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Abstract 

We discuss whether there is a realistic Technicolor nlodel under the constraints of 

Oblique and Non-oblique corrections from the precision nleasurelnents. 

To satisfy the constraint of oblique correction, a one-family Technicolor nl0del 

without exact custodial sYlnnletry was propo ed by Appelquist and Terning. VvTe 

con truct effective Lagrangian including technimesons for the one-family Techni ­

color model without exact custodial synlnletry. Tree level contributions to oblique 

correction parameters S' and U due to spin 1 t chnimeson are cOlnputed with the 

effective Lagrangian. An isospin breaking term which is associated with technilepton 

yector mesons gives a negative contribution to the electroweak radiative correction 

parameter S' due to mixing between I = 0 and 1 = 1 vector mesons. 

To satisfy the constraint of non-oblique correction, Zbb \' rtex correction. 

the effects of diagonal extended technicolor interaction was studied by Wu. By 

means of the effective lagrangian approach, we discu s the effects of extended tech­

nicolor(ETC) gauge interaction to the oblique and non-oblique corr ctions. It is 

shown that the T parameter is unacceptably large when the Z bb vertex correction 

and S' parameter are consistent with the experiments in the ETC model. Hence, 

SOlne difficulty is still remained in the ETC mechanism. 
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1 Introduction 

The oblique corrections, Sand T paralneters, seyerely put constraint on QeD-like 

technicolor modele;; and the present data shows that the nlodels can not satisfy the 

constraints[l]. In the QCD-like lTIodel, S is about 0.1 x }\ Tdou blet X lYTC > 0 and T van­

ishes because of exact custodial symmetry (chiral symnletry S [ r ( ~Vd ) L J c:; [' ( ~Yd ) R). 

However, S parameter that has b en obtained fron1 nlany experinlental data is neg­

ative. Fron1 th recently experimental data, I-family technicolor model( ~Yd = 8) is 

compi t ly ruled out and I-doublet model may be also. Accordingly, we n ed to 

modify the technicolor model to atisfy the constraint. of the oblique parameters. 

It is shown that if these models have the splitting of the masses between up-type 

and down-type particles (isospin breaking). th v nlay be able to sati fy the con­

straints from oblique correction S by considering ofi(:>-loop approximation. In ref. [2] 

Appelquist and Terning show a one-family technicolor n10del with isospin breaking 

in technilepton sector. This model has the following features. (1 )iso pin breaking 

of technilepton doublet, (2)the existence of two seal s which are one of techniquark 

sector and one of technilepton sector. Because of the feature (1) is reduced and 

because of (2) T is also reduced. In our work [:3] , we construct the effective la­

grangian on this technicolor model without exact custodial symmetry and calculate 

the oblique corrections by considering the effects of the (axial )vectormeson that are 

composed by the technifermions. 

On the other hand, for the vertex corrections of Zbb, which is called non­

oblique correction, there is a discrepancy between the prediction of the standard 

model (SM) and the experimental data at LEP. The experin1ental value Rb = 

0.2202 ± 0.0020 was different from the value R~M = 0.2157 predicted by S1\1 with 

top quark mass mt = I75GeV. In the extended technicolor model(ETC), the con-
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tribution from sideway ETC interaction was first studied by the author of Ref.[--1]. 

However, this discrepancy could not be explained by the effects of the sideway. 

ETC interaction. The discrepancy becomes larger by this effect [4. 5. 6]. In the re­

cent works [7], it is shown that the diagonal extended technicolor(ETC) interaction 

Inay solve the Z bb problell1, i.e., the discrepancy between the experill1ent and the 

prediction of the SM in Zbb vertex. If the contribution of the diagonal interaction 

to Z bb vertex is large enough to cancel the other corrections for the Z bb vertex, the 

discrepancy will be explained. 

In order to build realistic technicolor Inodels, the con. traints of oblique cor­

rection and non-oblique correction must be satisfied at once. However, uch large 

effect from diagonal ETC int raction that can explain the discrepancy of Rb also 

contributes to the oblique corrections because the effect COll1e from the breabng 

of the isospin symmetry in th right handed ETC interaction . [8] It i n cessary to 

break the isospin symmetry to generate the mass diff renee between top and bot­

tom quarks . Hence, the T parameter must receiv large contribution from the ETC 

interactions. The diagrams such as Fig.16 [8]( A [7] and B ) must contribute to the 

oblique correction T [1]. We study the effect of the diagonal ETC int raction for 

the oblique corrections in the case that the non-obliqu correction of the Zbb vertex 

is consistent wi th the experimental data in a realistic on -family 1110del with small 

j ' parameter[2](the model without exact custodial Yll1metry[;3]). 

This thesis is developed as follows. In chapter 2 and :3, w briefly review about 

Oblique and non-oblique corrections and th Technicolor ~10del. In chapter --1, we 

construct the effective lagrangian including technilnesons for a t chnicolor mod 1 

without exact custodial symmetry. By using this ll1ethod. th oblique corrections 

are computed. It is shown that S parameter receives negative contribution from 
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the p - w mIxIng. In chapter 5, the contribution from the isospin breaking to 

vertex corrections in technilepton sector is described in the case that ~VTC is large. 

The effects from only the sideways ETC interaction is considered. In the cas 

that there is the isospin breaking in the technilepton sector 1 the difference of th 

vertex corrections between ZTT and W TV is shown. In chapter 6, we shown that 

contribution from diagonal ETC interaction to T parameter is unacceptably large 

when the Zbb vertex correction is consistent with experiments in the case that ~NTC 

is small. Chapter 7 is devoted to the conclusion . 
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2 Obliqu.e and Non-Oblique Corrections 

The standard model is precisely tested on the pole of Z boson at LEP. Th experi-

n1ents probe its predictions with sufficient accuracy. If a fe\\' new physics exi ts, the 

effects from the new particles must appear in the precision 111eaSUrel11ents for the 

low energy phenornena. The effects appear through some corrections as shifting of 

the standard model parameters . One is the radiative correction of the weak gauge 

bo on . This is called "Oblique" correction[l]. Ot her one is the vertex correction 

called "Non-Oblique" correction[4]. The oblique correction does not depend on the 

process we consider but the non-oblique correction depend. \/lie can obtain some 

constraints of thei r corrections on the new physics fro111 the precision electroweak 

experiment . 

2-1 Oblique Correction 

The Oblique correction is the radiative correction on the self energy of the electro 

weak gauge bosons. The radiative correction is 

( 2. 1 ) 

with a. b = A, W±, Z. If new physics exists, the effect must appear in the radiative 

corrections . 

( 2. 2 ) 

The first term on the right-hand side r presents the S~1 contribution, while all new 

physics effects are contained in the second term. If the scale of the new physics 

is sufficiently large compared with the mass scale of the weak gauge bosons, the 

II ab ( q2) can be described by a Taylor expansion. 

8IIab(l) = bT1ab( O) + q2 //i ITab(q2) 1,2=0 +O( ,,]22 ) 
q ~ n ew 

( 2. ;3 ) 
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Therefor , there are eight param ter., 

8II zz (O) 8IIww (O) 

d~2 8IIAA(q2) Iq2 =O d~2 8IIzA(q2) Iq2 =O d~2 8IIzz(q2) Iq2=O d~2 8IIww(q2) Iq2=O 

( 2. -l ) 

Two of these, by gauge invariance, 

When the tree input para111eters, a, Mz and G F renormalized. three linear comb i-

nabon of remaining six quantities can be eliminated. The effects from new physics 

can b described by three combination which called "Oblique correction". S'. T and 

C. The oblique parameters defined by Peskin and Takeuchi [1] is 

s ( 2 . . S ) 

aT ( 2. 6 ) 

( 2. 7 ) 

By uSIng this parameters, one can compare the ffect fro111 new physics( techni-

particle ... ) with experimental data. But in this definition . the assulllption that the 

new particle is very heavy compared with the mass of weak gauge boson is used. If 

there are a few new light particles, this notation may not use in term of the Taylor 

expansion of self-energy. 

Toy M odel (QED with a massive gauge boson) 

As a simple example to explain the oblique correction. we consider a toy 1110del[9] 

in which a massive U(l) gauge boson field All couple to a fermion current Jw 

The Lagrangian for the toy model is 

( 2. 
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There are the self-en rgy from the interaction f. JpA~l. For this lagrangian a self-

energy IS 

( 2. 9 ) 

where an ex (:t )n . M is a pole mass of a propagator of the gaug boson. After 
New 

the renormarization for the self energy, the effective lagrangian is 

I: - 1 F F~w + ~m 2 A AfL 
e f f - - 4" fLV 2 fL 

+ eJpAfL + ApI1(q2)A~I . ( 2. 10 ) 

The equation of motion for the gauge field AfL in the lagrangian eq. (2. )is 

"C sing thi equation of motion, 

n- l 

AfL[]nAfL I"'V (-It(M2n A fL AfL + L eJfL(-O) mAP) , ( 2. 12 ) 
m =O 

and this formula substitute in eq.( 2. 9 ). 

-0 
AfLI1( -D)AfL = AfLI1(M2)AfL + eJfL L( 1,1

2 
)n-l L amAfL 

n= l ~ m=n 
( 2. 1:3 ) 

the tot al effective lagrangian i 

( 2. 14 ) 

In this lagrangian, the vertex is 

iA~( l) = ie')'~(l + ~ IJ ~2 t-1 L am) 
n=l m=n 

( 2. 1.5 ) 
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Convensionary, 

( 2. 16 ) 

while the mass of AJL is 

( 2. 17 ) 

Therefore we can understand that the dependence fronl the fennions in new physics 

appear in obserbables of basic th ory. It is san1e for the electro-weak model (Stan-

dard model). 

Electroweak Model 

vVe discuss the parametrization of oblique correction to the 'tandard n10del[9]. \i\ie 

uppo e the existence of new physics and th selfenergy fronl the new physics . The 

total effective lagrangian of SM is 

L eI I = L M + L new ( 2. 1:) ) 

where 

1 1 
2AJLII-y ( -D)AIl + 2ZIlIIz ( -D)ZIl 

+ W1 II w ( - 0 ) W JL + A tl II Z~r ( - 0 ) Z JL ( 2. 19 ) 

the equations of motion are 

e jJL - 2 ztl - -=-= nc - m Z + ... 
sc 

( 2. 20 ) 

__ e_ JJL _ m2 vl/ tl + ... V2s cc w 

By using the same method with the example of toy model. the effective lagrangian 

IS 

L eI I kineticterms 
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( 2. 21 ) 

Because we replace the renormalized quantities e, sand T71Z with the experirnental 

values, we choose the three measured electroweak observables °1 GF and J1z . These 

observables is measured very well. 

( 2. 22 ) 

Therefore l the tilded quantities are 

e e(l - ~ II~;;2) 1,' =0) 

m~ m~-I1z(Mi) 

( 2. 2:3 ) 

And substituting the tiided quantities, the vertex i 

• A /-L ( 2) 
11\ em q 

10 



. \11 ( 2) 1. cc q 

2 
mW == 

_i_e_ J.L L(1 + ~ 11W(q2) - 11w(J1k) 
sy!2' 2 q2 - .lIft· 

1 ( 211,(0) 12 2~ 11W(O) _ 2~ 11z(J1~)()~ ')6) 
+ 2( 2 2) S 2 q =0 +C.J \J2 C.) '12 f'. ~ 

C - S q ~ - H ' ~ .. " Z 

c2rn~ - c2 11Z( m~) 

C
2 s2m~ (_ 11, ( q2) 

(C2-S2) q2 

+ 11w(M~) 

1 

2 _ 1111'(0) 11z(Al~)) 
q =0 J1lv + M~ 

( 2. 27 ) 

The oblique parameters defined in ref. [9] on the mass of the weak gauge 

bosons is 

as 

aT 

aV 

aW 

aX 

( 2. 28 ) 

( 2. 29 ) 

( 2. ;30 ) 

( 2. 31 ) 

( 2. :32 ) 

( 2. 33 ) 

where 811xx is a gauge bosons' self-energy for the beyond standard model and 

the prime show differentiation with respect to q2. e sing the notation of oblique 

correction . the vertex in electroweak model and lV mass is shown as following: 

( 2. 34 ) 
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( 2. ;35 ) 

( 2. :36 ) 

( .) '3~) ~ .. ( 

It is possible to express a wide vari ty of precision electroweak observable. in tern1S 

of only the six parameters. If ther are a few n w light particles. w must use this 

notation. When the new particles have very heavy mas compared with the lnass of 

weak gauge bosons, this notation becomes same a the notation defined by Peskin 

and Takeuchi. Then, in approximation that A1w . .AI z ~ 0, V. vV and )( vanishes. In 

other words, by only the three parameters 8. T and [ ' . we can examine the exi t nce 

of the new heavy particles in the precision el ctroweak measurement. 

