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We consider the effects of interactions on spinon excitations in Heisenberg spin-1=2 chains. We

compute the exact two-spinon part of the longitudinal structure factor of the infinite chain in zero field for

all values of anisotropy in the gapless antiferromagnetic regime, via an exact algebraic approach. Our

results allow us to quantitatively describe the behavior of these fundamental excitations throughout the

observable continuum, for cases ranging from free to fully coupled chains, thereby explicitly mapping the

effects of ‘‘turning on the interactions’’ in a strongly correlated system.
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Interactions in one-dimensional (1D) systems are known
to lead to collective quantum liquid states with low-energy
excitations described by the theory of Tomonaga-Luttinger
liquids [1]. While the ‘‘universal’’ physics of 1D systems
is phenomenologically well understood [2], it is almost
always impossible to track the effects of ‘‘turning on
interactions’’ on the constituent particles, as one does for
Fermi liquids. In this respect, our general understanding
of 1D systems can benefit from nonperturbative solutions
of microscopic models, a fundamental example being
the Heisenberg spin-1=2 anisotropic chain, whose
Hamiltonian is (we take J > 0)

H ¼ J
XN
j¼1

ðSxjSxjþ1 þ SyjS
y
jþ1 þ�SzjS

z
jþ1Þ: (1)

This system is a Tomonaga-Luttinger liquid for anisotropy
(i.e., interaction) values � in the range �1<� � 1 (in
zero field). Its fundamental excitations are spinons [3]:
spin-1=2 fractionalized objects which can be viewed as
domain walls dressed by quantum fluctuations.

A way to probe the nature of excitations is to determine
how they carry observable correlations, an interesting
example here being the longitudinal structure factor

Szzðk;!Þ ¼ 1

N

X
j;j0

e�ikðj�j0Þ Z 1

�1
dtei!thSzjðtÞSzj0 ð0Þi: (2)

At � ¼ 0, this can be written as a density correlator of free
Jordan-Wigner fermions. Only single particle-hole excita-
tions contribute, the exact structure factor being propor-
tional to their density of states. For �> 0, this picture
breaks down [4] due to nonperturbative effects of the
interactions.

It is the purpose of this Letter to track in detail the effects
of ‘‘turning on’’ � � 0 interactions on the spinon quasi-
particles and their ability to carry correlations, throughout

the gapless antiferromagnetic regime 0 � � � 1, which
can be realized by closing the triplet gap in frustrated spin
ladder systems [5,6] (the anisotropy being determined by
the values of the frustrated couplings; for example, in
ðC5H12NÞ2CuBr4 [7,8], this leads to a � ¼ 0:5 XXZ chain
with tunable field), or using optical lattices [9], in which
the tuning of the anisotropy is now possible using photon-
assisted superexchange processes [10]. Focusing on zero
temperature, we will compute the exact two-spinon
contribution to (2) directly in the thermodynamic limit
N ! 1, using an adaptation of the ‘‘vertex operator
approach’’ [11]. Our results provide a strict lower bound
and (for practical purposes) an extremely accurate repre-
sentation for the complete correlator of the infinite system
(more that 99% for �< 0:5) throughout the observable
excitation continuum. They provide a robust benchmark
for assessing the line shapes obtained for finite systems
directly from integrability [12] or using variants of the
density matrix renormalization group (DMRG) [13] or
quantum Monte Carlo (QMC) [14] calculations, and con-
firm the threshold behavior predicted using field theory
[15–17], complementing it with exact prefactors. Our re-
sults, which unlike the latter are valid for general energies
and momenta, should be more directly comparable to
finite-resolution experimental (e.g., inelastic neutron scat-
tering) measurements.
The vertex operator approach was originally developed

for � � 1 where the Hamiltonian commutes with the

action of the quantum group Uqðbsl2Þ. The representation

theory of this quantum group leads to explicit expressions
for states, physical operators and their matrix elements
[11], providing building blocks for correlations in terms
of contributions from intermediate states made of
increasing numbers of pairs of spinons, Szzðk;!Þ ¼P1

m¼1 S
zz
ð2mÞðk;!Þ. The calculation of (2) was treated using

the vertex operator approach at � ¼ 1 for two [18,19] and
four spinons [20], the combination being shown to yield
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about 99% overall accuracy. The �> 1 regime was also
considered [21]. The physically more interesting quantum
critical gapless regime (0 � � � 1) remains however
largely unexplored by these exact thermodynamic meth-
ods. Our Letter aims to fill this gap.

