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“Education never ends, Watson.
It is a series of lessons with the greatest for the last.”

— SHERLOCK HOLMES
in “The Adventure of the Red Circle” by Sir Arthur Conan Doyle
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EXECUTIVE SUMMARY

This thesis encloses the achievements of research and development activities per-
formed in a span of about 30 months (2.5 years, from early 2009 to mid-2011) at Hi-
roshima University. The problems addressed in this thesis are not particularly connected
to each other, but the common theme surrounding them is the pursue of high-performing
algorithms assisted by the programmable graphics hardware (GPU), targeting real-time
frame rates whenever possible. The topics covered are distributed in two main categories,
photorealistic and non-photorealistic rendering.

Namely, raindrop rendering (natural phenomenon) and soft ambient-like shadow
generation (a subset of global illumination) were investigated in regard of photorealis-
tic rendering. Another subject, photomosaic synthesis, serves as an example of a non-
photorealistic rendering effect where numerical optimization techniques can substantially
help to improve the quality of the results without the need of immense image databases.
The implementation of one of these optimization algorithms, SoftAssign, was investigated
and mapped to the GPU, thus comprising an instance of general-purpose computations on
the GPU. Summed-Area Table generation is another example of general purpose compu-
tation investigated on the GPU, proving itself very useful for ambient shadow generation
as well as for tone mapping and mesopic vision (a peculiar perceptual effect) simulation.

The research accomplishments and original contributions of this theses are all sup-
ported by (and published in) international peer-reviewed publication vehicles such as jour-
nals, conference proceedings, conference posters, book chapters and magazines.

The introductory chapter of the thesis offers an historical review on the evolution
of the graphics hardware. This introductory chapter does not intimately relates to the
subsequent technical chapters of this document; however many of the hardware termi-
nology and features that are often referenced and used throughout the coming technical
sections are briefed within the introductory historical review. This introduction is pri-
marily intended for readers that are not accustomed with the past developments on GPU
technology. Nonetheless, the chapter also serves as as a gentle recapitulation on graphics
hardware the for the curious or experienced reader.



ABSTRACT

Recent advances on graphics hardware technology have been providing impressive
breakthroughs on real-time graphics. With an ever increasing level of programmability
and flexibility, the graphics hardware is being revised towards a more general-purpose
architecture (GPGPU); a number of rendering-unrelated tasks already benefit from its
performance and parallelism. Many problems, however, still exist on the ambit of real-
time rendering in regard to natural phenomena simulation, dynamic global illumination
and perceptual effects. The first contribution of this thesis is a technique for rendering
millions of spherical raindrops at real-time frame rates. Following that, a GPGPU imple-
mentation of SoftAssign is investigated and applied to optimize photomosaic synthesis, a
well-known non-photorealistic technique. This thesis also introduces a variant of the bal-
anced tree approach for prefix-sum and summed-area table (SAT) generation which leads
to improved performance, also implemented in a GPGPU fashion. Powered by this fast
SAT generation, other techniques were devised: a screen-space ambient occlusion tech-
nique which can be setup in three distinct modes (each trading quality with performance)
and a fast physiologically-based spatially-varying (per-pixel, local) mesopic vision filter
for tone mapping operators.

Keywords: Natural phenomena, rain rendering, photomosaic, SoftAssign, prefix-sum,
summed-area tables (SAT), high dynamic range (HDR), tone mapping, mesopic vision,
ambient occlusion.
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1 INTRODUCTION

Over the past two decades the impact of real-time 3D graphics has accentuated in
the personal computer market. From the early ray-casting real-time 3D engines running
entirely on low-end CPU to the advent of dedicated commodity 3D graphics hardware,
home computer users were exposed to a new immersive and interactive (and perhaps
addictive) experience at the comfort of their own homes, being this experience delivered
by means of digital entertainment media (e.g. games), asset/office toolkit (e.g. CAD and
drawing software) or even through new forms of information visualization. This trend has
grown largely more recently, with 3D human-machine interaction being a common task
on a daily basis: today, powerful 3D capabilities are embedded even into small devices
such as smart phones, navigation devices and portable video-game consoles.

The following Section of this Chapter offers an historical review on the evolution
of the graphics hardware, from the early days of 3D hardware technology for personal
computers up to the current state-of-the-art. This reviewing Section does not intimately
relates to the subsequent technical chapters of this document; however many of the hard-
ware terminology and features that are often referenced and used throughout the tech-
nical Chapters are briefed within this retrospective. The following Section is primarily
intended for readers that are not accustomed with the past developments on GPU tech-
nology. Nonetheless, the chapter also serves as as a gentle recapitulation on graphics
hardware the for the curious or experienced reader.

1.1 Retrospective of the Modern Graphics Hardware

The typical raster-based graphics pipeline has low granularity which in turn allows
many of its tasks to be performed in parallel over streams of data. This fact was exploited
by early dedicated 3D hardware manufacturer pioneers in the late 70’s and early 80’s. A
decade later hardware technology had evolved to a point that such dedicated hardware
could be reproduced at a relatively low cost and shipped to layman’s PC users. Up un-
til the turn of the year 2000, the dedicated graphics hardware was mainly concerned in
parallelizing demanding tasks of the graphics pipeline that involved geometric transforms
and pixel processing. This hardware could be configured in a number of ways, but the
shading tasks that it was capable were “cast-in-silicon” and could only be customized or
reprogrammed up to some very limited extent. his category of graphics hardware was to
become late referred to as as fixed-function pipeline or configurable pipeline..
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By the early 2001, graphics hardware manufacturers (NVIDIA in particular) gam-
bled on a new set of functionalities for their upcoming technology review: programmable
shading units. Although very simplistic and limited in early releases, this novel concept
gave to graphics software developers a powerful tool to experiment with new real-time ef-
fects in a number of creative ways. The flexibility and potential provided by such remark-
able hardware was soon widely adopted and spread: future hardware releases not only
kept this programmable subset but also offered ever-increasing functionality by eliminat-
ing previous programming limitations. Competition was also forced to embrace this new
paradigm for high-performance graphics if they were to keep their share on the graph-
ics hardware market. The term Graphics Processing Unit, or GPU, was soon coined by
NVIDIA to this new graphics hardware architecture, while ATI had suggested VPU (Vi-
sual Processing Unit). The former came to be more widely acknowledged and the term
VPU ended up fading out from the literature.

In order to understand how the transition from the fixed-function pipeline to pro-
grammable shading happened, it is worth investigating the transition between software-
based 3D graphics pipeline (all steps done in CPU) and dedicated fixed-function graphics
hardware. A typical raster-based graphics pipeline is described by the following steps:

• vertex transform: input “template” vertices in object space are transformed and
animated to a different pose in world space which are then transformed to camera
(view) space and, finally, transformed to a projective space (usually perspective
projection); per-vertex lighting is also performed during this stage given that normal
vectors were assigned to each vertex.

• primitive assembly: the transformed vertices are connected together by some im-
plicit topology which the pipeline must be priorly configured for (such as trian-
gles) and promoted to a normalized device coordinate space (this is the role of the
“division-by-w” in homogeneous 4D space).

• polygon visibility: each primitive is submitted to a culling stage which determines
if the polygon is entirely/partially visible or not (back-face culling also applies);
partially visible polygons are submitted to a clipping procedure that modifies their
topology to prevent further unnecessary processing.

• rasterization: each visible/clipped polygon is break into several fragments based
on their coverage, each mapping to a single pixel in the render-target (usually the
screen); per-vertex attributes (such as lighting, color, texture coordinates) are inter-
polated and assigned to each fragment as well.

• shading: each fragment is assigned a color based on interpolated per-vertex at-
tributes and other implicitly bound resources (such as textures); each fragment is
also assigned a depth value; per-pixel lighting can also be computed at this stage.

• composition: given a fragment’s location, color and depth, the fragment is com-
bined with potential already composed pixels in the render target where operations
such as depth-test, alpha blending and stenciling are performed.

The input of the pipeline are essentially vertices with some attributes associated to
them, as well as texture resources and configured states (such as the primitive topology,
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blending factors, etc.). The output is a frame of pixels, the color buffer, which is then read
by the display device and presented on the screen (although the output could also be redi-
rected to some off-screen color buffer in memory). All stages can be busy independently
processing different parts of the mesh being rendered, each performing their own specific
tasks and forwarding the results to the next stage, allowing for a great level of parallelism.

The first generation of dedicated graphics hardware addressed the most costly oper-
ations of the pipeline: rasterization, shading and composition. A CPU program would
then transform the vertices, assign attributes and perform per-vertex lighting and then is-
sue them to the dedicated hardware. Since no actual 3D computation happened in the
dedicated chip, this generation of graphics hardware became known as 2D accelerators.
Inside the chip, performance could be increased just by replicating more rasterization,
shading and composition units as new hardware revisions were released.

As pixel throughput alleviated with the aid of 2D accelerators, applications could
now spent more time with elaborated vertex transformations and increasing the polygon
count of 3D meshes for additional detail. Soon these applications would be caught into a
new bottleneck, this time on vertex processing.

Hardware architects then incorporated the vertex transform stage to the graphics
hardware, and now all of the stages of the graphics pipeline lied within the same dedi-
cated chip. This generation then came to be the first “true” 3D accelerators. Once again
performance could be increased throughout the hardware by replicating more of each ded-
icated processing unit within the chip. Applications were finally free of time demanding
rendering tasks and could spent the extra CPU time on other tasks and preparing for the
next frame as the 3D accelerator was asynchronously rendering the current frame.

Even though only hardware aspects were considered so far, software plays an equally
important role. With 3D accelerators being produced by several distinct vendors with
different architectural philosophies, it would be tedious, impractical and discouraging for
a 3D graphics software developer to offer software compatibility with such a multiverse of
hardware. Graphics APIs such as OpenGL and Direct3D gave freedom to the developer
through an abstract layer to orchestrate the graphics hardware; an unified “language”
between developers and hardware peculiarities. Graphics hardware vendors were then
responsible for providing drivers that adhere to the requirements of a particular graphics
API and expose hardware features through a standard abstraction model.

Software developers were given a powerful framework to produce rich 3D applica-
tions, but the spectrum of graphical effects possible was limited to the feature set imple-
mented and supported by each individual hardware and the marketing strategy of each
respective vendor. As already mentioned, the subsequent programmable graphics hard-
ware gave this much wanted flexibility and power to the hands of creative graphics prac-
titioners. The level of programmability offered was slowly introduced as new hardware
revisions were released due to tight budget limitations and risk assessment connected to
hardware technology trends at the time of launch.

Hardware architects started by identifying the stages of the pipeline that could ben-
efit more from programmability, namely vertex transform and shading. The other stages
are relatively standard procedures in which a graphics software developer would refrain
of modifying due to the trade-off between the complexity involved, development time
constraints and justifiable benefits achieved. Typical effects reproduced in early pro-
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grammable GPUs are per-vertex displacement with noise, enhanced vertex skinning, im-
proved per-pixel lighting and post-effects such as motion blur and glow.

The first generation of programmable GPUs was very restrictive in the number of
instructions, video memory availability and flow control within each programmable unit.
These restrictions were alleviated in the subsequent generation, but vertex and fragment
shader remained distinct in the functionality each one could provide. A vertex shader,
for instance, was forbidden of accessing texture memory. As new generations were intro-
duced, these constraints were largely reduced, but vertex and fragment shading units were
still kept separated in the chip, with typically many more fragment units than vertex units;
fragment units were still more capable of accessing video memory, while vertex units had
better dynamic branching support. Such architectural arrangement was also impeding the
hardware to scale its performance between vertex-bound and pixel-bound applications.

An important feature that followed was the capability of fragment shaders to output
data to multiple render-targets (color-buffers) at the same time. This allowed efficient
implementation of sophisticated rendering techniques such as deferred shading. Textures
and render-targets storage capabilities also improved, enabling floating-point texel data to
be stored on them, which in turn reflected on more elaborated and efficient High Dynamic
Range (HDR) rendering support.

As these and many other features were progressively added at each following hard-
ware release, inter-compatibility between hardware vendors and software API was man-
aged by the specification of standardized Shading Models. These models assist developers
to safely plan, author and target different graphical effects based on the capabilities of-
fered by the graphics hardware currently installed on a client’s computer.

Programmable shading capabilities continued to evolve, and hardware architects de-
cided to adopt an unified model to internally organize and distribute the processing shad-
ing units. With this unified shading model, no longer was a vertex unit “handicapped” in
some aspects to a pixel shader unit or vice-versa: in fact, there was no more distinction
between them. The developer would still implement vertex programs and fragment pro-
grams separately, but he same processing and memory access functionality was available
equally for both programs. Moreover, the load balance between vertex and fragment pro-
cessing was managed entirely by the hardware, making it much more scalable while, at
the same time, more transparent to the developer.

An interesting change that came with unified shading was the use of scalar arithmetic
units instead of 4D SIMD-based vector arithmetic units. This way the hardware could
leverage the usage of each individual processor and no longer processing was wasted
when using a whole 4D SIMD unit to process 1D, 2D or 3D data. Developers were
now free of worrying with another hardware peculiarity. The unified shading model still
remains to date as the architectural choice for arranging the shading units in the chip.

Similarly to the case of graphics API, standardized ways of writing shader code and
targeting different hardwares and vendors was made necessary. In the early days of pro-
grammable GPUs one would be forced to write vendor-specific assembler code that not
only would differ amongst vendors, but would as well change between hardware releases
of the same vendor. This lead to a rapid development of shading languages right from
the infancy of programmable GPUs with the release of NVIDIA Cg and Microsoft HLSL
(High-Level Shading Language) which later culminated in the GLSL (OpenGL Shading
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Language). Such languages not only provided a common ground for developers to im-
plement shaders in a portable, multi-platform fashion, but also provided an indispensable
framework to produce highly-optimized machine code on-the-fly.

Programmability also increased with the addition of geometry shaders. For the first
time a programmer was given the freedom of processing entire primitives instead of only
streams of vertices. This way a particular topology could be either amplified, simplified
or completely removed. Geometry shading happens just after vertex shading but before
culling/clipping. Amplification could only be performed up to some limited extend, but
enough to allow for interesting level-of-detail effects to be computed on-the-fly; the geom-
etry around an object’s silhouette, for instance, could be refined to provide more circular
curves. Hair, fur, grass, rain and even entire particle engines could also be generated,
managed and animated more efficiently with the aid of geometry shaders.

Another improvement on the hardware side was the possibility of streaming-out pro-
cessed vertices (or entire primitives) directly to a memory buffer without the need of
rasterizing the polygons. Stream-out happens after either the vertex shading or geometry
shading stage. Before this feature was established, vertices fed to the pipeline would fol-
low all the way through the stages until appearing somewhere in the color buffer, since
rasterization was a must. This stream-out feature became known as transform feedback
and positively favored applications that required physically-based particle simulation, hi-
erarchical animation frame updates and isosurface extraction, to cite a few.

The latest programmability improvement introduced, tessellation, came to comple-
ment the limited amplification capabilities of geometry shaders. Developers were given
two extra programmable stages: the hull shader and the domain shader. The hull shader
operates on the control points of connected quadrilateral surface patches for effects like
skeletal animation. The transformed control points are then feed to a fixed-function tessel-
lation unit which will subdivide these patches into refined triangles based on a tessellation
factor. The newly tessellated vertices are then submitted to the domain shader which can
apply fine-controlled perturbations such as per-vertex displacement. The domain output
connects to the geometry shader which in turn connects to the rest of the pipeline.

This summarizes the evolution of the graphics hardware, as well as the main real-
time graphics software technology and standards, up to the current state-of-the-art. Most
of the evolution was aimed towards enhancing the flexibility and possibilities of the graph-
ics pipeline. However, there was another driving force also influencing on some of the
hardware development cycle decisions: the curiosity, affordability and prospects of using
the underlying graphics hardware infrastructure for solving general-purpose, rendering-
unrelated problems. When programmability first appeared in the GPU (and even before)
it did not take long for creative enthusiasts to experiment on mapping graphics-unrelated
tasks to the patterns of the graphics pipeline. These attempts caught the attention of hard-
ware manufacturers for future market share possibilities. This development paradigm
came to be later coined as General-Purpose GPU Programming, or GPGPU for short.

A typical GPGPU application would have to somehow speak the language of render-
ing: data would have to be encoded as textures, the output would be encoded as one or
more color-buffers, and at some point vertices would have to be emitted in order to trigger
the pipeline. As a simplistic example, imagine the multiplication of a matrix with some
scalar. The matrix would be uploaded to GPU memory as a 2D texture, the scalar would
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be uploaded as a shader constant (could also be a single-texel texture), and the target
color-buffer set to be of the same size and pixel format of the input matrix texture. The
fragment shader code would perform the multiplications by accessing one element of the
matrix (one texel) and multiplying its value with the scalar. In order to activate the frag-
ment shaders, the application would issue the rendering of a single planar quadrilateral
large enough to cover all the pixels of the render-target (processed by a very minimalist
vertex shader code). Once the quadrilateral is transformed, rasterization follows by gener-
ating the corresponding fragments and interpolated attributes, such as texture coordinates.
For each produced fragment, the fragment shader is invoked with the interpolated texture
coordinates serving as an address/index that uniquely identifies one element of the matrix
(one texel in the encoded texture). Once all fragments are processed and merged in the
render-target, the application could read-back the output color-buffer to CPU memory or
keep it in video memory for subsequent general-purpose operations.

This poses an interesting question: why would someone bother to walk through unin-
tuitive grounds to solve some generic problem using a dedicated hardware that was never
designed for it in the first place? The short answer should be easy to guess: performance.
Dedicated, task-specific hardware, such as a GPU, can be up to orders of magnitude faster
than a general purpose CPU (for that task). Besides, a GPU also offers parallel compu-
tational units that vastly supersede in numbers the amount of cores of typical CPU dice.
The long answer includes two other attractivenesses of GPU: availability and affordabil-
ity. Over the past decade GPUs become increasingly available even in low-end computers
due to the ever decreasing monetary costs of GPUs of previous generations.

These GPUs were also expected to stay idle most of the time on a typical daily-
basis computer user experience. Even though a regular user is unlikely to benefit from
some computationally demanding, complex, graphics-unrelated scientific simulation ap-
plication, his/her idle GPU could be used to accelerate more likely tasks on a daily-basis
such as video decompression and playback, network packet filtering, file compression and
encryption, data sorting, image and audio editing and processing, just to mention a few.

Another favorable, indirect factor for GPGPU was the fact the consumer-level CPUs
seem to have achieved a stall in terms of clock frequency over the past decade, with an
increasing effort to resolve more instructions per clock (superscalarity) and add more
cores to the same CPU die. It is a known fact that a GPU has much lower clock rates than
a CPU of the same period, but in contrast these GPUs have orders of magnitude more of
arithmetic cores than those CPUs. Moreover, the architectures differ substantially since
the problems that each attempt to solve are, at best, detached. Clock frequency alone,
therefore, can be misleading and is hardly used as a raw performance gauge nowadays,
even when confronting similar architectures. If one wants to compare the performance
heterogeneous architectures such as GPUs and CPUs, another metric1 provides a much
more reliable face-off: FLOPS, or floating point operations per second, which is widely
adopted by the hardware industry.

The chart presented in Figure 1.1 depicts the theoretical peak performance in GFLOPS
(Giga – 109 – FLOPS; billions of FLOPS) of Intel CPUs and NVIDIA GPUs over a period
of about 5 years. Although a bit out-dated for today’s standards, it is clear that GPUs have

1Transistor count is also an interesting measurement, but correlates more closely to the chip complexity,
die size and power consumption than to raw performance. As a matter of fact, GPU chips are currently
vastly superseding CPU chips in absolute transistor count.
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a radical ante in the FLOPS race. As of March 2011, the NVIDIA GTX 590 is anony-
mously being reported to peak at 2500 GFLOPS by Internet peers, while an Intel Core
i7 990X barely crosses the 100 GFLOPS barrier. The retail price is also more favorable
towards GPUs: U$699,00 for the GTX 590 against U$999,00 for the i7 990X.

The short conclusion is clear: GPUs crossed the Tera (1012) FLOPS, while CPUs still
crawl for a few hundreds of GLFOPS. The reality, however, deviates from these numbers.
In practice, CPUs achieve theoretical peaks much easier and stably than GPUs. The
tasks for which each was designed also vary dramatically. The floating point precision
inspected and compiled in the chart is single precision for GPUs and double precision
for CPUs. Regardless, single precision suffices for many tasks and the raw performance
of GPUs is just to advantageous to be left untapped; after all, letting the numbers alone
speak for themselves, 10x to 25x for less (price) is just too attractive to be ignored, not to
mention that GPU prices tend to lower faster than CPU prices over time.

Figure 1.1: Performance increase between NVIDIA GPU and Intel CPU architectures
over time. The retail price at launch time of latest hardware is shown in parenthesis.

Another question then arises: how come for GPUs to be retailed cheaper while hold-
ing more transistors and performing better than their CPU counterparts? The answer lies
again on the fact that GPUs and CPUs are designed to assist in solving farily distinct
problems. Even with the programmability and higher level of parallelism of GPUs, the
main goal is to support and accelerate rendering tasks, while CPUs take a much more
broad road to aid any task (even rendering) in a more equally performing, “democratic”
fashion. As a result, CPUs tend to spend a big portion of their transistors on additional
efficiency and flexibility for randomly accessed memory patterns, complex cache hierar-
chies to hide memory latency, and micro-level optimizations such as branching predic-
tion, speculative execution and loop/flow control. In contrast, GPUs do not need large
or sophisticated caches or efficient random-access memory support since data flowing in
the pipeline is mostly stream-based; in fact, reading/writing simultaneously from/to the
same video memory region is strictly forbidden or, at best, leads to undefined behavior.
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However, GPUs do need as many arithmetic units as they can possibly fit in the die; this
extreme parallelism in turn also helps on hiding memory and flow latencies by switching
the execution of pending units with non-pending ones, going back to the former when
data becomes readily available.

Even with performance and price advantages, GPUs still comprise dedicated hard-
ware for rendering. Anyone interested on GPGPU would need at least some moderate
familiarity and experience with real-time computer graphics and the rendering pipeline.
Along with the early experiments with GPGPU, computer scientists began researching,
designing and developing GPGPU languages that could abstract the details of the ren-
dering pipeline for unexperienced graphics developers. Two of these languages, Brooks
(Stanford University) and Sh (University of Waterloo), attracted the attention of many
researchers. These languages not only hid the pipeline, but also provided programming
functionalities through a more familiar C/C++ syntax than the existing shading languages.
Needless to say that these languages also caught the attention of the GPU industry and
vendors. This would soon culminate in vendor-specific GPGPU languages: NVIDIA
CUDA (Compute Unified Device Architecture) and AMD/ATI CTM (Close To Metal).

Important developments also happened to the underlying GPU architectures as these
vendor-specific languages were introduced. Unified shading and scalar processing units
are two of them, since on a GPGPU scenario having dissimilar processors with different
capabilities built upon vector-based arithmetic units would ultimately hurt scalability of
the hardware to solve more generic rendering-unrelated problems. These architectures
were also careful to include small, but fast on-chip memory blocks that could be shared
amongst groups of threads executing similar tasks, as well as much-wanted synchroniza-
tion directives, albeit in a very localized fashion.

Developers were once again given power, expressiveness and flexibility, but bound
to vendor-specific frameworks. The industry as a whole started defining programming
interfaces to unify this multitude of GPGPU-capable hardware under open, standard soft-
ware abstraction layers, which came to be realized in current technologies like Khronos’
OpenCL (Open Compute Language) and Microsoft’s DirectCompute and C++AMP. As
for vendor-specific languages, AMD/ATI decided to discontinue the development of CTM
and adopted OpenCL as their main GPGPU development platform. NVIDIA still prior-
itizes its proprietary CUDA technology where experimental features can be introduced
and managed in a much faster pace (not to mention the availability of numerous reliable
libraries and documentation produced over the years); other standard GPGPU platforms
like OpenCL are implemented by NVIDIA as wrappers around the CUDA framework
(similarly, GLSL is supported through a transparent layer around NVIDIA Cg).

A wide range of applications already benefit from GPGPU, most of them scientific or
engineering-related. That does not mean that all sorts of applications can significantly be
accelerated with GPGPU, which is a common misassumption taken for granted by novice
GPGPU practitioners. Writing optimal GPGPU code requires smart usage of on-chip
shared memory, caution with memory coalescence and memory bank access patterns,
clever dispatch and granularization of computing kernels, and careful management of
small, localized synchronization points while at the same time being consistent to the
larger context that encapsulates these execution (thread) groups.
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This overwhelming amount of low-level details may distract the implementation
from the central task being performed, which can imply in large development cycles and
unintuitive code that complicates further maintainability. In fact, efficient GPGPU pro-
gramming using dedicated GPGPU frameworks such as NVIDIA CUDA can be as chal-
lenging (sometimes perhaps more) as with traditional GPGPU over the rendering pipeline.
Interoperability between GPGPU APIs and rendering APIs (like OpenGL) is still not free
of overheads, although the gap between them has widely reduced over the past technolog-
ical advances. Some of the rendering functionality, such as texture filtering and caching,
mip-mapping, color blending, hardware interpolators and discrete derivatives can still be
invaluable useful on some generic tasks, yet these features were just recently exposed, up
to some extent, to more general GPGPU frameworks.

In conclusion, it can be seen that GPU architectures have radically evolved in a com-
paratively short period of time of a decade or so. The graphics hardware first appeared
as a parallel realization of a very specific task, the rendering pipeline, with little-to-none
level of customization. As programmability in GPU became mainstream, other graphics-
unrelated parallel problems started to be solved in the GPU, which matured in a hardware
that is becoming increasingly less specific. It is accurate to say that today’s state-of-the-
art GPU technology resembles much more a general-purpose parallel computing than a
dedicated rendering hardware. The graphics pipeline no longer sits at the core of the
hardware; instead the pipeline is implemented around the parallel computing capabilities
offered by the hardware.

As GPUs become more programmable and flexible, and as CPUs become more
multi-core, a clash between these technologies seems unavoidable. Current GPU archi-
tectures are expanding their capabilities towards double-precision floating-point compu-
tation, and video-memory continues to increase. In fact, some hardware like NVIDIA
Tesla are being marketed as an exclusive high-performing computing co-processor which
do not include video output. At the same time, CPU technology continues to increase the
amount of cores per die for increasing parallelism. Technologies such as Larrabee (Intel’s
prototype codename) and the Cell processor (Sony/Toshiba/IBM) are clear examples of
CPU architectures aiming vast levels of parallelism based on many simplified CPU cores,
similarly to how GPUs are architected.

Despite the expected upcoming technology collision, one has to keep in mind that the
main driving force behind GPUs is still rendering. The level of realism attained by tal-
ented developers on modern computer games is indeed impressive, but real-time computer
graphics still has many problems that require solutions. The ultimate goal of computer
graphics remains as the accurate (photorealistic) synthesis of real-world scenes, a task that
requires judicious observation and simulation of complex light-matter interaction. Nat-
ural phenomena simulation and dynamic global illumination and shadowing still impose
great challenge for accurate reproduction in real-time. Perceptual effects of the Human
Visual System are equally important and challenging because they comprise the interface
between the physical world and the perceived world.
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1.2 Thesis Contributions

The main, novel contributions of this thesis are listed below:

• A raindrop rendering technique that is capable of animating and rendering millions
of spherical raindrops in real-time with visual quality comparable to ray-tracing.
The technique accounts for Fresnel-based refraction and reflection. Multi-sampled
transparency is also efficiently handled around the edges of the raindrops for in-
creasing quality. Hardware mip-mapping is exploited in a non-orthodox way.

• The analysis of three optimization algorithms applied to photomosaic optimization:
a greedy-based search, Simulated Annealing and SoftAssign. These optimization
strategies largely reduce the amount of tiles required to build quality photomosaics,
specially when repetitions are prohibited. A GPGPU implementation of SoftAssign
is also investigated, leading to speed-ups of up to 60x when compared to optimized
CPU implementations.

• An improved version of the binary balanced tree pattern applied to perfix-sum and
summed-area table generation which allows the reduction and expansion of more
elements per pass (k-ary balanced tree). The technique only requires a slightly
more involved implementation which maps well to the GPU. This improved ver-
sion not only accelerates the traditional algorithm (optimal speed-up is hardware-
dependent), but also reduces the amount of intermediate memory necessary for
GPGPU implementations.

• A screen-space ambient occlusion technique based on summed-area tables. Despite
some practical limitations, the technique is faster that previous screen-space ambi-
ent occlusion techniques and eliminates the need for further palliative amends such
as low-pass filtering. The foundations of the proposed technique can be applied in
three different ways: minimalist, normal-guided and depth-refined. Each method
trades-off image quality with performance and memory consumption.

• A spatially-varying mesopic vision filter that can be applied together with any exist-
ing tone mapping operator, as long as the operator provides measurements of local
luminance. Chrominance alteration is computed in an orthogonal stage to lumi-
nance compression. The performance overhead introduced is practically negligible.
The devised mesopic model is simple yet effective since it based on psychophysical
experiments and supported by recent physiological evidence.
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1.3 Structure of the Thesis

The remaining of the text of this thesis is organized in self-contained Chapters: each
Chapter has its own abstract, introduction, background review, technique description, re-
sult analysis, conclusion, limitations and future work. At the end of each Chapter, a list
of publications based on the results of the corresponding research is presented. Some
Chapters may also contain appendices that appear following the list of publications. All
references cited throughout the Chapters are compiled together in an unified bibliographic
section at the very end of this document.

