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Abstract

We discuss whether there is a realistic Technicolor model under the constraints of

Oblique and Non-oblique corrections from the precision measurements.

To satisfy the constraint of oblique correction, a one-family Technicolor model
without exact custodial symmetry was proposed by Appelquist and Terning. We
construct effective Lagrangian including technimesons for the one-family Techni-
color model without exact custodial symmetry. Tree level contributions to oblique
correction parameters S and U/ due to spin 1 technimesons are computed with the
effective Lagrangian. An isospin breaking term which is associated with technilepton
vector mesons gives a negative contribution to the electroweak radiative correction

parameter S due to mixing between I = 0 and I = 1 vector mesons.

To satisfy the constraint of non-oblique correction, Zbb vertex correction,
the effects of diagonal extended technicolor interaction was studied by Wu. By
means of the effective lagrangian approach, we discuss the effects of extended tech-
nicolor(ETC) gauge interaction to the oblique and non-oblique corrections. It is
shown that the T' parameter is unacceptably large when the Zbb vertex correction
and S parameter are consistent with the experiments in the ETC model. Hence,

some difficulty is still remained in the ETC mechanism.
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1 Introduction

The oblique corrections, S and 7' parameters, severely put constraint on QCD-like
technicolor models and the present data shows that the models can not satisfy the
constraints[1]. In the QCD-like model, S is about 0.1 x Nyoupier X Ny > 0 and T van-
ishes because of exact custodial symmetry (chiral symmetry SU(Ny)p @ SU(Ny)R).
However, S parameter that has been obtained from many experimental data is neg-
ative. From the recently experimental data, 1-family technicolor model( N; = 8) is
completely ruled out and 1-doublet model may be also. Accordingly, we need to
modify the technicolor model to satisfy the constraints of the oblique parameters.
[t is shown that if these models have the splitting of the masses between up-type
and down-type particles (isospin breaking). they may be able to satisfy the con-
straints from oblique correction S by considering one-loop approximation. In ref.[2]
Appelquist and Terning show a one-family technicolor model with isospin breaking
in technilepton sector. This model has the following features. (1)isospin breaking
of technilepton doublet, (2)the existence of two scales which are one of techniquark
sector and one of technilepton sector. Because of the feature (1) S is reduced and
because of (2) T is also reduced. In our work[3], we construct the effective la-
grangian on this technicolor model without exact custodial symmetry and calculate
the oblique corrections by considering the effects of the (axial)vectormeson that are

composed by the technifermions.

On the other hand, for the vertex corrections of Zbb, which is called non-
oblique correction, there is a discrepancy between the prediction of the standard
model (SM) and the experimental data at LEP. The experimental value R, =
0.2202 + 0.0020 was different from the value By = 0.2157 predicted by SM with

top quark mass m;, = 175GeV . In the extended technicolor model(ETC). the con-



tribution from sideways ETC interaction was first studied by the authors of Ref.[4].
However, this discrepancy could not be explained by the effects of the sideways
ETC interaction. The discrepancy becomes larger by this effect[4, 5, 6]. In the re-
cent works [7], it is shown that the diagonal extended technicolor(ETC') interaction
may solve the Zbb problem, i.e., the discrepancy between the experiment and the
prediction of the SM in Zbb vertex. If the contribution of the diagonal interaction
to Zbb vertex is large enough to cancel the other corrections for the Zbb vertex, the

discrepancy will be explained.

In order to build realistic technicolor models, the constraints of oblique cor-
rection and non-oblique correction must be satisfied at once. However, such large
effect from diagonal ETC interaction that can explain the discrepancy of R; also
contributes to the oblique corrections because the effect comes from the breaking
of the isospin symmetry in the right handed ETC interaction.[8] It is necessary to
break the isospin symmetry to generate the mass difference between top and bot-
tom quarks. Hence, the T" parameter must receive large contribution from the ETC
interactions. The diagrams such as Fig.16 [8](A[7] and B) must contribute to the
oblique correction T [1]. We study the effect of the diagonal ETC interaction for
the oblique corrections in the case that the non-oblique correction of the Zbb vertex
is consistent with the experimental data in a realistic one-family model with small

S parameter[2](the model without exact custodial symmetry[3]).

This thesis is developed as follows. In chapter 2 and 3, we briefly review about
Oblique and non-oblique corrections and the Technicolor Model. In chapter 4, we
construct the effective lagrangian including technimesons for a technicolor model
without exact custodial symmetry. By using this method. the oblique corrections

are computed. It is shown that S parameter receives negative contribution from



the p — w mixing. In chapter 5, the contribution from the isospin breaking to
vertex corrections in technilepton sector is described in the case that Np¢ is large.
The effects from only the sideways ETC interaction is considered. In the case
that there is the isospin breaking in the technilepton sector, the difference of the
vertex corrections between Z77 and Wrv is shown. In chapter 6, we shown that
contribution from diagonal ETC interaction to 7' parameter is unacceptably large
when the Zbb vertex correction is consistent with experiments in the case that Ny

is small. Chapter 7 is devoted to the conclusion.
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2 Oblique and Non-Oblique Corrections

The standard model is precisely tested on the pole of Z boson at LEP. The experi-
ments probe its predictions with sufficient accuracy. If a few new physics exists, the
effects from the new particles must appear in the precision measurements for the
low energy phenomena. The effects appear through some corrections as shifting of
the standard model parameters. One is the radiative correction of the weak gauge
boson . This is called “Oblique” correction[l]. Other one is the vertex correction
called “Non-Oblique™ correction[4]. The oblique correction does not depend on the
process we consider but the non-oblique correction depend. We can obtain some
constraints of their corrections on the new physics from the precision electroweak

experiment.

2-1 Oblique Correction
The Oblique correction is the radiative correction on the self energy of the electro

weak gauge bosons. The radiative correction is
Y (q) = Wan(¢*)g™ + (¢"q"terms), (2 1)

with a,b = A, W%, Z. If new physics exists, the effect must appear in the radiative

corrections.

Mas(q*) = 113" (¢*) + 611 (q”) (22)
The first term on the right-hand side represents the SM contribution, while all new
physics effects are contained in the second term. If the scale of the new physics

is sufficiently large compared with the mass scale of the weak gauge bosons. the

I1,5(¢*) can be described by a Taylor expansion.

, d ; q*
2 2 2 g
$TLa(g) = MLa(0) + ¢° gzolla(a?) loco +0(37—) (2.3)



Therefore, there are eight parameter,

611.44(0) 01124(0) 611z2(0) OHww(0)

8

9?=0  {g? OMww(q?) l92=0

(2.4)

2 810aa(¢%) liz=o  726Tza(¢) |20 726T172(¢)

Two of these, by gauge invariance,
0l144(0) =0, 0llz4(0) = 0.

When the tree input parameters, a, Mz and GGp renormalized, three linear combi-
nations of remaining six quantities can be eliminated. The effects from new physics
can be described by three combinations which called “Oblique correction™, S, T" and

U. The oblique parameters defined by Peskin and Takeuchi [1] is

: d .
S = —16r——6lsy(p?) |p2=0, (

5 &
s 2. 9°)
9* +9"° -
et
. . G ; : @
L — 167?@[6H11(p2) == 6H33([)2)] ‘pzzo % ( ek )

By using this parameters, one can compare the effect from new physics(techni-
particle ...) with experimental data. But in this definition, the assumption that the
new particle is very heavy compared with the mass of weak gauge boson is used. If
there are a few new light particles, this notation may not use in terms of the Taylor

expansion of self-energy.

Toy Model (QED with a massive gauge boson)
As a simple example to explain the oblique correction, we consider a toy model[9]

in which a massive U(1) gauge boson field A, couples to a fermion current .J,.

The Lagrangian for the toy model is
1 Y 1 2 m 7 ¢
£0 = —ZFMUF .n §m 4u4 + 6.]u.-4 » ( RS )
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There are the self-energy from the interaction eJ,A*. For this lagrangian a self-
energy 1s

2 4

2\ An - q q
A#H(QZ)A, = AHAIZ(GO—FGIW%—(IZW-J‘-.. .)‘4“
2 —U (_D)2 1
= A,M (a0+alm+(lz Vi + - ) AR (2.9)
where a, x (vﬂﬁ)n . M is a pole mass of a propagator of the gauge boson. After
““New

the renormarization for the self energy, the effective lagrangian is

1 s
Eeff:_ZFuuFuu + 37572‘4‘“4#

+ &J.A* + AJI(g¥)A" (

o

10 )

The equation of motion for the gauge field A, in the lagrangian eq.( 2. 8 )is

0A, = —éJ, —m?A, {2 11)
Using this equation of motion,
n—1
AO"A ~ (=) (MM ALAR 4 > e, (—0)™ A%), (2.12)
m=0
and this formula substitute in eq.( 2. 9 ).
-0
AJI(—-0)A* = A TI(M*)A* + &J, Z(Tp)n—l > anA* (%]
= m=n
the total effective lagrangian is
1 v 1 ~ 2 12
il o —ZFWF“ + ;(m + II(M*))A, A
et
e L(14+ =Y (=) A* 2
o+ &I +2§1(sz) gnamm (2. 14)
In this lagrangian, the vertex is
. s 1 g ;
N = ier (14 5 T () Y an) (2.15)
n=1 * m=n
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(‘onvensionary,

L 1TI(¢?) — TI(M?)
A*(g?) = iéy*(1 + =
idghy =il 5=

) (2.16)
while the mass of A, is
M? = m? + TI(M?) {2, 17 )

Therefore we can understand that the dependence from the fermions in new physics

appear in obserbables of basic theory. It is same for the electro-weak model (Stan-

dard model).

Electroweak Model
We discuss the parametrization of oblique correction to the standard model[9]. We
suppose the existence of new physics and the selfenergy from the new physics. The

total effective lagrangian of SM is

£eff = ﬁSN[ +£new ( 2. 18 )
where
1 iy U 2
Eneuv = §AuH‘«(—D)A = §Z#H2(—D)Z
+ WHy(—0)W* + A, 11z, (-0)2* (2 18
the equations of motion are
o pabalinetics s
BZV = sl R 4 o (2.20)
se

€
o
V23 Jee

By using the same method with the example of toy model, the effective lagrangian

BT =

.- L

1s

Less = kineticterms



+ (mge® + (MG, )W
+ & (1+%Hq( ))Au

+ ”J;‘ml;nzgg )Zu

. fJgC( ;Hz(q;:;léul;))zﬂ
¢ o eyt

-+ é(ﬁzzz +1(M32))Z,Z*

)W+ h.c.

]

Do

Because we replace the renormalized quantities ¢,s and myz with the experimental

values, we choose the three measured electroweak observables a, G and My. These

observables is measured very well.

. IL, (¢*
dra = e?=¢(1+ —% l;2=0) + O(€*)
M2 = m}=m?+1z(M2) (8
V2¢? V2¢?
GF -— — s =
8s2cimiz B¢ vl
Therefore, the tilded quantities are
5 = e 112 ( |
9
my = my—1lz(M32)
. - . I,(¢*) My (0) T, (M3)
2 = g GRS T 5 )
1 L% c? — 32( q* l¢2=0 M, M2 P
And substituting the tilded quantities, the vertex is
IAH 2 = m LI (qZ) Hﬁ(qz) ) 9
L rm(q ) = _76Q7 ( 2 q2 - q-z ‘QZZO) ( &
: ‘ o 1114(q?) — T1z( M3 1 1Ty (0 1 11 7( M3
() = —i—p(i4 7 Z(qz 22( 2) 5 ”,ﬁ b gl 12)
sc 2 q* - M; 2 My 2 M;
5 I, (¢*)
e Bl gl 4 s
_HW(O) HZ(‘Ié))_ H:w((I?))]( 9
;M&V “[% q2 (4
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€ 1 Hw(qz) — Hu(j”&)

1.‘\{“1('(({2) = _Tls .)')“L(l e E qz e 4”3!‘
1 L 1L,(0) 5 1w (0) o 1 I Zz(M2) .
+2(c2 — 52)(5 q° lo2=0 +¢ 2 M3, ik ETW )
Wigy = *m? — Tl z(m%)
cts*m?% ( IL,(¢?) | Iy (0) " [I7(M2%)
(e% — &2} g M M7
+ Iy (M) (2 271

The oblique parameters defined in ref.[9] on the mass of the weak gauge

bosons 1s

8l zz(M%) — é1174(0)

aS = Adsjcy VE ]
S
—4swew(cdy — s3,)6117 ,(0) — 4s3, ¢y 611, 4 (0), ol g
Ollww(0)  6llz7(0)
T = s , 2. 29
- M2, M2 ( )
o o ,32.[5HWW(ML21')—5HWW(0)]
g Mg,
, 5 6llzz(MZ) — 6Ilz7(0)
—45%,611', 4 (0) — 853, cw 6115 4(0), (2.30)
§Tyz7(M2) — 6
oV = I, (M2) - 22(Mp) — 011z2(0) (42,781
M?
o L B S T
oW = 8w (ME) — W ‘”2 wwil) (2.32)
M3,
61z 4( M2
aX = —swcw[——ZLZ—) — 811 4(0)]. (2.33)

M2
where 6llyx is a gauge bosons’ self-energy for the beyond standard model and

the prime show differentiation with respect to ¢?. Using the notation of oblique

correction, the vertex in electroweak model and W mass is shown as following:

AL (0) = —ieQy* (2.34)
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iNL(M3) = ~iZqi(1+ ZaT + 5aV)
x BL=Q(s" + ¢ f: e Ciiaf +aX) (2 35)

MAME) = —imSst Ul - g
z(gji];?) * f:lz 4 éoﬂ') (2.36)
My = M- 25 — - i e ﬂ (2.37)

[t is possible to express a wide variety of precision electroweak observables in terms
of only the six parameters. If there are a few new light particles, we must use this
notation. When the new particles have very heavy mass compared with the mass of
weak gauge bosons, this notation becomes same as the notation defined by Peskin
and Takeuchi. Then, in approximation that My, Mz ~ 0. V., W and X vanishes. In
other words, by only the three parameters S, 7T and U, we can examine the existence

of the new heavy particles in the precision electroweak measurement.

