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1. INTRODUCTION

Let G be a reductive Lie group of class H and K a maximal compact subgroup
of G. One of the main concerns in the harmonic analysis on G has been the
characterization of the Fourier transforms of various function spaces on G, such
as a space of compactly supported smooth functions, Schwartz space and LP-type
Schwartz space. A number of authors solved these problems for particular classes of
groups in their papers (cf. [1,3,5,9,10,14,24,25]). However, even now, the complete
answer of these problems dose not seem to be known. One of the most difficult
parts of these problems is to show the continuity of the inverse Fourier transform.
The inverse Fourier transform in these characterizations is given by integrating a
function on the Fourier transform side against the matrix elements of the principal
series representations. Thus the Eisenstein integrals on G, that is, the matrix
elements of the principal series representations play an essential role in studying
these analysis.

One of the fundamental techniques for these analysis is that of approximating
the Eisenstein integrals by their constant terms, which was established by Harish-
Chandra. For example, Arthur [1] proved the Paley-Wiener type theorem for the
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Schwartz spaces on G. He used the leading terms as an approximation of the
Eisenstein integrals and estimates of difference between them. For the case of
spherical LP-Schwartz space (p # 2), taking some terms of the Harish-Chandra
expansion of elementary spherical function as an approximation for it, Trombi and
Varadarajan [26] gave a uniform estimate for the difference between them. And
by virtue of this estimate, they proved the Paley-Wiener type theorem for the
LP-Schwartz spaces of K-biinvariant functions on G. Later Eguchi [5] gave similar
estimates for Eisenstein integrals of (7,1)-type and proved the Paley—Wiener type
theorem for LP-Schwartz space of K-invariant functions on G. In [25], Trombi
showed the Paley—Wiener type theorem for LP-Schwartz space on semisimple Lie
group G of real rank one with the restriction to the K-finite functions. Here in
order to describe the contents of this paper, we shall use some notation explained
in §2. For v € aZ, the zonal spherical function is defined by

o e / =P HER) g1
K
Harish-Chandra showed that ¢, (k), (k € A1) is expanded as

R Pp,(h)= Y Y clw)Ta(wr — )=, (v €T).

weEW (a)AeL
In [11], Gangolli showed that there exist d, D > 0 such that
ICa(v — p)l < Dm(N)?, (v € R).

And by using this estimate, he completed the Paley—~Wiener theorem for compactly
supported smooth K-biinvariant functions, which was first proved by Helgason with
an assumption. In §5, we get the estimates for the coefficients of the Harish-Chandra
expansions of the Eisenstein integrals. In our cases, because singularities of I'y (v—p)
arise from the double unitary representation of K, we multiply a polynomial P(v)
that vanish away these singularities to I'y(v — p). By using this estimate, Eguchi
and Wakayama [10] simplified the Trombi’s proof of the Paley~Wiener theorem of
LP-Schwartz space.

In §7 through §11, we get the explicit expression of the Harish-Chandra C-
function for SU(n,1). The Harish-Chandra C-functions are given by the leading
terms of the Harish-Chandra expansions of the Eisenstein integrals and closely re-
lated to the Plancherel measure. The Harish-Chandra C-functions are also obtained
by restricting the standard intertwining operators to K-isotypic components of the
principal series representation. Therefore the information on the location of the
zeros and the singularities of the Harish-Chandra C-function gives the condition
for the reducibility of the principal series representations. By the product formula
for the Harish-Chandra C-function, the problem of computing the Harish-Chandra
C-functions of semisimple Lie groups of general rank is reduced to the real rank one
case. For this reason, it is crucial to compute the Harish-Chandra C-function for
the semisimple Lie group SU(n, 1) of real rank one. For 7 € K, the Harish-Chandra,
C-function is given by

C'T(V):/Ne_("+p)(H(ﬁ))T(/<;(ﬁ))“1dﬁ, (v € af).



In the case of SU(n,1), because [T : 0] <1 for all 7 € K and 0 € M, there exists
a meromorphic function C; (o : v) such that

TC.(v) = Cr(o : V)T, (T € Hompm(Vr, Hy)).

In this paper we shall obtain the explicit expression of C, (o : v) for SU(n,1).
This expression gives us the precise information on the zeros and the poles of the
Harish-Chandra C-function C; (). On the other hand, Cohn (cf. [4]) showed that
for any semisimple Lie group, there exist p; j,¢;; € C, (1 £i<r,1 <7< 7j) and
P, - - -y 4r € a* such that

i T (el + )
det C; (v) = : A
e EEF(EJ’,‘Z +pi)

Here det C,(v) means the determinant of the linear endomorphism C;(v) of V..
In [4], he conjectured that the coefficients p;; and ¢;; appearing in the above
expression are rational numbers and depending linearly on the highest weight of 7.
By using the expression of C; (o : v) together with V; = 3 [T : 0]H,, we can
get the explicit formula for det C; () and this shows that Cohn’s conjecture is true
for SU(n,1).

To compute C, (o : ), we use the formula of the infinitesimal operator of the
principal series representation for semisimple Lie groups of real rank one. By using
this formula, we can get a recursion formula of the standard intertwining oper-
ator with respect to the dominant, analytically integral forms on t.. From the
relationship between the standard intertwining operator and the Harish-Chandra
C-function, this formula leads to the recursion formula of the Harish-Chandra C-
function. In our cases, the infinitesimal operator can be written explicitly in terms
of the Gel’fand—Tsetlin basis of u(n). By using this recursion formula, for getting
the expression of the Harish-Chandra C-function, it suffices to consider the case
that the dominant, analytically integral form on . is minimal in the sense of the
betweenness condition of the Gel’fand—Tsetlin basis.

In §12, we show that the information on zeros of the Harish-Chandra C-function
can be utilized to get the realizations of discrete series representations of SU(n, 1)
as subquotients of nonunitary principal series representations. We also give the K-
spectra of these representations. We note that these results are already obtained
by an another method. However, using the expression of the Harish-Chandra C-
function, we can get the explicit expressions of the inner products that make the
above subquotients unitary. In §13, by using the results in §12, we get the de-
compositions of holomorphic and antiholomorphic discrete series when restricted
to U(n — 1,1), which was proven in [21]. By using the structures of K-spectra of
discrete series representations, we can concretely construct the invariant subspaces
of the representation spaces of holomorphic and antiholomorphic discrete series.

Finally the author would like to thank Professor Masaaki Eguchi for his generous
help during the work on these problems.



2. NOTATION AND PRELIMINARIES

Throughout this paper, we shall use the standard notation Z, R and C for the
set, of integers, real numbers and complex numbers, respectively. For a finite set F',
Card F' denotes its cardinal number.

Let G be a reductive Lie group of class H and K a maximal compact subgroup
of G and @ the corresponding Cartan involution. As usual, we shall use lower case
German letters to denote the corresponding Lie algebras and upper case German
letters their universal enveloping algebras. For any Lie group L, L denotes the
set of equivalence classes of the irreducible unitary representations of L. If V is a
vector space over R, V., V* and V7 denote its complexification, its real dual and
its complex dual, respectively. Let (-,-) denote the Killing form on g. Define the
inner product (-,-)p on g by (X,Y)s = —(X,0Y) and write || X| = \/(X, X)e.

Let g = €+ p be the Cartan decomposition of g corresponding to #. Choose
a maximal abelian subspace a of p and fix an orthonormal basis {H; : 1 < j <
¢}, (¢’ = dima) of a. Let h be a f-stable Cartan subalgebra containing a and
he= h N e Let t be the Cartan subalgebra of ¢ containing he. Fix an ordering on
v/—1he+ a that is compatible with the one on a and fix the ordering on /—1t that
is compatible with the one on /—1h.

Let A be the set of all nonzero roots of g. with respect to he and A+ the subset
of A consisting of all positive roots. Put Py = {a & A TvR o]k O}. For a € A,
g2 denotes the corresponding root subspace of ge. We put n= (3. P, g¥)Ng. Let
A and N denote the analytic subgroups of G corresponding to a and n, respectively
and N = ON. Then G = KAN and g = ¢+ a 4+ n are the Iwasawa decompositions
of G and g, respectively. For g € G, g decomposes under G = KAN as g =
k(g) exp H(g)n(g), where k(g) € K, H(g) € a and n(g) € N. For a € Py, we
define Q5 € a by a(H) = (Qs,H) for H € a. For @ € P, we choose the root
vectors Xy, € g so that (X, X_o) = 1 and write them as X4 = Yiq + Ziq,
where Y4, € b and Zi, € pe. Let at, (at)* and A" be the positive Weyl chambers.
Weset R={v=¢§+nea;:€£€/la*,—n¢€ Cl(a*)*}, where Cl denotes the
closure.

Let %* be the set of all restricted roots of g with respect to a, that is, 2+ =
{& o P+} and {ai 8 i R Z} the set of all simple restricted roots. For
a € 2, m, denotes the multiplicity of . We denote by M and M’ the centralizer
and the normalizer of a in K respectively. Then W(a) = M'/M is the Weyl group
of G. For w € W(a), 0 € M and v € aZ, define wv € a3 and wo € M by
wr(H) = v(Ad(w)~1H) and wo (m) = o(w™lmw).

Let Ag be the set of all roots of &, with respect to t., A;; the subset of Ag
consisting of all positive roots and Wy the Weyl group of (f,t.). As usual, we
write p = %Zaez+ mqa and g = %ZﬁeA} f. Let w and wy, be the Casimir
operator of & and M, respectively. For each D € &, we denote by & 4(D) the
radial component of D.

Let Dg and D)y denote the sets of dominant, analytically integral forms on t¢
and fe_, respectively, with respect to the above orderings. If A € Dk and p € Dy,
we write (7, VA) and (o,, H,,) for the irreducible unitary representations of K and

M whose highest weights are A\ and u, respectively. For 7 € K and 0 € M, [r o]
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denotes the multiplicity of o occurring in 7|p. Let K (o) and M (7) be the subsets

of K and M consisting of the elements satisfying [7 : o] # 0, respectively. Similarly
D (p) and Dpr(A) denote the subsets of Dg and Dy consisting of the elements
satisfying [T : 0] # 0, respectively.

Finally let dk and dn be the Haar measures on K and N, respectively, normalized
as [ dk =1 and [ exp{—2p(H (7))}dn = 1.

