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deteriorates the test performances, as shown in

Shintani (2001).

This paper proposes several testing methods

following a parametric approach in the DGPs that are

not expressed as finite order VARs. For this purpose,

the DGPs considered are confined to vector ARMA

(VARMA) models, and we tried to construct some

tests such that the Johansen LR tests and their

asymptotics are utilized as much as possible. We also

discuss and impose conditions to exclude several

VARMA structures, including pure VMA models, as

one of the requirements to make the proposed tests

valid. One reason why LR tests are not applicable to

VARMA models with some validity in the asymptotic

sense is that the lagged differenced series as

explanatory variables in reduced rank regression are

correlated with the error term formed as a VMA. In

this study, we develop two methods constructed based

on a technique known as the method of instrumental

variables (Ⅳ). For this purpose, we first estimate time

series that are not correlated with the error term (and

the error correction term) but are correlated with the

lagged differenced series. In so far as possible, it

proceeds in a manner similar to that used for LR tests

based on reduced rank regression, apart from

１　Introduction

The cointegration rank has been, in general,

detected by the methodology based on likelihood ratio

(LR) tests proposed by Johansen (1988,  1992)

(Johansen methodology). However, its asymptotic

validity has not been established for the data

generating processes (DGPs) other than finite lag-

order vector autoregressions (VARs).

Some semiparametric and nonparametric

approaches to the rank determination may be

considered to compensate for limitation of LR tests.

For the case in which the VAR lag-order is infinite,

Saikkonen (1992) and Qu and Perron (2007) have

discussed the applicability of the Johansen

methodology based on a finite lag-order

approximation of the infinite lag-order or the

determination of an optimal lag-order.

In contrast, Shintani (2001) proposed nonparametric

tests for rank determination without formulating any

vector autoregression scheme. However, these tests

need a kernel estimator with its bandwidth parameter

in construction, and the tests comparatively slow rate

of convergence/divergence of some statistics forming

the tests as some defect in using a kernel estimator

Cointegration Rank Tests
In Vector ARMA Models
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matrices such that Hp≠ 0 and Dq≠ 0, {εt}is i.i.d.(0,

Λ) with a k×k positive definite matrix Λ and finite

fourth order cumulants of elements of εt, and it is

assumed that y－i＝Op (1) or O(1) for any i ≥ 0, that det

A(z)≠0 for ∀|z| ≤ 1 except z＝1 and det D(z)≠0 for

∀|z| ≤ 1, where

with I denoting the identity matrix, and that A(z) and

D(z) have no common left divisors as U(z) satisfying

A(z)＝U(z) A1(z), D(z)＝U(z) D1(z) and

either A1(z)＝I＋A1;1 z or D1(z)＝I,

where A 1;1 is a k×k matrix. We also make the

assumption that

for any k×(k－r) full column rank matrices δ and γ

such that δ'α＝0 and ß'γ＝0.

(1) is a VRAMA model for the vector time series

system yt that is cointegrated with the cointegration

rank r and may correspond to the expression derived

in the Granger representation theorem by Engle and

Granger (1987) if D(z)＝ d(z)I with a scalar

polynomial d(z)＝1＋∑q
i＝1 di z

i, although not being any

finite order VAR. Note that neither a pure VAR nor a

pure VMA is dealt with as the DGP, and also note that

the last one of the assumptions above is made to

exclude the occurrence of multicointegration (Granger

and Lee (1990) e.g.), which is equivalent to the one

imposed in Johansen (1996, pp. 55-57) or Assumption

A3 in Banerjee et.al (1993, p. 147). We shall include

the case in which y is not cointegrated (i.e. the case of

r＝0) in our analysis. However, this case is trivial, and

this paper does not provide its formulation.

It is assured by the above assumptions that

for ∀|z| ≤ 1. Putting

estimation of the long-run covariance matrix of the

residuals using a fixed bandwidth kernel such that the

bandwidth is equal to the lag-order of the vector MA

(VMA).

This paper establishes that one of the tests proposed

is the same limiting distribution as for the LR test in

the most standard case and that the critical values

based on the limiting distribution are applicable to the

tests with some asymptotic validity. It is also shown

that the tests are consistent and are as asymptotically

powerful as the LR test.

Monte Carlo experiments are executed in selected

DGPs and sample sizes 200 and 500 in order to

investigate finite sample performances of the tests

proposed, comparing the LR test or Shintani tests. The

experimental results show that the tests proposed

perform comparatively well and are stable throughout

the whole DGPs, particularly when the sample size is

500, and sufficiently reflects the asymptotics. Results

also reveal that one of the tests proposed exhibits

satisfactory performances even in DGPs that are

’nearly’ non-invertible in the sense that the

characteristic equation of the VMA structure possesses

one root close to －1, whereas the performances of

most remaining tests deteriorate under such DGPs.

The paper is organized as follows. Section 2

formulates the DGP as a VARMA model and discuss

the conditions mentioned above as some preliminaries.

The tests proposed are presented in Section 3, and

asymptotics for the tests are established in Section 4.

Section 5 deals with Monte Carlo experiments. The

remaining issues, along with some concluding

remarks, are discussed in Section 6. The proofs of a

lemma and theorems in the text are provided in

Appendix.

２　The DGP and some preliminaries

Consider a k-dimensional time series yt expressed as

(1)

where t ≥ 1, α and ß are k×r full column rank

matrices with r such that 1 ≤ r ≤ k－1 and rank ß'α＝

r, p and q are positive integers, Hi and Dj are k×k
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we can derive an infinite order VMA expression for

∆yt (Johansen (1996, p. 55 Theorem 4.5) e.g.):

(2)

where B is the backward operator, C (1)(z)＝∑∞
i＝0

(－∑∞j＝i＋1 Cj) zi with Ci that decay exponentially as i

increases and such that

It should be noted that C(1)＝γτδ with γ and δ

defined above and a nonsingular matrix τ of (k－r)×

(k－r). Without losing generality, suppose that δ'D(1)

ΛD(1)'δ＝I.

(1) may be written as

(3)

where m＝max{p, q, 2}, H
_

i＝Hi＋αß' if i ≤ min{p,

q}, H
_

i＝αß' if p＜i ≤ q, H
_

i＝Hi if q＜i ≤ p and H
_
2 ＝0

if p＝q＝1. We shall develop our discussion under (3)

rather (1).