2-2 Non-Oblique Correction

The contribution from new physics to vertex correction is usually very small, because
the interaction among the ordinary fermion and the new particles is very weak.
However, Such as Extended Technicolor Model that the interaction produce the
large mass, for example top mass, there is the large vertex correction.(See the captor

5 and 6.)

Especially, recent experimental data at LEP shows that there are the devia-
tions from the prediction of standard model in the Z boson partial width ratio. The

experimental value

Ry = 0.2202 £ 0.0020, ik

(8]
<o
oo
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where

B o= ['(Z — bb) hehen
"7 I(Z — hadrons)’ 2. 39)
has already been different from the value Ry = 0.2157 predicted by standard

model with top mass m; = 175GeV. This standard model prediction is that added
the leading standard model corrections such as fig.2 to the value Ry = 0.2197 at

the tree level(see fig.1)[10].  Hence, this discrepancy may be evidence of beyond

b r
Z
b r
Figure 1:
b b b
E w
1
Z w z 1o z t
1
t 8 |
1
b b b
b
t
b

Figure 2: The leading standard-model corrections to Rj. in t'Hooft-Feynman gauge.
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the standard model. We must examine the non-oblique correction for the vertex of
7 — bb in the all models of new physics. At present, | do not know the model that is

satisfying the constraint of the correction without extended technicolor model.[11]

14



3 Review of Technicolor Model

The standard model is consistent with almost all the experiments. The predictions
of SM show the agreement with the recent precision experiments. However, SM has
a few problems. One of them is the problem which is called “fine tuning problem™
or “naturalness problem”. If the Higgs potential in SM remain as a fundamental

terms,

—m?plp + ~(p'p)? (3.:1.)

1
until certain very high energy scale A which is GUT scale( A ~ 10"GeV ), the
parameters in the terms must be fine tuned. The parameter receive the radiative
corrections. The correction is proportion to A%, Hence,

2 A #

me = 1 — A— =
167

&S

Because the potential must produce the symmetry breaking on electroweak scale

(v ~ 250 GeV) to give the realistic weak gauge boson mass, we must take m?

A2

7. We must be fine tuned like

a very large mass to cancel the large value A
1.00000000000000000 - -001 — 1 = 0.000000000000000000 - - 001. We think that this
is an unnatural situation. To avoid this unnaturality. some beyond the standard

mode] should exist.

One of the candidates as the beyond the standard model is Technicolor model.
In this model, the Higgs is not elementary particle but a composite particle of the
new fermion called technifermions with the additional strong interaction (technicolor
interaction). The condensate < TT >%# 0 occur the electroweak SU(2), @ U(1)y

symmetry breaking. The mass correction for the fermion is

om ~ 7ng2(ln£)". (3.3 )
m
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and proportion to the power of InA. When the coupling, g. is enough small, the
correction is small compared with the mass of the fermion. Hence, the model that
included just fermions and gauge bosons must not need the fine tuning such as the

scalar potential of SM.

3-1 QCD

To break the electroweak symmetry, there is no need for elementary Higgs bosons.
For example, we consider QCD. Ignore the small electroweak couplings of quarks.
Then, their interactions respect a large global chiral flavor symmetry, SU(2), ©

SU(2)g for (u,d). The strong QCD interactions of quarks cause this chiral symmetry

breaking by the condensates
<iiu>=<dd >=—A, ~ —4nf> { 3.4 )

The chiral symmetry is broken to SU(2)y. Hence, there are 22 — 1 = 3 massless

Goldstone bosons, the decay constant of the bosons is f, = 93MeV .

Here, to examine the Higgs mechanism, we restore the ignored electroweak
interactions. Then, the self energy of the weak gauge bosons are

gagbfrg

2 )___
4 4q2

12 (q) = (qu.q. — ¢°9 se A (3.5)
where (a,b) = Z,W. This term show the mass of the weak gauge boson. In other
words, the strong QCD interaction acts the role of Higgs mechanism. The electro

weak symmetry SU(2), @ U(1)y has broken to U/(1),,, and the weak bosons, W and

Z. gain the mass. The mass are

1 ], Fems .
My = Sgfr,Mz = 5\/g* + " f+. (3.6)

While photon remains massless. The three degree of Goldstone boson is eaten by

the longitudinal mode of the weak gauge boson.

16



However, in the case that the QCD interaction induce the electro weak sym-
metry breaking, the mass is too small to predict the realistic mass. My ~ 53MeV

and Mz ~ 60MeV . The measured values are about 1500 times larger.

Here, we consider whether the QCD scale, Agcp ~ 300M eV | is natural one
or not. The scale is defined as that the QCD coupling 0(;\?2(,1)) ~ 1. In one loop

level renormarization equation for the coupling is

d 11 — Ny

(—”n—QzaQC‘D il v (3.7)

where Ny is the number of flavor. Put the boundary condition on the GUT scale as

following,
agen(Ayep) = acur. (3.8)
Then,
| 1 11— N 3
— o s (3.9)
aqep(@Q?)  acur dr AGur
The ratio of the scales between QCD and GUT is
Az 4r 1
QCD :
A = exp|— - —1 3. 10
Ag;[vT p[ 11 — A\f XTI )} ( )

Because agyr ~ O(1072%), the ratio becomes very small value of order 1073!. Hence,
such theory can naturally produce the very small scale such as Agcp. We can under-
stand that there is not the naturalness problem in the theory included only fermions

and gauge bosons.

3-2 Technicolor Model

By QCD interaction, the breaking scale is too small. Assume that there is a new

asymptotically free gauge interaction which called “Technicolor”. We consider the

17



one doublet (U, D) of technifermions. They are massless and has the chiral flavor
symmetry (custodial symmetry). Then, such as the case of QCD. the strong techni-
color interaction cause the condensation of technifermions and the condensate break

the chiral symmetry SU(2)p @ SU(2)g to SU(2)v.

< UU >=< DD »= —Aqp ~ —47F> (3.11)

where F. is a decay constant of the massless Goldstone bosons (techni pions). By

the same way of the case of QCD, the weak gauge bosons gain the mass.

Vg2 + g F, {8, 52}

The scale Ape at which technicolor interactions become strong is determined by the

Jok=s

1
J\/[w = agF,,. A[Z =

¢

N

8

weak scale, F, = 246GeV .

One-family Technicolor Model
As realistic model, there is a one-family model. Introduced fermions are 4 doublets,

three doublet with color charge (techniquarks) and one doublet without color charge

(technileptons).
(3), (5), (), (¥)
Pt N NPT XE),
Uy, Ui U N i
D%, D%, B Er
where the index, 1,2.3, of U/ and D show the SU(3) color. The condensations of these

technifermions cause the chiral symmetry SU(8); @ SU(8)g breaking to SU(8)y and
give the mass to weak gauge boson as Higgs mechanism. In this model. the value of

decay constant of techni pion is 246//NyGeV = 123GV .

3-3 Extended Technicolor Model

This model must explain the mass of ordinary fermions. To generate the mass, the

18



technicolor interaction is extended. The extended gauge group is SU(N7pc+3). First.
at the scale My SU(Nrc + 3) is broken to SU(Npe + 2), then, the first generation
(u.d,ve,€e) gain the mass. The second, at the scaleM;. SU(Nyc + 2) is broken
to SU(Nrc + 1), the second generation (c,s,v,. ) gain the mass. Finery, at the
scale M35, SU(Nrc + 1) is broken to SU(Np¢), the third generation (¢, b, v,.7) gain
mass. The remained SU(Nrp¢) interaction become strong and cause the condensate
of technifermions at scale Apc. The difference of the scales generate the differences

of mass between generations.

g)ZSTC(Ml) < TT >~ gkstc(Ml)“Fg

i M? M2
2 / 2
9grc(M2) - 9erc(M2) : :
2 2 /
9erc(Ms) _ = 9grc(Ms)
ms T - AET RS rss ——_/7\—[37_47;-]:‘?

Hence, because the ETC gauge interaction produces the differences between gener-

ations, the scales must satisfy the following relation,

All == A42 > J‘/Ig

The mass differences in same generation is induced from the difference of
coupling between light-handed ETC interactions and right-handed’s. Consider for

the quarks of the third generation. There are SU(Nrc + 1)1, SU(Nre + 1)vgr and

19



SU(N7c + 1)pr ETC gauge interactions,

ET(‘ % S[_'(A\"TC =t 1)L S(."v(;\v']‘(' + l)('}? S('(.\'T(' =F l)DR
coupling - £ 9ETC ErgETC EhgeTC
e £ B
T2 fiE i
multiplet ' _ .
TNT(" [ INTc I)A\'T('
% I t R b R

Then, the masses of top quark and bottom quark are

e 9E1C o
my ~ ELE 2L o U o 45 Ll A O

B M2 ® M2
g ¢ b 9ETC < DD b /1;1(4 73 3 15
ny, ~ g V2 g f/fR M2 T (3. 15)
S

The isospin breaking of top and bottom comes from the difference of the couplings.
This mechanism is same for the leptons and other generations. We must consider

that there are eigen coupling for flavors.

<UU> <DD>
qv §L gerc WEerC $‘éR getc W qL gETC Were ER gerc bR

Figure 3: The masses of top and bottom quarks produced by ETC interaction

3-40blique corrections in Technicolor model

Recent precision measurement show that the ordinary technicolor model may be
ruled out[16]. Because the model can not satisfy the constraints of Oblique correction
and non-Oblique correction. Especially, QCD-like technicolor model completely was

ruled out by the constraint of S parameter.
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In one-loop approximation, the S and 7" parameters are

doublet

Ntc 5 1k .
§=—=—3% 0-Yin—7), (3.16)
br = ©mp
‘VTC' doublet . . .)’12%772 772‘2'
2 % 4 nad il T4 > i e i
' = sre2c2 M2 z (Tn'l'+“[D_ 2 2 o ) ( 3. 17 )
16ws“c* Mz mg —mp  mp

Because of the custodial symmetry in the QCD-like model, the isospin is conserved:

T = D
(3.18)
Hence.
’ N1 Niouble ;
go e DTA bl s (3.19)
6w
=, [, @ 20m)

The value of the S parameter is positive. However, from experiment the constraint
favor the negative value. Accordingly, we need to modify the technicolor model to
satisfy the constraints of the oblique parameters. It is shown that if these models
have the splitting of the masses between up-type and down-type particles (isospin
breaking), they may be able to satisfy the constraints from oblique correction S
by considering one-loop approximation. There must be the contribution from the
second term to the S in eq.( 3. 16 ). However the T" becomes large with positive

sign.

To avoid the difficulty for the oblique correction, the model without exact
custodial symmetry was proposed by appelquist and Terning[2]. The global sym-
metry breaking pattern is that SU(6);, @ SU(6)gr @ SU(2)p, @ U(1l)er @ U(l)sy, &
U(1)sr @ U(1)y is broken into SU(6)y @ U(1)ey @ U(l)sy @ U(1)y. The feature
of the model is that the custodial symmetry was broken in only the technilepton

sector.
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4 Effective Lagrangian for a Technicolor
Model without Exact Custodial
Symmetry

It has been shown that Technicolor models are strongly constrained by precision
measurements of electorweak parameters. In particular, scaling-up QCD one-family
Technicolor model with exact custodial symmetry seem to be already excluded by

studying an oblique correction parameter S [1].