A total of four technical Chapters follow this introduction and are listed below:

• Chapter 2: Photorealistic Real-time Rendering of Spherical Raindrops with
Hierarchical Reflective and Refractive Maps (pages 29–49)

• Chapter 3: GPU-based SoftAssign for Maximizing Image Utilization in Pho-
tomosaics (pages 49–76)

• Chapter 4: Efficient Summed-Area Table and Prefix-Sum Generation on the
GPU (pages 76–121)

• Chapter 5: Screen-Space Ambient Occlusion Through Summed Area Tables
(pages 97–116)

The thesis also contains one appendix – this appendix appears disconnected from
the main technical chapters because the research and results presented on this appendix
Chapter were not published in open publication vehicles:

• Appendix A: Fast and Robust Spatially-Varying Mesopic Vision Simulation for
Tone Mapping Operators (pages 121–97)

There is also a general conclusion that summarizes the thesis in Chapter 6. A com-
plete, unified list of all of the published works related to the thesis is presented imme-
diately after the conclusion in Chapter 6, but before the bibliographic section. A list
of abbreviations and acronyms, figures and tables referenced throughout this thesis are
presented after the Table of Contents but before the Executive Summary.

Even though the technical Chapters are self-contained, with little-to-none cross-
referencing between them, and can be browsed in any order, it is recommended to read
Chapter 4: Efficient Summed-Area Table and Prefix-Sum Generation on the GPU
before proceeding to either Chapter A: Fast and Robust Spatially-Varying Mesopic
Vision Simulation for Tone Mapping Operators or Appendix 5: Screen-Space Am-
bient Occlusion Through Summed Area Tables, since summed-area tables are used as
a building-block for the spatially-varying mesopic filter and for the screen-space ambient
occlusion technique that follows.
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2 PHOTOREALISTIC REAL-TIME RENDERING OF SPHER-
ICAL RAINDROPS WITH HIERARCHICAL REFLECTIVE AND
REFRACTIVE MAPS

2.1 Abstract

Synthesizing rainy images is a common challenge found in film, game-engines, driv-
ing simulators and architectural design. Simulating light transport through a raindrop’s
optical properties is a view-dependent problem and large quantities of raindrops are re-
quired to produce a plausible rainy scene. Accurate methods for rendering raindrops exist
but are often off-line techniques which are cost prohibitive for real-time applications.
Most real-time solutions use textures to approximate the appearance of moving raindrops
as streaks. These approaches produce plausible results but do not address the problem of
temporal effects such as slow-motion or paused simulations. In such conditions, streak
based approximations are not suitable and proper raindrop geometry should be consid-
ered. This chapter describes a fast and practical approach for rendering raindrops in such
temporal conditions. The proposed technique consists of a preprocessing stage which
generates a raindrop mask and a run-time stage that renders raindrops as screen-aligned
billboards. The mask’s contents are adjusted based on the viewpoint, viewing direction,
and raindrop position. The proposed method renders millions of raindrops at real-time
rates in current graphics hardware, making it suitable for applications that require high
visual quality without compromising performance.
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2.2 Introduction

Realistic image synthesis is one of the most relevant subjects in computer graphics,
and rendering realistic rainy scenes remains a challenge. Rain is a common natural phe-
nomena and its simulation has been widely used by the film industry, graphics engines,
driving simulators and architectural design, to improve immersion and realism, or to set
mood. Common approaches to the problem, although accurate, usually have a computa-
tional cost that is prohibitive for real-time applications. Moreover, a plausible rainy scene
may have to hold large numbers of raindrops, introducing even more complexity to the
problem and significantly penalizing performance at the same time.

Determining a raindrop’s visual appearance is a view-dependent problem, and can
be divided in two parts: reflection and refraction. Reflection happens in the raindrop’s
front-facing surface (with respect to the viewer) and its overall influence on a drop’s vi-
sual appearance is given by the Fresnel equations. Similarly, refraction determined by
Snell’s Law also happens in the front-facing surface, but once a ray is refracted, it travels
inside the raindrop’s geometry and eventually leaves it from the back-facing surface, re-
fracting again. Both the reflected and the secondary refracted rays continue traveling in
the scene and may intersect objects, light sources or other raindrops, leading to a recur-
sive problem. This recursive characteristic makes this problem well suited for ray-tracing
methods [WHITTED (1980a)]; however, they are computationally expensive, thus ap-
proximations are required to allow real-time performance.

In addition to the optical properties of raindrops, a realistic reproduction of a rainy
scene requires extra simulation efforts regarding how the human visual system responds
to light arriving from a real raindrop. The retina in the human eye takes time for an
image to fade and thus high velocity raindrops are perceived as streaks [CHANGBO et al.
(2008)]. This perception phenomena is often referred to as retinal persistence and has
been exploited by many researchers in order to approximate the overall appearance of
rain in interactive applications [GARG; NAYAR (2006); STARIK; WERMAN (2002)].

Figure 2.1: Left) Closeup of a ray-traced raindrop. Center) Same raindrop rendered using
the texture-based approximation described in this paper. Right) A rainy scene rendered
using the proposed technique. Results were generated using high dynamic range environ-
ment maps together with tone-mapping. Left and center images are nearly identical but
the proposed technique can render one million raindrops at 1024x1024 screen resolution
at 140FPS on a GeForce GTX 280 (performance measurement includes animation and
tone-mapping).
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Retinal persistence allow applications to approximate raindrops as streaks while still
producing convincing images. Although these techniques are effective for raindrops mov-
ing at high speeds, they fail to reproduce all the specular details of droplets in stationary,
paused simulation or slow-motion scenarios, which are common in recent games and
films. Typical tasks include instant-replays, changing the rate of time, and raindrops on
the window of a car. In such situations rendering rain as streaks is unacceptable and
proper rendering of its specular details would require ray-tracing based approaches, pro-
hibiting their use in real-time. This paper does not deal with streak-based raindrops but
instead focuses on reproducing the optical characteristics considering geometry for large
quantities of raindrops at high frame rates.

The proposed technique addresses the problem of rendering raindrops by using screen-
aligned billboards. An hierarchical map containing both reflection and refraction data of
a single raindrop is generated in a preprocessing step. This hierarchy is used as a mip-
map texture during run-time but its contents are not rendered directly on the billboard.
Instead it is used as input data to estimate the reflected and refracted vectors of a raindrop
based on its relative position and orientation to the viewpoint. The transformed vectors of
the raindrop texture are then used to sample an environment map, determining the color
of each pixel by modulating the reflection and refraction contributions based on Fresnel
coefficients. Although previous research suggested that reflection does not contribute sig-
nificantly to the overall appearance of a raindrop due to the Fresnel effect [ROUSSEAU;
JOLIVET; GHAZANFARPOUR (2006)], we reinforce the observations of Garg and Na-
yar [GARG; NAYAR (2004a)] that when using high dynamic range environment maps, in
vogue in the computer graphics’ community, the contribution of reflection to a raindrop’s
appearance is significant, even after luminance compression (tone-mapping) and should
be preserved, as is apparent in Figure 2.2.

Figure 2.2: Raindrop comparison: Left) A raindrop rendered using low dynamic range
environment map. Center) Raindrop rendered using a high dynamic range environment
map. Right) Photographs of two real-world water droplets taken outside by using a water
dropper and a regular digital camera. Note that despite the crude equipment used the
droplets closely resemble spherical shapes. When using HDR lighting the results are
more similar to the real-world. Reflections in the upper portion of the raindrops which do
not exist in the LDR case are clearly visible.
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The proposed method handles millions of raindrops simulated and rendered at the
same time, while maintaining real-time performance with current graphics hardware. De-
spite our high frame rates the visual quality of the synthesized raindrops are nearly equiv-
alent to ray-traced raindrops, as shown in Figure 2.1, making it suitable for applications
that require high visual quality without compromising performance. This paper makes
the following contributions:

• Rendering of millions of raindrops in real-time, in current high-end consumer graph-
ics hardware, with visual quality comparable to ray-tracing;

• Uniformly accounts for refraction, reflection, and Fresnel, demonstrating that re-
flection is significant when using HDR illumination and should be preserved;

• Exploits simple and efficient features of graphics hardware, making this method
less intrusive and easy to integrate into existing graphics engines.

2.3 Related Work

Rendering raindrops has been a common research subject of recent years. A real-
time rendering solution for rainy scenes was proposed by Tatarchuk where raindrops are
rendered as rain streaks, using artist-driven procedural texture generation, which are dy-
namically updated and illuminated in an image processing step [TATARCHUK (2006)].
Wang et al. proposed a method which involves analyzing rain in videos and then extract-
ing textures to place in a new scene [WANG et al. (2006)]; the technique is primarily
concerned with rain streak quality. Recently Changbo et al. proposed a real-time solu-
tion which accounts for many of rain’s lighting side effects, such as fog and rainbows,
but raindrops are presented as streaks here as well [CHANGBO et al. (2008)]. Although
rain streak based methods provide attractive results, they suffer from the inability to ren-
der stationary droplets or rain in slow-motion and paused simulations, relying in roughly
approximated refraction values which are unable to recreate the shape and specular prop-
erties of raindrops as would be seen in such temporal conditions. All of these streak-based
methods have convincing quality and perform well. The remaining discussion will there-
fore focus on techniques to render raindrops for cases that are related to stationary or
temporal conditions.

A method for rendering raindrops moving down surfaces was proposed by Kaneda
et al., where a mesh surface is created to determine droplet motion based on mesh region
parameters [KANEDA; IKEDA; YAMASHITA (1999)]. Their rendering approach is de-
scribed in [KANEDA; KAGAWA; YAMASHITA (1993)], where scene objects are pro-
jected onto an environment map, and ray-tracing is performed, retrieving light intensities
from the scene-object-imposed environment map, thus impeding real-time performance.
Similarly Wang et al. developed a method for rendering water drops, allowing raindrops
to separate and recombine as they flow down arbitrary surfaces [WANG; MUCHA; TURK
(2005)]. Their approach is more concerned with simulating the way small portions of wa-
ter move about on a surface, thus intrinsically having a high computational cost, so they
performed rendering with ray tracing.

Garg and Nayar did a number of works about raindrops: a raindrop’s appearance
[GARG; NAYAR (2004a)], rain removal from video [GARG; NAYAR (2004b)], and later
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Figure 2.3: Raindrop distribution and the corresponding geometrical shape: in a typical
rainy scene most raindrops are smaller than 1mm in radius thus being nearly spherical in
shape.
Image adapted from Garg and Nayar [GARG; NAYAR (2004a)] using distribution and shape data from
Marshall and Palmer [MARSHALL; PALMER (1948)] and Beard and Chuang [BEARD; CHUANG (1987)].

a system which creates a vast database of rain-streak textures to best simulate a wide
variety of lighting conditions [GARG; NAYAR (2006)]. In their report [GARG; NAYAR
(2004a)], they make many important observations about a raindrop’s appearance. Based
on two models [MARSHALL; PALMER (1948); BEARD; CHUANG (1987)] they show
that a significant portion of raindrops in a rainy scene are less than 1mm in radius, and
thus almost spherical in shape, as summarized in Figure 2.3. Their work provides the
foundation for the geometrical representation of raindrops used in this paper.

Using the observation that raindrops can be geometrically represented as spheres,
naïveapproaches can be done on the GPU. A sphere can be rendered for each raindrop,
and for each generated fragment, a single refracted vector is computed and used to fetch
color in an environment map. However, a single refracted vector is inaccurate. One could
think of performing a secondary refraction by using the position and size of the raindrop
and computing the internal intersection, thus, determining the outgoing (secondary) re-
fracted ray. In any case, raindrops near the viewer would require a high polygon count
sphere in order to produce smooth results. Level of detail techniques reduce geometri-
cal overhead, but require sorting which may be expensive when a large number of rain-
drops are present. Furthermore the computation of the second intersection and Fresnel
coefficient is a relatively expensive operation, one that would have to be done for every
fragment, potentially introducing a bottleneck. Another option would be to use GPU-
accelerated ray-tracing [PURCELL et al. (2005); CARR et al. (2006)], but even with the
parallel processing of current graphics hardware performance would be difficult to main-
tain when a large number of raindrops are present. Keeping dynamic data structures to
accelerate rendering is expensive in both computational effort and memory requirements
in such conditions.

The image based approaches for interactive refraction proposed by Wyman, as well
as Brauwers and Oliveira, could also be suitable for raindrop rendering, since they provide
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a solution for dual layer refraction [WYMAN (2005); BRAUWERS; OLIVEIRA (2007)].
Their methods render the back-face surface of the refractive object in one step, and in a
second step, the fragments’ position in the frontal surface is used to produce an internal
refracted ray, which is then used to determine the internal intersection and perform the
next refraction in the aforementioned back-face surface. Their approaches require finding
the distance between the front and the back surfaces, forcing objects to be rendered in
individual steps. Thus, these methods are suitable to render small numbers of complex
refractive objects. In the case of rainy scenes, individual rendering steps for each raindrop
would drastically affect performance.

The method proposed by Rousseau et al. introduces a novel approach for raindrop
rendering, using a preprocessed vector mask to store offset vectors to adjust the refraction
of raindrops in run-time [ROUSSEAU; JOLIVET; GHAZANFARPOUR (2006)]. Based
on the maximum angle that a refracted vector can have in a raindrop, a background image
is rendered every frame using a wide field of view, roughly 135 degrees. Raindrops are
rendered as billboards and their appearance is determined by projecting the fragment’s
world position to the background image and applying the offset vector previously stored
in the vector mask. Since the background image holds distortions near its edges due to
the wide field-of-view, refraction may not be accurate. Additionally, reflection is not pos-
sible, since it would require a secondary background image where its field-of-view would
exceed 180 degrees. In their method, only one vector mask is used, regardless of the
distance between the raindrops and the viewpoint. This leads to inaccurate results, since
refraction strongly varies with the distance between raindrop and viewpoint, as shown in
Figure 2.4. Lastly the resolution of their background image is critical to determine the
sampling quality. Although their method uses arbitrary raindrop shapes, based on Beard
and Chuang model [BEARD; CHUANG (1987)], non-spherical shapes do not allow for
arbitrary camera rotations, since the silhouette of the raindrop would change but not the
shape baked in the mask.

The approach to be described in this chapter is based on Rousseau et al.’s method
[ROUSSEAU; JOLIVET; GHAZANFARPOUR (2006)], but the aforementioned limita-
tions are alleviated by exploiting features of the graphics hardware. The proposed method
does not require additional rendering steps: vectors are adjusted using a rotation matrix in-
stead of offset vectors and fragment color is retrieved from the environment map without
the need of background images. Unlike Rousseau et al.’s method, the proposed tech-
nique also naturally extends to reflection. Only spherical-shaped raindrops are considered
which could be seen as a limitation regarding Rousseau et al.’s work, but we reinforce
that spherical-shaped raindrops suffice for typical rainy scenes as demonstrated in [MAR-
SHALL; PALMER (1948); BEARD; CHUANG (1987); GARG; NAYAR (2004a)] (see
Figure 2.3). Additionally, spherical raindrops allow arbitrary camera rotations, preserving
the raindrop’s shape. This leads to a uniform, less intrusive and easy to integrate solution.
Our results are similar to ray-traced images yet still rendered at considerably higher frame
rates than the aforementioned techniques.

2.4 Proposed Method

The proposed technique is split in two steps: a preprocessing and a run-time stage.
First a raindrop mask is ray-traced but unlike traditional ray-tracing, vector data regarding



35

45°
26.6°

-Z

14.0°

1.4 2.2 4.1
viewpoint
(0,0,0)

+Y

1024x1024 512x512 256x256

Figure 2.4: Mip-map Generation: Positioning raindrops so that their surface area is max-
imized in the projection plane is important. Given an aperture angle, the distance (hy-
potenuse) is obtained by simple trigonometry, using the radius of the sphere (opposite
side) and the observation that aperture vector tangencies the sphere forming a right an-
gle with the radius vector at that point (marked in red). Below are the corresponding
renderings of the illustration in the upper portion. As can be seen the distance from the
raindrop to the camera drastically changes the raindrop’s appearance and must be taken
into account for accurate rendering.

light’s reflection and refraction directions are stored rather than color data. The mask
is generated at predefined and convenient conditions in order to simplify calculations
during the run-time stage. In fact, the resulting mask is composed of several masks,
represented as a hierarchical structure identical to a mip-map chain. Once the mask is
ready, it is used as a texture map to render a single screen-aligned billboard for each
raindrop. The texture’s contents (reflection and refraction vectors) are transformed per-
fragment according to a rotation matrix derived in a per-raindrop (vertex) basis. Finally
the resulting vectors are used to fetch color information stored in the environment map.
Both preprocessing and run-time stages will be discussed in more detail in the following
subsections, as well as the assumptions and observations made to allow for real-time
frame rates.

2.4.1 Assumptions and Observations

We base the geometry of our raindrops on the Marshall-Palmer model [MARSHALL;
PALMER (1948)] and the Beard and Chuang model [BEARD; CHUANG (1987)], sug-
gesting that most raindrops are less than 1mm in radius thus have nearly spherical shape
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(recall Figure 2.3). From the observations of Garg and Nayar we can see that raindrops
have three main components [GARG; NAYAR (2004a)]; in order of greatest contribution
they are: refraction, reflection, and total internal reflection (TIR). Due to TIR’s minuscule
contribution to the overall appearance of a raindrop it is unnecessary to render.

We employ image-based lighting with environment maps to estimate the light trans-
port through raindrops. As a result any scene objects which have not been imposed on the
environment map will be ignored. This is a significant assumption since it approximates
the position of scene objects, but this approach is still a very common practice for real-
time graphics and creates convincing results. This assumption however, does not limit
our technique to omni-directional maps to perform illumination: the adjusted reflected
and refracted vectors computed in the run-time stage could be used in conjunction with
typical illumination models.

Although researchers have shown that reflection is not significant when rendering
raindrops in low dynamic range environments due to the falloff effect produced by the
Fresnel equation [ROUSSEAU; JOLIVET; GHAZANFARPOUR (2006)], this is not the
case when using high dynamic range (HDR) intensities to represent lighting information.
The Fresnel equation show that as the angle between an incident vector and a surface
normal approaches 0, the smaller the Fresnel coefficient becomes; the lowest value ex-
ists when this angle is zero, giving an overall reflection contribution around 2%. This is
small when considering LDR intensities which are normalized between 0 and 1. How-
ever an intensity of 100 which can occur in HDR already yields an intensity beyond the
display capabilities of typical display devices. Properly displaying HDR intensities to the
much narrower range supported by typical display devices requires luminance compres-
sion, which is often referred to as tone-mapping. We observed that, when rendering with
HDR intensities and performing tone-mapping, reflection is still clearly noticeable in the
raindrop surface even after luminance compression. Figure 2.2 illustrates this observa-
tion, showing raindrops rendered using both HDR and LDR light intensities, as well as
real world examples.

2.4.2 Preprocessing

The goal here is to ray-trace a single raindrop producing a vector mask which will
hold, for each pixel that intersects the raindrop, reflection and refraction vectors, and
Fresnel coefficients; pixels that do not intersect the raindrop will have these data set to
zero and will be discarded in the run-time stage. For simplicity, the viewpoint is placed
at the origin (0,0,0) with the viewing direction aligned toward the world’s −Z axis in a
right-handed coordinate system. The raindrop is geometrically represented as a sphere of
unit radius and its center is placed at some distance along the viewing axis (−Z). This
controlled setup simplifies the derivation of the proper rotation matrix that will be used
during the run-time stage.

The raindrop is placed at an optimal distance that maximizes its projected area in the
plane of projection. Assuming a camera with 45 degrees of aperture (90 degrees of field-
of-view), by using trigonometric relations, the distance of such raindrop is

√
2 ≈ 1.4142,

as shown in Figure 2.4 (top). For pixels with rays that intersect the sphere, the angle
of incidence is used to evaluate an initial refraction vector. This initial refraction vector
travels inside the raindrop and eventually reaches the other side, refracting again when
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exiting. We are interested in this outgoing refracted vector which we store in the vector
mask. Refraction is evaluated based on Snell’s law with the refraction coefficients of air
and water, 1.00 and 1.33 respectively. The reflected vector and its corresponding Fresnel
coefficient are also calculated and stored in the mask.

However, a single vector mask is not sufficient to properly estimate refraction of
raindrops at varying distances. As the distance from the camera to the raindrop increases
the refracted vectors smoothly vary but alters the raindrop’s appearance significantly as
demonstrated in Figures 2.4 (bottom) and 2.5. To address this problem we build mip-map
levels based on this first case, increasing the distance of raindrops accordingly. Every
subsequent mip-map level has one-fourth the size of its predecessor, and so will be the
projected area. The same trigonometric relation used to position the first raindrop is
applied to generate the subsequent mip-map levels, each level having decreasing aperture
angles (refer again to Figure 2.4). The aperture angle θi of a given mip-map level i can
be determined by arctan( tan(θi−1)

2
), since tan(θi−1)

2
gives a relative measurement of half

of the previous projection plane size. This process is repeated until we end up with the
lowest mip-map level of 1 pixel. For convenience, refer to Table 2.1 for the resolutions
and distances that we used.

Mip-Map Aperture Raindrop
Resolution Angle θ Distance
1024 45◦ 1.4142
512 26.5651◦ 2.2361
256 14.0362◦ 4.1231
128 7.1250◦ 8.0623
64 3.5763◦ 16.0312
32 1.7899◦ 32.0156
16 0.8952◦ 64.0078
8 0.4476◦ 128.0039
4 0.2238◦ 256.0020
2 0.1119◦ 512.0010
1 0.0560◦ 1024.0005

Table 2.1: Hierachical map generation details for quick reference.

Although mip-mapping itself reduces aliasing artifacts, quality can be improved
around the raindrop’s mask by using multi-sampling strategies. Pixels that effectively
intersect the raindrop receive an alpha value of 1 while pixels that do not will have an
alpha of 0. Pixels that lie on the edge of the raindrop are multi-sampled, assigning an
appropriate alpha value between 0 and 1 based on pixel coverage. For our results, we
used 32 randomly generated sub-samples inside the pixel’s area. Once the masks are pro-
duced, they are ready to be used in the run-time stage. Figure 2.5 illustrates all the mask’s
mip-map levels.

2.4.3 Run Time

During run-time raindrops are rendered as screen aligned billboards. The hierar-
chical vector mask precomputed early is stored as mip-map textures to be mapped onto
billboards, and their contents adjusted for each raindrop in run-time.
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Figure 2.5: Fake color representation of the hierarchical maps generated in the prepro-
cessing step. The transparency mask is the multi-sampled alpha mask discussed in the
end of Section 2.4.2. Although the refraction layers seem similar in this fake-color repre-
sentation, their variance have a strong impact in the resulting raindrop’s appearance.

Each fragment of the billboard holds a normalized texture coordinate (s,t), which is
used to retrieve the reflected and refracted vectors in the mask’s texture, as well as the
alpha and Fresnel coefficients. Remember that the original texture mask was rendered
looking toward the −Z axis with the viewpoint located at the origin with the up-vector
aligned to world’s +Y axis, and each mip-map level used a distinct distance. In run-
time, however, raindrops can be anywhere, requiring reflection and refraction values from
distances that may not correspond to the preprocessed ones. Since mip-map levels were
carefully generated by maximizing the raindrop’s projected area, the proper correspon-
dence between the silhouette of the raindrop within all the levels is insured; arbitrary dis-
tances can be used, and the hardware’s mip-map texture-filter will provide an automatic
and graceful interpolation between distances, based on the size of the billboard.

Viewing orientation and relative position of the raindrop to viewpoint are also prone
to alter reflection and refraction. We address this problem by appropriately rotating the
vector data in the mask. A rotation matrix R is derived at the vertex processing stage and
forwarded to be used on each of its generated fragments as follows:

R = [ ~u ~v ~n ] =

 ux vx nx
uy vy ny
uz vz nz

 (2.1)
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where the matrix’s components are defined as:

~n = normalize(C − P ) (2.2)

~u = ~V × ~n (2.3)

~v = ~n× ~u (2.4)

with C being the viewpoint, P the raindrop’s position and ~V the viewer’s up vector. Note
that the rotation matrix becomes the identity when the viewing condition matches the one
of preprocessing.

Once the vectors are properly adjusted, they are used to fetch color in the environ-
ment map. Having mip-map levels in the environment map texture is preferable in order to
account for the solid angle subtended by each ray sample. The resulting color of the frag-
ment of the raindrop is then given by modulating the reflected and refracted contributions
accordingly with its corresponding Fresnel coefficient. The equation works similarly to
alpha blending:

Fragcolor = f ∗ E(~L) + (1− f) ∗ E(~R) (2.5)

where f is the Fresnel coefficient, E(~v) is the environment map and ~L, ~R are the resulting
adjusted reflection and refraction vectors respectively. Finally, the alpha component is as-
signed to the fragment’s alpha value and submitted to the next stage of the pipeline, where
alpha testing and blending are performed, properly changing the state of the framebuffer.

The run-time stage addresses the problem in a simple way and does not require any
extra steps aside from rendering the raindrops in the frame buffer. This solution can be
efficiently mapped to the GPU and uses only features that graphics hardware are highly
specialized in: point sprites, mip-map based texture filtering, and matrix-vector multipli-
cation. The complete run-time shader tree is presented in Figure 2.6. Refer to Section 2.5
for implementation details and Section 2.6 for results.

2.5 Implementation Details

The hierarchical masks can be accommodated on the GPU using two RGBA float-
precision mip-mapped textures: one could store reflection’s XY Z components into the
RGB components of one texture while reserving A for Fresnel coefficient; similarly for
refraction’s components and transparency into another texture. Using 32bit precision
float textures require around 44MB of memory for a 1024x1024 resolution base hierarchy
level, but half-precision representation is sufficient since all components lie within the
range [−1,+1], reducing the graphics memory requirements by half.

As for billboard generation, since each mip-map level has the same texel resolution
in both dimensions they are square in shape. This leads to a common feature of graphics
hardware: point sprites. This simplifies the rendering process and alleviates both geomet-
rical throughput and calculations in the vertex transform stage, since we do not need to
issue quads (4 vertices) and align them with the screen. Although GPUs often have lim-
itations regarding the maximum size of point sprites, this constraint has been relaxed in
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Figure 2.6: Run-time shader tree as described in Section 2.4.3.
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recent programmable graphics hardware, but this forces the intended size to be explicitly
specified in the vertex shader. The proper screen size of a raindrop can be determined by
its corresponding distance to the camera and the base level texture resolution, in a similar
process to the one used to find the raindrop’s distances based on the camera’s aperture
angle in the preprocessing stage (see Figure 2.4).

There is an issue regarding point sprites in hardware that does not support OpenGL 3.0.
When rendering point sprites to a framebuffer object one should set the point sprite co-
ordinate origin, GL_POINT_SPRITE_COORD_ORIGIN, to GL_LOWER_LEFT; when
rendering directly to the color buffer it should be set to GL_UPPER_LEFT. Any other
configuration will make OpenGL transform the point sprites in the CPU. Additional de-
tails on the subject can be found in [GPGPU Forum (2006)].

We update the raindrops’ positions on the GPU and for simplicity our simulation
assumes that all raindrops have the same velocity and do not collide with each other,
analogously to the process used by Rousseau et al. [ROUSSEAU; JOLIVET; GHAZ-
ANFARPOUR (2006)]. More sophisticated particle simulation techniques exist [KOLB;
LATTA; REZK-SALAMA (2004); KIPFER; SEGAL; WESTERMANN (2004)] but are
out of the scope of this paper. We made use of transform-feedback, a recent feature of
graphics hardware as well as the traditional render-to-texture copy-to-vertexbuffer ap-
proach for use in older hardware. For the rain volume we used a rain-box similar to
Rousseau et al. [ROUSSEAU; JOLIVET; GHAZANFARPOUR (2006)]. Each side of the
rain-box extends in each direction by the maximum raindrop distance given in Table 2.1,
roughly 1025. As raindrops leave the rain-box in the −Y direction we relocate them to
the top of the rain-box.

For tone-mapping, we used the global variant of the photographic operator [REIN-
HARD et al. (2002)] because of its robustness and simplicity. Details about its imple-
mentation are out of the scope of this paper but implementations of it are widely available
in popular graphics software development kits. The interested reader is referred to [DE-
VLIN (2002)] for a survey of several tone-mapping operators, and to [GOODNIGHT et al.
(2005); KRAWCZYK; MYSZKOWSKI; SEIDEL (2005); SLOMP; OLIVEIRA (2008)]
for real-time implementations of the more attractive, but computationally expensive, local
variant of the photographic operator.

2.6 Results

Performance results are summarized in Table 2.2 for three hardware configurations.
All results are measured with a screen resolution of 1024x1024 pixels and make use of the
transform-feedback simulation approach (except for Architecture 3 where render-to-FBO
copy-to-VBO was used). The software was implemented with Microsoft’s Visual C++
Express 2008 and the shaders were implemented with the OpenGL Shading Language
(GLSL) version 1.20. Details regarding each configuration are presented below:

• Architecture 1 (desktop): GeForce GTX 280 1024MB VRAM (NVIDIA Driver
191.07 WHQL) on a Intel Core2 Quad 32bit CPU Q9400 2.66GHz with 4GB RAM
running Windows Vista Home Premium 32bit (SP1);
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• Architecture 2 (notebook): GeForce 8600M GT 256MB VRAM (NVIDIA Driver
186.81 WHQL) on a Intel Core Duo 32bit CPU T7250 2GHz with 4GB RAM
running Windows Vista Home Premium 32bit (SP1);

• Architecture 3 (desktop): GeForce 7300 GT 256MB VRAM (NVIDIA Driver 191.07
WHQL) on a AMD Opteron Dual Core 64bit Processor 285 2.59GHz with 2GB
RAM running Windows XP 32bit (SP3).

Architecture 1 Architecture 2 Architecture 3
Raindrops FPS-T FPS FPS-T FPS FPS-T FPS
125000 595 794 99 151 55 110
250000 430 540 75 105 45 76
500000 250 295 50 61 29 40
1 million 140 157 33 38 20 24
2 million 74 83 21 23 10 12
4 million 43 46 8 9 5 5

Table 2.2: Frame rates using our method. All measurements account for animation time
as well. Screen resolution of 1024x1024 pixels. FPS-T denotes tone-mapping.

