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1. INTRODUCTION 

Let G be a reductive Lie group of class 'H and K a maximal compact subgroup 
of G. One of the main concerns in the harmonic analysis on G has been the 
characterization of the Fourier transforms of various function spaces on G, such 
as a space of cOlnpactly supported smooth functions, Schwartz space and LV-type 
Schwartz space. A num.ber of authors solved these problems for particular classes of 
groups in their papers (cf. [1,3,5,9,10,14,24,25]). However, even now, the complete 
answer of these problems dose not seem to be known. One of the most difficult 
parts of these problems is to show the continuity of the inverse Fourier transform. 
The inverse Fourier transform in these characterizations is given by integrating a 
function on the Fourier transform side against the matrix: elements of the principal 
series representations. Thus the Eisenstein integrals on G, that is, the matrix 
elements of the principal series representations play an essential role in studying 
these analysis. 

One of the fundamental techniques for these analysis is that of approximating 
the Eisenstein integrals by their constant terms, which was established by Harish
Chandra. For example, Arthur [1] proved the Paley- Wiener type theorem for the 
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Schwartz spaces on G. Be used the leading terms as an approximation of the 
Eisenstein integrals and estimates of difference between them. For the case of 
spherical LP-Schwartz space (p i- 2), taking some terms of the Barish-Chandra 
expansion of elementary spherical function as an approximation for it, Trombi and 
Varadarajan [26] gave a uniform estimate for the difference between them. And 
by virtue of this estimate, they proved the Paley-Wiener type theorem for the 
LV-Schwartz spaces of J(-biinvariant functions on G. Later Eguchi [5] gave similar 
estimates for Eisenstein integrals of (T, 1 )-type and proved the Paley-Wiener type 
theorem for LP-Schwartz space of K -invariant functions on G. In [25], Trombi 
showed the Paley-Wiener type theoreln for LP-Schwartz space on semis imp Ie Lie 
group G of real rank one with the restriction to the K-finite functions. Bere in 
order to describe the contents of this paper, we shall use some notation explained 
in §2. For v E a~, the zonal spherical function is defined by 

'Pv(x) = L e(v-p)(H(xk))dk 

Harish-Chandra showed that <Pv(h), (h E A+) is expanded as 

h-P<pv(h) == L L c(wv)r).(wv - p)hwv-\ (v E Y). 
wEW(a))'EL 

In [11], Gangolli showed that there exist d, D > 0 such that 

Ir).(v - p)1 ~ Dm()..)d, (v E 7?). 

And by using this estimate, he completed the Paley-Wiener theorem for compactly 
supported smooth K-biinvariant functions, which was first proved by Belgason with 
an assumption. In §5, we get the estimates for the coefficients of the Barish-Chandra 
expansions of the Eisenstein integrals. In our cases, because singularities of r). (v - p) 
arise from the double unitary representation of I{, we multiply a polynomial P (v) 
that vanish away these singularities to r). (v - p). By using this estimate, Eguchi 
and Wakayama [10] siInplified the Trombi's proof of the Paley-Wiener theorem of 
LP -Schwartz space. 

In §7 through §11, 'we get the explicit expression of the Barish-Chandra C
function for SU(n,1) . The Harish-Chandra C-functions are given by the leading 
terms of the Harish-Chandra expansions of the Eisenstein integrals and closely re
lated to the Plancherel rneasure. The Barish-Chandra C-functions are also obtained 
by restricting the standard intertwining operators to K-isotypic components of the 
principal series representation. Therefore the information on the location of the 
zeros and the singularities of the Harjsh-Chandra C-function gives the condition 
for the reducibility of the principal series representations. By the product formula 
for the Harish-Chandra C-function, the problem of computing the Harish-Chandra 
C-functions of semisimple Lie groups of general rank is reduced to the real rank one 
case. For this reason, it is crucial to cOlnpute the Harish-Chandra C-function for 
the semisimple Lie group SU(n, 1) of real rank one. For T E K, the Harish-Chandra 
C-function is given by 

GT(v) = k e-(v+p)(H(ii))T(A:(n))-ldn, (v E a~) . 
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In the case of S[J(n, 1), because [T : u] ::; 1 for all T E k and U E l\J, there exists 
a meromorphic function CT (eJ : v) such that 

In this paper \ve shall obtain the explicit expression of CT (u : v) for SU (n, 1). 
This expression gives us the precise infonnation on the zeros and the poles of the 
Harish-Chandra C-function CT(v). On the other hand, Cohn (cf. [4]) sho\ved that 
for any semishnple Lie group, there exist Pi,j, qi,j E C, (1 ::; i :::; T, 1 :::; j ::; ji) and 
111, ... ,J.Lr E a * such that 

Here det CT(v) Ineans the determinant of the linear endomorphism CT(v) of VT. 
In [4], he conjectured that the coefficients Pi,j and qi,j appearing in the above 
expression are rational numbers and depending linearly on the highest weight of T . 

By using the expression of CT(eJ : v) together with VT == LaEM[T : eJ]I1a, we can 
get the explicit formula for det CT(v) and this shows that Cohn's conjecture is true 
for SU(n,l). 

To cOlnpute CT (eJ : v), we use the formula of the infinitesimal operator of the 
principal series representation for semisimple Lie groups of real rank one. By using 
this formula, we can get a recursion fonnula of the standard intertwining oper
ator with respect to the dominant, analytically integral fonns on tc. From the 
relationship between the standard intertwining operator and the Harish-Chandra 
C-function, this fonnula leads to the recursion fonnu]a of the Harish-Chandra C
function. In our cases, the infinitesimal operator can be written explicitly in tenns 
of the Gel'fand-Tsetlin basis of u(n) . By using this recursion fonnula, for getting 
the expression of the Halish-Chandra C-function, it suffices to consider the case 
that the dominant, analytically integral fonn on tc is minimal in the sense of the 
betweenness condition of the Gel'fand-Tsetlin basis. 

In § 12, we show that the information on zeros of the Harish-Chandra C-function 
can be utilized to get the realizations of discrete series representations of SU (n, 1) 
as subquotients of nonunitary principal series representations. We also give the I{
spectra of these representations. We note that these results are already obtained 
by an another method . However, using the expression of the Harish-Chandra C
function, we can get the explicit expressions of the inner products that make the 
above subquotients unitary. In §13, by using the results in §12, we get the de
compositions of hololnorphic and antiholomorphic discrete series when restricted 
to U(n -1,1), which was proven in [21]. By using the structures of I{-spectra of 
discrete series representations, we can concretely construct the invariant su bspaces 
of the representation spaces of holomorphic and antihololnorphic discrete series. 

Finally the author would like to thank Professor Masaaki Eguchi for his generous 
help during the work on these problems. 
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2. NOTATION AND PRELIMINARIES 

Throughout this paper, we shall use the standard notation Z, Rand C for the 
set of integers, real numbers and complex numbers, respectively. For a finite set F 1 

Card F denotes its cardinal number. 
Let G be a reductive Lie group of class 11 and K a maximal compact subgroup 

of G and 8 the corresponding Cartan involution. As usual, we shall use lower case 
German letters to denote the corresponding Lie algebras and upper~ case German 
letters their universal enveloping algebras. For any Lie group L, L denotes the 
set of equivalence classes of the irreducible unitary representations of L. If V is a 
vector space over R, Vc, V* and Vc* denote its complexification, its real dual and 
its complex dual, respectively. Let ,.,.) denote the Killing form on g. Define the 
inner product ,", ·)e on g by ,X, Y)e = -,X, 8Y) and write IIXII = V,X, X)e. 

Let 9 = e + p be the Cartan decomposition of 9 corresponding to 8. Choose 
a maximal abelian subspace 0 of p and £Lx an orthonormal basis {Hj : 1 ~ j ~ 
et}, (/!' = dim 0) of o. Let fJ be a 8-stable Cartan subalgebra containing 0 and 
~~= ~ n t Let t be the Cartan subalgebra of e containing fJ~. Fix an ordering on 
AfJ~+ 0 that is compatible with the one on 0 and fix the ordering on At that 
is compatible with the one on AfJt. 

Let 6. be the set of all nonzero roots of gc with respect to fJc and 6. + the subset 
of 6. consisting of all positive roots. Put P + = {Q' E 6. + : a = Q'I a =.F O} . For a E 6., 
g~ denotes the corresponding root subspace of gc. We put n = (~oEP+ g~) ng. Let 
A and N denote the analytic subgroups of G corresponding to 0 and n, respectively 
and N = 8lV. Then G = K AN and 9 = e + 0 + n are the Iwasawa decompositions 
of G and g, respectively. For 9 E G, 9 decomposes under G = K AN as 9 = 
K(g)expH(g)n(g), where K-(g) E K, H(g) E 0 and n(g) E N. For Q' E P+, we 
define Qo E 0 by cr.(H) = ,Qo, H) for J-I E o. For a E P +, we choose the root 
vectors .... Y±o E g~O so that ,Xo , X-D) = 1 and write theln as X±o = Y±o + Z±o, 
where Y±o E ec and Z±o E Pc. Let 0+, (0+)* and A+ be the positive Weyl chalnbers. 
We set R = {v = ~ + r; E o~ : ~ E Ao*, -r; E CI(o+)*}, where CI denotes the 
closure. 

Let 6+ be the set of all restricted roots of 9 with respect to 0, that is, 6+ = 
{a : a E P +} and {(}Ii : 1 ~ i ~ /!} the set of all simple restricted roots. For 
(}I E 6+, mo denotes the multiplicity of (}I. vVe denote by M and M' the centralizer 
and the normalizer of 0 in K respectively. Then W(o) = M' / M is the Weyl group 
of G. For w E W(o), a E M and v E o~, define wv E o~ and wa E M by 
wv(H) = v(Ad(w)-lH) and wa(m) = a(w-1mw) . 

Let 6.K be the set of all roots of ec with respect to te, 6.j( the subset of 6.K 
consisting of all positive roots and WK the Weyl group of (ec, te). As usual, we 
write p = ~ :LoEI:+ moO' and 8K = ~ ~{3E6.k (3. Let wand Wm be the Casimir 

operator of Q) and 9]1, respectively. For each D E Q), we denote by Ci?A(D) the 
radial component of D . 

Let D K and D M denote the sets of dominant, analytically integral forms on te 
and ~tc' respectively, with respect to the above orderings . If A E D K and /-l E D M, 

we write (T,\, V,\) and (a J.l' H J.l) for the irreducible unitary representations of K and 
/vI whose highest weights are A and /-l, respectively. For T E k and a E M, [T : a] 

4 



denotes the multiplicity of a occurring in TIM. Let K(a) and M(T) be the subsets 
of k and ivI consisting of the elements satisfying [T : a] i- 0, respectively. Similarly 
D K (p,) and D M ()..) denote the subsets of D K and D M consisting of the elements 
satisfying [T..\ : a 11-] i- 0, respectively. 