Stheory = 0.28 x 4 = 1.1

oNew __ ‘ Qp—0.08
SNew — _0.42 + 0.36709%

erp

where Sipeory 18 an estimation with vector and axial vector meson dominance as-
sumption for scaling-up QCD one-family Technicolor model. (See appendix E.) A
factor of 4 comes from the fact that the model contains four SU7(2) doublets of tech-
nifermions. S, is quoted from [17] and the reference point of the standard model is
taken at m; = 150 GeV and my = 1 T'eV. However, according to ref.[2], this is not
the case for Technicolor models without exact custodial symmetry. A realistic model
is proposed for a one-family Technicolor model. In their model, isospin breaking is
introduced for a light technilepton doublet. The doublet contributes to the radiative
correction parameter S in negative sign while keeping p parameter nearly equal to

1. In their analysis, free technifermion model is used to compute S parameter.

In this paper, we compute the oblique corrections (S, 7' and U/ ) in a more
realistic way. In ref.[2], the oblique corrections are computed within one-loop ap-
proximation of technifermions. (See Fig.4(a).) However, if Technicolor theory is
an ultraviolet asymptotically free and an infrared confining theory like QCD. this

includes only the part of the non-perturbative effects which come from the use

S
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of constituent technifermion masses. In fact, the correction like Fig.4(b) must be
important at ¢* = 0 (¢ : external momentum of gauge boson) where the oblique cor-
rections are defined. If the infinite series of the perturbative expansions are summed
up. the contribution must be well described by the one pole exchange diagram of

technimeson in Fig.4(c) . Therefore, in order to incorporate non-perturbative effects

Q

Figure 4: (a):The Feynman diagram for the contribution to S in a free technifermion
model. (b): The perturbative corrections to Figure (a). (c): A typical nonpertur-
bative contribution to S due to one pole exchange of techni p meson.

of technicolor, we need to describe Technicolor theory in terms of technimesons. We
construct an effective Lagrangian with low lying technimesons for the one-family
Technicolor model without exact custodial symmetry. By using the effective La-
grangian, we can compute non-perturbative effect of bound states of technifermions

on the radiative correction parameters S,T" and {. Our paper is organized in the
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following way. In section 4-1, we review feature of the model. With some assump-
tions on the low lying technimesons’ spectrum, we construct a low energy effective
Lagrangian. In section 4-2, S, T, and U parameters are computed with the La-
grangian. It is shown that S parameter receives negative contribution due to the
mixing between isosinglet and isotriplet techni-vector mesons. Section 4-3 is devoted

to finding the range of the parameters for negative S.

4-1 Effective Lagrangian for a Technicolor model
without exact custodial symmetry

Let us describe the model briefly [2]. The model has a global symmetry : ¢ =
SU(6)1 ® SU(6)r ® SU(2), ® U(1)2r ® U(1)s, @ U(1)sr @ U(1)y ! which is spon-

taneously broken to H = SU(6)y @ U(1)oy @ U(1)sy @ U(1)y.

The technifermions are assigned to the following representations of SU(3).

SUR2)@U(l)y @ SU(Nr¢):

J ¥e 5
(U, D)y = (3,222, Nre),

2
Bl (3,1,% é.:\&c)-
Dr = (3»1~Y.%—%«NT(')-

(NB) = (12724 2 Nro),
Brs & 1.%—%.,\5(,).

where Y7,(Yy) is hypercharge of lefthanded techniquark(technilepton) (Y7, = 1/3,

Y1 = —1). The following mass spectrum is assumed for technifermions:
L AW[j = ;’\JD,

o My < Mg.

g z g g s 7
Some part of ¢ must be broken explicitly in order that unnecessary massless physical Nambu-
Goldstone bosons disappear. See appendix C for the details.
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SU(6)y symmetry is preserved because techniquarks are degenerate, while SU(2)y
symmetry is explicitly broken due to isospin breaking of technileptons. To proceed
further. we need to know the technimesons’ spectrum of the model. Since the model
does not have the same global symmetry as that of QCD ( SU(2)p @ SU(2)gr in
chiral limit ) and underlying dynamics may be also different from that. we can
not simply scale up the mesons’ spectrum in QCD. Here we make use of the global
symmetry as a guide to construct an effective Lagrangian. Global symmetry strongly
constraints the structure of effective Lagrangian as well as properties of bound states
included in effective Lagrangian. Concerned with technimesons, which are bound
states of technifermions, we need to make a few assumptions. In this paper, we
include only Nambu Goldstone Bosons (NGB). Pseudo Nambu Goldstone Bosons
(PNGB) and spin 1 mesons. For the purpose of studying tree level contribution
to the oblique correction parameters, S,7" and U, other mesons with higher spins
(spin> 2) can be ignored because they do not contribute to self energy corrections
of gauge bosons. Further we only keep O(p?) terms of NGBs and PNGBs and ignore
their loop effects and O(p*) counter terms. About spin 1 mesons, we employ the
approach of including vector mesons into chiral Lagrangian [18][19] and extend it to
our case. In table(1), technimesons and their technifermion contents as well as their
J.P,C" and I are listed. (For NGB and PNGB sector, we quote them from ref.[2].)
Note that charged technilepton NGBs (II*) do not have definite parity because I1*
are NGBs associated with SU(2), not SU(2)4. ( Note that we do not have full
SU(2)g symmetry.) In the same way, exotic left-handed charged vector mesons( Ay )
are introduced so that they interact with II* and SU(2) @ U(1) gauge bosons etc.
without loss of the invariance. Corresponding to spin 0. vector, and axial and left-
handed vector mesons, the effective Lagrangian consists of three parts: Lg. Ly, and

L4: The explicit form for them will be presented below.
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JP¢ | Number [sospin | charge

B O 35 Q1@

1 T 1 Lst3L 1 0
fs |0~ T 1 QvsQ — 3L~ L 0 0
= 0 2 L3(1 — v5)rL 1 +1
Ve | 17 55 QYA Q

wey | 177 1 QV#Q 0 0
pou | 177 1 Ly, L 1 0
T 1 byl 0 0
AZ, | It 35 Q1@

Ag, | 1T 1 Q1.15Q —3L7.L| 0 0
Ay, [ 17T 1 Ly, yst°L 1 0
Az, | 1 2 Ly,2(1 — y5)r%L 1 +1

Table 1: J.P.C.I and electric charge of the technimesons incorporated in the effective
Lagrangian. In the third column. the numbers of corresponding technimesons are
shown. In the fourth column, techniquark contents with the same J,P.C.I and electric
charge are shown.

NGB and PNGB sector

In order to construct the Lagrangian of NGBs and PNGBs, we employ the non-linear

realization approach with exponentialized fields for NGBs and PNGBs [20]:

35 TaPa . 1 08

7 —— ) 4. 1

b = expli ) —p— i) (4.1)
2 Feq]e 7_31‘1’3 3 08

£ = ex 1 —1 — ), 4. 2

& 2i Y 5 +igE ~ i ER) (4.2)
T3H 3 03

P ' 4. 3

Gl eXp( 2 4»\/— Fg) ( )

where, T are generator of SU(6) and 7%, 72 are Pauli matrices. P® are 35 NGBs
for broken SU(6)4 symmetry, which are techniquark bound states. 11%(a = 1.2) and
II? are NGBs for broken SU2)L(t* 1 a = 1,2) and U(1),4 symmetry respectively,
which are technilepton bound states. 6s is a NGB for broken U(1)s4 symmetry.

ks, FL, Fy and Fy are decay constants for these NGBs.
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This part of the Lagrangian consists of O(p?) terms of NGBs and PNGBs.

Ls = Fitr(ael)? + Fitr(apy)® + Fitr(azi)” + Fitr(as,)?
—+ 3_LtT(QSL‘;—3Q2_|_) +£§)r' ' ( 4, 4 )
where,
3 (0 ) s
bt 5 < 3 (4.5)
35 " vy,
oL, = 2 (T )t’"[T“éva”&) & e, (4.6)
=1 O ‘27
Ll TNV "
ari, = —2;::15( Ta>t7‘[§ .21.“ E (ol 1)
¢ 1 0 T3 éTﬁ/Rifl =5 E‘TﬁLté‘Z -
e = 25( TB)”[? i Sl
« = ‘)_1_ (16 ) [tr{ 1 vaRufg P fngufﬁ'}
w0 —31, /3 %
—8 IV R.E — E3V ¢,
+tl‘{ 51 Rllf€1 62 Ll‘éz }]‘ ( 4 9 )

4/3 2

! A 3 e d . a1
In this paper, B always means a 8 x 8 matrix in which A (B) is a 6 x 6
(2 x 2) submatrix. [, is a n X n unit matrix. Vp(g) are covariant derivatives for

SU2), @ U(l)y @ SU(3). gauge interactions and are given by,

T3 Ve
Vi, = O,+ig(5 @ b)B, +ig (=2 ® Iy)B,
8
+ig. Z(Iz ® A™)GY, (4.10)
=1
A } .
L7, T +Igz 3)W, +u( 2 I3)B,
8
+ig. Y (I ® A™)GY, {4 L1
m= 1
: }u gors
¥ gy O—Hg—B +1¢'—B,, (4. 12)
Vi, = 0,+i Z—W’H—z"ﬂB (4. 13)
Lu == M .94_1 2 M g 2 e . €
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where, W;f. B, and G’: are SU(2) @ U(1)y @ SU(3). gauge bosons and A" are
generator of SU(3).. Let us return to the Lagrangian ( 4. 4 ). Note that [ is
not degenerate with F, because custodial symmetry is broken in the technilepton
sector and II;, form an irreducible representation under {/(1),y which II? does not
belong to. The difference between Fj and F, gives rise to small deviation of p
parameter from 1 (see ( 4. 74 )). L. consists of explicit breaking terms which
make physical NGB massive. Without £; and SU(2); © U(1)y gauge interaction,
we have 3 color singlet physical massless NGBs which are linear combinations of
s, 113, 11%, P? and P*. Here P* and P? are SU(2) triplet and color singlet bound
states of techniquarks. By adding £} , we can make them massive. (See appendix

C for the details.)

Now let us show that the Lagrangian ( 4. 4 ) is invariant under G. To prove
this, we must know the transformations of a s. First of all. the transformation of

€s are given by [20];

& = grefehd = hatoghe, (4. 14)
& = gL2€2h;~ (4. 15)
& = grebihd, (4.16)
0. O 3

Fs = —FTS+¢R8—OL8 (4. 17)

In (4. 14 )-( 4. 17 ), gs and ggs are chiral transformations which correspond to
G while hs are vectorial transformations which correspond to the unbroken sym-
metry H. gr6(gr2) and gre(gre) are the chiral transformations in the techniquark

(technilepton) sector. They are parametrized by the following equations.

. 1 1
I = XD T @[ + (D[ + 1 4. 18
— €xp l] +I Q - 4. 1%
9Re RG \/§ R& I ] ) ( )
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2 3 |
s = exp(z %%, +it303, —i——=d1s +1—0v), (4. 20)
gr2 o azz:l L2 L2 4\/§ L8 1
Dk — ev(p('iv'g’o3 — iiORg - ilov) A
9R2 4 R2 4\/§ 4 )

where 616(0Re), 955(0%hs ), O1s(Ors) and ¢y are the parameters of SU(6) (SU(6)r).
U(l)sz, (U(1)sr), SU(2)r (U(1)2r) and U(1)y respectively. hg (hy) is a vectorial

transformation in the techniquark (technilepton) sector. They are defined by,

A

llg = hgth, ( Y )

he = exp(iTSé%s) € SU(6)v. (4. 23)
1 ‘

hgr = exp(z ¢01) € U(l)v, (4. 24)

2V/3

A

h2 = hghLI. ( —1 .25 )
- i :
hy = exp(27<z>v2) e U(1),v, (4. 26)
il A &
hpy = exp(izon) € U(l)v, (4.27)

where ¢yg and ¢g, are parameters for SU(6)y and U(1)y transformations in the
techniquark sector while ¢y, and ¢p; are parameters for U(1);y and U(1)y trans-
formations in the technilepton sector. These parameters in the vectorial transfor-
mations depend on g7, gr and £. By using ( 4. 14 )-( 4. 17 ), it is not difficult to

see that agy, , ary, and ay, transform as;

as,, = heasiuhl, (4. 28)
Ay, = haaar,hl, (4.29)
o, = ai, (4.30)
Ggi = Dligly (4. 31)

With ( 4. 28 )-( 4. 31 ), the Lagrangian ( 4. 4 ) is invariant under G.