2-2 Non-Oblique Correction 

The contribution froin new physics to vertex correction is usually very small, becaus 

the interaction an10ng the ordinary fermion and the new particles is \'ery weak. 

However , Such as Extended Technicolor Model that the interaction produce the 

large rna s, for exarnple top mass, there is th large vert x COlT ction.(See the captor 

5 and 6.) 

Especially, recent experimental data at LEP how that there are the devia-

tions from the prediction of standard model in the Z boson partial width ratio. The 

experin1ental value 

Rb = 0.2202 ± 0.0020. ( 2.:3 ) 
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where 

Rb = f(Z --+ bb) 
f( Z --+ hadro1ls) , 

( 2. :39 ) 

has already been different from the value R~M = 0.21.57 predicted by standard 

model with top lTIaSS mt = 175Ge V . This standard model prediction is that added 

the leading standard model corrections such as fig.2 to the \'alue R~ = 0.2197 at 

the tree level(see fig .1 )[10J . Hence, this discr pancy Inay b vidence of beyond 

z 

Figure 1: 

b b 

z z z 

b b 

b 

Z .../"V z 

b 

.",--- ..... 
/ "-

/ , 
( ) \ 

b t 

Figure 2: The leading standard-model corrections to Rb• in t'Hooft-Feynman gauge. 
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the standard model. We must examine the non-oblique correction for the \'ertex of 

Z - bb in the all models of new physics. At present, I do not know the l110del that is 

satisfying the constraint of the correction without extended technicolor model. [11] 
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3 RE~view of Technicolor Model 

The standard model is consistent with almost all the experi11lents. The pr dictions 

of S~l show the agreelnent with the recent preci ion experi11lents. However, S:'vl has 

a few problems. Dne of the11l is the probleln which is called "fine tuning proble11l" 

or "naturalness proble11l". If the Higgs potential in S:\1 renlain as a funda11lental 

terms. 

( ;3. 1 ) 

until certain very high energy scale 1\ which is GeT scale( A 

parameters in the tenns 11lust be fine tuned. The para11leter receive the radiative 

corrections. The correction is proportion to ;\ 2. Hence, 

( :3. 2 ) 

Because the potential must produce the symmetry breaking on electroweak scale 

(1.' r-v 250 GeV) to giv the realistic weak gauge boson mass. we must take m 2 

a very large mass to cancel the large value A 1~:2 . \~'e must be fine tuned like 

1.00000000000000000 . ·001 - 1 = 0.000000000000000000 .. 001. vVe think that this 

is an unnatural situation. To avoid this unnaturality, some beyond the standard 

model should exist . 

One of the candidates as the beyond the standard model is T chnicolor rnodel. 

In this model, the Higgs is not elementary particle but a cOlnposite particle of the 

new fermion called technifermions with the additional strong interaction (technicolor 

interaction). The condensate < TT ># 0 occur the electroweak 8C(2)L :J C(l)y 

symmetry breaking .. The mass correction for the fer11lion is 

( :3 . :3 ) 
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and proportion to the power of inA. \i\1hen the coupling. g, is enough sIn a. 11 , the 

correction is small compared with the mass of the ferDlion. Hence, the Dl0del that 

included just fermions and gauge bosons must not need the fine tuning such a.s the 

scalar potential of SM. 

3-1 QeD 
To break the electroweak symmetry, there is no need for elelnentary Higgs bosons . 

For example, we consider QeD. Ignor the snlall electroweak coupling of quarks. 

Then, their interactions r pect a large global chiral flavor ynlmetrv, S[T(2)L '8 

S[ (2)R for ('U, d) . The strong QeD interactions of quarks cause this chiral symmetry 

breaking by the condensates 

- - 3 < U'U >=< dd >= -~q rv -4:r.f-r: (:3.4:) 

The chiral symmetry is broken to 'U(2)v. Hence, there are 22 - 1 3 massl ss 

Goldstone bosons, the decay constant of the bosons is III = 9:3~~1 e V . 

Here , to examine the Higgs mechanism, w restore the ignored electroweak 

interactions. Then, the self energy of the weak gauge boson are 

n ab () ( 2 )gagbf; 
J-LI/ q = qJ-Lql/ - q gJ-L1/ 4q2 + ... ( :3. 5 ) 

where (a, b) = Z , liF. This term show the mass of the weak gauge boson. In oth r 

words, the strong QeD interaction acts the role of Higgs mechanisDl . The electro 

weak symInetry SU(2)L 0 [ (l)y has broken to U(l) em and the weak bosons, TlVand 

Z , gain the mass. The mass are 

( :3. 6 ) 

While photon remains massless. The three degree of Goldstone boson is eaten by 

the longitudinal mode of the weak gauge boson. 

16 



However, in the case that the QCD interaction induce the electro w ak ynl-

111 try breaking, the mas is too small to predict the reali tic mas . Alw rv 53111 e \,' 

and ~i\lJz rv 60M e V . The measured values are about 1.500 till1e larger. 

Here , we consider whether the QCD scale, .\Q C' D rv :300111 e". is natural one 

or not. The scale is defined as that the QeD coupbng O'(.'\~ C' D) rv 1. In one loop 

level renormarization equation for the coupling is 

( :3. 7 ) 

where }\ T1 is the number of flavor. Put the boundary condition on the Gl T scale as 

following. 

( 3. ~ ) 

Then, 

1 
-------

O'Q CD(Q2) 

1 
( :3. 9 ) 

O'GUT 

The ratio of the scales between QeD and GlJT is 

A~CD 4K 1 
-2- = exp[- (-- - 1)] 
AGUT 11 - ~\ 1 QGUT 

( :3. 10 ) 

Because O'GUT rv 0(10- 2
), the ratio becomes very small value of order 10-3 1 . Hence, 

such theory can naturally produce the very small scale such as '\QCD. Y\le can under-

stand that there is not the naturalness problem in the theory included only fermions 

and gauge bosons . 

3-2 Technicolor Model 

By QeD interaction, the breaking scale is too small. ASSU111e that there is a new 

asymptotically free gauge interaction which called "T chnicolor". V'/e consider the 
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one doubl t (U, D) of technifermions. They are n1assle s and has the chiral fla\ 'or 

syn1metry (custodial symmetry). Then, such as the cas of QeD, the strong techni -

color interaction cause the condensation of technifermions and the conden ate break 

the chiral symmetry SU(2)L 0 SU(2)R to SC(2hr
• 

- - 3 
< UU >=< DD >= -J.T r-v -47r F~ ( :3. 11 ) 

where F-rr is a decay constant of the massless Gold. tone bosons (techni pions). By 

the same way of the case of QeD, the weak gauge bosons gain the mass. 

( :3. 12 ) 

The scale '\TC at which technicolor interactions b com strong is d termined by the 

weak cale, Frr = 246Ge V. 

One-family Technicolor Model 

As r alistic model, there is a one-fan1ily model. Introduced fennions are 4 doublets, 

three doublet with color charge (techniquarks) and on doublet without color charge 

(technileptons) . 

[ T3 
R' 

D~. 

( :3. 1:3 ) 

where the index, 1,2,3 , of U and D show the Se(:3) color. The condensations of these 

technifermions cause the chiral symmetry SU( )L Z SC( ~ )R breaking to SC(8)v and 

give the mass to weak gauge boson as Higgs mechanism. In this n10deL the value of 

decay constant of techni pion is 246 / ~Ge V = 12:3Gt V. 

3-3 Extended Technicolor Model 
This model must explain the mass of ordinary fermions. To gen rate the rna s, thp 
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technicolor interaction is extended. The extended gauge group is SC(~YTc+:3). Fir t. 

at the scale Ml SU(NTC + 3) is broken to S'U(lY'TC + 2). then. the fir t generatioll 

(u, d, V e , e) gain the mass. The second, at the scaleJl1' C.'C(~VTC + 2) is broken 

to SC(~VTC + 1), th second generation (c, s, vJ-l' p) gain the mass. Finery, at the 

scale ~'\If3' SU(NTC + 1) is broken to SU(NTC ), the third generation (t, b, VT.T) gain 

n1ass. The remained SU(NTC) interaction bec01ne strong and cause the condensate 

of technifermions at scale ATc . The difference of t he scales generate the differences 

of mass between generations. 

( :3. 1-1 ) 

Hence, because the ETC gauge interaction produces the differences between gener-

ations, the scales must satisfy the following relation, 

The mass differences in same generation is induced from the difference of 

coupling between light-handed ETC interactions and right-handed 'so Consider for 

the quarks of the third generation. There are C;C( ~VTC + l)L, SC(~\'TC + l)uR and 
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SC (J'./TC' + 1 )DR ETC gauge interactions, 

ETC SU(NTC' + l)L SU(NTC' + l) L' R SC( ~YTC + l)DR 

coupling ~~gETC 

multiplet 

q L R R 

Then 1 the masses of top quark and bottom quark are 

( :3. 1.5 ) 

The isospin breaking of top and bottom comes from the difference of the couplings. 

This mechanism is same for th leptons and other generations. V'/e must consid r 

that there are eigen coupling for flavors. 

<uu> 

Figure 3: The masses of top and bottom quarks produced by ETC interaction 

3-40blique corrections in Technicolor model 

R cent precision measurement show that the ordinary technicolor lTIodel may be 

ruled out[16] . Because the mod 1 can not satisfy the con traints of Oblique correction 

and non-Obliqu correction. Especially, QeD-like technicolor n10del compl tely was 

ruled out by the constraint of S paramet r. 
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In one-loop approximation, the Sand T parameters are 

s = 
N doublet mi 

~ L (1 - yilrz-!f-), 
67r i=l 1TID 

(;3.16) 

T = 
N doublet ')7n 2 nz 2 1772 

T C """ (2 {2 '-' l./ D 1 [,' ) 
2 2 2 ~ 1TIU + J\; D - 2 2 n -2 . 

16 7f scM Z i = 1 me - 171 D Tn D 
( :3. 17 ) 

Because of the custodial syn1metry in the QeD-like model, the isospin is con erved: 

Hence, 

S 

T 

NT C }Vdoublet 
----->0 

67r 

o 

( :3. 1 :1 ) 

(:3.19) 

( :3. 20 ) 

The value of the S parameter is positive . How vel', fr01ll experiment the constraint 

favor the negative value. Accordingly, we need to Inodify the technicolor model to 

satisfy the constraints of the oblique parameters. It is shown that if these models 

have the spli tting of the masses between up-type and down-type particles (i ospin 

breaking), they may be able to satisfy the constraints from oblique correction S 

by considering one- loop approximation. There il1uSt b the contribution from the 

second term to the S in eq.( 3. 16 ). However the T becomes large with positive 

slgn . 

To avoid the difficulty for the oblique correction . the 11l0del without exact 

custodial symmetry was proposed by appelquist and Terning[2]. The global sym-

metry breaking pattern is that SU(6)L ® S[ (6)R C S[ (2)L Z C(lhR 0 F(I)sL 0 

C(l)SR 0 U(l)v is broken into SU(6)v ~ [ (lhv 0 U(I) v C [(I)v . The feature 

of the model is that the custodial symmetry was broken in only the technilepton 

sector. 
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4 Effective Lagrangian for a Technicolor 
Model without Exact Custodial 

Symmetry 

It has been shown that Technicolor models are strongly con trained by preCl Ion 

Ineasurelnents of electorweak parameters. In particular, caling-up QeD one-fan1ily 

Technicolor model with exact custodial synlmetry . eeln to be already excluded by 

studying an oblique correction parameter S [1]. 

