 

where y = (Yl, ... ,YD) are the unknown functions and F = (F" ... ,FD). ~or an -stage 

Runge-Kutta method the time-stepping from tn t.o t n+1 is given by 
(!) 

CD 

<D 

2 ( 4.20) 

(i) 

CD 
(!) with i = 1, .. . , s. The vectors Zk are called internal st.ages, and t.he (s + 1) x s r al constants 

CD 
1 

bk , aik are the coefficients that completely characterize the method. Once the coefficients 
<r> <D 

of a Runge-Kutta method are given, many theoretical results concerning the stahility, 
<D 

(!) 

<D 
CD 

accuracy and other properties of the method are available (see for examp1e ref. [33]). Of 

particular interest for us are results concerning the symplectic properties of the method. 

4 -3 -2 -1 o 1 It has been shown in refs. [27], [29] and [28], that if the coefficients satisfy th relation 

(4.21 ) 

Figure 4.5: Distribution of the zeros of the denominator of A('\)/ A( -.\), solution of the then the method is symplectic. 

test equation yf = -.\y, for n=1, ... ,6. Inside the circles the corresponding n is indicated. 

The vertical axis is Re('\h) the horizontal axis is Im('\h). The zeros are symmetrical with 

respect to the horizontal axis. 
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Let us now show how our method can be put in a Runge-Kutta form. V,/e start by writing 

eqs. (4.15) and (4.16) in the form 

( 4.22) 

( 4.23) 

with the convention that we have to sum from 1 to n if two indexes are equal. The 

summation is frorn 1 to n if the indexes are Latin and from 0 to n if the indexes are Greeks. 

ow, if the matrix gik is invertible, multiplying eq. (4.23) by g;/ we obtain 

that is 

Sub tituting in eq. (4.22), we obtain 

~m;v, j r in eqs. (4.15) and (4.J 6) we consider the function Y = 1, we can derive the relations 

gjilgiO = - 1, CiQ - Cikg;;/glO = 1, j = 1, ... ,n, so that we obtain 
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Now, remembering that Yz = F(xo + slh,}/) y~ = F(xo + {Lh, Y~) and defining the quanti -

ties Va = Yo, Vi = Yi, i = 1, ... , n, we obtain 

Vj = Yo + h(g;/(F(xa + slh, Yi) - fl~F(xo + {Lh, \/~))), 

We obtain therefore the following Runge-Kutta scheme 

Va = Yo· 

Comparing with (4.20) we see that our scheme can also be consid red as a 2n + 1 stages 

Runge-Kutta process, with a step-length nh, and coefficients given by 

b -1 
n i+n = gni , 

-1 
nai,j+n = gij , 

with i,j = 1, ... ,n, {L = O, ... ,n and aOi = 0 for i = O, ... ,2n. For n=1 and n=2 the 

coefficients are given below. In the last row of the matrices are the coefficients bi. It is 
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interesting to note that for n = 1, a permutation of the rows and columns shows that our 4.6 Linear Symplectic Methods 

method is equivalent to a Runge-KuLLa of the Lobatto III-A type with 3 stages. 
In this section we show that our method is indeed a linear sympl ctic method. By linear 

o o 0 symplectic methods we intend integration methods which are symplectic only for the class 

1/6 1/6 2/3 
of Hamiltonians of the form H = zTRz, where z = (q1)'" qn,Pll ... ,Pn) and R is a 

5/24 -1/24 1/3 
2n X 2n square matrix. In the case of two degrees of freedom thi expression r duc s to 

1/6 1/6 2/3 
H = ap2 + f3q2 + ,qp. The one-dimensional harmonic oscillator is a member of this class. 

Let us now proceed to study the linear symplectic properties of our method. The system 

of equations that we have to solve is 

0 0 0 0 0 
n 

31 2 1 3 (8+5V31 3 (8-5V31 

480 15 480 160 160 

Yi = ~ [CikYk + hdikF(Xk, Yk)] , 
k=O 

(4.24) 

.l. 4 1 3 3 
15 15 15 10 10 

81±2 v3 2~9-7v32 -9±2v3 l§.:tfl 3 ~ 2-v31 

1080 135 1080 120 40 (4.25) 

81-2 v3 2 ~ 9+7 V31 -{ 9+2V31 3 ~2+V31 18-0 
1080 135 1080 40 120 

and, when applied to the Hamilton equations, we obtain 
.l. .i.. .1.. .l.. .l.. 
15 15 15 10 10 

n 

ow, jf VI'e apply the condiLion 4.21, we see that our method cannot be proven to be 
iii = L [Cikqk + hdikG( qk, Pk)] , 

k=O 

( 4.26) 

s mplectic. In fact, for n = 1 we obtain 

( 4.27) 
-1/36 o 1/36 

o 1/36 -1/36 
n 

1/36 -1/36 o Pi = L [CikPk + hdikF( qk, Pk)] , ( 4.28) 
k=O 
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obtaining 