Vector meson(1~ ") sector
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In addition to NGBs and PNGBs, we incorporate vector mesons into the effective
Lagrangian. Corresponding to unbroken symmetry: SU(6)y = U(1)ay @ U(1)sgy ©
U(1)y, we introduce 38 vector mesons, 35 of which are techniquark bound states
belonging to the adjoint representation of SU(6)y . Corresponding to U(1),v (U(1)y
for techniquark sector) .U(1);y (U(1)y for technilepton sector) and U(1),y, three
neutral vector mesons, techni w, (wey), technt w; (wy,). and techni p; (py,) are
introduced. For the techniquark sector of the effective Lagrangian, we can just
extend the approach of [18] [19] into the larger symmetry, i.e, chiral SU(6); ©
SU(6)r @ U(l)evy. On the other hand, for technilepton sector. non-trivial isospin

breaking terms are introduced. Let us record vector meson part of the effective

Lagrangian first,

1 3% 1 1 W 1 v
EV — §t7‘1;“f6 FVG;U/ + §tT‘F‘;fQUFv2uL/ '+' §t71F{:‘:6 F‘:L'f'ul/ + strF“fw2F‘:‘/2HU
l

ghoten B A e
= Mytr(Veu = Zaa)” — My tr(Vos, — Z—aue)”
" T w6

| e A ) i .
= J\/I&ztr(bu — C_VQZH#)Q 3 A/[‘%WQtT( 2. — (,—Qu};z”“)z
T2 Tw?2

uy A3
+ ay iT’FV2 T Fvw‘w

hess l B et 1
— PByir(Va, — G—,za‘zllu)TB(hzu re G—Zouz”u)« (4. 32)
where
35 a ! t Fed
asllu — 2 (T O) tr[Taéva#é.G ji éGvLﬂfﬁ]‘ ( 4. 33 )
=il 4l
1 16 1 ﬁsztfg 53 fng 156
well, = 2-—7= ( ) t e =i 4. 34
Qusl|, 23 0 7‘[2\/5 5% ] ( 34 )
1/0 IV 18X
a2||u = 25 ( T3> tT’[%él Rufl ;’; '52 Ly 62] ( 4. 35 )
S (0 1 E]VRubt + E VL.t 5,
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Vector mesons are decomposed into their component fields,

35

h ' Te A :
Ve = IZ ( O)/’@nr (4.
=1

: = Nt Ig PR

o = iz (7 o) i
. 170 .
1 = 7;( 7.3) P2us ( 4
: 170

"Q?;t = 5 < 12> W2y ( 4.

The quantities defined above transform under G in the following way,

Qfsu;, = {260(6]|;:};£ -~ 'ihf)-&)“h;.T ®
VG,;[ = hG"/GuhS 1= %@hg()uh&
{Q_Ivb'llu = Qwbllu — ih‘QlauhIng (4.
Vieu = Vsut ﬁhm()‘, hors
a‘/zllu = Gl ih??uh; (4.
V'ZI;L = ‘/Zu + ﬁhg@uh;
{ Upglp = Cwan — thr10,h], (4
‘/;./)'2;1 = L/::J'Zu + ﬁh[{]auhzl.

In ( 4. 32 ), the terms proportional to ay and 3y break isospin symmetry.

g

13 )

14)

The

term with the coefficient ay generates mixing between techni w; (wy, (I =0) ) and

techni p; (pg, (I = 1) ) through the kinetic term while the term whose coefficient is

Bv generates the mixing through the mass term.
Axial vector meson (A) and left-handed vector meson (A;) sector

This part of the Lagrangian are given by,

S 1 1 " 1
ﬁA = gtrl;f;b EAG/JV + §trF‘ZZF4LuU + 51‘7" .52 F‘42;u/ + StrF::F48uu

: 7 ?
= IMiGtT(AGu e '—IQGLu)Z Lo ]\/I‘igtr(Agu = _08_1_;1)2

/\6 /\8
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+

The decomposition into component fields is given by,

7

M2 tr(Ap, — —arp1,)? — M3, tr( Ay,

AL

)
a4 -ﬁtrF,Zj%SFAW

9 i(1+6)

-5

1 BAMR8® 1.
4 M3, Mg — 355 A3
I e 1
1M, — 1

A2+ A8 47 A '8
2 66BaMLME 1
V3 M2, M2, — 182 Mg hs

(21y )2

(QS_L;L )2

35
: Jh 2l
. S ’Z ( 0) g,s

a=1

OQJ_;L)%B( AS;[ i

!

= —02_L;1)

A2

i1+

Yo

r(agy T30 ,)-

= i y,)
LAy = \/i _312 asy,

2
. 170 ,
‘4[“1 = IZ 5 ( Ta> aLLl'

(i

W
Ay = 15( 7_3>a2u'

They transform under G in the following way,

Aéu == ilgAGuilé,

/

AS[J, = ‘ASM'

1, = hyAp,hl
Lu 2Lp!t2,
!
AQ# = AAQH.

2

QS_LN)

The terms proportional to a4 and 34 break isospin symmetry. We have already

seen the counterparts of these terms in the vector meson sector ( 4. 32 ). Moreover.

two additional parameters § and &' come in ( 4. 45 ).

In particular, the presence

of ¢ gives rise to a new isospin breaking effect on S and [/ as we show in section
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4-2. We also note that there are no inhomogeneous terms for the transformation of
axial (A) and left-handed (Ap) vector mesons under (. Therefore the mixing terms
between these vector mesons and PNGB appear. This effect results in redefinition
of the coefficients of O(p?) terms of NGB and PNGB sector ( 4. 4 ). In order to
avoid the redefinition of the coefficients, we just need to add the appropriate O(p?)
terms in axial and left-handed vector meson sector. The O(p?) terms of NGBs and
PNGBs in ( 4. 45 ) are chosen so that the O(p?) terms in ( 4. 4 ) should not be
altered after eliminating A and Ay with their equation of motion. (See appendix D

for the details of the procedure.)

4-2 S, T and U parameter
The electroweak radiative correction parameter S, T and U are defined in terms of

the gauge boson self-energy:

In order to compute technimesons contribution to S, 7" and U, we need to ex-
pand the effective Lagrangian in terms of their component fields explicitly. Because
we only consider their tree level contribution here, it is suffice to keep technicolor
singlet and color singlet technimesons ( vector, axial and left-handed vector meson
) in the expansion. It is spin 1 technimesons that contribute to S and U within the
tree level approximation. In the following., we compute S. T and U in techniquark
sector and in technilepton sector, respectively. The latter computation will tell us
how differently custodial symmetry breaking terms contribute to S compared with

techniquark sector where custodial symmetry is exact.

The techniquark sector

In this sector, color singlet and SU(2) triplet part of techni-vector mesons Vi(17)
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and Ag(17) contribute to S. Since SU(2) singlet vector mesons such as V¢ and Ag
do not couple to W3, they do not contribute to S. The mixing terms between the

vector mesons and gauge bosons are given by :

Lo = ~Mtr(Vou — zroa)” — M, tr(Ao, — 0.’ (4. 54
= a2 - Afb(gwwgm] 22 1 Y igw, - g
pslag) are color singlet and isotriplet vec-
tor(axial vector) mesons.  Therefore, these W,,zn - Ps ey ﬁB
terms induce W3 — (ps,ag) and B — (ps, ag) W,\R,\ A 5 P ,,B

mixings, which give rise to a contribution to Figure 5: The Feynman diagrams
S through the Feynman diagram (Fig.5). We for the contribution to 5 in the
techniquark sector.

obtain S in techniquark sector.

d M2, M3,

Sq = —16m 3 2=
i94'5y = =16x 75 f)GGQ) - ”‘ ng/_)(,h )] 2=
d M3 '
—16 - 4. 55
7Td 2[(\/§2)\6g) ]‘136 Zg\/_)/\() ]|q—0 (4 5))
% <
s 47r[G—% /\2] (4. 56 )
The technilepton sector
In this sector, there are isospin breaking terms,
L:I = (]VtrF{/L;TgF‘L-ZuU
. i S l
= ,/.3‘,,'“”(‘/2 — a02||u)T3("w2 T C;—mawzn‘,)
2 w
o 0A7§U‘F‘ 3FA8uu
2 i(1 4 6) i(1+94) 5
- »’3,4%”(/42# o —/\?—O’uu)Tg( Agy — FEN asyy). (4. 37)
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Because of the presence of these terms. isospin of vector mesons is not a conserved
quantity and mixing between 1=0 and I=1 vector mesons can occur. Then, SU(2)
singlet vector mesons such as techni w; (wz) can contribute to S through the mixing
terms. Therefore . we need to diagonalize mass terms and kinetic terms of vector

mesons. By expanding the effective Lagrangian, we obtain:

1 ‘ 1 av i p2.)
Ly = I ( d[u P2u] (3[,1&?2‘/] ) < ) (d[‘ Wau) )
1 M@g
+§(P2 "‘)2)<‘_’§V_ \1‘2)
. 11127. gWi‘Hl B o0
=5 (P2 “"2)(@;2 ‘]y )(2)223 ' 2
2 2
ACA = k=

y . i Q4 0[;1.“‘21/])
—~(O,a2,) O, as.) <O,4 | ) (a[u.(l&/]
a9

1
4
1 M3, 2

tglas ) ( Ba M3, <as>
1 M3, Z(1+8)\ Ma=gB
5(a2 as)| g, Y )
2 Ga(1+6) M3

+

where
0 = a.V, —a,V,.

The kinetic and mass terms can be diagonalized by doing the following trans-

formations successively.

(Pgn> = v Zv Uy (”2), (4. 60)
Wy w9
(“2)_U AZ4(D4<‘”>, (4. 61)
as asg
where U, Z and U, are defined by,
Ll
Upvay = (_‘{_5 f) [t 28 )
V2 o V2
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1o

(1 _Q\'(A))% 0 ) ‘
s = - 4. 63
V(4) ( 0 (1+“\(4) ( 53 )

L"TnV(A) i (CV(A) _S\'(A)) ) ( -l ()1 )
' SV (A) Cv (A)

Up is a 45 degree rotation matrix to diagonalize the kinetic terms. Z is a scale
transformation to keep correct normalization for the kinetic terms. Finally (7, is a
rotation matrix which diagonalizes the mass terms. [/, relates the mass matrices

to their diagonal forms in the following way.

M2 0 e [ME, B o 2
’ . [ 7o s 2 | Uzl Zs sl 1. 6
< 0 W) e Ay ( B, Mipy "PECTEnE S5t
= W( Mg, + M7, — Bv) 2—(—1?(‘\[32 — M) {1
i A/T_a{j(‘wvz — M7,,) (IT( My + M, + Bv) o
M 0 Y ~177 M3, d; r=1 =1r7=1 "

1 12 A2 2 2
s (M3, + M3 — Ba) +_( M3, — MZs)
= (2(1—— M3, — M3 Y on M+ 8 ) Ui
1-a2,) (M, — M) ( a2t s T 54)

In (4. 65 ) and (4. 66 ), M, and M, (M,, and M,g) are eigenvalues of vector

2(1+

(axial vector) mesons mass matrix. With these transformations. the interaction

term between gauge bosons and vector mesons is given by:

e A - S |, e
ﬁint = -—5 ( p2 u()2 ) (lop A,’\/[j) [ m"Z\'( DV ( QYG'f;-zg,B
w?2
1 Mo s .y a¥s—g'B
+§(a§n ag' ) ( 02 Mfs) UnaZaUpa ( 62 )
I m m T 177 0 3. o' Wag B -
+7(F A UnaZi'Upa( s o ) (7% ), (467)
where,
(M3 12 ) Unv ZUny (4. 68)
0 Ajﬁ mV LV U DV .
= ( M2ev(1 —av)z —sy(L+av)s] M—cv(l—av)? —sy(l+ 0\')%])
VA M2[ev(1+ av)? + sv(l —av)?]  M2ev(l+av)? —sv(l —av)?] )
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M2 0 A ' ]
(dﬂ M&)LMZJDA (4. 69)

o (A/[[f-z[m(l e OIA)% —sa(1 4+ @4)?] MZ—ca(l —aq)? —sa(l+ 044)%])
V2 \ ME[ea(l + aa)? +sa(l —aa)?]  MElea(l + aa)? —sa(l —aa)?]
r 177t 0 13‘46/>
L mAZA [«'DA (546 0
1
=1 Bt (4.70)
2(1 — a%)

(—3,46[@1(1 +aa)? +sa(1l — aa)
2 >

A | Badlca(l + an)z —sa(l— 0.4)%])
3,16[8_4(14-&‘4) —CA(I—QA)'

i
2

| Bad[sa(l +aa)? +ca(l — aa)?]