Stheory = 0.28 x 4 = 1.1 

c;New - -0 42 ± 0 36-0 .08 
•. ex p -. . +0.17 

where Stheory is an stimation with vector and axial vector me on dominance as-

sumption for scaling-up QCD one-fan1ily Technicolor model. (Se appendix E.) A 

factor of 4 comes from the fact that the model contains four SC(2) doublets of tech-

nifennions. S exp is quoted from [17] and the reference point of the standard model is 

taken at mt = 1.50 Ge 1/ and mH = 1 Te V. However. according to ref. [2], this is not 

the case for Technicolor models without exact custodial symlnetry. A realistic mod 1 

is proposed for a one-family Technicolor model. In their Inodel. isospin breaking is 

introduced for a light technilepton doublet. The doublet contributes to the radiative 

correction parameter S in negative sign while keeping p parameter nearly equal to 

1. In their analysis, free technifermion model is used to compute S parameter. 

In this paper, we compute the oblique corr ctions (S, T and U ) in a more 

realistic way. In ref.[2]' the oblique corrections are conlputed within one-loop ap-

proximation of technifermions. (See Fig.4( a). ) However, if Technicolor theory i.' 

an ultraviolet asymptotically free and an infrared confining theory like QCD. thi. 

includes only the part of the non-perturbative effects which come from the use 
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of constituent technifermion masses. In fact, the correction like Fig.--1(b) il1ust be 

important at q2 = 0 (q : external momentun1 of gauge boson) where the oblique cor­

rections are defined. If the infinite series of the perturbatiYe expansions are summed 

up, the contribution must be well described by the one pole exchange diagram of 

technimeson in Fig.4( c) . Therefore, in order to incorporate non-perturbative eff cts 

Q 

(a) 

B + A~'AArf\AAA! • ••. vvvv'\Y vvvv 

(b) 

W3 P B 
JVVV:.-----'---'---""-----JJVV\.; 

(c) 

Figur 4: (a) :The Fcynman diagram for the contribution to S in a free technifermion 
model. (b): The perturbative corrections to Figure (a) . (c): A typical nonpertur­
batlve contribution to S due to one pole exchange of techni p n1eson. 

of technicolor, we need to describe Technicolor theory in terms of technimesons. \A/e 

construct an effective Lagrangian with low lying technime ons for the on -family 

Technicolor model without exact custodial symmetry. By using the effective La-

grangian, we can compute non-perturbative effect of bound states of technif rmions 

on the radiative correction parameters S ,T and [ r. Our paper is organized in the 



following way. In section 4-1, we review feature of the 1110del. \\'ith S0111e aSSU1l1p-

tions on the low lying technill1esons' spectrum, we construct a low energy effective 

Lagrangian. In section 4-2, 5, T, and U parameters are C0111puted with the La­

grangian. It is shown that 5 parameter receive. n gative contribution due to the 

mixing between isosinglet and isotriplet t chni-vector mesons. Section 4-3 is d voted 

to finding the range of the parameter for negative S. 

4-1 Effective Lagrangian for a Technicolor model 

without exa.ct custodial symmetry 

Let us describe the model briefly [2] . The model has a global symmetry: G = 

5C(6)L 0 5U(6)R 0 5U(2)L 0 U(lhR 0 U(1)8L 0 C(lhR 7 [(lh' 1 which is spon­

taneously broken to H = 5[ (6)v 0 [ (lhv 8 C(l)8\/ ;- C(l)v . 

The technifermions are assigned to the following representations of S [ T (3) c ::; 

5C(2) ~ C(l)y 0 S[ (YTC ): 

(3 .) YLq i\ ~ ) 
'~'2,~VTC , 

. YLq 1 
(3,1, 2 + 2,NT C ), 

( 
YLq 1 

3 1 - - - 1\ Te' ) , , 2 2' , 

YLl 1 , 
(1,2, - + - ' 0 }YT C) , 

2 2 
YLl 1 r 

(1, l. - - - . ATe) . 
2 2 

where YLq(YLl ) is hypercharge of lefthanded t chniquark(technilepton) (YLq = 1;:3, 

fLl = -1 ). The following mass spectrum is assuil1ed for technifermions: 

• Mu = MD , 

• j\l[ < ME. 

lSome part of G must be broken explicitly in order that unn cessary massl ess physical ~ambu­
Goldstone bosons disappear. See appendix C for the details. 
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SC(6)v sytnmetry is preserved because techniquarks are deg nerate, while SC(2h: 

syn1nletry is explicitly broken due to isospin breaking of technileptons. To proceed 

further. we need to know the technim ons' spectrull1 of t he model. Since the 1110d ] 

does not have the same global symmetry as that of QeD ( S'C(2)L C" SC(2)R in 

chiral limit ) and underlying dynanlics nlay be also different fro111 that, we can 

not simply scale up the me. ons' spectrum in QeD. Here we make use of the global 

synlmetryas a guide to construct an effective Lagrangian. Global symmetry strongly 

constraints the structure of effective Lagrangian as well as properties of bound states 

included in effective Lagrangian. Concerned with technime. ons. which are bound 

states of technifermion ,w need to mak a few assunlptions. In this paper. we 

include only N ambu Goldstone Bo ons (NGB), Pseudo ~ ambu Goldstone Bosons 

(P~GB) and spin 1 mesons. For the purpose of studying tr e level contribution 

to the oblique correction parameters, 8,T and rr. other meson with higher . pins 

(spin2:: 2) can be ignored because they do not contribute to s If energy correcbon. 

of gauge bosons. Further we only keep O(p2) terms of GBs and P:"JGBs and ignore 

their loop effects and O(p4) counter terms. About spin 1 mesons, we employ the 

approach of including vector mesons into chiral Lagrangian [18] [19] and extend it to 

our case. In table( 1) 1 technimesons and their technifermion contents as well as their 

J, P. C and I are listed. (For NGB and PNGB sector, we quote them from ref.[2].) 

~ -ote that charged technilepton NGBs (II±) do not have definite parity because II± 

are NGBs associated with S[ (2)L not 5U(2),4. (~ote that we do not have full 

SC(2)R symmetry.) In the sanle way, exotic left-handed charged vector mesons(AL) 

are introduced so that they interact with II± and 8U(2) :2.1 U(I) gauge bosons etc. 

without loss of the invariance. Corresponding to spin O. vector. and axial and left­

handed vector mesons, the effective Lagrangian consists of three parts: LS. Lv, and 

LA: The explicit form for them will be presented below. 

2.5 



Jpe Number Isospin charge 
p o: 0- 35 Q,sT O: Q 
n3 0-+ 1 L'S T3 L I 0 
()8 0-+ I Q'S Q - 3L,sL 0 0 
n± 0 2 L~(1- /S )T±L 1 ±1 

V6~ 1- 35 Q/~).. O: Q 

W6~ 
1--- 1 Q/~Q 0 0 

P2~ I-- I Lr~T3L 1 0 

W2~ 
1-- - 1 L'Il L 0 0 

A~~ 1+ 35 Q/~/sTO:Q 

A8~ 1++ 1 Q/~/5Q - ;3L r~/s L 0 0 

A2~ 1++ 1 3 L/~/S T L 1 0 

At~ 1 2 L/~ 1(1 - IS )T± L 1 ±1 

Table 1: J ,P,C,I and electric charge of the technime ons incorporated in the effective 
Lagrangian. In the third colun1n. the nun1ber. of corrpsponding technimeson arp 
shown . In the fourth column ., techniquark content. with th same J ,P.C,! and electric 
charge are shown. 

NGB and PNGB sector 

In order to construct the Lagrangian of NGBs and P~GBs, we employ the non-linear 

realization approach with exponentialized fields for l\GBs and P~ GBs [20] : 

( 4. 1 ) 

( 4. 2 ) 

( 4. 3 ) 

where, Tn are generator of SU(6) and Ta, T3 are Pauli matrices. p n are :35 ~GBs 

for broken SU(6)A syn1metry, which are techniquark bound states. rr a( a = 1,2) and 

IP are ;,JGBs for broken SU(2)L(T a 
: a = 1,2) and F(lhA symmetry respectively. 

which are technilepton bound states. ()8 is a ~ G B for broken C (1 )8A symmetry. 

F6 , FL , F2 and F8 are decay constants for these NGBs. 
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This part of the Lagrangian consists of O(p2) tenns of :'\GB and P~GBs. 

+ (3.L tr( Ct8.L f-3 Ct2JJ + L~r) ( 4. 4 ) 

where) 

+3 = (0 
T 3 ) . ( 4 .. 5 ) 

Ct6.LJ-i d= (TQ ) tr[TQ ~6 \7 R"~~ - ~~\7 L"~61 ( 4. 6 ) 
0' =1 

o 2i' 

2 1 C a t ~ 

CtL.LJ-i -2 L ? ) tr[=- ~2 \7L"~21. ( 4 . 7 ) 
a=l ~ T

a 2 2z 

2~ (0 3 t ~ t ~I 

Ct2.LJ-i 
) tr[=- ~l \7R"6 - ~2 \7L"6

1 ( 4. 8 ) -

2 T3 2 2i ' 

Ct8.LJ-i 2_1 e6 

4V3 
. ) [tr{ 1 ~6 \7 R"d - ~~\7 L"~6} 

-312 4V3 2z 
t ~ t ~ 

{ -3 ~1 \7 RJ-i6- ~2 \7 LJ-i~2 }] ( 4. 9 ) +tr -- . . 4V3 21 

In this paper, (A B) always means a 8 x 8 matrix in which A (B) is a 6 x 6 

(2 x 2) submatrix. In is a n x n unit matrix. \7 R(L) are co\'ariant derivati\"es for 

SC(2)L 0 U(I)y Q9 SU(3)c gauge interactions and are given by. 

\7 R" = 0" + ig'( ~3 0 13 )B" + ig'( Y~Q 8 h)B" 

8 

+igc L (12 0 Am)c; . 
m =l 

a . ~ ( TA A· I YLQ 
J-i + zg ~ ? 0 13)WJi + zg (-.)- 2 13)BJi 

A=l ...., ...., 

8 

+igc L (12 0 Am)c; \ 
m= l 
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( 4. 12 ) 
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where. H/~4. Ell and G;: are SU(2) ® U(I)1" S 8C(:3) c gauge bosons and Am are 

generator of S[ (3) c. Let us return to the Lagrangian ( 4. 4 ). ~ Tote that FL is 

not degenerate with F2 because custodial syn1n1etry is broken in the technilepton 

ector and rrL forn1 an irreducible representation under [ . (1 h", 'shieh rr3 does not 

belong to . The difference between FL and F2 gives rise to sn1all deviation of p 

parameter from 1 (see (4. 74)) . £~r consists of explicit breaking terms which 

make physical NGB n1assive . W ithout £~r and 8r'(2)L :: C( l)y gauge interaction. 

we have 3 color singlet physical massless NGBs which are linear combinations of 

Bs . rr3. 11± ,p3 and P±. Here p± and p 3 are S U (2) tri plet and color singlet bound 

states of techniquarks . B) adding £~r' we can make them massive . (See appendix 

C for the details. ) 

~ ow let us show that the Lagrangian ( 4. 4 ) is invariant under G. To prove 

this, we must know the tran forn1ations of O'.lS . Fir t of all. the transformation of 

~s are given by [20]; 

~~ gL6~6h~ = h6(6gk6 ' ( 4. 14 ) 

(; gL2~2h~, ( 4. 1.5 ) 

~ ~ gR26h~, ( 4. 16 ) 

B' B8 8 
Fs + cPR8 - ¢L8 · ( 4. 17 ) 

F8 

In ( 4. 14 )-( 4. 17 ), gLS and gRS are chiral transformation. which correspond to 

G while hs are vectorial transformations which correspond to the unbroken sym­

metry H . gL6(gL2) and gR6(gR2) are the chiral transforn1ations in the techniquark 

(technilepton) sector. They are parametrized by the fo llowing equations. 

gL6 ( 
'r0 )..a . 1 .1 

exp Z 6 (l)L6 + l , j7)@L8 + l-<p~ ' ). 
4v:3 4 

( 4. 18 ) 

gR6 ( 
'ra)..a . 1 .1 

exp Z 6 (l)R6 + 1. j7)0R8 + Z-O'l) . 
4v3 4 

( 4. 19 ) 
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gL2 

2 '3 1 
(

.'\:"' a a . 3 3 .' .) 
exp z ~ 7 9L2 + l7 ([JL2 - 1 j7)(f)LS + l:J0l ' . 

a=l .fv.3 
( '-l. 20 ) 

. 3 3 . 3 .1 
exp (Z 7 ¢ R2 - 1 j() ¢ R + Z - <;) V ) , 

4v3 .f 
gR2 = ( -1. 21 ) 

where 9L6(tpR6), ¢L2(¢~2)' ¢LS(¢RS) and ¢v are th parameters of 8C(6)L (8L"(6)R). 

