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The adjective “efficient” means that a point on PPF is

Pareto efficient. At the point, any one good or service

cannot be increased without reducing the other goods

and services.

The objective of this paper is to present the

fundamentals of economic dynamics and policy

analyses. Since 1980s', it is widely recognized that

there are two main objectives of macroeconomics; (¡)

to explicitly construct the micro-foundations of

macroeconomic models, and (™) to analyze the

statistical properties of macroeconomic variables.

Because macroeconomic variables are described as

equilibrium time series sequences chosen by

optimizing microeconomic agents, mathematical tools

for stochastic dynamic optimization are therefore

appropriate to accomplish these objectives. The

economic policies in this framework must be

described as time series sequences of policy variables.

The policy analyses in macroeconomic models which

lack explicit treatment of time will often yield

misleading outcomes. This is pointed out by R. Lucas

and other economists who propose the rational

expectations hypothesis. In the following, the

importance of dynamic analyses in macroeconomics

will be explained in section 1 and section 2 through

two examples; section 1 discusses economic growth,

and section 2 analyzes tax policies in lifecycle models.

Section 3 is an exercise for numerical dynamic policy

analyses using “Mathematica”, a computer software

for numerical calculation.

１．Economic Growth
Figure 1-1 depicts a typical production possibility

frontier (PPF) often used in rudimentary textbook of

economics. (In fact, figure 1-1 is a replication of

figure 2-2 of Samuelson (1980).) The horizontal axis

measures the number of guns, and the vertical axis

measures the tons of butter. The PPF is a locus of

combination (portfolio) of goods and services that can

be produced by using the most efficient combination

of the factors of production at a given point in time.
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Now consider the following System of National

Accounts (SNA) of two imaginary countries, a and b.

The demand side of national income is defined by

（1.1）

where Yt is GDP, Ct is private consumption, It is

private investment, Gt is public spending, Xt is export,

and Mt is import. In the following example, we

abstract public sector and foreign sector. In time

period t＝ 0, country a has capital stock K a
0, and

produces Y a
0 ＝ AaK a

0. Aa is a constant technology

parameter, and K a
0 is the sole factor of production.

Figure 1-2 depicts the relationship between the capital

K a
0 and the output Y a

0 for two values of the technology

parameter, Aa' and Aa'', such that Aa'＜ Aa''. For a given

capital K
_

a
0 ＞ 0 ,  larger value of the technology

parameter implies larger output, i.e., Y a
0 '＝ Aa 'K

_
a
0 ＜

Y a
0 ''＝ Aa ''K

_
a
0.

Figure 1-1. The Production-Possibility Fronter
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Figure 1-2

The output Y a
0 is divided between consumption C a

0 ＝

(1 － sa) Y a
0 and investment K a

1 ＝ saY a
0. s

a∈[0, 1] is a

constant investment rate. Because country a is closed

to international trade, sa is also a saving rate. The

capital K a
0 depreciates 100%. Therefore, the

investment in t＝ 0, K a
1, is also the capital stock in

t ＝ 1. In t ＝ 1, country a produces Y a
1 ＝ AaK a

1,

consumes C a
1 ＝(1 － sa) Y a

1, and invests K a
2 ＝ saY a

1.

This process is repeated for t＝ 0, 1, 2, ….  Therefore,

in any time period t, country a has capital stock K a
t,

produces Y a
t＝ AaK a

t, consumes C a
t＝(1 － sa) Y a

t, and

invests K a
t＋ 1＝ saY a

t. Similarly, the SNA of country b

is described as follows. Given the capital stock K b
0 in

the initial period t＝ 0, for t＝ 0, 1, 2, …, country b

has capital stock K b
t, produces Y b

t＝ AbK b
t, consumes

C b
t＝(1 － sb) Y b

t, and invests K b
t＋ 1＝ sbY b

t. Ab is the

constant technology parameter, and sb is the

investment rate.

Suppose the two countries have same capital stock,

K a
0 ＝ K b

0 ＝ 50 ,  in the initial period t ＝ 0 .

Furthermore, assume that they have same production

technology, Aa＝ Ab＝ 2, but country b has higher

investment rate than country a, sa＝ 0.4 ＜ sb＝ 0.6.

Then, the economic dynamics of country a and

country b for t＝ 0, 1, 2 are calculated as follows.

t＝ 0;

C a
0＝(1 － sa) Y a

0

(60 ＝(1 － 0.4)× 100)

C b
0＝(1 － sb) Y b

0

(40 ＝(1 － 0.6)× 100)

K a
1＝ saY a

0

(40 ＝ 0.4 × 100)

K b
1＝ sbY b

0

(60 ＝ 0.6 × 100)

t＝ 1;

t＝ 2;

Country a Country b

Y a
1 ＝ AaK a

1

(80 ＝ 2 × 40)

Y b
1＝ AbK b

1

(120 ＝ 2 × 60)

C a
1＝(1 － sa) Y a

1

(48 ＝(1 － 0.4)× 80)

C b
1＝(1 － sb) Y b

1

(48 ＝(1 － 0.6)× 120)

K a
2＝ saY a

1

(32 ＝ 0.4 × 80)

K b
2＝ sbY b

1

(72 ＝ 0.6 × 120)

Country a Country b

Y a
2 ＝ AaK a

2

(64 ＝ 2 × 32)

Y b
2＝ AbK b

2

(144 ＝ 2 × 72)

C a
2＝(1 － sa) Y a

2

(38.4 ＝(1 － 0.4)× 64)

C b
2＝(1 － sb) Y b

2

(57.6 ＝(1 － 0.6)× 144)

K a
3＝ saY a

2

(25.6 ＝ 0.4 × 64)

K b
3＝ sbY b

2

(86.4 ＝ 0.6 × 144)

Figure 1-3 is the graph of country a's GDP Y a
t and

country b's GDP Y b
t for t＝ 0, 1, 2, figure 1-4 is the

graph of country a's consumption C a
t and country b's

consumption C b
t for t＝ 0, 1, 2, and figure 1-5 is the

graph of country a's capital K a
t and country b's capital

K b
t for t＝ 0, 1, 2, 3. Country a and country b have the

same output Y a
0＝ Y b

0 ＝ 100 in period t＝ 0. Because

of the higher investment rate, country b consumes less

than country a in period t＝ 0, C a
0 ＝ 60 ＞ C b

0 ＝ 40.

However, for the same reason, country b's capital K b
t

and hence output Y b
t increase faster than country a's.