By computing the Feynman diagram (Fig.6). the sum of the contribution to S from

technilepton sector and techniquark sector ( 4. 56 ) is,

o 3 5 i 1 .. Dty
- wtE wtge,

3247 1 G g

el R D 1 A BNy Pl e

3 (1 ‘QZA)[{CA( + 4)? +54(1 — ay) M

cdeay L %
+{—SA(1 +O_4)% + ca(l —0_4)2}2‘—14—]. (4. 7T1)

s o]

The term proportional to 1/GZ (1/A\2) comes from vector (axial vector) mesons

Ws P, B W, a" B
VNN e NN/ VAV A AV e VAVAVAVAV)
W} (J)Zm B W3 agm B

NN\ N\ NN N NN ——= NNV

Figure 6: The Feynman diagrams for the contribution to S in the technilepton
sector.

in the techniquark sector while the term proportional to 1/G2 (1/A%) comes from
vector (axial vector) mesons in the technilepton sector. As isospin breaking effects,
we obtain two kinds of new contributions to S: One is the term proportional to Y7,.
The other is the term proportional to . The former comes from the mixing between

I =0 and I = 1 vector mesons in the techniquark sector. Note that Y7; is —1 in
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one family technicolor model. Therefore, when we change only ay without changing
the other parameters, the minimum of S can be obtained for ay = 1%. The latter
comes from the exchange of two neutral axial vector mesons whose masses are given
by M, and M,s. For T' parameter, we obtain the same expression as that is given

in ref.[2]. For completeness, we give the explicit form here.

Covndia, 21
My, = 1g2{3F62 O P4 720
il T T
M} = (¢° + 9" ) (3F + 3. (4. 73)
F?— F?
{ R R == I 2 4. T4
s 3FE Y F} PSS

With the assumption: Fy, Iy < Fg, T parameter can be very small even if there is a
splitting between Fj, and F, as stated by the authors of [2]. Finally we compute U

parameter. The result is given by,

1 1 1
U = 4 e
Gt TR
1 B2s? 1 o
+ 8N —a ){[CA( +ay)? 4 s4(1 0‘4)2] T
Haall+ant = el =00l (4.73)
U parameter is zero if the isospin symmetry is
W, a W,

exact. Since the isospin symmetry is broken AT\ s AL

in the t i ! > ;
e technilepton sector of the present model. Figure 7: The Feynman diagram

U parameter is not necessarily zero. The left- for the contribution to U due to
the left-handed vector meson.
handed vector meson a; contributes to 61l

part of U/ (Fig.T), which is given by the term proportional to 1/A?. On the other

hand, I = 1 vector (axial vector) meson contributes to 61133 part of U7, which is

9 i 7} e 2 5 =

Only w5 which consists of NN component contributes to S in that case, because EE compo-
nent of vector meson decouples and ideal mixing is realized. This confirms the conjecture of the
importance of w given in ref. [2].
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given by the term proportional to 1/G2% ( 1/A3). If the isospin were conserved. 611y,
and 61153 should have been cancelled each other. This is not the case in the present

model.

4-3 The range of parameters for negative S

In this section, we explore the parameter region where S parameter is negative since
negative S is favored under the present experimental fits. If the future experimental
constraint on S is improved, we can do more complete analysis. Since we do not
know the underlying dynamics of the present model. we do not have any guiding
principle to determine the parameters of our model without experimental informa-
tion. Therefore instead of trying to predict S in our model, we determine the allowed
region of the parameters of the effective Lagrangian by imposing the present exper-
imentally allowed region for S. Since we have many parameters. we further need to
limit ourselves into the small parameter space to draw some definite conclusions.
Here we simply assume that S is dominated by only vector mesons and the con-
tribution of axial vector mesons can be ignored® . Under the assumption of vector

(177) dominance, S is given by,

G & 3 n 1 2 ]
A — /1% D 5= a" v 1
7. GG o
St o b SOPY (4. 76)
™ — o
= R G GG
Here we have substituted Yz; = —1 in (4. 71 ) and neglect axial vector contribution.

In the second line of ( 4. 76 ), the inequality holds because ay can take its value
between —1 and 1 and ay = 1 is the condition to have minimum value of S. Note

that the bound for ay comes from the condition for the positive semi-definiteness

This is a good approximation in the case of the scaling-up QCD technicolor model as we have
shown in appendix E (E.5)
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of the kinetic terms of vector mesons ( 4. 63 ). In the following we assume that
ay = 1 and impose the condition of negative S. The condition for S < 0 now leads

a relation,
Ge  2Gg G
Gy Goy Gy

8. (4. 77)

This region is shown in Fig.5 in the parameter space (Gs/Gy vs Ge/GLa). We can

get the lower bound for one of the parameter. G/ ;.

(i
>/ 4. 78
Gwz_\/i (4. 78)

Hence (G,, must be smaller than (i in order to make S negative. This means that
the coupling strength between techn: w; and gauge bosons are stronger than that
between techni p, and gauge bosons. Note that the coupling strength between gauge
bosons and vector mesons is proportional to 1/(. Since the negative contribution to
S is proportional to Y7, and Y7, part of hypercharge interaction couples to techni wy.

strong coupling between techni w; and hypercharge gauge boson B is preferred to

get negative S.

40



S
("h'/(;.u'l
o

] s § 50 .

0 | | 1 1 14

3
(el G

Figure 8: S < 0 (S > 0) region with vector( 177 ) dominance assumption for ay = 1.
(.5 and (G, are coupling constants associated with vector mesons.
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5 The Vertex Correction in The Model
without Exact Custodial Symmetry

In the last chapter, we constructed the effective Lagrangian for a one-family techni-
color model without exact custodial symmetry and discussed the constraints for the
oblique corrections. The most distinctive feature from the traditional technicolor
theory is the isospin breaking in technilepton sector[2]. The symmetry that is to be
satisfied in the technilepton sector is SU(2), @ U(1),z @ U(1)y global symmetry and
this is broken to [/(1),y @U(1)y global symmetry when technileptons condense. This
sector does not have QCD-like symmetry (chiral SU(2);, @ SU(2)g symmetry). In
the model [2, 3], we find that the constraints for oblique corrections can be satisfied
because of the feature of isospin breaking in the technilepton sector. The S param-
eter is reduced by p — w mixing[3] that is produced by the difference features from

QCD in technilepton sector. While, the model can also reduce the 7' parameter if it
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has two difference scales of the pion decay constants in techniquark and technilepton
sectors and the scale in technilepton sector is small compared with that in techni-
quark sector enough to neglect the difference the decay constants of between charged
pion and neutral pion in technilepton sector. The effects of the isospin breaking must
appear in the vertex correction (non-oblique correction) too. In this letter, we study
the vertex correction for Zbb, Z77 and Wrv in the technicolor model including
isospin breaking with the effective lagrangian. The corrections depend on the decay
constant of technipion in each sector [4. 5, 6]. In the model [2, 3]. one of the isospin
breaking effect appears in the difference between the decay constant of the charged
technipion and that of neutral technipion in the technilepton sector. The differences
directly appear in the differences of the vertex corrections between Z77 and Wrv.
However, from the constraint of the oblique correction 7', the difference between the
decay constants of the technipion in technilepton sector must be small enough com-
pared with decay constant in the techniquark sector. The other larger effect of the
isospin breaking in the technilepton sector comes from the technivectormesons that
is composed by technileptons. We can consider that there are a few lighter tech-
nivectormesons compared with the others in the techniquark sector in technilepton
sector, because the decay constant of technipion in technilepton sector is lighter than
one in techniquark sector. Hence, the dependence for the vertex corrections for Z7r7
and W from the light technivectormeson may be larger than the dependence from
heavy mesons in techniquark sector. If there is a difference between dependence of
the vertex corrections, it should be measured in the future precision measurements.
In QCD-like model, the chiral SU(2); @ SU(2)r @ U(1)y global symmetry is bro-
ken to SU(2)y @ U(1)y. There are three degenerated thechnivectormesons(p® and
p*) for the SU(2) symmetry, three degenerated techniaxialvectormesons(a’, a®) for

SU(2) symmetry and techni w meson for U(1)y symmetry. However, this model
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is different from QCD. The model predicts the existence of a neutral p meson for
U/(1);y and a techni w meson for U(1)y symmetry. There must not be charged p
mesons that degenerate with neutral techni p meson. There is also a neutral tech-
niaxialvectormeson and there is not charged one. For the left degree of freedom in
broken symmetry, there are exotic charged left-handed meson* that is composed by
technileptons. While, because we expect that the breaking of the SU(2); @ SU(2)r
to SU(2)r @ U(1)2k in technilepton sector to be happened on higher energy scale,
the masses of right-handed meson for the breaked symmetry must be heavier than
other mesons. Accordingly, there are the neutral technivectormeson and techni-
axialvectormeson which contribute to the vertex correction for the Z77. while the
charged technivectormesons are absent and there is only exotic charged left-handed
meson which should contribute to the correction for the Wrr. Hence, we may gain
some hint about the evidence of isospin breaking in technilepton sector through the
difference of the vertex corrections between Z77 and Wrv in the precision measure-

ments.

5-1 The Vertex Corrections
The vertex corrections depend on the Extended Technicolor Model ( ETC ). The
5

Lagrangian ®> which describes the ETC gauge interaction® of one family technicolor

model between the third family and Technifermion is,

Lercia-1cy = 9ercétQiWhrovuds,

+ gercértaWhrcuUk + 9e10€Rb5Whrey, Dy + h.c.

“There is the dependence of the left-handed meson to U/ parameter and the U has finite values.
Th(é meson will be constricted by the U/ parameter.

*Similarly some diagonal ETC gauge interactions between the same family also exist [6]. The
vertex corrections for this interaction as depicted in Fig.9(b) is exist. The vertex is effectively
same with Fig.10, except for the order of technicolor’s number N;. and the sign. By mean of 1/N
expfnlsion we can ignore this dependence, but if Ny is small, we need to consider the effects.

“Here, we assume the simple ETC model.
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+ gercél LiWhrovule

+ gercépTRWErc VW bR + hoc., { 5.1

where Q; = (U, D')p, Uk and D represent techniquarks, ¢j = (1',6')1, t and
by, represent the third family of quarks and i 7 is the color index of QCD. L =
(N.E)r, Egr represent the technilepton, I, = (v.7)p and 7 represent the third
family of leptons. gprc is a coupling of ETC interaction. Wgpe is an ETC gauge

boson which mediates between the third family of ordinary fermions and techni

t(7) t(b,7)
L

fermions. is a coefficient of left handed coupling and &5 " is one of right
handed coupling. Since the left handed fermion which belongs to SU/(2) doublet.

the couplings of up-side and down-side in the doublet are the same as each other.

From eq.( 5. 1 ) the masses of ordinary fermions are given as,

2
iy L L BT T s gheL 9BTC 47 3, (5.2)
Mgre UET(
2
o~ EEIETC o D s gl IETC s (5.3)
Migre ’”f:T(
T T gbrc - T gbre 3 =
Mgrc ”ETC

where Mprc is the mass of the ETC gauge boson and < QQ > is the condensation
of technifermions. Fg is the decay constants of technipion in techniquark sector and
F, is that in technilepton sector. Here we used the relation of naive dimensional

analysis < QQ >~ dm F§ [23].

Now, the vertex correction under consideration is shown in Fig.9(a). Because
we assume that the ETC gauge boson is much heavier than the weak gauge boson, we
can shrink the gauge propagator as shown in Fig.10. The ETC interaction in eq.( 5.
I') becomes the following effective four-fermi interaction after Fierz transformation.

Bl - gt
Lo = 5‘ AfTC (a7 qr)(Qry,.m* Q1)
ETC

1



1 T2 g%TC' ] A T 4 27
- ‘(‘m‘T‘ IL)(Lpv,m*LL). [ 5. 5}

Then we replace the left handed technifermion current by chiral current [23, 4. 5. 6]
that is the Noether current for SU(2), symmetry in our effective Lagrangian [3].
We assume that technivectormesons in techniquark sector can be ignored when their
masses are very heavy, Myg,M_ ¢ ~ 1 TeV, compared with weak gauge boson masses.

On the other hand, it is expected that the masses of the technivectormesons in the

b b
Q Ry
7 WETC 7 ETC
Q
b b
(a) (b)

Figure 9: The Feynman diagram for the contribution to the vertex correction accord-
ing to (a)sideways ETC gauge interaction and (b) diagonal ETC gauge interaction.