As can be seen, real-time performance is sustained even for large quantities of rain-
drops in current graphics hardware. In comparison with Rousseau et al. [ROUSSEAU;
JOLIVET; GHAZANFARPOUR (2006)], which runs around 100 FPS with 5000 rain-
drops, our method can sustain the same performance with about 20 times more raindrops.
Note that Rousseau et al. do not deal with HDR and thus there is no tone-map perfor-
mance penalty. Although we do not have the same hardware used by Rousseau et al., a
GeForce 6800 GT, we believe that the results from Architecture 3 are fair for comparison
since a GeForce 6800 GT has more processing units and wider memory interface bus than
a GeForce 7300 GT; therefore we would expect our method to perform even better in a
GeForce 6800 GT. A rather recent and detailed performance comparison chart between
these GPUs can be found at [Tom’s Hardware (2008)].

Additional result images are presented in Figure 2.7. The presented technique is
robust enough to allow high-quality extreme close-ups of raindrops. One might argue this
does not seem realistic but there are several efficient ways to hide such large raindrops in
practical applications. We show the large drops to demonstrate the range of our approach.
The most straight-forward method to remove excessively large drops would be to move
the camera’s near plane further away, effectively clipping such large droplets. Another
possibility would be to gradually increase the transparency factor in the fragment shader,
so closer drops have higher levels of transparency until they reach the near-clip plane.

In a real scenario, however, raindrops that are that close to the eye (or camera) do not
simply disappear, but would be out of focus. One possibility is to use derivative texture
access on the environment map, blurring their internal appearance in an efficient man-
ner. A more sophisticated approach is simulating depth-of-field. Discussions on these
techniques are out of the scope of this work but there is much computer graphics litera-
ture in regards to real-time post-processing techniques to reproduce such effects [DEPTH
OF FIELD: A SURVEY OF TECHNIQUES (2005); FILION; MCNAUGHTON (2008a);
LEE; KIM; CHOI (2008); LEE; EISEMANN; SEIDEL (2009)].
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Figure 2.7: Additional results rendered using the proposed technique in different HDR
environment maps, viewing conditions, and number of raindrops. Results account for
tone-mapping.
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2.7 Limitations

Since our method considers only the environment map, any object not represented
in the environment map is ignored. To alleviate this problem many applications generate
environment maps with 3D objects imposed on them based on the position of the view-
point. This approach usually provides convincing results, but it is worth noting that it is a
rough approximation of position.

Raindrops are not sorted so the presented multi-sampled alpha blending improvement
is not guaranteed to work properly. However we did not notice any unpleasant artifacts
in our experiments since most raindrops within the rain-box correspond to small screen-
space sizes. A cheap way to sort them would be to store raindrops in the vertex-buffer
according to their position inside the rain-box. This is however a palliative solution and
does not solve the problem as the viewer moves freely inside the box.

Finally, the presented method makes use of square shaped billboards, which are un-
able to reproduce perspective distortions. Needless to say that point sprites are not a
requirement, although attractive due to their performance benefits; they could be replaced
with spherical billboards by drawing quadrilateral primitives for each raindrop or per-
forming vertex amplification with the aid of the geometry shader. However, such distor-
tions are rare, being noticed only in raindrops extremely close to the viewpoint.

2.8 Conclusion

We propose a straight forward method for rendering raindrops in real-time based
on their optical properties. Our results are comparable to ray-traced solutions, provid-
ing high image quality which has not been possible using rain streak based approaches.
Furthermore our technique runs entirely on the GPU, exploiting some of its well-known
features allowing real-time performance with large quantities of raindrops. We believe
that the current limitations are justified by the trade-off between high image quality and
high performance.

We also believe that the presented method is suitable for combining with other meth-
ods which render the wide variety of rain’s behaviors: splashing, sliding down surfaces,
etc. We also believe that our method can benefit the film industry by providing instant
feedback to artists designing rainy scenes. Finally we feel this method provides an at-
tractive solution for rendering raindrops in game and graphics engines where temporal
interactions like slow-motion replay and paused simulation effects are desirable. Some
examples include: driving simulators where raindrops on the front glass do not necessar-
ily move at high velocities, and sports/fighting games where slow motion replays are a
trend.

2.9 Future Work

In this section we summarize a few future directions. First, hierarchical map stor-
age could be eliminated by deriving a function parametrized by texture coordinates and
relative distance to the viewer which would determine outgoing reflection and refrac-
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tion vectors, although it could introduce an expensive overhead. Next would be to allow
vector mask deformation thus allowing arbitrary shapes, and possibly allowing raindrops
to collide and merge. Additionally a more perceptually-driven generation of raindrop’s
refractive and reflective maps could be derived using known limitations of the human
vision system, such as its maximum and minimum field-of-view and focal distance. An-
other possible investigation would be the use of dynamic, variable-size filtering on the
contents of the masks to simulate depth-of-field effects or rain-streak patterns; such vary-
ing size filtering can be efficiently performed through the use of high-order summed-area
tables [CROW (1984); HECKBERT (1986a)]. Lastly our method could create underwater
air bubbles by inverting the refraction coefficients, but determining if air bubbles are best
represented by spheres requires more experimentation.
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2.A Appendix A: Computer Graphics Forum (CGF) 2011
Cover Image Contest Finalist

Fantastic Rainy Scene

Marcos Slomp, Shota Kanamori and Kazufumi Kaneda
Graduate School of Engineering, Hiroshima University, Japan

Raindrops are rendered using a texture-based approach [SLOMP et al. (2011)], each
treated as a point-sprite whose size varies based on the distance from the camera. Each
produced fragment samples over a preprocessed reflective and refractive hierarchical map,
retrieving canonical reflection and refraction vectors, along with Fresnel coefficient and
multi-sampled transparency. Non-transparent fragments will have their sampled reflected
and refracted vectors further transformed by a rotation matrix - derived based on the
raindrop’s attitude relative to the canonical camera used to preprocess the hierarchical
maps - which then sample an environment map. The final color contribution is determined
after proper modulation with the Fresnel coefficient.
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The rainbow mask is rendered by using a ray casting method during preprocessing.
The method accounts for wave optics and the distribution of raindrops [KANAMORI et al.
(2010)]. These efforts enable the method to render the visual variations of the three types
of rainbows: the primary and the secondary rainbows, and supernumerary rainbows.

A dynamically generated cube-map is rendered every frame by copying the respec-
tive cube-map faces from a selected static environment map and then composed with the
rainbow mask through additive blending, all on GPU. This allow changes on the rain-
bow properties such as location, brightness and size without perturbing the original static
cube-map. Raindrops’ fragments samples from this dynamic environment map so that
the rainbow is presented properly within the raindrops. The position of the raindrops are
also updated every frame and done entirely on the GPU, either through transform-and-
feedback buffers, or via classic render-to-texture copy-to-vertex-buffer approach.

Finally, if an HDR environment map is being used, tone-mapping is performed us-
ing the Photographic Operator [REINHARD et al. (2002)], thus compressing the wide
luminance range of the scene into the displayable range of the device. The overall perfor-
mance of the technique exceeds 70 FPS on a GeForce GTX 280 with full-screen image
resolution of 1920x1200 pixels and 2 million raindrops.
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3 GPU-BASED SOFTASSIGN FOR MAXIMIZING IMAGE
UTILIZATION IN PHOTOMOSAICS

3.1 Abstract

Photomosaic generation is a popular non-photorealistic rendering technique, where a
single image is assembled from several smaller ones. Visual responses change depending
on the proximity to the photomosaic, leading to many creative prospects for publicity and
art. Synthesizing photomosaics typically requires very large image databases in order to
produce pleasing results. Moreover, repetitions are allowed to occur which may locally
bias the mosaic. This chapter provides alternatives to prevent repetitions while still being
robust enough to work with coarse image subsets. Three approaches were considered
for the matching stage of photomosaics: a greedy-based procedural algorithm, simulated
annealing and SoftAssign. It was found that the latter delivers adequate arrangements in
cases where only a restricted number of images is available. This chapter also introduces
a novel GPU-accelerated SoftAssign implementation that outperforms an optimized CPU
implementation by a factor of 60 times in the tested hardware.
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3.2 Introduction

As opposed to photorealistic rendering, non-photorealistic rendering (NPR) algo-
rithms trade-off physical accuracy in exchange for feature highlighting or artistic effects.
The current affordability of computers and digital cameras is empowering many inven-
tive outcomes from user-generated content, paving access to NPR effects like photomo-
saics [MEIER (1996)].

Photomosaics comprise special instances of mosaics. A mosaic is a stylization of an
image, consisting of a collection of bulky primitives. A photomosaic is then envisaged as
a mosaic whose bulky primitives are images themselves, as illustrated in Figure 3.1. Over
the past decades several photomosaic generation algorithms were conceived [SILVERS
(1997); KLEIN et al. (2002); BLASI; PETRALIA (2005)].

Figure 3.1: A 20 × 20 photomosaic assembled from 1500 images assigned through one
of the proposed algorithms (simulated annealing). The input image is miniaturized at the
left for reference. The usage of available images was maximized so that no image appears
repeatedly in the resulting mosaic.

Subjects experience different visual responses based on their relative proximity to
a photomosaic. Despite of being a fancy effect, photomosaics are widely acclaimed by
advertisement producers. In the hands of skilled marketing personnel, photomosaics can
capture the essence of a product at different perspectives, ultimately entertaining and at-
tracting potential consumers. Many commercial opportunities can arise through clever
utilization of photomosaics.

Silvers et al. delivered the first efforts on photomosaic generation [SILVERS (1997)].
Klein et al. extended the concept to video mosaics, where lower resolution movies are
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used as bulky primitives to assemble a larger video [KLEIN et al. (2002)]. Di Blasi et
al. derived a faster method to generate photomosaics by varying the sizes of the images
that appear in the photomosaic, clustered into an antipole tree data structure [BLASI;
PETRALIA (2005)]. The interested reader can further refer to Battiato et al.’s survey on
photomosaic generation techniques [BATTIATO et al. (2007)].

Current photomosaic generation algorithms, however, require huge amounts of im-
ages in order to produce attractive results. Repetitions are allowed to occur, which may
locally bias the mosaic. Another common strategy, if only a small image set is available,
is to reduce the size of the bulky primitives, subdividing the input image into very small
chunks, but this ends up breaking the illusion of the photomosaic, unless observed very
closely. Tuning photomosaics manually is obviously exhaustive and impractical.

This chapter investigates three methods to maximize the usage of available images
in photomosaics by preventing image repetitions: a greedy-based procedural algorithm, a
simulated annealing driven solution [KIRKPATRICK; GELATT.; VECCHI (1983)] and
a SoftAssign-based [GOLD et al. (1997)] approach. From these strategies, the greedy-
based is the fastest, but lacks in quality; simulated annealing, on the other hand, is time-
prohibitive. SoftAssign is capable of producing photomosaics that are qualitatively equiv-
alent to simulated annealing in a much faster rate, but still time demanding nonetheless.
Additionally, building upon this investigation, this chapter also introduces an efficient
GPU-based implementation of SoftAssign. The performance increase of the proposed
GPU-based SoftAssign is of about 60 times when compared to an optimized CPU imple-
mentation in the tested hardware configuration.

The next three sections of this document present the studies developed on the above
mentioned optimization strategies in the context of photomosaic optimization: Section 3.3
formalizes the problem of maximizing the number of images used in photomosaics; Sec-
tion 3.4 reviews the three image assignment approaches; Section 3.5 provides initial re-
sults.

The remaining sections of this document are laid out based on the analysis of the
referred research, paving the road to further investigation of the SoftAssign algorithm in
GPU: Section 3.6 provides a blueprint to implement SoftAssign and discusses issues and
parallelization strategies, Section 3.7 focuses on mapping the SoftAssign algorithm to the
graphics pipeline in order to exploit parallelism in GPU, Section 3.8 extends the initial
results with additional mosaics and performance comparisons between CPU and GPU
implementations of SoftAssign, and Sections 3.9 and 3.10 conclude the paper and points
future directions.

3.3 Maximizing Image Utilization on Photomosaics

In general, given a source image I and a set of n images T = {t1, ..., tn}, ordinarily
known as tiles, synthesizing a photomosaic P digests to:

1. Subdivide the target image into a regular w× h lattice of rectangular regions; these
regions will be referred to as patches and denoted as pi ∈ {p1, ..., pm}, where m =
w × h;
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2. For each patch pi, search for an appropriate tile tj ∈ T to replace the patch; this
step may require manipulation of the tile images (resizing, cropping, etc.)

The goal is to maximize the usage of distinct tiles in the resulting photomosaic. Tile
utilization can be maximized by preventing any individual tile to be assigned to more than
a single patch. That means that a tile can only be assigned to a patch if it is not currently
assigned to any other patch. In the end, every patch must hold a unique tile assigned to it,
although it is possible for some tiles to remain unassociated to any particular patch, since
typically there are more tiles than patches. When there are more patches than tiles, no
solution can be determined.

However, maximizing tile utilization itself does not guarantee that the resulting pho-
tomosaic P will resemble the input image I . Therefore, the visual similarity between
patches and tiles can not be neglected, being critical to guide the optimization process.
The metric chosen to determine visual similarities is a simple Euclidean distance in RGB
color space. More sophisticated metrics or color spaces could be used instead, but such
simplistic measure proved to be satisfactory.

In order to determine the visual similarity between a patch pi and a tile tj , both
are further partitioned into smaller u × v = s rectangular regions: pi = {p1

i , ..., p
s
i}

and tj = {t1j , ..., tsj}. The average intensity of each partition, pki = (R
k
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j ), is then computed through simple component-wise arithmetic average.
Finally, the visual similarity function can be defined as:
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j )
2
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(3.1)

Note that the lower the value of the visual similarity function, the more closely tile
tj resembles patch pi; a “perfect” match would evaluate d(pi, tj) to zero. Therefore it is
sound to think of d(pi, tj) as a distance function. Such formulation will later be used to
populate a distance matrix, a fundamental component of all of the involved algorithms
(Section 3.4.1, Figure 3.2).

The problem of maximizing image utilization on photomosaics can then be formal-
ized as an optimization scheme for minimizing the sum of d(pi, tj) under the restriction
that all patches must have uniquely assigned tiles, as formulated below:

min

m∑
i=1

n∑
j=1

d(pi, tj) y(pi, tj) (3.2)

subject to the following constraints:

y(pi, tj) =

{
1 if tj is assigned to pi
0 otherwise (3.3)

n∑
j=1

y(pi, tj) = 1 (3.4)
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m∑
i=1

y(pi, tj) = 1 or
m∑
i=1

y(pi, tj) = 0 (3.5)

The membership function y(pi, tj) models the patch-tile assignment by assuming
the binary values defined in Equation 3.3. The constraint from Equation 3.4 ensures
that a patch will always have a single tile assigned to it, while the final constraints from
Equation 3.5 guarantee that tiles are assigned at most once. All three algorithms detailed
in the subsequent section enforce these requirements.

3.4 Photomosaic Optimization Strategies

The photomosaic optimization strategies investigated can be summarized as follows:

• Greedy-based Search: locates the most similar matches and sequentially revamps
repetitions with unmatched ones; likely to fall into local minima solutions.

• Simulated Annealing: attempts to reach a solution close to the global optimum
photomosaic through stochastic minimization algorithm that avoids local minima.

• SoftAssign: similar to simulated annealing, but the solution narrows down to the
global optimum through a deterministic process that also avoids local minima.

All of these algorithms share a common resource, the distance matrix, which will be
introduced beforehand.

3.4.1 The Distance Matrix

The purpose of the distance matrix is to track the color similarities (distances) amongst
each patch pi and each tile tj . If we let the rows correspond to the m = w × h patches
and the columns to the n available tiles, then the distance matrix Dm×n can be expressed
as:

D = dij =

 d11 · · · d1n
... . . . ...

dm1 · · · dmn

 (3.6)

where dij = d(pi, tj), according to Equation 3.1. The distance matrix is also depicted in
Figure 3.2. All of the subsequent algorithms use the distance matrix as an input, and it
can be computed in advance. The distance matrix is immutable: none of the algorithms
ever modify its contents.
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Figure 3.2: The distance matrix stores the color similarities between patches and tiles.

3.4.2 The Greedy-Based Search

The greedy approach begins by assigning tiles to patches based on the “best-match”
criteria. Since repetitions are likely to occur with such criteria, the algorithm iterates once
more, sequentially reassigning unused tiles to conflicting patches based once again on the
same criteria.

For each patch pi, the corresponding row of the distance matrix Di = [ di1 · · · din ]
is examined, searching for the element diq that holds the lowest distance (most similar).
The tile tq is then assigned to pi as the best-match.

As repetitions are prone to happen, each tile tj is further classified as: assigned once,
assigned multiple times and not assigned. The rationale is then to keep uniquely assigned
tiles unchanged, while replacing multi-assigned tiles by unassigned ones. This can be
done by means of the absolute difference between each multi-assigned tile tmulti and each
unassigned tile tfree; whichever has the lowest difference wins (Figure 3.3).

3.4.3 Simulated Annealing

Simulated Annealing (SA) [KIRKPATRICK; GELATT.; VECCHI (1983)] is a generic
stochastic technique for optimization problems, identifying potential solutions through
random inspection of large search spaces. SA is relatively easy to implement and can ac-
count for almost any objective function, with constraints being attached directly into the
SA procedure. SA is capable of finding very close approximations to the global optimum
if given enough time.

The key component of SA is the dynamic temperature parameter. Higher tempera-
tures permit configurations in search space that lead to an increase in the cost function,
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Figure 3.3: Greedy-Based Search: The corresponding patches of a multi-assigned tile are
sequentially replaced by unassigned tiles until that multi-assigned tile becomes uniquely
assigned. The reassignment process is based on the best-match criteria, i.e., lowest dis-
tance (highest visual similarity).

helping the algorithm to avoid local minima. As the temperature lowers, the solution is
progressively enhanced and the search becomes more restricted.

Photomosaic tile matching can be expressed as a SA process through the minimiza-
tion of the following cost function:

E(X,D) =
m∑
i=1

n∑
j=1

(dij − α) xij (3.7)

where xij are elements of the correspondence matrix X which only takes binary values:
if tj is a possible match to pi then xij = 1, otherwise xij = 0. The constraints from
Equations 3.3 to 3.5 must also be respected; therefore every row Xi = [ xi1 · · · xin ]
should hold exactly one element xiq = 1, while every column of X should have at most
one element set to 1. The semantics of the correspondence matrix X is thus equivalent
to the semantics of the membership function y(pi, tj) as expressed through Equations 3.3
to 3.5. The parameter α is used to favor a certain range of visual similarities (distances)
between patches and tiles.

In order to minimize Equation 3.7, the correspondence space is stochastically sam-
pled via a Markov process. A new solution X∗ is produced at each iteration by modifying
only a single row of X . This row Xr = [ xr1 · · · xrn ] is selected randomly. The single
element currently set to 1 in Xr, xrb = 1, is flipped in X∗r so that x∗rb = 0, thus leaving the
entire rowX∗r filled with zeros. What remains to be done is to pick some aleatory element
xrw | w 6= b and flip it in X∗r , yielding x∗rw = 1. This last step should be performed
carefully to prevent the same tile tw of being assigned twice in the new solution X∗. The
index w is repeatedly shuffled if necessary until no such assignment conflict occurs.

For the particular case of square correspondence matrices, the procedure described
above fails since a conflict-free element xrw | w 6= b would never be found. In such
special case, another aleatory row Xr̂ | r̂ 6= r is selected and swapped with Xr, thus
making X∗r = Xr̂ and X∗r̂ = Xr.

Once a new solution X∗ is established, it can be accepted or rejected according to
the following transition probabilities:
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P (X → X∗) =

{
1 if ∆E ≤ 0

e−∆E/τ otherwise
(3.8)

where ∆E = E(X∗, D) − E(X,D). The rationale is that state changes are allowed as
long as the cost function decreases; to prevent local minima, state may also change with
increasing costs based on the current temperature τ . The temperature is gradually lowered
during the stochastic search process according to the annealing schedule: the temperature
τ ′ of the next iteration is obtained by τ ′ = f τ , with a cooling factor of 0.85 ≤ f ≤ 0.99
typically.

At the end of the simulation, each row Xi = [ xi1 · · · xin ] allegedly accommodates
a unique element xiq = 1, which allots tq as the best replacement for pi.

3.4.4 SoftAssign

In computer vision, SoftAssign [GOLD et al. (1997)] offers a robust solution to
match point clouds, ensuring unique matching criteria while still avoiding being trapped
into local minima cusps. SoftAssign derives from deterministic annealing and can be seen
as simulated annealing (SA) when applied under the condition of mean field approxima-
tion, i.e., it does not rely on any stochastic search.

An optimal photomosaic can be reckoned as the best unique match between tiles and
patches. This naturally settles SoftAssign as an alluring solution, if readapted to minimize
the following cost function E:

E(X,D) =

m,n∑
i,j=1

xijdij − α
m,n∑
i,j=1

xij + τ

m,n∑
i,j=1

xij ln(xij) (3.9)

with xij being elements of the correspondence matrix X . In contrast to SA, here X holds
“fuzzy” correspondences, with 0 ≤ xij ≤ 1. The rationale is that each tile tj is a potential
match to each patch pi by some weight xij . The fuzziness is guided by the last entropy
term and the current temperature τ .

The elements of X are initialized randomly with very small quantities. Subsequent
iterations modify X according to the following expression:

x′ij = e−xij(dij−α)/τ (3.10)

The temperature τ decreases at each iteration akin to SA. Equation 3.10 is ob-
tained from Equation 3.9, optimizing the same objective function of Equation 3.9 [GOLD
et al. (1997)]. The key component of this equivalence is the fact that once X ′ is com-
puted, a row-column normalization through Sinkhorn iterations [GOLD et al. (1997);
SINKHORN (1964)] is performed.

Such normalization procedure forces all rows and columns of X ′ to sum up to 1.
Because of such behavior, columns that correspond to irrelevant tiles (unassigned) will
also retain some quantities in their elements, a fact that can bias the convergence pro-
cess. SoftAssign originally attached to the correspondence matrix an additional row and
column, referred to as outliers, in order to isolate discrepant matches, discarding them



57

once the solution is found. For the case of photomosaic optimization, only the outlier
row is necessary, thus mapping unused tiles to an imaginary patch. In contrast, an outlier
column would allow patches to be assigned to an imaginary tile which, once discarded,
would result in patches not being assigned to any tile.

At the end of the simulation, save for the attached outlier row, every row Xi =
[ xi1 · · · xin ] should contain a unique element xiq = 1 while all others set to zero. The
tile tq is then settled as the best candidate to replace pi.

3.5 Initial Results

We based the current results on a hot-air balloon reference photograph (Figure 3.5,
upper left). As for the color similarity function evaluation (Equation 3.1), each patch and
tile was partitioned into 4×4 smaller square-shaped regions.

Figure 3.4: Summary of experimental results: the upper left image is the reference image;
the lower left one is a 20x20 photomosaic generated from 1500 tiles (similar to Case 3)
through a simple best-match (minimal cost) algorithm which allows tile repetition (only
82 tiles were selected; final absolute cost of 79989). Note how such recurring tiles tend to
bias the photomosaic, leading to weak aesthetics. The remaining rows corresponds to one
of the three studied configurations enumerated in the Experimental Results Section, and
each column corresponds to one of the three tile-repetition-free discussed algorithms.
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A total of three configurations were studied by varying the number of subdivided
patches and the number of available tiles, as enumerated below:

1. 10× 10 = 100 patches selected from 100 tiles; Figure 3.5-uppermost;
(first row of Table 3.1).

2. 10× 10 = 100 patches selected from 500 tiles; Figure 3.5-center;
(middle row of Table 3.1).

3. 20× 20 = 400 patches selected from 1500 tiles; Figure 3.5-bottom;
(last row of Table 3.1).

Patches Tiles Measurements Greedy Simulated Annealing SoftAssign
abs. cost 44172 43370 42713

100 (10×10) 100 rel. cost 1.03 1.02 1.00
gen. time 7s 13min 6s
abs. cost 31997 31282 31656

100 (10×10) 500 rel. cost 1.02 1.00 1.01
gen. time 6s 1h32min 35s
abs. cost 128817 123350 127560

400 (20×20) 1500 rel. cost 1.04 1.00 1.03
gen. time 3min 2 weeks 8min

Table 3.1: Summary of results. The final minimized cost (absolute and relative) of each
algorithm in each case is listed, as well as the total time that each algorithm took to find
the solution.

The Simulated Annealing and SoftAssign parameters were determined empirically.
Their corresponding performance results in Table 3.1 were measured through our MAT-
LAB implementation of the corresponding algorithms. The exception is the greedy-based
search, which was implemented in C++, the binary being compiled and linked from the
Microsoft Visual C++ 2008. The target hardware is an Intel Core2 Duo 2.5GHz with 2GB
RAM running Windows XP 32bit SP3.

In the first two cases, SoftAssign and SA result in more visually appealing photo-
mosaics, rating them as good algorithmic choices when a comparatively small number
of tiles is available; although hard to perceptually decide which one feels better, Soft-
Assign is much faster. As for the third case, SA converges to a qualitatively lower cost
than the greedy and SoftAssign approaches, but is excessively time demanding and thus
impractical.

The performance and overall quality of the results originated from SoftAssign moti-
vated us to investigate the acceleration of the algorithm with the assistance of the modern
programmable graphics hardware (GPU). For that purpose, the following sections will fo-
cus on the SoftAssign method, introducing a pseudo-code template, mitigating potential
issues, and clarifying decisions made while porting the technique to the GPU.
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3.6 SoftAssign Implementation

The blueprint for the SoftAssign can be summarized in the following pseudo-code:

Parameters:

t0 : scalar, input // The initial temperature
tk : scalar, input // The temperature cooling factor
alpha : scalar, input // Bias factor for the objective function
D : matrix, input // The distance matrix to be minimized
S : matrix, output // The solution (optimal correspondence)

Algorithm:

M = matrix(#rows,#cols)
Q = matrix(#rows,#cols)
lowest = +%big
t = t0

for each temperature cooling iteration
for each temperature stabilization iteration

Q = M .* (D - alpha)
M = exp(-Q / t) / sqrt(t)

outlier_row = array[#cols] of +%tiny // Refresh outliers
for each Sinhkhorn iteration // Sinkhorn method:

M = M ./ (sum_cols(M) + outlier_row) // Normalize columns
M = M ./ sum_rows(M) // Normalize rows

end-for

end-for

cost = sum_all(Q) // Compute the cost (fitting)
if (cost < lowest) // Update solution if necessary

lowest = cost
S = M

end-if

t *= tk; // Lower the temperature
end-for

The terms #rows and #cols are, respectively, the number of rows and columns
of the input distance matrix D. The algorithm should initialize M with some very small
random quantities. The operator .* denotes element-wise multiplication. The expression
exp(-Q / t) does not denote matrix exponentiation, but a simple element-wise expo-
nentiation. The idioms +%big and +%tiny should evaluate, respectively, to some very
big and very small positive constant quantities.

The function sum_cols(M) results in a row-vector whose elements correspond to
the sum of the respective columns in M. Analogously, sum_rows(M) yields to a column-
vector holding the sum of all elements in the associated rows of M. As for sum_all(Q),
all elements of Q are accumulated, reducing to a single value.
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The operator ./ denotes element-wise division, but such division happens in a slightly
different fashion. When applied in M ./ sum_cols(M), each row of M is divided,
element-wise, by the resulting row-vector of sum_cols(M). The semantics is similar
for M ./ sum_rows(M), but operating element-wise on columns instead.

The outlier row plays an important role: it accumulates residual weights for tiles
that don’t seem to fit to any particular patch. Note that the outlier row must be reassigned
before triggering the Sinkhorn normalization, each element initialized with the same small
value. The outlier row can be attached as an extra row to M and ignored during temperature
stabilization and row-normalization.

The ideal number of iterations is problem-dependent and usually obtained empiri-
cally. The interested reader should refer to the original SoftAssign paper [GOLD et al.
(1997)] for additional algorithmic details and parameter setup guidelines, as this is out of
the scope of this paper.

3.6.1 Addressing Precision Issues

SoftAssign is prone to run into precision issues, pushing values towards infinity as
they escape from the representable range of the underlying floating-point scheme. Con-
tinuing to operate on such extravagant quantities will eventually cause numerical incon-
sistencies which will then compromise the entire solution with no turning back.

Having the values of the distance matrix normalized into some small range is prefer-
able. This way the SoftAssign algorithm is unlikely to run into precision issues. However,
normalization itself may cause accuracy losses if the fractional part can not be accommo-
dated properly in the underlying representation. When the normalization process is not
able to cope with the accuracy required, extra care is necessary in order to prevent preci-
sion issues during the algorithm execution. In order to avoid such precision pitfalls in an
elegant and efficient way, it is important to understand how and were they can potentially
happen.

As the solution converges, individual values of the matrix Mwill approach one. When
this happens, the subsequent updates of the associated values in the Q matrix will result
in progressively larger quantities, based on the magnitude of D-alpha. When M is then
updated based on Q, the term exp(-Q/t) is likely to evaluate beyond the maximum
representable floating-point value, resulting in infinity. The sums from the Sinkhorn Nor-
malization stage are also likely to accumulate to infinity, and the following division would
possibly have to deal with ∞∞ , which results in not-a-number (NaN). At this point, there is
no way to remedy the issue and the whole solution is forever spoiled.

The obvious point to address the precision issues is by preventing exp(-Q/t) to
ever evaluate out of the representable range. In double precision floating-point (64bit)
scenario, exp(-708) ≈ 3.3 × 10−308 is very close to the minimum allowed positive
number, that is, 2.2 × 10−308. Similarly, exp(+709) ≈ 8.2 × 10+307 is close to the
maximum allowed positive number, 1.8× 10+308. Single precision floating-point (32bit)
is much worse: exp(-87) ≈ 1.6 × 10−38 and exp(+88) ≈ 1.6 × 10+38 already sit
near the representable limits, respectively, 1.1× 10−38 and 3.4× 10+38.