C(l)sL (U(1)SR), SU(2)L (U(lhR) and U(I)v respectively. h6 (h2) i a vectorial 

transformation in the techniquark (technilepton). ctor. They are defined by, 

h6 h6 h Ql' ( -1. 22 ) 

h6 exp (iT6
a ¢~6) E S'[,(6)\'. ( 4. 23 ) 

hQl 
. 1 

E C(lh,· ( -1. 24 ) exp (z J3tpQl) 
2 3 

h2 h2hLl' ( 4. 2.5 ) 

h2 
7

3 

exp (i 2 ¢V2) E C(lhv. ( 4. 26 ) 

hLl 
.1 

exp (z 2<DLd E C(lh,· ( -1. 27 ) 

where 0V6 and ¢Ql are parameters for SU(6)v and C(lhr transformations in the 

techniquark sector while ¢V2 and ¢Ll are parameters for U( 1 hv and U( 1 h, tran.-

formations in the technilepton sector . These parameters in the vectorial transfor-

mations depend on gL, gR and ( By using ( 4. 14 )-( 4. 17 ). it is not difficult to 

see that CX6-LJ.1. , CXL-Lf./. and CX2-LJ.1. transform as; 

, 
cx6 -LJ.1. 

" " t 
h6CX6-LJ.1. h 6' 

, 
cx2LJ.1. 

" " t 
h 2CX 2LJ.1. h 2· 

, 
cx2 -LJ.1. CX2-LJ.1.' 

, 
CXS -LJ.1. CXS-Lw 

\Vith ( 4. 28 )-( 4. 31 ), the Lagrangian ( 4. 4 ) is invariant under G. 

Vector meson(I --) sector 
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( -1. 29 ) 

( 4. :30 ) 
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In addition to NGBs and PNGBs, we incorporate vector ll1esons into the effectin:> 

Lagrangian. Corresponding to unbroken sYll1111etry: S' C (6 h' C (1 h\' ~ [. (l )8V ' 

['(1)"" we introduce 38 vector mesons, 3.5 of which ar techniquark bound states 

belonging to the adjoint representation of 5U(6)v . Corresponding to C(l )q\/ (C( l)v 

for techniquark sector) ,U(l)IV (U(l)v for technilepton sector) and C(lh", , three 

neutral vector 111esons, techni Wq (W6J.L) , techni wi (""-"21.1)' and techni PI (P2J.1) are 

introduced. For the techniquark sector of the effective Lagrangian. we can just 

extend the approach of [18] [19] into th larger sym111etry. i.e, chiral 5C(6)L S 

SC(6)R @ U(1)6v. On the other hand, for technilepton sector. non-trivial isospin 

breaking terms are introduced. Let us record vector meson part of the effective 

Lagrangian first, 

( 4. :32 ) 

where 

35 (T~ 0) tr[T"~6\7R~a ~ ~~\7L~~6l. (X611J.L 22: ( 4. :33 ) 
0' =1 

(Xw6 11J.L 2 1 (16 
2V3 

) tr[_l_ ~6 \7 RJ.I~~ ~ ~~\1 LJ.L~6], 
o 2/3 2l 

( 4. :34 ) 

2~ (0 
3 t" t " 

(X211
tl 

) tr[~ ~l \7 R~6 + ~2 \7 L~6l. ( 4. :3.5 ) 
2 T3 2 2z 

1 (0 
t " t " 

(Xw2 111.1 2- ) tr[ ~ ~l V' R~6 + ~2 V' L~~2l ( 4. :36 ) 
2 I? 'J' . 2 ~ ~1 
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Vector n1esons are decomposed into their component fields, 

116/1 iI:(T" 0) p~"" ( --1. ;37 ) 
0 =1 

1Iw6/1 i_1_ (h 
2j3 0) w6", ( 4. :38 ) 

V2/1 i~ (0 
2 T 3 ) P2w ( 4. :39 ) 

VW2 /1 = Ie z-
2 12) w2w ( 4. 40 ) 

The quantities defined above transform under G in the following way~ 

( 4. 41 ) 

( 4. 42 ) 

( 4. 43 ) 

( 4. 44 ) 

In (4. 32 ) 1 the terms proportional to Ov and /3v break isospin syn1metry. The 

term with the coefficient Ov generates mixing between techni wi (W2/1 (1 = 0) ) and 

techni PI (P2/1 (1 = 1) ) through the kinetic tern1 while the term whose coefficient is 

pv generates the mixing through the mass term. 

Axial vector meson (A) and left-handed vector lneson (A L ) sector 

This part of the Lagrangian are given by. 

. . 
2 Z 2 2 l 2 

M A6 tr (A6/1 - A6 06.1/1) - MAs tr (A8/1 - A8 08.1/1) 
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The decomposition into component fields is given by, 

A6J.L i f= (TO 0) a~~. 
0' =1 

A8~l 
. 1 (h 
z 4V3 -:31

2
) aSW 

ALJ.L ii=HO T a ) a L", 
a=l 

A2J.L = iHO T3 ) a2w 

Th y transform under G in the following way, 

A~J.L 
A At 
h6 A 6J.L h6o 

A~J.L A8J.L) 

A~J.L 
A A t 
h2A L/lh 2o 

A;J.L A2J.L" 

( 4. ~5 ) 

( 4. ~6 ) 

( 4. 47 ) 

( 4. -t ) 

( -t. 49 ) 

( 4. ,50 ) 

( ~. ,51 ) 

( ~ .. 52 ) 

( 4 . . 5;3 ) 

The terms proportional to 0A and j3 A break isospin symmetry. We hav already 

seen the counterparts of these terms in the vector meson sector ( 4. :32 ). Moreover. 

two additional pararneters 8 and 8' come in (4. 45 ). In particular. the pr sence 

of 8 gives rise to a new isospin breaking effect on Sand C as we how in section 
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4-2. Vv'e also note that there are no inhomog neous ternlS for the transfornlation of 

axial (A) and left-handed (AL) vector nlesons und r G. Therefore the lnixing ternlS 

betw en these vector mesons and PI\' G B appear. This effec t result in redefini tion 

of the coefficients of O(p2) terms of NGB and P~GB . ector ( 4. 4: ). In order to 

avoid the red finition of the coefficients, we ju t ne d to add the appropriate O(p2) 

tenns in axial and left-handed vector meson sector. The O(p2) terms of ~GBs and 

P~GBs in ( 4. 45 ) are chosen so that the O(p2) ternlS in ( 4. 4 ) should not be 

altered after eliminating A and AL with their equation of nlotion. (See app ndix D 

for the details of the procedure.) 

4-2 S,T and U parameter 

The electroweak radiative correction parameter S, T and L~ are defined in term of 

the gauge boson self-energy: 

In order to compute technimesons contribution to .), T and C, we need to ex­

pand the effective Lagrangian in terms of th ir cOlnponent field explicitly. Because 

we only consider their tree level contribution here, it is suffice to keep technicolor 

singlet and color singlet technilnesons ( vector, axial and left-handed v ctor meson 

) in the expansion. It is spin 1 technimeson that contribute to and C within the 

tree level approximation. In the following, we conlpute .'>'. T and [T in techniquark 

sector and in technilepton sector, respectively. The latter computation will tell u 

how diff r ntly custodial symmetry breaking t rnlS contribute to S compared with 

techniquark sector where custodial symmetry is exact. 

The t echniquark sector 

In this sector, color singlet and 5U(2) triplet part of techni-vector me ons 16(1-) 
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and .46 (1 +) contribute to S. Since 5'[T(2) singlet vector lnesons uch as 1:';6 and A. 

do not couple to W3 , they do not contribute to c,'. The mixing terms between the 

vector mesons and gauge bosons are given by : 

P6(a6) are color singlet and lsotriplet vec-

tor( axial vector) mesons. Therefore, these 

mixings, which give rise to a contribution to 

S through the Feynman diagram (Fig.S). We 

Figure.5: The Feynn1an diagram 
for the contribution to 5 in the 
techniqllark sector. 

obtain S in techniquark s ctor. 

. '5 d [(. MM~6 -1 . , MJl~~6 ] I 
199 q = -167f d 2 zv3 ')0 g) 2 _ \J2 (lg y.3 -)G~) q2=O 

q >..J 6 q 1 \/6 o..J ,r6 

6 d [(. M3 M~6) - i . , ;::;- ~'1~6 ] I 
-1 7f d 2 Z V u 2 ~ 9 2 _ M2 (- zg V 3 2 \ -) q2=O' 

q /\6 q.46 /\6 
( 4 . ·5.5 ) 

( -± . .56 ) 

The technilepton sector 

In this sector, there are isospin breaking terms, 
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Because of the presence of these terms, isospin of \'ector 111 sons i not a consen"ed 

quanti ty and mixing between 1=0 and 1= 1 vector me. ons can occur. Then, 5 [ " (2) 

singlet vector mesons such as techni WI (W2) can contribute to S through the n1ixing 

terms. Therefore, we need to diagonalize mas tern1S and kinetic terms of vector 

mesons. By expanding the effective Lagrangian, we obtain: 

1 a[~ , W2v] ) ( 1 av) (a[~,p2V]) .Lv = - 4" ( a[~,p2I/l av 1 a[~Y)2 I/ l 
1 

( ~~2 J~ ' ) (~~ ) +2 (P2 W2 ) P; l\ft, 
", 2 

1 ) (M~2 pv ) ( 9W3+9'B) 
-2 (P2 A/2 

G? ( ~ .. 58 ) W2 Pv 2YL19' B ' 
2 V", 2 G "';2 

( 4 .. 59 ) 

where 

The kinetic and Inass terms can be diagonalized by doing the following trans-

formations successi vely. 

where UD,Z and Um are defined by, 

UDV(A) = (1 
V2 

( ~ . 60 ) 

( 4. 61 ) 

-fi) 1 ) 

V2 
( ~. 62 ) 
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ZV(A) 

[ mV (A) = (
CV(A) 

3V(A) 

o ) 1 , 

(1 + OV(A)P-
( -1. 6:3 ) 

-3~r ( A )) . 

CV(A) 
( -1. 6-1 ) 

CD is a -15 degree rotation matrix to diagonalize the kinetic tern1S . Z is a scale 

transformation to keep correct normalization for the kinetic t erm . . Fjnally [ rm is a 

rotation matrix which diagonalizes the mass terms. em r lates the n1a s matrices 

to their diagonal forms in the following way. 

( 4. 6.5 ) 

( -1 . 66 ) 

In (4 . 65 ) and ( 4. 66 ), 1\l/p and M w (A1a2 and .\108 ) are eigenvalues of vector 

(axial vector) mesons mass matrix . With these transfonnations, the interacbon 

term between gauge bosons and vector mesons is given by: 

where~ 

1 m -2 (P2 

1 +- (am 2 2 

1 +- (a m 4 2 
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( 4. 70 ) 

,8A<5'[CA(l + o , .. d ~ - SA(l- OA)~]) 
PA<5'[S.4(l + OA)1 + cA(l - OA)~] 

By computing th Feynman diagram (Fig.6). the SU111 of the contribution to S fro111 

technilepton sector and techniquark sector ( 4 . .56 ) is. 

s = 

( 4. 71 ) 

The term proportional to 1 / G~ (1 / A~) comes from vector (axial vector) mesons 

m 
P2 B W 3 a2

m 
B 

VV\.IV'v====~ 

W 3 as
m 

B 
JV\JV\r===~ 

Figure 6: The Feynman diagrams for the contribution to S' 1n the technilf'pton 
sector . 

in the techniquark sector while the term proportional to 1 / G~ (1 / A~) COlnes from 

vector (axial v ctor) mesons in the technilepton sector. As isospin breaking effects. 

we obtain two kinds of new contributions to .5' : One i. the tern) proportional to i'Ll. 

The other is the term proportional to <5. The former comes from the mixing between 

I == 0 and I = 1 vector mesons in the techniquark sector. -ote that YLI is -1 in 

37 



one family technicolor model. Therefore, when we change only aI ' without changing 

the other parameters, the minimum of S can be obtained for OF = 12. The latter 

cornes from the exchange of two neutral axial vector meson who. e n1asses are given 

by Afa2 and Mas. For T parameter, we obtain the same expression as that is given 

in ref. [2]. For con1pleteness, we give the xplicit forn1 here. 