Figure 10: The Feynman diagram in which the ETC gauge boson propagators are
shrunk in the upper figures.

technilepton sector are lighter than those in the techniquark sector in this model [2],
because the pion decay constants in the technilepton sector are much smaller than

those in the techniquark sector. Then the contribution of these light technivector
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mesons may be large and can not be ignored.
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(5.6)

where, we followed the same notation as ref.[3]. p; and w, are technivectormesons, a;

is a techniaxialvectormeson and a7 is a exotic charged left-handedmeson.

My, M,,

M4, and M4y are their masses. In the technilepton sector, because of the presence

of the isospin breaking terms, there are the mixings between neutral vectormesons,

techni-p and techni-w. Therefore we must diagonalize the mixing when we compute

the effects of the technivectormeson in technilepton sector.

Figure 11:

b(t) b(t)
+Z
b(7) b(t)

The Feynman diagram to compute the vertex correction by effective

lagrangian approach. The first shows the effects of thechnivectormesons. The second
shows the effects of the thecnipion.
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With eq.( 5. 6 ), the vertex corrections are the following,

1 N
Bre = TR RN, (5.7)
ET(

6gLr+r = _622 gETC FZ /g +g,2 +ég7r T +(<)JZT+T ; ( 5 8 )
T Iprc W =
By P = {22 Fig+ 87", (5.8 )
\[ Mg
where 6777 is the correction from the effect from the technivectormesons as shown

in Fig.11. Substituting ¢%;c /Mg from eq.( 5. 2 ) into eqs.( 5. 7 )-( 5. 9 ). we

find
18 n _ i 2
6gab T Zé_tL”It76 92+ g2, (5.10)
R‘ \
s
bgf" T = 4;6 Mg paVe 0%+ 85 + oGy, (5.11)
LSR
Wrv 1 L 2

bR (B 12)

5 L
& 2VREL R AT E

The correction from the vectormesons is,

a0 = frngTc { [E g b +£i4 P2 . 92—9’2
1 M i M? p? 2"
g [lTp 3%/\/12 .)“’B2 2 W] g = (5.13)
TQw & p v, - S \/g -}-g’
1 M2 »? M? P’ ,
ApBy— + 52 L __1/g?+ ¢},
+ GQGQW[ ._. Pl 2 7‘[2 + ~ A BuJ 2 ‘Ij] g +g }
with
A, =cv(l—ay)? —sy(l+ay)? (5. 14)
B,=—cv(l —ay)? —sy(l+ay)? (5. 15)
Ay =cv(l +ov)? +sv(l —ay)? (5. 16 )
B, = cy(l + ay)? — sy(l —ay)? (5. 17)
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where we followed the notation of ref.[3]. ay is a parameter which indicates the
isospin breaking (the mixing between techni-p and techni-w in their kinetic terms
of them), and ¢y and sy represent cosfly, sinfly, where fy is the mixing angle to
diagonalize the p—w mixing terms. The corrections from the techniaxialvectormeson

and the left-handedmeson are

[ o e LS, P i e
5—ZTT =8 L s ETC A2 : 2 ,2. 5 18
; U iisg b oM p?
6—" T T2 ETC ,4.1, ‘ 5 19
9grr 2\/§£L AIé‘TC[Z/\i p2 o ;\[ﬁl‘]g ( ) )

The condition for decay constant of techni-pion
Now, we impose the constraints for the decay constants of technipion and consider
some conditions which satisfy them. In the present model. in order to satisfy the
constraint of the oblique correction, the pion decay constant in the technilepton
sector must be much smaller than the decay constant in techniquark sector. We
search the values of decay constant which satisfy the conditions, and compute the
vertex corrections for Zbb, Z7r and Wrv. First, we can obtain the constraints
from the relation between weak-gauge boson masses and the decay constants. In
a one-family technicolor model with custodial symmetry the constraint is 4F? ~
(250)%(GeV)2. On the other hand, because in the present model the decay constant
in the technilepton sector are different from that in the techniquark sector, the
constraint is

3F2 4 F? ~ (250)%(GeV)?. (5.20)

The second constraint is obtained from 7' parameter [1] which indicates the breaking
of custodial symmetry. The condition is obtained from the constraint of T’ parameter

[1]. The upper bound of T' parameter is

T < 0.5. (15 21 3
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T parameter is given by [3],

W ) e
- 3FZ+F}

«

(lombining eq.( 5. 20 ) with eq.( 5. 21 ), we obtain the constraint between Fj and

F,

F? — F? < 300 (GeV)2. {8t

(8]
8]

The last constraint is obtained from the ratios of masses of ordinary fermions m. :

my:my ~ 1 :3:100 . From mass formulae in eqs.( 5. 2 ) - ( 5. 4 ), we obtain

Ot

ETERF3: L EoF3  ELELF2 ~ 1:3:100. (5.23)

To determine the decay constants, we need to make some assumptions on the cou-
pling constants £s. Here we assume that the difference between the masses of the
ordinary quark and the lepton comes from the differences of the decay constants of
technipion in each sector. There are two cases roughly. One of them is that the
difference of the decay constants is due to the difference between the masses of the
up-type quark (7) and the lepton (7). The other is that the difference is due to
the difference between the down-type quark (b) and the lepton. Correspondingly,
we assume the relations among the couplings &s. i.e., (A) {[€f = €€k and (B)
§ER = £ €5, For both cases, we can determine the values of the pion decay con-
stants with the constraints on eq.( 5. 20 ), eq.( 5. 22 ) and eq.( 5. 23 ) .

(A) EJERp=ELLL:  Fs=143GeV, F, = 31GeV, F; = 35GeV

(B) (lep =60tk Fs=135GeV, Fy = 90GeV, Fr = 92GeV

In both cases, we compute the vertex correction for Zbb, Z77 and Wrv without
including the correction due to the technivectormesons (6¢) as shown Table 2. Table
3 and Table 4 respectively. For comparison, as case( C ). we show the vertex correc-

tion for the case when the decay constants in technilepton and techniquark sector
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are degenerate. Here, we find that the contributions of technipion for their vertex

corrections ( 6g — 6g ) become large, as the difference between the decay constants

in the techniquark sector and the technilepton sector is becoming smaller

(F6~F2) 6gfbb %
(A) | (143GeV,31GeV) 00161(1';'))%}‘ _“%(%)%
3 i F
(B) | (135GeV,90GeV) 001(;)(%)%; —117(%)%
(C) | (125GeV,125GeV) 00)01(%)% _W/(Tm_,)%{;

Table 2: The value of the vertex correction of Zbb and an amount of shifting the
Zbb w1dth from the standard model in a one-family technicolor model without exact
custodial symmetry for each cases.

(Fe, FY) A A a

72 e

(A) | (143GeV,31GeV) | 0.0009( 28) S | —0.5% (1) her
75 L%R 175 EL&QH

(B) | (135GeV,90GeV) | 0.0085( %2 ) ke | —4.9% (2% ) ke
175 L__)R [k} I;,,ZR

(C) | (125GeV, 125GeV) | 0.0207(328) e | —12%(228) ghr
2 s - L>B

Table 3: The value of the vertex correction of Z77 and an amount of shifting the
Z77 width from the standard model except for the contribution from the technivec-
tormesons in a one-family technicolor model without exact custodial symmetry for
each cases.

5-3 Other effects for the vertex corrections

ZTT

Next, we consider the correction, 6g#77, which comes from the technivectormesons

in the technilepton sector. For simplicity, we put ay ~ 1, ¢y ~ 1 and sy ~ 0 in the

ﬁi:l_c_

factors in eqs.( 5. 14 )-( 5. 17 ), and substitute for A fromeq.( 5. 2 ) ineq.(5
SBTC
14). Then eq.( 5. 14 ) becomes,
1 T2 v 1 . 2 T
AT RV
4 §L£R 47TF6 62 7\[ \/;/ [ g12



(Fo. Fr) b ™ — ogp” s

(A) | (143GeV,35GeV) | —0.0015( 2t ) 2 | —0.5% (e ) tor
EL€2R 175 51‘{#

(B)| (135GeV,92GeV) | —0.0126( ) Shr | —3.8% (2t ) Sr
175 EL%R 175 5L§ﬁ

(C) | (125GeV, 125GV ) | —0.0292(28) S | —9%(22¢) S

Table 4: The value of the vertex correction of Wrr and an amount of shifting the
Wrr width from the standard model in a one-family technicolor model without
exact custodial symmetry for each cases.

b M2 A o
G p? — M? /g2 + ¢

1 - ,
M? Vg2 + g7 5. 24
' Gg(:'gd[ Yp?— ‘Uf] 9 +97) = )

Here at the scale of p? ~ M%, we find that the contribution becomes large in the
following cases. (1) The technivectormeson’s mass is close to the gauge-boson'’s
mass. (2) The couplings (G, and (7, are becoming smaller. Because the smaller
values for (G5 and (53, are favored to satisfy the constraint of the oblique correction

S [3], the contribution from the technivectormesons will also be large. In Fig.. we

ZrT

present the behavior of 6¢7 7" including the contribution of the technivectormesons

27T ZTT

and the techniaxialvectormesons 6gf ;™ and the behavior of dg;" ™

0411 including

Wrv

the contribution of the left-handedmesons é¢;",™ as a function of M, or M,y for

several sets of values of (G; and G5,. In QCD, the mass of a p meson is 770 MeV and

ap meson 1s 1260 MeV. Hence, we assume that the mass of techniaxialvectormeson

LTT

Mzis about 220, in the calculation of the vertex correction 6g737. Moreover,

L
we assume that the mass of the left-handed meson M4, also be l‘_z%oflld. In the
previous work [3], we find that the value of G is 31.5 and A2 is 106 when the

custodial symmetry for a doublet is exact. Here, we assume that
ia e = BLE 008 = G 0 ME AT,
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The upper bound of Gy, [3] which makes SY( the correction from the technivec-

tormesons) to be negative is,

G 5.61
Gau < — ~ —= ~ 3.24. (5. 25)

V3 V3

Therefore we plot the graph in the following three cases in Fig..
(1) Gz,Ga, =5.61
(2] G, =34 (5 =0
[3) G565, =2(8"=-2)
The case(1) is one with positive S like the traditional technicolor model with custo-
dial symmetry. The case(2) is one with S¥ = 0, and the case(3) is an extreme case
with S¥ = —2. Here we obtain the suppression on the vertex correction for Z77
due to the vector meson when S is negative (Fig.). While, the correction for Wrv is
small and enhanced by the effects of the technivectormesons. because there is only
left-handed technivectormesons in the present model. We find that the difference
between the vertex corrections of Z77 and Wrv in terms of the contribution from
the technivectormesons appear. In other words, the difference will be the evidence

of the isospin breaking in technilepton sector.
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Figure 12: In (a) and (b) ( Fs, Fy, Fr ) = ( 143GeV,31GeV.35GeV ) and (c) and
(d) ( Fo, Fo, Fr, ) = ( 135GeV,90GeV,92GeV ), plotting the g7 as a function of
M, and (ngv”’ as a function of M,y for the each casees, (1) GGy, = 5.61 with a
dashline, (2) Gy, = 3.24 (SY = 0) with a thickline and (3) G5, = 2 (SY = —2) with
a thinline.
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6 The Oblique Correction from the
diagonal ETC interaction

The recent measurement of Ry at LEP, R, = 0.2202 4+ 0.0020. show that there is the
discrepancy between the experiment and the prediction of the standard model(SM).
RPM = 0.2157 with m, = 175GeV. In the extended technicolor model(ETC). the
contribution from sideways ETC interaction was first studied by the authors of

Ref.[4]. However the effects of the ETC interaction give the negative corrections to

RPM[4, 5, 6].

In the recent works [7], it is shown that the diagonal extended techni-
color(ETC) interaction may solve the Zbb problem, i.e.. the discrepancy between
the experiment and the prediction of the Standard Model (SM) in Zbb vertex. If
the contribution of the diagonal interaction to Zbb vertex is large enough to can-
cel the other corrections for the Zbb vertex, the discrepancy could be explained.
However, such large effect must contribute to the oblique corrections because the
effect comes from the breaking of the custodial symmetry in the right handed ETC
interaction. It is necessary to break the custodial symmetry to generate the mass
difference between top and bottom quarks. Hence, the T' parameter must receive
large contribution from the ETC interactions. The diagram such as Fig.16"must
contribute to the oblique correction S,T and U [1]. In this letter, we study the ef-
fect of the diagonal ETC interaction for the oblique corrections in the case that the
non-oblique correction of the Zbb vertex is consistent with the experimental data in
a realistic one-family model with the small S parameter[2](the model without exact

custodial symmetry[3]).