Now, consider conditions to exclude several

VARMA structures, although the condition to fully

identify the VARMA for weakly stationary series

(Priestley (1981, p. 802) e.g.) is not imposed. Put

let P(x
_

t－i;0 |{x
_

t－j;1 ; j＝m
_

, …, n
_

}) stand for the linear

least-square predictor of a vector time series x
_

t－j;0 onto

{x
_

t－j;1 ; j＝m
_
, …, n

_
} as the Hilbert space spanned by

vector time series x
_

t－j;1 ; j＝m
_
, …, n

_
, and let t, t－1

and t－q－1 denote the Hilbert spaces given as

We first consider the following condition:

Condition (A): There exist a k-dimensional

nonzero vector f
_

and a matrix F
_

of mk×k such that:

(¡)  f
_
'∆yt is spanned not only by elements in t but

also by those in t－q－1, and

(™)  Any nonzero linear combination of F
_

'∆zt－1;m is

spanned not only by elements in t－1 but also by those

in t－q－1.

Condition (A) (¡) is put to exclude the case in

which ∆yt is expressed as

where Φi are k×k matrices and α
_

is a k×r matrix, in

view of (2) and (3). It is then easy to see from (3) that

H
_
≠0, and (¡) is equivalently expressed as the one

based on H
_
'∆zt－1;m, i.e., there exists at least one f

_
such

that f
_
'H
_
'∆zt－1;m is spanned not only by elements in t－1

but also by those in t－q－1. Therefore, the case in

which Condition (A) (¡) does not hold may

substantially render meaningless the role of H
_

'∆zt－1;m

in (3). Similarly, the absence of Condition (A) (™)

implies that there exist no k linearly independent linear

combinations of ∆zt－1;m that are spanned not only by

elements in t－1 but also by those in t－q－1,

suggesting that there exist k-dimensional VARM

models with lower VAR and VMA orders.

Second, we focus our attention on:

Condition (B): There exist no k-dimensional

vectors such that f
_
'H
_
'≠0 and f

_
'H
_
'∆zt－1 ; m is expressed

as a linear combination of elements in t－1.

This condition states that for a k-dimensional

nonzero vector f
_
, f

_
'∆yt is expressed as a linear

combination of elements in t if and only if f
_
'H
_
'＝0.

Now, consider the case in which there exists a k×h
_
1

matrix F
_
1 of k×h

_
1 such that h

_
1 ≤ k－1, rank F

_
1' H

_
'＝h

_
1

and

where Φ
_

i are k×h
_
1 matrices and Ψ

_
is a h

_
1×r matrix,

provided that Condition (A) holds. Such case does not

satisfy the identifiability of the VARMA parameters

of (1), since we have a VARMA model given as
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＝0, 1, …, 2q＋n,

of T
_
× mk and T

_
× nk respectively, with the

supposition that hereafter h takes values in {0, 1, …,

q}. Second, put.

and let each of B̃ , Ĝ and B̂ be the matrix whose

columns are the eigenvectors, of the respective matrix

below, which correspond to the k largest eigenvalues

arranged in descending order: For B̃ of nk×k,

Ĝ of mk×k,

and for B̂ of nk×k,

Third, put

and define the notations Sij and S00 ; 0 as

Finally, let λ̂1, …,λ̂k be the eigenvalues which are

obtained by solving the eigenvalue problem of the

equation

such that |λ̂1| ≥ … ≥ |λ̂k|.

A test statistic for the null r＝j and the alternative r

≥  j＋1 is now given as

(4)

where

Next, let k1(n) and k
_
(n) be the integers given as

where n is a positive integer either equal to or strictly

greater than m We then have the following lemma.

Lemma: Suppose that yt is generated by (1) and that

Conditions (A) and (B) hold. Then, for any positive

integer n either equal to or strictly greater than m,

k1(n)＝rank H
_

and k
_
(n) ≥ k.

This lemma implies that any nonzero linear

combination of H
_

'∆zt－1 ; m is spanned not by only

elements in {ß'yt－q－1, εt－i ; i＝1, …, q} but also by

those in {∆zt－q－1 ; n－P(∆zt－q－1 ; n |{ß'yt－q－1})} and that

there exist k linearly independent linear combinations

of ∆zt－1 ; m that are correlated with ∆zt－q－1 ; n－P(∆zt－q－1 ; n

|{ß'yt－q－1}). Owing to this, an appropriate Ⅳ will be

constructed based on ∆zt－q－1 ; n, as clarified in the proof

of Theorem 1. As seen later, a concrete value of n is

used for the test construction. This lemma states that m

is the minimum of n satisfying k1(n)＝rank H
_

and k
_
(n)

≥ k.

３　Test statistics

Given T observations y1, …, yT in (1) or (3), this

section presents testing methods to determine the

cointegration rank r. We first introduce a series of data

matrix notations:

which are of T
_
×k, where T

_
＝T－(2q＋n)－1 and h
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The value of r is determined by the test executed in

ascending order with respect to the value of j,

implying that this is done in the same manner as the

Johansen methodology (Johansen (1992) or Johansen

(1996, pp. 98-100) e.g.). Note that B̂ 'Ẑ '－q－1 ; n plays the

role of an IV in some reduced rank regression used for

the construction of Q̂ j, in the sense that this is

asymtotically correlated not with Ẑ－1 ; m but with Ẑ－1 ; m

H
_
, as seen clearly in the proof of Theorem 1 later.

Note that S00 used for the construction of Q̂j is an

estimator of the long-run covariance matrix of some

residual series using the truncated kernel of a finite-lag

equal to q. In this connection, a consistent estimator

for (δ'D(1)ΛD(1)'δ)－1 is formed based on S－100 under

the null, as seen in the proof of Theorem 1. Therefore,

the accuracy of the consistent estimator may be

severely impaired by the presence of one root close to

－1 in det D(z)＝0, and consequently such a root may

considerably lower the performance of Q̂ j.  As

mentioned in the introduction and shown by Monte

Carlo experiments later, the performance of Q̂ j

becomes far from satisfactory in finite samples when

such a DGP is adopted.

We provide a test to handle such ’near’ non-

invertibility issues. Put

let λ̃1, …λ̃k be the eigenvalues corresponding to the

equation

such that |λ̃＊;1| ≥ … ≥ |λ̃＊;k| and again put

Another statistic for the null r＝j and the alternative r

≥ j＋1 is now given as

For the case in which Condition (A) does not hold,

we may provide similar tests: Replace Sij with the

counterpart constructed by substituting I for all the M̂－h.

Then, construct Q̂j based on such Sij.

It should be also noted that these statistics can be

easily extended to more general models that allow a

drift or deterministic trends, by replacing S̃ , N̂－2 and

M̂－h with the counterparts dealing with such extension.