( 4.29) ( 4.36) 

where we have used the notation p = F(q,p), q = G(q,p) and qi, qi, Pi, Pi correspond to 

Yi, Yi. Differentiating we obtain ( 4.37) 

for i = 1, ... , n. Now, for a symplectic method we must have that the relation dqn 1\ dPn = 

( 4.30) dqo 1\ dpo is satisfied, that is it must be 

(4.31) 
(4.3 ) 

The coefficients a~l' a~2' a~2' a~l depend on the coeffici nts Cik, dib 9ik, fik' and on the deri va-

( 4.32) 
. of of of of oe Be Be Be d h ] . (38)' . C d f h d tlves ~, ~, ~ , ~,~,~,~, ~ an t e reatlOn 4. IS not satlsllC or our mel 0 . 

vqk VPk vqk VPk vqk VPk vqk VPk 

However, for a linear Hamiltonian all these derivatives are constants, and using a computer 

algebra program we have verified that (4.38) is satisfied for n = 1,2,3 and 4. We can 

( 4.33) 
therefore conclude that the integration scheme is linearly symplectic for these values of n, 

TOW, we havc and we conjecture that it is a linear symplectic schem also for higher values of n. 

(4.34) 

( 4.35) 4.7 Conclusion 

and therefore, substi tuting these relations into (4.30) rv (4.33), and then substituting (4.30) We have presented in this chapter a new numerical scheme of very high order, suitable [or 

into (4..31) and (4 .32) into (4..33) we obtain a linear system of 2n equations in the 2n + 2 the solution of ini tial values problems for ordinary differ ntial equations. 1 he method is A-

stable until the order twelve, and this, together with considerations about the distribution of 
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the truncation error, suggests that maybe the orders between eight and twelve are the best 

choice for many problems. The method has also proven to be symplectic with respect to 

linear Hamiltonians, a characteristic that could be useful even when nonl1near Hamiltonian 

systems are integrated. Numerical experiments on the symplectic properties of the method 

and its application to a magnetic field flow problem will be presented in the next chapter. 

In the Appendix the coefficients until the order fourteen are explicitly and exactly given . 
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Chapter 5 

Numerical Results 

5.1 Introduction 

Tn this chapter we apply our method to the solution of the Hamilton equations obtained 

[or the magnebc field lines system. The numerical results described in this chapter are 

obt.ained using th coefficients corresponding to n = 4, which give a method of order 10. 

These coefficients are given xplicitly in the Appendix. The method is then implemented 

in a program ,·vritten in RATFOR (ref. [34]). The step length h is held fixed, h = 

2.4'" x I 0- 2 and for every time-step the program proceeds using the Newton-Raphson 

method Lo solve Lh system of equations given by (4.15) and (4.16). For a Hamiltonian 

sy ten1 of n degrees of fr dom this implies that the Newton-Raphson routine must solve 

a sy tern of 4 x 2n equations at every tim -step. VYe tested the algorithm on the two-
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body Kepler motion problem on the vibrating beam Hamiltonian (ref. [16]) and on the 

two-resonances Hamiltonian H = p2/2 + 27rc( cos(27rq) + cos(27r( q - t))). In the case of 

the Kepler problem no secular error on the energy and the angular momentum has been 

observed. In the case of the vibrating beams Hamiltonian no secular error on the nergy 

has appeared. 

5.2 Toroidal Hamiltonian 

In this section we present the numerical results concerning th Lhird order Bami Itonian 

derived in section 3.5. At the first and second order th Hamiltonian do not reproduc 

in a satisfactory manner the chaotic behavior of the toroidal helical magncLi.c field, so we 

describe here the third order results. The Hamiltonian contains two smallness parameters, c 

and E', connected respectively to the inverse aspect ratio and to the intensity of the vertical 

field, which we can vary in each calculation. For a given choice of E and E', we present the 

Poincare section taken at <p = 0, that is we plot the intersection points of the magnetic IIeld 

lines with the plane X Z. The equations for the magnetic field lines are obtained applying 

Hamilton's equations 

. 8 
f) = 8<p H, 

. 8 
7j; = --Ii, 

8cp 

to the third order Hamiltonian derived in section 3.5. The points are plotted at intervals 

in <p of length (27r )/5 because of the periodicity of the Hamiltonian. This results in 5 times 
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less computer tlme for the same amounts of plot points. 