In order to eliminate numerical inconsistencies, the values of -Q/t are preset in
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a safe range before the evaluation of exp(-Q/t). One could simply bind around the
numerical limits highlighted previously, but we found that giving an extra margin to
the exponent limits also helps to prevent the posterior division by sqrt(t) and sub-
sequent array sums to accumulate to infinity. In this paper we clamped -Q/t in the range
[−650,+650] when computing in double precision, or [−70,+70] with single precision.

3.6.2 Parallelism in SoftAssign

As can be seen from the pseudo-code, SoftAssign is a heavily sequential algorithm:
in order to proceed to the next iteration, all nested iterations should finish, and every
operation within each loop is tightly bound to the results of the previous one. Thus,
an optimized single-threaded CPU-based implementation of SoftAssign is trivial from
the pseudo-code. The challenge is then to harness parallelism from such a conceptually
sequential procedure.

Unfortunately macro-parallelism in SoftAssign is not feasible due to the sequential
nature of the algorithm. What can be done is to exploit micro-parallelism from each
individual operation within the loops. Most of the operations involved are one-to-one:
they read-from and write-to individual elements of distinct matrices, and this is simple
to parallelize. The exception is for matrix/array sums which are many-to-one: multiple
elements must be gathered from the input in order to compute a single element of the
output.

Even though threads are not intended to optimally deal with micro-parallelism, a
multi-threaded CPU-based implementation of SoftAssign can provide significant speedup
if designed carefully. The basic idea is to keep each thread responsible for a portion of
the matrix address space, synchronizing them before continuing to the next operation.
Since threads can keep local internal state indefinitely, implementing sums of arrays is
simple if access to the required elements happens without races. It is also possible to
further exploit micro-parallelism in CPU if a SIMD instruction subset is available such as
Streaming SIMD Extensions (SSE).

On the other hand, a GPU-based implementation of SoftAssign is much more chal-
lenging. The following Section discusses in detail the design principles and implementa-
tion decisions proposed by this paper to map the SoftAssign algorithm to the GPU.

3.7 SoftAssign on GPU

Even though most of the required operations are one-to-one, thus mapping well to the
programmable graphics hardware, the gathering process required by the sums of arrays
imposes extra effort. Execution contexts in GPU are much more volatile than threads are
in CPU, preventing them to easily hold or share state amongst multiple parallel executions.

There are two philosophies to implement SoftAssign in GPU: a) using traditional
GPGPU by wrapping GPGPU concepts around the graphics pipeline, which is more
portable, efficient and can inter-operate better with further rendering operations if needed;
and b) the more recent GPGPU pipeline exposed through technologies such as CUDA, Di-
rectCompute and OpenCL, which provides better synchronization scheme and read/write
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memory access patterns.

In this paper the traditional GPGPU approach was adopted. Besides performance
and portability, the choice for a traditional GPGPU implementation was made towards
future use of the framework in interactive and progressive rendering optimization research
problems. The interested reader can refer to Tamaki et al.’s CUDA-based implementation
of SoftAssign [TAMAKI et al. (2010)], although applied to a different problem domain.

3.7.1 Mapping SoftAssign on the Graphics Pipeline

All matrices and arrays required by the SoftAssign algorithm are stored as floating-
point textures; a texture being a fundamental, highly optimized structure that can access
memory mostly in a two-dimensional fashion. These textures should reside in video mem-
ory whether possible in order to prevent the pipeline to stall while waiting for data to be
transfered, and also to eliminate any bottleneck in the video bus while the algorithm exe-
cutes.

Read operations on matrices assume that the corresponding textures are bound to
texture targets, each on a separated texture unit. Write operations on a matrix assume that
the related texture is bound to the framebuffer. In order to execute a given operation, a
quadrilateral is issued to be rendered around the interest region. The graphics pipeline
will then rasterize such rectangular region, producing fragments. Each fragment holds
an automatically interpolated texture coordinate, which can be seen as a matrix index,
uniquely addressing a particular element position.

A shader, that is, a small GPU program, is invoked for each fragment. The GPU
schedules and executes the same shader, for each generated fragment, in multiple process-
ing units, all in parallel. The shader code uses the texture coordinate to access elements
from the currently bound texture units/targets. Once the intended computation is per-
formed on such elements, the shader outputs the result as a color component. Such color
will be placed, by the graphics pipeline, into the appropriate position in the framebuffer,
which is allegedly pointing to the destination matrix (texture).

One limitation of the current graphics pipeline is that it is not permitted to have
a texture bound for reading and writing simultaneously, since this could yield to race
conditions and shading languages do not expose intra-synchronization directives. When
such conflicts happen, an auxiliary texture can be employed to hold partial results and
feedback them subsequently. Fortunately, all of the SoftAssign operations, save for the
ones in the Sinkhorn Normalization stage, have distinct read and write access patterns.

3.7.2 SoftAssign Implementation on GPU

Overall, the following shaders must be implemented:

Temperature Stabilization:

• one to compute Q = M .* (D-alpha)

• one to compute M = exp(-Q/t) / sqrt(t)



63

Sinkhorn Normalization:

• one for the vertical parallel reduction: V = sum_columns(M)

• one for matrix-row division: A = M ./ V

• one for the horizontal parallel reduction: H = sum_rows(A)

• one for matrix-column division: M = A ./ H

The shaders for the temperature stabilization stage are trivial to implement as they
only require one-to-one operations. The parameters alpha and t are defined as uniform
variables within the respective shaders. The value of alpha has to be set only once,
while t has to be uploaded for every temperature cooling iteration, which happens in a
very low-frequency pace.

As for the shaders of the Sinkhorn normalization stage, additional considerations are
required. First, the outlier row is assumed to be attached as an extra row of M; this is not
a requirement, but reduces the amount of shaders to write and intermediate textures to
manage. Second, note that an auxiliary matrix (texture), A, is being used in order to elim-
inate the simultaneous read-write conflict that would otherwise happen in M. Third and
more important, since both sum_columns(M) and sum_rows(A) require gathering
several elements of M and A, respectively, the shader must be able to keep track of the
partial sums until the total amount is computed.

Although one could simply accumulate all values in a single step, this would signifi-
cantly compromise the texture cache performance, thus slowing down the entire process.
To complicate the matters even more, shading languages do not provide any synchroniza-
tion directives, and the order of scheduling and execution of the fragments are unpre-
dictable.

The solution is then to employ Parallel Reduction, a well known multi-pass par-
allel gather pattern, keeping the state stored in intermediate sets of data that feedback
each other at every subsequent pass, as depicted in Figure 3.5. Such parallel reduction
algorithms are typically stream-based and cache-coherent, and thus GPU-friendly.

Figure 3.5: Parallel Reduction instance that performs the total sum of each row of a given
table. The result is held in a column-vector whose elements correspond to the sum of
all elements of that corresponding row in the original input table. At each step, two
consecutive elements are gathered and accumulated together from the partial results of
the previous step.
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In the example of Figure 3.5, only two elements are gathered and accumulated at
each step, but operating on more elements can improve performance and lower mem-
ory requirements. The ideal number of gathers per pass is hardware-dependent. Small
values may sub-utilize the number of available texture fetch units, while big values may
stress them, thus penalizing texture-cache performance. Hence the ideal choice is rather
empirical and must be refined manually for each particular hardware.

When allocating space for intermediate tables, if the dimensions of the source table
happen not to be multiples of the number of gathering samples, they should be rounded-
up. Additionally, any attempt to gather elements outside of the boundaries of a table
should yield zero value in order to keep the accumulation semantics sound.

In order to compute sum_all(Q), no additional shader effort is required. Such
sum can be computed in two stages, first by a vertical reduction, resulting in a single
row-vector, and then by an horizontal reduction on such row-vector, resulting in a single
value that corresponds to the entire sum of Q (the other way around would yield the same
result). Moreover, note that the intermediate memory of the parallel reductions used by
the Sinkhorn Normalization stage can be shared amongst this reduction as well, as they
happen independently.

Another strategy to compute sum_all(Q) would be to perform a 2D Parallel Re-
duction, a process that resembles texture mip-map generation. This would only increase
performance marginally since such a sum is computed at a very low frequency, once per
temperature cooling iteration. Besides the effort of implementing and keeping an addi-
tional shader, this would also require dedicated additional memory.

Finally, reading-back from GPU is required when comparing the cost of each itera-
tion. Fortunately, such read-back is very small (only one texel). Furthermore, updating
the output matrix S from the values of M does not require a shader, just a simple texel
copy. The same can be said for the reassignment of the outlier row before starting each of
the Sinkhorn normalization process: a template of the initial outlier row is kept in video
memory in a buffer and simply copied over the additional row of M when required.

3.7.3 Implementation Details

Our current implementation is OpenGL 1.4 / GLSL 1.0 compliant, requiring few but
widely supported OpenGL extensions: framebuffer object, rectangle textures, floating-
point textures and shader objects. This makes the algorithm portable to a wide range of
GPUs, the lower bound being the commodity GeForce FX series (now 9 generations old).

All textures are stored in 32bit floating-point format (GL_LUMINANCE32F or equiv-
alent). Double precision floating-point texture formats are not yet mainstream, and even
when available, the hardware may not achieve full performance because not all arith-
metic units in commodity graphics GPUs can operate on double precision quantities. This
causes the shaders to stall as they race for these units. Half precision floating-point tex-
tures, on the other hand, are widely supported and optimized by the graphics hardware and
could potentially double the overall performance, but we found that they do not suffice
for stable executions of the SoftAssign algorithm.

Textures are bound for read in rectangular texture targets (GL_TEXTURE_RECTANGLE
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or similar). This is not an enforcement, just a convenience to ease debugging the imple-
mentation. Regular 2D texture targets (GL_TEXTURE_2D) could be used instead as well.

The OpenGL Shading Language has a built-in function to restrain values within a
range called clamp(val,min,max). This is useful to workaround the precision issues
when updating M as it is hardware accelerated and more efficient than placing a manual
conditional logic.

In order to ensure the proper semantics when sampling outside of a texture bound-
ary during the parallel reductions, no special shader control, such as conditionals or ex-
tra uniform variables, is required. By simply setting the texture access wrap mode to
GL_CLAMP_TO_BORDER_COLOR, and specifying RGBA=(0,0,0,0) as the border
color, is enough to keep the semantics sound.

For parallel reductions, texture filtering can be used to fetch two texels at the same
time by sampling at the exact boundary of the corresponding texels, just being careful
to multiply the filtered value by two afterwards. Note that some old graphics hardware
may not support single precision floating-point texture filtering (GeForce FX Series), even
though they may support it for half precision (GeForce 6 Series).

Finally, keep in mind that the hardware has limitations regarding the maximum di-
mensions for textures. It is possible to split and stitch bigger matrices into smaller textures
in order to accommodate all the data, if the limit lies below the required one. Additional
control is then required to manage such texture chunks. Also keep in mind that video
memory (VRAM) is more scarce than regular RAM. Although most graphics drivers are
capable of virtualizing video memory, it is not necessary to do so. Besides, such virtual-
ization is prone to drastically impact the performance.

3.8 Extended Results

The performance comparison between the GPU and CPU implementations is sum-
marized in Table 3.2 and Figure 3.6. Regarding the CPU implementation, for a more
fair comparison, we decided to move away from the MATLAB environment and write
an optimized multi-threaded implementation in C++ with the Win32 Threads API; the
binary was compiled with the Microsoft C Compiler under the Visual C++ 2010 Profes-
sional development environment. The GPU implementation is OpenGL 1.4 / GLSL 1.0
compliant.

The hardware configuration used for the performance measurements is an Intel Core2
Quad CPU 2.55GHz with 4GB RAM running Windows 7 Enterprise 32bit, equipped with
a GeForce GTX 280 with 1GB VRAM (240 stream processors). All performance results
refer to a single temperature cooling iteration, comprised of 10 temperature stabilization
iterations, each with 10 Sinkhorn normalization iterations.

Even though the measurements are bound to a specific iteration profile, the perfor-
mance gracefully scales linearly on the number of iterations. Hence, raising the number
of temperature stabilization iterations by a factor of p and the Sinkhorn normalization iter-
ations by a factor of q would yield to a relative increase of p× q times in the computation
time, either in CPU or GPU.
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rows 100 100 400 512 900 1024 1200 1600 1800 2048
columns 100 500 1500 2048 3000 4096 5000 6000 7000 8192
CPUx1 0.024 0.114 1.506 2.572 6.485 10.01 14.29 22.73 29.82 39.77
CPUx4 0.022 0.062 0.780 1.479 3.912 5.963 8.532 13.85 17.78 23.62

GPU 0.022 0.023 0.035 0.052 0.114 0.171 0.239 0.374 0.487 0.643

Table 3.2: Performance results for the CPU and GPU implementations of SoftAssign.
CPUx1 stands for single-threaded execution, while CPUx4 represents a multi-threaded
execution context with 4 threads. All time measurements are expressed in seconds.

Figure 3.6: Performance chart comparing the CPU and GPU implementations of SoftAs-
sign. For clarity, the chart was plotted with time being expressed in a base-10 logarithmic
scale. The samples in the horizontal axis are spaced linearly according to the total number
of elements in the distance matrix, that is, rows × columns. Note that the GPU perfor-
mance is far better than the CPU: the 1s barrier is never reached by the GPU while in the
CPU cases this barrier is crossed at very small distance matrix dimensions.

The choice of using four threads is due to the fact that the target CPU, Intel Core2
Quad, is a quad-core microprocessor. Note that the x4 multi-threaded execution is un-
able to deliver the theoretical 4 times boost in performance when compared to a single-
threaded execution. In fact, the x4 multi-threaded performance is very close to a x2
multi-threaded execution. We believe that there are two main reasons for which the im-
plementation is unable to reach peak performance: the first is due the overhead of thread
synchronization directives that are essentially managed by the operating system kernel
(the thread model was not designed to effective harness micro-parallelism); and the sec-
ond is the fact that such quad-core processors are arranged in two dies, each holding a
dual-core unit that share a common cache.
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The GPU implementation, on the other hand, outperforms the 4x multi-threaded CPU
implementation by a factor of 35. Compared to a single-thread CPU execution context,
the speedup is about 60 times. The only exception is for very small distance matrices: in
such cases, the driver overhead congests the actual amount of processing required by the
algorithm, and the performance gain is not as significant. However, such small cases are
already fast enough to compute anyway and, in practice, neither relevant nor useful at all.

The proposed OpenGL/GLSL-based implementation outperforms Tamaki et al.’s
CUDA-based SoftAssign [TAMAKI et al. (2010)] by a factor of two in a setup equipped
with an identical graphics hardware configuration, a GeForce 8800 GT with 512MB
VRAM (112 stream processors). While Tamaki et al. approach takes about 30s to solve a
3000x3000 distance matrix, the proposed approach takes less than 16s.

Finally, a few more examples of photomosaics optimized through the proposed GPU-
based implementation of SoftAssign is presented in Figures 3.7 to 3.10. They comprise
thematic situations where a given input image is transformed into a photomosaic by using
image tiles that have similar semantic context to the one of the original input image. All
mosaics were subdivided into 900 patches (30x30) assigned from tile sets composed of
8192 images, thus leading to a 900x8192 distance matrix. The total SoftAssign computing
time (for 200 cooling iterations) was less than 1 minute in the GPU execution, while the
single-threaded CPU run took about 1 hour and the four-threaded took around 35 minutes.

3.9 Conclusion

Novel strategies to maximize the usage of images for photomosaic synthesis based
on a greedy procedural algorithm, simulated annealing and SoftAssign were presented.
The maximization is ensured by restricting tiles to be assigned only once to any given
patch.

The experimental results show that SoftAssign and SA are effective when the num-
ber of available tiles is comparatively small. As more tiles become accessible, SA still
remains as the most effective choice, but turns to be impractical due to time constraints;
the greedy approach still produces plausible mosaics in such cases.

SoftAssign, on the other hand, not only provides an elegant, deterministic solution
for the problem, but also requires much less processing time. The algorithm can be im-
plemented in GPU, providing performance improvements higher than 60 times over opti-
mized CPU implementations.

Such performance improvement is welcome not only to optimize the solution, but
also to assist the user in identifying the ideal parameters of the SoftAssign algorithm.
There are no principal guidelines on how to tune SoftAssign, thus the search for an opti-
mal parameter set can be very tedious if the user has to wait significant amounts of time
between each test setup. A GPU-based implementation of SoftAssign delivers a more
immediate feedback to the user.
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3.10 Future work

As future work, further investigation is required to determine the impact of more
perceptually-aware color similarity metrics to derive the distance matrix and drive the op-
timization process. The use of different optimization strategies, specially those based on
evolutionary algorithms, is also a potential and promising target for subsequent analysis.

Figure 3.7: A kimono photomosaic made of 30x30 patches selected from a thematic
Japanese tile set of 4096 images. The input image is shown miniaturized in the left.
Image and tile set courtesy of http://www.image-net.org

http://www.image-net.org
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Figure 3.8: A fish image photomosaic made of 30x30 patches selected from a thematic
fish tile set of 8192 images. The input image is shown miniaturized in the left.
Image and tile set courtesy of http://www.image-net.org

Figure 3.9: A chair image photomosaic made of 30x30 patches selected from a thematic
chair tile set of 8192 images. The input image is shown miniaturized in the left.
Image and tile set courtesy of http://www.image-net.org

http://www.image-net.org
http://www.image-net.org
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Figure 3.10: A butterfly image photomosaic made of 30x30 patches selected from a the-
matic butterfly tile set of 4096 images. The input image is shown miniaturized in the
left.
Image and tile set courtesy of http://www.image-net.org

http://www.image-net.org
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3.A Appendix A: Photomosaic Optimization Based on Ant Colony
Optimization
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1. INTRODUCTION
Photomosaics [4] comprise special instances of mosaics. A

mosaic is a stylization of an image, consisting of a collection
of bulky primitives. A photomosaic is then envisaged as a
mosaic whose bulky primitives (patches) are images them-
selves (tiles). Subjects experience different visual responses
based on their relative proximity to a photomosaic. Pow-
erful ideas can be transmitted and intricate artistic effects
obtained when photomosaics are used as a form of art [1].
Commercial opportunities can also arise through clever uti-
lization of photomosaics in the hands of skilled marketing
personnel [4, 1].

Current photomosaic generation algorithms, however, re-
quire huge amounts of images in order to produce attractive
results. A common strategy to improve the photomosaic
quality is to reduce the size of the bulky primitives by sub-
dividing the input image into very small chunks, or blending
the input image on top of the resulting photomosaic; these
palliative amends, however, ultimately end up breaking the
illusion of the photomosaic. Tuning photomosaics manually
is obviously an exhaustive and impractical process. If repeti-
tions are allowed to occur (using the same image at different
locations), this may locally bias the photomosaic and intro-
duce undesirable artifacts, rendering parts of the image to
look rather displaced and unnatural.

Additionally, some real applications would greatly benefit
from using as many of the available tiles as possible (e.g.
building a photomosaic of an image of a singer from the
images sent by fans, or a photomosaic advertising a com-
pany built from images of the products manufactured by
the company, etc.). These concerns show that photomosaic
generation can be naturally formulated as an optimization
process, where the requirements imposed by the nature of
the task can be incorporated in the cost function being op-
timized and the selection of a suitable optimization scheme.

2. THE “ANTS FOR JAPAN” VIDEO PHO-
TOMOSAIC

Video photomosaics [3], by virtue of possessing an addi-
tional dimension (time), can achieve artistic effects which
cannot be obtained by the traditional static photomosaics.
A whole story could be told, and the dynamics contained in
the change of images could be used to an advantage. Also,
it would be much more natural and effective to add audio
or music to a video photomosaic, than to a static one.

In the present artwork, we actually “evolve” a photomo-
saic, using an ant-colony-based optimization (ACO) algo-
rithm (more details about ACO are given in the next sec-

tion). The photomosaics shown as consecutive frames in
the video correspond to a subset of solutions of the opti-
mization process obtained by the ants at different iterations
of the ACO algorithm. This induces the overall impres-
sion that the final photomosaic emerges gradually from an
initially chaotic (no predominant structure discernible) col-
lection of images. Our implementation imposes the strong
restriction that no tiles can be reused in the photomosaic.
That is, once a tile-image is assigned to a patch, it can no
longer appear in any other patch. Moreover, the patch size
used is reasonably large (to allow viewing and appreciation
of the individual tile-images), and the available tile-set is
quite limited: it consists solely of thematic images related to
Japanese culture, customs and geography. The input image
was subdivided into 30×30 (900) patches, and the tile-set
contained about 8000 images.

The photomosaic generation for this artwork was partic-
ularly challenging because of the nature of the input image
(see Figure 1), which contains large areas of uniform color
(e.g. in the kimono) or uniform patterns (e.g. the wall).
The tile-set was not tailored in any particular way to bet-
ter suit the input image. The resulting photomosaic is ”the
best” solution found by the ants, based on the tile-set given.
Of course, fidelity could be improved with a more carefully
selected tile-set, albeit this being a tedious task; the idea is
to free the artist of such manual labor and provide the best
that can be done with the given resources.

3. METHOD
In order to “evolve” the final photomosaic from an ini-

tial “chaotic” state, we have used a modification of the Ant
Colony Optimization (ACO) algorithm. Details about the
ACO algorithm can be found in [2], here we just briefly sum-
marize the main ideas behind the standard algorithm, and
provide some details about the modifications we have made
in order to achieve the intended artistic effect.

ACO is a metaheuristic which has been used successfully
to solve numerous combinatorial optimization problems like
the traveling salesman, vehicle and network routing, quadratic
assignment, sequential ordering, etc. ACO is inspired by
the behavior of natural ant colonies, where good solutions
can emerge from the very simple, or even random, behav-
ior of its individual members, communicating by means of
pheromone deposition on the ground, in a cooperative fash-
ion. The ants search for food in a random manner, and when
food is found they return to the nest while at the same time
deposit pheromone on the ground. This pheromone trail
then guides the other ants to the food source.



In the standard ACO algorithm, the problem to be solved
is usually modeled using a graph representation, and the
ants traverse the graph in search of an optimal solution. In
our case, we have a complete bipartite graph, with links
(edges) only between pairs of nodes such that one node cor-
responds to a patch in the source image and the other to
a tile-image. The ants traverse the graph, forming a path,
and the edges directed from the source patch to the tile-
images determine the correspondence which should be used
in the photomosaic. Each ant forms its path independently
of the others (we have used a colony of 30 ants for our pho-
tomosaic). The path of each ant corresponds to a differ-
ent solution, which is evaluated using a cost function – the
cost function we used reflects the visual similarity between
the corresponding patches and tiles. Then the ants deposit
pheromones on the edges of their path, with the pheromone
level being proportional to the quality of the solution. With
time, the edges corresponding to good solutions accumu-
late more pheromones, and this information is shared by
the colony (this is their way of communication) when choos-
ing their path during the following iterations: which edge
to follow is chosen probabilistically, with edge probabilities
determined by the amount of accumulated pheromone and
the visual similarity between the images connected by the
edge. Additionally, at the end of each iteration a certain
amount of pheromone is “evaporated” from all edges, which
would discourage the ants from choosing edges which do not
lead to promising solution

In order to amplify the effect of gradual evolution and
emergence of the photomosaic, at each iteration we have
added a gradually decreasing level of “noise” to the solution.
This means that a certain number of tile-images (propor-
tional to the noise level) which are selected at the current
iteration are randomly replaced by some of the remaining,
not yet selected tile-images. This has the additional effect
that more of the available source images are being shown
(showing as many as possible of the available source images
is also one of the objectives of the task).
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Figure 1: At the top, the reference (input) image;
Bottom: synthesized “optimal” photomosaic image.
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Japan was recently shaken by a catastrophic earthquake followed by a relentless tsunami. While much has been said about
the material damage and the negative consequences of the tragedy, very little is being said about the gallant efforts managed
by the Japanese population towards recovering from the damage. Roads rebuilt in less than a week, schools reformed and
reequipped in a few weeks, immediate establishment of decent shelters to protect and reunite affected families, perseverance
on “thought-to-be” hopeless rescue attempts...

In some sense, such audacious deeds can be compared to the collaborative behavior of ants: not merely social life-forms
that gather food and succumb to the restrictions of the environment, but are indeed remarkable builders that can adapt their
work-style to circumvent adverse situations imposed by the habitat, cooperating for the well-being of the entire colony. This
artwork comprises a video photomosaic in which the final photomosaic gradually evolves from a “chaotic” state, the entire
evolutionary process being simulated with an algorithm inspired by ant-colony behavior. Each photomosaic in the video
sequence is made of small images that are related to Japanese culture, customs and geography, and these small images do not
repeat within each individual photomosaic.
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4 EFFICIENT SUMMED-AREA TABLE AND PREFIX-SUM
GENERATION ON THE GPU

4.1 Abstract

Summed-Area Tables offer a powerful data structure for a wide range of tasks, in-
cluding face recognition, rendering effects and image processing. Summed-Area Tables
are the 2D generalization of 1D scans, and two parallel algorithms for scan/SAT gener-
ation map well to the GPU: recursive-doubling and binary balanced trees. The balanced
tree approach is much faster in general, but was curiously kept aside by the computer
graphics community up until recently, despite of its readily availability since long. This
Chapter describes both techniques, presenting the challenges for efficient GPU-based im-
plementations and analyzes their performance in different graphics hardwares. As an
original contribution, an extension of the binary balanced tree method to higher-order
balanced trees is introduced. With this extension, more elements can be reduced and ex-
panded in a same pass, thus substantially improving the performance up to some extent.
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4.2 Introduction

Summed-Area Tables (SAT) were originally introduced as a texture-mapping en-
hancement over mip-mapping. Although superior in many aspects, precision constraints
made SATs inviable for the graphics hardware to follow at that time. Since their concep-
tion by Crow [CROW (1984)], SATs were successfully employed on a wide range of tasks
ranging from face and object recognition1 [VIOLA; JONES (2004)], depth-of-field and
glossy reflections [HENSLEY et al. (2005)], shadows [LAURITZEN (2007); DÍAZ et al.
(2010); SLOMP; TAMAKI; KANEDA (2010)] and tone-mapping [SLOMP; OLIVEIRA
(2008)].

A SAT is a cumulative table, where each cell corresponds to the sum of all elements
above and to the left of it, inclusive in the original table, as depicted in Figure 4.1-ab.
More formally:

SAT (x, y) =

y∑
j=1

x∑
i=1

Table(i, j) (4.1)

where 1 ≤ x ≤ c and 1 ≤ y ≤ r, with c and r representing the number of columns and
rows of the source table, respectively. A SAT therefore has the same dimensions of its
input table.

The usefulness of SAT comes from the fact that any axis-aligned rectangular region
of the input table can be box-filtered2 (or integrated) with only four lookups on the associ-
ated SAT, as depicted in Figure 4.1-cd. This gives the same constant filtering complexity
O(1) to any kernel size.

(a) input table (b) Summed-Area Table (c) filtering region (d) SAT-based filtering

Figure 4.1: A small 6 × 5 table (a) and its corresponding SAT (b). The highlighted
blue cell on the SAT is the sum of all the highlighted blue cells in the input table (all
cells up and to the left, inclusive). In order to filter the 8 elements marked in green in
the input table (c), only the four red elements A, B, C and D need to be fetched from
the SAT (d), a fact that holds true for arbitrary sizes. The filtering result is given by:
A−B−C+D

area
= 54−6−25+4

4∗2 = 27
8

= 3.375.

From Figure 4.1 it is easy to realize that, if the coordinates of a sampling region R in
the original table are given as (xmin, ymin) and (xmax, ymax) then the corresponding SAT
cells A, B, C and D to be fetched are obtained as follows:

1Summed-Area Tables are also referred to as integral images in some image processing, computer vision
and pattern recognition contexts.

2Higher-Order Summed-Area Tables [HECKBERT (1986b)] can extend plain SAT beyond box-filtering,
allowing for triangular and spline-based filtering, at the expense of increased constant time overhead and
numerical precision issues. Although compelling, a more in-depth discussion on the subject is out of the
scope of this thesis since plain SAT are sufficient for the techniques used throughout this document.
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A(R) = SAT (xmax, ymax)
B(R) = SAT (xmin − 1, ymax)
C(R) = SAT (xmax, ymin − 1)
D(R) = SAT (xmin − 1, ymin − 1)

(4.2)

Once these particular cells are determined, filtering a region R can be simply per-
formed according to the following expression:

Filter(R) =
Sum(R)

Area(R)
=

A(R)−B(R)− C(R) +D(R)

(xmax − xmin + 1)(ymax − ymin + 1)
(4.3)

Fetching cells outside the boundaries of the SAT, however, requires special attention:
elements out of the upper or left boundary are assumed to evaluate to zero (analogous
to the clamp-to-border-color mode in OpenGL, with the border color set to zero), while
elements out of the bottom or right boundary should be redirected back to the closest
element at the respective boundary (analogous to the clamp-to-edge mode in OpenGL).
These conditions are illustrated in Figure 4.2 and summarized in the formula below:

SAT (x, y) =


0 if x < 1 or y < 1
SAT (c, y) if x > c
SAT (x, r) if y > r
SAT (c, r) if x > c and y > r
SAT (x, y) otherwise

(4.4)

(a) filtering region (b) SAT-based filtering (c) filtering region (d) SAT-based filtering

Figure 4.2: Example of SAT-based filtering for regions that extend outside the boundaries
of the table. The areas hatched in light green in (b) and (d) should be discarded from the
original areas R in (a) and (c), respectively, in order to evaluate the correct filtering result;
the correct area R′ is shown in dark green in (b) and (d).

Note that by adjusting the original area of R to the boundary restrictions of the SAT,
the effective area of R is prone to changes and should be taken into account prior to
evaluating Equation 4.3. This is also shown in Figure 4.2.