For example, let τ be the T
_

-dimensional vector

whose all elements are equal to 1 and put

Then, based on these, redefine S̃ , N̂－2 and M̂－h as

which are used in forming the test statistics

corresponding to (3) that allows a nonzero constant

vector, implying that yt is allowed to possess a linear

deterministic trend.

４　Asymptotics

In order to derive asymptotics for the test statistics,

let the symbol Wk－r(u) stand for a (k－r)-dimensional

standard Brownian motion on [0, 1]. In addition, put

Moreover, put

Based on these, define ∑̂ and ∑̂＊ as
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(™)  For the case r ≥ 1 and j＝0, …, r－1, T－1Q̂＊; j＝

ψ̃j＋Op(T－1/2), where

with ν̃1, …,ν̃r as the eigenvalues of Ω̂＊, such that ν̃i＝

Op(1), ν̃i
－1＝Op(1) and |ν̃1| ≥… ≥ |ν̃r|＞ 0. 

Theorem 2 establishes that any upper percentage

point of Q̂＊; j are below it for Q̂j. It also establishes that

the test by Q̂＊; j is consistent and is as powerful as the

LR test. Similarly, the critical values for the LR test

are applicable to the test by Q̂＊; j, as are those by Q̂j,

although the limiting distribution Q̂＊; r is not M̌r.

Theorems 1 and 2 may hold for the test statistics

provided to handle the case in which Condition (A) is

not satisfied in the previous section. We also note that

the asymptotics in the above theorems can be

established for the statistics constructed by

substituting B̃ for B̂ and that N̂－2 used in S11 does not

play any essential role in the asymptotics, as seen in

the proof of Theorem 1. Furthermore, in the previous

section, we mentioned the statistics reconstructed for

more general models containing a drift or

deterministic trends. It will be straightforward to

establish that they possess asymptotics as an extension

of those in Theorems 1 and 2.

５　Monte Carlo Experiments

In this section, we execute Monte Carlo

experiments for the cointegration rank determination

based on Q̂ j or Q̂＊; j proposed in several DGPs as

special cases of (1). The purpose of the experiments is

to observe how the tests are performed in finite

samples in connection with the asymptotics

established theoretically in the previous section. We

focus our attention on finite sample properties not for

an individual test but for the entire procedure to

determine the rank value.

The DGPs presented below are of 4-variates

systems (k＝4) with p＝1 or 2 and q＝1 or 2 ,

implying that m＝2. They are constructed on the basis

of εt as Gaussian with mean zero and covariance

matrix I (Λ＝I) and y－j＝0 for any j ≥ 0, so that the

and Ω̂ and Ω̂＊ as

We now set up the following theorem:

Theorem 1: Suppose that yt is generated by (1) and

that Conditions (A) and (B) hold. Then, for ∀n ≥ m

and Q̂j corresponding to it, we have:

(¡)  The limiting distribution of Q̂r is given as

(™)  For the case r ≥ 1 and j＝0, …, r－1, T－1Q̂j ＝

∑ r
i＝1＋j |ν̂i|＋Op(T－1/2), where ν̂1,  …,  ν̂r are the

eigenvalues of Ω̂ such that either ν̂i＝Op(1) and

Theorem 1 ensures that the limiting distribution of

Q̂r is equal to that of the LR (trace) test statistic in the

most standard case. We also see that the rate of

divergence of the test statistic under the alternative is

either equal to or greater than the divergence for the

LR test. This implies that the test by Q̂j is consistent

and is at least as powerful as the LR test in an

asymptotic sense. Thus, it is established that the

critical values for the LR test, given as upper

percentage points of M̌r, are valid for the tests by Q̂j.

The asymptotics for Q̂＊; j are established in the

following theorem:

Theorem 2: Suppose that yt is generated by (1) and

that the same conditions as in Theorem 1 hold. Then,

for ∀n ≥ m and Q̂＊; j corresponding to it, we have:

(¡)  Pr(Q̂＊; r ≥ c
_

) ≤ Pr(Q̂r ≥ c
_

), where the notation

Pr(･) denotes the probability and c
_

is a positive

number given arbitrarily.
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condition to exclude the occurrence of multicointegration

as well as the requirements for A(z) and D(z) in (1) are

satisfied. It is found that Conditions (A) and (B) hold.

We note that it can be seen by evaluating the

coefficient matrices of εt－q－1 and εt－q－2 in the VMA

expressions of ∆yt and ß'yt－q－1.

All DGPs are classified into three groups such that a

part of scalar parameter values is common within each

group. In the first and second groups for which p＝1,

there are three variations for the VAR structure. They

are diversified according to the value of r (i.e. r＝0, 1,

2), whereas the third group is specified by an identical

VAR structure as p＝2 and diversifies the DGPs via

VMA only.

Six VMA structures corresponding to one VAR

structure are specified with the coefficient matrices Di

written as

where

(¡): q＝1, d1＝d2＝d3＝d4＝0.6

and d5＝d6＝d7＝d8＝d9＝0,

(™): q＝1, d1＝d2＝d3＝d4＝－0.6

and d5＝d6＝d7＝d8＝d9＝0,

(£): q＝2, d1＝d2＝d3＝d4＝1.5, d5＝0

and d5＝d6＝d7＝d8＝d9＝0.56,

(¢): q＝2, d1＝d2＝d3＝d4＝0.2, d5＝0

and d5＝d6＝d7＝d8＝d9＝－0.48,

(∞): q＝2, d1＝1.5, d2＝d4＝0.9, d3＝0.4, d5＝0.5, 

d6＝0.56, d7＝d9＝0.2 and d8＝0.04,

(§): q＝2, d1＝1.5, d2＝0.9, d3＝0.4, d4＝－0.4, 

d5 ＝0.5, d6＝0.56, d7＝0.2 and d8＝d9＝0.

The first group, in addition to the VMA

specification above, formulates the VAR structure as

follows:

r＝0: H1＝K
_
－I,

r＝1: H1＝K
_
－I－αß', 

α＝－[0.2, 0.2, 0.5, 0.2]', ß＝[1, 1, 1, 1]',

r＝2: H1＝K
_
－I－αß',

α＝

ß ＝

where

Thus, the group consists of eighteen DGPs.