Spinon excitations.—The ground state of the gapless
XXZ antiferromagnet supports spinon excitations [3]
with exact zero-field dispersion relation eðpÞ ¼
vFj sinpj, p 2 ½��; 0�, where the Fermi velocity is

vFð�Þ ¼ �J
2

ffiffiffiffiffiffiffiffiffi
1��2

p
arccos� . Spinons always appear in pairs, so

the simplest states which contribute to the structure factor
are made of 2 spinons. Parametrizing their momentum by
p1 and p2, momentum and energy conservation impose
k ¼ �p1 � p2,! ¼ eðp1Þ þ eðp2Þ. The two-spinon states
thus form a continuum in k-! defined by lower and upper
boundaries

!2;lðkÞ ¼ vFj sinkj; !2;uðkÞ ¼ 2vF sinðk=2Þ: (3)

Matrix elements.—The vertex operator approach is
also applicable, albeit indirectly, to the gapless region 0 �
� � 1. The strategy [22,23] is to first generalize to the
completely anisotropic Heisenberg model

P
jðJxSxjSxjþ1 þ

JyS
y
jS

y
jþ1 þ JzS

z
jS

z
jþ1Þ in the principal regime jJyj � Jx �

Jz [24] for which matrix elements of local operators be-
tween the vacuum and excited states can be computed
using a variant of the vertex operator approach [25].
These results can then be mapped to the disordered regime
jJzj � Jy � Jx [23,26] before taking the Jx ! Jy limit to

reconstruct the matrix elements for (1) with 0 � � � 1. In
this way we find the following exact expression for the
two-spinon contribution to Szzðk; wÞ:

Szz2 ðk;!Þ ¼ �ð!2;uðkÞ �!Þ�ð!�!2;lðkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

2;uðkÞ �!2
q ð1þ 1=�Þ2

� e�I�ð�ðk;!ÞÞ

cosh2��ðk;!Þ
� þ cos��

; (4)

in which � ¼ �
arccos� � 1, � is the Heaviside function, and

I�ð�Þ �
Z 1

0

dt

t

sinh½ð�þ 1Þt�
sinhð�tÞ

½coshð2tÞ cosð4�tÞ � 1�
coshðtÞ sinhð2tÞ

(5)

in which the parameter � is defined as

coshð��ðk;!ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

2;uðkÞ �!2
2;lðkÞ

!2 �!2
2;lðkÞ

vuut : (6)

Results.—In Fig. 1, we plot the two-spinon part of the
structure factor (4) for values of � between weak and
strong coupling. A few striking things are worth mention-
ing concerning the influence of interactions on the corre-
lations. Most noticeably, the upper threshold divergence
disappears immediately upon turning interactions on. The
correlation weight also starts flowing around the edges of

the continuum, mostly via the wings at k ’ 0, 2� (see, e.g.,
the � ¼ 0:2 plot), and thereafter starts accumulating at the
antiferromagnetic point k ¼ � (see the � ¼ 0:4 plot). The
lower threshold divergence starts carrying more weight
from � ’ 0:5 onwards, and becomes increasingly sharp
as one approaches the isotropic point. Within the two-
spinon continuum, the weight quickly changes shape

as � is turned on: from a pure ½!2;uðkÞ �!��1=2 form at

� ¼ 0, it becomes almost uniform in frequency for
� ’ 0:2; it then becomes a rapidly decreasing function of
frequency for higher interactions. Turning interactions on
thus leads to a remarkable collapse of correlation weight
from high to low energies.
Sum rules.—To quantify the importance of the two-

spinon contribution to the full structure factor, we use
two useful sum rules, namely, the integrated intensity

Izz ¼
Z 2�

0

dk

2�

Z 1

0

d!

2�
Szzðk;!Þ ¼ 1=4; (7)

and the f sum rule (at fixed momentum) [27],

Izz1 ðkÞ ¼
Z 2�

0

d!