3. EISENSTEIN INTEGRALS AND THE HARISH-CHANDRA EXPANSIONS

We shall first review the compact picture of the principal series to explain the
notation and the parametrization. Let (o, H,) € M and v € a3. We set

(3.1) C2(K) = {p € C®(K; Hy) : p(km) = o(m) "o (k)}.

Let H”" denote the Hilbert space completion of C$°(K) relative to the inner prod-
uct (f,9) = [x (f(k),9(k))u,dk. Define the action 7, , of G on H”" by

(3:2) (Mo (9)p) (k) = e~ WHAHGT Mo (g~ k).

Then (7, H"¥) is called the principal series representation of G. For (7,V;) €

K (0), let H?¥(T) be the T-isotypic component of H%**. Then Frobenius reciprocity
implies the following lemma.

Lemma 3.1. The correspondence T @ v — frgy(k) = T(7(k)"*v) is a K-module
isomorphism of Homn (V, Hy ) ® V; onto H7V (7).

Let (m1,Vr), (72,Vr,) € K. We define a double unitary representation 7 =
(11,72) of K on V = Homg(Vay, Vi, ) by 7(k1, k2)(v) = m1(k1)vra(ke)™ Y, (k1 ke €
K,v € V). Vi denotes the subspace of V' comprised of all elements v € V' such
that 71(m)v = v7e(m) for all m € M. Then the Eisenstein integral on G is defined
for v € Viy and v € af by the following integral:

(3.3) Ew:v:z)= / 1 (k(zk))vra (k) " te—P)HER) g
K

As well known, all matrix elements of the principal series can be recovered from
the Eisenstein integrals. Let 71,72 € K(0). Then for Ty € Hompy (V,,Hy), T2 €
Homy (V;,, H, ), v1 € V,, and vy € V,,, it is satisfied that

(3'4) (7(0,1, (x)fT1®‘U11 fT2®v2) — (E(TQ*Tla v, -'17)1)21 'UI)VT1 s

where T35 denotes the adjoint operator of 75 and (-, *)v,, denotes the inner product
in V,,.

We define an endomorphism v of Home(Vas, Var) by Y(T) = [r2(wa), T)]. Since
the representation 75 of K is unitary, all eigenvalues of the transformation v
UT2(wy) are real. Let 71,---,7: be the distinct eigenvalues with multiplicities
my, .-+ ,my, respectively and suppose that

TS o LN SDE Tl S BN
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Let L be the set of A = Zleniai, (n; € Z>p) and put L' = L\ {0}. For
A=Y mey € L,weset m(A) = Yo ni. IfAN € Land A—N € L, we
denote A > . For each A\ € L, the Homg(Vs, Var)-valued functions I'y on af are
recursively defined as follows: put I'g = 1 and for A # 0,

(3.5)
@A = (MA=2o)Ta —7(Ta) =2 Y ) (@ — (& A — 2n@))Tr_2na
a€Pyn>1
+8 > Y (20— 1)1 (Ya)lr—@n-1aT2(Y=s)
acPyn>1
-8 Z Z n{m1(YaY_a)lr-2na + Dr2na™2(YaY_a)}.
acPyn>l

Here we put I'y =0 for A € L.
For each 1 <i<tand A € L/, put

(3.6) oxi = {v €ag: 20\, v) = (\A) + 7%},

and let T and Yo be the complement of the set Uycr Ui<i<t 02, in af and the
subset of a; comprised of all v € af such that wr € T for all w € W (a) respectively.

For i € a* and h € A, we write h* for e#(°6h)  The following theorem has been
proved by Harish-Chandra.

Theorem 3.2 (cf. [12,13,14]). Fiz av € T and set
Ov:h) =) Ta(v—ph*, (he AM).
A€L

Then the function h — ®(v : k) is analytic on A" and satisfies the following
differential equation.:

(B7)  B(:heroQ@aw)oe ™) =d(w: h) (1) — (o, p) + T2(wn).

Moreover, RPE(v : v : k) is expanded as

(3.8) RE@:v:h)= Y  ®(wv:h)Cr(w:v)v, (vEVy,heA,veTo)
weW(a)

where Cr(w : v) are the Harish-Chandra C-functions.

Remark. The expansion (3.8) is called the Harish-Chandra expansion of the Eisen-
stein integral.

4. THE SERIES EXPANSION OF A(R)/2 0 ©4(w) o A(R)1/?

We retain the notation in §3. Let

(4.1) Ow:h)=h"*d(v: k), Ah)=h* [] Q1—hr"2),
a€Py
U(v:h)=AR)Y*®(: h).
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Then from the equation in (3.7), we obtain

(4.2) b(v: b Law)) =& : B)((v,v) — (p,p) + T2(wWn)),
U :h AR)Y2 0@ A(w) o AR Y2) = W(v: B)((v, V) — (p, ) + T2(wa))-

We consider the series expansion of A(h)Y? 0@ 4(w) o A(h)~Y2. To do this, we
need the following lemma.

Lemma 4.1 (cf. [30]). The radial component @ 4(w) of the Casimir operator w
can be written as follows:

Qpw) =Palwn) +8w)—2 ) (sinha) *(1@1QYaY o+ YoV a®1@1)
QEP+
+4 Z (sinha) cotha(Y, ®1@Y_4),
a€Py

where &' (w) = Zflzl H} + 3, cp, cothaQs.

By using Lemma 4.1, we immediately obtain

(4.3)
A(R)/2 0@ 4(w) 0 A(R) ™2 =@ 4(wn) + A(R)/2 0 8 (w) 0 A(R) ™Y/

—2 ) (sinha)?(1@1@YaY o+ YaY o @10®1)
acPy

+4 Z (sinha) ! cotha (Y, ®1 @ Y_o).
acPy

We first compute A (k)2 06'(w) o A(R)~Y2. Since

HyoA(h)= Y a(H;)cotha(H;)A(h) + A(k) o Hi,

Q€P+

it follows that
ZI
§'(w) =Y A(h) ' oH;oA(R)o Hy,
=1

and hence
el

(44)  A(R)/? 08 (w)o A(R)™2 =" A(h)M? 0 Hyo A(h) o Hyo A(h)™V/2.
=1

Computing H; o A(h)~/? and H; o A(R)Y/2, we see that the expression in (4.3) is
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written as follows:

(4.5)
i g
A(h)? 08 (w)o A(R)™2 =D "H} - { % ;A(h)*l o (HZA(h))

el
)
SRR (H,-A(h»}?}

=1

£ V4 %
= ZHE v {%ZHf(logA(h)) & 211 Z:(Hz logA(h))Q} .
1=1 =1,

1=l

From the definition of A(h), we have

H;log A(h) = 2 {p(Hi) + > a(H;) Zh'2j°} ,

acPy 3>1
HilogA(R) = —4 Y a(H;)*» h™%°.
a€Py 3=1

Hence we have

(Hilog A(h))* =4 {P(Hi)2 +2 ) p(Hs)a(H;) Zh_zja

aEPy i>1

Z (H; )2 Z p20+k)a Z (H;)B(H;) Z p—2(Ga+ks)

acPy 3.k>1 ,ﬁ€g+ b |
a#

Noting that Zflzl a(H;)H; = Qs and Zflzl p(H;)? = (p, p), we have

%(HilogA(h)y = (p, p) + Z <d’&>zh-—2ja+ Z (&,ﬁ) Z p—2(GatkB)

aEPy i>1 a,BEPy i>1,k>0

Substituting these into the expression in (4.5), we get the following.

A(h)2 08 (w)o A(h)™V2 = ZH2 + ) (@,8) ) jhme
a€EPy i>1
4 Z (&, B) h—2(atkB)
a,BEP i>1,k>0
af

8



Using the above expression and substituting the following series expansions

(sinha)™ —4216 i

sinha cotha = 22(% b1 iR
=1

into the right-hand side of (4.3), we can immediately obtain the following.

Lemma 4.2. We have the following expression.

(4.6)
el
AR 0 R a(w) o AR)™? =L y(wa) + > H — (p,p)
=l |
+ Y (@@ Y jhF— > (&, f) P
acPy gl a,BePy 321,820
a#p
—8 ) Y jRHN(1010YY o+ YaY o ®101)
a€Py j>1
+8 ) ) (2 - DR EF VY, 010 Y.,).
a€Py j>1

5. THE ESTIMATE OF THE COEFFICIENTS OF [y

In this section, applying Lemma 4.2 to the differential equation in (4.2), we shall
get the estimate of I'y. We write h~2?A (k) by the binomial theorem as

Paye T Q=200 = 3 buhii?.

el o€L

By the definition of ¥, we have

(5.1) Y(w:h)= [] A —r?)20@w: h)
e Py
= bh TV RS Tl —p)i
(Z) ( Erute=on)
:hVZ Z b,Tu(v—p) | B2
AEL ::ﬁ:;

Put ax(v) =3, -2 boeTu(v — p). Then the last expression in (5.1) is of the form

(5.2) V(v h)=h > ar(@)h>.

A€L
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Conversely, suppose that ¥ is written as in (5.2). By the binomial theorem, we
write

(5.3) I] @-2 Ve N g i,

aely HEL
Then it is obvious that there exist constants Ry, Ro > 0 such that
(5.4) |du| < Rym(u)™.

By the similar computation as in (5.1), we have

(5.5) ®(v:h)= [ 1 —~r2)"Y2U(v: h)
a€EPy
- (§d“h—~) (h"c;aa(u)h‘”>
= i Z ( Z d“ag(u)> e
AEL No+p=A

Thus we obtain

(5.6) TA(v=p)= > duas(v).
A

o4p=

Consequently, taking into account (5.4), we see that it is enough to obtain the
estimate of a) instead of the estimate of I'y.

Let L) be the finite set of all A € L’ such that —(\,\) > ;. For each A € L, we
define polynomials of py by

(5.7) pa(v)=1if N g LY,
nw)= [ CA-QAN—w)™ifrel],
1<i<s .
(AA)+7: <0
and set
(5.8) dys. ¥y, m
1358
<’\7A>+'YiSO

We also put
(5.9) P@)= [ m), d=3 d),

A€L} AeL}

Paw)= [] pxlw), dn) =Y d).
A€eL] NeL]
AL A

Remark. We note that P is of finite degree and thus d < co.
We shall first show the following proposition.