“In Ref.[7], the contribution from Fig.16(A) has been calculated but the contribution from
Fig.16(B) is not considered.
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6-1 Non-Oblique correction

We consider the non-oblique correction in the model with small S parameter, i.e..
the technicolor model without exact custodial symmetry. The ETC model used in
this talk is that the model that the horizontal symmetry SU(Npe + 1) 1s broken
into SU(Nr¢). In the multiplet of SU(Nyc + 1). the third generation of ordinary
fermions and the techni-fermions are contained. The lagrangian for the diagonal
ETC interaction in the one-family technicolor model is

1

(Nrc + 1)

+ Er(UrvuUr — NrctRiuty)

d ( Qi’\fﬂ QIL = ‘VTC'QE Y qz )

D .
EET("(B—TC‘) = gETCXgTC \/_) N
i VAT

+  Er(DRyuDi — Nrcbip.bi)
+ €(Lvule — Nrelpvalp)

+ ER(Npry.Nr — NrcVrY,VR)
+ ER(Erv.Er — NrcTrYur)]

(6. 1)

where Q4 = (U', D')r, Uy and Dl represent techniquarks, ¢f = (¢,b')r, ti and
by, represent the third family of quarks and “ i " is the color index of QCD. L, =
(N, E)r, Egr represent the technilepton, I = (v.7); and 7r represent the third
family of leptons. ¢ggrc is a coupling of ETC interaction. Xprc is diagonal ETC

gauge boson which mediates between the third family of ordinary fermions and techni

1

————— is the normalization
2Npc(Nrco+1)

fermions. Np¢ is the number of the technicolor.
factor of the generator of horizontal symmetry SU(Npc + 1). ftL(T) is a coefficient of
left handed coupling and fgb’f) is one of right handed coupling. Since the left handed

fermion belongs to SU(2) doublet, the couplings of up-type quark and down-type

quark in the doublet are the same as each other.
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The effective lagrangian is

i l@_ ;
Y 2 q2 = M{ 21VTC‘(¥VT(‘ + 1)
x [ &QiyQL + ELUpv" Uk + 4Dy D,
—  Nrc€h§ivuay — Nro€htrvuta — Nrofabe.bk
+ & Lpy*Ly + E4Npy* Nr + ERERY"ER (8.2)

. 7 r AT = 2
— Nrce€ilpvuly — Nrcéivryvr — Nrc€RTRYLTR)

where My is the mass of ETC gauge boson. Below the TC chiral symmetry breaking
scale, the current of techniquarks are replaced by the Noether current[23, 4. 5,
6, 25] in the effective chiral lagrangian with SU(2N.)p, @ SU(2N.)gp @ U(1)y in

techniquark sector [3, 25]. Here, we separate the right-handed current into 7% and

singlet components of SU(2),

fR + En £R

ErU RV“(R‘FfRDR/“DR = Q7" Q% + QR SvhQL  (6.3)

Explicitly, the right-handed currents of techniquark are replaced by the following

Noether current of the effective lagrangian.

Plas s Y1
5 2¥1, g B* d Bl
[UJG )Gﬁw ]\/3 ( )

. , Ms,,
Q'@ ~ 35

T6w
Qur®rQh ~ SFE: SgW* —g'B")

Mys \/§ 1
=3 h s WH + ¢’ B*)]—

M 46 5 \/_ ’ Pl
v [ag 2A (gW* — ¢'B*)]

: Mw ii Mo:

-3 (6.5)

where, w, and p, are techni-omega meson and techni-rho meson that is composed
by techniquarks and M_g and My are their masses. a, 1s a techni-axialvectormeson
and M 46 is its mass. (G and \ are the couplings which are related to the techni-

vectormesons. The Fy is the decay constant of technipion in techniquark sector.
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We can neglect the technilepton contribution to
the oblique corrections because the coefficients of
ETC coupling or decay constant £} in technilepon
sector is much smaller than that of techniquark in
order to generate the mass difference between tech-
niquark and technilepton. Besides this reason, in
the model with small S parameter[2][3], the decay

constant F5 must be much smaller than that in the

7 WEerc

Figure 13: The contribution to
the non-oblique correction ac-
cording to sideway ETC gauge
interaction.

techniquark sector to satisfy the experimental bound of 7" parameter,.

While, the non-oblique corrections for Zbb vertex [7] are given by

891" = bgrs < + 891D -

(6.6)

where, the contribution from the side-way ETC gauge interaction of Fig.13[4, 5]is

; | e e
Gk, = St TR (6.7)

and the contribution from the diagonal ETC interaction of Fig.14 is

FAJg*+¢%  (6.8)

ETia : Oy b g%TC‘
5gLD = —gfL(fR—fR)

A[%T(' A\'T(' ’+‘ 1

If the effect of the ETC gauge interaction, i.e., eq.(
6. 6 ) explain the difference between the experi-
mental data of R, and the prediction of SM, the pa-
rameter £h — &% must be larger than &7 (Nre+1)/3
and small My /ggrc is favored. Since S parameter
is proportional to Nrc, the small Npe is favored to
be consistent with the experimental constraint for

S. Therefore we choose Np¢ = 2. The parameter
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XgTC

Figure 14: The contribution to
the vertex correction according
to diagonal ETC gauge inter-
action.



¢! is taken to be unity for simplicity. Comparing the mass of between top quark and
bottom quark, &% is much larger than £%. Hence, we treat 4 as the parameter which
show the breaking of custodial symmetry. In the model with small S parameter|[2] (
the model without exact custodial symmetry[3] ), F ~ 1/2502/3 ~ 144GeV . In eq.(

6. 11 ), we put A* = 106 (See ref.[3]). Here, we define a ratio of the ETC correction

to R
$RET 2107
¥ (1 Cx Rb)ﬁ
R, 91 t+ 9r
0.03
0.02
6RETC
Ry,
0.01

600 800 1000 Ml_?OO 1400 1600 1800 2000
My [GeV]
JETC
Fi e, SREES f . for foll e = " st b
igure 15: —b—Rb as a function of My /gprc for following values for €, — &5 (a) 1
with a thinline, (b) 1.5 with a dashed thinline, (¢) 2 with a thickline and (d) 2.}

with a dashed thickline.

S

In Fig.15, the ratio presented as the functions of Mx /grrc for several values
of £,. Because the &4, must be larger than &, (Nre +1)/3 = 1, we choose the follow-
ing values for &5 — &b ~ &5, (a)1.2, (b)1.5, (c)2 and (d)2.5. If the contribution to
Ry from the ETC model explains the experimental data in 1 o level, the s RFTC /R,

must larger than about 0.012. Then, in Fig.15, it is shown that the mass of ETC

59



gauge boson My /gprc must be smaller than about 700 GeV in case (b), 900 GeV

in (¢), 1100 GeV in (d).

6-2 The Oblique correction from diagonal
ETC interaction
In the same ETC model that we calculated the contributions to Zbb vertex cor-
rection, we study the contributions from the diagonal ETC interaction to oblique
corrections. In the case Npo = 2. there are two diagrams that contribute to the

oblique correction.

The main part of the contributions to oblique correction from the diagonal

ETC interaction (Fig.16(A)) is

9 gkre 1 ¢ b \2 4 ; 1 o\2
The contribution from the techni(axial)vectormesons is also given by,
9 gkrc 1 t b\2 3 X7 -
= . - F2(gW3 — ¢ :
89 p2 *E ‘/‘1)2( ‘\vTC(‘\TTC' o 1)(‘5}? £R) ,—((IHS g B) ( 6. 10 )
MZ M? 1 M )
T <7 § — Wy 1
M: M? 1 M3 3 ;
- S Emam oy s —gB))
4 4
9 géTC l . J\[ 2, ;’\]2, 1 ‘)‘/j 2' P
SEA = N T V ! 1 7l /
6422 — ME Nro(Nro - 1)\ oF R t @t ME G llgWs+¢°B)
Mi: M3 1 M3 .
: ‘ ~—2](gWs — ¢'B)}>.

Using eq.( 6. 4 ) and eq.( 6. 5 ),

parameters[1] from Fig.16(A)

we obtain the contributions to the oblique

GIETC  _ _97 (3 ‘ fzba)? [91252( : n 29’270 LFE]. (6. 11)
2 Nrc(Nrc+1) My M% A2 T
oTETC = 9 (ER—Eh) ghrc a9’ 19" (6.12)

5 JNTT('(jvT(' + 1 ) “1i

60

M2



From this analysis, the contribution to the S parameter for the diagonal ETC gauge
interaction is negative®.
There is also another two loop contribution to the oblique correction 7" from

the diagonal ETC interaction (Fig.16(B)). Below the ETC scale, the contribution is

obtained from the following four-fermi lagrangian:

Llgire 1 2574 Aive '
4 M% Noo(Nro +1) [ & (Qp@L) (6. 13)
(5R+§R (ft £x)

+ B R (Qk Q) + —E—f QR S Qn)’l:

After Fierz transformation, the lagrangian becomes to

_lg}’ch 1 [ ii(@ k. 7_.-\Qi )2
4 M% Npc(Nre +1) = A L it
t by2 3
. MZ( D TAQR)’ (6. 14)
.4:0
E . b { QrY*Qr)* + (QrY'7°QR)

Z QR Aes QR }]

2
—

where, 7%(a = 1,2,3) is the Pauli matrix and 7° is a unit matrix. Note that the
sign in the third term different with the other terms. We replace the currents of
technifermion by the Noether current. Then, the contribution to 7" from Fig.16(B)

is given by

3 gbrc B (kb dn)” | UR—E0) s, - 2
Ws—g¢'B
32 M NTC(NT(+1)[€L T ey el
3 gkre F 2, (bRt ER)° (£R 2
32 M%2 N2Z.(Ngc + 1)[5L 4 ; E2EE

8We only consider the contribution from techniquarks. The SETC of eq.( 6. 11 ) has negative

sign[26] but the contribution is small compared with that to the T parameter. However there may
be the large contribution to S from the other fermions.
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Hence, only the terms of a factor of (€5 — £%)? only contribute to T' from Fig.16(B).

The contribution to 7" parameter is

20+ S 3 (Eh—¢ER)°

: : 2
gerC pud”+ 9 (6. 16 )

E ;\"%('(;VT(“ I 1) ”{

M2

The total contribution to 7' from the diagonal ET(C interaction is

TETC s ]ﬂAET(' 4+ TgTC. ( 6. 17 )

In Fig.17, we plot the behavior of the contribution to oblique correction 7T

from diagonal ETC interaction (eq.( 6. 17 )). by choosing the same values for

£ as those in Fig.15. For the values of M, /gprc which satisfy the experimental

constraint of Ry, the contribution to S from ETC negligible compared with that from

TC (The typical TC contribution to S is 0.1 Ny from a one doublet technifermion.).

T receives large value. In Fig.17, it is shown
that the value of 7" must be larger than about
0.9 in the cases (b),(c) and (d) for 1 o level of
experiment of R,. This value contradict with
the experimental bound of T' ( T, < 0.5). In
the model with small S[2], the situation is worse
because T' parameter already receives the con-
tribution from the custodial symmetry breaking
in technilepton sector. Hence, it is not favored
that the 7' receives the additional contribution
from ETC interaction. It is difficult that the

discrepancy between the SM and the experi-

WA

Figure 16: The Feynman dia-
grams for the contribution to the
oblique correction from diagonal
ETC interaction.

ment for the R is explained by the contribution of the diagonal ETC gauge inter-

action, because the contribution to 7' parameter contradicts with the experimental

bound.
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Figure 17: TETC as a function of My /gprc for following values for EL — f%. (a)

1
with a thinline, (b) 1.5 with a dashed thinline, (¢) 2 with a thickline and (d) 2.
with a dashed thickline.

ot Do

7 Conclusions and Discussion

In this thesis, we discussed the constraints of the oblique and non-oblique corrections
for technicolor model. To construct a realistic technicolor model. the model must

satisfy the constraints at once.

For the constraints from oblique corrections, we have constructed an effective
Lagrangian for a technicolor model without exact custodial symmetry. By using
the Lagrangian, we have computed tree level contribution to S and U from spin 1
technimesons. We have shown that in a realistic one-family model, the techni p;
and the techni w; mixing can contribute to S parameter with negative sign. The
most important term in our effective Lagrangian is the mixing in the kinetic term,
trF,7°F, . S is independent of the coefficient of the mass mixing term 3y. We
have also studied the condition to have minimum value of S under the vector meson

(177) dominance. We find that the vector meson consists of NN component must
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he dominant dynamical degree of freedom to take S to have minimum value (ay =1
) This argument holds as far as hypercharge (Y7;) is negative. Thus the mechanism
for negative S presented in this paper does not work for one doublet model with
Y; = 0. This conclusion is consistent with an analysis with a free technifermion
model [2]. On the contrary to the present model, we may introduce a small isospin
breaking for techniquark sector. In that case, the corresponding parameter of isospin
breaking term, ay must be —1 to have minimum value of S because hypercharge
of techniquark Y7, is positive. The vector mesons consists of DD component will
play major role to have minimum value of S in that case. We also note that exotic
lefthanded charged vector mesons are naturally introduced in our framework. They
contribute to [/ due to the mixing with W*. [/ can be both negative and positive

depending on the parameters.