For small values of E and E' the Poincare section does not show any sign of chaotic 

behavior. Typically there is formatlon of magnetic islands as the radial dist ance 'ljJ increases, 

but when 'Ij; reaches a certain critical value the orbits tend to escape abruptly instead of 

giving thc characteri stic random distri bution of the chaotic domain. Thi s can be seen in 

Fig. 5.1. The straight line on the right represents the chosen initial conditions. At a 

ccrtain criti cal ini tial condit ion the magnetic line does not wind around the torus forrrilng 

a magnetic surface, but escapes abruptly and is not even seen in the plot , except for a few 

scattered points . Tn Fig. 5.2 we can observe the same behavior. We plot here starting from 

groups of scvcn close initial conditions, that is for each initial value of 'Ij; we choose 7 close 

valucs of 0, so that each line in Fig. 5.2 corresponds in reality to 7 different lines. As t or 

(' or both are in creased, this b havior gradually changes and the formation of a stochastic 

layer begins to take place (Figs. 5.3 , 5.4 and 5.5). For E = 0.023 and E' = 0.1 the chaotic 

region appears clearly. In Fig. 5.6 a detail of the Poincare section is shown. The five 

t raighL lines on t he top right are the initial conditions. Also in this case we have orbits 

confmcd on magnetic surfaces and orbits that escape out of the plot when 'Ij; is big enough, 

but in b twe n ther are orbi ts that intersect the X Z plane in many random points before 

eventually e cape. In Fig. 5. 7 we plot only three orbits. While one orbit originates an 

island structurc, the oth r two wander around quite randomly. In Figs. 5.8 and 5.9 two 

examples of th rot at ional transform t are presented. The horizontal axis corresponds to 
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'Ij; . The quite scattered points after '!jJ f'V 0.1 are due to the fact that the magnetic field 

line escapes after a few revolutions. The power law decrease of t agrees quite nicely with 

the t heoretical prediction of ref. [35]. W can conclude that the third order Hamiltonian 

derived in section 3.5 reproduces reasonably well the behavior of Lh field lines system and 

that it can be used as a basis for more detailed numerical investigations. 
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Chapter 6 

Concluding Remarks 

The two main results of this thesis are the derivation of a Hamiltonian for the helical 

magnetic field in the vacuum and the construction of a new linear symplectic scheme 

suita.ble for its numerical integration. 

We have deriv d the Hamiltonian applying a perturbation theory based on the Lie trans­

form, a syst matic procedure to calculate the expansion to high orders. After obtaining 

a. lIamiltonian for the cylindrical limit approximation of the field, we have derived the 

Hamiltonian for the general toroidal case up to the third order. We have also derived an 

intcgrabl model for the same toroidal case. The existence of these two different Hamil­

tonians [or the same physical system is related with the choice of the variables when we 

apply th Lie perturbation t chnique, and probably also with the asymptotic character of 

the xpansion itself. Research on the relation between these two models is being currently 
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done, and we plan to study the convergence propertie of th xpansion scheme in the near 

future. Also, a renormalization approach which makes use of a more r alistic form for the 

unperturbed Hamiltonian and gives a better convergence is being currently investigated. 

We have then presented the construction of a llnear symplectic integration scheme. The 

scheme is of very high order, and has also good stability properties. Vie have hown that. 

it is A-stable until the order twelve. Contrarily to many existing symplectic method , 

our method is applicable to every Hamiltonian system 1 and not only to special classes o[ 

Hamiltonian systems. The choice to use a linear symplectic sch m' for th integration of a 

nonlinear system is ultimately judged by numerical experiments. Numerical t.ests on known 

models have been carried out and have confirmed its good performances. It application to 

the magnetic field lines problem has shown that the Hamiltonian we have derived is ahle 

to reproduce the regular and chaotic behavior of the field. 

IThe scheme is also applicable to differential equations in general. 



Appendix A 

Coefficients 

A.I Introduction 

In this appendix we giv the explicit form of the coefficients of the integration scheme 

for n = 1 ... ,6. While in th case n = 1 it is still possible to calculate the coefficients 

1 y hands, a n increas the algebra is still elementary but quite lengthy and it becomes 

useful , if not neces ary, to usc a computer algebra program to perform automatically the 

analytical calculations. We have used the program MATHEMATICA. In what follows , the 

case n = 1 is treat d in detail , wi th the purpose of illustration, while for the remaining 

cas's we giv only the r suIts. 
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A.2 The case n=I 

For n = 1 we obtain an integration scheme of th fourth order. Eqs. (4.12) and (4.13) now 

read 

(A.I) 

(A.2) 

where I = 0,1,2,3 . Solving these equations, for th new variable p = s + l/2, we obtain 

the coefficients 

co(p) = 1/2 - (3/2)p + 2p3, Cl(P) = 1/2 + (3/2)p - 2p3 = eo( - p) , 

do(p) = 1/8 - p/4 - p2/2 + p3, d] (p) = - 1/8 - p/4 + p2/2 + p3 = - do( -p), 

9o(P) = -3/2 + 6p2 , 

fo(p) = -1/4 - p + 3p2, 

91(P) = 3/2 - 6p2 = - 90( - p), 

f1(p) = -1/4 + p + 3p2 = fo( -p). 

