A Study on
Distributed k-Mutual Exclusion Algorithms

ANl VN
Hirotsugu Kakugawa

February 1995



Abstract

The mutual exclusion problem is a problem of arbitrating access conflicts for resources. The
problem has been considered as a fundamental problem in computer science and extensively
studied from the first minute operating systems started providing multi-tasking or multi-
programming feature. Recently, a large number of computers are connected to a computer
network. Such a system is called a distributed system. In a distributed system. several pro-
cesses do their jobs by communicating with other processes on remote computers. When they
share resources, processes may request the same resource at the same time. If the resource
requires mutually exclusive access, then some regulation is needed to access it. This is the
distributed mutual exclusion problem.

Most of previous works for the distributed mutual exclusion problem treat the case in which
only one resource exists in a distributed system. This model may be suitable for modeling,
e.g., access control of a distributed database. However, there are other cases in which more
than one identical resources exist in a distributed system. The problem of arbitrating identical
k resources is called the distributed k-mutual exclusion problem.

Distributed systems consist of many components such as computers and communication
links. In general, the probability that all components are simultaneously in operational is
smaller than the probability that a component is in operational. This implies that when
we design a distributed system, we should expect that some components may fail. Fault
tolerance is therefore regarded as one of the most important issues in designing distributed
systems. Unlike parallel computers. distributed systems are loosely coupled, so that it is easy
to add redundant components to increase the availability of distributed systems in such a way
that even if several computers and/or communication links may fail, the rest of system is still
in operational and alive components work correctly.

This dissertation investigates the distributed A-mutual exclusion problems. We discuss two
approaches: the coterie approach and the self-stabilization approach. In Chapter 1. we give a
general introduction to the distributed k-mutual exclusion problem. and address the objectives
of this dissertation.

Part I contains the coterie approach. In Chapter 2, we give an introduction to the coterie-
based distributed mutual exclusion and introduce the concept of k-coterie as an extension of

coterie. In Chapter 3, the availability of k-coterie is investigated. In Chapter 4, a distributed



k-mutual exclusion algorithm using k-coterie is proposed and its correctness is proven. In
Chapter 5, to demonstrate the efficiency of the proposed algorithm, computer simulations of
the proposed algorithm are done.

In Part II. the self-stabilization approach is discussed. A self-stabilizing system is a sys-
tem which converges to a legitimate (stable) system state without centralized control even if
any transient errors happen. In Chapter 6, we give an introduction to the self-stabilization
approach. Formal definitions of computational models are described. In Chapter 7 we pro-
pose several self-stabilizing mutual exclusin algorithms. Forst, we propose a self-stabilizing
k-mutual exclusion algorithm for unidirectional and bidirectional ring networks whose sizes
are prime. The proposed algorithm does not require process identifiers, i.e., it is a uniform
system. Thus. it works for anonymous ring networks. Next, we investigate the self-stabilizing
1-mutual exclusion problem as a special case of the sclf-stabilizing k-mutual exclusion prob-
lem. We propose a randomized self-stabilizing 1-mutual exclusion algorithm for unidirectional
ring networks.

In Chapter 8, we summlize the results in this dissertation and discuss future tasks.
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Chapter 1

Introduction

1.1 The Mutual Exclusion Problem

The mutual exclusion problem first arised when the concept of concurrent processes was intro-
duced in operating systems. When more than one processes share memory cells, undesirable
situations may happen: Suppose that two processes P; and P, which share a variable, say
z, wish to increment z by one. To increment the value of z, a process loads the value of z
into a register in CPU, increments the value of the register by one, and then stores it back
into z. If P, starts executing the above procedure after P, finishes its execution, the result
is correct, i.e.. the value of z is incremented by two. However. what if their executions are
interleaved? Consider, for example, the following interleaved execution sequence. P; loads z,
P; increments the register. P, loads z. P, increments the register, Pp stores the register into

z, and then Pj stores the register into z. z is incremented by only one !

To guarantee such an undesirable situation does not happen. the concept of eritical section
is introduced. A program text can be partitioned into two kinds of sections: sections in which
there are no accesses to shared resources (e.g.. shared variables) and sections in which shared
resources are accessed. The latter sections are called critical sections or critical regions.
Then it is easy to see that by synchronizing processes in such a way that at most one of
them is in a critical section. we can achieve one aim of avoiding undesirable situations. For
instance, by encapsulating the three steps of increment procedure, (1) loading z into a register,
(2) incrementing the value of register, and (3) storing the value of the register, in a critical

section, we always get a correct result.

To make executions of critical sections mutually exclusive, a process wishing to enter a
critical section must issue an operation to get a permission. Dijkstra introduced an abstract
data type called semaphore in [Dij68]. To enter a critical section, a process must issue a P
operation. If there is a process being in a critical section at the time instant, the execution of

the process is suspended until no process is in a critical section. When a process exits a critical

13



14 Chapter 1. Introduction

section, it issues a V operation to permit another process to enter a critical section.! Modern
CPUs support P and V or similar instructions (e.g., test-and-set instruction) in order to
solve the mutual exclusion problem.

In this dissertation. we discuss the mutual exclusion problem in a computer network (not

in a single computer).