Additionally, standard bilinear filtering can also be used to sample the SAT at non-
integer cell locations if necessary (the boundary restrictions above must still be respected).

Note that the original table could be entirely discarded: the SAT alone is capable of
restoring the original values of the table from which it was built from. However, depend-
ing on the application, if the values of the input table are to be used constantly along with
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the SAT, it is a good idea to keep the input table at hand. This is specially true if the
underlying numerical storage representation is prone to introduce precision errors due to
arithmetic operations (i.e., floating-point; more on precision issues in Section 4.6).

All in all, Summed-Area Tables offer an elegant solution to filter rectangular regions
of tables/textures in constant time O(1). The challenge is now to find a fast way to com-
pute them. A brute-force algorithm straight from Equation 4.1 is of order O(n2). A more
efficient approach relies on a purely sequential algorithm that runs in O(n), as originally
suggested by Crow [CROW (1984)], but from which parallelism is impossible to be ex-
ploited. The next Sections will discuss strategies for parallel implementations of SAT
generation. In the context of this thesis, it is desirable to focus on such parallel algo-
rithms that map well to the GPU and do not rely on any download or upload between
main memory and video memory.

4.3 Fast Summed-Area Table Generation on the GPU

Summed-Area Tables can be seen as the 2D equivalent of 1D array prefix-sums. A
prefix-sum is a cumulative array, where each element is the sum of all elements to the
left of it, inclusive, in the original array. There are two types3 of prefix-sum: prescan and
scan. A prescan differs from a scan by a leading zero in the array and a missing final
accumulation; refer to Figure 4.3 for an example. As a matter of fact, prefix-sums are
not limited to the addition operation, but can be generalized to any other binary operation
(neutral element is required for prescans). In the context of SAT generation, however,
prescans are not particularly useful and just scans under the addition operation suffice.

(a) input array (b) prescan (c) scan

Figure 4.3: An example of a prescan (b) and a scan (c), under the addition operation, on
some input array (a).

The process of generating a SAT can be broken down into a two stage array scan.
First, each row of the input table is independently submitted to a 1D array scan. The
resulting table, to be referred to here as a partial SAT, is then submitted to another set of
1D scans, this time operating on each of its columns. The resulting table this time is the
complete SAT itself. The process is illustrated in Figure 4.4. A more formal derivation
can be achieved by isolating the sums of Equation 4.1, as demonstrated below:

SAT (x, y) =

y∑
j=1

[
x∑
i=1

Table(i, j)

]
(4.5)

now, since the sum inside the brackets is bound to a specific row j, the bracketed sum
consists of a scan operation on the jth row alone (an 1D array); this horizontal 1D scan

3A prescan may also be referred to as an exclusive prefix-sum, while a scan can be referred to as either
an inclusive prefix-sum or as an all-prefix-sum [BLELLOCH (1990)].
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will be referred to here as σ(x, j):

σ(x, j) =
x∑
i=1

Table(i, j) (4.6)

by appropriately pugging σ(x, j) back into Equation 4.5 one obtains:

SAT (x, y) =

y∑
j=1

σ(x, j) (4.7)

but this time the sum is bound to a fixed column x; the result of this sum is evaluated
by accumulating all of the values of σ(x, j) for 1 ≤ j ≤ y, that is, a (vertical) 1D scan
operation on the xth column of the set of horizontal row scans of σ(x, j).

(a) input table (b) partial SAT (c) partial SAT (d) complete SAT

Figure 4.4: SAT generation as a set of 1D array scans. Each row of the input table (a) is
submitted to an 1D array scan, leading to a partial SAT (b). Each column of this partial
SAT (c) is then submitted to another 1D array scan, resulting in the complete SAT (d).

Prefix-sum generation is a straight-forwardO(n) procedure using a purely sequential
algorithm. Prefix-sums, however, comprise a versatile and fundamental building block
for many parallel algorithms. Therefore, efficient methods that harness parallelism from
prefix-sum generation also exist. Two of these algorithms are based on multi-pass parallel
gathering patterns that map particularly well to the GPU: recursive-doubling [DUBOIS;
RODRIGUE (1977)] and balanced-trees [BLELLOCH (1990)].

The approach based on balanced-trees perform less arithmetic operations than the re-
cursive doubling one, but requires twice as much passes. This trade-off, however, quickly
starts to pay-off for moderately larger inputs, with balanced-trees being much more work-
efficient and faster than recursive-doubling on a GPU-based implementation. As far as the
parallel complexity goes, the balanced-tree approach is O(n/p + log(p)) while recursive-
doubling is O(n/p log(n)). A complexity analysis on both algorithms is available in the
Appendix (Section 4.A), but only considering sequential executions of the algorithms for
simplicity. The interested reader is redirected to DUBOIS; RODRIGUE (1977)], [BLEL-
LOCH (1990)] and [HARRIS (2007)], for a more in-depth discussion on how these com-
plexities scale to parallel scenarios.

Until recently the computer graphics community has curiously favored the recursive-
doubling approach, despite the attractive performance gains and readily availability since
long of the method based on balanced-trees. The following sections introduces both ap-
proaches. Only 1D array scans will be detailed, but their extension to SAT generation
should be clear from Figure 4.4: all rows/columns can be processed simultaneously at the
same pass with exactly the same shader. Algorithmic changes between an horizontal and
a vertical scan are trivial and will not be discussed.
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4.4 Parallel Scan Generation on the GPU with Recursive Doubling

Relying on the recursive doubling pattern, a parallel gather operation amongst an 1D
array with n elements is performed in log2(n) steps [DUBOIS; RODRIGUE (1977)]. For
a scan, each step consists on updating a number of elements by accumulating two values
from the array. These updated elements will then be reused in the subsequent step, and so
on. An walk-through on the algorithm is shown in Figure 4.5.

(a) update all elements (b) update necessary only

Figure 4.5: An walk-through on scan generation using the recursive-doubling approach.
In each step, every element updates itself by accumulating two values: itself (blue arrows)
and a neighbor to the left (orange arrows). At each step the offset to the neighbor doubles.
In (a) all elements are updated at each step. It can be observed in (a) that the first few
elements of each step do not need to be updated again since they would accumulate with
a ghost neighbor (zero-valued elements in violet) which would not modify their values.
The image in (b) exploits this fact and exclude such elements from the update (heading
elements marked in green), only updating those who need to be updated (marked in blue).

From Figure 4.5 it is possible to see that everything happens in-place within the
same input array, that is, no additional memory is required. It is also clear that at each
pass 1 ≤ i ≤ log2(n), the neighbor offset is given by 2i−1 and that the first 2i−1 elements
do not need to be re-updated since they would accumulate with a neighbor element that
does not exist in the array (which are assumed to have zero-value).

Such memory-efficient algorithm, however, does not map well to the GPU due to
an inherent limitation of current GPU architectures: the impossibility of simultaneously
reading and writing from/to the same texture memory and the lack of proper synchro-
nization directives at the global-level. In order to implement the algorithm on the GPU,
an additional array of size n has to be used to accumulate the intermediate values; this
way, one array is used as a read-only resource while the other one is used as a write-only
target. Once a pass finishes, the arrays are swapped and the process repeats; this pattern
is informally known as ping-pong rendering by GPGPU practitioners.

A walk-through on a GPU-based implementation of recursive-doubling is depicted
in Figure 4.6-a. Note that differently from the in-place run of Figure 4.5, each pass i now
requires a number of max(1, 2i−2) elements to be copied onto the write-only array in
order to keep the write-only and read-only arrays in perfect synchrony for the subsequent
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passes: only the first max(0, 2i−2) elements are actually completely synchronized and
do not need to be copied or updated. Without these copies, after a swap the values of the
now read-only array would contain either non-initialized values from the auxiliary array
or out-dated values from the input array, as illustrated in Figure 4.6-b.

(a) correct semantics (b) inconsistent execution

Figure 4.6: An walk-through on a GPU-based scan generation using the recursive-
doubling approach. At each pass the input and the auxiliary arrays are swapped. An
important procedure in this ping-pong approach is to keep the values of both arrays con-
sistent for subsequent passes by copying a number of elements from the current read-
only array to the write-only array, as illustrated in (a) where these copies are marked in
dark-yellow. Without these copies, subsequent passes would operate with (and output)
inconsistent values, as shown in (b), with red values indicating the inconsistencies.

Even though the descriptions and examples provided so far dealt with the accumula-
tion of only two elements per pass, the algorithm can be modified to handle any integer
number of k | 2 ≤ k ≤ n accumulations per pass. By doing so, the number of passes
required reduces to logk(n). At each pass the firstmax(0, ki−2) are already synchronized
in both arrays and do not need any special processing, while the following max(1, ki−2)
just have to be copied over; the remaining n − ki−1 elements are updated by accumulat-
ing themselves (in the read-only array) with k − 1 neighbors to the left, each neighbor
being spaced by ki−1 elements. If an expected neighbor happens to lie outside of the left
boundary of the array (a ghost neighbor), it is assumed to have zero-value. The technique
also works seamlessly when n is not a power or multiple of k.

Despite the fact that values of k > 2 can reduce the number of passes significantly,
as well as the number of updated elements per pass, the optimal performance is unlikely
to be achieved with a large number for k. The reason comes from the fact that more
elements have to be retrieved (and accumulated) for each update and, more importantly,
that the spacing between neighbors increase exponentially. This memory access pattern
is prone of thrashing the cache memory, eventually hurting the cache performance and
accuracy due to memory access latency. Such characteristics are particular to each GPU
architecture and organization and the optimal value for k has to be determined empirically.
From the results of Section 4.7 it was found that k = 4 provides a good initial estimation
on the inspected hardware profiles.
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Note that the GPU-based implementation described in this section consumes the in-
put array in the process. The input vector can be reconstructed from the scan itself, but if
the input vector is to be kept intact for other tasks (for performance or precision-related
reasons), it should first be copied into another auxiliary buffer, thus increasing the addi-
tional memory requirements from n to 2n.

4.5 Fast Parallel Scan Generation on the GPU Based on Balanced-
Trees

Blelloch replaced the recursive-doubling pattern by a more work-efficient one: a
binary balanced tree [BLELLOCH (1990)]. There are two stages involved in this binary
balanced tree technique: a reduction stage (up-sweep) and an expansion stage (down-
sweep). The input array is submitted to a reduction stage structured like a binary balanced
tree, starting from the leaves (the input array itself) up to the root. The nodes of this tree
are then used to generate yet another tree, this time spanning from the root down to the
leaves, with the resulting leaves corresponding to a prescan of the input array.

A balanced binary trees with n leaves has log2(n) + 1 levels and, therefore, 2n − 1
nodes in total. Since two trees are generated in the process, a total of 4n − 2 nodes is
produced. However, since the input array itself is already available only 3n− 2 nodes are
actually generated and processed. Hence the O(n) complexity.

Prefix-sum surveys on the literature that mention the balanced-tree approach usu-
ally describe it as a method for producing prescans only [BLELLOCH (1990); HARRIS
(2007)]. Although prescans can be easily converted into scans in a few different ways
(given that the input is still available), this additional computation is not necessary since
it is actually possible to modify the plain balanced-tree approach slightly in order to pro-
duce a scan directly. This section will focus only on this direct scan generation since it is
more useful for SAT generation.

The reduction stage is straight-forward and consists on successively accumulating
two nodes in log2(n) passes. Starting from the input array, each pass produces a set of
partial sums on the input array; the last pass produces a single node (the root) comprising
the sum of all elements of the input array. This resembles an 1D mip-map reduction,
except that averages are not taken. The left side of Figure 4.7 depicts the process.

Figure 4.7: An walk-through on scan generation using the balanced-tree approach. The
reduction stage is shown in the left and the expansion stage in the right.
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The expansion stage is less intuitive and challenging to put into words. The reader
is directed to Figure 4.7-right for the explanation to follow. Expansion starts from the
root node of the reduction stage, referred to here as the first generator node (outlined in
magenta). The generator node itself is its own rightmost child (dashed gray arrows). The
left child is computed by adding its own value from the reduction tree (green arrows) with
the value of its uncle generator node immediately to the left (orange arrows). If there is no
such uncle node, a ghost zero-valued uncle is assumed (violet zero-valued nodes). Both
children now become generator (parent) nodes (again outlined in magenta) for the next
pass and the process repeats. After log2(n) passes the resulting array will be the scan of
the input array.

The process illustrated in Figure 4.7 happens in-place and is therefore memory-
efficient since all computations are performed successively on the same input array with-
out the need of any auxiliary memory. Unfortunately, a GPU-based implementation, just
like with recursive-doubling, would suffer from the impossibility of performing simul-
taneous read and write operations on the same texture memory, not to mention the lack
of global-level synchronization directives. For a GPU-based implementation the interme-
diate reduction and expansion stages will also require additional memory to store their
computations. A depiction of the suggested layout for this extra memory is presented in
Figure 4.8.

Figure 4.8: Suggested layout for the auxiliary GPU memory during the scan. Simulta-
neous read/write from/to a same buffer never happens. In order to expand aux.#4 the
expanded parent buffer aux.#3 and the reduced sibling buffer aux.#2 must be accessed.
Similarly, expanding aux.#5 needs access to aux.#4 and aux.#1. The final expansion uses
aux.#5 and the input buffer itself. The extra memory amounts to about three times the
size of the input.

Even though the amount of necessary auxiliary memory with this layout is substan-
tially large (≈ 3n), the memory access patterns becomes more cache-coherent than the
ones from the memory-efficient version of Figure 4.7 since the data in each buffer is laid
out together in two structures instead of sparsely distributed in a single array. Moreover,
this cache-coherence is also another attractive advantage that a GPU-based scan with
balanced-trees has over a recursive-doubling one. Also note that the input array is never
written over by the algorithm, thus there is no need to accommodate an extra copy of the
input in case the application wishes to have it available for other reasons.

Similarly to recursive-doubling, there is no need to limit the computations to two
nodes per pass. Reducing and expanding a fixed number of k | 2 ≤ k ≤ n nodes per
pass requires just a few modifications and can substantially improve the performance, as
well as lower the amount of extra intermediate memory required. The general rules for
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an optimal value of k follow the same logic as with recursive-doubling. In the hardware
profiles investigated it was found that k = 4 provided the overall best performance (see
Section 4.7).

A reduction phase with k > 2 is straight-forward to implement, but the expansion
phase is again more involved. Each generator node will now span k children per pass. To
compute the expanded value of any child, the respective child value from the reduction
tree is added together with its expanded uncle node, just as when k = 2. However, the
values of all their reduced siblings immediately to the left have to be added together as
well. For example, if k = 8 then the expanded value of the 5th child will be the sum of its
expanded uncle node with its own respective node in the reduction tree, plus the sum of
all of its siblings to the left in the reduction tree, namely, the 1st, 2nd, 3rd and the 4th.

This process works seamlessly even when the array length n is not a power or mul-
tiple of k; the only requirement being that any access outside of the left boundary of any
of the arrays should evaluate to zero-value. Note that the value of the generator node is
no longer propagated. One could propagate it to its kth child (if any), but this is less sys-
tematic since special cases need to be accounted in the shader. As a matter of fact, since
the root node of the reduction stage is never used in the expansion, this final reduction
stage does not need to be computed at all; recall that only the left sibling of the root node
is used during the first expansion pass, and this sibling node is nothing but a zero-valued
ghost node to be used as the first uncle node of the expansion.

Equipped with such an algorithm, a GeForce GTX 280 is capable of generating a
2048x2048 SAT in about 2ms. In comparison, recursive-doubling would take nearly 6ms.
In general, the overall speedup is of roughly 3x. Performance results are summarized in
Section 4.7.

4.6 A Note on Precision Issues with Summed-Area Tables

Summed-Area Table generation is vulnerable to several precision issues. Lumi-
nances, for instance, are positive quantities, which makes the corresponding SATs built
from luminance images to grow monotonically. The values in the SAT can quickly reach
overflow limits or run out of fractional precision due to ever increasing accumulations.
Depending on the magnitude and fractional distribution of the input values involved, as
well as the dimensions of the table, these critical situations may be hastily reached.

When such situations happen, high-frequency noise artifacts (salt-and-pepper) may
appear in the resulting image that was generated through the application of the SAT, thus
compromising the image quality. An example is shown in Figure 4.9 in the context of
tone mapping (more on this SAT-based tone mapping technique in Chapter A). One way
to mitigate this problem is to subtract the average value of the input table from the table
itself prior to SAT generation [HENSLEY et al. (2005)]. This simple procedure has two
main implications: first, the SAT allots an additional bit of precision, the signal bit, due to
introduction of negative quantities, and second, the SAT is no longer monotonic and thus
the range of the values within the SAT should reach much lower magnitudes.

After filtering with this non-monotonic SAT, keep in mind that the average input ta-
ble value should be added back. The average value can be computed using a mip-mapping
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(a) plain monotonic SAT (b) luminance magnitude range (c) non-monotonic SAT

Figure 4.9: Summed-Area Tables of luminance images are inherently monotonic and
prone to unpleasing noise artifacts (a) if the quantities involved have a wide dynamic
range (b). Making the SAT non-monotonic by first subtracting the average luminance
mitigates such artifacts.

reduction technique (more on this in Chapter A). The performance overhead incurred is
small and well worth for the extra robustness. There is no need for additional memory
to store this average-subtracted table: the average can be subtracted onto the original
table by using subtractive color blending (which can be achieved in OpenGL through
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT)). The only extra memory
required is the one used to build and store the mip-map levels which would only amount
to about 1/3 of the size occupied by the table.

4.7 Results

This Section analyzes the performance achievements of balanced-trees over recursive-
doubling for GPU-based SAT generation. The system configurations and hardware pro-
files investigated are listed below (shader cores and frequencies retrieved on-the-fly during
the demo run-time with GPU Caps Viewer v1.14.2):

1. Windows 7 Enterprise 32bit SP1 running on an Intel(R) Core(TM)2 Quad CPU
Q9499 2.66GHz with 4GB RAM equipped with a NVIDIA GeForce GTX 280 with
1GB VRAM (240 shader cores at 1107MHz, memory at 1296MHz, WHQL Driver
280.26)

2. Windows 7 Enterprise 32bit SP1 running on an Intel(R) Core(TM)2 Quad CPU
Q8200 2.33GHz with 4GB RAM equipped with a NVIDIA GeForce 9800 GT
with 512MB VRAM (112 shader cores at 1500MHz, memory at 900MHz, WHQL
Driver 280.26)

3. Windows XP Professional x64 Edition SP2 running on an Intel(R) Xeon(R) CPU
W3520 2.67GHz with 8GB RAM equipped with an ATI FirePro 3D V3700 with
256MB VRAM (40 shader cores at 800MHz, memory at 950MHz, WHQL Catalyst
Driver v8.85.7.1)

The main program was implemented in C++, compiled and linked with Visual C++
Professional 2010. The graphics API of choice was OpenGL and all shaders were im-
plemented in conformance to the feature-set of the OpenGL Shading Language (GLSL)
version 1.20.
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All performance times in this Section are given in milliseconds. Full-frame times
were captured with performance counters from the Win32 API and double-checked with
the free version of Fraps 3.4.6. Intra-frame performance was profiled using OpenGL
Timer Query Objects (GL_ARB_timer_query). Performance results were recorded
through multiple executions of the program from which outliers were removed and the
average was taken.

Summed-Area Table generation times for typical image resolutions using recursive-
doubling and balanced-trees are presented in Figures 4.10 and 4.11, respectively. All
plotted times are compiled in Table 4.1. The speed-up achieved with the balanced-tree
approach is shown in Figure 4.12, from which it can be seen that SAT generation with the
balanced-tree outperforms recursive-doubling by a factor of 2.5x≈3x (or 4x on the ATI
FirePro 3D V3700) as the image size increases.

Figure 4.10: Summed-Area Table genera-
tion time using recursive-doubling.

Figure 4.11: Summed-Area Table genera-
tion time using balanced-trees.

It must be noted that for small tables the recursive-doubling approach may achieve
better performance. This is due to the relative time spent between pass switching and the
amount of shader processing actually performed. Every time a new pass is setup there
is some implicit GPU driver overhead to prepare the state of the new pass. Recall that
the balanced-tree approach requires twice as much passes than recursive-doubling and
therefore suffers more penalties during such pass switches. For small tables, the time
spent on setting-up the passes tend to be higher than the actual processing time, and the
technique that performs less passes will perform better in general.



88

The performance impact of switching passes becomes less critical than the actual
processing time as the table size increases. Nonetheless, small tables are not as much
interesting and either algorithm would still run appropriately fast on them.

Figure 4.12: Relative speed-up between balanced-trees and recursive-doubling for SAT
generation based on the best (fastest k) times recorded for each algorithm for each image
size, according to the performance results of Figures 4.10 and 4.11.

Another interesting fact that can be observed is how the performance of the tech-
niques scale on different GPUs based on the capabilities of the hardware. A simple com-
bined ratio between the number of shader cores, shader clock frequency and video mem-
ory frequency of two different GPUs can provide an indicator of the theoretical speedup
expected from one GPU in comparison to another:

GPU1

GPU2

=
#cores1

#cores2

· clock1

clock2

· V RAMf1

V RAMf2

(4.8)

from which one can realize that the expected speedups between the inspected GPUs are:

NV GTX280
NV 9800GT

= 240
112
· 1107

1500
· 1296

900
≈ 2.3x

NV 9800GT
ATIV 3700

= 112
40
· 1500

800
· 900

950
≈ 5.0x

NV GTX280
ATIV 3700

= 240
40
· 1107

800
· 1296

950
≈ 11.3x

(4.9)

and these theoretical speedups roughly translate to the profiled results of Table 4.1 and
Figures 4.10- 4.11. A plot of the profiled speed-up between these GPUs using the bal-
anced tree technique with k = 4 is depicted in Figure 4.13. Note that this is a simplistic
theoretical estimation and the profiled speedup gaps on smaller table sizes may be due to
driver overhead, cache efficiency and other architectural details of the GPUs.

Figure 4.13: Speedup between different GPUs running the balanced tree method (k = 4).
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width height k NV GTX 280 NV 9800 GT ATI V3700
RD BT RD BT RD BT

1 256 256
2 0.547 0.845 0.675 1.125 1.087 0.695
4 0.324 0.348 0.414 0.623 1.031 0.449
6 0.335 0.491 0.442 0.624 1.476 0.546

65536 pixels 8 0.301 0.442 0.376 0.553 1.393 0.834

2 512 512
2 0.908 1.086 1.406 1.361 4.814 2.375
4 0.575 0.576 0.909 0.775 5.234 1.563
6 0.565 0.580 0.878 0.763 6.065 1.896

262144 pixels 8 0.517 0.604 0.773 0.854 6.099 3.133

3 720 480
2 1.085 1.071 1.770 1.421 6.482 3.121
4 0.667 0.659 1.130 0.963 6.448 2.056
6 0.655 0.645 1.066 0.857 7.804 2.449

345600 pixels 8 0.688 0.716 1.089 1.067 8.702 4.140

4 800 600
2 1.327 1.125 2.336 1.531 9.451 4.381
4 0.809 0.762 1.405 1.087 9.576 2.797
6 0.840 0.743 1.360 0.984 11.253 3.395

480000 pixels 8 0.982 0.646 1.510 1.265 14.478 5.755

5 1024 768
2 1.880 0.986 3.576 1.986 15.806 6.863
4 1.194 0.747 2.158 1.127 15.913 4.544
6 1.245 0.550 2.133 1.239 18.310 5.462

786432 pixels 8 1.448 0.595 2.365 1.696 24.113 9.339

6 1280 720
2 2.224 1.454 4.247 2.178 19.136 8.090
4 1.434 0.958 2.659 1.457 19.490 5.206
6 1.417 0.932 2.401 1.485 21.217 6.365

921600 pixels 8 1.664 1.254 2.714 1.945 27.127 10.953

7 1024 1024
2 2.372 1.525 5.333 2.505 21.475 9.147
4 1.521 0.997 2.852 1.528 21.813 5.938
6 1.605 0.977 2.746 1.450 24.625 7.309

1048576 pixels 8 1.930 1.393 5.046 2.050 32.705 12.431

8 1280 1024
2 2.971 1.604 7.150 2.645 27.846 11.286
4 1.909 1.081 5.034 1.708 29.119 7.381
6 1.937 1.069 5.036 1.746 30.560 9.001

1310720 pixels 8 2.334 1.544 6.240 2.550 39.639 15.445

9 1680 1050
2 3.927 1.841 9.121 3.227 38.111 15.369
4 2.659 1.242 6.910 2.712 40.271 9.964
6 2.775 1.258 7.265 3.278 45.270 12.191

1764000 pixels 8 3.013 2.019 8.264 3.788 53.011 20.916

10 1920 1080
2 4.544 2.073 10.760 3.690 46.433 18.107
4 3.082 1.305 8.151 3.098 51.601 11.718
6 3.258 1.411 8.550 3.598 56.400 14.518

2073600 pixels 8 3.536 2.250 9.767 6.398 67.716 24.708

11 1920 1200
2 4.951 2.077 11.990 4.122 50.909 20.236
4 3.355 1.418 9.112 3.333 56.965 12.974
6 3.511 1.520 9.509 4.102 62.554 16.077

2304000 pixels 8 3.861 2.381 10.760 7.083 75.557 6.805

12 2048 1280
2 5.590 2.159 11.906 4.340 59.458 23.013
4 3.827 1.462 10.303 3.611 67.791 14.867
6 4.028 1.740 10.816 4.422 73.091 18.366

2621440 pixels 8 4.376 2.606 12.250 4.303 87.634 31.133

13 2048 1536
2 6.682 2.492 16.199 5.811 70.588 27.524
4 4.571 1.653 12.341 4.106 79.338 17.940
6 5.157 1.882 14.069 5.214 94.266 22.001

3145728 pixels 8 5.327 3.104 14.721 9.440 104.925 37.528

14 2560 1440
2 7.922 2.805 19.386 5.937 84.384 31.837
4 5.290 1.821 14.559 4.724 89.137 20.501
6 6.076 2.245 16.407 5.871 106.202 25.228

3686400 pixels 8 6.107 3.487 17.224 10.795 117.500 43.309

15 2048 2048
2 8.731 3.112 21.588 7.312 96.113 36.397
4 5.992 2.007 16.558 5.318 109.207 23.970
6 6.910 2.306 18.883 6.377 128.502 29.075

4194304 pixels 8 7.004 3.988 19.740 12.209 142.725 49.442

Table 4.1: Compilation of SAT generation times on different GPUs; RD stands for recur-
sive doubling and BT stands for balanced tree. Performance values for both techniques
with k = 2, 4, 6 and 8 are listed.
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4.8 Closing Comments: Limitations, Conclusion and Future Work

Summed-Area Tables comprise a versatile data structure to power a number of appli-
cations, ranging from face recognition, rendering and image processing. Summed-Area
Tables can be seen as the 2D generalization of 1D inclusive prefix-sums (scans). Two
parallel patterns for prefix-sum generation map particularly well to GPU-based imple-
mentations: recursive-doubling and balanced trees. The balanced tree pattern is more
work-efficient than the recursive-doubling pattern, but requires twice as much passes.
This trade-off, however, quickly pays-off in favor of balanced trees as the table size in-
creases: in the inspected hardware, speedups of about 2x up to 4x were achieved.

Despite the performance advantages and readily availability of the balanced tree
technique since long, the computer graphics community has oddly favored the recursive-
doubling pattern up until recently. The first mention of the balanced tree approach in
the computer graphics literature is credited to Sengupta et al. [SENGUPTA; LEFOHN;
OWENS (2006)]. Quite interestingly, since then several computer graphics researchers
that relied on Summed-Area Tables kept using the recursive doubling technique for GPU-
based implementations, unaware of the benefits of balanced trees [LAURITZEN (2007);
SLOMP; OLIVEIRA (2008); DÍAZ et al. (2010)].

The initial report of Sengupta et al. described direct scan generation using the
balanced tree algorithm without the need of deriving it from a prescan [SENGUPTA;
LEFOHN; OWENS (2006)]. Curiously, in their subsequent publication, they described
only the prescan approach, even though the applications they have analyzed made exten-
sive use of scans (these scans were produced by adding the prescans arrays with their
respective original input arrays) [SENGUPTA et al. (2007)].

The main drawback with SAT generation on the GPU using the balanced tree ap-
proach is the fact that it requires a considerable amount of intermediate memory (≈ 3n)
due to the simultaneous read-write texture (global) memory restrictions and the lack of
adequate global-level inter-fragment synchronization and communication directives of
GPU architectures. As the expected clash between GPU and multi-core CPU architectures
comes to a close, such memory access constraints tend to disappear. Current development
on general-purpose GPU computing technologies such as CUDA, OpenCL, DirectCom-
pute and C++Amp already started to address these limitations and are paving the road
for exciting new prospects. The interoperability overhead between such technologies and
regular graphics API is also expected to diminish with future advances.

As a matter of fact, Harris has already investigated implementations of prefix-sums in
GPU using the CUDA infrastructure [HARRIS (2007); HARRIS; SENGUPTA; OWENS
(2007)]. His implementations exploit several characteristics of NVIDIA GPU architec-
tures and make clever use of local and global CUDA memory. The performance achieved
by Harris is on par, and some times faster, than the results profiled with the GLSL-based
implementation of this Chapter, but his implementations suffer from some interoperability
overhead between CUDA and the graphics API (OpenGL) when applied.

The aforementioned works of Blelloch, Sengupta and Harris describe and use binary
balanced trees, without mentioning extensions for higher-order balanced trees (k > 2).
In reality, no work was found in the literature that addressed such higher-order balanced
trees, and the extension described in this thesis remains as an original contribution.
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4.A Appendix A: Complexity Analysis

This appendix presents a detailed analysis of the complexity of the two algorithms
described in this work to generate prefix sums: recursive doubling and balanced trees.
The analysis comprises only the sequential execution, i.e., using a single processor. First,
each algorithm is analyzed for the case of arrays of size n, and then they are used to
derive the complexity for the summed-area table computation. For simplicity, the ceiling
function is omitted, for the cases when logk(n) /∈ N.