Country b's consumption C b
t catches up with country

a's consumption C a
t in t＝ 1, and surpasses after t＝

2, 3, 4, ….

Figure 1-6 is the PPF of country a and the PPF of

country b in t＝ 0. Instead of the number of guns and

the tons of butter, the horizontal axis measures

Country a Country b

Y a
0＝ AaK a

0

(100 ＝ 2 × 50)

Y b
0＝ AbK b

0

(100 ＝ 2 × 50)
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consumption C0 and the vertical axis measures

investment K1 that becomes the capital in t＝ 1. The

PPF is a locus of combination of consumption C0 and

investment K1 that can be produced by the efficient use

of GDP Y0. Because country a and country b have the

same GDP, Y a
0 ＝ Y b

0 ＝ 100, they have the same PPF;

100 ＝ Y a
0 ＝ C a

0 ＋ K a
1 for country a, and 100 ＝ Y b

0 ＝

C b
0 ＋ K b

1 for country b. In t＝ 0, country a chooses a

point (C a
0, K a

1)＝(60, 40) on its PPF, and country b

chooses a point (C b
0, K

b
1)＝(40, 60) on its PPF.
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144
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t
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Figure 1-3

Figure 1-4

Figure 1-6

Figure 1-7

Figure 1-5

The choice of each country causes the PPF to shift

between t＝ 0 and t＝ 1. Figure1-7 is country a's PPF

in t＝ 1, and figure 1-8 is country b's PPF in t＝ 1.

Because country a 's investment rate sa＝ 0.4 is

smaller than country b's sb＝ 0.6, country a's PPF

shifts inward, while country b's PPF shifts outward.

As time period passes t＝ 0, 1, 2, … , country a's PPF

shrinks further toward the origin, while country b's

PPF expands outward.

0 80 100

80

100

Country a's PPF 
in t＝1.

C1
a

K2
a
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（1.11）

By equations (1.7), (1.10), and (1.11), we conjecture

that Kt in any t＝ 0, 1, 2, … is expressed as

（1.12）

We can verify that the conjecture is true by inserting

equation (1.12) into the left-hand side and the right-

hand side of equation (1.6). The left-hand side is

（1.13）

and the right-hand side is

（1.14）

Therefore, equation (1.12) satisfies equation (1.6). In

fact, equation (1.6) is said to be a first-order

homogenous linear difference equation with respect to

Kt, and equation (1.12) is said to be a particular

solution of equation (1.6).

Once the sequence of capital {Kt ; t＝ 0, 1, 2,…} is

determined, the other variables {Yt, Ct ; t＝ 0, 1, 2,…}

are calculated by equations (1.2) and (1.4). Equation

(1.6) implies

（1.15）

Because Yt and Ct are proportional to Kt,

（1.16）

also holds. In the above example, it is assumed sa＝

0.4 and Aa＝ 2. Then saAa＝ 0.8 for country a. For

country b, sb＝ 0.6 and Ab＝ 2 so that sbAb＝ 1.2.

Therefore, country a exhibits economic contraction,

while country b exhibits economic expansion.

From equation (1.6), it is also clear that (sa, Aa)＝

(0.4, 2) for country a, and (sb, Ab)＝(0.4, 3) for country

b also result in the same outcome because saAa＝ 0.8

and sbAb＝ 1.2. (In this case, however, unlike the

previous one, country b's consumption C b
t always

exceeds country a's consumption C a
t for all t＝ 0, 1, 2,

….) Equation (1 .6) exhibits the importance of

investment ( s ) and technology ( A ) for economic

growth.

The simple economic growth model described

above is expressed by the following equations. For

t＝ 0, 1, 2, …, given the initial capital K0,

（1.2）

（1.3）

（1.4）

（1.5）

where s∈[0, 1]. This model can be analyzed as

follows. By equations (1.2) and (1.5), we have

（1.6）

Given K0, K1 is determined by equation (1.6) as

（1.7）

Then, K2 is also determined by equation (1.6) as

（1.8）

By repetition, K3 is

（1.9）

This process is repeated to calculate capital Kt＋ 1 in

any t＝ 0, 1, 2, …. Furthermore, by inserting K1 of

equation (1.7) into the right-hand side of equation

(1.8), K2 is expressed as

（1.10）

Similarly, by inserting K2 of equation (1.10) into the

right-hand side of equation (1.9), K3 is expressed as

Figure 1-8
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Country b's PPF 
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In the above example, without explanation, we

assumed country a's investment rate is sa＝ 0.4 and

country b's investment rate is sb＝ 0.6. Some readers

may wonder why the investment rates are different.

Furthermore, some readers may ask if sa＝ 0.4 is good

for country a, because it could consume more in the

future if it saves more like country b. sa＝ 0.4 for

country a and sb＝ 0.6 for country b are optimal for

each country in the following situation. In fact, what

we are going to do is to provide micro-foundations to

the above example.

Consider the following two-periods consumption-

saving planning problem of an individual.

（1.17）

（1.18）

（1.19）

Equation (1.17) is the utility as a function of the first

period consumption C 0 and the second-period

consumption C1. α is a parameter that measures the

relative importance of C1 to C0. (Equation (1.17)

implies that the utility function is of Cobb-Douglas

form.) Equation (1.18) is the first period budget

constraint. Y0 is the first period income that will be

divided between the first period consumption C0 and

the first period investment (saving) K1. Equation (1.19)

is the second period budget constraint. The second

period income is AK1 that is consumed as the second

period consumption C1. Notice that the first period and

the second period budget constraints are the same as

the SNA of the two countries in the previous example.

The individual chooses a consumption-saving plan

{C0*, C1*, K1*} that maximizes utility U subject to the

first period and the second period budget constraints.

This problem can be solved as follows. By using the

first period and the second period budget constraints,

the utility is expressed as a function of saving K1 as

follows.

（1.20）

The optimal saving K1* is a solution to the following

first-order condition. (See figure 1-9 for the graphical

implication of the optimal saving K1*.)

（1.21）

（1.21）

U

0

slope ＝0
dU
dK1

K1*
K1

Figure 1-9. Optimal Saving K*1

Equation (1.21) implies that the optimal saving is

（1.22）

By the first period budget constraint, the optimal first

period consumption is 

（1.23）

and by the second period budget constraint, the

optimal second period consumption is

（1.24）

Equation (1.22) implies that α is the optimal saving

rate for the individual. This example can be used as a

micro-foundation for the previous economic growth

model. If the utility function of consumers in country

a is U a＝ C 0
0.6C 1

0.4, they save 40% of the first period

income K a
1 ＝ 0.4×Y a

0. Similarly, if the utility function

of consumers in country b is U b＝ C 0
0.4C 1

0.6, they save

60% of the first period income K b
1 ＝ 0.6 × Y b

0.