Finally let dk and dn be the Haar measures on K and N, respectively, normalized 
as iK dk = 1 and iN exp{ -2p(H(n))}dn = 1. 

3. EISENSTEIN INTEGRALS AND THE HARISH-CHANDRA EXPANSIONS 

We shall first review the compact picture of the principal series to explain the 
notation and the parametrization. Let (a, Ha) E M and v E Q~. We set 

Let [{a,v denote the Hilbert space completion of C~ (K) relative to the inner prod
uct (f,g) = iK(f(k),g(k))Hudk. Define the action 1fa,v of G on [(a,v by 

(3.2) ( 1fa,v(g)tp)(k) = e-(v+p )(H(g- lk))tp(K-(g-lk)). 

Then (1fa,v, Ha,v) is called the principal series representation of G. For (T, VT) E 

K(a), let Ha,v(T) be the T-isotypic component of [(a,v. Then Frobenius reciprocity 
implies the following lemma. 

Lemma 3.1 . The correspondence T 0 v --? fT~v(k) = T(T(k) - lv) is a K -modUle 
isomorphism of HomM(VT, Ha) 0 VT onto [(a,v(T). 

Let (Tl,VT1 ), (T2,VT2 ) E K. We define a double unitary representation T = 
(Tl' T2) of K on V = Home (VT2 ,VT1 ) by T(k1' k2)(V) = T1(k1)VT2(k2) - 1, (k1' k2 E 

K, v E V). V M denotes the subspace of V comprised of all elements v E V such 
that Tl(m)v = vT2(m) for all m E M . Then the Eisenstein integral on G is defined 
for v E V M and v E Q~ by the following integral: 

(3.3) 

As well known, all matrix elements of the principal series can be recovered from 
the Eisenstein integrals . Let T1, T2 E K(a) . Then for T1 E HomM(VT1 , Ha), T2 E 

HomM(~2' Ha ), V1 E VT1 and V2 E VT2 , it is satisfied that 

(3.4) 

where T'; denotes the adjoint operator of T2 and (., .) v
T1 

denotes the inner product 
in VT1 . 

We define an endomorphism I of Home(VM, VM) by I(T) = [T2 (W~, TJ. Since 
the representation T2 of K is unitary, all eigenValUes of the transformation v f---7 

VT2(Wm) are real. Let 11, '" "t be the distinct eigenvalues with multiplicities 
mI,' .. ,mt, respectively and suppose that 

11 < . .. < 18 < ° :::; 18+1 < .. . < It · 
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Let L be the set of A = ~;=l ni(Xi, (ni E Z2:o) and put L' = L \ {O}. For 

A = ~~=l ni(Xi E L, we set m(A) = ~~=l ni· If A, A' ELand A - A' E L, we 
denote A » A'. For each A E L, the Homc(VM , VM )-valued functions r A on a~ are 
recursively defined as follows: put ro = 1 and for A f:- 0, 

(3.5) 

(2 /\ - (A, A - 2p))rA - ,(fA) = 2 L L(a - (a, A - 2na) )fA- 2n5 

+ 8 L L(2n -1)Tl(Ya)fA-(2n-l)oT2(Y-a ) 
aEP+ n2:1 

- 8 L L n{ Tl(YaY- a)fA- 2n5 + rA-2noT2(YaY-o)}. 
aEP+ n2:1 

Here we put fA = 0 for A rJ. L. 
For each 1 :s; i :s; t and A E L', put 

(3.6) CJA,i = {v E a~ : 2(A, v) = (A, A) + 'i}, 

and let 1 and 10 be the complement of the set UAEL' Ul~i~t CJA ,i in a~ and the 
subset of a~ comprised of all v E a~ such that wv E 1 for all W E W (a) respectively. 

For f.L E a* and h E A, we write hJ.L for eJ.L(1og h). The following theorem has been 
proved by Harish-Chandra. 

Theorem 3.2 (cf. [12,13,14]). Fix a v E 1 and set 

<p(v: h) == L fA(V - p)hv
-\ (h E A+). 

AEL 

Then the function h I----? <P (v : h) is analytic on A + and satisfies the following 
differential equation: 

Moreover, hP E(v : v : h) is expanded as 

(3.8) hPE(v:v : h)= L <P(wv:h)CT(w:v)v, (vE~'v1,hEA+,vE10), 
wEW(cr) 

where CT (w : v) are the H arish- Chandra C -functions. 

Remark. The expansion (3.8) is called the Harish-Chandra expansion of the Eisen
stein integral. 

4. THE SERIES EXPANSION OF ~(h)1/2 0 9A (w ) 0 ~ (h)-1/2 

We retain the notation in §3. Let 

(4.1) <P(v: h) == h-P<p(v : h), ~(h) == h2p II (1 - h-2a ), 

\If(v : h) = ~(h)1/2~(v : h). 
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Then from the equation in (3.7), we obtain 

(4.2) ~(v: h; Q A(W)) = ~(v: h)((v, v) - (p,p) + T2(Wm )), 

'lJ(v : h; ll(h)1/2 0 Q A(W) 0 ll(h) - 1/2) = 'lJ(v : h)( (v, v) - (p, p) + T2(Wm )), 

We consider t he series expansion of II (h) 1/2 0 Q A (W) 0 D. (h) - 1/2. To do this, we 
need the following lemma. 

Lemma 4.1 (cf. [30]). The radial component Q A (w) of the Casimir operator W 

can be written as follows: 

+ 4 L (sinha) - l cotha(Yo 01 0 Y- o ), 

oE P+ 

where 6'(w) = ~~~l H; + ~OEP+ cothaQo. 

By using Lemma 4.1, we immediately obtain 

(4.3) 
D.(h)1/2 o Q A(w) oD.(h)-1/2 = Q A(Wm ) + D.(h)1/2 o6'(w) oD.(h) - 1/2 

- 2 L (sinha) - 2(1010 YoY- o + YoY- o 0101) 

+ 4 L (sinha) - l cotha(Yo 01 0 Y - o). 

oEP+ 

We first compute D.(h)1/2 0 6'(w) 0 ll(h) - 1/2. Since 

I-li 0 D.(h) = L a(Hi) cotha(Hi)ll(h) + D.(h) 0 Hi, 
o EP+ 

it follows that 
t' 

6'(w) = LD.(h) - l 0 Hi 0 6. (h) 0 Hi, 
i = l 

and hence 

£f 

(4.4) D.(h) 1/2 0 6'(w) 0 D.(h)-1/2 = LD.(h) - 1/2 0 Hi 0 D.(h) 0 Hi 0 D.(h) - 1/2. 
i = l 

Computing Hi 0 D.(h) - 1/2 and Hi 0 D.(h)1 /2, we see that the expression in (4.3) is 
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written as follows: 

(4.5) 

From the definition of l:::. (h), we have 

Hi logl:::.(h) = 2 {P(Hi) + L a(Hi) L h -
2jO

} , 
oEP+ j ~ l 

H;logl:::.(h) = -4 L a(Hi)2Lh-2jO. 

oEP+ j ~l 

Hence we have 

(Hi1ogl:::.(h))2 = 4 {P(Hi)2 + 2 L p(Hi)a(Hi) L h -
2jo 

oEP+ j~l 

+ L a(Hi)2 L h-2U+k)o + L a(Hi){3(Hi) L h - 2(jO+k{3)} . 
oEP+ j,k~l o,{3EP+ j,k~l 

o=/-{3 

~(Hi log 6(h))2 = (p, p) + L (Ii, Ii) L h-2jo + L (Ii, 13) L h- 2
(jo+kf3) 

oEP+ j~l o,{3EP+ j~l,k~O 
o=/-{3 

Substituting these into the expression in (4.5), we get the following. 

1'.' 

l:::.(h)1 /2 0 6'(w) 0 l:::.(h)-1/2 = LH;- (p, p) + L (a, a) Ljh-2jO 

i = l j~l 

- L (a, /3) L h-2 (jo+k{3) . 

o,{3EP+ j~l,k~O 
o=/-{3 
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Using the above expression and substituting the following series expansions 

00 

(sinha)-2 = 4 Lie- 2io:, 
i=l 

sinhacotha = 2 L(2i _1)e-(2i-l)o: 

i=l 

into the right-hand side of (4.3), we can immediately obtain the following. 

Lemma 4.2. We have the following expression. 

(4.6) 
£' 

l:J.(h)1/2 0 QA(W) 0 l:J.(h)-1/2 = Q A(Wm ) + LH! - (p, p) 
i=l 

+ L (5,5) Ljh-2j
o: - L (5,~) L h-2

(jo:+k{3) 

j~l j~l,k~O 

- 8 L Ljh-2jO:(1 ® 1 ® ·Yo:Y-o: + Yo:Y-o: ® 1 ® 1) 
o:EP+ j~l 

+ 8 L L(2j - 1)h-(2j -l)o:(yo: ® 1 ® Y-o:). 
o:EP+ j~l 

5. THE ESTIMATE OF THE COEFFICIENTS OF r,\ 

In this section, applying Lemma 4.2 to the differential equation in (4.2), we shall 
get the estimate of r,\. We write h- 2P l:J.(h) by the binomial theorem as 

By the definition of W, we have 

(5.1 ) 'l1(v: h) = II (1 - h-2o:)1/2<p(v : h) 

Put a,\(v) = La+I-L=,\ bar M(V - p). Then the last expression in (5.1) is of the form 

(5.2) 'l1(V : h) = hV L a,\(v)h-'\. 
'\EL 
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Conversely, suppose that W is written as in (5.2). By the binomial theorem, we 
write 

(5.3) 

Then it is obvious that there exist constants R 1 , R2 > 0 such that 

(5.4) 

By the similar computation as in (5.1), we have 

(5.5) <I>(v: h) == II (1 - h-2Q
)-1/2 W(v : h) 

Thus we obtain 

(5.6) r,\(v - p) == L dJ-La(7(v). 
(7+J-L='\ 

Consequently, taking into account (5.4), we see that it is enough to obtain the 
estimate of a,\ instead of the estimate of r,\. 

Let L~ be the finite set of all A E L' such that -(A, A) 2: 11. For each A E L, we 
define polynomials of p,\ by 

( 5. 7) p,\ ( v) == 1 if A rJ. L ~ , 

and set 

(5.8) 

We also put 

(5.9) 

p,\(v) == II (2(A, v) - (A, A) - li)mi if A E L~, 
l<i<s 

('\,'\)-hi :::;0 

d' (A) == L mi· 
l<i<s 

(,\,,\) +~i:::;O 

P(v) == II p,\(v), d == L d'(A), 
'\EL~ '\EL~ 

P,\(v) == II P,\/(V), d(A) == L d'(A'). 
,\/EL~ ,\/EL~ 

,\' «,\ ,\' «,\ 

Remark. We note that P is of finite degree and thus d < 00 . 