For both recursive doubling and balanced tree algorithms, a number k must be chosen
and it is assumed to be:

2 ≤ k � n (4.10)

The complexity analysis of converting a prescan into a scan and vice versa is not
detailed. A shift operation in an array of size n takes O(n) time and the update of a single
element in the end of an array is O(1); similarly, an element-wise operation of two arrays
of the same size has cost O(n).

4.A.1 Recursive Doubling

The cost of a recursive doubling prefix sum algorithm is O(n logk(n)).

The recursive doubling approach requires logk(n) passes. At each pass i ≥ 1, a
total of n−ki−1 elements are updated and, before switching between the arrays, ki−ki−1

elements are copied in order to ensure data stability. The resulting complexity will then be
the sum of the updates and copies. Since the number of copies is smaller than the number
of updates, the complexity analysis follows just considering the number of updates. At
each step, a total of n − ki−1 elements are updated. Each of them retrieves k elements
from the previous pass and performs k − 1 operations. Since the number of operations
remains constant for all the elements — and from the assumption on 4.10 — it will be
omitted and the analysis follows solely considering the number of updated elements. This
statement leads to the following expression:

logk(n)∑
i=1

(n− ki−1) (4.11)

which can be expressed as: logk(n)∑
i=1

n

−
logk(n)∑

i=1

ki−1

 (4.12)

and the first sum can be rewritten as:

logk(n)∑
i=1

n = n

logk(n)∑
i=1

1

 (4.13)
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in which the expression inside the brackets is an instance of the following summation
property:

n∑
i=m

1 = n−m+ 1 (4.14)

and matching the resulting bracketed expression in 4.13 with the property above gives

logk(n)∑
i=1

1 = logk(n)− 1 + 1 = logk(n) (4.15)

thus plugging it on 4.13 reduces to:

logk(n)∑
i=1

n = n logk(n) (4.16)

This gives a hint about the complexity of the algorithm. The derivation could be
stopped here since the parcels on the second sum of 4.12 does not heavily rely on n (just
on a much lower logk(n)) and will not have strength enough to nullify any of the terms of
4.16. However, for a more formal conclusion, the derivation will continue.

The second sum of 4.12 can be rearranged as:

logk(n)∑
i=1

ki−1 =

logk(n)∑
i=1

kik−1 = k−1

logk(n)∑
i=1

ki

 =
1

k

logk(n)∑
i=1

ki

 (4.17)

where the expression inside the brackets is an instance of a geometric series, defined as:

n∑
i=m

ri =
rn+1 − rm

r − 1
(4.18)

where r is the ratio of the progression, and, in 4.17, this ratio is k. Matching the geometric
series definition above with 4.17 gives:

1

k
· k

logk(n)+1 − k1

k − 1
=

1

k
· k

logk(n)k1 − k
k − 1

=
1

k
· nk − k
k − 1

=
1

k
· k(n− 1)

k − 1
=
n− 1

k − 1
(4.19)

and finally, by replacing 4.16 and 4.19 in 4.12 gives:

logk(n)∑
i=1

(n− ki−1) = n logk(n)− n− 1

k − 1
(4.20)

which, given the assumption of 4.10, leads to the conclusion that the updates areO(n logk(n)).

Now, to finish the analysis, one must add the cost of the copies and updates, O(n) +
O(n logk(n)), which is O(n logk(n)).
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4.A.2 Balanced Tree

The cost of a balanced tree prefix sum algorithm is O(n).

The balanced-tree approach requires the building of two trees: one for the reduction
stage and another for the expansion one. For a given number of leaves n, the number of
cells of a single tree is given by the summation expression below:

logk(n)∑
i=0

n

ki
(4.21)

but recall that two of them must be generated, so:

2

logk(n)∑
i=0

n

ki

 (4.22)

and also recall that the leaves of the reduction tree do not need to be generated, since they
comprise the input array of size n - and are already computed - they can be removed from
the expression above as follows:

2

logk(n)∑
i=0

n

ki

− n (4.23)

The number of operations in the reduction and expansion stages are not the same: the
reduction tree reads k elements and performs k− 1 operations while in the expansion tree
the number of readings depends on the index of the children nodes. From a given child
index 1 ≤ d ≤ k, a total of d fetches and d− 1 operations are performed, thus leading to
the worst case when d = k. Assuming the worst case always, the number of operations
performed at each node in both trees will be k−1 and remains constant. Relying on 4.10,
the analysis then follows solely considering the total of elements produced.

Recall the expression inside the brackets in 4.23. It can be rearranged as follows:

logk(n)∑
i=0

n

ki
= n

logk(n)∑
i=0

1

ki

 = n

logk(n)∑
i=0

(ki)−1

 (4.24)

and since (ki)−1 = (k−1)i , it can be conveniently expressed as:

logk(n)∑
i=0

(k−1)i (4.25)

which is an instance of a geometric series, defined in 4.18, where r is the ratio of the
progression, and, in 4.25, this ratio is k − 1. Matching the expression above with the
geometric series definition produces:

logk(n)∑
i=0

(k−1)i =
(k−1)logk(n) − (k−1)0

k−1 − 1
=
k−1k−logk(n)+1 − 1

k−1 − 1
(4.26)
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and since k−logk(n) = n−1, the previous statement simplifies to:

k−1n−1 − 1

k−1 − 1
(4.27)

for which the occurrences of 1 in the expression above can be replaced by kk−1, since:

kk−1 =
k

k
= 1 (4.28)

leading to the following:

k−1n−1 − kk−1

k−1 − kk−1
=
k−1(n−1 − k)

k−1(1− k)
=
n−1 − k
1− k

(4.29)

which is equivalent to(
1

n
− k
)(

1

1− k

)
=

(
1− kn
n

)(
1

1− k

)
=

1− kn
n(1− k)

(4.30)

and can be plugged back on 4.24, simplifying it:

n

logk(n)∑
i=0

(ki)−1

 = n

(
1− kn
n(1− k)

)
=

1− kn
1− k

=
kn− 1

k − 1
(4.31)

thus finally being replaced in 4.23:

2

(
kn− 1

k − 1

)
− n =

2kn− 2

k − 1
− n (4.32)

and expressing the above statement in the same denominator gives:

2kn− 2− n(k − 1)

k − 1
=

2kn− 2− kn+ n

k − 1
=
kn+ n− 2

k − 1
=
n(k + 1)− 2

k − 1
(4.33)

which, from the assumption of 4.10, is O(n).

4.A.3 SAT Generation Algorithms

A summed-area table is obtained running multiple instances of prefix sums on each of
its rows and then on each of its resulting columns. Given a prefix sum algorithm Ascan(n)
for 1D arrays of length n, the complexity of an algorithm to generate a summed-area table
with dimensions w × h can be expressed as:

h ·O(Ascan(w)) + w ·O(Ascan(h)) (4.34)

and is also useful to keep in mind that:

N = w × h (4.35)

being N the total number of cells of the SAT.

Here follows the complexity analysis for the summed-area table case using the algo-
rithms presented in this appendix:
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• A SAT can be generated using the recursive doubling algorithm in O(N logk(N)):

plugging the recursive doubling algorithm on 4.34 gives:

h · (w logk(w)) + w · (h logk(h)) = h · w logk(w) + w · h logk(h) (4.36)

thus, from 4.35, the expression above can be written as:

N logk(w) +N logk(h) = N (logk(w) + logk(h)) (4.37)

and from the following property of the logarithms:

logk(a) + logk(b) = logk(a · b) (4.38)

the former expression can be conveniently expressed as:

N logk(w · h) (4.39)

and again, from 4.35, it reduces to:

N logk(N) (4.40)

which is O(N logk(N)).

• A SAT can be generated using the balanced tree algorithm in O(N):

plugging the balanced tree algorithm on 4.34 gives:

h · w + w · h (4.41)

thus, from 4.35, the expression above can be written as:

2N (4.42)

which is O(N).
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5 SCREEN-SPACE AMBIENT OCCLUSION THROUGH SUMMED
AREA TABLES

5.1 Abstract

There is an increasing demand for high quality real time graphics nowadays. Shad-
ows play an important role to the realism of computer-generated images, enhancing depth,
curvature and localization senses. Due to their global nature, shadows introduce over-
whelming complexity to rendering algorithms. Recently, screen-space ambient occlusion
techniques started to flourish, and are now the de facto standard for real-time dynamic
shadow synthesis. A few issues remain, though, such as the sampling quality and noise
artifacts. The contributions of this work are two-folded: a variation of screen-space am-
bient occlusion that uses Summed-Area Tables, yielding to satisfactory results yet per-
forming better than previous attempts, and serves as a new application to the arsenal of
Summed-Area Tables.
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5.2 Introduction

Computer graphics is playing a major role in contemporary society, being effectively
applied on a wide range of subjects: digital entertainment, architectural and product de-
sign, engineering and urban planning, medical data visualization and diagnosis, geopro-
cessing, publicity, to cite a few. Even mundane tasks are unpractical without some sort of
graphical feedback (ATMs, web surfing, mobile phones, etc).

Realistic image synthesis is the ultimate goal of computer graphics, and shadows
comprise a crucial role to the aesthetics of computer-generated images. Shadows not
only enhance realism, but also amplify depth, curvature and localization awareness. In
essence, shadows embrace portions of a scene where light can not reach (directly) due to
surrounding geometrical interference. This settles shadows in a global context: not only
light and material properties are relevant, but all objects of the scene as well, which can
potentially occlude each other.

Due to this global nature of shadows, typical global illumination algorithms such
as ray-tracing [WHITTED (1980b)], radiosity [GORAL et al. (1984)], stochastic path-
tracing [KAJIYA (1986)] and photon-mapping [JENSEN (1996)] are inherently capable
of producing realistic shadows. However, the high computational costs associated to them
compromise their use on large scale scenarios even for offline rendering, not to mention
real-time rendering. Amidst, artists often require quick1 rendering feedback tools in order
to tweak scenes without incurring into prohibitive productivity penalties.

Exploiting the fact that shadows do not require to be realistic to feel pleasing [TABEL-
LION; LAMORLETTE (2004)], several specialized algorithms were conceived, provid-
ing cheap, yet plausible alternatives. One of the most effective techniques devised is
ambient occlusion (AO) [ZHUKOV; IONES; KRONING (1998)]. The key concept be-
hind it is to estimate light accessibility looming from ambient or soft outdoor lighting
based solely on enclosing geometric assets. Ambient Occlusion provides important depth
and curvature cues that would not otherwise be clear with only direct lighting, as depicted
in Figure 5.1. Practical applications of AO are illustrated in Figure 5.2.

Computing Ambient Occlusion takes a fraction of the time of a full radiosity solution,
but it is still a computationally demanding operation nonetheless. Up until recently, real-
time approximations were only viable through the use of preprocessed static ambient-map
textures (similar to light-maps), being inherently bound to static meshes.

With the advent of modern programmable graphics hardware, it was natural that
some of these methods were adapted to GPU, and AO is no exception. Perhaps the most
successful attempt is screen-space ambient occlusion (SSAO) which gauges the light ac-
cessibility of pixels by sampling the depth-buffer [SHANMUGAM; ARIKAN (2007);
MITTRING (2007); FOX; COMPTON (2008)]. Acceptable performance rates require
few samples per pixel, compromising the visibility integral and introducing unpleasant
noise artifacts. Although low-pass filters may amend noise, avoiding depth discontinu-
ities and the use of multi-scale filters are costly to evaluate.

The present paper proposes a modification to the core SSAO algorithm that improves
sampling quality through the use of a depth-based Summed-Area Table (SAT). Such more

1Quick in this context could be up to the order of a few seconds or even minutes.
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integral sampling strategy minimizes the occurrence of noise and eliminates the need
of palliative post-processing addends. The proposed method produces credible results
while performing better than previous attempts. The contribution is two-folded, since it
represents yet another application for Summed-Area Tables.

Figure 5.1: Comparison between sharp shadows generated from standard Shadow Maps
and soft shadows produced by Ambient Occlusion.

Figure 5.2: Ambient Occlusion techniques have been successfully employed in a wide
range of fields, from data visualization to professional games and film production.
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5.3 Related Work

Ambient occlusion alone is a quite extensive research topic, despite being relatively
new. To keep this reviewing section manageable, related subjects such as classical global
illumination, image-based lighting, and other shadow generation algorithms may be ref-
erenced, but not discussed.

5.3.1 Ambient Occlusion (AO)

Ambient Occlusion is attributed to ZHUKOV; IONES; KRONING (1998), even
though the principles track back a few years [MILLER (1994)]. The method was only
popularized later through efforts of film-industry individuals [LANDIS (2002); CHRIS-
TENSEN (2002); PHARR; GREEN (2004)]. Since then, AO has attracted the attention
of several graphics researchers and practitioners.

Ambient Occlusion defines the concept of accessibility of light at a given surface
point [MILLER (1994)]. This can be think as the ratio of the number of directions from
which light can arrive at the surface point (that is, unblocked directions) over the total
number of directions of the visibility hemisphere (see Figure 5.3), formalized as:

A(x, ~n) =
1

π

∫
Ω

V (x, ~ω) (~n · ~ω) d~ω (5.1)

with x and ~n being the position and normal vector of the corresponding surface point,
respectively, and Ω being the set of all directions of the visible hemisphere with respect
to ~n. The term (~n · ~ω) is the geometric attenuation factor (Lambert’s cosine term2); other
literature may refer to this term as max(0, ~n ·~ω) to prevent negative contributions coming
from directions below the visibility hemisphere, but since the integration domain Ω in this
context is explicitly defined as the visibility hemisphere around ~n, the outcome of (~n · ~ω)
will never be negative). Finally, the visibility function V (x, ~ω) is simply:

V (x, ~ω) =

{
0 if ~ω is blocked by nearby geometry
1 otherwise (5.2)

The term 1/π of Equation 5.1 is a normalization factor to keep the resulting accessi-
bility in the closed range [0, 1]; the outcome of the integral is a quantity in the range [0, π],
that is, a projected area in the base (disc) of the corresponding unit hemisphere of area
2π and therefore should be normalized by the total area of the unit disk, that is, π. The
projected area is used in this context due to the cosine attenuation factor ~n · ~ω embedded
into the integrand.

Light and material assets are incorporated later, being modulated by the accessibility,
as in the shading function below:

S(x, ~n) = ρ(x) · L(x) · A(x, ~n) (5.3)

where S(x, ~n) is the shading function, ρ(x) andL(x) being the diffuse2 material properties

2Ambient occlusion was primarily designed for diffuse light transport.
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(a) ambient occlusion (2D slice of a scene) (b) visibility hemisphere in 3D

Figure 5.3: Ambient occlusion overview (a): the accessibility of a given point x with
normal vector ~n is the ratio between all non-blocked directions (hatched in red) over the
total number of directions of a visibility hemisphere Ω around ~n (gray). The image in (b)
depicts a visibility hemisphere Ω centered around a normal vector ~n in 3D.

and the amount of light arriving at that particular surface point, respectively.

Combined with image-based lighting [DEBEVEC (2002)], AO produces convincing
images at a fraction of the cost of global illumination solutions. Accessibility can be
precomputed and stored in vertex attributes or textures; although this permits real-time
performance, it is restricted to static geometry. Seeking to relax such constraint, a great
deal of research was done, from which some are worth highlighting.

Mesh animation can be performed by blending the precomputed accessibilities of
consecutive frames of animation [KONTKANEN; AILA (2006); KIRK; ARIKAN (2007)].
Key-framed deformations are possible, but not arbitrarily. Besides scalability issues (large
memory footprints and preprocessing time), external occlusions to the mesh are ignored.

Ambient Occlusion Fields [KONTKANEN; LAINE (2005); MALMER et al. (2007)]
evaluates the occlusion potential of objects at specific directions and store them as radial
functions onto a small cube-map associated to them. This way, objects can query oc-
clusion from nearby objects based on their relative position and orientation. Objects can
move freely, but each object must have only rigid, non-deformable meshes; self-occlusion
is handled through traditional AO.

An interesting probabilistic-based AO technique focuses on the rendering of trees
(and vegetation, at some extent) [HEGEMAN et al. (2006)]. Although it allows some de-
gree of dynamicity and have little to none precomputation, it is only suitable to individual
trees without other nearby geometric occlusions.

Dynamic Ambient Occlusion [BUNNELL (2005)] is a much more robust technique.
Instead of operating on polygons, meshes are approximated through a set of disks that can
receive, emit, reflect and transmit light. They are placed and combined into a hierarchy
during preprocessing. Accessibility is recomputed every frame, traversing the hierarchy
for every disk. Additional passes can account for indirect illumination. Although almost
entirely GPU-based, managing such hierarchies in video memory is not scalable since the
hardware does not perform well when random memory access is extensively required.
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5.3.2 Screen-Space Ambient Occlusion

Screen-Space Ambient Occlusion (SSAO) is an attempt to alleviate the aforemen-
tioned scalability and rigidity issues via depth-buffer [SHANMUGAM; ARIKAN (2007);
FOX; COMPTON (2008); MITTRING (2007)]. The key observation is that the depth-
buffer gives an approximation of the geometric neighborhood at each pixel and comes for
free since it is one of the fundamental stages of the rendering pipeline implemented by
the hardware. This limits accessibility calculations to what is seen on thescreen, but de-
couples geometric complexity, eliminating mesh constraints and precomputations. SSAO
is currently being employed in several cutting-edge 3D engines [Ogre Team; Leadwerks
Team; MITTRING (2007); FILION; MCNAUGHTON (2008b)].

The SSAO has its roots on the depth enhancement technique of LUFT; COLDITZ;
DEUSSEN (2006). This algorithm performs a low pass filter on the depth-buffer and
subtracts it from itself. The difference is then used to improve depth cues, similarly
to mainstream image sharpening [GONZALEZ; WOODS (2001)]. Despite the fact of
performing exceedingly fast in GPU (for small profiles), it tends to introduce unusual
darkening and halo artifacts at deep depth discontinuities.

A more sophisticated SSAO approach was presented by SHANMUGAM; ARIKAN
(2007). In this method, occluders are categorized into small nearby elements, which are
randomly sampled from the depth-buffer (around the interest point), and larger distant
ones, handled in a separated pass through a raster-based deferred accumulation. The
small elements are represented as spheres with radii proportional to the corresponding
pixels’ depths, while the larger ones are circular billboards (screen-aligned quadrilaterals
with a circular pattern mapped on them). Accessibility is evaluated through the projected
solid angle of the elements involved, a rather expensive computation. A similar, but more
physically accurate approach was introduced simultaneously by SLOAN et al. (2007).

The efforts of MITTRING (2007) coined the term SSAO in the graphics community.
Armed with a simplistic approach, random samples are still taken from the depth-buffer
but no costly solid angle calculations are involved. Instead, the number of samples is
increased and accessibility is determined simply through the depth difference (and ratio)
between the inspected pixel and each sampled pixel around it. Geometric attenuation is
possible if normal vector information is available in a G-buffer [DEERING et al. (1988);
POLICARPO; FONSECA (2004)] (an example of a deferred G-buffer is shown in Fig-
ure 5.4. Hundreds of samples are required for a high-quality output, drastically affecting
performance. In practice, however, only a small number (between 8 and 32) is taken for
performance reasons, which then incurs in noise artifacts. Due to the low-frequency of
AO, a subsequent low-pass filter can reduce such high-frequency flickering; additionally,
accessibility can be evaluated and sampled from a smaller depth-buffer since AO tend
to vary smoothly. The variants proposed by FOX; COMPTON (2008); FILION; MC-
NAUGHTON (2008b) only modify how samples are randomized every frame.

The horizon-based SSAO [BAVOIL; SAINZ; DIMITROV (2008)] attempts to im-
prove the accessibility integral evaluation to enhance quality and reduce noise, with a
trade-off in performance. It uses ray-marching to determine the horizon’s edges, and then
integrates over the connected area, as in MAX (1988). Unfortunately, the technique is still
biased to the sampling efficacy and although noise is reduced, it is still apparent (further
low-pass filtering is still a must).
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A similar approach to the one described in this paper was proposed by DÍAZ et al.
(2010). They have also used depth-based SAT to estimate the accessibility at each sur-
face point in screen-space, but have not fully exploited the behavior of Equation 5.1 to
refine and improve the results. Therefore, their technique is equivalent to the minimalist
approach of this paper, but lacks the improvements of the normal-guided sampling and
depth refinement, properly introduced in Section 5.4.

Finally, the next logical step of SSAO is to evolve into screen-space global illumina-
tion. Indirect illumination [RITSCHEL; GROSCH; SEIDEL (2009)] and self-reflections
[ZHAO; YANG (2009)] were already put into proof and, although limited, they pave the
road to exciting real-time graphics research opportunities.

5.4 Technique Explained

As with any other screen-space ambient occlusion technique, the proposed method
also requires access to the depth-buffer of the scene. In a more simplistic form, a (eye-
space) normal buffer is not a requirement, but having one allows for some relevant en-
hancements, as will be reinforced later. Therefore, the availability of basic deferred shad-
ing capabilities is assumed POLICARPO; FONSECA (2004). This particular setup pat-
tern is common to most of the SSAO techniques previously briefed. A typical deferred
G-buffer is illustrated in Figure 5.4.

Figure 5.4: An example of a typical G-buffer produced by a deferred shading pipeline,
consisting of the depth-buffer, a normal buffer and a material/reflectance buffer.

Recall from Equation 5.3 that lighting and material are handled separately. For that
reason, there is no need to allocate buffers into the deferred module to store them. How-
ever, as the primitive count of the scene grows considerably, it is a good idea to have some
of the shading information (like the material reflectance) encoded in the G-buffer as well,
since re-emitting the same geometry on a later shading step may result in a bottleneck.

Once the depth-buffer is ready, what follows is to generate its associated Summed-
Area Table. Efficient SAT generation methods on the GPU were already discussed on
Chapter 4. The last step is then to evaluate the accessibility of each pixel using the SAT
and the G-buffer. A total of three strategies to extract accessibility information from this
setup will be introduced in the Subsections to follow, each representing an approximation
of Equation 5.1. Accessibility calculations are performed along with the final rendering
(shading) step, matching the requirements of Equation 5.3 thus producing shaded pixels
that are ready to be displayed. Refer to Figure 5.5 for visual comparison between the
three strategies to be presented.
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(a) minimalist approach (Subsection 5.4.1)

(b) normal-guided approach (Subsection 5.4.2)

(c) normal-guided with two-level depth refinement (Subsection 5.4.3)

Figure 5.5: Visual comparison of the three methods for SAT-based screen-space ambient
occlusion introduced in this Section.
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5.4.1 The minimalist approach

A square-shaped region is established around each pixel, from which depth is aver-
aged through the SAT, as illustrated in Figures 5.6 and 5.7. If the filtered depth is higher
than current pixel’s depth3, no occlusion happens, and the pixel is said to have maximum
accessibility. If the resulting depth is lower, this means that there are pixels in that region
that can potentially occlude the current one. The absolute difference between them gives
a measurement of relative occlusion which, when subtracted from 1, determines the light
accessibility at that point.

Figure 5.6: The minimalist approach: the amount of occlusion over a pixel (in green)
can be approximated through the difference of the average depth around that pixel (in
magenta) and the pixel depth itself.

The area of the sampled region could be fixed for all pixels, or proportional to the
current pixel depth. The rationale is that pixels lying deep in the scene have less projected
visibility hemisphere influence, thus having smaller sampling regions; moreover pixels
that lie at the infinity (non-rastered) will have filtered depths identical to their own depths,
leading to maximum accessibility and avoiding depth discontinuities (see Figure 5.7).

Figure 5.7: A square-shaped area (in magenta) is selected around each inspected pixel (in
green); the size of the area depends on the current pixel’s depth. This area is then filtered
using the SAT and the difference between the filtered depth and the actual depth of the
inspected pixel is used to determine the amount of occlusion.

3The larger the depth value of a pixel is, the further the pixel is to the image (near) plane.
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The occlusion factor alone may not be of significant magnitude to a proper darkening.
User-defined attributes can be used to magnify it further. The depth of the current pixel
can also be used to estimate further darkening contribution. No general guideline was
found to define these attributes appropriately and empirical testing is required.

This approach is very similar to LUFT; COLDITZ; DEUSSEN (2006), with two
potential advantages: fast multi-scale filtering (rectangular-shaped box-filter profiles only
due to inherent SAT restrictions) and less depth discontinuity issues. An example of this
minimalist approach is shown in Figure 5.5-a.

5.4.2 Normal-guided sampling

This approach extends the minimalist one by using orientation information in order
to search for better sampling subspaces. The idea is to offset the filtering region along the
normal to focus the sampling onto more relevant regions. The rationale is that geometry
located around the normal direction will have higher occlusion influence than the ones at
glancing angles, as verified by the geometric attenuation factor of Equation 5.1.

The length of the orthographically projected normal vector (discarding the eye-space
z-component), along with the current depth determines how far the filtering area is shifted.
This offset happens along the direction of the projected normal vector. This way, surfaces
orthogonal to the viewing direction will have filtering subspaces targeted away from the
pixel center and, as before, the deeper a pixel is the less the area needs to shift due to
reduced projected visibility hemisphere influence. Refer to Figures 5.8 and 5.9 for an
illustrative example.

Figure 5.8: Surface orientation can redirect filtering onto a more influential regions. The
initial filtering subspace (in magenta) is translated along the direction of the projected
normal (orange arrow), resulting in a new filtering area (dark blue).

Although normal-surrounding sampling is present in most SSAO techniques [SHAN-
MUGAM; ARIKAN (2007); FILION; MCNAUGHTON (2008b); BAVOIL; SAINZ; DIM-
ITROV (2008)], they are limited to a small number of samples for performance reasons,
with distant pixels being allowed to sample even less. A SAT-based filtering, however,
combines all pixels of a subspace without prohibitive increasingly costs, no matter how
large the subspace is or where the pixel is. Such tight integration reduces noise, which is
a substantial trait observed on other SSAO methods.
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Figure 5.9: The normal-buffer is sampled along with the depth-buffer to determine an off-
set direction and length (light-green arrow). This offset then relocates the initial sampling
area (in magenta) to another location (in light-blue) where the average depth is computed
using the associated Summed-Area Table.

The subspace estimated here is more restrictive than the one from the horizon-based
technique [BAVOIL; SAINZ; DIMITROV (2008)], in which samples can be procured
within a larger field. Even with such sophistication, the local relevance of the samples
is prone to increase high-frequency noise since the sample search is randomized. The
present approach, however, trades off sampling subspace coverage for a more determinis-
tic, integral methodology that is capable of suppressing flickering up to some reasonable
extent. See Figure 5.5-b for an example of this normal-guided technique just explained.

5.4.3 Depth refinement

This is the last approach to be introduced, which can enhance visual quality of both
previous attempts. The modification is rather simple: once depth is averaged, the result-
ing depth is subtracted from the depth of the pixel central to the filtering region, and if
the absolute difference lies below some threshold, further subdivision can prevent situa-
tions where opposing depth subregions nullify each other (empirical observation suggest
thresholds around 15% of the depth of the central pixel). The square-shaped region is
refined into four smaller squared-shape areas, similar to a quad-tree query. Accessibili-
ties are computed for each subregion, each having contribution proportional to the corre-
sponding area. An example is depicted in Figures 5.10 and 5.11.

Figure 5.10: Depth refinement can avoid pitfalls such as the one produced when averaged
depths cancel each other influences. Once filtered, if the absolute difference between the
filtered depth and the pixel central to the region is below some threshold τ , then a depth
trap may be in place and subdivision is triggered, seeking to identify more potentially
occluding subregions within it.
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Each resulting subspace is prone to further subdivisions, yet not recommended to
go deeper than two levels. Each SAT filter requires only four texture fetches, but since
“recursive” subdivision leads to an exponential behavior, memory bandwidth and latency
can become a bottleneck. The amount of SAT samples taken at each subdivision can be
largely reduced if one keeps track of the upper-level samples, as depicted in Figure 5.12.
This way one can query one level of the quad-tree subdivision with only 9 SAT fetches
instead of 20 naïve fetches. Although faster, storing and managing these parent elements
for several chained subdivisions is difficult and can quickly consume all of the the fast-
access registers and local memory of each shading unit. The process of unrolling the
recursion due to the lack of recursion support in GPU is also another complicating factor
to consider in the implementation.

Figure 5.11: Once the initial sampling region is offset by the normal vector, subdivision
can take place. Each subdivision step splits the parent area into 4 equally-sized subre-
gions, analogous to a quad-tree subdivision.

The accessibility computation only considers subregions whose average depth are
higher than the parent’s average depth. The final average is calculated based on a normal-
ized weighted average of the passing subdivided averages, the weight being the area of
the subdivided quadrilateral:

∆depth =

∑
i ∆

i
depth Areai Ti∑
iAreai Ti

(5.4)

where Ti is a binary membership function that results in 1 if the average depth of the
subdivided area ∆i

depth is larger than the parent’s average depth, or zero otherwise. Once
the final average depth ∆depth is obtained, accessibility calculation follows using the same
difference calculation of the aforementioned minimalist and normal-guided strategies.

Although applicable to the minimalist approach, the overhead of such refinement
would nullify the performance gains originally intended for the minimalist method. It
is also reasonable to think of an analogous procedure to emulate bilateral filtering, thus
minimizing issues regarding depth discontinuities. The proper methodology, however,
remains subject of further research.
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Figure 5.12: Efficient SAT region sub-filtering. Starting from some large region R, the
four cells required to filter such area are retrieved. From this point, in order to filter the
subregion R1 one would only need to fetch 3 cells, since the upper-leftmost is already
known from its parent region. As for R2, only one cell must be fetched, since the other
cells are already known from its parent and sibling R1; similarly for R3. The last subre-
gion R4 does not require any additional look-ups.