Therefore, the answer to the question “why the saving

rates are different” might be “because they place

different weights on inter-temporal consumptions.”

The consumers in country a put heavier weights on

consumptions in earlier periods, while the consumers

in country b puts heavier weights on consumptions in

later periods. Unfortunately, the analysis stops at this

point. The readers may want to ask why these
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typical Keynesian macroeconomic model is a system

of simultaneous equations with respect to

macroeconomic variables and policy variables. The

parameters of the equations system are assumed to be

invariant to policy changes. The economists who

advocate the rational expectations theories criticize

Keynesian models for their lack of explicit treatment

of time. Because of the lack of explicit treatment of

time, Keynesian models cannot be solved for dynamic

variables such as inflation rate which is intrinsically a

dynamic variable. In other words, Keynesian models

are not closed with respect to dynamic variables, i.e.,

the number of structural equations is smaller than the

number of variables. (Chapter 1 of Sargent (1987)

extensively discusses this issue.)

Furthermore, the rational expectations theorists

criticized that the parameters of the structural

equations system can be affected by changes in

economic policies once Keynesian models explicitly

incorporate time. This point is known as “Lucas'

critic”. In the following, we demonstrate Lucas' critic

through simple examples. (See Lucas (1987) for an

extensive treatment of the issue.)  One of the key

structural equations of Keynesian macroeconomic

model is a consumption function.

（2.1）

C is aggregate private consumption, Y is aggregate

income, and T is aggregate tax on private sector. Y －

T, hence, is aggregate disposable income. α and ß are

parameters that are assumed to be invariant to policy

changes. A typical Keynesian macroeconomic model

starts with proposing structural equations like equation

(2.1) which describes the relationship between

macroeconomic variables, C, Y, and T. For this reason,

Keynesian models are said to lack micro-foundations.

In equation (2.1), ß is the marginal propensity to

consumption. For example, consider a decrease in tax

from T ' to T ''(T '＞ T ''). This causes the disposable

income to increase as follows.

（2.2）

（2.2）

Then, by equation (2 .1), the increase in

countries put different weights on inter-temporal

consumption. Macroeconomists treat parameters of

utility function (like α in equation (1.17)) and

production function (like A in equation (1.19)) as the

ultimate givens (deep parameters), and leave the

explanations of their differences to differences in

history, culture, ethnicity, religion, and so on.

Recently, however, macroeconomists began to seek

the determinants of the deep parameters. For example,

the endogenous economic growth theories try to

explain cross-country differences in production

technologies. Economists also collaborate with

psychologists, sociologists, and even neurologists to

seek the determinants of consumers behavior which

can be applied to the analyses of utility functions.

２．Dynamic Economic Policy Analyses and

Lucas' Critic

The 2011 Nobel Prize of Economics was bestowed

to T. J. Sargent of New York University and C. Sims

of Princeton University for their contribution to the

development of rational expectations theories that

changed the way economists and government analyze

the effects of economic policies. The most important

element of economic policy analyses in the rational

expectations theories is the explicit treatment of time.

Households make economic decisions (consumption

demands and production factors supplies) across time

to maximize their utilities. Likewise, firms make

economic decisions (goods and services supplies and

production factors demands) across time to maximize

their values. Obviously, they have to take economic

policies, not only the present but also the future, into

account when they make dynamic decisions. The same

is also true to public sectors. When public sectors

design economic policies, they have to take the

dynamic reactions of households and firms into

account. In other words, economic policies that fail to

take the dynamic reactions of households and firms

into account will result in suboptimal performance.

Prior to the rational expectations theories, economists

and governments used Keynesian macroeconomic

models to analyze the effects of economic policies. A
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consumption caused by the increase in disposable

income is

（2.3）

（2.3）

Figure 2-1 depicts graphically the implication of the

marginal propensity to consumption ß.

examples that the marginal propensity to consumption

is affected by changes in public policies. The

examples we use to demonstrate above point are

“lifecycle models of consumption”. The simplest form

of the lifecycle model of consumption is the following

two-periods consumption-saving planning of a

representative consumer. (Readers may notice the

similarity between lifecycle models and the

consumption-investment planning models presented at

the previous section 1.)

（2.6）

（2.7）

（2.8）

Equation (2.6) is utility of the consumer as a function

of the first period income C1 and the second period

income C2. Equation (2.7) is the first period budget

constraint showing the division of the first period

income Y1 between the first period consumption C1 and

the first period saving S2. Equation (2.8) is the second

period budget constraint showing that the second

period income Y2 and the first period saving S2 are

used for the second period consumption C2. For

simplicity, the interest rate on the saving is assumed to

be zero. The consumer makes an optimal

consumption-saving plan {C 1*, C 2*, S2*} that

maximizes the utility (2.6) subject to the budget

constraints {(2.7), (2.8)}.

This utility maximization problem is solved as

follows. By eliminating the first period savings S2

from the first and the second period budget

constraints, we have a single budget constraint with

respect to C1 and C2.

（2.9）

In lifecycle models, equation (2.9) is often called the

lifetime budget constraint for the two periods are

interpreted as the first half and the second half of the

consumer's life. It may be assumed that the consumer

works in the first half of her life, and spends the rest as

a retiree in the second half. Therefore, in the two-

periods model, one period may consist of 20 ～ 30

years. Equation (2.9) shows that the combination of

C＝α＋β(Y－T)

Y－T∆(Y－T)
0

β�

α�

∆C

Figure 2-1. Consumption Function

The marginal propensity to consumption ß plays

important roles in economic policy analyses. For

example, in the demand side of national income

(equation (1.1)), a marginal increase in public

spending ∆G causes a proportional increase in national

income ∆Y with coefficient 1/(1 － ß).

（2.4）

1/(1 － ß) is called the public spending multiplier. The

larger is the marginal propensity to consumption ß, the

larger is the multiplier 1/(1 － ß). For example, if ß＝

0.8, then the multiplier is 1/(1 － ß)＝ 5, i.e., an

increase in public spending by ∆G ＝ ¥1 million

causes an increase in national income by ∆Y＝ ¥5

million. A marginal increase in disposable income by

tax reduction also causes a proportional increase in

national income with coefficient ß/(1 － ß).