In the second group, the VAR formulation is given

as

r＝0: H1＝K
_
0－I,

r＝1: H1＝K
_
1－I－αß', 

α＝－[0.5, 0.5, 0, 0]', ß＝[1, 1, 0, 0]',

r＝2: H1＝K
_
2－I－αß', 

α＝

ß ＝

where

K
_

i＝

k
_
0 ; 1＝0, k

_
0 ; 2＝0.5, k

_
0 ;3＝0 and k

_
0 ; 4＝0.3,

k
_
1 ; 1＝－0.7, k

_
1 ; 2＝－0.5, k

_
1 ; 3＝0 and k

_
1 ; 4＝0.7,

k
_
2 ; 1＝－0.7, k

_
2 ; 2＝－0.5, k

_
2 ; 3＝－2 and k

_
2 ; 4＝0.7. 

This group also consists of eighteen DGPs.

The VAR structure for the third group is as follows:

H1＝

H2＝

α＝－[0.2, 0.2, 0.5, 0.2]', ß＝[1, 1, 1, 1].
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performances and suggests that it may originate from a

defect in using a kernel estimator, as stated already.

We should pay attention to the case in which one

root in det D(z)＝0 is close to －1, mentioned as the

’near’ non-invertible case in the introduction. The

tables reveal that such cases tend to result in severely

poor performance for each of the tests except Q̂＊; j.

This is most conspicuous for DGPs associated with

(™) but is less so for DGPs associated with (¢). We

note that such issue has been discussed similarly in

unit root testing for time series with serially correlated

errors (Perron and Ng (1996) e.g.).

Finally, note that Q̂ ＊; j displays exceptionally

robustness in DGPs associated with (™), In addition, it

shows the best performance among all methods on the

whole.

６　Concluding remarks

We have proposed two tests to determine the

cointegration rank in the framework of VARMA

models. In addition, we have discussed the validity

through the asmptotics established theoretically and

finite sample performances by Monte Carlo

experiments. It is established that the Johansen

methodology based on the standard LR test and its

critical values are asymptotically applicable to the

tests proposed. Further, we have shown that the tests

are consistent and are as asymptotically powerful as

the LR. The Monte Carlo experiments also support the

conclusion that the performance of the tests are not on

the whole unsatisfactory and are generally superior to

the LR and nonparametric tests by Shintani (2001),

particularly in the stability of performances. Findings

also indicate that our tests seem to exhibit the

desirability in the DGPs with comparatively large rank

(r＝2) and that Q̂＊; j showed the best performance with

robustness among DGPs that are ’nearly’ non-

invertible.

The experiments were not executed for the tests

constructed by n other than m or substitution of B̃ for

B̂ , and the issue on how finite sample performances of

the tests are improved by these alterations remains for

future research.

This group consists of six DGPs.

For each of the DGPs, we ran 10, 000 simulations

using T＝200 and 500 as well as pseudo normal

random variables for εt. We obtained the relative

frequency for each of Q̂j and Q̂＊; j calculated as n＝

m＝ 2 to determine correctly r over 10,  000

simulations. Relative frequency results of the tests

executed consecutively at 5％ level are provided in the

tables below. For the sake of comparison, the results

of the most standard LR test (LR) and Shintani's P(n,

s) and P＊(n, s) tests (P(k, j) and P＊(k, j) in terms of the

present paper respectively) are also tabulated. For

Shintani tests, the Parzen kernel is used with the

bandwidth parameters KT＝4 and 8, noting that the

automatic bandwidths are not adopted since less

favorable results are reported in Shintani (2001). All

calculations were made in Gauss, and the 5％ critical

values for the tests Q̂j, Q̂＊; j and LR are from Table II

in MacKinnon et al. (1999). Those for Shintani tests

are from Table IVa in Phillips and Ouliaris (1990).

Now, let us survey finite sample performances of

these testing methods through tabular comparison. As

observed, performances by Q̂j and Q̂＊; j are stable in

comparison with others: Q̂j exhibits performance not

greatly different from the asymptotics in all DGPs

except the cases in which (™) or (¢) is adopted as the

VMA structure. However, Q̂＊; j is free from the severe

performances even in such cases. This indicates that

the tests proposed generally show satisfactory finite

sample performances, although their performances

become comparatively worse as the VMA structure

becomes more complex, as in (∞) or (¢).

Performance of the LR test is inferior to those of Q̂j

or Q̂＊; j, particularly for T＝500, although not so worse

in spite of the absence of the asymptotic validity.

On the other hand, Shintani tests seem to be

unstable, particularly for the case in which KT＝8 is

used. They or some of them exhibit remarkably

admirable performance within some DGPs and

remarkably poor performance with others. It is also

noted that the results generally tend to be worse as r

increases, particularly for T＝200. This indicates that

such deterioration mainly occurs in their power

小瀧先生  12.3.15 8:38 AM  ページ 26



－ 27 －

The tests proposed are parametric, need the values

of p and q for construction, and do not cover a wide

variety of DGPs with serially correlated errors, unlike

Shintani tests. However, it may be asserted that these

succeed by utilizing the structure and characteristics of

the model.

This paper has not discussed how values of p and q

are determined prior to the rank tests nor how

parameters of (3) are estimated. It may be relatively

simple to estimate ut and its long-run covariance

matrix using or advancing the arguments and

techniques shown in the proof of Theorem 1. Those

estimates obtained for different values of p and q may

provide us a clue to find the true values of p and q.

The latter issue may be discussed with the

identification of the parameters of (1)/(3), which is

partly mentioned in Section 2. The results in the proof

of Theorem 1 (particularly Ĝ ) may be applicable to

finding consistent estimators of the VAR and VMA

coefficient matrices. Formal discussion of these issues

remains for future research.
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Appendix

Proof of Lemma First, let t－j－1 and t－q－1 denote

the Hilbert spaces given as

For F
_

satisfying Condition (A) (™), we have

with suitable matrices Θ
_

i and Ψ
_
. Now, put F̌ '＝F

_
'＋

Ψ
_

', where Ψ
_

is a mk×m matrix such as

Now, suppose that there exists a k-dimensional

nonzero vector f̌ . such that f̌ 'F̌ '∆zt－1 ; m is expressed as
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in view of (A.3) and Condition (A) (™) or (B). It is not

difficult to see from (A.1) that any element of t－q－1

is not spanned by only elements in t－q－1 and vice

versa. Thus we have a contradiction. Conclusively,

f
_
'H

_
'∆zt－1 ; m satisfies (A.3) if and only if f

_
'H

_
≠0.

Similarly, f
_
'F
_
'∆zt－1 ; m satisfies (A.3) for any nonzero f

_
.

Thus, it is established that k1(m)＝rank H
_

and k
_
(m) ≥

k. It is trivial that k1(n)＝rank H
_

and k
_
(n) ≥ k for any

positive integer n greater than m.