We shall first show the following proposition. 

10 



Proposition 5.1. There exist constants D', d~ > 0 such that 

Proof. We differentiate \lJ(v : h) by 6.(h)1/2 ° QA(W) ° 6.(h)-1/2 and use Lemma 
4.2. Then, comparing the coefficients of hV

-)., in both side, we obtain the following 
recursive relation: 

(5.10) 

[2(A,V) - (A,A)]a).,(v) -,(a).,(v)) == L [(a,a) - 8Fo] L ja).,-2jo (v) 
j~l 

j~l,k~O 

where Fa == T1(Yo Y- o ) +T2 (YaY-a), Go = T1(Yo )OT2(Y-o ). Since {'I,'" "s} are 
the set of distinct negative eigenvalues of" if we assume that all a).", (A' « A) are 
defined and regard (5.10) as the defining formula of a)." we see that all singularities 
of a)., in R are concentrated into P).,. We now put 

Q).,(v) = P).,(v)(l + Ilvll + IIAII)-2d()") , 

q).,(v) == p).,(v)(l + IIvll + IIAII)-2d'().,), 

and consider (5.10) multiplied by Q).,(v) instead of (5.10) itself: 

(5.11) 
[2(A, v) - (A, A)]Q)., (v)a)., (v) - ,(Q).,(v)a).,(v)) 

= L [(a, ii) - 8Fo]q).,(v) LjQl,j (V)Q).,-2jo (v)a).,-2j5(V) 
j~l 

- L (ii, jJ)q).,(v) L Q)."j,k(V)Q).,- 2jo -2k;3(v)a).,-2j5-2k!3(v) 
o,j3EP+ j~l,k~O 

of:-j3 

+ 8 L Goq).,(v) L(2j -1)Ql,j(v)Q)., - (2j-1)5(v)a)., - (2j-l)o(V). 
oEP+ j~l 

Here Ql,j' Q)."j,k and Ql,j are determined by 

Q)., (v)q)., (v) - l == Q )."j,k(V)Q ).,-2j5-2kj3(v) 

= Ql,j(V)Q).,-(2j-1)O(V) = Ql,j(v)Q).,-2jo(v). 

From the above definition, it is clear that there exists a constant C 1 > 0 such that 
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for all A E L' and v E Q~ and j, k. We define b).(v) by bo(v) = 1 and b).(v) = 
Q;..(lJ)a).(v). For silnplicity, we also put ,(A: lJ) = (2(A,lJ) - (A , A))I -" where I 
denotes the identity operator of Home (V M, V M)' Then (5.11) is written as follows: 

(5.13) 

- L (a,p)q).(IJ) L Q).,j,k(lJ)b)._2j6 _2kj3(1/) 
a,/3EP+ j~l,k~O 

a -:p/3 

+ 8 L Ga q).(1/) L(2j -1)Q~,j(1/)b)' _ (2j _ l)Q(lJ). 
aEP+ j~l 

Fix an orthonormal basis B = {rPl,'" ,rPn} of Hom e (11M, V M) relative to the 
Hilbert- Schlnidt norm II . 112. Let A,().:v) be the lnatrix of the endolnorphislTI 
,(A: 1/) relative to B. Since, is self-adjoint, there exists a unitary matrix B such 
that 

where ai = 2(A, 1/) - (A, A) - ,i, We then have 

A -I B-1 d' (-1 -1 -1 - l)B 
,().:v) = lag a 1 ,"', a 1 ,"', at ,"', at . 

Combining this with the fact II B 112 = Vii, we obtain 

II p). ( 1/ ) A ~ (\: v) II ~ ~ n ! I P;.. ( lJ) 12 L mi 1 ai 1-2 

l<i<t 
II ).112+~i >0 

+ L (IT lajI2m;) milaiI2(mi_l)} . 
1 :S i :S 8 j = 1 ,j -:Pi 

1I).11:2+,i:So 

Since we can choose constants C2 > 0 and C3 > 0 so that 

we can find a constant C4 > 0 such that 

Hence we have 

(5.14) 
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putting G6 = G1GS max{11 (a, a) -8Fo II, 811Go ll, I(a, P)I : a, f3 E P+} and combining 
(5.14) with (5.13), we obtain the following ~timate for bA: 

IIbA(v)1I ::; G6m().) - 2 { L L 2jllbA- 2jCi (V) II + L L(2j - 1)lIbA-(2j-l)Ci(V)II 
oEP+j2 1 oEP+j2 1 

where 

Put now 

+ L L IIbA_2jCi_2k,B(V)lIl 
o,{3EP+ j21,k20 

oi={3 

= G6m().)-21 L LjllbA-jCi(V)1I + L L IIbA_2jCi_2k,B(V)lIl 
. oEP+ j21 o,{3EP+ j21,k20 

oi={3 

m(A)-l 

= m().)-2 L (Sl(r) + S2(r)), 
r=l 

oEP+ m(A-jCi)=r 
j21 

o,{3EP+ m(A-2jCi-2j,B)=r 
oi={3 j21,k20 

Ho(v) = 1, Hr(v) = sup IlbJL(v)lI. 
JLEL' 

m(JL)=r 

By an argument similar to that as in [11], we see that there exists a constant C7 > 0 
such that Sl(r) and S2(r) are bounded by G7Hr (v)m().) and thus we can take a 
constant C8 > 0 so that 

{

m(A)-l } 
Ilb:.(v)11 ::; Cs ~ Hr(v) m(>,)-l 

Moreover, if we define a series {Dr} (r E Z20) by 

1 r-1 

Do = 1, Dr = -C8 LDs, 
r 

8=0 

then it is easy (cf. [11]) to see that Hn(v) ::; Dn and that there exists a constant 
Cg > 0 such that Dn ::; Cg n CS - 1 for all n E Z>o. This shows that 
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Because d()"') :S d for all )... E L', we see from this that we can choose constants 
D,d1 > 0 so that 

This is the desired estimate for P)..a)... 0 

By using Proposition 5.1, we immediately obtain the following theorem. 

Theorem 5.2. There exist absolute constants D, d1 > 0 such that 

for all )... E L. 

6. CONNECTION WITH C-FUNCTION AND INTERTWINING OPERATOR 

We will first summarize some known results on the relationship between the 
standard intertwining operator and the Harish-Chandra C-function. The results 
below are due to Knapp-Stein [17] and Wallach [29] . 

In the remainder of this paper, we assume that G is of real rank one and has 
trivial split component. We indicate by 0:' the unique simple restricted root and by 
w the unique nontrivial element in W (a). Then 2::+ == {O:', 20:' }. In [17], Knapp and 
Stein constructed the integral expression of the intertwining operator between the 
principal series representations, which is called the standard intertwining operator. 
Let 0- E 1\1 and v E a~ be such that Re(v,O:') > O. Then the standard intertwining 
operator is defined as follows: 

(6.1) (A(w, (5, v)<p )(k) = Iv e-(v+p)(H(n))<p(kwK(n))dn, (<p E C;:'(K)) . 

Then they proved that for rp E C~(K), A( w, 0-, v)rp, as a function of v, can be 
extended to a meromorphic function on a~ . For rp E C~(K), it is satisfied that 
A(w, 0-, v)rp E C~ (K) and 

(6.2) A( w, (J, v)1f a,v (g )rp( k) == 1fwa ,wv (g )A( w, (J, v )rp(k) . 

Let T E J{((J). Then for T 0 v E HomM(VT , Ha) <8) VT , it follows from Wallach (cf. 
[27, p. 270]) that 

(6.3) 

Here CT(v) == CT(l : v) is the Harish-Chandra C-function appeared in (3 .8). Sub
stituting (6.1) into (6 .3), we obtain the following integral expression of the Harish
Chandra C-function: 

(6.4) Cr(V) = Iv e-(v+p)(H(n))T(K(n))-ldn. 

Let (R(w)rp)(k) == rp(kw) for rp E C~(K). Define the linear mapping 
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by RT(w)(T &;> v) == TT(W)-l &;> v. Then it is clear that 

(6.6) (R(w)fT0v)(k) == fRr(w)(T0V) (k). 

Looking upon GT (v) as a linear mapping of HomM (VT' H CT ), we write GT ((J : v) for 
the determinant of the linear mapping GT (v). We call GT ((J : v) the Harish-Chandra 
C-function associated with T and (J. Define the linear mapping 

(6.7) T(w, (J, v): HomM(VT, HCT ) &;> VT ---7 HomM(VT, HWCT ) (8) VT 

by T(w, (J, v)(T &;> v) == TGT(V)T(W)-l &;> v. We write det T(w, (J, v) for the deter
minant of T( w, (J, v) with respect to the bases {Ti : 1 ::; i ::; d} of BomM (VT' H CT ) 

and {TiT(W)-l: 1::; i::; d} of HomM(VT,HwCT )' Then it follows from (6.3) that 

(6.8) det T(w, (J, v) == GT ((J : v)dim Vr. 

Our main concern in this paper is the case that dim BomM (VT' H CT ) == 1. It is 
known that if G == Spin(n, 1) or G == SU(n,l) then this assumption holds for all 
T E k and (J E M(T). Under this assumption, because TGT(v) == GT((J : v)T, we 
have the following. 

Proposition 6.1. Retain the above notation and assumption. We have 

Remark. The function det GT(v) was first introduced by Cohn [4]. Later, Vogan 
and Wallach [28] studied the function GT ((J : v) for reductive Lie groups with 
arbitrary rank. In their paper, they showed that GT((J : v), as a function of v, has 
a meromorphic extension on a~ and it can be written as quotients of products of 
classical r functions. 

7. INFINITESIMAL OPERATOR OF THE PRINCIPAL SERIES 

In this section, we shall introduce the formula of the infinitesimal operator of 
the principal series representation that was shown by Thieleker [23,24]. We shall 
reform Thieleker's formula for our convenience so that we can get the recursion 
formula of the Harish-Chandra G-function. 

We retain the notation in §6. Let H E a be such that a(H) == 1. For j == 1,2, 
we set pi == {A E P + : A(H) == j}. Fix an orthonormal basis {Uj : 1 ::; j ::; 
m}, (m == dim m) of m. For j == 1,2, we set Wjo: == - L'\EPj 2Y{ III-X'\ 112 and 

+ 
Wt == - 2::::1 ul - L~=l Wjo:. For <p E 1{CT,V, we define the function <Pv on G by 
l.{Jv(g) == e-(v+p)(H(g))<p(K(g)). We set ¢z(k) == (Ad(k)-lZ,H )/ (H,H). We shall 
first show the following lemma. 