10



Proposition 5.1. There ezist constants D', d} > 0 such that

IBs@)as@) < D (1+ [ + m(V)Hm() 4

Proof. We differentiate W(v : h) by A(h)Y? 0 @ 4(w) o A(k)~'/? and use Lemma
4.2. Then, comparing the coefficients of K~ in both side, we obtain the following
recursive relation:

(5.10)
200, ) = A N]aa@) = Haa@)) = Y [(@,8) — 8Fa] ) jar—25a(v)
o€l e
= Y (@B D @y gja ) +8 D Gad (25— Dar_-na®),
@,fcPy PESWS a€Py  §21

where Fp, = 11 (YaY_ o)+ 2(YaY_0o), Ga = T1(Ya)oT2(Y_q). Since {’yl, _ ,78} are
the set of distinct negative eigenvalues of v, if we assume that all ay/, (N <« \) are
defined and regard (5.10) as the defining formula of a, we see that all singularities
of a) in R are concentrated into Py. We now put

Qa(v) = PAW)(L+ v + A >4,
@) =pA@)(L+ 7] + A7,

and consider (5.10) multiplied by @x(v) instead of (5.10) itself:

(5.11)
[2(A, v) — (A, N]@a(v)ar(v) — v(@a(v)ax(v))

= Z [(@, @) — 8F,]qr(v) ZjQ}\,j(V)Q/\——Zj&(V)G'A—2j6(’/)

acPy izl

- ¥ @how), Y Qi@ om-as0s gis2u3()
a,BEP;. i>1k20
a#pB

+8 ) Ganr(v) D (25 —1)Q5 (1) Qxr—(2i- 1)a(V)aA @i-1av)-
acPy g1

Here Q3 ;, Qajx and Q3 ; are determined by

QAW)ar () = Qi k() Qs _oj5—oks (V)
= Q3;(MQx—2j—na) = Q1 ;(¥)Qxr—2ja(V).

From the above definition, it is clear that there exists a constant Cy > 0 such that

(5.12) 1Q%,; ()] < C1, 1Qx k()| < C1, 1Q3 ;)| < C1,
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for all A\ € L' and v € a} and j,k. We define by(v) by bo(v) = 1 and by (v) =
Qa(v)ax(v). For simplicity, we also put y(A : v) = (2(\,v) — (A, A\))] —~y, where [
denotes the identity operator of Homc(Vas, Var). Then (5.11) is written as follows:

(5.13)
YO )ba(r) = Y [(@, @) — 8Falqa(v) Y JQ3 ;()ba-2ja(v)

acPy i1

% Z (@, Bygr(v) Z x5k (V)0 _2j5_2kp(V)
a,BEPy i>1,k>0
a#p

+38 Z GQQA(V)Z(Qj - 1)Q§,j(’/)b/\—(2j—1)a(’/)~
a€Py i>1

Fix an orthonormal basis B = {¢1,'-- ,qbn} of Homg(Vm, V) relative to the
Hilbert-Schmidt norm || - [|2. Let A,(,) be the matrix of the endomorphism
(A : v) relative to B. Since 7 is self-adjoint, there exists a unitary matrix B such
that

Bz‘L,(,\:,,)B_1 =diag(a, -+ ,a1, * , Q- ,Q4),

where a; = 2(\,v) — (A, A\) — ;. We then have
A;(l,\w) = B diaglan . 0 v 587 e 050 )8,

Combining this with the fact | B||2 = v/n, we obtain

I A I < n AP Y milai

1<i<t
1A% 47i>0
t
2m 2(m;i—1
+ Y II laslP™ | mila;[2m—1)
1<i<s  \j=l4#i

IAI*+v: <0
Since we can choose constants Cy > 0 and C3 > 0 so that
IMmA) ! < Ca, [pA@)F < Ca(L+ [lv] + A1),
we can find a constant Cy > 0 such that
IPA ()AL llz < Ca@ + [V + AP Pm(2) =2,
Hence we have
(5.14) laa (1) AZ 5 ll2 < Csm(A) 2.
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Putting Cs = C1Cs max{||(&, &) —8F4|, 8||Gal, |{&, B)| : @, B € P, } and combining
(5.14) with (5.13), we obtain the following estimate for by:

loa()ll < Cem(A)™ 2{ Y > 26llba2ia)l+ Y Y (25— DlIba—(2i-na @)l

aEPy j>1 a€Py j>1

+ 3 Y by gjaars @

a,BEPy j>1,k>0

a7
= Cem(\)~? Z Zj”bA —iaW)|| + Z Z ”b,\_:zja_zké(’/)”
© | aePy 521 a,BEPy j>1,k>0
a#B
m(A)—1

=m(N)72 Y (Si(r) + Sa(r)),
=1

where
S0 Y. O e st
a€Py m(A—j&)=r
i>1
Sa(r) = Z Z o —zjs—255W)I-
¢ﬁ+m( 32>J1 k%ﬁ) e
Put now
Ho(v) =1, H.(v)= sup [bu(v)].
peL’
m(u)=r

By an argument similar to that as in [11], we see that there exists a constant C7 > 0
such that Si(r) and So(r) are bounded by C7H,.(v)m(\) and thus we can take a
constant Cg > 0 so that

m(A)—1
nbx(u)nscs{ ‘D Hr(u)}mml.

r=1

Moreover, if we define a series {D,} (r € Z>o) by

1 il
DO = 17 Dr — ;CS ZOD.S’
8=

then it is easy (cf. [11]) to see that H,(v) < D, and that there exists a constant
Co > 0 such that D,, < Con®~1! for all n € Z~o. This shows that

loA@)I| < Cam(N)*.
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Because d(\) < d for all A € L', we see from this that we can choose constants
D,d; > 0 so that

IPA()ax(@)]| < D(1+ ||| +m(\)*m(\)*h.
This is the desired estimate for Pyay. O

By using Proposition 5.1, we immediately obtain the following theorem.

Theorem 5.2. There exist absolute constants D,dy > 0 such that
IPA@)TA(r = )| < DL + || +m(N)**m(N)™, (v € R)

forall A€ L.

6. CONNECTION WITH C-FUNCTION AND INTERTWINING OPERATOR

We will first summarize some known results on the relationship between the
standard intertwining operator and the Harish-Chandra C-function. The results
below are due to Knapp—Stein [17] and Wallach [29].

In the remainder of this paper, we assume that G is of real rank one and has
trivial split component. We indicate by « the unique simple restricted root and by
w the unique nontrivial element in W(a). Then 2+ = {a, 2a}. In [17], Knapp and
Stein constructed the integral expression of the intertwining operator between the
principal series representations, which is called the standard intertwining operator.
Let ¢ € M and v € a% be such that Re(v,a) > 0. Then the standard intertwining
operator is defined as follows:

61)  (A(w,o,v)e)(k) = /N e~ WHH o (kuw(R))dn, (o € C2(K))-

Then they proved that for ¢ € C®(K), A(w,0,v)p, as a function of v, can be
extended to a meromorphic function on aZ. For ¢ € C3$°(K), it is satisfied that
A(w,0,v)p € CX (K) and

(6.2) A(w,0,V)6,,(9)P (k) = Two v (9)A(w, 0, v)p (k).

Let 7 € K (o). Then for T ® v € Homy (Vy, H,) ® Vs, it follows from Wallach (cf.
27, p. 270]) that

(6.3) (A(w,0,v) frey) (k) = T(Cr (v)T(w) " (k)" v).
Here C, (v) = C;(1 : v) is the Harish-Chandra C-function appeared in (3.8). Sub-

stituting (6.1) into (6.3), we obtain the following integral expression of the Harish-
Chandra C-function:

(6.4) Cr(v) = f e~ WA H®) 1 (1c(7)) " dn.
N

Let (R(w)p) (k) = p(kw) for ¢ € C(K). Define the linear mapping
(6.5) R (w): Homy (Vy, Hy) ® V; — Homg (Ve Hyo) © Vs

14



by R (w)(T ®@v) = T7(w)~ ' @v. Then it is clear that

(6.6) (B(w) frew) (k) = fr, (v)(@sv) (k)-

Looking upon C(v) as a linear mapping of Hom s (V;, H, ), we write C (0 : v) for
the determinant of the linear mapping C-(v). We call C; (o : v) the Harish-Chandra
C-function associated with 7 and o. Define the linear mapping

(6.7) T(w,o,v): Homp(Vy,Hy) @ Ve — Hompag (Vi Hyo ) @ Vi

by T(w,0,v)(T ® v) = TC,(v)7(w)~! ® v. We write det T'(w, o, v) for the deter-
minant of T'(w, o, v) with respect to the bases {ﬂ SN T d} of Hom s (V;, Hy)
and {T;7(w)~™' : 1 <i < d} of Homp(Vr, Hyo). Then it follows from (6.3) that

(6.8) det T'(w, 0, v) = Cr (0 : v)3™ V7.

Our main concern in this paper is the case that dimHomps(V;, H,) = 1. It is
known that if G = Spin(n,1) or G = SU(n,1) then this assumption holds for all

7€ K and 0 € M (7). Under this assumption, because TC,(v) = C, (0 : V)T, we
have the following,.

Proposition 6.1. Retain the above notation and assumption. We have
(A(w, 0, V) frew) (k) = Cr (9 : v) fr, (w)(Tev) (K)-

Remark. The function det C,(v) was first introduced by Cohn [4]. Later, Vogan
and Wallach [28] studied the function C, (o : v) for reductive Lie groups with
arbitrary rank. In their paper, they showed that C;(o : v), as a function of v, has
a meromorphic extension on a; and it can be written as quotients of products of
classical I" functions.

7. INFINITESIMAL OPERATOR OF THE PRINCIPAL SERIES

In this section, we shall introduce the formula of the infinitesimal operator of
the principal series representation that was shown by Thieleker [23,24]. We shall
reform Thieleker’s formula for our convenience so that we can get the recursion
formula of the Harish-Chandra C-function.

We retain the notation in §6. Let H € a be such that a(H) = 1. For j = 1,2,
we set Pi = {/\ € Py : M(H) = j}. Fix an orthonormal basis {Uj B o
m}, (m = dimm) of m. For j = 1,2, we set wj, = _Z/\epi 2Y2/|Xx|? and

we =—3"" UZ— Z?le,-a. For ¢ € H”", we define the function ¢, on G by

ou(g) = e~ WA H@) p(k(g)). We set ¢pz(k) = (Ad(k)~*Z,H)/(H,H). We shall
first show the following lemma.