Proof of Theorem 1 For the proof of Theorem 1,

it suffices to show only the case of r ≥ 1 since the case

of r＝0 is trivial. One of the essential parts of the

proof is to establish that B̂'∆zt－q－1 ; n is correlated with

H
_

'∆zt－1 ; m as the ’explanatory’ variables in an

asymptotic sense, and for other parts, arguments

similar to those used for the LR test (Johansen (1988)

or Johansen (1996, ch. 11)) and the well-known

asymptotics on I(0) and I(1) series (Hamilton (1994, p.

548) e.g.) are used.

(¡) It follows from the asymptotics on I(0) and I(1)

mentioned above that

(A.4)

(A.5)

where

and several results similar to (A.4) or (A.5). From (3),

(A.5) and several asymptotics derived similarly we

also obtain 

(A.6)

Note that the identifiablity of the VARMA

parameters in (3) is not assured. There may exist a

power series with matrix coefficients as U(z) such that

U(z)≠I,

a linear combination of elements in t－1, and note that

f̌ 'F̌ '≠0, in view of the supposition of F
_

. It is then

seen clearly that f̌ 'F̌ '∆zt－1 ; m must be expressed as a

linear combination of elements in t－1,  which

contradicts the supposition of F
_

. Hence any nonzero

linear combination of F̌ '∆zt－1 ; m must be spanned not

only by elements in t－1 but also by those in t－q－1.

Consequently, we have

(A.1)

Next, suppose that for a k-dimensional nonzero

vector f
_
,

(A.2)

where K
_

denotes either H
_

or F
_
. Since

f
_
'K
_

'{∆zt－1 ; m－P(∆zt－1 ; m|{ß'yt－q－1})} must be spanned

not only by elements in t－q－1∪{εt－i ; i＝1, …, q}

but also by those in {F̌'∆zt－q－1 ; m}. Obviously, this is

equivalent to

Thus we have

(A.3)

for any f
_

satisfying (A.2).

On the other hand, suppose that there exists a k-

dimensional nonzero vector f
_
such that f

_
'K
_

'≠0 (note

that this always holds for K
_
＝F

_
) but neither (A.2) nor

(A.3) is satisfied. In view of (A.2), f
_
'K
_
'∆zt－1 ; m must be

expressed as a linear combination of elements in 

t－q－1∪{εt－i ; i＝1, …, q}. In addition, it must be

spanned not only by elements in t－1 but also by

those in

where
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where α＊ is a k×r matrix satisfying α＝U(1)α＊, and

H
_
＊; i and D＊; i are k×k matrices. Defining H

_
＊ in a

manner similar to that used for H
_
, it can be established

that H
_
＊ and its related parameters and equations

corresponding to A＊(z) and D＊(z) either reasonably

substitute for the counterparts corresponding to A(z)

and D(z) in the following arguments or are reduced to

the counterparts corresponding to another VARMA

structure that are applicable to the following

arguments.

Next, put k1＝rank ∑
_
32H

_
and we shall establish that

(A.7)

(A.8)

(A.9)

where Ĝ＊ is the matrix whose columns are the

eigenvectors, of

which correspond to the eigenvalues other than those

corresponding to Ĝ.

First, consider the case k1＝k, and let B̌ be the

matrix whose columns are the eigenvectors, of

∑
_
32H

_
H
_

'∑
_

'32 , which correspond to the k nonzero

eigenvalues arranged in descending order. In addition,

let B̌＊ be the matrix whose columns are the

eigenvectors corresponding to the (n－1)k zero

eigenvalues. It is not difficult to see from (A.6)

combined with the definition of B̃ that

Since

there must exist a nonsingular matrix Q
_
1 of k×k such

that B̌＝∑
_
32H

_
Q
_
1. Similarly, we have

Therefore, using arguments similar to those for B̃

leads to

where G
_

and G
_
＊ be the matrices whose columns are

the eigenvectors, of ∑
_

'32B̌B̌'∑
_
32 , which correspond to

the k nonzero eigenvalues arranged in descending

order, as in the above definition of B̌, and are occupied

by the remainder of the eigenvectors, respectively.

Since

there must exist a nonsingular matrix Q
_
2 of k×k such

that

where M
_
＝∑

_
'32∑

_
32 . Now, let P

_
be the k×k matrix

whose columns are the eigenvectors of K
_
'M
_
K
_
, where

K
_
＝H

_
(H

_
'H

_
)－1/2. This implies that K

_
P
_

is the mk×k

matrix whose columns are the eigenvectors, of M
_

,

which correspond to the k nonzero eigenvalues. Then,

there must exist the mk×(m－1)k matrix H
_
＊ whose

columns are the eigenvectors, of M
_
, which correspond

to the eigenvalues other than those corresponding to

K
_
P
_
, such that

Since

it must be asserted that

with a k×k nonsingular matrix Q
_
. This leads to (A.9).

Similarly, we have

小瀧先生  12.3.15 8:38 AM  ページ 29



－ 30 －

(A.12)

Similarly, from (A.5) and (A.11) we have

(A.13)

where

and Θ̃ is a k×k nonsingular matrix such that Θ̃＝

Op(1) and Θ̃－1＝Op(1). (A.13), along with (A.12),

implies that Ĝ is the matrix whose columns are the

eigenvectors, of

which correspond to the k largest (nonzero)

eigenvalues arranged in descending order. In addition,

put

Similarly to the derivation of B̃ , we obrain

(A.14)

where Θ̂ is a k×k matrix such that Θ̂＝Op(1) and Θ̂－1＝

Op(1).

Next, put

as done in the proof of the case k1＝k. It is then easily

checked that G
_
1＝M

_
H
_
1. It also follows from (A.14)

that

implying that Ĝ '＊M
_

H
_
1＝Op(T－1/2). Based on the

eigenvalues and eigenvectors of H
_

'1M
_

H
_
1 and by

arguments similar to those used for the case k1＝k, it

can be shown that there exists a k1×k1 nonsingular

matrix Q
_

such that

Thus we obtain

where B
_

is the matrix whose columns are the

eigenvectors, of ∑
_
32G

_
G
_
'∑
_

'32, which correspond to the k

nonzero eigenvalues arranged in descending order.

Noting that

it is clearly seen that any nonzero linear combination

of G
_

'∆zt－1 ; m is spanned not only by elements in t－1

but also by those in {B
_
'∆zt－q－1 ; n}, implying that

These results ensure that (A.7) and (A.8) hold.