( -t. 72 ) 

( 4. 7:3 ) 

( 4. 74 ) 

vVith the assumption:FLl F2 « F6 , T pararneter can be very srnall even if there is a 

splitting between FL and F2 as stated by the authors of [2]. Finally we compute C 

parameter. The result is given by, 

u = 

U parameter is zero if the isospin symm try is 

exact. Since the isospin syn1metry is broken 

in the technilepton sector of the present modeL 

U parameter is not necessarily zero. The left­

handed vector meson aL contributes to 8IIll 

( 4. 75 ) 

Figure 7: The Feynman diagran1 
for the contribution to C due to 
the 1 ft- handed vector meson. 

part of U (Fig. 7), which is given by the term proportional to 1/ Ai. On the other 

hand, I = 1 vector (axial vector) meson contributes to 8II33 part of C. which is 

20nly w 2 which consists of N N component contributes to S in that case, because EE compo­
~ent of vector meson decouples and ideal mixing is realized. This confirms the conjecture of the 
Importance ofw given in ref.[2]. 
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given by the term proportional to I/G~ ( II A~). If the i ospin were consen'ed, 8IT ll 

and 8IT33 should have been cancelled each other. This i not the case in th present 

model. 

4-3 The range of parameters for neg;ative S 

In this s ction, we explore the parameter region where S paranleter is negativ SlnCf' 

negative S is favored under th pre ent experin1f'ntal fits. If t he future exp rin1ental 

con traint on S is improved, we can do n10r con1plete analysis. Since we do not 

know the underlying dynal11ics of the present 1110deL we do not have any guiding 

principle to determine the parameters of our n10del without experimental informa-

bon . Therefore instead of trying to predict S in our l11odel, we determine the allowed 

region of the parameters of the eff ctive Lagrangian by l111posing the present exper-

imentally allowed region for S. Since we have n1any paral11eters. we further need to 

limit ourselves into the small paran1eter space to draw sorne definite conclusions . 

Here we sin1ply assume that S is dominated by only vector l11esons and the con-

tribution of axial vector mesons can be ignored3 . C nder the assumption of vector 

(1--) dominance, S is given by, 

S 
312 

47f [G 2 + G2 - OT G G ] 
6 2 2 ",-,2 

3 1 2 
> 47f [G2 + G2 - G G ]. 

6 2 72 7",-,2 
( 4. 76 ) 

Here we have substituted YLI = -1 in ( 4. 71 ) and neglect axial vector contribution. 

In the second line of ( 4. 76 ), the inequality holds because OT can tak its value 

between -1 and 1 and O'v = 1 is the condition to have minimum value of S. ~ote 

that the bound for O'v comes from the condition for the positive semi-definiteness 

3This is a good approximation in the case of the scaling-up QC'D technicolor model as we have 
shown in appendix E (E.5) 
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of the kinetic terms of vector mesons ( 4. 6:3 ). In the follovl:ing we aSSUD1e that 

OT = 1 and impose the condition of negative S. The condition for S ::; 0 now leads 

a. relation, 

( 4. 77 ) 

This region is shown in Fig.5 in the paraD1eter space (G6 / (;2 vs G6 / G u.l2). \\;e can 

get the lower bound for one of the parameter. G6 / G u.l2. 

0 6 > J3 
Ow2 -

( 4. 78 ) 

Hence Ou.l2 must be smaller than 0 6 in order to D1ake S negative. This means that 

the coupling strength between iechni WI and gauge boson ar stronger than that 

between techni pq and gauge bosons. Note that the coupling strength between gauge 

bosons and vector mesons is proportional to 1/0. Since the negative contribution to 

S is proportional to YLl and YLI part of hypercharge interaction couple to techni w'l, 

strong coupling between iechni WI and hypercharge gauge boson B is preferred to 

get negative S. 
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5 

4 

S<O 
3 

G6 /Gw2 
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Figure :"> : S < 0 (S > 0) region with v ctor( 1--) d01llinance a sumption for a~r = l. 
G6 . G2 and Gw2 are coupling constant. associated with vector Inesons. 

5 The Vertex Correction in The Model 
without Exact Custodial S~{rnrnetry 

In the last chapter, we constructed the effectiv Lagrangian for a one-family techni­

color n10del without exact custodial ym111etry and discussed the constraints for the 

oblique corrections . The most di tinctive feature fro111 the traditional technicolor 

theory is the isospin breaking in technilepton sector[2] . The sylnn1etry that is to be 

ati fied in the technilepton sector is C:C(2)L 2 C(lhR ::; C(l)\/ global Y111111etryand 

this is broken to U( 1 hv0 [ (l)v global sYlllmetry when technileptons condense. This 

ector does not have QeD-like symmetry (chiral SC(2)L C S'C(2)R . ymmetry) . In 

the model [2, 3] , we find that the constraints for oblique corrections can be satisfied 

becau. e of the feature of isospin breaking in the technilepton sector. The S param­

eter is reduced by p - w mixing[3] that is produced by the differ nee features from 

QeD in technil pton sector. While 1 the model can also reduce the T para111eter if it 
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has two difference scales of the pion decay con. tant in techniquark and technilepton 

sectors and the scale in technilepton sector is slnall C0111par d \vith that in techni­

quark sector enough to n glect the difference the decay constants of between charged 

pion and neutral pion in technilepton sector. The efft'cts of the isospin breaking IntI. t 

appear in the v rtex correction (non-oblique correction) too. In this letter, we study 

the vertex correction for Zbb, ZTT and WTV in the technicolor model including 

iso pin breaking with the effective lagrangian. The corrections depend on the decay 

constant of technipion in each sector [4. 5, 6]. In the model [2, ;3]. one of the isospin 

breaking effect appears in the difference betw en the decay constant of the charged 

technipion and that of neutral technipion in the technilepton sector. The differ nces 

directly appear in the differences of the vertex corrections between Z TT and vV TV. 

However 1 from the constraint of the oblique correction T, th differ nee between the 

decay constants of the technipion in technilepton sector must b small enough com­

pared with decay constant in the techniquark sector. Th other larger effect of the 

isospin breaking in the technilepton sector con1es fron1 th techni \'ectorme ons that 

is cOlnposed by technileptons. We can consider that ther are a few lighter tech­

nivectormesons compared with the others in the techniquark sector in technilepton 

sector, because the decay constant of technipion in technilepton . ector is lighter than 

one in techniquark sector. Hence, the dependenc for the vertex corrections for Z TT 

and W TV from the light technivectormeson may be larger than the dependence from 

heavy mesons in techniquark sector. If there is a difference betwe n dependence of 

the vertex corrections, it should be measured in the future precision 111easurements. 

In QeD-like model, the chiral SU(2)L 0 SC(2)R 7: C(lh' global sYlnmetry is bro­

ken to SU(2)v ® U(l)v. There are three degenera.ted th chnivectormesons(pO and 

p±) for the j 'U(2) symmetry, three degenerated techniaxialvectormesons( aO, a±) for 

SC(2) symmetry and techni w meson for C(l)", symmetry. However, this model 
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is different from QCD . Th model predicts the xistenc of a neutral p 111 on for 

C(lhv and a techni w nleson for U(l)v symn1etry. There nlust not be charged p 

mesons that d generate with neutral techni p n1E'Son. There is also a neutral t ch-

niaxialvectormeson and there is not charged one. For the left degree of freedon1 in 

broken symmetry, there are exotic charged left-handed n1eson4 that is composed by 

technilepton . While , because we expect that the breaking of the "'[,(2)L C S'C(2)R 

to C;C(2)L ® [ (lhR in technilepton ector to be happenE'd on higher energy scalE'. 

the masses of right-handed lneson for the br ak d synlD1E'try n1ust b heavier than 

other mesons. Accordingly. there are th neutral technivectormeson and techni-

axialvectormeson which contribute to the vertex correction for th Z TT. while the 

charged technivectormesons are abs nt and there is only ex01-ic charged left -handE'd 

meson which should contribute to the correction for the H TTI/ . Hence, we may gain 

some hint about the evidence of isospin breaking in technilepton sector through the 

difference of th vertex correction b tw en Z TT and 1/1/ T V in the precision mea ure-

ments . 

5-1 The Vertex Corrections 

The vertex corrections depend on the Extended Technicolor ~lodel ( ETC ). The 

Lagrangian 5 which describes the ETC gauge interaction6 of on falnily technicolor 

model between th third family and Technifermion is, 

LETC(3-TC ) 

4There is the dependence of the left-handed meson to 'C parameter and th C ha finite values. 
The m son will be constricted by th U parameter . 

.5Similarly some diagonal ETC gauge interactions between the same family also exist [6]. The 
vertex corrections for this interaction as depicted in Fig.9(b) i exist . The vertex is effectively 
same with Fig.IO, except for the order of technicolor 's number St c and th sign. By mean of l iS 
expansion we can ignore this dependence , but if Nrc is smalL we need to consider the effect. 

6Here, we assume the simple ETC model. 
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( ,S. 1 ) 

bFt represent the third family of quarks and .. i " is the color index of QeD. IL = 

(~v. E)Ll ER represent the technilepton , IL = (u. T)L and TR repre nt the third 

family of leptons . 9ETC is a coupling of ETC interaction. VVETC is an ETC gauge 

boson which mediates between the third fan1ily of orcli nary fern1ions and techni 

fern1ions. ~~T) is a coefficient of left handed coupling and ~~b'T) is one of right 

handed coupling. Since the left handed fennion which belongs to SC(2) doublet. 

the couplings of up-side and down-side in the doublet are the . an1e as each other. 

From eq. ( 5. 1 ) the masses of ordinary fermions are gi\'en a. , 

( 5. 2 ) 

( ,5 . 3 ) 

( ,5 . 4 ) 

where ~\JETC is the mass of the ETC gauge boson and < QQ > is the condensation 

of technifermions. F6 is the decay constants of technipion in techniquark sector and 

F2 is that in technilepton sector. Here we used the relation of naive dimen ional 

analysis < QQ >rv 47f F~ [23]. 

Now, the vertex correction under consideration is shown in Fig.9(a). Because 

we assume that the ETC gauge boson is much heavier than the \V ak gaug boson. we 

can shrink the gauge propagator as shown in Fig.10. The ETC interaction in eq.( .s. 

1 ) becomes the following effective four-fermi interaction after Fierz tran formation. 
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1 tT2 giTC (-Z i.i Al )(1- AI) 
- -:-r."L M2 LIT L L') Jl T L· 

2 ETC 
( 5. 5 ) 

Then we replace th left hand d technifern1ion current by chiral current [2:3 . .t. ,5. 6] 

that is the Noether current for 5U(2)L syn1metry in our effective Lagrangian [:3]. 

We assume that technivectormesons in techniquark sector can be ignored when their 

masses are very heavy, MF6,Mw6 I'V 1 TeV, compared with weak gauge boson n1asse . . 

On the other hand, it is expected that the masse of the technivectormeson. in the 

b b 

z z 

b b 

(a) (b) 

Figure 9: The Feynl11an diagram for the contribution to the vertex correction accord­
ing to (a)sideways ETC gauge interaction and (b) diagonal ETC gauge interaction. 

q 

q 

Figure 10: The Feynman diagram in which the ETC gauge boson propagators are 
shrunk in the upper figures. 

technil pton sector are lighter than those in the techniquark sector in this model [2], 

because the pion decay constants in the technilepton , ector are much smaller than 

those in the techniquark sector. Then the contribution of these light technivector 
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meson may be large and can not be ignored. 

( .5. 6 ) 

where, we followed the same notation as ref. [3]. P2 and W2 are technivectormesons, a2 

is a t chniaxialvectorm on and at is a exobc charg d left-handedmeson. JI1/, JJw . 