Lemma 7.1 (cf. [23, Lemma 1]). Let Z E Pc and <p E Grgo(K) . Then we have 

(7ra,v(Z)<p)(k) == ((V, a)) (¢zrp)(k) + 2( 1 ) [(¢zrp)(k;w! ) - ¢z (k)rp(k;w!)] 
a,a a,a 

1 
- 4(a,a ) [( ¢z<p)(k;W2o:) - ¢z(k)<p(k;W2o:)J. 
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Proof. We first note that 

(7.1) 

It follows from the definition of 'Pv (g) that 

(7.2) 'Pv(k; H) = -(v + p)(H)'Pv(k) for H E 0, k E K, 

(7.3) 'Pv(k; X) = 0 for X E n, k E K. 

(7.4) 

Taking into account (7.1) and (7.4), we obtain 

A simple calculation yields that for A E pi, 
(7.6) [Y,\ , Z,\] = j ( 0', 0') (Z ,\, Z,\) H. 

From (7.6), we have for A E pi that 

(7.7) ~ (k.Y)= (ad(-Y,\) Ad(k)-lZ,H) 
~z , ,\ (J[,J[) 

-j(Ad(k)-l z, Z,\) 
(J[,J[) 

Therefore, substituting (7.7) into (7.5), we obtain 

(7.8) 

A simple calculation using (7.6) gives that 

(7.9) 
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Noting (Z;.. , Z;..) = II X;.. 112 /2, we have 

(7.10) ¢z(k; Wjo) = j2mjo (a, a)¢z(k), 

¢Z(k;Wf,J = (mo + 4m2o)(a, a)¢z(k). 

By using Leibniz's formula, we have for j = 1,2 that 

(7.11) 

(¢zep)(k;wjo) = ¢z(k)ep(k;wjo) + ¢z(k;wjo)ep(k) - 2 L ¢z(k; Y;..)ep(k; Y;..) 
;" EPi 

= ¢z(k)ep(k;wjo) + j 2mjo(a,a)¢z(k)ep(k) - 2 L ¢z(k;Y;..)ep(k;Y;..). 
;"Ept 

Therefore 

(7.12) 

- L ¢z(k; Y;..)ep(k; Y;..) 

;" EP! 

Substituting (7.12) into (7.8), we obtain 

(7.13) 
(v+p,a) 

(Jfcr,v(Z)¢)(k) = ( ) (¢zep)(k) 
0.,0. 

1 
+ 2(0. , a) [( ¢zep )(k; wo) - ¢z (k )ep(k; wo) - mo (a, a) (¢zep) (k) ] 

1 
+ 4(0., a) [( ¢zep) (k; W2o) - ¢z(k )<p(k; W2o) - 4m20 (a, a) (¢zep )(k) ] 

(v, a) 1 ] = -( -) (¢zep)(k) + 2( ) [(¢zep)(k; Wo + W2o) - ¢z(k)ep(k; Wo + W2o) 
0.,0. 0.,0. 

1 
- 4(0.,0.) [(¢zep)(k;W2o) - ¢z(k)ep(k;W2o)J. 

Noting (7.9), and using Leibniz's formula, we immediately obtain 

(7 .14) (¢zep)(k;wo +W2o) - ¢z(k)ep(k; Wo +W2o) = (¢zep)(k; w~) - ¢z(k)ep(k;w~). 

Substituting (7.14) into the last expression in (7.13), we get the assertion. 0 

In the remainder of this section, we assume that the unitary representation 
(Ad, Pc) of K has no multiple weights and dim HomM (V;.., H~) :::; 1 for all A E D K 

and f.L E D M. Under these assumptions, we shall precisely write the formula in 
Lemma 7.1. Let 6.p be the set of all weights of (Ad, Pc) with respect to te. Then 
the follOwing lemma is valid. 
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Lemma 7.2 (cf. [16, p. 111]). Let A E D K . Then 

Ad 0T,\ == L sgn(A + fJ ~ OK )T(,\+,B-8K)v+8K' 
,BE6p 

Here for any integral form AI on At, we denote by sgn AI the sign of W E W K 
such that WA I is dominant and put (AI)V == WA'. For simplicity we write A(fJ) for 
(.\ + fJ - OK) V + OK. Let E,\+,B denote the canonical projection of Pc 0 V,\ into V,\(,B) 
given by the decomposition in Lemma 7.2 satisfying E,\+,BE~+,B == I,\+,B, where 
E~+,B and I,\+,B denote the adjoint operator of E,\+,B and the identity operator on 
V,\(,B), respectively. 

Let A E DK and fL E DM(A). For T E HomM (V,\, Hfj), define T E HomM(pc 0 
V,\, Hfj) by 

(7.15) T(Z 0 v) = ~Z,H~ T(v) 
H,H 

Define the linear mapping 

(7.16) MjL(Z; A + fJ, A): HomM(V,\,Hfj) 0 V,\ -1 HomM(V,\(,B),HjL) 0 V,\(,B) 

by 

(7.17) MjL(Z; A + fJ, A)(T 0 v) == TE~+,B 0 E,\+,B(Z 0 v). 

Lemma 7.3. Retain the above notation and assumption. We have 

(¢Z/T0v)(k) == L sgn(A + fJ - oK)fM~(Z;,\+,B,'\)(T0v)(k). 
,BE6p 

Proof. We compute 

(
A. f )(k) == (Ad(k)-lZ,H)T( (k)-l) 
If/ Z T0v (H, H) T,\ v 

== T((Ad0T,\)(k)-1(Z 0 v)) 

== T ((Ad 0 T,\)(k)-1 L E~+,BE,\+,B(Z 0 V)) 
,BE6 p 

== L sgn(A + fJ - OK )T(E~+,BT,\(,B) (k)-l E,\+,B(Z 0 v)) 
,BE6 p 

== "'"'sgn(A+fJ-OK)/TE· =E (z=v)(k). ~ >.+~'O' >.+~ '0' 

,BE6p 

Therefore the assertion holds. 0 

For fJ- E DM and W E W(a), define WfL E DM by w(Jfj == (JWjL' In the fol
lowing discussion, R,\ is an abbreviation of R,>. and when there is no possibility 
of confusion, we shall use similar abbreviations. The next lemma is immediately 
obtained. 
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Lemma 7.4. If sgn(A + {3 - OK) i- 0 then it follows that 

Proof. We compute 

(7.18) 

(R(w) (<Pzir®v) )(k) = (Ad(~;:~:, H) T(T>. (kw) - lV) 

= (Ad(k)-l Z, Ad(w)H) TT).(W)-l(T).(k) - lv) 
(H,H) 

= -( ¢ZfR)..(w)(T®v))(k). 

Noting 

we see that 

(7.19) 

(R(w)(¢zfT®v))(k) = L sgn(A + {3 - oK)fR)..+f3(w)M~(Z;).+{3,)')(T®v)(k), 

(¢ZfR)..(w)(T®v))(k) = L sgn(A + {3 - oK)fMw~(Z;).+{3,)')R)..(w)(T®v)(k). 
(3ED. p 

Substituting (7.19) into (7.18) and comparing side by side, we obtain the asser
tion. 0 

Combining Lemma 7.1 and Lemma 7.3, we have the following theorem. 

Proposition 7.5. Let f.1 E DM and A E DK(f.1). Then there exists r;~(W2Q) E C 
such that 

(7r (J~,I) (Z)fT®v) (k) 

= ~ { (v, a) + (2A + 20K + {3, {3) _ r;~+{3(W2Q) - r;~(W2Q) } 
o (a, a) 2(a, a) 4(a, a) 

{3ED. p 

x sgn(A + {3 - oK)fM~(Z;).+{3,)')(T®v)(k), 

(7r W(J~ ,WI) (Z)fR>.( w)(T®v)) (k) 

= ~ { (v, a) _ (2)" + 20K + {3, {3) + r;~+{3(W2Q) - r;~(W2Q) } 
o (a, a) 2(a, a) 4(a, a) 

{3ED. p 

x sgn(A + {3 - oK)fR)..+f3(w)M~(Z;).+{3,)')(T®v)(k). 
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Proof. By using Lemma 7.3, we have 

(¢ZfT®v)(k;w~) = L sgn()...+{J-oK)fMJ.l(Z;).+/3,)')(T®v)(k;w~) 
/3E 6. p 

¢z(k)fT®v(k;w~) = (()"'+OK,)"'+OK) - (OK,OK))(¢zfT®v)(k) 

== L (()... + OK,)... + OK) - (OK, OK)) sgn()... + (J - oK)f MJ.l(Z;).+/3,).) (T®v) (k). 
/3E6. p 

Hence 

(¢ZfT®v)(k;w~) - ¢z(k)fT®v(k;w~) 

= L (2)", + 20K + (J,{J) sgn()... + (J - OK )fM J.l(z;).+/3,).)(T®v) (k). 
/3E6. p 

On the other side, under the assumption that dim HOffiM(V)" HJ1.) = 1, there exists 
r;~(W2n) E C such that 

and hence 

Likewise we have 

Consequently we have 

(¢ZfT®v)(k; W2n) - ¢z(k)fT®v(k; W2n) 

Noting 

= L (17~+/3(W2n) -17~(W2n)) sgn()... + (J - oK)f MJ.l(Z;).+/3,)')(T®v) (k). 
/3E6. p 

fTT>.(W)-l®V (k; W2n) = TT). (w )-IT). (W2n)( T). (k )-lV) 

= TT). (W2n)T). (w) -1( T). (k )-lv ) 

= 17~ (w2n)fTT>'(W)-1®v (k), 

and taking into account Lemma 7.4, we can get immediately the second equation 
in Proposition 7.5. D 
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8. REPRESENTATIONS OF K AND M 

In the remainder of this paper, we shall confine our attention to the case of 
SU(n,l) . In this case, because K = U(n), any irreducible unitary representations 
of K and M can be constructed in terms of the Gel'fand- Tsetlin basis of u(n). 
Later, this realizations are utilized for getting the matrLx elements of the Harish
Chandra C-functions with respect to the highest weight vector. We will borrow the 
notation concerning the Gel'fand-Testlin basis from the Vilenkin- Klimyk's book 
[27, pp. 361- 365J. 

Let Ep,q be the matrix unit whose (k, l)-component is equal to OpkOql. Put 
H = En,n+l + En+1,n and a = RH. Then we have 

(8.1) K = { (X u) : X E U(n),u E U(l),udetX = 1}, 
(8.2) A = { (In-t c?sh t sinh t) : t E R} , 

smh t cosh t 

(8.3) M = {(X 1.< J :XEU(n-l),UEU(1),U2 detX=1}, 

(8.4) N = n(z, u) = - z· l - w / 2 w / 2 : { ( 
In-l Z -Z) 
- z· - w / 2 1+w/ 2 

z EC
n

-
1 ,uE v'=1R} 

w=l zI2-2u ' 

(8.5) N = n(z,u) = z· l - w / 2 -w / 2 : 
_ { (In-l - z -Z) 

-z· w / 2 1+w/ 2 

z E C
n

-
1 

,UE v'=1R } 
w=l zl2 - 2u . 