Next, consider the case k1＜k. Put H
_
1＝H1(H'1H1)

－1/2

with H1 defined as a mk×k1 matrix that consists of k1

linearly independent columns of H
_

. In view of

Condition (B) and Lemma, there must exist a k×k

nonsingular matrix Ǎ such taht

Putting

where N
_
0＝I－F

_
1(F

_
'1F

_
1)
－1F

_
'1, from (3), (A.5) and

several asymptotics derived similarly we have

(A.10)

where Ã is a k×k matrix such that Ã＝Op(1) and Ã－1＝

Op(1). The standard of matrix algebra then leads to

(A.11)

where

and L̃ is a k×k nonsingular matrix such that L̃＝Op(1)

and L̃－1＝Op(1). Noting that

and recalling that F̃ 2 is a random matrix of nk×k2, it is

not difficult to see that
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which is equivalent to (A.9) in this case.

Now, put k
_
＝rank ∑

_
32. For the case mk＞k

_
, there

must exist a nonrandom full column rank matrix Ǧ＊

such that ∑
_
32N

_
1Ǧ＊＝0. For a mk×k2 full column rank

matrix G
_
＊; 3 expressed as

where G
_
21 is a full column rank matrix of (k

_
－k1)×k2,

and G
_
22 is a matrix of (mk－k

_
)×k2, it is clearly seen

that

(A.15)

where

Using arguments similar to those used to derive (A.8)

in the case k1＝k and from (A.15), it follows that

(A.16)

Now, recall that F̃ '2∑
_
32 is a random matrix of k2×mk

and G̃'2＝F̃ '2∑
_
32Ñ 1, which, along with (A.12), ensures

that

It follows from this and (A.15) that

(A.17)

Using the same argument as that used for the

derivation of (A.16) from (A.15), (A.17) leads to

(A.18)

In view of (A.17) and through arguments similar to

those used for the derivation of Ĝ , we can attain to

(A.19)

where Υ̂ is a k×k matrix such that Υ̂＝Op(1) and Υ̂－1＝

Op(1). (A.18) and (A.19), along with the definitions of

G
_

i, lead to (A.7) and (A.8).

Let us again consider the asmptotics on I(0) and

I(1). It can be also established in the literature

mentioned above or by a combination of the results

therein that

(A.20)

where the symbol ⇒ stand for weak convergence of

probability measures on the unit interval [0, 1] and

Ω
_
＝γ'γτδ'D(1)ΛD(1)'δτ'γ'γ,

(A.21)

(A.22)

Putting v
_

t＝∑q－1
i＝0 (－∑q

j＝i＋1 Dj)εt－i, it is clearly seen

that

which, along with the supposition that δ'D(1)ΛD(1)'

δ＝I, leads to

(A.23)

On the other hand, in view of (A.7) to (A.9), it can be

derived that

where X denotes any of Y－q－1γ, Y－q－1ß, Ŷ0, M̂－hŶ－h, U
_
0

or (Y－q－1ß－Ẑ－1 ; mG̃)α'. It also follows similarly that

Combining (A.4), results similar to (A.4) or (A.6) and

the above two results, it follows that
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Thus we obtain

(A.28)

which, along with the definition of S00, leads to

(A.29)

In view of the definition of ∑̂ , it can be easily

established by the standard theory that ∑̂＝Op(1).

Next, note that δ' ∑̂δ＝δ'D(1)ΛD(1)'δ, and put

and Ψ̂＊＝Ψ̂－EΨ̂. It is shown by the standard theory

obvious that

implying that rank E ∑̂＝k if and only if (∑̂)－1＝Op(1).

For the case in which rank E ∑̂＝k holds, it is easy

to see that ∑̂－1＝(E ∑̂ )－1＋Op(T
－1/2)＝Op(1). Now,

consider the case in which rank E ∑̂＝k does not hold.

Then, there must exist full column rank matrices δ
_

and α
_
, of k×(k－r

_
) and k×r

_
respectively, such that

(E ∑̂)δ
_

has full column rank, (E ∑̂)α
_
＝0, δ

_
δ
_
'＋α

_
α
_
'

＝I and k－r
_
≥ k－r or r

_
≤ r. In addition, α

_
must be

expressed as

where ψ
_
1 has full column rank and is of r×r

_
and ψ

_
2

is of (k－r)×r
_
. Noting that T 1/2∑̂α

_
＝T 1/2Ψ̂＊α

_
, it can

be shown that

similar to (A.8) or (A.12). Putting

it also follows that

(A.24)

Using (A.23) and α'δ＝0 in (A.24) as h＝0 and X＝

Y－q－1γ, we have

(A.25)

It can be also shown based on (A.24) as h＝0 and X＝

Y－q－1γ that

(A.26)

Similarly, using ß'γ＝0 in (A.24) as h＝0 and X＝Y－q－1ß

and several asymptotics on I(0) and I(1),

(A.27)

It is relatively easy to show that

since both

and R̃－1 are of Op(1).

Now, consider the asymptotics on S00. (A.24) as h＝

0 leads to

as well. Substituting M̂－hŶ－h for X in the above

equation, it is derived that

Letting X＝U
_
0 in (A.24), we also have

and letting X＝(Y－q－1 ß－Ẑ －1 ; mG̃ )α' in (A.24), it

follows that
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Conclusively, it is established that f '1δ'S－100δf2＝f '1δ'

∑̂－1δf2＋ν̂, and that T 1/2| f '1θ̃1 f2| ≥ | f '1δ' ∑̂－1δf2| ≥ | f '1

θ̃2 f2|, for any (k－r)-dimensional nonzero vectors fi,

where ν̂ is a random variable such that

ν̂Op(1) if T －1/2f '1δ' ∑̂－1δf2＝Op(1) and ν̂＝Op(T
－1/2)

otherwise, and θ̃i are (k－r)×(k－r) random matrices

such that θ̃i＝Op(1) and θ̃i
－1＝Op(1).

Combining some of the above results leads to

R̃＊α' ∑̂－1αR̃'＊＝Op(1) or Op(T
1/2), (R̃＊α' ∑̂－1αR̃'＊)－1＝

Op(1) if rank E ∑̂＝k and either |T－1/2b'1R̃＊α' ∑̂－1αR̃'＊b2|

≥ |b'1θ̂b2| or |b'1R̃＊α' ∑̂－1αR̃'＊b2| ≥ |b'1θ̂b2| otherwise,

for any r-dimensional nonzero vectors bi, where θ̂is a

r×r random matrix such that θ̂＝Op(1) and θ̂－1.