（2.5）

ß/(1 － ß) is called the tax reduction multiplier. For

example, if ß ＝ 0 .8 ,  then ß/(1－ß)＝ 4 ,  i.e., a

marginal decrease in tax by ∆T＝－¥1 million causes

an increase in national income by ∆Y＝ ¥4 million.

In the following we demonstrate by simple
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consumption is

（2.13）

These analyses are graphically presented by using

the graph of indifference curves and the graph of

lifetime budget constraint. Figure 2-2 is the graph of

indifference curves of utility function (2.6). The

horizontal axis measures the first period consumption

C1 and the vertical axis measures the second period

consumption C2. Because the utility function is

assumed to be a product of C1 and C2, the graph of

indifference curves are orthogonal hyperbolic curves.

For example, the indifference curve for utility U＝ 4

is C2 ＝ 4/C1. It is the locus of (C1, C2) that gives same

utility U＝ 4.  (C1, C2)＝{(0.5, 8), (1, 4), (2, 2), (4, 1),

(8, 0.5)} are some of the points on the indifference

curve. The further away from the origin, the higher the

utility of indifference curves. The downward sloping

line in figure 2-3 is the graph of the lifetime budget

constraint (2.9). The graph has intercepts at Y1 ＋ Y2on

the horizontal axis, and Y1＋ Y2 on the vertical axis.

the first period consumption and the second period

consumption {C1, C2} cannot exceed the lifetime

income Y1 ＋ Y2.

Suppose {Y1 ＝ 10, Y2 ＝ 0} so that Y1 ＋ Y2 ＝ 10.

There are many combinations of C1 and C2 that satisfy

the lifetime budget constraint (2.9). The following

table shows the combinations of C1 and C2 that satisfy

the lifetime budget constraint (2.9), and corresponding

values of utility.

C1 0 1 2 3 4 5 6 … 10

C2 10 9 8 7 6 5 4 … 0

U 0 9 16 21 24 25 24 … 0

For example, {C1 ＝ 0, C2 ＝ 10} satisfies C1 ＋ C2 ＝

10. The utility, however, is only U＝ C1 × C2 ＝ 0 ×

10 ＝ 0. The other extreme is {C1 ＝ 10, C2 ＝ 0}

which also gives U＝ C1 × C2 ＝ 10 × 0 ＝ 0. Two-

periods consumption plans that spend too much in one

period and too little in another do not give high utility.

The above table indicates that the smooth path for

consumptions {C1 ＝ 5, C2 ＝ 5} maximizes utility at

U＝ C1 × C2 ＝ 5×5 ＝ 25. This property, known as

“consumption smoothing”, holds under more general

settings. Denote the “optimal consumptions” by

（2.10）

From the first period budget constraint (2.7), the

optimal saving is

（2.11）

Instead of {Y1 ＝ 10, Y2 ＝ 0}, suppose {Y1 ＝ 0,

Y2 ＝ 10}. In this case, the lifetime budget constraint is

same as before, i.e., C 1 ＋ C2 ＝ Y 1 ＋ Y2 ＝ 10 .

Therefore, the optimal consumption plan is same, i.e.,

{C1*＝ 5, C2*＝ 5}. On the other hand, the optimal

saving is

（2.12）

Because the first period income is small, the consumer

has to borrow S2*＝－ 5 to consume C1*＝ 5 in the

first period. In the second period, the consumer

redeems S2*＝－ 5 out of the second period income

Y2 ＝ 10.  Hence, the consumer's second period

U＝4

0

1

1 2 4

2

4

C2

C1

C2

C1

Y1＋Y2

C1＋C2＝Y1＋Y2

Y1＋Y20

Figure 2-2. Indifference Curves of U ＝ C1× C2

Figure 2-3. Lifetime Budget Constraint
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The optimal consumption plan (C1*, C2*) maximizes

utility subject to lifetime budget constraint. Figure 2-4

shows that the optimal consumption plan is {C1*＝ 5,

C2*＝ 5} when the lifetime income is Y1 ＋ Y2 ＝ 10

which is a numerical example we used before. The

figure shows that the optimal consumption plan is a

tangent point of an indifference curve and the lifetime

budget constraint C1 ＋ C2 ＝ Y1 ＋ Y2 ＝ 10. Because

C1*＝ 5 and C2*＝ 5, the indifference curve that

touches the graph of lifetime budget constraint must

be the one representing U＝ C1 × C2 ＝ 25. 

that, despite the variation in income stream across

time {Y1, Y2}, if the lifetime income is same, the

consumption opportunity is same, so the optimal

consumption plan is same. For this claim to hold,

however, there must be no restriction on lending and

borrowing in credit market. In other words, credit

market must be “perfect”. Otherwise, consumers with

same lifetime income may face different consumption

opportunities if their income streams across time are

different. This implies that credit market imperfections

will prevent consumers from making the optimal

consumption-saving plans.

The above two-periods model can be extended to

three-periods model as follows.

（2.14）

（2.15）

（2.16）

（2.17）

As before, the initial saving is assumed to be S1 ＝ 0,

and the third period saving must be S4＝ 0 for utility

maximization. By eliminating savings {S2, S3} from

the first, the second, and the third period budget

constraints, equations {(2.15), (2.16), (2.17)}, we have

the lifetime budget constraint.

（2.18）

It can be shown, by using the same reasoning of the

two-periods model, that the optimal consumption plan

is

（2.19）

As before, if the lifetime income Y1 ＋ Y2 ＋ Y3 is

same, then the optimal consumption plan {C1*, C2*,

C3*} is same. The optimal saving plan {S2*, S3*},

however, as before depends on the pattern of income

stream {Y1, Y2, Y3} across time periods. Individuals

with smaller income in earlier periods and larger

income in later periods tend to borrow in earlier

periods, and redeem the debts in later periods. On the

other hand, individuals with larger income in earlier

periods and smaller income in later periods tend to

In figure 2-4, we can also measure the first period

income Y1 ＝ 10 on the horizontal axis and the second

period income Y2 ＝ 0 on the vertical axis. By the first

period budget constraint, the optimal saving is S2*＝

Y1 － C1*＝ 10 － 5 ＝ 5. Hence, figure 2-4 can also

show on the horizontal axis the optimal saving S2* as

the difference between the period income Y1＝ 10 and

the first period optimal consumption C1*＝ 5. Readers

may understand that the optimal consumption plan

(C1*, C2*) for {Y1 ＝ 10, Y2 ＝ 0} is same as that for

{Y1 ＝ 0, Y2 ＝ 10} because these cases have the same

lifetime budget constraint. Therefore, we can also use

figure 2-4 to express the (C1*, C2*). The optimal

saving S 2* for {Y1 ＝ 0 ,  Y 2 ＝ 10}, however, is

different from that for {Y1 ＝ 10, Y2＝ 0}. It is S2*＝

Y1 － C1*＝ 0－ 5＝－ 5. Therefore, in figure 2-4, it

is the difference between the first period optimal

consumption C1*＝ 5 and the first period income

Y1 ＝ 0 on the horizontal axis. This example shows

C2

C1

Y1＋Y2＝10

Y1＋Y2＝10
0

5

5
S2*

(C1*, C2*)＝(5, 5)

Figure 2-4. The Optimal Consumption {C*1,C*2}

and the Optimal Saving S*2.
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（2.29）

（2.29）

Then, we can calculate the optimal savings by using

the period-wise budget constraints (2.24) ～ (2.27) as

follows.