The lemma below is easy to obtain and hence we omit the proof. 

Lemma 8.1. Let n (z, u) be as above. Then we have 

H(n(z,u)) = logll +wIH, 

( 

I 2zz· 
n - l - l+w 

K(n(z, u)) = {i: 
- 2z 

Il+wl 
l-w 
Il+wl 

o 
o ) o . 

l+w 
11+wl 

We will now compute the second term (2). + 20K + (3, (3) /2(a, a) appeared in 
Proposition 7.5. Put R~ = {x E RP : Xj - Xj+l E Z~o, (1:::; j :::; p -1)}, 
where Xi denotes the i-component of x E RP. For x E R~+l and Y E R~, x > Y 
means Xj - Yj E Z~o and Yj - Xj+l E Z ~o. For x E R~ and 1 :::; q :::; p, we set 
x(q) = (Xl,'" ,Xq) E R~ and x[q] = (xq )'" ,xp) E R~-q+l. Referring to [19,20], 
we have the following. 

Let Hp = HEp,p for 1 :::; p:::; n + l. Then 

(8.6) t = {~hpHp : hp E R, ~ hp = 0 } , 

f:lt= {~hpHp: hp E R,hn = hn +1 , ~ hp = o}. 
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Let {Cj} denote the dual basis of t~ with respect to {Hj }. Then 

(8.7) 
(8.8) 

(8.9) 

6j{ = {Ci- Cj, (l::;i<j::;n)}, 

6 p = {/3j = Cj - Cn+l, -/3j, (1::; j ::; n)}, 

D K = (n~lZ):' D M = (n~lz):-l 
It follows from (X, Y) = 2(n + 1) tr XY that for A E DK , 

where ITAI = L;=l Ap. 
We shall next compute 7]~(W'2Q)' Let M = (mn, ... , ml) be a sequence such that 

(8 .11 ) mp = (ml,p, ... ,mp,p) E (n ~ 1 z):. 
Then the preceding sequence M is called a Gel'fand- Tsetlin data if m p+l > mp 
for all 1 ::; p ::; n. For the Gel'fand- Tsetlin data M, we write v(l\II) for the 
corresponding Gel 'fand- Tsetlin basis. For A E D K, we denote by VA the Hilbert 
space generated by the orthonormal basis v(M) with mn = A. We put Xp = E p,p+l, 
Yp = Ep+1,p, Hp = A(Ep,p - E p+1 ,p+l) and Ho = A diag(-l, ... , -1, n). 
Then there exists an irreducible unitary representation (TA' VA) of 1< satisfying the 
following condition: 

(8 .12) 
p 

TA(Xp)v(M) = LA~(M)v(Mtj), 
j=l 

(8.13) 
p 

TA(Yp)v(M) = LB~(M)v(M;j), 
j=l 

(8.1 4) 

{ 

p p- l p+l } 
TA(Hp)v(M) = 2~mj,p - ~mj,p- l - ~mj,p+l Av(M), 

(8 .15) 
n 

TA(Ho)v (M) = -(n + 1) L mj,nAv(M), 
j=l 

where M;j is the Gel'fand- Tsetlin data obtained by replacing mj,p with mj,p ± 1 

in rnp of M . For the explicit forms of A~(M) and B~(M), see [27, p. 363]. 
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Let A E DK and J.L E D M(A). By V), (J.L), we indicate the subspace of V>. consisting 
of the Gel'fand-Testlin basis v(M) satisfying mn = A and mn-I = J.L. We put 
M),,/-L = (A, J.L, J.L(n - 2), ... ,J.L(1)). Because ' 

(8.16) 

n-I 
A.~ 

Y20 = ~ dlag(O, ... ,0,1, -1) 
2yn+ 1 

-1 
~{Ho + HI + 2H2 + ... + (n -l)Hn - I}, 

2nyn + 1 

we have from (8.14) and (8.15) that 

1 
(8.17) T>.(Y2o)v(M>',Il) = 2v'n+1(2IT),I-la/-LI)Rv(M)"Il). 

Here we write IT>. I = L;=I Ap and la /-LI = L;==i J.Lp. Since W20 = -ylo, it follows 

1 2 
(8.18) T),(W2o)v(M),,/-L) = 4(n + 1) (2IT),I-la 111) v(M)',Il)· 

Taking into account TT>.(~o) = 7]~(~o)T with T E HomM (V), , HIl ), we have 

(8.19) TT>.(W2o)v(M)"IL) = 7]~(w2o)Tv(M>"IL)· 
Therefore, it follows from TV(A, J.L) ¥- ° that 

(8.20) rJ\(W2Q) = 4(n ~ 1) (2IT,\ 1 - la I-'If· 

Noting IT),+,Bjl = IT>. I + 1, we get the following. 

(8.21) rJ\+f3j (W7) - )rJ\(W2Q) = 21T'\1 - la 1-'1 + l. 
4 0:', 0:' 

Using these results, we shall write down the expressions in Proposition 7.5. Let 
A E D K and J.L E D M (A). In the case of SU (n, 1), because all noncom pact roots 
have same length, we see that sgn(A + (3j + 6K) = 1 iff [T>.+,Bj : all] = 1. We 
simply write v for (v,O:')j(O:',O:'). Substituting (8.10) and (8.21) into the expressions 
in Proposition 7.5, we have the following lemma. 

Lemma 8.2. Let T ® v E HomM(V)" H IL ) ® V), and Z E Pc. Then we have 

7rCYp.,v(Z)!T0v 
n-I 

= L(v + 2Aj + laILI + n - 2j + 2) [T),+,Bj : (jIL]!Mp.(Z;>'+,Bj,),)(T0v) 
j=1 

n-l 

+ L(v - 2Aj -Ia ILl - n + 2j)[T),_,Bj : a f.LJ!Mp.(Z;),-,Bj,),)(T0v) , 
j=l 

7rwcy p.,wv (Z)!R>.. (w)(T0v) 
n-I 

= L (v - 2Aj - la f.L I - n + 2j - 2) [T>.+,Bj : a IL]!R>"+f5j (w)Mp.(Z;>.+,Bj ,>')(T0v) 
j=l 

n-l 

+ L(v + 2Aj + l(j ILl + n - 2j)[T),_,Bj : (j f.L]!R>"-f5j (w)Mp.(Z;),-,Bj,>.)(T0v)· 
j=l 
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9. THE RECURSION FORMULA FOR THE C-FUNCTION 

In this section we shall give the recursion formula of the Harish-Chandra C
function for SU(n, 1). Let I-L E DM and A E DK(I-L). We first recall that 
(9.1 ) 
A(w, (J, v)1fa,v(Z)!TQ9v = 1fwa ,wv(Z)A(w, (J, V)!TQ9Vl (T0v E HomM(VA, HJL) 0 VA)' 

Applying Proposition 6.1 and Lemma 8.1 to (9.1), we have 

the right-hand side of (9.1) = CT)..((JJL: v)1fwa /A,wv(Z)!R)..(w)(TQ9v) 
n- 1 

= L(v - 2Aj -I(JJLI- n + 2j - 2) [TA+{3j : a JL]CT).. ((J JL : V)!A+{3j 
j = l 

n- 1 

+ L(v + 2Aj + laJLI + n - 2j)[T'\ _{3j : aJL]CT)..(aJL: V)!A - {3j ' 
j = l 

the left-hand side of (9.1) 

n-1 

= L(v + 2Aj + la JLI + n - 2j + 2)[T'\+{3j : (J JL]CT)..+i3j (a JL : v)!'\+{3j 
j=l 

n-1 

+ L(v - 2Aj - la JLI - n + 2j)[TA-{3j : a JL]CT).. - i3j (a JL : V)!A-{3j' 
j=l 

Comparing side by side, we obtain the following recursion formulae. 
If [T'\+{3j : aJL] = 1, then 

We set A(I-L) = (I-L1,"" I-Ln-1, I-Ln-1) E DK(I-L). Thus, using the preceding recursion 
formulae and shifting the parameters as I-Lp ---; Ap, (1 ~ p ~ n -1) and I-Ln - 1 ---; An, 
we can find the following theorem. 
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Theorem 9.1. Retain the above notation. We have 

(
v- n+ICTel + ) 

2 f.Ln - 1 
J..Ln - l - >'n 

Here (a)n = f(a + n)jf(a). 

Theorem 9.1 says that for getting the expression of the Harish-Chandra C
function, it suffices to calculate CT>"(/-,) (0-J..L : v). To do this, we shall get the in
tegral expression of CT>,,(/-,)(CJJ..L: v). Let f.L E D M . Define the Gel'fand-Tsetlin data 
M>.(J..L) = (ml' ... ,mn ) by ml = (f.LI,· .. ,f.Ln-l, f.Ln-l) and mj = (f.Ll, ... ,mn-j) for 
1 :::; j :::; n -1. Then it is obvious that the Gel'fand-Testlin basis V (M>.(J..L) ) becomes 
a highest weight vector of both (T>.(J..L) 1M, V>'(J..L) (f.L)) and (T>.(J..L) ' V>,(J..L))' Choosing 
T E HomM (V>'(J..L) ' V>'(J..L) (f.L)) as a canonical projection, we have 

(9.2) 
CT>"(/-,) (0- J..L : v) = (TCT>..(/-,) (v)v(lVI>.(J.L))' v(M>.(J.L))) 

= (CT>..(/-,) (v)v(M>.(J..L )), v(M>.(J..L))) 

= Iv e-(v+p)(H(n)) (T),(,,) (K( n) - 1 )v(M),(,,)), v(M),(,,)) )dn. 

Putting ¢>'(J..L)(k) = (T>.(J..L) (k)v(M>.(J..L)) , v(M>.(J..L))) , we obtain the following proposi
tion. 

Proposition 9.2. Retain the above notation. We have 

10. FUNDAMENTAL REPRESENTATIONS OF K 

In order to compute ¢>'(J..L) (K(n)-I), it suffices to compute ¢A(K(n)-I) in the case 
of the fundamental representation A. Since the fundamental representations can 
be constructed as alternating tensor products of the usual representations of K, we 
can concretely write the matrix elements of TA(K(n)-I) . We note that since K is 
connected reductive compact, T>. can be extended to a holomorphic representation 
on K e , which is an analytic subgroup of matrices whose Lie algebra is te. 

We know that the fundamental representations are listed as follows : 

(10.1) wp = CI + ... + c p - pcn+l, (1 ~ p ~ n - 1), Wo = - c n+l. 