On the other hand, put

and let η̂1, …, η̂k－r denote the eigenvalues corresponding

to the equation

subject to the restriction that |η̂1| ≥ … ≥  |η̂k－r|. It is easy

to see that M̂S00M̂＝M̂ . It also follows from (A.27)

that α' M̂＝Op(T
－1/2) and M̂α＝Op(T

－1/2). These results

make the form of M̂be such that

(A.30)

We can now see that (Tλ̂1)－1, …, (Tλ̂k)
－1 are the

eigenvalues corresponding to the equation

Evaluating (A.20) to (A.22), (A.25), the result for

ß'S01S
－1
00S01ß and (A.30) in the above equation, it can

be shown that

(A.31)

and that the limiting distribution of ∑k－r
i＝1 |η̂i| is M̌r. Thus

(¡) is established.

(™) It is easy to see from (A.21), (A.27), (A.29) and

the result for R̃＊α' ∑̂－1αR̃'＊ in the proof of (¡) that

either ν̂i＝Op(1) and ν̂i
－1＝Op(1) or ν̂i＝Op(T

1/2) and

(T－1/2ν̂i)
－1＝Op(1), as stated in (™) of the theorem. Let

λ̃1, …, λ̃r be the eigenvalues of the equation

By arguments similar to those used above, we have

(A.32)

It is also clearly seen that the eigenvalues corresponding

to the equation detf{λS11－S10S10
－1S01}＝0 are equivalent

to those of

This, along with arguments similar to those used for

(A.31) or (A.32), leads to

(A.33)

Combining (A.32) and (A.33) with the asymptotics for

ν̂i derived already immediately establishes (™).

Thus the proof is completed.

Proof of Theorem 2 The proof of (¡) is trivial.

(A.28) as h＝0 is the same as

(A.34)

which establishes that ν̃i＝Op(1), ν̃i
－1＝Op(1). The

remaining part of the proof of (ii) can be shown to be

as trivial as that of (¡).
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TABLE 1

Relative frequency of determining r correctly: The first group

DGP\Test
KT

Q̂ j Q̂ ＊; j LR
P(k, j) P＊(k, j)

4 8 4 8

(¡): q＝1, d1＝d2＝d3＝d4＝0.6 and d5＝d6＝d7＝d8＝d9＝0

T＝200

r＝0 91.84 91.84 89.17 98.96 99.78 100.0 100.0

r＝1 93.27 93.26 90.87 98.02 2.03 97.36 0.0

r＝2 93.12 93.11 90.11 48.93 33.65 0.0 0.0

T＝500

r＝0 93.86 93.86 90.53 97.65 98.05 100.0 100.0

r＝1 94.21 94.21 91.67 97.09 94.86 100.0 85.83

r＝2 94.29 94.29 91.58 99.32 99.1 0.0 0.0

(™): q＝1, d1＝d2＝d3＝d4＝－0.6 and d5＝d6＝d7＝d8＝d9＝0

T＝200

r＝0 29.79 98.31 4.79 22.35 100.0 99.58 100.0

r＝1 52.78 99.8 20.4 22.62 0.0 99.29 1.07

r＝2 74.1 99.65 58.13 82.78 2.49 4.32 0.0

T＝500

r＝0 38.24 99.76 2.29 1.15 96.69 97.58 100.0

r＝1 60.14 100.0 15.15 7.49 15.79 97.90 100.0

r＝2 80.82 99.86 56.78 69.81 97.63 99.36 0.0

(£): q＝2, d1＝d2＝d3＝d4＝1.5, d5＝0 and d6＝d7＝d8＝d9＝0.56

T＝200

r＝0 88.73 89.07 69.76 99.76 99.71 100.0 100.0

r＝1 87.04 87.23 78.73 99.26 5.0 70.88 0.0

r＝2 84.62 84.93 83.62 33.99 32.34 0.0 0.0

T＝500

r＝0 93.42 93.53 74.15 99.39 98.63 100.0 100.0

r＝1 92.56 92.5 80.37 98.7 97.68 100.0 2.34

r＝2 91.75 91.69 85.07 99.62 99.16 0.0 0.0

In all the tables, figures indicate percentiles, and KT is required only for P(k, j) and P＊(k, j).
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TABLE 1 (continued)

Relative frequency of determining r correctly: The first group

DGP\Test
KT

Q̂ j Q̂ ＊; j LR
P(k, j) P＊(k, j)

4 8 4 8

(¢): q＝2, d1＝d2＝d3＝d4＝0.2, d5＝0 and d6＝d7＝d8＝d9＝－0.48

T＝200

r＝0 60.16 99.24 26.45 19.19 99.45 100.0 100.0

r＝1 73.52 93.87 43.29 33.98 0.7 99.98 0.02

r＝2 75.57 94.17 72.67 85.05 37.82 85.05 37.82

T＝500

r＝0 66.26 99.93 20.6 7.79 81.04 99.98 100.0

r＝1 77.88 98.97 36.31 21.22 48.67 99.91 100.0

r＝2 79.06 98.23 72.73 81.39 95.86 89.86 0.0

(∞): q＝2, d1＝1.5, d2＝d4＝0.9, d3＝0.4, d5＝0.5, d6＝0.56, d7＝d9＝0.2 and d8＝0.04

T＝200

r＝0 86.47 89.69 82.77 99.26 99.74 100.0 100.0

r＝1 87.01 88.85 87.35 99.02 3.38 88.83 0.0

r＝2 85.97 88.21 84.73 35.08 33.92 0.0 0.0

T＝500

r＝0 91.93 93.24 85.7 98.46 98.49 100.0 100.0

r＝1 93.21 93.65 88.32 98.47 97.15 100.0 5.92

r＝2 91.55 92.97 85.85 99.43 99.17 0.0 0.0

(§): q＝2, d1＝1.5, d2＝0.9, d3＝0.4, d4＝－0.4, d5＝0.5, d6＝0.56, d7＝0.2 and d8＝d9＝0

T＝200

r＝0 76.06 86.69 80.42 96.38 99.93 100.0 100.0

r＝1 82.51 88.91 86.24 96.45 1.48 96.76 0.0

r＝2 83.39 85.59 87.53 40.81 34.69 0.0 0.0

T＝500

r＝0 85.34 92.34 82.27 89.57 97.88 100.0 100.0

r＝1 89.74 93.3 86.96 91.55 96.01 100.0 12.28

r＝2 92.11 94.07 88.31 97.75 98.9 0.0 0.0
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TABLE 2

Relative frequency of determining r correctly: The second group

DGP\Test
KT

Q̂ j Q̂ ＊; j LR
P(k, j) P＊(k, j)