There is an important distinction between our computation and that with
a free technifermion model even if the parts of the expression of S, T and U look
similar to each other. The distinction is that our computation certainly incorpo-
rates the nonperturbative diagrams which are not taken into account of in the free
technifermion one loop diagrams. Once the parameters of our Lagrangian are de-
termined either experimentally or theoretically, the results presented here would be
more reliable. There are many things to be done in this direction. The origin of
the isospin breaking must be studied. Also we need to relate the parameters of
the effective Lagrangian to more fundamental interaction for example. by modeling
technicolor by Nambu Jona-Lasinio model [22]. The difference between our compu-
tation and that with a free technifermion model will also be clarified by this kind of

study.
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We have also described the vertex correction of Zbb, Z77 and Wyt in the
one family extended technicolor model without exact custodial symmetry in the case
that Ny is large. The values of the corrections can not be determined precisely,
since the corrections include a few unknown parameters £s. The corrections which
are obtained in this work is much larger than those in one doublet model. If we
suitably choose each unknown parameter £, we will be able to obtain the vertex
corrections which satisfy the constraint from the experiment. When £ = 1. the
vertex corrections are so large that this model is ruled out. Then, in order to
reduce the values in this case, we may have to consider the other ETC model or
walking technicolor. However, we find that if the the difference between the vertex
corrections for Z77 and Wrv is measured in experiment, it is the evidence of the
isospin breaking in the technilepton sector. It comes from not only the difference
between the decay constants but a large contribution to Z77 vertex due to the
technivectormesons. The contributions of the vectormesons for Z77 reduce the value
which takes account of only technipion contribution (the first term of the eq.(5. 8)).
The vertex correction for the Z77 can be negative due to this effect. While, the
contribution for Wrv is not changed so large. Hence, the difference between the
corrections for the Z77 and the Wrv appear. We expect that in the near future the
precession measurements (in LEP200, JLC etc.) of the vertex corrections of Wrv

will determine whether the isospin of technilepton sector breaks or not.

The contribution to the vertex correction of Zbb from the diagonal ET( gauge
interaction become large with positive sign when the £f, — €% is larger than & (Nye +
1)/3. However, because the such large & — &% breaks the custodial symmetry
significantly, 7' must receive the contribution from the diagonal ETC' interaction.

In this letter, we consider the case that Np¢ is small value[7] because of keeping S



small value[2]. Let us mention possible corrections to our calculation. There are
two types of corrections. One is perturbative technicolor correction to four-fermi
operators (eq.( 6. 3 ) and eq.( 6. 14 )), and the other is matrix element of four-fermi
operators. We neglected the perturbative technicolor corrections and assumed that
the coefficient of four-fermi operators will not be changed much from the lowest tree
level ETC gauge boson exchanged diagrams. The validity of these assumption must
be checked in the further investigate. By taking account of the uncertainties of our
calculation, we point out that the proposal of Ref.[7] is on very dangerous ground
rather than conclude that our calculation in this letter completely rule out the
proposal. If our calculation is not altered after incorporate the corrections, we may
concluded that It is difficult that the éLgprc/Mx becomes large enough to explain

the discrepancy for Rj, . unless the other mechanism suppress the 7' parameter in

this model.
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Appendix

In this appendix, we provide some useful formulas needed to derive the results given

in the text.

A Effective Lagrangian

Ls = thr(am)2 + thT(QLL)Z + Fzztr(ou)z + Iif{r'(chu)2
+ 13ltT(Q8L+3Q2_L). ( A.l )
1 " 1 i 1 S | i
= §trFV5 FVGW -+ §U’Fv2 FVz;w + 5{,‘}:"_‘;6}4‘;‘6;11/ -+ EirF‘LQFVw‘?uv
: . 1 ‘ ) ) 0 :
— ML tr(Vey — —aeu)? — ME tr(Vaey — =—ausu)’
('6 ” (Iu}(‘}
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g 7\132w§8 152 Mol

(GZLNT}OBL;:) ( '\; )

B Decomposition into fields’ components

In terms of fields” components, a ;s and os are given by:

1 2 a/ e a \/7 h a
sl = —2\/§F6{a§::17 (8,P* + gw?)
F,
+73(0, P + \ﬁ) ap W2 —¢'B,)}®1s, (B.1)
1 2 FL 7Qa - L M l a .
oL = b, M=l (B.2)
1 3 38 F 8 ‘
Quu = “HpT {0,11° + —(9” =481 (B.3)
L TP )
Qgly, = _4\/§Fs < _3]2) d,.0s., (B.4)
(B.5)
i A fF ek
Asy 36t = 2ﬂT3 ® Ialag, + (WS —¢'Bu)}
- \/_Fa .
+ ng ® Ia[ag, + /\F{)P gWe. (B.6)
i g 1 R o sl g
ALH = EQLL# = E; 7 [aLu /\ F {() H 3t 79” Iy }], ( B.7 )
i i ) e . .
Agu = A—QOQLM = §T3[CL2# + m{duns + -_—Z(g”‘:g“ o ‘(j/B“)}]. ( B.b )
1 L Iy
‘48;1 = )\—Sag_Lu = 4\/_3_ < _312> [(Lgu )\SFSO 98] ( B() )
: i g s g A8, o .
Ve — G o6l = 5 373 ® I3[p3, — ﬁ(g”w +¢'B,)]
i
e ~—(gW2)], ( B.10 )
: : V3
Luﬁu < G—“,,GQWGH“ == 2\/—]6[“‘)6;1 —)Gd)b( }ngB )] ( B.11 )
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Wi <~ S\T

(2YLig'By)]- ( B.13)

By substituting these expressions, we obtain :

4 A c
~{(0,P7) + (BIP) + (3,057} + 5 SH(O,P7) + (8,11°)?)
Sa=1

[ul»—‘ B | =

2
A 1 . _ ) )
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1 | M
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PA 1+‘5 B e 148
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PaMinMas 1 0,0s{0,11° + (g” T ¢ B}, ( B.16 )

gAwiQAMiS = };/3?4 FZFS/\2/\8

We fix the gauge into unitary gauge. This corresponds to the following replacement.

. 2
(gW: —g'B,) — (gW)—¢'B,)— TFEYL (V3Fs0,P° + F,0,I1°) B.1T )
b 2
” ) &
G, g e §F—+—F \[Fe() ' +F20#H“) ( B.18)
6 L

We also redefine the axial vector and left-handed vector mesons.

Qg7 = ﬁ@ﬂja, ( B.19)
agu — agu - /\G—nga“PB' ( B.20 )
as, — Qag, — ﬁaﬁg. (B.21)
a%u — agu 3 i [ 322 )
8g; — A= /\LFL() 1. ( B.23 )

Then, Ls and £, are written in terms of physical degrees of freedom.

£S — l{(a;tﬁg)z <+ (auﬁa)2 e (au08)2}

V35,
4FF,

F
90s{cos x30,IT° + 2(gwf — ¢'B,)}
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where,
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C Pseudo Nambu Goldstone boson sector

1 N .
L:S = ;{(()ung) (O;AIIH)Z oF (();198)2}
1 o~ By B
+: §(3F2+F (gW, — ¢'B..)* + (:”eerFf)(g” 3
\/'/3_]. 3 -/ ~
Jthdeﬁg{cos\g() Vi (gU —-4¢'B.))}+ L, { Ol

Now we are ready for giving the explicit form for £} . Because II?, I1I* and 63 are
NGBs associated with broken global symmetry, we can introduce the following mass

terms as L} .

!

2 3\‘ ~
- ms =2 11 | .
A= (1l 98)(;:3 J )(93>—3m§nj (C.2)
ng 8 2

2

N =

The mass terms break the global symmetry without loss of SU(2) @ U(1) gauge

ivariance and these NGBs become PNGBs.

D O(p?) terms in axial vector and left-handed

vector sector

In this appendix, we show how to determine the O(p?) terms which consist of NGBs

and PNGBs in this sector. As explained in the text, we add the O(p*) terms so that

]
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the incorporation of axial and left-handed vector mesons does not change the decay
constants of NGBs and PNGBs. By doing so, p (1) parameter depends only on the
parameters in £, . Though it is just the matter of the definition of the parameters
of O(p*) terms in L,. our choice is convenient because the the parameters in L,
are directly related to physical quantities such as decay constants. Further p (7')
parameter is independent of the parameters in £4 with the procedure adopted here.
Let us discuss 0(p?) terms which consist of agy and ap; first. These terms are
related to Ag and A;. The equations of motion of Ag and Ay up to O(p?) are,
A i
= /\—60&_-
i

AL = EGLJ_. ( Dl )

By substituting these into ( 4. 45 ). we do not have O(p*) terms of NGBs and
PNGBs. Therefore the O(p?) terms which are already present in ( 4. 45 ) is enough.
O(p*) terms which consist of a,; and as; have more complicated coefficients as

shown in (44). We have determined them in the following way. Let us focus on a

part of L4
Lo = — M2 gy — —opi )" T l’\ﬂ (ag, — Ld- )2
0 2 Ag 8 AB 8Llu 2‘ As 2u /\2 21571
i 1+96). 146,
+ 5A,—(azu == (——)auu)(%u B (—)Osm)
2 A2 Ag

= 1 i 1 M;, & (a2 — 3-da1)
= 2((a'z ,\302.1.) (as ,\SQSL))( Ba Mis (aS_tdB_L)

1 1 1 0 3,46/ _'1—?(}‘2.L
#pllen=hom) (sa=3dea) (g5 3 ) (—':idﬁ

TS0 oy e .
+7/\2)\80u08b (D.2)

where we have used the following notation;

R
Agu = 7;( T3>(1,2u. (D})

&
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& sl bl
448‘, == lm < _312) agy - ( Dl )

140 : 2

oy = 5 ( T3) Q2] ( D‘;) )
1 Ig 5 .

e S m( b —31-2)““" Py

The equations of motion for a; and ag up to O(p?) are:

ag — %d‘Q_L o l 1 7‘1?18 —JT" < 0 '34(5’) <%(A2L )( D.7 )
as — 3,881/ 2 M2, M3, - Pa —Bs M2 p\Bab O Las, '

As 7 g

By substituting this into £y, we obtain;

1 7% M2 .b% 1 .

L.= e —tr(ags,)?
4 M3, M%, — %ji AL ;

o §

= =T, = trloaig)
4 M3, M3, — %3?1 A ]

2 66BMILMEs 1

V3 M3, M2 — iiﬁ Az g

_+_

= 7‘(0uu7'308m) (D.3)

By subtracting £. from Ly, we obtain O(p?)terms which consist of a;; and ag; in
(4. 45 ). These are the desired counter terms which kill the effect of axial vector

mesons and left-handed vector mesons on p (T') parameter.

E S in scaling-up QCD technicolor model

For the completeness, we compute Syjcor, of scaling-up QCD technicolor model which
is quoted in the introduction. The scaling-up QCD technicolor model has SU(2);,
SU(2)g global symmetry and Nyc = N. = 3. Therefore we only need to study the
SU(2) subsector of one-family model. S in this model is given by:

1 1
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The Gy and A4 are defined in the same way as GGig and A\g. 7y and A4 are determined
by p — 77 and a; — Y7 decays .

2

m 4 mf_ <

 FL- ) L 2(1 - —£)z, E.2
P 487‘( 771;7( 'ZGvfé(.D) ( ’77,2) ) ( )
o AR L '
Fzz'wr ==t 5 ) ( ! 3 ”) 5 ( s )
24‘fQCD C74 772(1

where focp is the pion decay constant. By using the following values,

foecp =93MeV, m, =140MeV, m,="T68MeV, m,=1260MeV,

Tyer = 152MeV, T,pr = 0.64MeV,
we obtain:
@ =518 A =108, (E4)

This leads to the following estimation of Sijcory for the scaling-up QCD technicolor

model which is quoted in the text.
Stheory = (040 — 012) =125 ( E.5 )

0.40 comes from the contribution of / = 1 vector meson while 0.12 comes from [ = 1
axial vector meson. Because they are dimensionless quantities, the scaling relations

between the parameters in QCD and that of the technicolor are given by,
Ge = Gv. /\6 = /\A- ( E() )

This equalities hold if the underlying dynamics of the techniquark sector is the same

as that of QCD.
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