JIA2 and MAL are their masses. In the te hnilepton sector, because of the pr sene 

of the isospin breaking terms, there are the mixings b tween neutral vectormeson . 

techni-p and techni-w. Therefore we must diagonalize the n1ixing when we compute 

the effects of the technivectormeson in technilepton sector. 

bet) 

+Z 

bCt) 

Figure 11: The Feynman diagram to compute the vertex correction by effective 
lagrangian approach. The first shows the effects of thechnivectormesons. The second 
shows the effects of the thecnipion. 
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With eq.( 5. 6 ), the vertex corrections are the following, 

8g£bb ( :3. 7 ) 

( :3. 8 ) 

( 5. 9 ) 

where 8grTT is the correction from the effect from the technivectorn1e ons a shown 

in Fig.ll. Substituting g1TC/M~TC from eq.( 5. 2 ) into eqs.( .5. 7 )-( .5. 9 ). we 

find 

The correct ion from the vectormesons is, 

with 

1 1 

Bw = Cv (1 + O'v) 2 - Sv (1 - O'v ) 2 . 
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( 5. 10 ) 

( .5. 11 ) 

( 5. 12 ) 

( .5. 14 ) 

( .5. 1.5 ) 

( .5 . 16 ) 

( .5. 17 ) 



where we followed the notation of ref. [3]. Q\,' is a paranleter which indicate the 

isospin breaking (the mixing betw en techni- p and techni-w in their kinetic tenDS 

of them), and C"r and Sv represent coc.()v, sin()"r. where ()t' i. the n1ixing angle to 

diagonalize the p-w mixing terms. The corrections fron1 the techniaxial vectorme. on 

and the left-handedmeson are 

8g- ZTT 

LA 

£g- WTI/ _ 
U LL -

2 M2 2 
1 T 2 9 ETC A2 P J 2 ,2 

- -2~L M2 [ oJ \ 2 2 _ \/2 ] 9 + 9 , 
ETC .... ,/\2 P " .42 

2 2 2 
1 t T2 gETC [MAL P ] 

2 0l"L M2 oJ \ 2 2 _ /1{2 g. 
V L ETC ~ /\ L P _I A L 

( .5 . 18 ) 

( .5. 19 ) 

The condition for decay constant of techni-pion 

Now. we ilnpose the constraints for the decay con. tants of technipion and con ider 

some conditions which satisfy them. In the present model. in order to satisfy the 

constraint of the oblique correction, the pion decay constant in the technilepton 

sector must be much smaller than the decay con tant in techniquark sector. We 

search the values of decay constant which satisfy the conditions, and compute the 

vertex corrections for Zbb, ZTT and VVTV. First, we can obtain the constraints 

from the relation between weak-gauge boson masses and the decay con tants. In 

a one-family technicolor model with custodial symmetry the constraint is 4F; ~ 

(250)2 (Ge V)2. On the other hand, because in the present 1110del the decay constant 

in the technilepton sector are different from that in the techniquark sector 1 the 

constraint is 

( .s. 20 ) 

The second constraint is obtained from T parameter [1] which indicate the br aking 

of custodial symmetry. The condit ion is obtained from the constraint of T parameter 

[1] . The upper bound of T parameter is 

T < 0.5. ( ·5. 21 ) 
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T parameter is given by [3], 

Combining q.( 5. 20 ) with eq.( 5. 21 ), we obtain the con traint between FL and 

The last constraint is obtained from the ratio of n1asses of ordinary fern1ions 7/1 T : 

mb : mt rv 1 : 3 : 100 . Fron1 mass formulae in eqs.( .s. 2 ) - ( ,5 . .J: ). we obtain 

( ·5. 2:3 ) 

To determine the d cay constants, we need to Dlake somt' as umptions on the cou-

pling constants ~s. H re w assume that the difference between the rna . es of the 

ordinary quark and the lepton comes frOITI the differences of the decay constants of 

technipion in each s ctor. There are two ca e roughly. One of them is that th 

difference of the decay constants is due to the difference betwe n the masses of the 

up-type quark (t) and the lepton (T) . The other is that the differ nce is due to 

the difference between the down-type quark (b) and the lepton. Correspondingly. 

we assume the relations among the couplings ~s. i.e .. (A) ~I(R = ~~~k and (B) 

~I~R = ~i~~· For both cases, we can determine the values of the pion decay COD-

stants with the constraints on eq.( ,5 . 20) . q.( ,5. 22 ) and eq.( ,5. 23 ) . 

( A ) 

( B ) 

(feR = ~llk : 

~IlR = ~i~~ : 

F6 = 143GeV, F2 = :31GeV. FL = .:3.5GeV 

F6 = 13,5GeV . F2 = 90GeV, FL = 92GeV 

In both cases, we comput the vertex correction for Zbb. ZTT and lV TV without 

including the correction due to the technivectorn1esons (69) a . hown Table 2, Table 

:3 and Table 4 respectively. For comparison, as case( C ). we show the v rtex correc­

tion for the case when the decay constants in technilepton and techniquark sector 
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ar degenerate. Here. w find that th contribution . of technipion for th ir \'ertex 

corrections ( 8g - 8[; ) become large, as the diff renee between the decay constant s 

in the techniquark sector and the technilepton sector is becolning sD1aller. 

(F6, F2 ) 8glbb ~ 
(A) (143G eV, 31GeV) 00 ( mt)51 . 1 1 175 ~ k -11 o/c (~)~ 

( 17,5 ~k 

(B) (135G e V, 90Ge V) 0.0192( ~~ ) tt 11 o/c ( m t ) ~ 
- C 175 ~1 

(C) (125G eV, 125GeV) o 0')0'"'( mt ) 51 
. ~ { 175 ~k - 1:3 S1c ( ~ ) ~ 

( 17,5 ~1 

Table 2: The value of the vertex correction of Zbb and an aJTIount of shifting the 
Zbb width from the standard D10del in a one-family techni color model without exact 
custodial symmetry for each cases. 

(F6, F2 ) 8giT+ T - 8-giTT br 
r 

(A) (143G eV;31G eV) 
~r 2 - c;{ mt ~I 2 0.0009( ~~ ) itK -0 . .) c( r)e~t 

(0 I R 

(B) (135G e V, 90Ge V) 0.00S5( ~~) ~y~~ - 9o/c ( mt ) ~I 2 
. 0 175 ~~. ~~ 

~r 2 c 2 

(C) (125GeV,125G eV) 0.0207( ;;.~) itK l') 9( ( mt )~ 
- ~ C 17 5 ~~, ~ ~ 

Table 3: The value of the vertex correction of Z TT and an an10unt of hifting the 
Z TT width from the standard model except for the contribution from the technivec­
tormesons in a one-family technicolor model without exact custodial symmetry for 
each cases. 

5-3 Other effects for the vertex corrections 

~ext. we consider the correction , 8[;ITT. which cornes froDl the technivectorn1esons 

in the technilepton sector. For simplicity, we put Qv rv L c,,' rv 1 and s\-, rv 0 in the 
2 

factors in eqs.( 5. 14 )-( 5. 17 ). and substitute for :1~TC from eq.( 5. 2 ) in eq.( .5. 
ET C 

14 ). Then q.( 5. 14 ) becomes, 

{ 
1 2 :2 12 

_["\112 P ] 9 - 9 
G2 1 w 2 i\J2 r . 

2 P - ~ \I w V rl + g'2 
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(F61 F L ) i5g Vl' TVT _ i5gWTV bf 
L LL Y 

(A) (143GeV, 35GeV) mt ~[2 
-0.001.5( 1(5) ~i~~ - j( mt) ~12 

-- 0 .. ) c( 175 ~~~k 

(B) (135Ge V, 92Ge V) .). ml ~1'2 
-0 .OL-,6( 175) ~i~k 

. :1Cl( ~) ~12 --,3.~ (( 175 ~~ ~k 

( C) (125Ge V, 12.5Ge V) o 029')( mt ) ~I'2 
- . ~ 17.5 ~~~k 

9S1( ( mt ) ~L2 
- (' 175 ~~~~ 

Table -1: The value of th v rtex correction of ltV T V and an aluount of shifting the 
vF TV width from the standard model in a one-family technicolor model without 
exact custodial symmetry for each cases. 

( .5. 24 ) 

Here at the scale of p2 ::::::: M~, we find that the contribution becornes larg in the 

following cases . (1) The technivectormeson's 111ass is close to the gauge-boson', 

mass . (2) The couplings G2 and G2w are becoming slualler. Because the smaller 

values for G2 and G2w are favored to satisfy the constraint of the oblique correction 

S [3], the contribution from the technivectorn1esons will also be large. In Fig., we 

present the behavior of i5giTT including the contribution of the technivectormesons 

6gZ{/ and the techniaxialvectormesons i5gi'AT and the behayior of i5gt'Tv including 

the contribution of the left-handedluesons i5gfr..TV as a fUllction of !vI...; or JlvIAL for 

several sets of values of G2 and G2w . In QeD, the mass of a p m son is 770 ~leV and 

al meson is 1260 MeV. Hence, we assume that the mass of techniaxialvedormf>son 

AfA2is about \27
6
0
0 Mw in the calculation of the vertex correct ion i5gi~T. :\loreov r , 

we assume that the mass of the left-handed meson ~'IAL also be \27600 AI...; . In the 

previous work [:3], we find that the value of G~ is :3l..5 and A ~ is 106 when the 

custodial symmetry for a doublet is exact. Here, vve assume that 
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The upper bound of G2w [:3] which makes SV ( the correction frol11 the techni\'E'c-

tOl'lnesons) to be negative is, 

G 5.61 
G2w < ; rv fr) rv :3.24. 

v3 v3 
( .j. 25 ) 

Therefore we plot th graph in the following three cases in Fig .. 

(1) G2 , G2w = 5.61 

(2) G2 , G2w = 3.24 ( SV = 0 ) 

(3) G2 , G2w = 2 ( SV = -2 ) 

The case( 1) is one with positive S like the traditional technicolor model with cu. to­

dial symmetry. The case(2) is one with SF = O. and the case(:3) is an extren1e case 

with SV = -2. Here we obtain the suppression on the vertex correction for Z TT 

due to the vector meson when C; is negative (Fig.) . \iVhile, the correction for ltFTV is 

small and enhanced by the effects of the techniv ctormesons. because there is only 

left-handed technivectormesons in the present model. \\'e find that the difference 

between the vertex corrections of ZTT and WTV in terms of the contribution from 

the technivectormesons appear. In other words, the differenc will be the evidence 

of the isospin breaking in technilepton sector . 
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Figure 12: In (a) and (b) ( F6, F2, FL ) = ( 143GeV.:31GeV,:3.5G V ) and (c) and 
(d) ( F6~F2,FL ) = ( 135GeV,90GeV,92GeV ). plotting the bgiTT as a function of 
J\I/..; and bgt'TU as a function of MAL for the each casees, (1) G2w = 5.61 with a 
dashline, (2) G2w = 3.24 (SV = 0) with a thickline and (3) G2w = 2 (Sv = -2) with 
a thinline. 
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6 The Oblique Correctioll from the 
diagonal ETC interaction 

The recent measurement of Rb at LEP, Rb = 0.2202 ± 0.0020. how that there is the 

discrepancy between the experiment and the prediction of th standard n10del( Sl'v1). 

Rf~1 = 0.21.57 with 1TIt = 175GeV . In the extended technicolor n10del(ETC), the 

contribution from sideways ETC interaction was fir t studied by the authors of 

Ref.[4] . However the effects of th ETC interaction give the negative correction. to 

In the recent works [7], it is shown that the diagonal extended techni-

color(ETC) interaction may solve the Zbb problen1, i.e., the discrepancy between 

the experiment and the prediction of the S tandard ~odel (S 1\1) in Z bb vertex. If 

the contribution of the diagonal interaction to Zbb vertex is large enough to can-

cel the oth r orr ction ' [ r the Z bb v rtex, the discrepancy could b explained. 

However, such large effect must contribute to the oblique corrections because the 

effect comes from the breaking of the custodial symmetry in the right handed ETC 

interaction. It is necessary to break the custodial s)'n1n1 try to gen rate th mass 

difference between top and bottom quarks . Hence, the T parameter must recei\'e 

large contribution from the ETC interactions. The diagram . uch as Fig.167 mu. t 

contribute to the oblique correction S,T and U [1]. In thi 1 Her. we study the ef­

fect of the diagonal ETC interaction for the oblique corr ctions in th case that the 

non-oblique correction of the Zbb vertex is consistent with the xperirnental data in 

a realistic one-family model with the small S parameter[2]( the mod 1 without xact 

cu. todial symmetry[3]). 