Let (~, en) be the usual representation of K, that is, for k = (X 'U) E K and 

Z E en, ~(k)z = u - I Xz and (<pr' j\rcn) be the alternating tensor representation 
of <D. We denote by (<Po, C) the representation of K defined by <po(k)z = u-1z. 
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Then <Pr , (1 ~ r ~ n - 1) and <Po are irreducible with highest weights Wr and wo, 
respectively. An easy computation yields 

(10.2) 

Therefore 

_ -1 1 + w 
(<p(K(n(z,u)) )ep,eq) == I I 

l+w (
0 _ 2Zq Zp ) . 

pq 1 +w 

Let J-L E DM · Then A(J-L) == L;==iuLp - J-Lp+1)Wp - (n + 1)J-Lncn+1. We write e+ 
(resp. e_) for the sum of all positive root subspaces (resp. negative root subspaces) 
with respect to (ee, tc). Let K+ and K_ denote the analytic subgroups of Ke 
corresponding to e+ and e_, respectively. By the definition of ¢ A, (A E D K ), it 
follows that 

and thus 

n-2 
(10.5) ¢A(/L) (k1 exp H k2) == II ¢wp (k1 exp H k2)/Lp-/Lp+l ¢WQ (k1 exp H k2)n+1. 

p=l 

Noting K1 exptcK2 is dense in Ke and ¢A is holomorphic, we have for any k E Ke 
that 

n-2 
(10.6) ¢).(/L) (k) == II ¢wp (k )Il-P-Il-P+l ¢WQ (k )n+1. 

p=l 

Thus substituting (10.3) into (10.6), we obtain the following lemma. 

Lemma 10.1. Retain the above notation. Then we have 
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11. EXPRESSIONS OF THE HARISH-CHANDRA C-FUNCTIONS 

Using Proposition 9.2 and Lemma 10.1 and carrying out the integration, we can 
get the explicit expression of CT)..(/A) (a J.l : v). Combining this with Theorem 9.1, we 
can get the explicit expression of the Barish-Chandra C-function for SU( n, 1). In 
the case of SU(n , 1) , we see that p == n, N == C n - 1 X Rand 

(11.1) 

From Proposition 9.1 and Lemma 10.1, we have 

In order to compute the integral in (11.2), we need the following lemma. 

Lemma 11.1 (cf. [8,22]). Let n ~ 1) ,\ E C, £ E Z, qj E Z~o, (1 ~ j ~ n - 1)) 
and F == 1 + ~(IZlI2 + ... + IZn_112) + Au. Then 

r n - l pC>.+l) / 2 F(). - l)/2 IT (p - t 1Zj12) Qp dzdzdu = 
Jc x R p=l j=l 

(27f)n2).+n+Q1 +···+qn- 1 r(-,\ - n - q1 - ... - qn- 1) 

n- 1 
11 (- ).r£ - ql - ... - qj - 1 - j) r (- ).r£ - q1 - ... - qn- 1 - n + 1) r (- ).;-£) 

j = l 

Taking into account (11.1), we obtain from Lemma 11.1 that 

(n - 1)!2-v +n r(v) 

]: (v+n~I(7"1 _ j + fLj ) r (v+n~I(7"1 - fLn - l) r (v-n~I(7"1 + 1 + fLn - l) 

Combining Theorem 9.1 with the above expressions, we can get the following ex
pression of the Barish-Chandra C-function for SU(n, 1). 

Theorem 11.2. The Harish-Chandra C-function CT ).. (a J.l : v) for SU(n, 1) associ

ated with T). E k and a J.l E M (T).) is given as follows: 

CT ).. (a J.l : v) 

(n -1)!2- v+n r(v) ~fl r (v-n~ l u/A1 + j - f-Lj) 111 r (v+ntlu/AI - j + ILj) 
3=1 3= 1 
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Remark. If n = 1, putting 10-~I = 0, we can get the expression of the Harish
Chandra C-function for SU(l, 1). 

We write det CTA (v) for the determinant of the linear mapping CTA (v) of V). . 
Taking into account V). = ~~ED M ().) H ~, we see that 

(11.4) detCTA(v)= IT CTA(o-~ : v)dimHIJ.. 
~EDM ().) 

Thus, substituting the expression in Theoreln 11.2 into (11.4), we obtajn the explicit 
formula of det CTA (v). On the other hand, in [4], Cohn obtained the expression of 
det CT (v) for any selnisimple Lie group. He showed that there exist Pi,j 1 qi,j E 

C, (1::; i::; r,l ::; j ::; ji) and f.i,l, ... ,f.i,r E a* such that 

(11.5) 

He conjectured in his paper [4] that the coefficients Pi,j and qi,j appearing in the 
above expression are rational nUlnbers and depending linearly on the highest weight 
of T. We can now concretely write the values of Pi,j and qi,j and thus we obtain 
the following corollary. 

Corollary 11.3. Cohn's conjecture is true for SU(n, 1) . 

12. COMPOSITION SERIES AND UNITARIZABILITY OF SU(n, l) 

In this section, we shall write down the composition series of the nonunitary 
principal series representations and detennine which parts of the composition series 
are unitarizable, which was shown by Kraljevic [20] . By virtue of the expression of 
the Barish-Chandra C-function, we can get the explicit [onns of the inner products 
that make the subquotients unitary. 

Let f.i, E D M and A E DK(f.i,). Suppose v E R and v > O. For 1 ::; j ::; n - 1, \ve 
set hj = (v - n - 10-~1)/2 + j - f.i,j and kj = (v + n + 10-~1)/2 - j + f.i,j and assume 
hj E Z and kj E Z. We choose 0 ::; a, b ::; n - 1 satisfying the following conditions: 

(12.1) h 1 < . . . < ha ::; 0 < ha + 1 < . . . < hn- 1 , 

kl > . .. > kb > 0 2:: kb+1 > ... > kn - 1 . 

In the following, we set f.i,o = 00 and ILn = -00. By using the expression of the 
Harish-Chandra C-function, we see that the zeros of CTA (0-~ : v) coincide with the 
ones of the following function: 

1 
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We set 

(12.2) 

S~,"+Ja) = { A E DK(/L) : v - n 2- 1
0-"I + a + 1 ::; Aa+1 ::; /La } , 

U { V + n + 10" J1.1 } SI/ ,jJ._ (b) = A E DK(f-L) : f-Lb+l ~ Ab+l ~ - 2 + b , 

7-{~~+ (a) = LV)., 
).ES:.+ (a) 

7-{~~_ (b) := LV).. 
). E S:.~ (b) 

In addition, if a i- b, we set 

(12.3) S~ jJ. (a, b) := ~,+ ( a) n S~,~ (b), 

1{~jJ. (a, b) = LV).. 
). E S~jJ. (a,b ) 

Then we have the following results. 

Theorem 12.1 (cf. [20]). 7ru jJ.,1/ is reducible iff (v - n -Ia J1.1)/2 + j - f-Lj E Z\ {O} 
or (v + n + I a J1.1) / 2 - j + f-Lj E Z \ {O} for 1 ~ j ~ n - 1.-

Theorem 12.2 (cf. [20]). Assume 7ru jJ.,1/ is reducible. Choose 0 ~ a ~ b ~ n - 1 
satisfying the relations in (12.1). Then the composition series of 7rU jJ.,1/ are given as 
follows: 

(1) If ha = 0 and kb+1 i- 0, then 

1{u jJ.,1/ ~ 7-{~~_ (b) ~ {O}. 

(2) If ha i- 0 and kb+1 = 0, then 

(3) If ha i- 0 and kb+1 i- 0 and a = b, then 

(4) If ha i- 0 and kb+1 i- 0 and a < b, then 

7-{UjJ. ,1/ ~ 7-{ujJ. (a) + 7-{ujJ._ (b) ~ 7-{ujJ. (a) ~ 7-{ujJ. (a b) ~ {O} 
1/,+ 1/, 1/,+ 1/' , 

1{ujJ.,1/ ~ 7-{~~+(a) + 7-{~~_ (b) ~ 1{~~_ (b) ~ 7-{~jJ.(a,b) ~ {O}. 
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Theorem 12.3 (cf. [20]). 
(1) 7ra l .. ,o is reducible iff (-11, -1(/ J.L1)/2 + j - ILj E Z\ {O} for 1 ::; j ::; n - l. 
(2) A ssume that 7r a 1-<,0 is reducible. Then the cornposiLion series of 7r a I-< ,0 can be 

written as follows: 

Hal-<'o :::) H~:~Ja) :::) {O}, 

Hal-<'o :::) H~~_ (a) :::) {O}. 

Let Ha,v(I() be the set of I(-finite elements in C:;O(I( ). Let A(w, (/, v) be the 
nonualized intertwining operator (cf. [17]). In case G = SU (n, 1), because (/ rv w(/ 

for any (/ E iI , it is possible to define (/ (w). Following Knapp- Stein [17], we 
determine the ambiguous sign of (/(w) so that otw)A(w, (/,0) coincides with the 
identity operator on Ha,O. Then Theorenl 8.1(3) implies the following lemlna. 

Lemma 12.4. Let {lJ E D M and A E D J( (IL). Then we have 

nrr- l (-h j + l)'\J-J.Lj (-kn - 1 + l)J.Ln- l - '\n 
(/ J.L(w)A(w, (/ J.L' v)IHCTil ,V(TA ) = (k. + 1 \ . . (h _ + 1) _ l,\, 

j = 1 J J ,\ J - J.L J n 1 J.Ln - 1 ,\ n 

where l,\ denotes the identity operator on Hail ,v (T,\). 

We define the sesquilinear Hermitian fonn on Hail'v (I{) by 

(j,g)i = (f, (/J.L(w)A(w, (/J.L,v)g), for f,g E HalJ.,V(K), 

where C,·) denotes the sesquilinear pairing on Hal-<'v x HwaI
4,W

v. Using Lelulua 12.4 
and investigating the sign of (/ J.L(w)A(w, (/ J.L, v)IHCTp ,l' (7),), we ilnlnediately obtain the 
condition for that (',')i is positive definite. 

Theorem 12.5 (cf. [20)). ~Ve have the fa llo'llling. 

(1) Suppose that a = b. 
If a = 11, - 1, (-, ')i induces a positive definite Hernlitian form on H~~+(a). 
Ifa < 11,-1) (-lY'(-,')i induces a positive definite Hermitian form on 
H~~+(a). 
If a = 11, - 1) (-l)V (', -) induces a positive definite H ennitian form on 
H~il_ (a). , 
Ifa < 11, -1) ("')i induces a positive definite Herm,itian form on H~~_ (a). 