2�
!Szzðk;!Þ ¼ �2Xxð1� coskÞ; (8)

where Xx � hSxjSxjþ1i is the ground-state expectation value
of the in-plane exchange term. This can be obtained from
the ground-state energy density e0 [28] and its deri-

vative, namely Xx ¼ 1
2J ð1� � @

@�Þe0, with e0 ¼ �Jð�þ1Þ
2� �

sin½ �
�þ1�

R1
�1 dtð1� tanht

tanh½ð�þ1Þt�Þ. We provide the explicit

values of the sum rule saturations coming from two-spinon
contributions in Table I (for the f sum rule, the saturation is
the same at all momenta). The two-spinon states carry the
totality of the correlation at � ¼ 0, and this remains
approximately true up to surprisingly large values of inter-
actions �� 0:8, above which four, six, . . . spinon states
become noticeable. Interestingly, this level of saturation
from few spinon states does not hold for the transverse
(in-plane) structure factor for �< 1, for which (as antici-
pated earlier [29]) the two-spinon states have a vanishing
contribution [30]; our method is thus not directly appli-
cable to this correlation.
Threshold behavior.—The behavior of the longitudinal

structure factor in the vicinity of thresholds can be deter-
mined analytically from (4)–(6), allowing us to make
contact with and complement recent field theory predic-
tions [17,31] (the former giving the correct exponent).
The structure factor near the upper threshold.—The

upper threshold ! ! !2;uðkÞ is approached by the limit

� ! 0 as can be seen from (6). A careful evaluation shows

that the integral (5) then behaves according to I�ð�Þ !�!0 �
2 ln�þ Oð1Þ. We thus have from (4) and (6) that the
structure factor vanishes as a square root,
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Szz2 ðk;!Þ !!!!2;uðkÞ
fuð�Þ

�
sin

k

2

��7=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2;uðkÞ �!

q
(9)

in which fuð�Þ is a momentum-independent function of
anisotropy. The anisotropy-independent square-root cusp
at the threshold (for 0< � � 1) confirms the field theory
predictions [17], and at � ! 1 matches the same limit
known to apply for the XXX case [19]. The prefactor we
obtain here varies quickly with momentum, showing strong
enhancement of the upper threshold singularity when tak-
ing the momentum towards the k ¼ 0, 2� zone boundaries
(as can be seen in Fig. 1, most clearly at small anisotro-

pies). For the � ! 0 limit (so � ! 1), the cosh2��� þ cos��
in the denominator of (4) vanishes when � ! 0. Overall, in
this case one rather obtains a square-root divergence,

Szz2 ðk;!Þ !!!!2;uðkÞ
fuð1Þ ðsink2Þ�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2;uðkÞ�!
p , which follows the singu-

larity of the density of states (the matrix elements are then
energy independent). This discontinuous in � threshold

TABLE I. Sum rule saturations as a function of anisotropy:
two-spinon contribution to the integrated intensity Izz (7) and
first frequency moment Izz1 (8).

� Izz2sp=I
zz Izz1;2sp=I

zz
1 � Izz2sp=I

zz Izz1;2sp=I
zz
1

0 1 1 0.6 0.9778 0.9743

0.1 0.9997 0.9997 0.7 0.9637 0.9578

0.2 0.9986 9.9984 0.8 0.9406 0.9314

0.3 0.9964 9.9959 0.9 0.8980 0.8844

0.4 0.9927 0.9917 0.99 0.7918 0.7748

0.5 0.9869 0.9849 0.999 0.7494 0.7331

FIG. 1 (color online). Two-spinon part of the longitudinal structure factor of the infinite Heisenberg chain, for different values of the
anisotropy parameter �. For � ! 0, the correlation follows the density of states, and has a square-root singularity at the upper
threshold for all values of momenta. Increasing the anisotropy shifts the weight progressively towards the lower boundary. The lower
boundary becomes increasingly sharp as the � ! 1 limit is approached.
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exponent behavior is also consistent with field theory [17].
We notice further that the momentum dependence of the
prefactor is changed to a much weaker one than that at
� � 0.