7In R f[7], the contribution from Fig.16(A) has been calculated but the contribution from 
Fig.16(B) is not considered . 
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6-1 Non-Oblique correction 

\"e consider the non-oblique correction in the Inodel with sDlall ,c,' paraDleter. i.e .. 

the technicolor model without exact custodial syD1D1E'try. The ETC model used in 

this talk is that the Dlodel that the horizontal synlnletry S C (;YTC + 1) is broken 

into SC( T\fTC ). In the multiplet of C;U(NTC + 1). the third g neration of ordinary 

fernlions and the techni-fermions are contained. The lagrangian for the diagonal 

ETC interaction in the one-family technicolor model is 

rD v~ 1 
'-' ETC(3-TC) = gETC4/\. ETC vi 

2NTC(NTC + 1) 

b - i i - - i i + ~R(DRT~DR - _\Tc bRT/l bR) 

+ ~I(LLT/lLL - _YTcILT~ IL ) 

( 6. 1 ) 

where QL = (Ui, D i )L, UR and Dk represent techniquarks, qL = (ti. bi)L, tk and 

bk represent the third family of quarks and (. i " is the color index of QeD. LL = 

("Y, E)L, ER represent the technilepton , IL = (v, T)L and TR represent the third 

fainil y of leptons. gETC is a coupling of ETC interaction. )(ETC is diagonal ETC 

gauge boson which mediates between the third famil y of ordinary fermions and techni 

fermions. NTC is the number of the technicolor. J 1 is the normalization 
2NT C ( -T C + 1 ) 

factor of the generator of horizontal symmetry 5U(lvTC + 1). ~f T ) is a coefficient of 

left handed coupling and ~~b'T ) is one of right handed coupling. Since the left handed 

fermion belongs to 5U(2) doublet the couplings of up-typ quark and down-type 

quark in the doublet are the same as each other. 
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The effecbve lagrangian is 

1 

2NTC (1VTC + 1) 

x ~tQLltLQ~ + ~kD~/I1['~ + ~~j)kll1 Dk 

( 6. 2 ) 

where Mx is th mass of ETC gauge boson. Below the TC chiral ymmetry breaking 

scale, the current of techniquarks are replaced by the .. 'Joether current [2:3, 4 . .s. 

6. 25] in the effective chiral lagrangian with SU(2JVc )L G SU(21Vc )R G C(l)", In 

techniquark sector [3, 25] . Here, we separate the right-handed current into T3 and 

singlet components of ')['(2), 

~t Di tLUi + ~b Ii tL Di = ~k + ~~ Q- i tLQ i + ~k _. ~~ Q- i T3--VI1Q i 
~R RI R ~R RI R 2 RI R 2 R I R ( 6. :3 ) 

Explicitly, the right-handed CUlT nts of techniquark are replaced by the following 

~oether current of the effective lagrangian. 

i=l 

-3 M6w [ tL _ J3 .)},- 'Btl] I'Lq 
G W6 ?G ..., Lqg /0' 

6w ..., T6w V 3 
( 6. 4 ) 

3 

L QkT3 , tL Qk 
i=l 

3Fl~(gW~ - g'B~) 

-3 JVlv6 [ tL _ J3 ( 11\/ 11 + 'BI1)]_l 
G

6 
P6 2G

6 
g g J3 

_3 MA6
[ tL + J3( Vf;T I1 _ 'BtL)]_l 

A6 a6 2A6 g g J3' ( 6 .. 5 ) 

where, W tL and PtL are techni-omega meson and techni-rho meson that is con1posecl 

by techniquarks and MW6 and MV6 are their masses. atL is a t chni-axialvectormeson 

and MA6 is its mass . G and A are the couplings which are related to the techni-

vectormesons . The F6 is the decay constant of technipion in techniquark sector. 
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We can neglect the technilepton contribution to 

the obbque corrections b cause the coefficients of 

ETC coupling or decay constant P2 in technilepon 

sector is much smaller than that of techniquark in 

order to generate the mass difference between tech-

niquark and technilepton. Besides this reason, in 

the model with small S parameter[2][3], the decay 

constant P2 must be llluch snlaller than that in the 

b 

b 

Figure 1:3: The contribution to 
the non-obljque corr ction ac­
cordi ng to sideway ETC gauge 
in teraction. 

techniquark sector to sati fy the experimental bound of T parameter.. 

While, the non-oblique corrections for Zbb vertex [7] are given by 

( ETC _ (gET C + (gETC 
ugL - u L u LD ' ( 6. 6 ) 

where. the contribution from the side-way ETC gauge interaction of Fig.l:3[4 .. 5]i 

8g ETC = ~ tt 2 g1TC p2 Jg 2 + gl2 
LS 8f."L M2 IT ' 

ETC 

and the contribution from the diagonal ETC interaction of Fig.1-l is 

8gETC = _ ~tt (tt _ ~b ) g'kTC 1 p2J 2 + 12 . 
LD 8 f."L f."R f."R M2 \ T + 1 IT 9 9 

ETC~ T C 

If the effect of th ETC gauge interaction, i.e., eq.( 

6. 6 ) explain the difference between the experi-

mental data of Rb and the prediction of SM. the pa­

rameter ~k - ~~ must be larger than ~L (NTC + 1) /3 

z 

( 6. 7 ) 

( 6. 8 ) 

b 

b 

and small Mx / gETC is favored . Since S parallleter 

is proportional to NTC , the small A TC is favored to 

be consistent with the experimental constraint for 

Figure 14: The contribution to 
the vertex correction according 
to diagonal ETC gauge inter­
action . 

. Therefore we choose NTC = 2. The paramet r 
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~~ is taken to be unity for sin1plicity. Comparing the Inass of between top quark and 

bottom quark , ~k is n1uch larger than ~~. Hence, we treat ~k as th pal'alneter which 

how the breaking of custodial symlnetry. In the Inodel \,vith sn1all S' parameter[2] ( 

the Inodel without exact custodial symmetry[3] ), Fir r-v 12.502/3 r-v l-!:-!:GeF. In eq.( 

6. 11 ), we put ).2 = 106 (See ref. [3]). Here , we d fine a ratio of the ETC corr etion 

0.03 

\ 

0.02 \ 

\ 
8R;TC 

\ "-
Rb "-

'" " ........ 
0.01 "" "-

"'--- "- ........ 
'-...... ........ -.......... 

600 800 1000 ~200 1400 
~ [GeV] 
9ETC 

1600 1800 2000 

. 8RETC . . 
FIgure 1.5 : T as a functIOn of Mx / gETC for follOWIng values for ~k - ~~. (a) 1.2 

with a thinline, (b) 1..5 with a dashed thinline, (c) 2 with a thickline and (d) 2.'­
with a dashed thickline . 

In Fig .l.5, the ratio presented as the functions of A1x / gETC for several values 

of ~k . Because the ~k must be larger than ~L(NTC + 1 )/3 = 1. we hoose the follow­

ing values for ~k - ~~ r-v ~k . (a)1.2 , (b)1..5, (c)2 and (d)2}) . If the contribution to 

Rb from the ETC model explains the experimental data in 1 (J' leveL the 8RfTC/ Rb 

mu. t larger than about 0.012. Then , in Fig. 1.5. it is sho\i\'Il that the mass of ETC 
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gauge boson Mx / gETC must be smaller than about 700 Ge V in case (b). 900 Ge V 

in (c), 1100 Ge V in (d). 

6-2 The Oblique correction from diagonal 

ETC interaction 

In the same ETC model that we calculated the contributions to Z bb vertex COl' -

rection, we study the contributions from the diagonal ETC interaction to oblique 

corrections . In the case NTC = 2, there are two diagran1s that contribute to the 

oblique correction . 

The main part of the contributions to obliquf' correction froD1 th diagonal 

ETC interaction (Fig.16( A)) is 

9 gkTC 1 (t tb )2 F4( ltlt r / B)2 
64 p2 - M} JVTC( NTC + 1) ~R - '-:,R 7r 9 3 - 9 . ( 6. 9 ) 

The contribution from the techni(axial)vectorm sons is also given by, 

9 g1TC 1 t b 2 

32 p2 - MJ J\Tc (NTC + 1) (~R - ~R) ( 6. 10 ) 

x { 

parameters[l] from Fig.16(A) 

-~7r (~k - ~~)2 [g1TC F4 + 2f!1TC ~F2] 
2 NTC(NTC + 1) M} IT AI} A2 7r 1 

( 6. 11 ) 

9 (tt t b )2 2 2 + /2 
'-:,R - '-:,R gETC F4g 9 

:32NTc (!\Tc +l) J{~ To Jl~ 
( 6. 12 ) 
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Fronl this analysis, the contribution to the 5 paranleter for th diagonal ETC gaug~ 

interaction is negative8
. 

1 here is also another two loop contribution to the oblique correction T frOID 

the diagonal ETC interaction (Fig .16(B)). Below the ETC scale, the contribution is 

obtained from the following four-fermi lagrangian: 

1 g1TC 1 
- 4 J{~ N TC ( 1\ TC + 1) 

( 6. 1:3 ) 

+ 

After Fierz transformation , the lagrangian becolTI s to 

e 2 3 

~ L UJ~/{lTAQ~)2 
~ A=O 

1 g1TC 1 
----

4 1\;11 NTC(JVTC + 1) 

+ (~k + ~~) 2 ~ (Q i ~TAQ i )2 ( 6. 1-i ) 
8 L R R 

A=O 

t b 2 

(~R ~ ~R) {( QRi "QR)2 + (QRi "T3QR)2 + 
2 

- L(QR/~ T a Qk)2}]. 
a=l 

where, T a (a = 1, 2,3) is the Pauli matrix and TO is a unit n1atrix. ~ote that the 

sign in the third term different with the other ternlS. vVe replace the currents of 

technifermion by the Noether current. Then, the contribution to T from Fig.16(B) 

is given by 

8We only consider the contribution from techniquarks. The SETC of eq.( 6. 11 ) has negative 
sign[26] but the contribution is small compared with that to the T parameter. However there may 
be the large contribution to 5 from the other fermions . 
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Hence, only the terms of a factor of (~k - ~~)2 only contribute to T fron1 Fig.16(B). 

The contribution to T paran1eter is 

T ETC _ ~ (~k - ~~)2 g~TC F4g2 + gl2 

a B 32 Nfc (.VT C + 1) Jl} ~ JI~ 
( 6. 16 ) 

The total contribut ion to T from the diagonal TC interaction is 

( 6. 1 7 ) 

In Fig.17, we plot the behavior of the contribution to oblique correction T 

fron1 diagonal ETC interaction (eq.( 6. 17)), by choosing the same \Oalue for 

~k as tho e in Fig.15. For the values of Mxl gETC vvhich satisfy the experimental 

constraint of Rb , the contribution to S fron1 ETC negligible con1pared with that from 

TC (The typical TC contribution to S' is O.lNTc from a one doublet technifern1ion.). 

T rec ives large value. In Fig.ll, it is shown 

that the value of T must be larger than about 

0.9 in the cases (b),(c) and (d) for 1 (J" level of 

experiment of Rb . Thi value contradict with 

the experimental bound of T ( Texp < 0.5). In 

the model with small S[2], the situation is worse 

because T parameter already receives the con-

tribution from the custodial symmetry breaking 

in technilepton sector. Hence. it is not favored 

that the T receives the additional contribution 

from ETC interaction. It is difficult that the 

discrepancy between the 8M and the experi-

w 

(A) 

(B) 

Figure 16: The Feynman dia­
gran1s for the contribution to the 
oblique correction fron1 diagonal 
ETC int -raction. 

ment for the Rb is explained by the contribution of the diagonal ETC gauge inter-

action, because the contribution to T parameter contradicts with the experimental 

bound. 
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Figure 17: T ETC as a function of Mx / gETC for following values for ~k - ~~. (a) 1.2 
with a thinline, (b) 1.5 with a dashed thinline, (c) 2 with a thickline and (d) 2 .. 5 
with a dashed thickline. 

7 Conclusions and Disc:ussion 

In this thesis, we discussed the constraints of the oblique and non-oblique corrections 

for technicolor model. To construct a realistic technicolor lTIodel, the model mu t 

satisfy the constraints at once. 

For the constraints from oblique corrections, we hay ' constructed an effective 

Lagrangian for a technicolor model without exact custodial symlTI try. By using 

the Lagrangian, we have computed tree level contribution to C; and U from spin 1 

technimesons . We have shown that in a reali tic one-fan1 ily model, the techni PI 

and the techni WI mixing can contribute to S parameter \i\'ith negative sign. The 

most important term in our effective Lagrangian is the n1ixing in the kinetic term, 

tr FpT 3 Fw . S is independent of the coefficient of the n1ass mixing term J\,. \A/e 

have also studied the condition to have minimum valu of S' under the vector me on 

(1--) dominance. We find that the vector me on consists of lY.V component must 
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be dominant dynamical degree of freedom to take S to hav IninimUln \'alue (Q'" = 1 

) This argument hold as far as hypercharge (YLt) is negative. Thus the D1echani 111 

for negative S presented in this paper does not work for one doublet D10del with 

YL = O. This conclusion is consistent with an analysi with a free techniferD1ion 

model [2]. On the contrary to the present model. we D1ay introduce a sD1all iso pin 

breaking for techniquark sector. In that case, the corresponding paraD1eter of iso. pin 

breaking term, O'v must be -1 to have miniD1um value of S because hypercharge 

of techniquark l'Lq is positive. The vector meson consists of DD component will 

play major role to have minimum value of '1' in t hat case. We also note that xotic 

lefthanded charged vector m sons are naturally introduced in our framework. They 

contribute to U due to the D1ixing with W±. C can be both negative and po itive 

depending on the parameters. 