（2.30）

（2.31）

（2.31）

（2.32）

（2.33）

The optimal saving of the last period S10* is also

calculated from the last period budget constraint (2.27)

as follows.

（2.34）

In the following, by using specific numerical

examples, we will demonstrate that the marginal

propensity to consumption is not a constant parameter,

that it is affected by public policy changes.

Assume that Y 1 ＝ Y 2 ＝…＝ Y 10 ＝ 10 .  Let us

specify the benchmark case as follows.

Case 1 (Benchmark Case):

（2.35）

By equation (2.28), the optimal consumptions in case

1, denoted as {C1*(1), C2*(1),…, C10*(1)}, are

（2.36）

（2.36）

By the period-wise budget constraints, equations

(2.24) ～ (2.27), the optimal saving in case 1, denoted

as {S2*(1), S3*(1),…, S10*(1)}, are

（2.37）

lend in earlier periods and use the capital income for

consumption in later periods. The optimal savings are

calculated by using the budget constraints as follows.

（2.20）

（2.21）

Instead of equation (2.21), S3* is also calculated by

using equation (2.17) as follows.

（2.22）

Now consider the following ten-periods

consumption-saving planning problem with taxation.

It is a straightforward generalization of the above two-

periods and three-periods models.

（2.23）

（2.24）

（2.25）

（2.25）

（2.26）

（2.27）

As before, equation (2.23) is utility function of the

consumer that is assumed to be a product of

consumptions across time periods {C1, C2,…, C10}.

Equations (2.24) ～ (2.27) are budget constraints for

each period t＝ 1, 2,…, 10. Because of taxes, the

disposable income in each period is Yt－ Tt, t＝ 1, 2,

…, 10. As before, the initial saving is assumed to be

S1 ＝ 0, and S11 ＝ 0 by optimization. By using the

same logic of the analyses of two-periods and three-

periods utility maximization problems, the optimal

consumption plan of this ten-periods utility

maximization problem is shown to be the following.

（2.28）

（2.28）

As before, by eliminating savings {S2, S3,…, S10} from

the budget constraints (2.24) ～ (2.27), we obtain the

lifetime budget constraint of the ten-periods model as

follows.
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（2.38）

（2.38）

（2.39）

Therefore, in case 1, the individual consumes all the

disposable income, does not save nor borrow, in every

period t＝ 1, 2,…, 10.

In the next case, there is a permanent tax increase

from zero to one in every period.

Case 2 (Permanent Tax Increase):

（2.40）

By equation (2.28), the optimal consumptions in

case 2, denoted as {C1*(2), C2*(2),…, C10*(2)}, are

（2.41）

（2.41）

By the period-wise budget constraints, equations

(2.24) ～ (2.27), the optimal savings in case 2,

denoted as {S2*(2), S3*(2),…, S10*(2)}, are shown to

be zero in every period. Therefore, in case 2, just like

in case 1, the individual consumes all the disposable

income, does not save nor borrow, in every period.

Relative to the benchmark case (case 1), the

marginal propensity to consumption in the first period

in case 2, denoted as ß(2), is calculated as follows.

（2.42）

Next, consider a quasi-permanent tax increase,

described as case 3.

Case 3 (Quasi-Permanent Tax Increase):

（2.43）

（2.43）

By equation (2.28), the optimal consumptions in

case 3, denoted as {C1*(2), C2*(2),…, C10*(2)} are

（2.44）

（2.44）

Notice that the optimal consumption plan in case 3 is

same as that in case 2. This is because the total taxes

across time periods in case 2 and case 3 are same, i.e.,

（2.45）

（2.45）

and hence the lifetime disposable incomes in case 2

and case 3 are same, i.e.,

（2.46）

（2.46）

Because the optimal consumptions require the equal

division of lifetime disposable income across time

periods t＝ 1, 2,…, 10, the optimal consumption plan

in case 3 must be same as that in case 2.

Remark: Equations (2 .45) and (2 .46) must be

interpreted as the present value of total taxes and the

present value of lifetime disposable incomes. In these

examples, we assume that the interest rates are zero.

When the interest rates are not zero, the taxes and the

disposable incomes in future periods must be

discounted to convert them into the same accounting

units. 

On the other hand, in case 3, because the disposable

incomes in t＝ 1, 2,…, 5 are smaller than those in t＝

6, 7,…, 10, the individual must borrow in the earlier

periods to achieve consumption smoothing. In fact, by

the period-wise budget constraints, the optimal

savings in case 3, denoted as {S2*(3), S3*(3),…,

S10*(3)}, are calculated as follows.
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period t＝ 10, the individual pays off all the debt to

balance the last period budget constraint.

（2.56）

On the other hand, the disposable incomes in case 2

are constant across all the time periods t＝ 1, 2,…,

10. Therefore, there is no need for consumption

smoothing through either lending or borrowing.

Relative to the benchmark case (case 1), the

marginal propensity to consumption in the first period

in case 3, denoted as ß(3), is calculated as follows.

（2.57）

Remember that the marginal propensity to

consumption in case 2 was ß(2)＝ 1. In these two

cases, the utility functions and pre-tax incomes are

same. The difference between ß(2) and ß(3) is caused

by the difference between tax policies. In case 3, in the

first period, the increase in tax by 2 causes the

disposable income to decrease by the same amount.

This causes the first period consumption to decrease.

However, it decreases half the size of the decrease in

disposable income (ß(3)＝ 0.5). On the other hand, in

case 2, in the first period, the increase in tax by 1

causes the consumption to decrease by the full amount

of the decrease in disposable income (ß(2)＝ 1).