(2) Suppose that a < band ILa+l = ... = P'b' 

If b = n - 1) f( -ha+1 + l)f( -kn - 1 + 1)(., ')i ind'U.ces a positi'LJe definite 
Hermitian form on H~I-«a, b). 
If b < 11, -1) f(-ha+1 + 1)(-, ')i induces a positive definite Herrnitian form 
on H~I-«a,b). 
If b = n - 1 and kb = 1) f( -ha+1 + 1) (-, ')i induces a positive definite 
Hermitian form on H~~+(a)/H~il (a, b). 
If b < 11, -1 and kb = 1) (-l)V(., ')i induces a positive definite Ifermitian 
form on H~~+ (a) /H~I-< ( a, b). 
If b = 11, - 1 and ha+l = 1) f( -kn - 1 + 1)(-, ')i induces a positive definite 
Hermitian form on H~~_ (a)/H~il (a, b). 
If b < 11, -1 and ha+l = 1, (', ')i induces a positive definite Ifermitian form 
on H~~_ (a)/H~I-< (a, b). 
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Remark. Applying Nelson's theorem, we can construct unitary representations of G 
on the Hilbert space completions of the above sub quotients relative to the respective 
positive definite Hermitian forms. We denote these unitary representations by the 
same symbols. 

Applying Theorem 6(i) and Theorem 7(ii) in [20], we can find which subquotients 
appeared in Theorem 12.5 belong to the discrete series representations. Because 
these computations can be carried out without any difficulty, we shall only write 
the conclusions. 

Theorem 12.6 (cf. [18]). The discrete series representations of SU( n, 1) are listed 
as follows: 

(1) The holomorphic discrete series. H~~+(n -1) with hn-I < 0 and kn- 1 > O. 

minimal K -type: Am = (JLI, .. . , JLn-l, v+n~ICiel). 
H arish- Chandra parameter: 

n-I ' 
A = ~ (JLp + i - p) cp + v-1Ciel Cn - V+1Ciel Cn+l· 

p=l 

K -spectrum: r(A) = { T,\ E k : A < (CXJ, Am)}. 
(2) The antiholomorphic discrete series. H~~_ (0) with hI > 0 and kl < O. 

.. l K-t . \ - (_ v+n+ICiel ) m'/.,n'/.,ma ype. Am - 2' JLl, ... , JLn-l . 

H arish- Chandra parameter: 
n-l 

A = - v+1Ciel Cl + ~ (JLp + i - p) cp+1 + v-1Ciei Cn+l' 
p=1 

K -spectrum: r(A) = { T,\ E k : A < (Am, -CXJ)}. 
(3) The nonholomorphic discrete series. H~Jj (a, a + 1) (0 :::; a :::; n - 2) with 

ha < 0 < ha+l and ka+1 > 0 > ka+2. 
minimal K -type: 
\ - ( v-n-ICiJjI 1 v+n+ICiJjI 1 ) 
Am- JLl,· · ·,JLa, 2 +a+ ,- 2 +a+ ,JLa+2,···,JLn-l· 

H arish- Chandra parameter: 
a n-l 

A= I: (JLp+i-p)cp+v-1Cielca+l-v+1Cielca+2+ ~ (JLp+i-p)cp+l+ 
p=1 p=a+2 

(JLa+l + i-a - 1) cn+l· 
K -spectrum: 

( 
_ { ~ . ('\l, ... ,'\o.+d« ex:>,J.1.1, .. . ,J.1.a., u-n~I<TJjI +a+l) } 

r A) - T,\ E K . ( u+n+l<Te l ) . 
('\0.+2" .. ,'\n) < - 2 +a+l,J.1.o.+2 , .. ·,J.1.n-l ,-ex:> 

Remark. In the next section, we write the discrete series representation with the 
Barish-Chandra parameter A as (1fAl VA). 

13. RESTRICTION OF DISCRETE SERIES 

Let liS embed G1 = U (n - 1, 1) into G = SU (n, 1) by 9 = (:. ~) f-> (:. ~ ~), 
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where a == (detg) - I E U(l). Let 

(13.1 ) 

Kl = {G ~~) : X E U(n-l),a,u E U(l),audetX = l}, 

n-I 
~ 

Z == {z(h) ==diag(h, ... ,h,h-n,h): hE U(l)}, 

Al == expRHI, 

where HI == En- l,n+l + En+l,n- l. Then G I == I{lAIKl is a Cartan decomposition 
ofG l . For f! E Z and J.1 E DM , define the unitary representation (X(f.,J..L),HJl-) of 
Z x M by X(£,J..L)(z(h),m)v == h£(]"J..L(m)v, (m E M,v E HJ..L)' Since Kl == MZ, 

X(£,J..L) E Kl iff f! + (n + l)J.1n- l E (n + l)Z. For x E R~, we write Ixl == ~~=l Xj. 

For 0' E D K, it follows that 

(13.2) TalKl == L X( - (n+l)( jaj -j .B j),.B)' Va == L Voce). 
.B<a .B<a 

So when we look upon Va (,8) as a representation space of K 1, we write this repre
sentation space as V( - (n+l)( ja j-j.Bj),.B)' In this section, we shall give the irreducible 
decompositions of holomorphic or antiholomorphic discrete series when they are re
stricted to G l , which was proven in [21] in general case. By virtue of the embedding 
of discrete series into nonunitary principal series, we can concretely construct the 
Gl-invariant subspaces of the representation spaces of the discrete series in terms 
of the Gel'fand- Testlin basis. 

We shall first rewrite the results in Proposition 8.2 in terms of the Clebsch
Gordan coefficients. Fix an orthonormal basis {Ei == En+l,i/ .J2(n + 1), Fi == 
Ei,n+l/ J2(n + 1), (1 ::; i ::; n)} of Pc. Then Ei and Fi correspond to the Gel'fand
Tsetlin basis with data (in,' .. , ii, 0i-l, ... ,01) and (I n , · ··, 1i , 0i- I, ... ,01) re-

2 

spectively. Here 0i == ~, 1i == (l,Oi- I) and ii == (Oi-l, -1). Let C' ·1·) 
denote the Clebsch-Gordan coefficients relative to the decomposition VA ® VAl 
L,\II EDK VAil, that is, for v(M) E V,\,v(M' ) E V,\I and V(M") E VAil, 

(v(M), v(M')r(M")) == (E,\II (v(M) ® v(M')), V(M")), 

where EA" denotes the canonical projection of VA ® VAl to VAil. In this section we 
use the following fact concerning the Clebsch- Gordan coefficients of U( n). 

Lemma 13.1 (cf. [27, p. 385]). For any Gel'fand- Testlin data M == (mn , ... , 

mI), M' == (m~, ... ,7n~), 1\11" == (m~, ... ,m~) and 2 ::; j ::; n, there exists constants 

(m:~, m7~, I m7,~J such that the Clebsch- Gordan coefficient (v(M), V(M')~(M")) 
can be expressed as follows : 
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Moreover, (m:~, m7~ 1 I m:~,) has the following properties. 

(1) If Imjl + Imjl/lmjl or Imj-ll + Imj-ll/lmj_ll, then 

mj mj mj = O. 
( 

I I 1/) 
mj-l m;'_ l I mjl_1 

) (1j mj I mj ) = (Ij mj I mj ) = l. 
(2 1j - 1 mJ'(j-l) I mj(j-l) I j - 1 mj!2JI mj[2J 

Remark. (m:~, m7~, I m:~,) are called the scalar factors of the Clebsch-Gordan 

coefficients. 

For each a E D K (J.1) and f3 E D M (a), let Tg be the canonical projection of Vo 
into Vo (f3) and write Pg = J dim Vo / dim Vo (p)Tg. Throughout this section we 
shall identify 1{CT~,l/(To) with Vo and simply write v instead of !p[; Q9v ' A simple 
calculation implies that 

(13.3) pj3 E* ,= 1 
o o+J 2J2(n + 1) 

pj3 E* _' = 1 
o oJ 2J2(n+1) 

dim Vo-j 

dimVo 

±' where a J = (a1,'" ,aj- 1, aj ± 1, aj+l, .. . , an). For a E D K (J.1) and f3 E D M(a), 
we set M o ,j3 = (a, f3, f3[2], .. . , f3[n-1]) and Mo ,j3 = (a, f3, f3(n-2), ... ,f3(1)). Then 
for 1 ~ i ~ n - 1, we have from Lemma 13.1 that 

(13.4) 

where 

Mj,k - ( - j f3- k f3[2] - k+l f3[ - .] - k+n- i- 1 f3[ -' 1] f3[ - 1]) 0,j3 - a" , ... , n ~ , n ~ + , ... , n , 

Mi,k - ( +j f3+k f3( - 2) - k f3( ') - k f3(' - 1) f3(1)) o,j3 - a, ,n , ... , ~ ,~ , ... , . 

Remark. For the explicit forms of the scalar factors appeared in (13.3) and (13.4), 
see [27, p. 385]. 
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Substituting (13.3) and (13.4) into the expressions in Theorem 8.4, we obtain 

(13.5) 

n n-l 
1faJ-l,v(En+l,i)V(lVlo,,6) = L L 

x (Ii ,6[n-i] I ,6[n_i]-k+n-i-1 
) V(M~k ), 

Oi-l ,6[n-i+lll ,6[n-i+l] ,,6 

where hj(a) = (v - n -ICJ 1L1)/2 + j - Qj and kj(a) = (v + n + ICJ 1L1)/2 - j + aj + 1. 
For 1 ::; i < j ::; n - 1, it follows from (8.12) and (8 .13) that 

(13.6) 

Let Wl be the Casimir operator of G l , that is 

(13.7) 

1 '" 2 1 '" Wl = 2(n + 1) ~ Ei,i + n + 1 ~ (Ej,iEi,j + Ei,jEj,i) 
lSiSn+l lSi<jSn-l . 

ii=n 
n-l 

+ 2 L(FjEj + EjFj ). 
j=l 

We shall first consider the case of holomorphic discrete series. Fix f.1 E D M and 
v E a* so that the condition indicated in Theorem 12.6(1) is fulfilled. Then the 
holomorphic discrete series is realized as (If (j ~,v, 1t~~+ (n -1)) with the inner product 
(-, ')i' For simplicity we set f.1n = (v + n - ICJ 1L1)/2 . Let A be the Barish-Chandra 
parameter of the above representation and write ('if A, VA) = ('if (j ~,v, 1t~~+ (n - 1)). 
Let VA(K) be the set of the K-finite elements in VA. Then it follows from Theorem 
12.6(1) that 
(13.8) 

VA(K) = L Va = L L Voce) = L L Va ({3), 
£-lLn EZ?:o ,6 <0< (00,).=) 

,6ES 101-1,61=£ 

where S = {{3 E DM : {3l 2:: IL2,ILj-1 2:: {3j 2:: ILj+1,(2::; j::; n-l)}. For our 
convenience, we introduce the following notation: 

Sm = {,B E S:,B < Am}, Se = {C E n ~ 1 Z : C ~ /Ln E Z:;,D}, 

S;;- = {e E Se : e - ILl E Z~O}, S; = Se \ S;;. 
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For a E DK and {3 E DM(a), let 

c(a,j,k) == 

d(k) == (1, ,8[n - i] 1.B[n- i] - k+n - i-l). 