There is an important distinction between our con1putation and that with 

a free technifermion model even if the parts of the expression of C;. T and [ T look 

in1ilar to each other. The distinction is that our computation certainly incorpo­

rates th nonperturbative diagrams which are not taken into account of in the free 

technifermion one loop diagrams . Once the parameters of our Lagrangian are de­

termined either experimentally or theoretically, the results presented here \\ ould be 

more reliable. There are many things to be done in thi direction. The origin of 

the isospin breaking D1Ust be studied . Also we n ed to relate the parameters of 

the effective Lagrangian to more fundamental interaction for example . by modeling 

technicolor by Nambu Jona-Lasinio Inodel [22]. The difference between our compu­

tation and that with a free technifermion mod I will also b clarified by this kind of 

study. 
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Vve have also described the vertex correction of Z bb. Z TT and H r VT in the 

one fan1ily extended technicolor model without exact custodial sYlTImetry in the case 

that lVre is large. The values of the corrections can not be detern1ined precisely, 

sinc the corrections include a few unknown parameters ~· s. The corrections which 

are obtained in this work is much larger than those in one doublet model. If we 

suitably choose each unknown parameter ~, we will be able to obtain the vertex 

corrections which satisfy the constraint fron1 the exp rirnent. \Nhen ~ = 1, the 

vertex corrections are so large that this model is ruled out. Then, in order to 

reduce the values in this case~ we may have to consid r t he other ETC lTIodel or 

walking technicolor. Howev r~ we find that if thf' the difference between the vertex 

corrections for Z TT and W T v is measured in experiment. it is the evidence of the 

isospin breaking in the technilepton sector. It comes fron1 not only the difference 

between the decay constants but a large contribution to ZTT vertex due to thf' 

techniv ctormesons. The contributions of the vectorn1eson for Z TT reduce the value 

which takes account of only technipion contribution (thf' first ten11 of the eq.(.5. 8)). 

The vertex correction for the ZTT can be negative due to this effect. While, the 

contribution for W TV is not changed so large. Hence, the difference between the 

corrections for the ZTT and th WTvappear. We expect that in the near future the 

precession measurements (in LEP200, JLC etc .) of the vertex corrections of TfF TV 

will detern1ine whether the isospin of technilepton ector br aks or not. 

The contri bution to the vertex correction of Z bb fron1 th diagonal ETC gaug 

interaction become large with positive sign when the ~k - ~~ is larger than ~i ( Vrc + 

1) /3. However, because the such large ~k - ~~ breaks the custodial symmetry 

significantly, T must receive the contribution from the diagonal ETC interaction. 

In this letter, we consider the case that 1\ rc is small value[7] becau of keeping .... ' 
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small value[2]. Let us lTIention possible corrections to our calculation. There are 

two types of corrections . One is perturbative technicolor correction to four-fernli 

operators (eq.( 6. 3 ) and q.( 6. 14 )), and the other is lnatrix el n1ent offour-fernli 

operators. We neglected the p rturbative technicolor correction. and a .. umed that 

the coefficient of four-fermi operators will not be changed lnuch £rOITI the lowest tree 

level ETC gauge boson exchanged diagrams. Th validity of th s assumption must 

be checked in the further investigate. By taking account of the uncertainties of our 

calculation, we point out that the proposal of Ref. [7] is on very dangerous ground 

rather than conclude that our calculation in this letter cOlTIpletely rul out the 

proposal. If our calculation is not altered after incorporate the corrections. we may 

concluded that It is difficult that the ~kgETC / Mx becon1es large enough to explain 

the discrepancy for Rb , unless the other mechanisnl suppr s. the T parameter in 

this nl0del. 
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Appendix 

In this appendix, we provide some useful forn1ulas needed t o derive the results given 

in the text. 

A Effective Lagrangian 

( A.l ) 

Lv 1 FJ-LVF 1 FJ-LVF 1 FJ-LV F 1 F I-w F -ir v. 11.6 + -ir LT V2 + -ir v . v + -ir T! v 2 2 6 J-LV 2 V 2 J-LV 2 ",,6 ",,6 {W 2 v ",,2 W J.1v 

( A.2 ) 
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B Decomposition into fields' comLponents 

In terms of fie lds' component, a-Ls and ails are given by: 

Z 

A2J.L - A2 a2 -L J.L 

z 
A8J.L - A 8 a8-LJ.L 

68 

( A.:3 ) 

( B.l ) 

( B.2 ) 

( B.:3 ) 

(B.4) 

( B .. 5 ) 

( B .{ ) 

( B. ") ) 

( B.9 ) 

( B .IO ) 

( B.Il ) 



Z 

V2/-L - C
2 

CY211/-L 

'[ 

VW2il - -C CYw 211/-L 
w2 

By substituting these expressions, we obtain: 

[ s = ~{(a~p3)2 + (a)13)2 + (LVid} + ~ t {(iJ"p,)2 + (aj!a)2} 
~ a=l 

( B.12 ) 

( B .1:3 ) 

1 2 A 1 
+ 2 I: (FL 8/-LI1a + hF68/-Lpa)gW: + 2 (F28/-LI13 + v0F6a/-LP3)(gliV~ - g' E il ) 

a=l 

+ ~(3F2 + p2)(gW3 _ 'E)2 + ~(3F2 + F2)( Tf" a)2 8 6 2 /-L 9 /-L 8 6 Lg il 

V3f31- 8 () {8 I13 F2( 3 , )} , 
- 4F8F2 /-L 8 /-L + 2 gW/-L - 9 E/-L + £ br' ( B.14 ) 
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( B.16 ) 

V\ie fix the gauge into unitary gauge. This corresponds to the following replacen1ent. 

We also redefine the axial vector and left-handed vector lnesons. 

a 
a6J1, ---+ a 1 8 p a 

a6J1, - A6 F6 ~L , 
( B.19 ) 

3 
a6J1, ---+ 

3 1. 3 
a6J1, - A6F68J1,P - ( B.20 ) 

I 
aSJ1, ---+ aSJ1, - As~ 81l ()s- ( B.21 ) 

3 3 1 . 3 ( B.22 ) a2J1, ---+ a2J1, - A F 8J1,II , 
2 2 

a 
aLJ1, ---+ a 1 8 fra 

aLJ1,- ALFL 11 • 
( B.2:3 ) 

Then, 12 and LA are written in t rms of physical degrees of freedon1. 

[5 ~{(8)J3)2 + (8jra)2 + (8)i8)2} 

V3!31- - 3 F2 3 / } 
- 4FsF2 8()8 { cos X3oJ1,II + 2 (g WJ1, - 9 B J1,) 
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+-8
1 

(:3Fi + Fi)(gW3 - g' B )2 + ~(3F2 + F?)(gHTQ)2 
jJ., jJ., 8 6 L J1 

( B.2-± ) 

LA = 

where. 

-sin\L) (na) 
COS\L p a 1 

( B.26 ) 

-Sill:\'3) (rr3) . 
COS\3 p 3 

( B.27 ) 
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V3F6 
COS\L = -,=.=== J3Fl + Fl' 

( B.2 ~ ) 

V3F6 ( B.29 ) 

C Pseudo N ambu Goldstone bos()n sector 

LS ~{( 0)]3)2 + (oJr"? + (o"Bd} 

+ ~(3Fl + Fi)(gW; - g'B")2 + ~(:3Fl + Ft)(gW:)2 

V3f31- - 3 1 3 I } I 
- L' F aos{ cos \ 30fLI1 + :-(gvvJ.l - g BfL) + L br · 

41~S 2 2 
( C.1 ) 

;\OW we are ready for giving the explicit fonn for L~r ' Because tr3
, Ira and Os are 

JGBs associated with broken global symmetry. we can introduce the following Ina. s 

( C.2 ) 

The mass terms break the global symmetry without los of SC(2) :::; C(1) gauge 

invariance and these GBs become PNGBs. 

D O(p2) terms in axial vector and left-handed 
vector sector 

In this appendix , we show how to detennine the O(p2) terms which consist of N GBs 

and P i -GBs in this sector. As explained in the text. we add the O(p2) terms so that 
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the incorporation of axial and left-handed vector D1esons does not change the decay 

constants of NGBs and PNGBs. By doing so, p (T) paranleter depends only on the 

paran1eters in L8 . Though it is just the matt r of the definition of the paran1eters 

of O(p2) terms in L8, our choice is convenient because the the paran1et r in L8 

are directly related to physical quantities such as df'cay constant . Further p (T) 

paran1eter is independent of the parameters in LA with thf' procedure adoptf'd here. 

Let us discuss O(p2) terms which consist of 06.1 and 0L_L first. These tenns are 

related to A6 and AL. The equations of motion of A6 and AL up to O(p2) are, 

1 

A6
06

.1, 

Z 
-OL.1· 
AL 

( D.1 ) 

By sub tituting these into (4. 45), we do not have O(p2) terms of ~GB and 

P:\GBs. Therefore the O(p2) terms which are already present in ( .t. 4.5 ) is enough. 

O(p2) term which consist of 02.1 and ° .1 have more complicated coeffici nts as 

shown in (44). We have determined them in the following way. Let us focus on a 

part of LA 

LO = 

1 ( ( 1 A ) ( 1 A )) ( ~i\1.~ 2 2" a2 - /\2°2.1 a8 - '\s °8.1 SA 
2 

+~ ((a2 - la2.1) (a8 - la8.1)) ( 0 
2 A2 As JAb 

(3 A bb' A A 

+2 A2 A8 °2.1°8.1, ( D .2 ) 

where we have used the following notation; 

';' -2
1 

(0 A2J1 = t ( D.:3 ) 
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. . 1 (16 1--

413 
(DA) 

( D.5 ) 

( D.6 ) 

The equations of motion for a2 and a8 up to O(p2) are: 

( 

1 A ) (M2 a2 - A? CX2.1 _ 1 1 A8 
{ A - :- 2 (3A a8 - -CX8.1 2 M2 M2 _ 2.a --

A8 A2 A8 4 2 

By substituting this into L01 we obtain; 

( D.S ) 

By subtracting Le fron1 L01 we obtain O(p2 )terms which con ist of CX2.1 and CX8.1 in 

( 4. 45 ). These are the desired counter terms which kill the effect of axial vector 

n1esons and left-handed vector mesons on p (T) paran1eter. 

E S in scaling-up QeD technicollor model 

For the completeness, we compute Stheor y of scaling-up QeD technicolor model which 

is quoted in the introduction. The scaling-up QeD technicolor model has S'[T(2)L 0 

SU(2)R global symmetry and NTC = Ne = 3. Therefore we only need to study th 

S[(2) subsector of one-family model. S in this model is given by; 

1 1 
S = 47r[G2 - \2]. 

V I\A 
( E.1 ) 
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The Gv and "A are defined in the same way as G6 and "6' C;" , and "A are detern1inecl 

by p ~ 7r7r and al ~ ,7r decays. 

( E.2 ) 

f a,,(7r = ( E.:3 ) 

where fQ C D is the pion decay constant. By using the following values . 

fQ CD = 93MeV, m 7r = 140MeV, mp = 768JJeV, n1 a = 1260JfeV, 

r p7r7r = L52M e V, 

we obtain ; 

G~ = 31.5, G~ = 106. ( EA ) 

This leads to the following estimation of Sth eory for the caling-up QeD technicolor 

model which is quoted in the text. 

Stheory = (0.40 - 0.12) = 0.28 ( E.5 ) 

0.40 comes from the contribution of I = 1 vector meson while 0.12 comes from I = 1 

axial vector meson . Because they are dimen ionle s quantities. the scaling relations 

between the parameters in QCD and that of the technicolor are given by, 

( E.6 ) 

This qualities hold if the underlying dynamics of th techniquark s ctor is the sam 

as that of QCD . 
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