Because the tax increase in case 3 is not permanent,

the first period consumption needs not decrease by the

full amount of the decrease in the first period

disposable income. Although the consumer has to

borrow to finance the first period consumption, she

can redeem the debt when the disposable incomes

increase by the removal of taxes in later periods. On

the other hand, in case 2, the consumer has to decrease

the first period consumption by the full amount of

decrease in the first period disposable income to

achieve consumption smoothing because the tax

increase is permanent.  Consider a hypothetical world

in which consumers behave as those in lifecycle

models. In this world, tax policies designed by using

Keynesian models may fail to achieve expected

（2.47）

（2.48）

（2.49）

（2.50）

（2.51）

（2.52）

（2.53）

（2.54）

（2.55）

t
1

0

-5

2 3 4 5 6 7 8 9 10

St*(3)

Figure 2-5. The Optimal Saving in Case 3.

Figure 2-5 shows the graph of the optimal savings in

case 3. The individual accumulates debt through

borrowings in the earlier periods, t＝ 1, 2, 3, 4, 5,

because the consumptions (9) are larger than the

disposable incomes (10 － 2 ＝ 8) in these periods. In

the later periods, t＝ 6, 7, 8, 9, 10, the individual

reduces debt through repayment because the

consumptions (9) are smaller than the disposable

incomes (10 － 0 ＝ 10) in these periods. In the last
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outcomes, as the following case 4 suggests.

Case 4 (Temporary Tax Increase)

（2.58）

By equation (2.28), the optimal consumption plan,

denoted as {C1*(4), C2*(4),…, C10*(4)}, is calculated

as follows.

（2.59）

Relative to the benchmark case (case 1), the marginal

propensity to consumption in the first period in case 4,

denoted as ß(4), is calculated as follows.

（2.60）

Suppose there are two countries, A and B. The

government of country A plans a permanent tax

increase which is described by case 2. However, it

worries negative effects of the tax increase on

consumption. In order to estimate the negative impact,

country A's government looks at country B whose

government also implemented a tax increase. By

applying statistical analysis to Keynesian consumption

function (2.1) on country B's data, country A's

government concludes that the marginal propensity to

consumption is ß＝ 0.1, i.e., a tax increase by ¥10

million causes consumption to decrease by ¥1 million.

We already know such a conclusion is misleading.

The marginal propensity to consumption is not a

constant parameter. It may be affected not only by

current policies but also by future policies. ß＝ 0.1 in

country B may suggest that the tax increase is

temporary. If country A's government implements

permanent tax increase, consumption may decrease,

not by 10%, but by full amount of the tax increase as

case 2 suggests.

３．Exercise: The Effects of Dynamic Tax
Policies on the Optimal Consumption-
Saving Plan in Lifecycle Models.

In this exercise, we analyze the effects of tax

policies on consumers' consumption-saving behavior

in lifecycle models under more general assumptions

than those in the models presented in the main texts.

In the exercise, we use “Mathematica”, a computer

software for numerical calculation, to simulate

alternative tax policies. A brief rudimentary guide for

using Mathematica to solve simultaneous equations is

provided in the appendix at the end of the paper. 

Question 1. Two-Periods Lifecycle Model

In question1, we analyze consumption-saving behavior

of an individual in a two-periods lifecycle model

described by the following equations (3.1) ～ (3.4).

（3.1）

（3.2）

（3.3）

（3.4）

Equation (3.1) is utility of the individual as a weighted

sum of the utility u(C1) of the first period consumption

C 1 and the utility u(C 2) of the second period

consumption C2. Z is a weighing parameter for

measuring the importance of the second period utility

relative to the first period utility. Equation (3.2)

implies that the period-wise utility u(C) is a quadratic

function of consumption C, with two parameters {A,

B}. By equation (3 .2), the marginal utility of

consumption is

（3.5）

In addition, u''(C)＝－ B＜ 0. Therefore, for 0 ＜

C ＜ A/B,  the marginal utility is positive and

decreasing in C. Equation (3.3) is the first period

budget constraint. Y1 is the first period income, T1 is

the first period tax, and Y1 － T1 the first period

disposable income. The first period disposable income

is divided between the first period consumption C1 and

the first period saving S2. Equation (3.4) is the second

period budget constraint. Y2 － T2 is the second period
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If we specify the values of parameters {A, B, Z}, the

interest rate R2, incomes {Y1, Y2}, and taxes {T1, T2},

then we can calculate the value of the optimal saving

S2* from equation (3.7).

Step 2. Use Mathematica to calculate the value of

the optimal saving S2*.

Here we present an example program in which

{A＝ 100, B＝ 1, Z＝ 0.9, R2 ＝ 1.1, Y1 ＝ 30, Y2 ＝

10, T1 ＝ 0, T2 ＝ 0}.

A＝ 100;

B＝ 1;

Z＝ 0.9;

R2 ＝ 1.1;

Y1 ＝ 30;

Y2 ＝ 10;

T1 ＝ 0;

T2 ＝ 0;

F ＝－(A － B*(Y1 － T1 － S2))＋ Z*R2*(A －

B*(Y2 － T2 ＋ R2*S2));

Solve [F＝＝ 0, S2]

We run this program to get S2*＝ 9.14.

Comment 1. Equation (3.7) is explicitly solved to the

optimal saving as follows.

（3.8）

Therefore, by putting {A＝ 100, B＝ 1, Z＝ 0.9,

R2 ＝ 1.1, Y1 ＝ 30, Y2 ＝ 10, T1 ＝ 0, T2 ＝ 0} into

equation (3.8), we can get S2*＝ 9.14. In this case, we

can solve equation (3.7) for the optimal saving by

using a handy calculator. However, we showed above

the solution by using Mathematica so that we can

apply the method to cases in which the number of

variables and the number of equations are larger in

simultaneous equations system which describes the

first-order conditions for utility maximization.

Step 3. Use S2* of step 2 above to calculate the

optimal consumption plan {C1*, C2*} from the budget

constraints.

By equation (3.3),

disposable income. R2 is the second period gross

interest rate. If the second period interest rate is r2, R2

is expressed as R2 ＝ 1 ＋ r2. Therefore, R2S2 ＝ S2 ＋

r2S2 implies the sum of the principal S2 and the interest

income r2S2. The second period budget constraint (3.4)

implies that the second period after-tax total income

Y2 － T2 ＋ r2S2 and the principal S2 are used for the

second period consumption C2.

The individual makes an optimal consumption-

saving plan {C1*, C2*, S2*} that maximizes the utility

(3.1) subject to the budget constraints {(3.3), (3.4)}. In

the following, we will explain how to solve this

constrained optimization problem by using

Mathematica through three steps.