Lemma 7.1 (cf. [23, Lemma 1]). Let Z € pe and ¢ € C=(K). Then we have

(Fou (2))(K) = (253 020 ) (k) + 5 [(00) ki) = G (ol )]
- Taa7 (020 (inn) = b2 (kYplhiona )]
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Proof. We first note that

‘3
-1 <Ad(k) IZ H Z ZA>Z)‘
(7.1)  Ad(k)'Z= W Z ZP ZA, s
It follows from the definition of ¢, (g) that
(7.2) eu(k;H) =—(Ww+ p)(H)p,(k) for H €a, k € K,

(7.3) o (k; X)=0for X €n, k€ K.

Noting Zy = =Yy + X, (A € P4), we have

(7.4) pu(k; Z3) = —pu(k; Ya) = —p(k; V).
Taking into account (7.1) and (7.4), we obtain

(7.5)
(Tou(2)p) (k) = ¢ (=Z;k) = —p, (k; Ad(k) ' Z)
(Ad(k)~'Z, Zx)p(k; Y2)
(Z,\, ZA) .

2
= (v+p,a)(Ad(k) " Z, Hyp(k) + > >

3=1xePi
A simple calculation yields that for \ € P
(7.6) (5 Y] = &% (YA, Zx] = j{a, @){(Zx, Z)) H.
From (7.6), we have for A € Pi that

(ad(—Y3) Ad(k)~1Z, H)
(H,H)
—j(Ad(k)"'Z, Z))
(H,H) '

(7.7) ¢z(k;Yy) =

Therefore, substituting (7.7) into (7.5), we obtain

(7.8)

e Z i T

¢Z(k Y)‘)cp k Y,\)
Z (Zx, Z) :

‘)

A6P7
A simple calculation using (7.6) gives that
(19 92k U:) =0, 62k Y¥T) = =% (e, @)(Zx, Za)¢z(k), (A€ PL).
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Noting (Zx, Zx) = || Xa||*/2, we have

(7.10) ¢z (k;wja) = j°mjala, @)dz(k),
¢z(k;we) = (Mo + 4dmey) (e, @)z (k).

By using Leibniz’s formula, we have for j = 1,2 that

(7.11)
(62¢) (k; wia) = Dz (k)p(kiwja) + dz(k;wia)o(k) =2 ) ¢z(k; Ya)p(k; V)
AeP]
= ¢z (k)p(k;wja) + FPmjale, @)pz(k)p(k) —2 > ¢z (k; Ya)p(k; V).
AeP]
Therefore
(7.12)

— Y 02(k; Ya)p(k; V)

AeP]
= L[(650) iwio) — G(kYp(kiosa) — 7m0, 0) (620 ()]

Substituting (7.12) into (7.8), we obtain

(7.13)
(o (2)0) (k) = <”<Z’p 3 LD (4 o) k)
- z(al, a) [(920)(k;wa) — ¢z (k)p(k; wa) — male, @) ($2¢) (k)]
+ 4<a1 o5 [(920)swsa) = 92(R)p (ki wa) = Amaa (o, 0 (6260)(K)]
<<Z’, a>> (baol) 4 2(; 57 [(020) (ki wa + waa) = 92 (k)P (ki wa + o)
A 4(01’ 77 [(@20) (ki waa) = 9z (k) (ki wea)].

Noting (7.9), and using Leibniz’s formula, we immediately obtain
(7.14) (¢2¢0) (ks wa +wna) = z(k)p (ki wa +waa) = ($20) (k; we) — ¢z (k) (k; we).

Substituting (7.14) into the last expression in (7.13), we get the assertion. [

In the remainder of this section, we assume that the unitary representation
(Ad,p.) of K has no multiple weights and dim Homps(Vy, H,) <1 for all A € Dg
and u € D)s. Under these assumptions, we shall precisely write the formula in

Lemma 7.1. Let A, be the set of all weights of (Ad,p.) with respect to t.. Then
the following lemma. is valid.
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Lemma 7.2 (cf. [16, p. 111]). Let A € Di. Then

Ad@Ty = Y sgn(A+ B — 8K )T(r+8-6x)" +6x-
Bed,

Here for any integral form X on 1/—1t, we denote by sgn X’ the sign of w € Wk
such that w\’ is dominant and put (\)¥ = w)\'. For simplicity we write A(3) for
(A B —06k)" +8k. Let Exypg denote the canonical projection of p. ® Vi into Vy(g)
given by the decomposition in Lemma 7.2 satisfying ExigEy, 5 = Ir4p, Where
Ex,p and Ixyp denote the adjoint operator of Ey4g and the identity operator on
Va(8), respectively.

Let A € Dk and p € Dp(N). For T € Homys(Va, H,), define T € Hom s (pe ©
V,\, Hu) by

(7.15) T(Z®v) = (Ii?)

T(v).

—~

Define the linear mapping

(7.16)  Mu(Z; A+ B, A): Hompy(Va, H,) @ Vi — Hompg (Vagy, Hyu) @ Vaa)
by

(7.17) Mu(Z; A+ B, \)(T @v) = TE}, 3 ® Ext5(Z @v).

Lemma 7.3. Retain the above notation and assumption. We have

(#zfr00)(k) = Y sgn(A + B — 6k) fat, (22 48,2) (o) (K)-
Ben,

Proof. We compute

(Ad(k)-1Z H)
(H,H)

T(Ad®T) (k)" HZ ®v))

(02 frev) (k) = T(ra (k) v)

T | (Ad@n) (k) D BfysFrs(Z @)
BeA,

> sen(\ + B — 6k)T(E5 1 57ap) (k) ' Bayp(Z ©0))
Ben,

Il

Z sgn(A+ B — 5K)fTE;+B®E,\+a(Z®v)(k)'
BeA,

Therefore the assertion holds. O

For € Dy and w € W(a), define wp € Dy by wo, = 04,. In the fol-
lowing discussion, Ry is an abbreviation of R,, and when there is no possibility

of confusion, we shall use similar abbreviations. The next lemma is immediately
obtained.
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Lemma 7.4. Ifsgn(A+ 3 —6k) # 0 then it follows that

Rats(W)Mu(Z; A+ B, ) = —Muu(Z; A+ 5, ) Ra(w).

Proof. We compute

(7.18)
Ad(kw)"1Z H
(R() @2 fro))) = S D ) 1)
=
- Sy ) )
— (92 R (w)(Tew)) (k).
Noting
M (za4+8,0)(Tev) € H7#(TaB))s fRy(w)(Tav) € HY Y (Ta),
we see that
(7.19)
(R(w)(Pz frew)) (k) = Z sgn(A + B — 6K ) Ry 45 (w) M (Z:74+8,3) (Tow) (k)
BeA,
(02 Ry (w)(Taw) ) (k) = Z SEN(A + B — 6K ) fMuu (Z:2A48,2) Ra (w) (Tow) (K)-
Bea,

Substituting (7.19) into (7.18) and comparing side by side, we obtain the asser-
tion. O

Combining Lemma 7.1 and Lemma 7.3, we have the following theorem.
Proposition 7.5. Let p € Dy and N € Dy (p). Then there exists n) (waq) € C
such that

(Wap v(2) frew) (k)

- Z (v, @) 2/\+26K+ﬂ,ﬂ) ¥ s (Waa) — 75 (Wea)
2(a, @) 4o, o)

BeA,
X Sgn(/\ + B — 6k ) F M, (2 7+8.3) (Tev) (k)

(Twop v (Z) Ry (w)(Tow)) (K)

- v, a (2\ + 26K + B, B) 775\1+,g(w2a) — 17 (Wa)
Z {(a a) 2o, a) ke 4o, @) }

BeA,

X $gN(A + B — 0k ) fRy 4 5(w) M (Z:248,2) (Tew) (K)-
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Proof. By using Lemma 7.3, we have

(pzfrev)(kiwe) = Y sgn(\ + B — 6K) fad, (za+8,3) (Taw) (K; we)
BeA,

BeA,

X sgn(A + B — 0k ) f M, (z:a+8,0) (Tew) (K),

¢z (k) fre(k;we) = (A + 6k, A+ 0k} — (0K, 0k) ) (92 fTe0) (k)

=Y (A + 6k, A+ 6k) — (8K, 6k ) sgn(A + B — 6K fm,(z:a 48,0 (o) (K)-
BEA,

Hence

(P2 frev)(k;we) — ¢z (k) frew(k; we)

= Z (2A 4+ 26K + B, B) sgn(A + B — 6k ) fm . (z;2+8,0) (Teow) (K)-
Bea,

On the other side, under the assumption that dim Hom s (Vi, H,) = 1, there exists
15 (w2q) € C such that

TTA(waa) = Ny (w2a)T),
and hence
Frgw(k; waa) = TTa(waa) (T (k) 710) = 75 (wea) fraw (k).

Likewise we have

Fru(zais ) (Tev) (K wa) = N34 g(Woa) fat, (2348,0) (Tov) (K)-
Consequently we have

(92 frew) (k;waa) — ¢z(k) frev(k; waa)

= Y (M p(w2a) — 74 (W2a)) 580X + B — 6k) far,zintB,0) (Tow) (K)-
BEA,

Noting
Fros(w)-100 (K waa) = TTA(w) ' 7a(woa) (1A (k) ~10)

= TTx(w2a)Ta(w) i (Ta (k)_lv)
T 7],; (woa )fT’T,\(’LU)_ 1w (k),

jclnd taking into account Lemma 7.4, we can get immediately the second equation
n Proposition 7.5. O
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8. REPRESENTATIONS OF K AND M

In the remainder of this paper, we shall confine our attention to the case of
SU(n,1). In this case, because K = U(n), any irreducible unitary representations
of K and M can be constructed in terms of the Gel’fand-Tsetlin basis of u(n).
Later, this realizations are utilized for getting the matrix elements of the Harish-
Chandra C-functions with respect to the highest weight vector. We will borrow the
notation concerning the Gel’fand-Testlin basis from the Vilenkin-Klimyk’s book
(27, pp. 361-365].