Overall, the presented depth refinement method emulates, at some very localized
extent, the occluder hierarchy traversal of BUNNELL (2005) but without the need of
maintaining any geometry-related data structure since it is inferred systematically from
screen-space depth information. For an example of the depth-refinement method in prac-
tice, refer to Figure 5.5-c.

5.5 Implementation Details

This section provides guidelines to implement the proposed algorithm; all hints listed
here reflect on simplifications to data representation and manipulation of particular stages
without incurring into noticeable quality losses.

Depth-buffers typically hold normalized values withing the range [0, 1]. This makes
half-float (16bits) texture formats ideal candidates for compact depth-information stor-
age. This design choice does not only reduces memory requirements, but also halves the
bandwidth usage through the texture memory interface, potentially accelerating both SAT
generation and accessibility calculations by a factor of two.

Caution must be taken when generation the SAT using half-floats on high-resolution
depth buffers, since the limited precision and numerical range can introduce noise arti-
facts due to overflow or accumulated precision errors. The same non-monotonic SAT
generation method described in Section 4.6 is recommended to be applied in this context
as well.

Quarter-sized depth-buffers are recommended (half of the screen resolution in both
horizontal and vertical directions). In fact, most SSAO techniques employ such strat-
egy MITTRING (2007); FILION; MCNAUGHTON (2008b); FOX; COMPTON (2008).
Recall that ambient occlusion tend to vary smoothly, on which relevant frequencies (dif-
fuse, low-frequency ones) can be accommodated into smaller scales, at some extent, with-
out noticeable perceptual differences. This heuristic alone can boost performance up to
a factor of four times. The SAT-related precision problems pointed above diminish even
more since the input table size shrinks (downscaled depth-buffer).
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Inverting the depth-buffer values before the SAT generation stage may mitigate pre-
cision issues. This ensures that a scene containing large portions where no fragments were
produced (thus having zero depth when inverted) will not disturb the SAT accumulations.
Consider doing such value-inversion while down sampling the depth-buffer as suggested
in the last paragraph.

5.6 Results

The results presented and discussed in this section were produced under the following
desktop computer profile:

• Operating System: Windows 7 Enterprise Edition 32bit

• CPU: Intel Core2 Quad 32bit CPU Q9400 2.66GHz with 4GB RAM

• GPU: NVIDIA GeForce GTX 280 with 1024MB VRAM (240 shader cores)

• Driver: WHQL certified NVIDIA Display Driver 191.07

The prototype was based on the existing Direct3D 10 framework provided by the
NVIDIA SDK sample on Horizon-Based SSAO [NVIDIA Corporation (2009)].

A comparative plate of images is provided in Figure 5.13. The results present in
this plate correspond solely to the accessibility values calculated for each pixel. Shading
results are available in Figure 5.15, but they allure exclusively to the proposed SAT-based
approach. Figure 5.14 also provides some additional examples of the SAT-based method.

The overall qualitative gain of the present method over existing ones is of subjective
matter, and the same can be said about other techniques related to ambient occlusion: AO
is not designed to provide a physically accurate output, but to generate believable results
in a very short span of time.

The horizon-based SSAO may have a better visibility hemisphere coverage, but sam-
ples are still procured in a random fashion, which limits the technique to the local rel-
evance of the obtained samples thus being prone to high-frequency noise artifacts. The
presented method attempts to reduce such flickering in a more methodical level, integrat-
ing all possible samples of a subspace, even though this happens onto a more restrictive
coverage field.

Even though some noise can still be noticeable in the images from Figure 5.13 (the
SAT-based image inclusive), high-frequency noise is filtered, leaving only smooth transi-
tions. Such low-frequency variations tend to disappear once shading is incorporated on
top of ambient occlusion, as shown in Figure 5.15.

It is worth pointing that each SSAO technique have its own empirical set of parame-
ters that can be modified. A particular setup in method may alter the output to something
that resembles the default behavior of another one. That being said, even if a result feels
too washed or too strong in one of the images of Figure 5.13, parameters could be modi-
fied to match a desired effect or an expected contrast.
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(a) classic SSAO (noise) (b) classic SSAO (filtered)

(c) horizon SSAO (noise) (d) horizon SSAO (filtered)

(e) proposed SAT-based SSAO (Subsection 5.4.3)

Figure 5.13: Comparative results between traditional SSAO [MITTRING (2007)] (left,
upper row) and horizon-based SSAO [BAVOIL; SAINZ; DIMITROV (2008)] (left, bot-
tom row) before and after the low-pass filter is applied. The right-most image is the
result obtained with the proposed SAT-based SSAO technique (normal-guided with depth
refinement). The SAT-based approach intrinsically performs such filtering along with
accessibility calculation, without incurring into any additional performance penalty.

The real strength of the proposed technique is performance. The following table
summarizes the overall performance of relevant techniques compared to the proposed
one, for a 1024x1024 pixel image (thus with a down sampled depth-buffer of 512x512)
under their respective default/suggested settings.

Traditional: Horizon-based: SAT-based:
[MITTRING (2007)] [BAVOIL et al. (2008)]
[FILION et al. (2008b)] normal-guided and
16 samples; 15x15 blur 16 rays; 8 steps; 15x15 blur depth refined

Speed 130 FPS (≈7.7ms) 90 FPS (≈11ms) 220 FPS (≈4.5ms)

Table 5.1: Performance of different screen-space ambient occlusion techniques.

This performance gain is attributed solely to the GPU-friendly characteristics of
Summed-Area Table generation methods: mainly, stream-based data-flow and coher-
ent memory access, which enhances the hit-ratio of the texture cache. All results of
the proposed method in this document make use of the recursive doubling approach
for SAT generation, with four accumulations per pass. Under the hardware profile em-
ployed, the corresponding SAT of a 1024x1024 single-channel 32bit floating-point texture
(DXGI_FORMAT_R32_FLOAT) takes less than 1ms to be computed.
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(a) SAT-based SSAO (normal-guided with depth-refinement)

(b) SAT-based SSAO with image-
based lighting (IBL)

(c) Phong shading only (d) SAT-based SSAO only (e) Phong and SSAO combined

Figure 5.14: Additional examples of the proposed SAT-based SSAO using the depth re-
finement strategy along with the normal-guided one (Subsection 5.4.3).
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Figure 5.15: The top image represents Phong shading only [PHONG (1975)], without
ambient occlusion information. The subsequent images modulate shading with the mini-
malist, normal-guided and normal-guided with depth refinement approaches, respectively.
Note the increasing introduction of darkening features around the mouth, crest and tail of
the dragon, progressively enhancing the overall depth perception. (Minor contrast ad-
justments were applied to these images in order to highlight shadowing details in printed
media.)
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Finally, the graph depicted in Figure 5.16 shows how the traditional, horizon-based
and SAT-based SSAO methods scale to different target resolution settings, using the same
algorithmic setup from Table 5.1.

Figure 5.16: Performance scalability under increasing image resolutions. Performance
measurements account for all stages, from deferred buffer generation, depth-buffer down-
sampling, accessibility calculations to shading at last.

5.7 Limitations

The proposed SAT-based strategies for SSAO share the same limitations of DÍAZ
et al. (2010): the quality and "‘intensity"’ of the ambient occlusion shadowing is depen-
dent on the overall scene depth (distance between the near and far planes) and geometric
complexity contained in the objects involved. The proper parameter setting is difficult
to be determined analytically and empirical experimentation is necessary for each partic-
ular scene; an artist tailoring a particular scene should be able to determine the proper
parameters and thresholds with some experimentation.

5.8 Conclusion

A modification to the plain screen-space ambient occlusion was introduced. The pro-
posed method provides a more integral sampling strategy, through the use of Summed-
Area Tables, which reduces noise and eliminates additional post-processing addends. The
proposed method incorporates on-the-fly shadow generation as another potential applica-
tion to the versatility currently provided by Summed-Area Tables. A total of three strate-
gies were described, with two of them (normal-guided and depth refinement) improving
on techniques already available in the literature.

Results have convincing image quality while performance is significantly improved
when compared to previous non-SAT attempts. Although other methods have superior
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horizon coverage, the proposed one trades off this for an improved sampling integration;
this is plausible since ambient occlusion itself is not physically accurate thus determining
which one feels more realistic is of subjective matter. Design guidelines were discussed in
order to assist further implementations and maximize pipeline performance. Limitations
were also made explicit and justified within their respective context.

Although the limitations might prevent the technique of being used in final produc-
tion shaders, the performance boost achieved can be helpful to provide faster ambient
occlusion effects during modeling or in asset management tools such as visualizers and
scene editors.

5.9 Related Publications

SLOMP, M.; TAMAKI, T.; KANEDA, K. Screen-Space Ambient Occlusion through
Summed-Area Tables. In: FIRST INTERNATIONAL CONFERENCE ON NETWORK-
ING AND COMPUTING (ICNC), 2010., Los Alamitos, CA, USA. Proceedings. . . IEEE
Computer Society, 2010. p.1–8. (ICNC ’10)
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6 CONCLUSION

This thesis presented GPU-accelerated algorithms for raindrop rendering, ambient
occlusion, SoftAssign-based photomosaic optimization, summed-area table generation
and mesopic vision simulation. All techniques, save for the photomosaic optimization,
can sustain real-time frame rates even in low-end graphics hardware. Even for the case
of photomosaic optimization much more reasonable times were achieved, reducing the
computing time from hours to a few minutes.

The raindrop rendering technique introduced addresses the rendering of spherical
raindrops. Contrary to conventional wisdom, meteorological and physical studies have
shown that in typical rainy conditions the shape of the vast majority of the raindrops is in
fact spherical. From such observation a particle-based technique was devised, rendering
raindrops as screen-aligned quadrilateral sprites. Each sprite samples from a precomputed
vector mask and transforms these vectors in run-time based on the viewing attitude, using
a fragment shader. Standard, highly-optimized features of the graphics hardware were ex-
ploited, such as mip-mapping for efficient interpolation between vector masks at different
distances. The proposed technique is substantially faster than previous attempts, animat-
ing and rendering millions of raindrops in real-time. Although several streak-based rain
rendering techniques already exist, the presented technique is primarily intended for situa-
tions where raindrops move in a slower pace, in which streaks are unable to reproduce the
specular richness of raindrops. These situations are becoming increasingly popular and
include temporal effects such as slow-motion, instant-replays and paused simulations, or
slow-moving raindrops on surfaces or windows.

Photomosaic optimization not only improve the overall quality of photomosaics but
also greatly reduces the amount of necessary tiles for a faithful reproduction. The three
optimization strategies studied – greedy search, simulated annealing and SoftAssign –
can be tailored to impede tiles of appearing repeatedly, thus preventing the photomosaic
of becoming locally biased. The SoftAssign approach was found to offer the best trade-off
between quality and performance. The proposed GPGPU implementation of SoftAssign
mapped on the graphics pipeline achieves speedups of 30x up to 60x when compared to an
optimized CPU implementation, essentially turning long hours of computation into a few
minutes. This “traditional” GPGPU implementation maps particularly well to the GPU,
exploiting texture filtering to accelerate computations; as a result performance advantages
when faced against a CUDA-based GPGPU implementation are up to the order of 2x.
This performance boost is a welcomed feature since identifying the ideal parameter set
for SoftAssign requires experimentation, a laborious, tedious task with little guidelines.
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Another topic covered by this thesis is prefix-sum and summed-area table generation
on the GPU. An improved version of the binary balanced tree algorithm was introduced,
generalizing the process to k-ary balanced trees. This improvement can provide signif-
icant performance gains, but the optimal value for k depends on several characteristics
of the underlying hardware. This requires some experimentation, but once the ideal pa-
rameter is found it can be generally used for that particular hardware without any special
cases. Along with this proposed improvement, another goal of the study is to popular-
ize the balanced tree technique since the graphics community has been oddly unaware
of it, favoring recursive-doubling instead. As demonstrated, the balanced tree approach
is much more work-efficient and attractive on the performance spectrum, with gains up
to 3x. The downside, at least for a GPGPU implementation on current generation hard-
ware, is the amount of intermediate memory required. The proposed extension to k-ary
balanced trees helps to reduce the necessary intermediate memory.

In the Appendix A, an efficient per-pixel approach to reproduce the Purkinje’s blue-
shift effect under mesopic vision conditions was introduced. The filter decouples chromi-
nance adjustments from luminance compression, thus allowing the filter to be used in
conjunction with existing tone mapping operators – given that the operator is able to pro-
vide local absolute measurements of luminance. The blue-shift is simulated by suppress-
ing the responses coming from red intensities according to local luminosity conditions.
These shifts are evaluated based on psychophysical observations and recent physiologi-
cal evidence, and can operate on traditional HDR imagery. The filter can be implemented
entirely on the GPU and introduces a mostly negligible performance overhead to the com-
plete tone-mapping process.

Finally, a modification to the plain screen-space ambient occlusion was introduced.
The proposed method uses Summed-Area Tables to provide a more integral sampling
of a pixel’s depth neighborhood. As a result, noise is greatly reduced, thus eliminating
the need of post-processing low-pass filtering. Three strategies were described, with two
of them, normal-guided and depth-refined, improving on SAT-based SSAO techniques
already present in the literature. Results have convincing image quality and attractive
performance, but the technique is limited to the depth range of the scene presented on
the screen. As the distance between near and far planes increases, the lower will be the
ambient shadows produced at a finer geometric level. This limitation may prevent the
method of being used in final production stage, but the performance is still alluring for
fast ambient occlusion effects during modeling or asset management stages.
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A FAST AND ROBUST SPATIALLY-VARYING MESOPIC
VISION SIMULATION FOR TONE MAPPING OPERATORS

A.1 Abstract

High Dynamic Range (HDR) Imaging is receiving special attention recently due to
its more accurate representation of real-world light intensities. HDR has been successfully
employed in digital photographs, films and in real-time rendered images. HDR capabili-
ties are even being embedded in layman devices such as smart-phones. In order to display
HDR imagery on commodity display devices, tone mapping through either a global or
local operator is necessary. Local operators can preserve much more contrastive details at
the cost of a much more elevated computational cost; real-time performance is challeng-
ing to be achieved with local operators, even when aided by the parallel power of modern
programmable graphics hardware (GPU). Moreover, most tone reproduction operators
focus solely on luminance compression, ignoring other important chromatic characteris-
tics of the Human Visual System (HVS) such as color-shifts under mesopic vision. This
Chapter describes a technique to reproduce mesopic vision in a spatially-varying fashion.
The proposed filter builds upon a previous spatially-uniform mesopic vision filter and an
approximation of the local photographic operator to evaluate mesopic color shifts in a
per-pixel basis. The filter only incurs in a very small performance overhead to the overall
tone mapping process and sustains real-time frame rates in current graphics hardware and
current high-definition screen resolutions. Chrominance alteration happens orthogonally
to luminance compression thus being adaptable to other tone mapping operators as well.



122

A.2 Introduction

High dynamic range (HDR) imaging is becoming an increasingly popular practice in
computer graphics, bringing unprecedented levels of realism to computer-generated im-
agery and rich detail preservation to photographs and films. HDR imagery can embrace
more accurately the wide range of light intensities found in real scenes than its counter-
part, low dynamic range (LDR), which are tailored to the limited intensities of display
devices. Simply put in computer terminology, think of HDR as a very large, continuous
range of intensities encoded in a floating-point representation (but not necessarily), while
LDR translates to coarse, quantized ranges, usually encoded as 8-bit integers and thus
limited to 256 discrete intensities.

An important term in HDR imaging is the dynamic range or contrast ratio of a scene,
representing the distance between the lowest and highest intensity values. Luminance
in the real world typically covers 14 orders of magnitude (dynamic range of 1014 : 1),
ranging from direct sunlight (105 up to 108cd/m2) to shallow starlight (10−3 down to
10−6cd/m2), while typical image formats and commodity display devices can cope with
only 2 up to 4 orders of magnitude (maximum contrast ratio of 104 : 1) [LEDDA et al.
(2005)].

A challenging task on HDR imaging consists in the proper presentation of the large
range of intensities within HDR imagery in the much narrower range supported by dis-
play devices while still preserving contrastive details. This process involves intelligent
luminance (dynamic range) compression techniques, referred to as tone reproduction op-
erators or, more commonly, tone mapping operators (TMO). An example is depicted in
Figure A.1.

(a) No Tone-Mapping (clamped) (b) Global Operator (c) Local Operator

Figure A.1: A comparison between the global and the local variants of the photographic
operator of Reinhard et al. (2002). Local operators are capable of preserving more con-
trastive detail.

The process of tone mapping shares similarities with the light adaptation mechanism
performed by the Human Visual System (HVS), which is also unable to instantly cope
with the wide range of luminosity present in the real world. Even though the HVS is only
capable of handling a small range of about 4 or 5 orders of magnitude at any given time,
it is capable of dynamically and gradually shift the perceptible range up or down, appro-
priately, in order to better enclose the luminosity range of the observed scene [LEDDA;
SANTOS; CHALMERS (2004)]. Display devices, on the other hand, are much more
restrictive, since there is no way to dynamically improve or alter their inherently fixed
dynamic range capabilities.
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Tone mapping operators can be classified as either global (spatially-uniform) or local
(spatially-varying). Global operators process all pixels uniformly with the same param-
eters, while local operators attempt to find an optimal set of parameters for each pixel
individually, often considering a variable-size neighborhood around every pixel; in other
words, the amount of luminance compression is locally adapted to the different regions
of the image. Determining such local vicinities is not straight-forward and may introduce
strong haloing artifacts if not handled carefully. Although all local tone-mapping opera-
tors are prone to this kind of artifacts, good operators try to minimize their occurrence.
Overall, local operators retain superior contrast preservation over global operators, but at
much higher computational costs. Figure A.1 illustrates the visual differences between
each class of operator.

Due to the prohibitive performance overhead of local operators, current HDR-based
real-time applications rely on either global operators or in more simplistic exposure con-
trol techniques. Such exposure mechanisms can be faster than global operators, but are
not as automatic, often requiring extensive manual intervention from artists to tailor the
parameters for each scene and vantage point; worse yet, if objects or light sources are
modified, this entire tedious process would have to be repeated.

Apart from contrast preservation and performance issues, most tone-mapping oper-
ators focus exclusively on luminance compression, ignoring chromatic assets. The HVS,
however, alters color perception according to the overall level of luminosity, categorized
as photopic, mesopic and scotopic. The transition between these ranges is held by the
HVS, stimulating visual cells – cones and rods – according to the overall lighting condi-
tions. Cones are less numerous and less responsive to light than rods, but are sensitive to
colors, quickly adapt to abrupt lighting transitions and provide sharper visual acuity than
rods.

At photopic conditions (think of an outdoor scene at daylight) color perception is
accurate since only cones are being stimulated. When the lighting conditions turn to
scotopic (think of starlight), colors can no longer be discerned because cones become
completely inhibited while rods become fully active. Mesopic vision is a transitory range
in-between where rods and cones are both stimulated simultaneously. At this stage colors
can still be perceived, albeit in a distorted fashion: the responses from red intensities
tend to fade faster, thus producing a peculiar blue-shift phenomenon known as Purkinje
effect [MINNAERT (1954)].

(a) without mesopic vision simulation (b) with mesopic vision simulation (proposed)

Figure A.2: An evening urban scene (a) without mesopic vision simulation and (b) with
the mesopic vision strategy later described in Section A.5. As it can be seen the sky
changes from purple to a more blueish tone, while distant artificial lights shift from red to
orange and yellow.
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Moonlit scenes, for example, present a blueish appearance even though the light be-
ing reflected by the moon from the sun is not anywhere close to blue in nature, but it is ac-
tually redder than sunlight [KHAN; PATTANAIK (2004); HULST (1957)]. Besides this
overall blueish appearance at extreme mesopic vision conditions, the same phenomenon
also causes otherwise red features to appear in a much darker tone, or in an orangeish
or yellowish tone; similarly, purple tonalities tend to be noticed in dark blue colorations.
Refer to Figure A.2 for a depiction of a scene with and without the proposed mesopic
vision filter.

The explanation of such effect comes from the fact that in mesopic conditions rods
respond better to short wavelengths (blue) stimuli than long and medium wavelengths
(red, yellow, green). As the overall luminosity conditions dim, but before rods completely
take over the visual system (scotopic vision), color perception shifts towards the currently
most sensible rod’s wavelengths, that is, around blue.

Mesopic vision reproduction for computer-generated images has immediate applica-
tion on artistic assets and architectural lighting design. Perhaps an even more relevant
application is on road engineering and signalization planning, by reproducing the overall
experience of drivers subjected to adverse lighting conditions.

This Chapter focuses on a novel, fast and universal perceptually-based method to
reproduce color shifts under mesopic vision conditions. The method builds upon ini-
tial investigations of MIKAMO et al. (2009), who suggested the use of perceptual met-
rics for mesopic vision reproduction derived from the psychophysical experiments per-
formed by IKEDA; ASHIZAWA (1991). The proposed filter extends the former in a
spatially-varying fashion, that is, performing mesopic color-shifts in a per-pixel basis.
This spatially-varying characteristic allows for much more plausible results when strong
highlights or light sources are present in the scene. The filter uses the local variant of
the photographic tone mapping operator of REINHARD et al. (2002) as its foundation
to evaluate local average luminosity for each pixel. The photographic operator has many
attractivenesses, but the two main reasons on why it is employed here are: a) its real-
time performance when approximated by Summed-Area Tables [SLOMP; OLIVEIRA
(2008)]; and b) its perceptually-driven approach for identifying local luminosities through
the evaluation of a brightness perception model [BLOMMAERT; MARTENS (1990)].
This does not mean that the proposed filter is bound exclusively to the photographic op-
erator; the filter can also be adapted to suit other tone mapping operators since the chro-
matic adjustments happen decoupled from luminance compression. The filter imposes a
tiny performance overhead to the overall tone-mapping process, hence being friendly to
real-time applications.

A.3 Related Work

A proper sound review on tone-reproduction operators would consume several pages
of this document, since the available literature is vast and rich. Therefore, this background
review section will focus on pertinent research related to real-time local tone-mapping as
well as mesopic vision simulation. The curious reader is referred to REINHARD et al.
(2010) for an extensive survey on tone-mapping and HDR imaging techniques.
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A.3.1 Real-time Local Tone-mapping

Local operators, due to the varying-size filtering and halo-avoidance requirements,
impose great challenge for faithful real-time implementations, even with parallel power
of modern programmable graphics hardware (GPU). From all existing TMOs, the photo-
graphic operator introduced by REINHARD et al. (2002) has received special attention
from researchers and practitioners, mainly due to its simplicity (few parameters), au-
tomaticity (no user intervention), robustness (extreme dynamic ranges) and perceptually-
driven approach (local adaption is guided by an HVS-based brightness perception model).
There are two variants of the operator, a global and a local one. The photographic operator
is reviewed in Section A.3.3.

The local variant of the photographic operator, at its core, makes use of differences of
Gaussian-filtered (DoG) luminance images at various scales. Unfortunately, convolving
an image with variable-size Gaussian kernels is a computationally demanding operation.
Several attempts were made to accelerate this filtering to provide real-time frame rates.

GOODNIGHT et al. (2003) investigated the implementation of local operators on
GPU. Their best result was with the photographic operator, where they implemented the
2D Gaussian convolution using separable 1D kernels in a two-stage approach. Their im-
plementation is by no means naïve, but makes clever use of the efficient 4-component
vector dot product instruction provided by GPU architectures. This reduces the number
of required filtering passes and thus achieves better performance. Despite all their opti-
mization efforts, the technique only runs at interactive rates when using a small subset
of the originally required adaptation scales (i.e., the first few Gaussian-filtered luminance
images at small convolution profile sizes; see Section A.3.3). A limited number of adap-
tation zones gradually causes the operator to fall-back to the global variant case, thus
sacrificing important contrastive details (see Figure A.3-b).

KRAWCZYK; MYSZKOWSKI; SEIDEL (2005) proposed an approximation for the
local photographic operator on the GPU. The Gaussian-filtered luminance images are
downsampled to 1/4, 1/16, and 1/64 of their original size. Convolutions are then performed
using smaller approximate Gaussian kernels of fixed size (always 7 pixels wide), with
intermediate filtered results being reused. The blurred images are then upsampled back
to the original size prior to evaluating the DoG model. This strategy significantly speeds
up the operator, but not without inherent limitations: there is excessive blurring across
high contrast edges being caused by the downsampling-upsampling process, potentially
introducing noticeable halo artifacts (see Figure A.3-c). Besides these shortcomings, their
main contributions concentrate on reproducing perceptual effects such as temporal lumi-
nosity adaptation, glare and loss of vision acuity.

SLOMP; OLIVEIRA (2008) replaced the expensive variable-size Gaussian convolu-
tions of the operator with box-filtering powered by Summed-Area Tables (SAT) [CROW
(1984)]. Summed-Area Tables allow arbitrary rectangular portions of an image to be
efficiently box-filtered in constant time O(1). Although box-filtering provides a very
crude approximation of Gaussian-filtering, within the context of the photographic oper-
ator results are nearly indistinguishable from the original operator, as demonstrated in
Figure A.3-d. It is worth mentioning that box-weighted kernels were also used in the
context of tone mapping by PATTANAIK; YEE (2002) in their bilateral-filtering algo-
rithm. The process of SAT generation can be efficiently implemented on the GPU, thus
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not only mitigating the occurrence of halos, but also substantially accelerating the op-
erator, even when compared against the fast method of KRAWCZYK; MYSZKOWSKI;
SEIDEL (2005). A review on SAT and their generation is provided in Sections 4.2, 4.3
and 4.5.

(a) REINHARD et al. (2002) (b) GOODNIGHT et al. (2003) (c) KRAWCZYK et al. (2005) (d) SLOMP; OLIVEIRA (2008)

Figure A.3: Comparison between different implementations of the local photographic
operator. Note that words vanished from the book in (b), and halos appeared around the
lamp in (c).

A.3.2 Mesopic Vision Simulation

Despite luminance compression, many tone mapping operators have concentrated
efforts on reproducing perceptual effects recurrent from the HVS, most notably: temporal
luminosity adaption, scotopic vision simulation, loss of visual acuity, and glare. The
literature on these topics is broad; refer to REINHARD et al. (2010) for examples of each
category. However, and quite surprising, very little has been done on reproducing mesopic
vision; below is a summary of the most remarkable research related to mesopic vision in
tone reproduction.

DURAND; DORSEY (2000) have specialized the rod-cone interaction model of FER-
WERDA et al. (1996) to better suit night scenes, adding support for chromatic adaptation
and color shifts, among other effects. Even though the method does not explicitly address
mesopic vision, the underlying framework can be tunned to handle specific subranges of
mesopic vision with some degree of fidelity, but not without some user interaction. The
technique is fast and runs at interactive rates since it inherits the same global characteris-
tics of FERWERDA et al. (1996).

KHAN; PATTANAIK (2004) have also proposed a blue-shift filter based on rod-
cone interaction. Their technique is designed primarily for moonlit scenes, without the
intervention of artificial light sources. Overall, the method tends to introduce very strong
blue hues on the scene, almost completely mitigating other color tones. This is due to their
hypothesis that only short wavelength cones (blue) would respond to light in a naturally
moonlit scene. The technique itself does not rely on HDR imagery and therefore can not
be classified as a TMO.
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MIKAMO et al. (2009) presented an efficient and universal mesopic vision filter for
existing tone mapping operators. Based on the overall average luminance of a scene,
the blue-shift is evaluated by suppressing the response of red intensities. The amount of
color shift is determined by a global coefficient evaluated through a normalized equivalent
lightness curve. The equivalent lightness curve employed comes from the psychophysical
experiments of IKEDA; ASHIZAWA (1991) and covers the entire mesopic vision range
systematically. The filter is universal since chrominance adjustments are decoupled from
luminance compression, thus being suitable for any existing tone mapping operator. The
filter introduces only a small performance overhead to the entire tone mapping pipeline.
Traditional HDR imagery can be targeted without the need of more sophisticated – and
less available – HDR image formats. The only drawback is the spatially-uniform na-
ture of the filter which is prone of producing unconvincing results when light sources or
strong highlights are present in the scene. This filter is reviewed in Section A.5; more
specifically, in Section A.5.4.

KIRK; O’BRIEN (2011) have proposed a color shift model for mesopic vision, build-
ing upon the biological model and fitting experiments of CAO et al. (2008). Their model
can be combined with existing TMO since chrominance adaptation is decoupled from
luminance compression. The chrominance adaption strategy itself is spatially-uniform
(global), but nonetheless computationally demanding and incompatible with interactive
frame rates. The overhead comes from the fact that spectral information is required; in
other words, the input images must be capable of approximating the continuous distribu-
tion of energy at every pixel using some higher dimensional representation. Moreover, the
method assumes that the spectral sensitivity of the camera is known; if not provided by the
manufacturer, a calibration procedure is required to estimate the sensitivity. Traditional
HDR imagery can also be targeted, although not without first estimating the unknown
spectral distribution.

The mesopic vision filter to be introduced in this Chapter extends the filter of MIKAMO
et al. (2009) in a spatially-varying fashion. All of the aforementioned advantages of the
original global filter are kept. The proposed filters makes use of the local variant of the
photographic operator to efficiently estimate local area luminances and thus evaluates
color-shifts in a per-pixel basis. Even though the results for the filter in this Chapter are
based on the photographic operator, the filter can be applied to other operators as well –
that is, given that the operator is able to provide local measurements of luminance. The
performance overhead incurred to the entire tone mapping process is most likely negligi-
ble. The proposed spatially-varying filter is described in Section A.5; more specifically,
in Section A.5.5.