Step 1. Derive the first-order condition for the utility

maximization that the optimal saving S2* must satisfy.

Use the first period and the second period budget

constraints, equations (3.3) and (3.4) , to express the

utility, equation (3.1), as a function of saving S2, as

following equation (3.6).

（3.6）

The optimal saving S2* that maximizes the utility U

subject to the budget constraints is a solution to the

following equation (3.7).

（3.7）

Figure 3-1 depicts the optimal saving as the one that

makes the slope of the graph of utility function to be

zero.

0

＝0dU
dS2

U

S*2 

S2 

S*2 

Figure 3-1. The Optimal Saving in S*2 in Two-

Periods Lifecycle Model.
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（3.9）

and by equation (3.4),

（3.10）

Question 1-1. In the Mathematica program of step

2, change the first period tax from T1 ＝ 0 to T1 ＝ 10.

Denote the corresponding optimal consumption-saving

plan as {C1*(1), C2*(1), S2*(1)}. Calculate {C1*(1),

C2*(1), S2*(1)}.

Question 1-2. In the Mathematica program of step

2, change the first-period and the second period taxes

from T1 ＝ T2 ＝ 0 to T1 ＝ T2 ＝ 11/2.1. Denote the

corresponding optimal consumption-saving plan as

{C1*(2), C2*(2), S2*(2)}. Calculate {C1*(2), C2*(2),

S2*(2)}.

Question 1-3. For the optimal consumption plan

{C1*(1), C2*(1)} under {T1 ＝ 10, T2 ＝ 0} and the

optimal consumption plan {C1*(2), C2*(2)} under

{T1 ＝ 11/2 .1 ,  T 2 ＝ 11/2 .1}, choose the correct

relationship among the following (A) ～ (E). 

（A）C1*(1)＞ C1*(2) and C2*(1)＞ C2*(2)

（B）C1*(1)＞ C1*(2) and C2*(1)＜ C2*(2)

（C）C1*(1)＜ C1*(2) and C2*(1)＞ C2*(2)

（D）C1*(1)＜ C1*(2) and C2*(1)＜ C2*(2)

（E）C1*(1)＝ C1*(2) and C2*(1)＝ C2*(2)

Question 1-4. About your answer to question 1-3

above, explain briefly why that relationship holds.

Question 1-5. Suppose the taxes change from {T1 ＝

0, T2 ＝ 0} to {T1 ＝ 10, T2 ＝ 0}. Use your answer to

question 1-1to calculate the first period marginal

propensity to consumption.

Question 1-6. Suppose the taxes change from {T1 ＝

0, T2 ＝ 0} to {T1 ＝ 11/2.1, T2 ＝ 11/2.1}. Use your

answer to question 1-2 to calculate the first period

marginal propensity to consumption.

Question 2. Three-Periods Lifecycle Model

The two-periods lifecycle model of question 1

above is extended to a three-periods lifecycle model as

follows.

（3.11）

（3.12）

（3.13）

（3.14）

（3.15）

The individual makes an optimal three periods

consumption-saving plan {C1*, C2*, C3*, S2*, S3*} that

maximizes the utility (3.11) subject to the budget

constraints {(3.13), (3.14), (3.15)}. Just like the above

two-periods utility maximization problem, the method

to solve this utility maximization problem by using

Mathematica consists of the following three steps.  

Step 1. Derive the first-order conditions for the

utility maximization that the optimal savings {S2*,

S3*} must satisfy.

Use the budget constraints {(3.13), (3.14), (3.15)}

to express the utility, equation (3.11), as a function of

savings {S2, S3}, as following equation (3.16).

（3.16）

The optimal savings {S2*, S3*} that maximize utility U

subject to the budget constraints are solution to the

following simultaneous equations {(3.17), (3.18)}.

（3.17）

（3.18）

Equation (3.17) and equation (3.18) form a system of

simultaneous equations with respect to {S2, S3}. If we

specify the values of parameters {A, B, Z}, the interest

rates {R2, R3}, incomes {Y1, Y2, Y3} and taxes {T1, T2,

T3}, then we can calculate the value of the optimal

savings {S2*, S3*} from equation (3.13) and equation
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plan as {C1*(1), C2*(1), C3*(1), S2*(1), S3*(1)}.

Calculate {C1*(1), C2*(1), C3*(1), S2*(1), S3*(1)}.

Question 2-2. In the Mathematica program of step

2, change the first-period and the second period taxes

from T1 ＝ T2 ＝ T3 ＝ 0 to T1 ＝ T2 ＝ T3 ＝ 12.1/3.31.

Denote the corresponding optimal consumption-saving

plan as {C1*(2), C2*(2), C3*(2), S2*(2), S3*(2)}.

Calculate {C1*(2), C2*(2), C3*(2), S2*(2), S3*(2)}.

Question 3. Ten-Periods Lifecycle Model.

The utility maximization problems of question 1

and question 2 are extended further to the following

ten-periods problem.

（3.22）

（3.23）

（3.24）

（3.25）

（3.26）

・・・

（3.27）

（3.28）

Question 3-1. Describe a Mathematica program for

calculating the optimal savings {S2*, S3*,…, S10*}. In

the program, assume {A＝ 100, B＝ 1, Z＝ 1, R2 ＝

R3 ＝…＝ R10 ＝ 1, Y1 ＝ Y2 ＝…＝ Y10 ＝ 10, T1 ＝

T2 ＝…＝ T10 ＝ 0}.

Question 3-2. Run the program of question 3-1 to

get the value of the optimal savings {S2*, S3*,…, S10*}.

Then use the budget constraints, equations (3.24) ～

(3.28), to calculate the optimal consumptions {C1*,

C2*,…, C10*}.

Question 3-3. In the Mathematica program of

question 3-1, change the values of {Z, R2, R3,…, R10}

from {Z＝ 1, R2 ＝ R3 ＝…＝ R10 ＝ 1} to {Z＝ 0.9,

R2＝ R3 ＝…＝ R10＝ 1.1}. Denote the corresponding

(3.14) (or (3.15)).

Step 2. Use Mathematica to calculate the value of

the optimal savings {S2*, S3*}.

Here we present an example program in which

{A＝ 100, B＝ 1, Z＝ 0.9, R2 ＝ R3 ＝ 1.1, Y1 ＝ 30,

Y2 ＝ 20, Y3 ＝ 10, T1 ＝ 0, T2＝ 0, T3 ＝ 0}.