Let E,, be the matrix unit whose (k,l)-component is equal to o,x64. Put
H=FE,pn+1+ Epnt1,n and a = RH. Then we have

(8.1) K:{(Xu):XeU(n),ueU(l),udethl},

I
(8.2) A—{( lcoshtsmht):tER},
sinh ¢t cosht

(8.3) M:{( > XeUm—-1),ueU(),v? detX_l}
i le _Z w—z . 2e@F R uey/=TR
By  N= {n(z W= o ) =™ ),
(8.5) N = — ("1l —aje ) : €0 twevmR
_2* w/2 14w/f? w=|z|"—2u

The lemma below is easy to obtain and hence we omit the proof.

Lemma 8.1. Let n(z,u) be as above. Then we have

H(n(z,u)) = log |1 +w|H,

1 o DB —22 0
n—1 14w 14w

Rz = | B A= 0
14w
0 0 e

We will now compute the second term (2X + 20k + 0, 3)/2(a, ) appeared in
Proposition 7.5. Put RZ = {:1: & WP Vo = gy NG (U £ R = 1)}
where z; denotes the i-component of z € R?. For z € Rp+1 andye R, z >y
means z; — y; € Z>o and y; — ;41 € Z>o. For z € R and 1 < ¢ < p, we set
z(q) = (z1, - ,zq) € Ry and z[g] = (z4,--- ,2p) € R’;‘ZH. Referring to [19,20],
we have the following.

Let H, =+/—1E,, for 1 <p<n+1. Then

n+1 n+1
(8.6) t:{thHp:hpeR, Zh,,:o},
p=1 p=1
n+1 n+1
bf: {zthp v hp = R,hn - hn—}-la Z h‘P = 0} 2

p=1 p=1
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Let {¢;} denote the dual basis of t; with respect to {H;}. Then

(8.7) Ak ={ei—¢;, 1 Zicism)},

(8.8) Ap={PB; = 5—Enr1, —Biy (1 £ j <)},
8.9 D———I—ZnD'——l—Zn_1
(8.9) a1 7 ¢ R S N

It follows from (X,Y) = 2(n+ 1)tr XY that for A € Dk,

2\ + 26 + ﬂj,ﬁj)

(8.10) T

=2+ 2| +n—2j+3, 1 <j<n),

where [TA| = 321 Ap.
We shall next compute 7% (w2q). Let M = (my,, ..., m1) be a sequence such that

1 p
(8.11) MWy = (Mg g 1 s i € (mz> 7

Then the preceding sequence M is called a Gel'fand-Tsetlin data if mpy1 > m,,
for all 1 < p < n. For the Gel’fand-Tsetlin data M, we write v(M) for the
corresponding Gel’fand-Tsetlin basis. For A € Dk, we denote by V) the Hilbert
space generated by the orthonormal basis v(M) with m,, = A\. We put X, = F, 11,
Yp = Ep+1,p, Hp = \/__1(Ep,p - Ep+1,p+1) and Ho = \/——ldla.g(—l, . .,——1,”).
Then there exists an irreducible unitary representation (7, V) of K satisfying the
following condition:

(8.12)
A (Xp)o(M) =Y AF(M)v(M}),
H =4
(8.13)
T (Yp)o(M) = > Bi(M)v(M,7),
j=1
(8.14)
P D=l p+1
TA(Hp)o(M) =2 “mjp— > mjp1— Y mypp1 ¢ V—Iv(M),
j=1 g=i j=1
(8.15)

TA(Ho)v(M) = —(n+1) ij,n\/jv(M),
gl

where M;,tj is the Gel’fand-Tsetlin data obtained by replacing m;, with m;, £1
in m, of M. For the explicit forms of Af,(M) and Bg(M), see [27, p. 363].
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Let A € Dg and pu € Dps(N). By Vi(u), we indicate the subspace of V) consisting
of the Gel’fand—Testlin basis v(M) satisfying m,, = A and m,_1 = p. We put
My = (A sy pu(n —2),--- ,p(1)). Because

n—1
\/—-_1 P T
8.16 Yo, = ———=diag(0,...,0,1,—-1
—1

= ——={Ho+H1+2Ho+---+(n—1)Hp_1},
2n\/n+1{ R . 5 ( ) 1
we have from (8.14) and (8.15) that

1
(8.17) Ta(Yoa)v(My ) = ﬁ@lﬁ\l — lou)V=1v(Ma ).
Here we write |7a| =30 ; A and |oy,| = 23;11 Ly Since wo, = =Y, it follows
1
(8.18) TA(w2a)v(Ma ) = m(QlTﬂ = |ou)*v(Ma,,)-
Taking into account 7'7y(weq) = 14 (w2e )T with T" € Hom (Vi H,,), we have
(8.19) Tra(woa)v(Ma ) = 75 (W2a ) TV(MA ).
Therefore, it follows from Tw(A, ) # 0 that
1
(8.20) My (wea) = @7l = loul)?.

4(n+1)
Noting |Tayg,| = |Ta| + 1, we get the following.

Mhs; (Waa) — M4 (w2a)
4, @)

Using these results, we shall write down the expressions in Proposition 7.5. Let

A€ Dk and g € Dp(A). In the case of SU(n,1), because all noncompact roots

have same length, we see that sgn(A + B; + 6k) = 1 iff [Ta4p; 1 0u] = 1. We

simply write v for (v, @) /{(a, @). Substituting (8.10) and (8.21) into the expressions

in Proposition 7.5, we have the following lemma.

Lemma 8.2. Let T ®@v € Homp(Vy, H,) ® Va and Z € p.. Then we have

Touw(Z)fTev

n—1

= Z(V +2X; + |ou| + 1 — 25 + 2)[Tats; : Oulfru(zia+8;,0)(Tew)
i=1

(8.21) =2|T| — |opu| + 1.

n—1

=1 Z(V -2 — |0“| —n+ Qj)[TA—Bj : Uu]fMH(Z;/\-ﬁj,A)(T®U)’
=1

71'wa,‘,wrx(Z)fR,\(w)(T®’o)

n—1

(v =2X; —|ou| = n+2) = 2)[Ta4p; © OulfRays, (WML (ZiA48;,3) (To0)

S o
-

+ Z(V + 20+ foul +n = 25)[ma—p;  OulfRa_s, () Mu(Zi2—8;,0) (T@0) -
i=1
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9. THE RECURSION FORMULA FOR THE C-FUNCTION

In this section we shall give the recursion formula of the Harish-Chandra C-
function for SU(n,1). Let o € Dy and A € Dg (p). We first recall that
(9.1)
Aw,0,V)Tu(Z) frev = Twouw(Z)A(w,0,v) free, (TO®v € Hompy (Va, H,) @ V)).

Applying Proposition 6.1 and Lemma 8.1 to (9.1), we have

the right-hand side of (9.1) = Cr, (0, : V)Mo, we (Z) fRy (w) (Tew)

|
[u

n

= (V=25 —|ou| —n+25 — 2)[TA+ﬁj : 0u)Cry (o : V)fk+6,-

oL,
Il
=

+ Y (W20 + ou| +n— 2))[map; 1 0u]Cr (04 1 V) fa—py-
i=1

Here fa+p;, = fRH:ﬁj (W) M, (Z;7+8;,0) (Tev)- Similarly we have that

the left-hand side of (9.1)

n—1
= A(w,0,,0) | Y (v + 2N+ |oul + 1 — 25+ 2)[Targ; : 0ulfmuzints; n@e)
i=1
n—1
+ 3 (W —2) —lou| — n+ 2§)[Tazp; : Tulfr,(zia—p;.0) (o)
i=1
n—1

T Z(V N 2/\j iy |Uu| Gl e 2j + 2)[7_/\4-53' : U#]C7A+ﬁj (Uu : V)f/\+ﬁj
=

—

-
+ Z(V " 2)‘3' F laul — Rk 2j)[7>\—ﬁj : U#]CT,\-ﬂj (Uu : V)f/\—ﬁj‘
F=1

Comparing side by side, we obtain the following recursion formulae.
If [Tayp, : 04) =1, then

W =2X;—|ou|—n+2j—2)Cr, (0, : V) = (1/+2/\j+]0“|+n—2j+2)CTA+ﬁj (0, 1 v).
If [rx_p, 1 0,] =1, then
W 42X + o] + 1 —2§)Cry (0, : v) = (v = 25 = |0,] —n+2j)CT,\-a,- (0u 1 v).

We set A1) = (Ka,- -+ 3 i1 pn—1) € D (p). Thus, using the preceding recursion
formulae and shifting the parameters as p— Ap, (1<p<n—1)and p, 1 — A,
We can find the following theorem.
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Theorem 9.1. Retain the above notation. We have

n—1 (V—_n%'o—“'—ﬂj—*-j—l)
Cry(0u 1 V) :H " B ]
i=1 (%“—l +Mj—3+1)

o CTM“) (o1 V).

(%&‘ + ﬂn—l)

(V‘H"-Iaﬂ
2

Aj— Ky Hn—1—3An

= F‘n—l)

A‘7_“-7 “’n—l_An

Here (a), =I'(a +n)/T(a).

Theorem 9.1 says that for getting the expression of the Harish-Chandra C-
function, it suffices to calculate Cr, (0, : v). To do this, we shall get the in-
tegral expression of Cr, (0, : V). Let p € Dy Define the Gel’fand-Tsetlin data

My = (ma, -+ ,mp) by mq = (K1, -+, fn—1, fn—1) and m; = (U1, -+ ,Mn—;) for
1 < j <n—1. Then it is obvious that the Gel’fand-Testlin basis v(M,)) becomes
a highest weight vector of both (Ta¢uy|am, Vau)(#)) and (Ta(), Va(w)). Choosing
T € Hom pr(Via(u), Vacu) (1)) as a canonical projection, we have

(9.2)
CTA(;A) (oﬂ : V) = (TCT,\(,‘) (V)U(I\/IA(M))’ U(MA(M)»
= (CT)\(;,) (V)U(M/\(u))a 'U(M/\(u)))

- /N e~ WHAEM) (1) ) (k(R) (M), v(Ma) )dn.

Putting ¢x ) (k) = (Tagu) (B)v(Mx(w)), v(My(y))), we obtain the following proposi-
tion.

Proposition 9.2. Retain the above notation. We have

Bttt /N e~ HM) gy (K(R) 1) dR.

10. FUNDAMENTAL REPRESENTATIONS OF K

In order to compute ¢(,)(£(n) ™), it suffices to compute éa(k(n)~1) in the case
of the fundamental representation A. Since the fundamental representations can
be constructed as alternating tensor products of the usual representations of K, we
can concretely write the matrix elements of 74 (x(R)~!). We note that since K is
connected reductive compact, 7, can be extended to a holomorphic representation
on K., which is an analytic subgroup of matrices whose Lie algebra is £..