Substituting the coefficients into eq. (4 .14) we obtain the equation 

p3 _ p/4 = 0, 

(A.3) 

(A.4) 

which has solutions p = -1/2,0,1/2. The solution p = ° gives us therefore the set of 

coefficients 

d1 =_1 
8' 

90 = -~, 91 =~ , fo = -i, fl = - i, 
which will be used to solve the differential equation. 

(A.5) 
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A.3 The cases n 2, 3, 4, 5, 6 
eo(p) = 5~~p, 

The results are obtained following the same procedure described for the case n = 1. We 

give below D(p), which is defined to be tbe right hand side of eq. (4.14), and the solutions 

of D(p) = 0 which lie in the sub-intervals, and the coefficients for n = 2, 3, 4, 5. The 
d( )-2.=£ o P - 18' 

variable p is defined as p = s - nj2. 
(A.7) 

A.3.1 n 2 
() ~ gl P = 3 ' 

D ( ) = (1 - p) p (1 + p) (-1 + 3 p2) 
P 360 ' (A.6) 

fo(p) = -~ +~ , h(p) = fo( -p), 

JI(p) = -~ . 

A.3.2 n == 3 

The coefficients are given below. Attention should be paid to the fact that the expressions D( ) = P (-3 + 2p) (-1 + 2p) (1 + 2p) (3 + 2p) (5 - 4p2) 
P 322560 ' 

(A.8) 

b low arc valid only for the particular values PI, P2 , and not for every p in the interval -1,1. 

This is a consequence of the fact that the full expressions of the coefficients are in general 

-v'5 
PI = -2-' P2 = 0, P3 = - Pl. 

quite long and we have chosen to use a simplified expression valid only for the solutions For the solution P2 we have 

PI P2· This is not a loss of generality, because the coefficients which characterize the 
eo(P2) = ~, Cl (P2) = ~, C2(P2) = ~, C3(P2) = ~, 

method ar the ones corresponding to the solutions PI, P2. SO, the first set of coefficients 
dO(P2) = 2

1
4' d1(P2) = -~, d2(P2) = ~, d3(P2) = - d4' 

is obtained substituting in the xpressions below PI for p, and the second substi tuting P2 (A.9) 

[or p. be same kind of remark applies also to the cases n = 3, 4, 5, 6, with the obvious 
() 185 go P2 = -216' gl(P2) = ~, g2(P2) = -~, ( ) 185 g3 P2 = 216' 

cliff renee that the numb r of roots incr as s. fo(P2) = - :2' Jl(P2) = -~, h(P2) = -~, h(P2)=-:2-
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For the solutions PI) P3 we have 

( )-1_£.E CD P - 4 27' C3(P) = CD( -p), 

C1(P) = t, C2(P) = C1(-P), 

do(p) = i4 - f6, d3 (p) = - do ( - p), 

d1(p) = -~ +~, d2(p) = -d1( -p), 

(A.10) 
9 (p) = -185+162p 

o 216' 93 (p) = -90 ( - P ), 

91 (p) = 5 -86 p , 92(P) = -91 (-p), 

Io(p) = -7i;6 P , h(p) = Io( -p), 

I] (p) = -3t2p , h(p) = I1( -p) . 

A.3.3 n == 4 

D( ) = (-2 + p)( -1 + p)p(l + p)(2 + p)( -4 + 15p2 - 5p4) 
P 1814400 ' 

(A.11) 

15+vT4s yhs-vT4s 
Pl = - 10 ,P2 - \jlo , 

( A.12) 

P3 = -P2, 

The numerical values are 

PI = - 1.64443· . " P2 = -0.543912· ... 