A＝ 100;

B＝ 1;

Z＝ 0.9;

R2 ＝ 1.1;

R3 ＝ 1.1;

Y1 ＝ 30;

Y2 ＝ 20;

Y3 ＝ 10;

T1 ＝ 0;

T2 ＝ 0;

T3 ＝ 0;

F1 ＝－(A － B*(Y1 － T1 － S2))＋ Z*R2*(A －

B*(Y2 － T2 ＋ R2*S2 － S3));

F2 ＝－ (A － B*(Y2 － T2 ＋ R2*S2 － S3 ) )＋

Z*R3*(A－ B*(Y3 － T3 ＋ R3*S3));

Solve [{F1 ＝＝ 0, F2 ＝＝ 0}, {S2, S3}]

Comment 2. The thirteenth row of the above program

corresponds to equation (3.18), where both sides are

divided by Z.

We run this program to get {S2*＝ 8.62, S3*＝ 8.89}.

Step 3. Use {S2*, S3*} of step 2 above to calculate

the optimal consumption plan {C1*, C2*, C3*} from

the budget constraints.

By equations {(3.13), (3.14), (3.15)},

（3.19）

（3.20）

（3.21）

Question 2-1. In the Mathematica program of step

2, change the first period tax from T1 ＝ 0 to T1 ＝ 10.

Denote the corresponding optimal consumption-saving
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optimal consumption-saving plan as {C1*(1), C2*(1),

…, C10*(1), S2*(1), S3*(1),…, S10*(1)}. Calculate

{C1*(1), C2*(1),…, C10*(1), S2*(1), S3*(1),…, S10*(1)}.

Question 3-4. Use MS-Excel to draw the graphs of

the optimal consumption-saving plans of question 3-2

and question 3-3 as follows.

（¡）In graph 1, measure the time periods {t＝ 1, 2,

…, 10} by the horizontal axis, and plot the optimal

savings {{S2*, S3*,…, S10*}, {S2*(1), S3*(1),…,

S10*(1)}} by the vertical axis. 

（™）In graph 2, measure the time periods {t＝ 1, 2,

…, 10} by the horizontal axis, and plot the optimal

consumptions {{C1*, C2*,…, C10*}, {C1*(1), C2*(1),

…, C10*(1)}} by the vertical axis.

Question 3-5. In the assumption of question 3-3,

{A＝ 100, B＝ 1, Z＝ 0.9, R2 ＝ R3 ＝…＝ R10 ＝

1.1, Y1 ＝ Y2 ＝…＝ Y10 ＝ 10, T1 ＝ T2 ＝…＝ T10 ＝

0}, consider the changes in taxes described as the

following two cases.

Case 1. (Permanent Tax Increase) T1 ＝ T2 ＝

…＝ T10 ＝ 1

Case 2. (Temporary Tax Increase) T1 ＝ 1, T2 ＝

…＝ T10 ＝ 0

Calculate the optimal consumption plans for case 1

and case 2. Then, as you did in question 1-5, ca

Calculate the optimal consumption plans for case 1

and case 2. Then, as you did in question 1-5, calculate

the marginal propensities to consumption of the first

period for case 1 and case 2.

Question 3-6. The present value of taxes, denoted as

VT, in the ten-periods lifecycle model is defined as

follows.

（3.29）

Specify the quasi-permanent tax increase as the

following case 3.

Case 3. (Quasi-Permanent Tax Increase)

T1＝ T2 ＝…＝ T5 ＝ T̃ , T6 ＝ T7 ＝…＝ T10＝ 0

Calculate the value of T̃ that equates the VT of case 1

and the VT of case 2.

Question 3-7. Calculate the optimal consumption-

saving plan for case 3. Then, as you did in question 3-

4, draw the graphs of the optimal consumption-saving

plans of case 1 and case 3.

Question 3-8. Calculate the first period marginal

propensity to consumption for case 3.

Question 3-9. In the assumption of question 3-3,

{A＝ 100, B＝ 1, Z＝ 0.9, R2 ＝ R3 ＝…＝ R10 ＝

1.1, Y1 ＝ Y2 ＝…＝ Y10 ＝ 10, T1 ＝ T2 ＝…＝ T10 ＝

0}, change the value of Z from Z＝ 0.9 to Z＝ 0.92.

Denote the corresponding optimal consumption-saving

plan as {C1*(2), C2*(2),…, C10*(2), S2*(2), S3*(2),…,

S10*(2)}. Calculate {C1*(2), C2*(2),…, C10*(2), S2*(2),

S3*(2),…, S10*(2)}. Then, as you did in question 3-4,

draw the graphs of the optimal consumption-saving

plans of question 3-3, {C1*(1), C2*(1),…, C10*(1),

S2*(1), S3*(1),…, S10*(1)} and {C1*(2), C2*(2),…,

C10*(2), S2*(2), S3*(2),…, S10*(2)}.

Question 3-10. Explain the properties of the graphs

of question 3-9, and explain why the graphs look like

the way you draw.

Appendix: Solving Equations by Mathematica

A1. Solving Single Variable Equation.

Example 1. The solution to a single variable equation

f (x)＝－ 3x＋ 6＝ 0 is x＝ 2. (See figure A-1.)

Step 1. Start Mathematica, and type the following

lines.

f ＝－ 3*x ＋ 6;

Solve[f ＝＝ 0, x]

Remark 1. When you run the above program,

Mathematica will display all the lines that do not have

“ ; “ at the end.

Remark 2. In Mathematica program, distinction
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Step 2. Press [Shift] key and [Enter] key to run the

above program.
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between upper-case letters and lower-case letters is

important. For example, “Solve” is a Mathematica

command, but “solve” is not.

Step 2. Press [Shift] key and [Enter] key to run the

above program. 

A2. Solving Simultaneous Equations.

Example 2. Two Equations with two variables {x, y}

f1(x, y)＝ 0.5 x－ 2y＋ 5＝ 0

f2(x, y)＝ 1.5x＋ y－ 6＝ 0

The solution to this simultaneous equations system is

{x＝ 2, y＝ 3}. (See figure A-2.)

f(x)＝-3x＋6

x0

6

2

y

f1＝0.5x-2y＋5＝0

f2＝1.5x＋y－6＝0

x0

3

2

Figure A-1

Figure A-2

Step 1. Start Mathematica, and type the following

lines.

f1 ＝ 0.5*x － 2*y ＋ 5;

f2 ＝ 1.5*x ＋ y － 6;

Solve[{f1 ＝＝ 0, f2 ＝＝ 0}, {x, y}]
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