We know that the fundamental representations are listed as follows:

(10.1) by o g v By S Pl v, (T K Sl = e

Let (®,C™) be the usual representation of K, that is, for k = (X u) € K and

2€C" ®(k)z =u Xz and (®,,A"C"™) be the alternating tensor representation
of . We denote by (g, C) the representation of K defined by ®q(k)z = u~1z.
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Then ®,, (1 <r <n-—1) and $g are irreducible with highest weights w, and wy,
respectively. An easy computation yields

(10.2) (D (A2, 1))~ Jep, eg) = Ii e (5m 5 f"fg) |

Therefore

N N (==} (1 - ?Z—ljgl—'z> ,
bunrtn(zy) ™) = ( jj,)l

Let p € Dar. Then A(p) = YpZ7 (lp — pipt1)wp — (0 + 1)pingny1. We write &
(resp. £_) for the sum of all positive root subspaces (resp. negative root subspaces)
with respect to (fc,tc). Let K, and K_ denote the analytic subgroups of K,
corresponding to £, and E_, respectively. By the definition of ¢y, (A € Dg), it

follows that

(104)  ¢a(krexpHko) = ga(expH) =) | (ky € K4, ks € K_,H € 1),

and thus
n—2

(10.5)  @aqu)(k1exp Hkg) = H o, (k1 exp Hz)H»~HpH+1 g, (ky exp Hkg)™
p=1

Noting K expt. K> is dense in K. and ¢, is holomorphic, we have for any k € K.
that

n—2
(10.6) D) (k) = [ by (62241 g ()™,
p=1

Thus substituting (10.3) into (10.6), we obtain the following lemma.

Lemma 10.1. Retain the above notation. Then we have

P (R(R(z,u)) )

Hp—Hp41

n—2 P
= (1 +w)lrub2m)/2(1 4 g)=Coutt2e)2 T [ 140 -2 |22
p=1 F=1
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11. EXPRESSIONS OF THE HARISH-CHANDRA C-FUNCTIONS

Using Proposition 9.2 and Lemma 10.1 and carrying out the integration, we can
get the explicit expression of Cr, (0, : v). Combining this with Theorem 9.1, we
can get the explicit expression of the Harish-Chandra C-function for SU(n,1). In
the case of SU(n, 1), we see that p=n, N = C*! x R and

n

v
; gl “2ndodzdy = —
(11.1) S el sz =

(= ¢y, 88Y)-
From Proposition 9.1 and Lemma 10.1, we have
(11.2)
CnCT,\( )(O# : 1/) :/ (1 £ w)—(V+n—|‘7y|*2Pn—l)/2(1 +@)—(V‘*ﬂ+|0u|+2#1)/2
i ER—looH

Hp—Hp41

n—2 D
x [[{1+@-2) |z dzdzdu.
p=1 3=1

In order to compute the integral in (11.2), we need the following lemma.

Lemma 11.1 (cf. [822]). Letn>1,A€C,L€Z, qg€ls, (1<Lj<n—-1),
and F =1+ 2(|z1]2 + - + |2zn-1]?) + V=1u. Then

9p
/ FO+/2 p(A—£)/2 H Z|z3|2 dzdzdu =
Gr=leR p=1
(27‘.)n2/\+n+q1+~~+qn—1p(_)\ —n—q— " —Qn_1)
— :
H (-2 -qg——ga-)r(-F-a—- —gn1—n+1)T (-35%)
J:

Taking into account (11.1), we obtain from Lemma 11.1 that
(11.3) " Crypy (o ¥)

(n—1)12-7+7D (1)

1 !
I (V+n—2}-|0“[ ¥ -|-/Lj) T (zthT—hrM " Mn—-l) T (V metloul 4 g + 1)
=1

Combining Theorem 9.1 with the above expressions, we can get the following ex-
pression of the Harish-Chandra C-function for SU(n, 1).

Theorem 11.2. The Harish-Chandra C-function Cy, (0, : v) for SU(n,1) associ-
ated with Ty € K and o, € M(7y) is given as follows:

Cor o - 12)

n—1 n—1
(n— 127+ 0() TT T (257170 4~ ps) T T (204120 — j + )
J:

- i=1

n n
Hlp(L;l%_l+j_/\j) Hlp(v+n2+lo | —j+1+/\j>
J: J:
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Remark. 1If n = 1, putting |o,| = 0, we can get the expression of the Harish-
Chandra C-function for SU(1,1).

We write det Cr, (v) for the determinant of the linear mapping C, () of Vj.
- Taking into account E = E#GDM(A) H,, we see that

(11.4) debCo ()= L] Crule 1972 %

HED ()

Thus, substituting the expression in Theorem 11.2 into (11.4), we obtain the explicit
formula of det C;, (¢). On the other hand, in [4], Cohn obtained the expression of
det C;(v) for any semisimple Lie group. He showed that there exist p; ;, q;; €
C, (1£i<n1<j<j)and py,...,u, € a* such that

r ) 4 o
(11.5) det C, (1) = HH Ei(u;::) +(Iw)

He conjectured in his paper [4] that the coefficients p; ; and ¢; ; appearing in the
above expression are rational numbers and depending linearly on the highest weight
of 7. We can now concretely write the values of p; ; and ¢; ; and thus we obtain
the following corollary.

Corollary 11.3. Cohn’s conjecture is true for SU(n,1).

12. COMPOSITION SERIES AND UNITARIZABILITY OF SU(n,1)

In this section, we shall write down the composition series of the nonunitary
principal series representations and determine which parts of the composition series
are unitarizable, which was shown by Kraljevi¢ [20]. By virtue of the expression of
the Harish-Chandra C-function, we can get the explicit forms of the inner products
that make the subquotients unitary.

Let p € Dps and A € Dg(p). Suppose v € Rand v > 0. For1 <j<n-—1, we
set hj = (v—n—|ou|)/2+j—p; and kj = (v+n+|ou])/2 — j + p; and assume
h; € Z and k; € Z. We choose 0 < a,b < n — 1 satisfying the following conditions:

(121) h1<--'<haSO<ha+1<'-'<hn_1,
ki B0 3R> 02 Ryt > v 3 1,

In the following, we set po = co and p, = —co. By using the expression of the
Harish-Chandra C-function, we see that the zeros of C,, (0, : ) coincide with the
ones of the following function:

1
F(Y—i‘zl'fﬂ+a+1~,\a+l)r(w"—'—b+Ab+1)'
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We set

(12.2)
v—n-—|o,l

8% (a) = {A € Dic() : L2

+a+1s)‘a+1S/‘a}a

Sy (b) = {A B0 SR STk T +b} :

2
Motla) =¥ 55,

AeS; 4 (a)

TS T <

AES K (b)
In addition, if a # b, we set

(12.3) Sy (a,b) = Sy (a) NSy (b),
Hx(@,b)= > T

AeS,H (a,b)

Then we have the following results.

Theorem 12.1 (cf. [20]). 7, is reducible iff (v —n— |o,])/2+ 3 — p; € Z\{0}
or(v+n+|ou)/2—j+p; € Z\{0} for 1 <j<n—1.

Theorem 12.2 (cf. [20]). Assume To,,v 18 reducible. Choose 0 <a<b<n-1
satisfying the relations in (12.1). Then the composition series of To, v GTE givEn as
Jollows:

(1) If hy =0 and kyyq # 0, then

H»¥ D H - (b) D {0}
(2) If hg #0 and kyy1 =0, then

HO»Y D H A (a) D {0}
(3) If hg #0 and kyy1 #0 and a = b, then

How® D My (a) + Hyk () D Hi* (a) D {0},
HT»Y D MM (a) + Hyk (a) D Hy* (a) D {0}.

(4) If hy #0 and ky,1 #0 and a < b, then

Ho#Y D HM (a) + Myt (b) D Hy ¥ (a) D HE#(a,b) D {0},
H7%Y D H A (@) + My  (b) D My  (b) D HI*(a,b) D {0}.
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Theorem 12.3 (cf. [20]).
(1) 7o,,0 is reducible iff (—n —|ou|)/24 j — pu; € Z\{0} for 1 <j<n-—-1.
(2) Assume that 7y, 0 1s reducible. Then the composilion series of 7,0 can be
written as follows:

Howl 5 Mgt (a) 2.0},

oo He () 240}
Let Ho"(K) be the set of K-finite elements in C°(K). Let A(w,o,r) be the
normalized intertwining operator (cf. [17]). In case G = SU(n, 1), because 0 = wo
for any o € M, it is possible to define o(w). Following Knapp-Stein [17], we

determine the ambiguous sign of o(w) so that o(w).A(w,,0) coincides with the
identity operator on H?:°. Then Theorem 8.1(3) implies the following lemma.

Lemma 12.4. Let pn € Dy and A € Dg (p). Then we have

n—1
(—/Zj - 1))“_“‘ (_kn—l o 1)# —1—A
g ’w.A’LU,U ,l/ TV (r pr— = : = n[/\’
P( ) ( & )lH ( >‘) JI:‘[l (kj + I)AJ‘—/JJ‘ (hn——l + 1)11-n——1"/\n

where I denotes the identity operator on H#"(Ty).

We define the sesquilinear Hermitian form on H7#"(K') by
(f,9)i = (f,ou(w)A(w,04,v)g), for f,g € H*""(K),

where (-, -) denotes the sesquilinear pairing on H7#" x HY7w®"  Using Lemma 12.4
and investigating the sign of o, (w).A(w, 0y, V)|3onv(r,), We immediately obtain the
condition for that (-,-); is positive definite.

Theorem 12.5 (cf. [20]). We have the following.

(1) Suppose that a =b.
Ifa=n-—1, (,); induces a positive definite Hermitian form on H,* (a).
If a < n—1, (—1)"(,-); induces a positive definite Hermitian form on
M4 (a).
If a = n—1, (—1)”(,-) induces a positive definite Hermitian form on
Hy" (a).
Ifa<n—1, (,-); induces a positive definite Hermitian form on ’Hi,“_ (a).