A.3.3 Review of the Photographic Tone Reproduction Operator

REINHARD et al. (2002) digital photographic operator uses a photographic tech-
nique called Zone Systems [ADAMS (1983)] as a conceptual framework to manage lumi-
nance compression. The goal is to map the key-value (subjective predominant intensity)
of a scene to the middle-gray tone of the printing medium (middle-intensity of the display
device in this case) and then linearly rescaling the remaining intensities accordingly. This
can be intuitively thought as setting an exposure range in a digital camera. An overview
of the operator is shown in Figure A.4.
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Given an HDR image, a good estimation for its key-value is the geometric average
(log-average) of its luminances, which is less susceptible to small outliers than plain
arithmetic average:

L̃ = exp

(
1

N

∑
x,y

log(L(x, y) + δ)

)
(A.1)

where N is the number of pixels in the image, L(x, y) is the luminance at the pixel with
coordinates (x, y), and δ is a small constant (i.e., δ = 0.00001) to prevent the undefined
log(0).

Each pixel luminance is then scaled based on the Zone System printing zones, with
the estimated key-value L̃ being mapped to the middle-grey range:

Lr(x, y) = L(x, y)
α

L̃
(A.2)

where α = 0.18 for average-key scenes (akin to automatic exposure control systems
present in digital cameras [GOODNIGHT et al. (2003)]). For high-key and low-key
scenes, the parameter α has to be tweaked, but an automatic estimation strategy is de-
scribed by REINHARD (2003).

For the global-variant of the operator, each relative luminance Lr(x, y) is mapped to
a normalized displayable range Ld(x, y) ∈ [0, 1) as follows:

Ld(x, y) =
Lr(x, y)

1 + Lr(x, y)
(A.3)

This global operator is prone to conceal contrastive detail. A better approach is to lo-
cally adapt the contrast of each region, individually, similar to photographic dodging-
and-burning:

Ld(x, y) =
Lr(x, y)

1 + Lsmax
r (x, y)

(A.4)

where Lsmax
r (x, y) is the Gaussian-weighted average of the largest isoluminant region

smax around each isolated pixel where no substantial luminance variation occur. The term
Lsmax
r (x, y) can be more intuitively thought as a measurement of local area luminance

around a pixel. It is imperative to judiciously determine these isoluminant regions because
otherwise strong haloing artifacts are prone to appear around high-contrast edges of the
image.

Figure A.4: Overview of the photographic tone mapping operator of REINHARD et al.
(2002). The input Y is the HDR luminance (L(x, y)) and the output Y ′ is the compressed
luminance (Ld(x, y)).
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The dodging-and-burning approach of the local photographic operator uses differ-
ences of Gaussian-filtered (DoG) portions of the scaled luminance image Lr(x, y) at in-
creasing sizes to iteratively search for these optimal isoluminant regions, according to the
following expression:

Vs(x, y) =
Lsr(x, y)− Ls+1

r (x, y)

2φα/s2 + Lsr(x, y)
(A.5)

where φ is a sharpening factor, and defaults to φ = 8. The term Lsr(x, y) corresponds to a
center-surround Gaussian-blurred image, formally:

Lsr(x, y) = Lr(x, y)⊗Gaussians(x, y) (A.6)

where the operator ⊗ denotes the kernel convolution operation and Gaussians(x, y) is
a Gaussian convolution profile of some scale s centered at pixel coordinates (x, y). The
choice for this DoG-based model is not arbitrary and closely follows the human bright-
ness perception model and psychophysical experiments of BLOMMAERT; MARTENS
(1990).

Finally, the largest isoluminant scale smax is found by thresholding the Gaussian
differences Vs(x, y) obtained from Equation A.5 against the following expression:

smax : |Vsmax(x, y)| < ε (A.7)

where ε = 0.05 proved to be a good thresholding choice through empirical experimenta-
tion, according to REINHARD et al. (2002).

Starting from the initial scaled luminance image Lr(x, y) of Equation A.2, subse-
quent blurred images Lsr(x, y) are produced according to Equation A.6 with a kernel about
1.6 times larger than the previous one. This particular scaling factor makes the DoG model
resemble a Laplacian of Gaussian filter (refer to REINHARD et al. (2002) for additional
details), but can be slightly modified in order to better fit the center-surround convolution
profiles. As the differences Vs(x, y) are computed according to Equation A.5, they are
thresholded against Equation A.7, stopping as soon as the condition fails. The largest
scale is selected if the threshold condition is never reached. In the end, the estimated local
area luminance Lsmax

r (x, y) is plugged back into Equation A.4 for tone mapping.

In general, a total of eight scales (and therefore a total of seven DoG) is sufficient for
most situations, but more or less scales can be employed depending on the dynamic range
of the input image. The suggested kernel length (not radius) in pixels, at both horizontal
and vertical directions, of the first eight center-surround profiles are: 1, 3, 5, 7, 11, 17, 27
and 41.

Color information can be removed prior to luminance compression and inserted back
afterwards by using the Y xy deviation of the CIE XY Z color space [HOFFMANN
(2000)]. The Y xy color space is capable of separating luminance and chrominance com-
ponents. This decolorization and recoloring process is also depicted in the diagram of
Figure A.4. Once promoted from RGB to the Y xy color space, the Y component of
the Y xy triplet represents the luminance, and directly binds to the luminance function
L(x, y). At the end, the compressed luminance Y ′ (that is, Ld(x, y)) simply replaces the
original uncompressed luminance Y in the original Y xy triplet, with the chrominance
components xy kept intact: Y ′xy.
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A.4 Photographic Local Tone Mapping with Summed-Area Tables

The approximation proposed by SLOMP; OLIVEIRA (2008) to the local photo-
graphic operator of REINHARD et al. (2002) suggests the replacement of the costly
variable-size Gaussian-filtering by box-filtering. This means that the Equation A.6 of
Section A.3.3 gets replaced by:

Lsr(x, y) ≈ Lr(x, y)⊗Boxs(x, y) (A.8)

Box-filtering can be efficiently performed through Summed-Area Tables at a fraction of
the cost of Gaussian convolutions, requiring only four SAT lookups for any kernel scale
s. The input table is, in this case, Lr from Equation A.2, and the corresponding SAT will
be referred to as SAT [Lr]. Equation A.8 is then rewritten as:

Lsr(x, y) ≈ SAT [Lr]s(x, y) (A.9)

where SAT [Lr]s(x, y) box-filters a square-shape region of Lr centered around the pixel
location (x, y) at some scale s using only the contents of the SAT [Lr] itself; in other
words, the four pertinent cells of the SAT are fetched and filtering follows as depicted in
Figure 4.1-cd.

The set of differences Vs(x, y) from Equation A.5 are performed without any struc-
tural alteration, the only change being that Lsr(x, y) and Ls+1

r (x, y) now amount to box-
filtered portions of the scaled luminance image instead of the Gaussian-filtered regions.
An overview of the modified local photographic operator is shown in Figure A.5.

Figure A.5: Overview of the SAT-based local photographic operator of SLOMP;
OLIVEIRA (2008).

Visually, results produced with this box-filtering approximation proved to be com-
parable to the original operator (see Figure A.3-ad). Quantitative analysis using the S-
CIELAB metric of ZHANG; WANDELL (1997) was also evaluated in the paper by SLOMP;
OLIVEIRA (2008). Typically, the same originally devised filtering scales (listed at the
end of Section A.3.3) and threshold ε = 0.05 from Equation A.7 can be used. However,
since box filters weight the contributions equally, they are more prone to noticeable halos
than Gaussian filters of the same scale, which gradually reduces the weights towards the
limits of the profiles. If such artifacts become apparent, the authors suggest reducing the
threshold ε down to 0.0025.

A.4.1 Generating the Scaled Luminance Image on the GPU

Prior to SAT generation, the scaled luminance image Lr should be computed. This
process is fairly straight-forward and can be mapped entirely to the GPU. Initially, the
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input HDR image is placed into a float-precision RGB texture (in the case of synthesized
3D scenes, the entire scene is rendered in such texture target), as depicted in Figure A.6-a.

Following that theRGB texture is rendered into a luminance-only (single-channeled)
float-precision texture using a full texture-aligned quad. At this stage, each RGB pixel is
converted to the XY Z color space, but only the logarithm of the luminance component
Y (plus some δ) is stored in this new texture. This corresponds precisely to the internal
summation component of Equation A.1. The summation and average can be evaluated
with a full mip-map reduction of this log-luminance image: the single texel of the last
mip-map level will be the key-value L̃ from Equation A.1, except for the exponentiation.
These steps are shown in Figure A.6-bc.

(a) input HDR RGB image (b) log-luminance (c) mipmap (d) scaled luminance Lr

Figure A.6: Efficient generation of the scaled luminance image Lr on the GPU. The
logarithm of the luminance (b) of the input image (a) is submitted to a mip-mapping
reduction stage (c) and then used to produce the scaled luminance image (d).

Modern graphics hardware and API expose functionalities for automatic and efficient
mip-mapping generation (i.e., glGenerateMipMaps() in OpenGL). If not supported,
the process can be easily emulated on a multi-pass shader approach. Even when available,
however, it might be worth implementing a shader-based mip-mapping and take advan-
tage of bilinear filtering capabilities of the GPU, given that the hardware supports bilinear
filtering on float-precision textures. By doing so, 16 texels instead of only 4 can be accu-
mulated and averaged per pass. The intermediate mip-map levels are not relevant in this
context; only the last one is useful. Besides performance enhancements this also reduces
memory consumption.

A source of issues to keep in mind is the use of non-power-of-two (NPOT) tex-
tures. Current hardware and API have support for NPOT textures, but the implementation
may fail to run in older configurations. Padding to the closest POT texture is a robust
and popular solution, but at the cost of additional memory. Even with support to NPOT
textures, accommodating the NPOT textures into padded POT textures can incur in ex-
tra performance gains since the graphics hardware is particularly tailored to handle POT
textures more efficiently. If padded textures are used, caution must be taken during the
mip-mapping generation to discard the contribution of pixels that lie in the padded region.

Once the mip-map reduction is performed there are essentially two ways of exporting
the key-value L̃ to other stages. The first one is to download the single texel of the last
mip-map level from GPU memory to CPU memory, apply the exponentiation function in
the CPU, and bind it as an uniform shader parameter to subsequent stages. The second one
is to repeatedly sample this texel as needed through shader-level texture access routines
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and apply the exponentiation in the shader once the routine returns. The latter is more at-
tractive since reading-back from graphics memory is a synchronous process likely to stall
the whole pipeline. One can also apply a dedicated shader to evaluate the exponentiation
along with the final reduction.

Finally, a final full texture pass is performed and targeted to yet another luminance-
only float-precision texture, this time evaluating Equation A.2. The term L(x, y) is ob-
tained by once again sampling the RGB texture and converting the pixels to the XY Z
color space. The key-value L̃ is accessible through the last log-luminance mip-map level,
remembering to take the exponentiation once the texel is fetched. The parameter α is an
application-controlled uniform shader parameter. In fact, the base log-luminance texture
can be used here as the render target, since it is no longer required by the operator, thus
alleviating memory requirements. Refer to Figure A.6-d for a depiction of the resulting
scaled luminance image.

At this point, the scaled luminance textureLr can be either used directly on the global
operator or submitted to an efficient SAT generation stage (see Chapter 4.2) from which
the resulting SAT can be used to approximate the local operator, as described earlier in
Section A.4.

A.5 Mesopic Vision Simulation

This Section reviews the spatially-uniform mesopic filter of MIKAMO et al. (2009)
and introduces the proposed spatially-varying extension. These two filters are described
in Sections A.5.4 and|A.5.5, respectively.

In order to reproduce Purkinje’s blue-shift effect, the mesopic filter of MIKAMO
et al. (2009) requires some quantitative estimation on how individual color responses
tend to change under mesopic vision conditions. Following that, it is important to be
able of reproducing such changes in some HVS-compatible and perceptually-uniform
fashion. Therefore, before the proposed mesopic vision operators are properly introduced
in Sections A.5.3- A.5.5, a discussion on psychophysical subjective luminosity perception
and opponent-color spaces will be presented in Sections A.5.1 and A.5.2.

A.5.1 Equivalent Lightness Curve

IKEDA; ASHIZAWA (1991) have performed a number of subjective luminosity per-
ception experiments under various lighting conditions. In these experiments, subjects
were exposed to a special isoluminant room where different glossy colored cards1 were
presented to them. Once adapted to the different levels of luminosity, the subjects were
asked to match the brightness of the colored cards against particular shades of gray dis-
tributed in a scale4. From the data analysis, several curves of equivalent lightness were
plotted, depicting how the experienced responses of different colors varied with respect
to the isoluminant room conditions. The results can be compiled into a single equivalent
lightness response chart, as shown in Figure A.7.

As can be observed in the curves, as the overall luminosity decreases, red intensities

1Standard, highly calibrated color/gray chips and scale produced by Japan Color Research Institute.
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Figure A.7: Equivalent lightness curve for red and blue according to the experiments
of IKEDA; ASHIZAWA (1991). These curves summarize the experienced relative bright-
ness from several colored cards against gray-scale patterns in different isoluminant envi-
ronment conditions by several test subjects.

produce much lower lightness responses than blue intensities, which only slightly varies.
This behavior implicitly adheres to the expected characteristics of the Purkinje’s effect,
that is, the tendency of the HVS to favor blue tonalities at low lighting conditions. Since
blue responses are barely affected, finding adequate lowering factors mainly for red re-
sponses should be a sufficient approximation, which is the key idea behind the proposed
mesopic filters.

The red response curve of Figure A.7 can be approximated by the expression below:

E(I) =
70

1 + (10/I)0.383
+ 22 (A.10)

The range of interest is the mesopic vision range, that is to say, between 0.01 lx and
10 lx. If the equivalent lightness of some overall luminosity E(λ) is normalized against
the equivalent lightness of the triggering luminance of the mesopic vision range E(10),
then the result will yield a coefficient ρ that indicates, in relative terms, how much the
response coming from red intensities at such lighting conditions lowers with respect to
the starting range E(10):

ρ(λ) =
E(λ)

E(10)
(A.11)

In other words, if ρ(λ) ≥ 1, the overall luminosity offers photopic conditions and chromi-
nances do not need to be altered. However, if ρ(λ) < 1 then the overall luminosity lies
in the mesopic vision range, and ρ(λ) gracefully provides a normalized relative mea-
surement of how much red components should be scaled down in order to reproduce
the expected experienced response. These two conditions can be handled uniformly by
clamping ρ(λ) to [0, 1].

A.5.2 Opponent-Color Theory and the L∗a∗b∗ Color Space

Recent physiological experiments by CAO et al. (2008) have shown that mesopic
color-shifts happen in the opponent-color systems of the Human Visual System, and that
these shifts change linearly with the input stimuli. The initial hypothesis behind opponent-
color theory in the HVS was proffered by German physiologist Karl Ewald Konstantin
Hering and later validated by HURVICH; JAMESON (1955). The key concept is that
particular pairs of colors tend to nullify each other responses in the HVS and thus can not
to be noticed simultaneously.



134

Color perception in the HVS is guided by the joint activity of two independent oppo-
nent systems: red versus green and yellow versus blue. A plot of these opponent response
curves is shown in Figure A.8-a, based on the experiments of HURVICH; JAMESON
(1955). Interestingly, luminance perception is also controlled by another opponent sys-
tem: white versus black.

(a) HVS opponent-colors: wavelength × response (b) L∗a∗b∗ opponent-color space

Figure A.8: Opponent chromatic response of the HVS (a), and the L∗a∗b∗ color space (b).

Physiologically speaking, these systems are dictated by opponent neurons which ap-
propriately produce a chain of excitatory and inhibitory responses between the two com-
ponents of each individual system. Numerically this models to positive feedbacks at some
wavelengths being interfered concurrently by negative impulses at their counterparts.

Several color spaces were established based upon opponent-color schemes. The
CIE L∗a∗b∗ (Figure A.8-b) is remarkably one of the best known and widely used of
such color spaces since it gauges color distances in a compatible perceptually-uniform
(linear) fashion with respect to the Human Visual System. The L∗ component repre-
sents a relative measurement of luminance (thus can not be expressed in cd/m2), while
a∗ relates to a red-green opponent system and b∗ to a blue-yellow opponent system. For
simplicity, throughout the remaining of this Section the CIE L∗a∗b∗ color space will be
shortly referred to as Lab.

The spatially-uniform mesopic vision filter of MIKAMO et al. (2009) – to be in-
troduced in the following Subsection – make use of the Lab color space. Consequently,
the proposed spatially-varying filter also makes use of the same color space. The choice
for an opponent-color system to apply the color-shifts is supported by the physiological
observations of CAO et al. (2008); the Lab space itself was selected because it offers the
desired perceptually linear characteristics. Even though external light stimuli is directly
received by red-green-blue cone-shaped sensors in the retina, the experienced perceived
color comes from the activity of opponent-color systems wired to these primaries.

A.5.3 Overview of the Mesopic Vision Reproduction Operator

The mesopic vision filter for digital images of MIKAMO et al. (2009) is derived
directly from the lightness response curve specialized for mesopic vision of Equation A.10
and from the perceptually-uniform Lab color space. Given a pixel represented in some
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color space (i.e., RGB), the process begin by promoting the pixel to the Lab color space.

A Lab pixel holding a positive quantity at its a component is actually holding some
red intensity (negative a means green, see Figure A.8). Now, if the overall luminosity
condition suggests mesopic vision (that is, ρ(λ) < 1) then this red (positive-a) component
should modulated by the normalized coefficient ρ(λ) obtained from Equation A.11:

a′ = a ρ(λ) (A.12)

and this modified quantity a′ replaces the original a in the Lab triplet, yielding to La′b.
This can then be converted back to the initial color space (i.e., RGB) or to any other
color-space for presentation purposes.

In order to integrate these chrominance adjustments with HDR luminance compres-
sion, another color space must be used as an intermediate, preferentially one that can
decouple luminance from chrominance. The Lab space itself is one of such spaces, but
since the component L comprises only a relative measurement of luminance, this may
cause incompatibilities with tone mapping operators that require proportionally equiva-
lent absolute quantities. The Y xy deviation of the CIE XY Z color space is up to this
task [HOFFMANN (2000)].

The general algorithm for the filter can be summarized in the following steps:

1. obtain a measurement of the overall luminosity – λ – (Sections A.5.4 and A.5.5)

2. compute the red response coefficient for this luminosity – ρ(λ) – (Equation A.11)

3. transform the original HDR pixels to the Lab color space

4. perform the blue-shift by altering the red (positive-a) component – a′ – (Equa-
tion A.12)

5. transform the modified La′b pixels to the Y xy color space

6. compress the HDR pixel luminance Y using some TMO, yielding to Y ′

7. replace the HDR pixel luminance Y by the compressed pixel luminance Y ′

8. transform the modified Y xy pixels to the color space of the display device

MIKAMO et al. (2009) evaluated the average isoluminant λ for the step 1 above in a
spatially-uniform (per-scene, global) fashion, as will be described in Section A.5.4. The
proposed spatially-varying extension computes an individual average isoluminant λ(x, y)
for each pixel of the image, and will be introduced in Section A.5.5.

A.5.4 Spatially-Uniform Mesopic Vision Reproduction Operator

MIKAMO et al. (2009) observed that one way to determine the overall luminosity of
a scene is through the log-average luminance (as reviewed in Section A.3.3). However,
although this log-average is a suitable candidate, the authors have found that this log-
average has the tendency of placing relatively bright images very low into the mesopic
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range scale. For that reason, MIKAMO et al. (2009) opted for a simple arithmetic aver-
age of the luminances and realized that this produced more plausible indications for the
global mesopic scale. This arithmetic average is also more compatible with the equivalent
lightness curve of Section A.5.1 which is plotted based on absolute luminosity quantities.

Figure A.9: Overview of the spatially-uniform mesopic vision reproduction filter.

Computing the arithmetic average of the luminances is straight-forward on GPU
by using the same mip-map reduction strategy described in Section A.4.1. It is possi-
ble to produce this average in advance along with the log-average by reformatting the
base log-luminance texture with an additional channel to hold the absolute luminance
(GL_LUMINANCE_ALPHA32F).

Once evaluated, the average serves as a measurement for the overall luminosity of
the entire scene and the algorithm follows as listed in Section A.5.3, applying the same
response coefficient ρ(Yavg) to all pixels, uniformly. The process is illustrated in Fig-
ure A.9. An example of this spatially-uniform mesopic filter is shown in Figure A.10-b.
Refer to Section A.6 for more examples.

(a) without mesopic simulation (b) spatially-uniform mesopic (c) spatially-varying mesopic

Figure A.10: Comparison between an image without mesopic simulation (a), with global
mesopic filter (b) and per-pixel mesopic filter (c). All red intensities shift toward or-
ange/yellow in (b), while only those not sufficiently bright enough change in (c) like the
light reflex in the leftmost wall. Also note that purple tones shifted towards a more blueish
hue in the mesopic images.

A.5.5 Spatially-Varying Mesopic Vision Reproduction Operator

The main disadvantage of the spatially-uniform filter of MIKAMO et al. (2009) be-
comes clear when strong red-hued light sources are present in the scene, as is the case of
Figure A.10. When the overall luminosity suggests mesopic vision, the intensity coming



137

from such light sources will be inadvertently suppressed, regardless of their own local
intensity; even worse, the higher the intensity, the larger the shift will be. Red light traffic
semaphores, neon lights and rear car lights, for example, still hold perceptually strong red
intensities which are not noticed as yellow by an external observer, even at the dimmest
surrounding lighting conditions. An even more extreme example would be a digital alarm
clock equipped with red LEDs: even in complete darkness the LEDs are still perceived
as red. This leads to the design of a variant filter that is capable of reproducing mesopic
vision in a local, spatially-varying fashion.

In order to counter-act the effects described above, per-pixel local area luminance
must be inspected. The good news is that such local measurement is already available
from the local variant of the photographic tone mapping operator (Lsmax

r (x, y)). The bad
news is that this quantity is based on the relative scaled luminance image Lr of Equa-
tion A.2, and thus incompatible with the absolute scale of the equivalent lightness curve
from Section A.5.1.

Fortunately, the scale can be nullified with the inverse function of the scaled lumi-
nance Lr:

L−1
r (x, y) = Lr(x, y)

L̃

α
= L(x, y) (A.13)

The formula above can be generalized to filtered versions of Lr(x, y) at any scale s:

Lsr(x, y)
L̃

α
= Ls(x, y) (A.14)

Hence, plugging the scaled local area luminance Lsmax
r (x, y) in the expression above

yields to Lsmax(x, y), which is the absolute local area luminance. This quantity is now
compatible with the equivalent lightness curve, and it is now possible to determine indi-
vidual response coefficients ρ(Lsmax(x, y)) for each pixel (x, y), thus enabling localized
mesopic adjustments.

An overview of this spatially-varying mesopic filter is depicted in Figure A.11. The
application of the filter on a real image in shown in Figure A.10-c; more examples are
provided in Section A.6.

Figure A.11: Overview of the spatially-varying mesopic vision reproduction filter.

The spatially-varying mesopic filter is structurally simpler than the spatially-uniform
one since no additional data need to be assembled. The filter is, however, strongly at-
tached to the framework provided by the photographic operator. Although no other local
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TMO was explored, most local operators perform estimations of local pixel averages and
hence should be able to offer such information and feed it through the filter pipeline of
Figure A.11.

An advantage of using the local photographic operator over other local operators
for the localized mesopic reproduction is the fact that per-pixel local area luminances are
searched through an HVS-based brightness perception model [BLOMMAERT; MARTENS
(1990)]. This means that the chromatic adjustments follow some perceptual guidelines,
while other operators may not rely at all on HVS features and thus become less suitable
for a proper mesopic reproduction.
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A.6 Results

This Section analyzes the performance impact of both mesopic filters, spatially-
uniform and spatially-varying, on a tone mapping pipeline. Additional examples of the
filters described in Section A.5 are also available in Figures A.16 and A.17.

The system configurations and hardware profiles investigated are listed below:

1. Windows 7 Enterprise 32bit SP1 running on an Intel(R) Core(TM)2 Quad CPU
Q9499 2.66GHz with 4GB RAM equipped with a NVIDIA GeForce GTX 280 with
1GB VRAM (240 shader cores at 1107MHz, memory at 1296MHz, WHQL Driver
280.26)

2. Windows 7 Enterprise 32bit SP1 running on an Intel(R) Core(TM)2 Quad CPU
Q8200 2.33GHz with 4GB RAM equipped with a NVIDIA GeForce 9800 GT
with 512MB VRAM (112 shader cores at 1500MHz, memory at 900MHz, WHQL
Driver 280.26)

3. Windows XP Professional x64 Edition SP2 running on an Intel(R) Xeon(R) CPU
W3520 2.67GHz with 8GB RAM equipped with an ATI FirePro 3D V3700 with
256MB VRAM (40 shader cores at 800MHz, memory at 950MHz, WHQL Catalyst
Driver v8.85.7.1)

The main program was implemented in C++, compiled and linked with Visual C++
Professional 2010. The graphics API of choice was OpenGL and all shaders were im-
plemented in conformance to the feature-set of the OpenGL Shading Language (GLSL)
version 1.20. A diagram depicting all the stages of the program for the display of a com-
plete frame on the screen is presented in Figure A.12.

Figure A.12: Overview of all the stages implemented in the demo program for the display
of a complete frame.

All performance times in this Section are given in milliseconds. Full-frame times
were captured with performance counters from the Win32 API and double-checked with
the free version of Fraps 3.4.6. Intra-frame performance was profiled using OpenGL
Timer Query Objects (GL_ARB_timer_query). Performance results were recorded
through multiple executions of the program from which outliers were removed and the
average was taken.

Performance times for the tone mapping stage alone (i.e., only for the blue-box of
Figure A.12) with and without the mesopic simulation are shown in Figure A.13. The
relative overhead introduced to the tone mapping operator alone by the spatially-varying
mesopic filter is shown in Figure A.15. Complete frame times are shown in Figure A.14,
accounting for all the stages depicted in Figure A.12 with the spatially-varying mesopic
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filter activated. These times are all explicitly listed in Table A.1, save for time spent
on presentation assets and for the SAT generation time which was already inspected in
Section 4.7; speaking of SAT generation, the full frame performance was profiled using
the balanced tree approach with k = 4.

From Figure A.15 one can see that the overhead introduced by the spatially-varying
mesopic filter tends to amount to about 16% up to 19% of the original execution time of
the operator without the filter (8% for the ATI FirePro 3D V3700). Most of this overhead
is coming from the non-linear Y xy to Lab color conversions (and vice-versa) inside the
tone mapping shader. Note that this overhead is being measured relative to the tone map-
ping stage alone; putting it on a full-frame scale the overhead is most likely negligible.

Figure A.13: Performance of the tone map-
ping stage alone, with and without the
mesopic filters.

Figure A.14: Performance times accounting
for all the stages presented in Figure A.12
required for a full-frame display.

Figure A.15: Overhead of the spatially-varying mesopic filter to the tone mapping stage.
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Figure A.16: Examples of the spatially-uniform and spatially-varying mesopic filters.
The first row of the top images is without the filter, the second row is the spatially-uniform
filter and the third row is the spatially-varying filter; similarly for the images at the bottom,
but arranged in columns instead of in rows.
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Figure A.17: More examples of the spatially-uniform and spatially-varying mesopic fil-
ters. The leftmost image of each image set is without any filter; the rightmost is the
spatially-varying filter. For these images, either the global or the local mesopic filters
produce very similar results because there are no strong light intensities in the images,
which makes the local averages to be somewhat close to the global average.
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A.7 Limitations and Future Work

It must be noticed that either the spatially-uniform or spatially-varying mesopic fil-
ters decrease responses from red intensities only, as suggested by the curves of equivalent
lightness that were studied. A future opportunity is to investigate how the response com-
ing from of other colors (green and yellow, namely, for the assumed opponent-system)
behave according to different levels of luminosity, leading to a much more robust and
believable mesopic vision experience.

Another limitation of both filters is that color-shifts happen instantly. It is a known
fact that chrominance changes in the HVS do not occur abruptly, but instead stabilize
gradually on due time, just like with luminosity adaptation. Temporal luminance adapta-
tion is a topic already studied extensively, but little is known about temporal chromatic
adaptation, which still remains as a fascinating open field for further research.

The local averages used by the spatially-varying mesopic filter come directly from
the brightness perception model used implicitly by the local photographic operator. Such
local averages are convenient since they are already part of the luminance compression
framework that was utilized and are efficient to be computed. The estimation of such local
averages is based on psychophysical brightness perception experiments and the obtained
results look plausible; however, they may not be the most suitable candidate for local av-
erages under mesopic conditions. Additional physiological evidence must be researched
in order to validate the accuracy of the employed brightness perception model for mesopic
vision.

An implicit assumption made for both filters was that the source HDR imagery was
properly calibrated. In other words, the HDR images were expected to be holding physi-
cally accurate quantities. This may not be always the case, but HDR images should sup-
posedly contain proportionally equivalent quantities at least, differing to real quantities
only by some constant, uniform scaling factor. In the context of the proposed mesopic
reproduction filters, any HDR image that infringes this constraint is considered an ill-
formed image.

Finally, adapting other local operators to function along with the proposed spatially-
varying mesopic filter is a possible direction for future work. However, not all local
operators are guided by perceptual characteristics of the Human Visual System and thus
may be less suitable for a proper mesopic vision reproduction experience.
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A.8 Conclusion

A novel, general and efficient spatially-varying approach to reproduce the Purkinje
effect under mesopic vision conditions was introduced. The method was designed to
work with popular, widely-spread HDR imagery formats. The blue-shift is simulated
by suppressing the responses coming from red intensities according to local luminosity
conditions. These red responses are smoothed based on an equivalent-lightness curve re-
covered through psychophysical experiments performed on real subjects. The smoothing
is applied in an HVS-compatible, perceptually-linear fashion through the CIE L∗a∗b∗

opponent-color space, and this linearity conforms to recent physiological evidence. The
proposed spatially-varying filter exploits the foundations and perceptually-based charac-
teristics of the local photographic operator to perform mesopic adjustments in a per-pixel
basis. The filter is simple to be implemented entirely on the GPU and the overhead intro-
duced is negligible and should not hurt the performance of existing real-time applications.
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