0, -1 .B[n- i+l] I ,B[n-i+l] 

For {3 E Sm, let 

Z({3) == {k E Z>o: 1::; k::; n-1,{3-k E 8m }, 

Ne({3) == {a E DK : {3 < a < (00, Am), lal - 1{31 == £}, m(£, {3) == Card Ne({3) , 

Vf ({3) == L Vo ({3) . 
o ENl(.B) 

For {3 E S, let 

{3j == (max({32' IL2), . .. ,max({3n- l, J-Ln - l) , ILn), 

{3e == (min({31' ILl)" .. ,min({3n- l, !tn- I)). 

Taking into account {3e, {3 f E 8m , {3 f < ({3e, -(0) and {3e < ({3, -00 ) , we see that 
Ne({3) can be written as 

(13.9) 

Ne({3) == {a E DK : a[2] E Sm, {3j < (a[2], -(0), a[2] < ({3e, -(0), 

la[2]1 ::; 1{31 + £ - max({31, ILl)}' 

Taking into account ({3e)e == {3e and ({3e)f == Am[2], we can easily see that m(£, {3) ::; 
m(£, {3e). For this reason, we write (13.8) as the following form: 

(13.10) VA(K) == L L Vo ({3) + L L Vo ({3) 
eEs+ oENl(.B) eEs+ oENl(.B) 
.B E S~ .B~S~ 

eES;; oENl(.B) 
.BES rn 

eES;; o ENl(.B) 
.B~Srn 

We shall here get the expression of the eigenvector of WI . Assume that an eigenvec
tor v is represented as v == LO ENl(.B) cov(Mo,.B), (co E C). Then it follows from 
(13.6) that JrA(Ej,i)V == 0 for 1 ~ i < j ~ n - 1. Thus for v being an eigenvector, 
it suffices to determine Co such that Jr A (En+l,i)V == 0 (1 ::; i ::; n - 1) are satisfied. 
It follows from (13.5) that 

(13.11) 
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Using the fact that hj (Cf) < 0, (1 ::; j < n), hn (Cf) ::; 0 and hn (Cf) = 0 iff Cfn = ILn, 

we see that C(Cf, j, k) ~ 0 iff (3-k E Sm and Cf- j E Ng({3-k). Letting Z({3, i) 
Z({3) n {n - i,· .. , n - I} and rewriting Cf- i as Cf, we have from (13.11) that 

Therefore 7rJ\(En+1,i)V = 0 implies that we have for k E Z({3,i) and Cf E N£({3-k) 
that 

(13.13) L Co+jC(Cf+i, j, k) = O. 
o+i ENl ((3) 

From this, we see that it suffices to determine Co such that 7rJ\(En +1,n- 1)V = 0 is 
satisfied. To determine Co, we use similar arguments as in [31, Theorem 3.1]. 

Lemma 13.2. Let £ E Se and (3 E Sm. 

(1) If £ ESt, then there exists v = LOE N l((3) co v(Mo ,(3) E Ve({3) such that 

7rJ\(En +1,n-1)V = O. Moreover, such a v is unique up to a scalar multiple. 
(2) If £ E S; and 1{31 ~ IAml- £, then there exists v = LOEN

1
((3) cov(Mo,(3) E 

Ve({3) such that 7rJ\(En +1,n-1)V = O. Moreover, such a v is unique up to a 
scalar multiple. 

Proof. (1) We obtain from (13.9) that 

(13.14) 

Then setting Nt ({3, p) = {Cf E Nt ({3) : Cf1 = p}, we have 

N£(f3) = U~l+£+I(3I-I~\'nl::;P::;tN£({3,p). 

We first remark the following fact. For A E N£({3,p), we put 

Then setting Cf = A -1, we have from (13.13) that 

(13.15 ) C-\C(A, 1, k) + L Co+i+1C(Cf+i+l,j + 1, k) = 0, (k E Z(A, (3)) . 
iEZ(-\,(3) 

By the orthogonality relations of the Clebsch-Gordan coefficients, it is easy to check 
that c( Cf+i+1, j + 1, k) are linearly independent and thus we can get Co+j +1, (j E 
Z(-\, (3)) from the above simultaneous equations. 

We can find the constants Co, (Cf E N£ ({3)) by induction on Cf1· Let Cf f = 
(ILl + £ + 1{31 - IAml, 1L2, ... , ILn). We first choose CO! as an arbitrary nonzero real 
number. Suppose that Co are determined for all Cf E Nt({3,p). For Cf E Nt({3,p-1), 
We pick k E Z>o so that Cf[2]-k E Sm. Then setting A = (Cf+ 1 )-k E N£({3,p), we 
can get Co from the simultaneous equations (13.15). By the orthogonality relations 
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of the Clebsch-Gordan coefficients, it is easy to check that Co is independent of the 
choice of k. 
(2) Because {3 E Sm and /!. E S;, we have from (13.9) that 

(13.16) 

Thus N£ ({3) == 0 if I {31 < I Am I -/!.. By a similar way as in (1), we can also determine 
the constants Co satisfying fLl + /!. + 1{31 - IAml ~ al ~ /-Ll' 0 

For /!. E Se and (3 E Sm, we choose v as in Lemma 13.2. We denote by V(/!', (3)(K) 
the1fA(Kl )-invariant subspaceofVA(K) containing {1fA(Fn - l )jv: j E Z~o }. Then 
'TfA(En-l)v == 0 implies V(/!.,(3)(K) == L{3' «{3,-oo) ~-(n+l)£,{3')' Taking into ac
count 7n(/!., (3) ~ m(/!., (3£) for (3 ~ Sm, we obtain from (13.10) that 

(13.17) VA(K) == L V(/!', (3)(K) + L V(/!', (3)(K). 
£ES; 
(3ES'ITI 

If3I~I>''lTII-£ 

We shall next consider the case of antiholomorphic discrete series. Fix /-L E D M 

and v E a* so that the condition indicated in Theorem 12.6(2) is fulfilled. Then 
the antiholomorphic discrete series is realized as (7r a ~,lI' 'H~~_ (0)) with the inner 
product (', ')i' For simplicity we set /-Lo == -(v + n + laJ..LI)/2. In this case, if 
0' E r(A), then kj(a) < 0, (1 < j ~ n), hj(a) > 0, (1 ~ j ~ n) and k1(a) ~ O. 
Moreover kl (a) == 0 iff al = fLo. Let A be the Barish-Chandra parameter of the 
above representation and write (7rA, VA) == (7ra~'lI' 'H~~+(n - 1)). We have from 
Theorem 12.6(2) that 
(13.18) 

VA(K) == L Va = L L Va(j3) == L L Va ({3), 
£ESe (3<o«>''ITI'-oo) 
{3ES lal-I{3I=£ 

where 

For our convenience, we introduce the following notation: 

8m == {{3 E 8 : {3 < Am}, 

8t == {/!. E 8e : /!. - /-Ll E Z~o }, 8; == 8e \ 8t· 

For (3 E 8m, let 

~ - k ~ 

Z({3) == {k E Z>o: 1 ~ k ~ n-1,(3 E Sm}, 

Ng({3) == {a E DK : {3 < a < (Am, -(0), lal-I{31 == /!.}, m(/!., (3) == CardN£({3), 

W£({3) == L Va ({3). 
aENl ({3) 
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For {3 E S, let 

{3f = (max({31, J-Ll), . .. , max({3n-l, J-Ln-l)), 

{3e = (J-Lo, min({31, J-Ll), ... ,min({3n-2, J-Ln-2)). 

By the same reason as in the case of holomorphic discrete series, we have 

(13.19) 

Ne({3) = {a E DK : a(n - 2) E Bm, {3f < (a(n - 2), -(0), a(n - 2) < ({3e, -(0), 

la(n - 2)1 ::; 1{31 + e - min({3n-l, J-Ln-l)}. 

and thus m(l!, {3) ::; m(l!, {3t) . For this reason, we write (13.18) as follows: 

(13.20) VA(K) = L We({3) + L We({3) + L We({3) + L We ({3). 

Assume that an eigenvector v is represented as v = Lo.E M l(!3) co.v(Mo.,/3), (Co. E C). 
Then by the similar arguments as in the case of holomorphic discrete series, for v 
being an eigenvector, it suffices to detennine Co. such that 1fA(En- 1,n+l)V = O. 

~ ~ 

Lemma 13.3. Let I! E Se and {3 E Sm. 

(1) If I! E Bt, then there exists v = Lo.ENe(/3) co.v(Mo.,/3) E We({3) such that 
1fA(En- 1,n+l)V = O. Moreover such a v is unique up to a scalar multiple. 

(2) If I! E B; and 1{312:: j)'ml-I!, then there exists v = Lo.ENe(/3)Co.v(Mo.,/3) E 

We({3) such that 7fA(En- 1,n+l)V = O. Moreover such a v is unique up to a 
scalar multiple. 

For I! E Be and {3 E Bm, we choose vas in Lemma 13.3. We denote by W(I!, {3)(K) 
the 7fA(K1)-invariant subspace of VA(K) containing {7fA(En_1)iv : j E Z~o }. Then 

7rA (Fn-1)v = 0 implies W(I!, {3)(K) = L/3«/3' ,-CXJ) 11( -(n+l)e ,/3')' Therefore we ob
tain from (13.19) that 

(13.21 ) VA(K) = L W(e,{3)(K) + L W(I!,{3)(K). 
eES;;" 
/3ESrrt 

1/31~I '\rrt l-f 

Summarizing these, we obtain the following theorem. 

Theorem 13.4. Let V(I!, {3) and W(e, {3) be the completion of V(I!, {3)(K) and 
W(€,{3)(K) relative to (', ')i respectively. 

(1) The holomorphic discrete series (1f A, VA) is decomposed with no multiplicity 
as follows: 

VA = L V(e, {3) + L V(e, {3). 
eES+ eES; 
/3ES~ /3ESrrt 

1/31~I '\rrt l-e 
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The Blattner parameter of V(£, {3) is (-(n + 1)£, {3). 
(2) The antiholomorphic discrete series ('if A, VA) is decomposed with no multi

plicity as follows: 

fES;; 
(3ESm 

1(3\ ~ I Am I-f 

W(£, {3). 

The Blattner parameter of W(£, {3) is (-(n + 1)£, {3). 
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