(2) Suppose that a <b and pgy1 =+ = pp-
Ifb=n—-1, I'(=hgy1 + DI(=kn—1 + 1)(:,-); induces a positive definite
Hermitian form on Hy" (a,b).
Ifb <n—1, I'(=hgy1 + 1){-,-); induces a positive definite Hermitian form
on Hy" (a,b).
Ifo =n—1and ky = 1, T'(—hgy1 + 1)(-,-); induces a positive definite
Hermitian form on H," (a)/H" (a,b).
Ifb<n—1andky =1, (—1)"(-,-); induces a positive definite Hermitian
Jorm on Hy*, (a)/H2" (a,b).
Ifb =n—-1 and hgy1 =1, I'(—=kn—1 + 1)(:,-); induces a positive definite
Hermitian form on M," (a)/H." (a,b).
Ifb<n—1and hay1 =1, (-,-); induces a positive definite Hermitian form
on H," (a)/Hv" (a,b).
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Remark. Applying Nelson’s theorem, we can construct unitary representations of G
on the Hilbert space completions of the above subquotients relative to the respective
positive definite Hermitian forms. We denote these unitary representations by the
same symbols.

Applying Theorem 6(i) and Theorem 7(ii) in [20], we can find which subquotients
appeared in Theorem 12.5 belong to the discrete series representations. Because
these computations can be carried out without any difficulty, we shall only write
the conclusions.

Theorem 12.6 (cf. [18]). The discrete series representations of SU(n,1) are listed
as follows:

(1) The holomorphic discrete series. ’HZ,“+(n —1) with hy,_1 <0 and k,_1 > 0.
minimal K-type: A\, = (le ol Ll V+";l0g|)'

Harish-Chandra parameter:

n—1 p
A= Z (ko + % —p) ep+ ele, — H2ele,

K« spectrum L(A) = {m € K : X < (oo, )\m)}
(2) The antiholomorphic discrete series. H," (0) with by >0 and ky < 0.

mintmal K-type: A\, = (—m,m, ot ,#n—l)-
Harish-Chandra parameter:
n—1
A 2 (bt 3 —p)epra+ = L

K -spectrum: T'(A) = {T)‘ el —00)}.
(3) The nonholomorphic discrete series. Hy*(a,a +1) (0 < a < n — 2) with
<0< ha+1 and kqgy1 > 0> ka+2.
minimal K-type:
Am = (lu’l" -y Ha, %_IU“I b Gt 17 V+n+|a#| +a+1 y Ha425 - - - >/J"n,—1)'

Harish-Chandra parameter:

a n—1
A=Y (up+3-p)ep+Feleay - Heleg o+ S (pt+E—p)eprat
=1 p=a-+42
(ﬂa—l—l = g =l 1) Ent1-
K -spectrum.:
R X2 Nt S Lo oo Ll et e i
P& T ek W +1>u€;°;,‘;,“ 3 R,
(/\a+2,---,>\n)<(——g—ﬁ*+a+1,ua+z,.--,un-1,—00)

Remark. In the next section, we write the discrete series representation with the
Harish-Chandra parameter A as (ma, V).

13. RESTRICTION OF DISCRETE SERIES

X X 0w
Let us embed G1 = U(n —1,1) into G = SU(n, 1) byg:( G ”) i ( 0 a0>,

w u

-

w" 0 u
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where @ = (det g)~! € U(1). Let

(13.1)
X00
K= {(o a0> : XeUn-1),a,uc U(l),audetX:l},
00w
n—1
o —
Z = {z(h) = diag(h,...,h, k™™, k) : he U(1)},

A = expRH,,

where H1 = Ej_1pn41+ Eng1n—1. Then Gi1 = K1A1 K is a Cartan decomposition
of G1. For £ € Z and p € D)y, define the unitary representation (x(e,,.), Hu) of
Z X M by x@,u(z(h),mv = kto,(m)v, (m € M,v € H,). Since K1 = MZ,
X(en) € Ky iff €4+ (n+ 1) pp_1 € (n+1)Z. For z € RZ, we write |z| = Z?=1 T
For a € D, it follows that

(13.2) Talky = ) X(~(m4)(al-180.8) Ve = D Va(B).

B<a B<a

So when we look upon V,(f3) as a representation space of K1, we write this repre-
sentation space as V(_(ny1)(ja|—|g]),8)- D this section, we shall give the irreducible
decompositions of holomorphic or antiholomorphic discrete series when they are re-
stricted to G'1, which was proven in [21] in general case. By virtue of the embedding
of discrete series into nonunitary principal series, we can concretely construct the
G-invariant subspaces of the representation spaces of the discrete series in terms
of the Gel’fand-Testlin basis.

We shall first rewrite the results in Proposition 8.2 in terms of the Clebsch—
Gordan coefficients. Fix an orthonormal basis {Ez = Fagaialf2n4-1), B =
Eint1/vV2(n+1), 1 <i < n)} of pc. Then E; and F; correspond to the Gel’fand-
Tsetlin basis with data (1,,...,1;,0;_1,...,07) and (1,,,...,1;,0;_1,...,01) re-
spectively. Here 0; = (0,...,0), 1; = (1,0;1) and I; = (0;_1,-1). Let (-, )
denote the Clebsch—Gordan coefficients relative to the decomposition V) ® Vi =
2 arep, Var, that is, for v(M) € Vi, v(M’) € Var and v(M") € Vi,

(v(M), v (Mo (M")) = (Exr(v(M) ® v(M)), v(M")),

where Fy» denotes the canonical projection of V) @ Vi to Vi~. In this section we
use the following fact concerning the Clebsch—Gordan coefficients of U(n).

Lemma 13.1 (cf. [27, p. 385]). For any Gel'fand-Testlin data M = (my,...,

m),M’' = (m/,...,m}),M" = (ml,...,m{) and2 < j < n, there exists constants

<mmj o i ™1 ) such that the Clebsch-Gordan coefficient (v(M), (M Jo(M"))
=1 My |5y

can be expressed as follows:

o) = (7 7 Rl

’
e e g
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1"
.
1"
3 —1

m;  m; l m
Moreover,

!
my—1 My | m

) has the following properties.

(1) I mj] + |mj| # [mf] or [mj_a| + [mf_4| # |mj_,|, then

(2)<1j A ):(_i" mj|m3'>:1
1i-1 mi(i—1) | mj(3-1) 1;-1 my[2] | mj2]

HE (P9 m," ) are called the scalar factors of the Clebsch—Gordan

’
my—1 My _y | M,y

Remark. (

coefficients.

For each o € Dg () and B € Dps(), let T? be the canonical projection of V,
into Vo (8) and write P? = ,/dimV,/dim V, (3)T?. Throughout this section we
shall identify H7#¥(7,) with V, and simply write v instead of fpfg,- A simple
calculation implies that

~ 1 di j n alatd
(133) P5E2+_7 = H.n VC!+~7 ( g | g Pﬁ+.7'7
22+ 1)V dimV, \on1u| n / ©
g, — 1 dil.nVa-j ( 2 ala—j)Pﬁ_,-,
2 2(n—|— 1) dim VQ O o pl m 2
where o™ = (ay, ... yaj1,a; k1, a544,...,0p). For a € Dg(p) and B € Dy(a),

weset Mg = (o, 8,6[2),...,8n—1]) and M,, g = (o, 5, B(n—2),. .., 5(1)). Then
for 1 <i <n—1, we have from Lemma 13.1 that

(13.4)
n i ;
! 140 e fatd LA BT ik
F;@v(M, 5) = | &
’L®v( ,,3) Z (171—1 Blﬁ_*_k) (0’_—1 ﬂ(’i——l)|ﬁ(i—1) 'U(Ma,ﬂ)a
g=tk=1
n n-—1 - . = ; g —k4n—i— <
Es ®v(Ma,) = Lo olaY (L Bin-dl [in-d==t ey
T e 0w 87 ) 0w Bin—il | Binit) B

where

MPS = (@, 87582+, Bin = i * L Bl — i1, Aln — 1)),
M=o 5%, Bl — 2%, ., Bl 8= 1), . B,

Remark. For the explicit forms of the scalar factors appeared in (13.3) and (13.4),
see [27, p. 385].
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Substituting (13.3) and (13.4) into the expressions in Theorem 8.4, we obtain

(13.5)
- lmV+ n «@ atd 1, «a g*e
T (Bint1)v(Ma,p) = Z dlm; ~kj(a) < | ) (1ﬂ_1 B%ﬁ“)

nlﬂlﬂ

: ; Sk B
% ( 1; ﬁ(‘l) |ﬁ(7') U(M‘gkﬂ),
i-1 Bi-1) | BGi-1) ’
n—1

s dlrnVQ —f 1. C’f|C!_" 1In "la_j
Moy ( n+17,)v 05 :Z dlmV -7( ) T 5|ﬁ_k

nl“l“

. i b g kAn—i—1 :
X( Taso i) Aol >U(Mi;,’°g),

i1 Bln—i+1]|  Bln—i+1]

where hj(a) = (v —n—|0,])/2+j —a; and kj(@) = (v + n+ |0ul)/2— j +aj +1.
For 1 €i< j<n-—1,it follows from (8.12) and (8.13) that

(13.6) o, (B5i)vMa,g) = o, (B ;v (Ma,g) = 0.
Let wy be the Casimir operator of G, that is

(13.7)

1 1
T 5 i B > (BueBig + BiiBig)
2(n + 1) I<i<nt1 n+l 1<i<j<n—1 .
1N
n—1

+2) (F;E; + E;Fj).

i=1

We shall first consider the case of holomorphic discrete series. Fix p € D)s and
v € a* so that the condition indicated in Theorem 12.6(1) is fulfilled. Then the
holomorphic discrete series is realized as (71'0#,,,, HZ:‘+(n~ 1)) with the inner product
(,-)i- For simplicity we set p, = (v +n —|0,])/2. Let A be the Harish-Chandra
parameter of the above representation and write (wa, Vo) = (m,#,,,, ’HZ,‘; (n— 1)).
Let VA (K) be the set of the K-finite elements in V4. Then it follows from Theorem
12.6(1) that

(13.8)
S O Rl okl T G ) Y Va(®),
(O Am) a<(00,Am) B<a L—pn€Z>0 B<a<(oo,Am)
BeS lal—lBI=t

where S = {8 € Dy : 1 > po,prj—1 = B = pj1,(2 < j < n—1)}. For our
convenience, we introduce the following notation:

:{eeSc:E—-mGZZo}, Sc_:Sc\S:'
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For @ € Dk and 8 € Dy(a), let

: . dimVQJ - alaj A ala_j
C(a’J’k)_vdi—mV— hj(e )( il & )(in_1ﬁ|f3"‘>’

1; n—i n—g|rEhre—i=l
d(k):(l' Bin—i| |Bln—il~ | )

Oic1 Bln—i+1]|  Bln—i+1
For B € S,,, let

Z{k€Z>0:1§k§n—1,,@_k€Sm},
NZ(IB) = {a € DK : IB -~ 3 (OO,/\m), lal . I/Bl == g}’ m(énﬁ) = CardN[f(ﬂ)’

ViB)= > Va(
aEN(B)
For € S, let

IBf = (max(ﬁg, /~L2)7 Fasen max(ﬁn—lyﬂn—l), #n),
g (min(,@l,ul),. A, ,min(ﬂn_l, #n—l))-

Taking into account B¢, B85 € Sy, B¢ < (B, —00) and B < (B, —00), we see that
N¢(B) can be written as

(13.9)
NZ(IB) =3 {a € Dk : 0[2] € Svies /Bf < (0[2]’ —OO),Q[Q] < (18137 -OO),
laf2]] < |B] + £ — max(f61, p1)}-

Taking into account (G); = f¢ and (B) 5 = An[2], we can easily see that m(¢,3) <
m(¢, ). For this reason, we write (13.8) as the following form:

(13.10) WEK)=> > V@+Y Y v

£eSt a€N(B) LeS}t aEN(B)
BESH BESm

t2 2 VBt 3 Vald)
LeS; aENy(B) LeST aENy(B)

We shall here get, the expression of the eigenvector of wy. Assume that an eigenvec-
tor v is represented as v =y . Ne(8) ca¥(Ma,8), (ca € C). Then it follows from
(13.6) that ma(E;;)v =0for 1 <i< j <n—1. Thus for v being an eigenvector,
it suffices to determine ¢, such that TA(Ent1,:)v =0 (1 <4 < n—1) are satisfied.
It follows from (13.5) that

(13.11) TA(Brpi)v= ) {cazn: Z c(e, J, k)d( k)v(M’k)}

aENg(B) J=1k=n—i
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Using the fact that hj(a) <0, (1 £j <n), hp(a) £0 and ky(a) =0 iff a, = py,
we see that c(a,j, k) # 0 iff 3% € S,, and a3 € Ny(B~F). Letting Z(3,i) =
Z(B)N{n—1i,---,n—1} and rewriting @~ as o, we have from (13.11) that

(13.12) wA(Eny1,4)v = Z Z Z C°+’C(a+j’j’k)d(k)U(Mg’,%)'

kEZ(B,i) aEN(B~F) atieN(B)

Therefore 7a (Ey41,;)v = 0 implies that we have for k € Z(,4) and a € Ny(B7%)
that

(13.13) Y. vpprrclatlgek) =0,
atieN.(B)

From this, we see that it suffices to determine ¢, such that mp(Ep41,n—1)v =0 is
satisfied. To determine c,, we use similar arguments as in [31, Theorem 3.1].

Lemma 13.2. Let£€ S, and B € S,,.

(1) If £ € S}, then there exists v = 2 aen, () CaV(Ma,g) € Vi(B) such that
TA(En+1,n—1)v = 0. Moreover, such a v is unique up to a scalar multiple.

(2) If€ € Sg and |B| = |Am| — ¢, then there exists v =3, cn, () Ca¥(Ma,p) €
Vi(B) such that mpa(Ept1,n—1)v = 0. Moreover, such a v is unique up to a
scalar multiple.

Proof. (1) We obtain from (13.9) that
(13.14) Ny(B) = {a € Dk : @[2] € Sy, B < }.
Then setting Ny(5, p) = {a EN(B): a1 = p}, we have

Ne(B) = Uy +£+18]-1Am| <p<eNe (B, P)-

We first remark the following fact. For A € Ny(8, p), we put
ZO\PB) = {k€Zs0: k€ Z(B), N € Ne(B7F)}.

Then setting o = A1, we have from (13.13) that

(1315)  axe(MLE)+ Y catsncl@t i+ 1,k) =0, (k€ Z(),B)).
JEZ(A,B)

By the orthogonality relations of the Clebsch-Gordan coefficients, it is easy to check
that c(a™*1, j 4 1,k) are linearly independent and thus we can get co+i+1, (j €
Z(\,3)) from the above simultaneous equations.

We can find the constants c,, (@ € Ng(8)) by induction on a;. Let af =
(1 + £+ 18] = | Ay a2, - - ., ). We first choose Ca, as an arbitrary nonzero real
lumber. Suppose that ¢, are determined for all @ € Ny(8, p). For @ € Ng(3,p—1),
we pick k € Z+o so that a[2]™® € S,,. Then setting A = (a*!)~% € Ny (8, p), we
can get ¢, from the simultaneous equations (13.15). By the orthogonality relations
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of the Clebsch—Gordan coefficients, it is easy to check that c, is independent of the
choice of k.
(2) Because B € Sy, and £ € S, we have from (13.9) that

(13.16) Nu(B) = {o € D : a[2] € S, B < o, a[2]] < 6] + €~ p}.

Thus N¢(8) = 0 if | 5] < |A\n] —£. By a similar way as in (1), we can also determine
the constants ¢, satisfying p1 +2+ |8 — [Am| L1 < pg. O

For £ € S, and ( € S,,, we choose v as in Lemma 13.2. We denote by V(¢, 5)(K)
the ma (K1 )-invariant subspace of Vj (K') containing {’/TA(Fn_l)j’U : j € Z>0}. Then
TA(En—1)v = 0 implies V(£,8)(K) = 3 5 (5, 00) V(~(n+1)2,8)- Taking into ac-
count m(£, B) < m(£, G) for B ¢ S, we obtain from (13.10) that

(13.17) VA(K)= > VLBAE)+  VEB)EK).
A= be8 s
BESm BESm
1812 Am|—£

We shall next consider the case of antiholomorphic discrete series. Fix p € Dy
and v € a* so that the condition indicated in Theorem 12.6(2) is fulfilled. Then
the antiholomorphic discrete series is realized as (WUF,V,HZ,"_ (0)) with the inner
product (-,-);. For simplicity we set up = —(v + n + |o,])/2. In this case, if
a € I'(A), then kj(a) <0, (1 <j<n), hj(a) >0, (1 £j < n)and ki(a) <O0.
Moreover kq(a) = 0 iff @3 = po. Let A be the Harish-Chandra parameter of the
above representation and write (ma, Vi) = (7(‘0“,,,,7'{::‘+(n — 1)) We have from
Theorem 12.6(2) that

(13.18)
AP0 T W AT S T ' 1) €S T, S Y1 )
a<(Am,—00) a<(Am,—0) B<La Le8. B<a<(Am,—o0)
BesS  lal=IBl=t
where

S={B€Dp:pj_1>0>pis1, 1<j<n—2),tn2> b1},

~ 1
Sp=<¥f Zoog:po—LeZ )
{ €n+1 >0 : Mo e 20}

For our convenience, we introduce the following notation:

m=16€5:0 <A},
St ={te€8.:t—p1€Zx}, S;=85\5

For g € S’m, let

ZB)={keZso:1<k<n—1,0"%€ 8},
Ne(B) = {a € D : B < @ < (A, —00), || — 8] = £}, m(¢, B) = Card Ny(8),
We(B)= Y Va(B).

aEN¢(B)
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For B € S, let

ﬁf = (max(ﬁlv ul)v R max(ﬁn—la ﬂ'n—l))v
ﬁl = (/’1’07 min(ﬁlv ,LL1), £ min(ﬂn—27un—2)).

By the same reason as in the case of holomorphic discrete series, we have

(13.19) )
Fe(8) = {o € Di : a(n —2) € §pn, By < (a(n — 2), ~c0), a(n — 2) < (B, —00),
ja(n = 2)] < 6] + £ — min(Bn_1, tn-1)}-

and thus m(¢, B) < m(¥, By). For this reason, we write (13.18) as follows:

(1320)  VA(K)= 3 W)+ Y. Wa®)+ Y. WiB)+ Y Wid).
Pty feSt V2=t el
BESm BESm BESM BESm

Assume that an eigenvector v is represented as v = 3¢ rr,(g) ca¥?(Ma g), (ca € C).

Then by the similar arguments as in the case of holomorphic discrete series, for v
being an eigenvector, it suffices to determine ¢, such that mp(Ep 1 ny1)v = 0.

Lemma 13.3. Let? € S, and BE B

(1) If¢ € .§’C+, then there ezists v = Zael\?l(ﬁ) cav(Mq g) € Wi(B) such that
TA(En—1,n+41)V = 0. Moreover such a v is unique up to a scalar multiple.

(2) If¢ € S and |B] > |\m| — £, then there ezists v = > acli(8) cav(Mg ) €
Wi (B) such that ma(Ep—1,n4+1)v = 0. Moreover such a v is unique up to a
scalar multiple.

For ¢ € S, and 3 € S,,, we choose v as in Lemma 13.3. We denote by W(¢, 5)(K)
the 74 (K1)-invariant subspace of V (K) containing {7 (Ep—1)v : j € Z>0}. Then
Ta(Fr—1)v = 0 implies W(¢, 8)(K) = 3 5<(5,—o0) Y(~(nt+1)t,8)- Therefore we ob-
tain from (13.19) that

(13.21) VA(K)= > WEB)(K)+ Y, WEB(K).
test teS
1B|2[Am [—£

Summarizing these, we obtain the following theorem.

Theorem 183.4. Let V(¢,3) and W((,[3) be the completion of V(,5)(K) and
W(,B)(K) relative to (-,-); respectively.

(1) The holomorphic discrete series (mp, Vp) is decomposed with no multiplicity
as follows:

Va= Y VB + D, VEP.

LesSt LeS;
BESm BESm
181> Am | —£
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The Blattner parameter of V(¢,3) is (—(n + 1), B).
(2) The antiholomorphic discrete series (wp, Vp) 1s decomposed with no multi-
plicity as follows:

Va= ) WEBH+ Y, WED).

LeSt LeS;
BESH BESH
|B] 2| Am [—£

The Blattner parameter of W(£, B) is (—(n + 1)¢, 5).
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