92 

The coefficients are 

A.3.4 n == 5 

eo(p) = -416+220p+2060p2_1105 p3 
21600 . 

c (p) = 404-560p-95 p2+260p3 
1 1350' 

( ) _ 44-Sp2 
C2 P - 100 ' 

d (p) = -8+4 p+50 p2 - 25 p3 
o 3600' 

d (p) = 52-52 p-55 p2 +55 p3 
1 450' 

d ( ) = P(44-5P2) 
2 P 100 ' 

9 (p) = 444-256p-1587 p2+9S2 p3 

o 4320' 

9 (p) = -276+448 p+159 p2 -208 p3 
1 270' 

f (p) = 36-20p-13Sp2+80p3 
JO 3600' 

I (p) = -48+100 p-60p2+5 p3 
1 450' 

f ( ) = -44+Sp2 
2 P 100' 

APPENDIX A. COEFFICIENTS 

(A.l:3) 

D(p) =P (-5+2p) (-3+2p) (-1 +2p) (1+2 p) (3+2p) (5+2p) x 

( - 259 + 280 p2 - 48 p4) / (122621409600) , 
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eo(p) = -306125+12887Op+282500p2_119096p3 
4374000 ' C5(P) = eo( - p), 

(A.l4) 

P3 = 0, 
C (p) = 12825-11354p-3348p2+3848p3 

1 34992 ' 

C (p) = 445-392p+68p2+176p3 
2 2187' 

The numerical values are 
d (p) = -2675+1070p+2540p2 -1016p3 

o 291600' d5(p) = - do( - p), 

d (p) = 2103-1402p-1212p2+808p3 
1 11664' 

PI = -2.16345·· " P2 = -1.0737···. 
d (p) = -83+166p-52p2+104p3 

2 1458 

(A.L6) 

9 (p) = 2602985-118875Op-2280308p2+1047000p3 
o 8748000 ' g5(P) = - go( - p) , 

The coefficients are, for the solution P3 

9 (p) = -88235+7695Op+25244 p2 -20088p3 
1 69984' 

() ,1<17 eo P3 = 262144' 
( ) _ 10625 

Cl P3 - 262144' 
() 1875 

C2 P3 = 4096' 9 (p) = 8015-8430p-I724p2+1464p3 
2 8748' 

( ) _ 1875 
C3 P3 - 4096' 

( ) _ 10625 
C4 P3 - 262]44' 

() 447 
C5 P3 = 262144' 

f (p) = 16385-7410p-14468p2+6600p3 
JO 583200' !s(p) = Jo(-p), 

dO(P3) = 13i~72' d ( ) - 1875 
1 P3 - 131072' 

d () 5625 
2 P3 = 32768' I (p) = 563+1494p-302Op2+936p3 

1 23328' 

d ( ) - 5625 
3 P3 - - 32768' 

d () 1875 
4 P3 = -131072' d5(P3) = - 13i~72' h(p) = fz( -p). 

(A .l5) 
() 483 

go P3 = - 655360' 
() 4375 

g1 P3 = - 131072' 
( ) _ 13125 

g2 P3 - - 8192 ' 

() 13125 
93 P3 = 8192' 

( ) _ 4375 
g4 P3 - 13]072' 

() 483 
Cq P3 = 655360' 

Io(P3) = - 65~36' 11 (P3) = - 6~;;6' f ( ) - 5625 
2 P3 - - 16384 ' 

f () 5625 
3 P3 = - 16384' 14 (P3) = - 6~;~6' I5(P3) = - 65;36' 
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A.3.5 n == 6 

D(p) = (-3+p) (-2+p) (-l+p)p (l+p) (2+p) (3+p) x 

(36 -147p2 + 70p4 -7 p6)/(43589145600), 

PI = -2.67804· ", P2 = -1.59578· ·· , P3 = - 0.530655·· " 

P6 = -Pl' 

The coefficienLs are 

( ) 
_ 27780-9660p-98987 p2+34349 p3+36743p4.- 12761 p5 

Co P - 5292000 ' ~(p) = C()( -p), 

( ) 
_ -415+245p+2366 p2_1393 p3_399p4.+252 p5 

Cl P - 12250 ' 

(A.17) 

d ( ) = 3(8-8p-7 p2+7 p3 ) 
2 p 196 
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g (p) = -96588+36036p+377661 p2-139831 p3 -134661 p4+50023 p5 
o 4536000 ' 

( ) 
_ 547-316p-2184p2+1336p3+309t-188p5 

g1 P - 3500 , 

( ) 
_ 2 p (-981+506 p2_53 p4) 

g3 p - 567 , 

.( ( ) = -2028+756p+7861 p2-2891 p3-2821 p4+1043p!> 
J 0 P 1058400 ' 

f ( ) = 4 (-159+77 p2_14 p4) 
3 p 1323' 

g6(P) = - go( - p), 

g5(P) = -gl(-P), 

(A.18) 
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