The structure factor near the lower threshold.—The
limit ! ! !2;lðkÞ is obtained via � ! 1. Evaluating (5)

yields I�ð�Þ !�!1 � �ð1þ 1
�Þ�þ Oð1Þ. The structure factor

then obeys

Szz2 ðk;!Þ !!!!2;lðkÞ
flð�Þ

j sinkj�ð1=2Þð1�1=�Þðsink2Þ�2=�

½!�!2;lðkÞ�ð1=2Þð1�1=�Þ ; (10)

where flð�Þ is again a momentum-independent function of
anisotropy. The singularity exponent reproduces an early
conjecture [4] and field theory predictions [17]; the
momentum-dependent part of the prefactor shows an
even more complicated behavior than that of the upper
threshold, being enhanced (though differently) both at the
zone boundaries k ¼ 0, 2� as well as near k ¼ �. As a
final detail, the� ! 0 limit (so � ! 1) yields the expected

behavior, Szz2 ðk;!Þ !!!!2;lðkÞ
Oð1Þ.

Conclusions.—In summary, we have tracked how spi-
nons in Heisenberg antiferromagnets contribute to the
longitudinal structure factor (2), as a function of anisotropy
(i.e., interaction). We obtained the two-spinon part of (2)
exactly in the zero field, infinite-size chain throughout the
gapless antiferromagnetic regime, using the vertex opera-
tor approach. Our results provide an exact lower bound for
and an extremely accurate description of the full correlator
(as shown by sum rules) throughout the observable con-
tinuum (i.e., not only at low energies or near thresholds),
provide a resilient check for alternate methods and give a
nonperturbative derivation of threshold exponents, com-
plementing these with exact prefactors. The precise func-
tional form we obtained also allows us to determine the
region of validity of the threshold behavior; we will
address this and other issues in future work.

J.-S. C. acknowledges support from the FOM foundation
of the Netherlands. H. K. was supported in part by Grant-
in-Aid for Scientific Research (C) 22540022. M. S.
acknowledges the Australian Research Council (ARC)
for financial support. The authors are grateful to L. Frappat
and E. Ragoucy for the RAQIS conferences, during which
this work was initiated.

[1] F. D.M. Haldane, J. Phys. C 14, 2585 (1981).
[2] T. Giamarchi, Quantum Physics in One Dimension

(Oxford University Press, Oxford, 2004).
[3] L. D. Faddeev and L. A. Takhtajan, Phys. Lett. A 85, 375

(1981).
[4] G. Müller, H. Thomas, H. Beck, and J. C. Bonner, Phys.

Rev. B 24, 1429 (1981); G. Müller, H. Thomas, M.W.
Puga, and H. Beck, J. Phys. C 14, 3399 (1981).

[5] K. Totsuka, Phys. Rev. B 57, 3454 (1998).
[6] F. Mila, Eur. Phys. J. B 6, 201 (1998).
[7] B. C. Watson et al., Phys. Rev. Lett. 86, 5168 (2001).
[8] B. Thielemann et al., Phys. Rev. Lett. 102, 107204 (2009).
[9] A. B. Kuklov and B.V. Svistunov, Phys. Rev. Lett. 90,

100401 (2003); L.-M. Duan, E. Demler, and M.D. Lukin,

Phys. Rev. Lett. 91, 090402 (2003); J. J. Garcia-Ripoll and
J. I. Cirac, New J. Phys. 5, 76 (2003); M. Lewenstein et al.,

Adv. Phys. 56, 243 (2007).
[10] Y.-A. Chen, S. Nascimbène, M. Aidelsburger, M. Atala, S.

Trotzky, and I. Bloch, arXiv:1104.1833.
[11] M. Jimbo and T. Miwa, Algebraic Analysis of Solvable

Lattice Models (American Mathematical Society,

Providence, RI, 1995).
[12] J.-S. Caux and J.M. Maillet, Phys. Rev. Lett. 95, 077201

(2005); J.-S. Caux, R. Hagemans, and J.M. Maillet,

J. Stat. Mech. (2005) P09003.
[13] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004); A. J. Daley, C. Kollath, U. Schollwöck, and G.
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