4 8 4 8

(¡): q＝1, d1＝d2＝d3＝d4＝0.6 and d5＝d6＝d7＝d8＝d9＝0

T＝200

r＝0 89.27 89.34 84.73 97.71 99.95 100.0 100.0

r＝1 92.24 92.11 89.52 97.63 4.55 1.58 0.0

r＝2 96.43 97.01 89.2 82.32 0.0 81.01 0.0

T＝500

r＝0 92.95 92.97 87.17 92.0 98.57 100.0 100.0

r＝1 94.34 94.44 89.67 94.89 97.53 100.0 0.0

r＝2 98.02 98.12 90.13 82.33 5.36 99.89 0.0

(™): q＝1, d1＝d2＝d3＝d4＝－0.6 and d5＝d6＝d7＝d8＝d9＝0

T＝200

r＝0 2.38 65.51 0.48 73.3 100.0 36.18 99.98

r＝1 36.66 82.28 12.95 50.18 0.0 91.1 1.2

r＝2 53.26 88.46 41.56 71.33 0.0 45.12 1.69

T＝500

r＝0 1.95 82.05 0.1 1.19 99.99 21.88 100.0

r＝1 50.12 93.94 8.82 4.57 0.72 82.21 99.97

r＝2 59.67 97.74 37.92 94.33 0.0 40.97 99.83

(£): q＝2, d1＝d2＝d3＝d4＝1.5, d5＝0 and d6＝d7＝d8＝d9＝0.56

T＝200

r＝0 87.76 89.12 75.77 99.13 99.8 100.0 100.0

r＝1 81.26 80.84 78.59 99.01 26.48 0.01 0.0

r＝2 72.31 61.45 85.35 90.22 1.06 20.79 0.0

T＝500

r＝0 93.77 93.98 77.94 97.67 98.09 100.0 100.0

r＝1 92.37 92.54 80.0 98.11 97.76 100.0 0.0

r＝2 92.1 88.66 86.43 85.52 98.01 100.0 0.0
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TABLE 2 (continued)

Relative frequency of determining r correctly: The second group

DGP\Test
KT

Q̂ j Q̂ ＊; j LR
P(k, j) P＊(k, j)

4 8 4 8

(¢): q＝2, d1＝d2＝d3＝d4＝0.2, d5＝0 and d6＝d7＝d8＝d9＝－0.48

T＝200

r＝0 43.64 99.52 44.96 14.13 100.0 98.31 100.0

r＝1 65.2 84.57 56.18 25.86 0.21 99.64 0.0

r＝2 62.87 78.29 81.0 92.55 0.0 80.5 0.0

T＝500

r＝0 39.35 99.9 34.08 0.63 95.28 94.39 100.0

r＝1 75.57 97.01 49.95 12.88 57.06 98.94 36.13

r＝2 77.92 97.08 80.87 26.21 0.02 73.98 64.5

(∞): q＝2, d1＝1.5, d2＝d4＝0.9, d3＝0.4, d5＝0.5, d6＝0.56, d7＝d9＝0.2 and d8＝0.04

T＝200

r＝0 87.23 90.11 80.49 98.71 99.88 100.0 100.0

r＝1 76.06 70.5 86.12 98.8 24.01 0.03 0.0

r＝2 83.66 90.81 86.06 81.44 0.5 19.71 0.0

T＝500

r＝0 93.7 94.44 83.41 96.94 98.55 100.0 100.0

r＝1 89.81 88.93 87.14 97.21 97.83 100.0 0.0

r＝2 93.14 97.87 86.12 88.52 48.29 99.97 0.0

(§): q＝2, d1＝1.5, d2＝0.9, d3＝0.4, d4＝－0.4, d5＝0.5, d6＝0.56, d7＝0.2 and d8＝d9＝0

T＝200

r＝0 70.91 82.83 62.13 98.51 100.0 100.0 100.0

r＝1 74.0 75.7 79.22 93.21 11.95 0.24 0.0

r＝2 65.08 87.89 69.47 59.95 0.03 65.49 0.0

T＝500

r＝0 81.42 90.32 62.22 83.21 99.46 100.0 100.0

r＝1 88.16 94.05 78.17 82.84 97.6 100.0 0.0

r＝2 76.14 95.77 69.66 16.96 89.68 72.19 0.0
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TABLE 3

Relative frequency of determining r correctly: The third group

DGP\Test
KT

Q̂ j Q̂ ＊; j LR
P(k, j) P＊(k, j)

4 8 4 8

(¡): q＝1, d1＝d2＝d3＝d4＝0.6 and d5＝d6＝d7＝d8＝d9＝0

T＝200

r＝1 93.74 93.74 92.15 87.35 9.02 81.26 0.0

T＝500

r＝1 94.72 94.72 93.39 80.82 94.49 100.0 8.91

(™): q＝1, d1＝d2＝d3＝d4＝－0.6 and d5＝d6＝d7＝d8＝d9＝0

T＝200

r＝1 27.61 91.93 48.3 2.99 0.01 86.79 0.45

T＝500

r＝1 28.77 96.33 41.07 0.6 36.18 72.76 100.0

(£): q＝2, d1＝d2＝d3＝d4＝1.5, d5＝0 and d6＝d7＝d8＝d9＝0.56

T＝200

r＝1 90.25 90.48 86.76 94.03 20.62 31.23 0.0

T＝500

r＝1 94.47 94.55 89.04 91.43 95.51 100.0 1.5

(¢): q＝2, d1＝d2＝d3＝d4＝0.2, d5＝0 and d6＝d7＝d8＝d9＝－0.48,

T＝200

r＝1 62.59 94.57 82.5 7.19 3.13 98.13 0.02

T＝500

r＝1 71.03 99.14 80.21 3.28 66.32 93.81 100.0

(∞): q＝2, d1＝1.5, d2＝d4＝0.9, d3＝0.4, d5＝0.5, d6＝0.56, d7＝d9＝0.2 and d8＝0.04

T＝200

r＝1 89.43 91.08 89.44 94.44 15.56 47.24 0.0

T＝500

r＝1 93.54 94.05 91.14 91.42 95.54 100.0 2.92
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TABLE 3 (Continued)

Relative frequency of determining r correctly: The third group

DGP\Test
KT

Q̂ j Q̂ ＊; j LR
P(k, j) P＊(k, j)

4 8 4 8

(§): q＝2, d1＝1.5, d2＝0.9, d3＝0.4, d4＝－0.4, d5＝0.5, d6＝0.56, d7＝0.2 and d8＝d9＝0

T＝200

r＝1 84.15 89.42 90.22 82.63 12.06 64.68 0.0

T＝500

r＝1 92.11 93.84 91.66 73.99 96.16 99.99 5.58
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