1.2 Distributed Systems

Recently. a large number of computers are connected to a computer network. A set of comput-
ers connected by a set of communication links is called a distributed system. We characterize
distributed systems by the absence of shared memory. In a distributed system, processes on
a computer do their tasks with other processes on remote computers. To achieve cooperative
tasks (or competitive tasks), processes must communicate with other processes via communi-
cation links since there is no shared memory.

The following motivates distributed systems[Hag90, Hag93]:

e High performance — Since the system consists of several computers, independent tasks

can be processed in parallel. Load balancing is easy.

e Distribution of users — When users of the system are geometrically distributed, it is
natural to process tasks distributedly.

e Extensiveness — In general, addition of computers and communication links can be done
casily with small modification of the current system. Replacement of computers and
communication links is also easy. This property comes from the nature that distributed

systems are loosely coupled.

e Fault-tolerance — A centralized system cannot provide services when the central ma-
chine stops by failure. Distributed systems may provide services if there are several alive

components.

Distributed systems have many advantages compared with centralized systems. However,
designing distributed algorithms to control distributed systems is by no means easy because
of the following reasons: Computers must send/receive messages to other computers to get
enough information to do their tasks. Messages are delivered with delay and therefore in
principle there is no way to capture the global state of the system. In addition, there is no
process which controls the entire distributed system. Therefore, to achieve fault-tolerance,

algorithms must consider failures such as process stops and message losts.

1To speak rigidly, operations P and V are defined as follows: When a process performs a P operation,
it executes next instruction (i.e.. it enters in a critical section) if there is no processes in a critical section.
Otherwise. it is blocked until no processes are in a critical section. A process performs a V operation when it
exits from critical section. The operating system unblocks a process after a performance of a V operation.
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1.3 The Distributed Mutual Exclusion Problem

When processes in a distributed system share a resource which must be accessed exclusively,
the access to the resource must be controlled as in the case of concurrent processes in stand-
alone operating systems. To enter a critical section, a process must assure that there is no
process which is being in a critical section in the distributed system.

Many algorithms have been proposed to solve the distributed mutual exclusion problem.
They are classified into two types[Ray91b]:

e Permission-based principle — A process P wising to enter a critical section requests
some other processes to permit it to enter a critical section. If a permission is given from

each process P is asking, P can enter the critical section.

e Token-based principle — There is an object called a token in a distributed system and
it travels among processes. A process can enter a critical section while it is holding the
token. The mutual exclusion is guaranteed because there is only one token in the system

and there are no two processes having a token at the same time.

Several algorithms are surveyed in Chapter 2.

Consider a distributed system having two magnetic tape drives A and B. Suppose that two
processes P and @ wish to use two magnetic tape drives. In such a case, we must be careful
to avoid the state in which P reserves A and Q reserves B, since both P and @ are stuck
forever if both of them request another tape drive. Deadlock is the terminology to denote
such situations.

We also avoid a starvation situation in which a request is not satisfied forever (i.e, a magnetic
tape drive cannot be allocated forever).

In designing a mutual exclusion algorithm. guarantceing the deadlock free property and
the starvation free property are important issues. Note that once a deadlock happen, it

cannot be solved; while starvation can.

1.4 The Distributed k-Mutual Exclusion Problem

In the example of a distributed database described above. only one item is shared by processes.
However. there are systems such that & identical resources are shared by processes.

For example, consider a Ethernet local area network and many computers executing pro-
cesses are connected to it. Since Ethernet is a CSMA/CD (Carrier Sense Multiple Access
with Collision Detect) type local area network, the performance of the network becomes bad
suddenly when computers send packets frequently. To avoid such situation, a distributed k-
mutual exclusion can be applied. The bandwidth of a network can be considered as resources
and a program fragment in which a process sends a large amount of data via network can be
considered as a critical section. When a process wishes to send data. it must enter a critical

section. Then the total amount of traffic of a network can be controlled.
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The simplest way of solving this problem is to solve the 1-mutual exclusion problem for each
resource, i.e.. we distinguish each resource by labeling a unique name and provide a mutual
exclusion algorithm for each resource. This is a simple solution, however, a process must
choose which resource it wish to use even if the & resources are identical. By this solution,
many processes may be waiting for a resource even if there are free resources. This motivates
a study of distributed A-mutual exclusion algorithms. The distributed A-mutual exclusion

problem is the main theme of this dissertation.

1.5 Fault Tolerance of Distributed Systems

Fault tolerance is an important issue and it is desirable that distributed systems can tolerate
from any failures. But implementations of fault tolerance are difficult or sometimes impossible.
For instance, it is shown that there is no consensus algorithm in totally asynchronous system
even if the number of faulty process is one [FLP85, TauS)l]. Thus, it is common to classify
the failures into several classes and fault tolerant systems are discussed by assuming failure
classes.

For instance, failures are classified as follows [Hag90, Hag93]:

e Crash failure — Processes (or links) completely stop when an error occur. If a failure

occurs, it never send any message.
e Send-omission failure — Messages may be lost when sending.
e General-omission failure — Messages may be lost when sending and/or receiving.

e Byzantine failure — Processes may send strange messages to cheat other processes.

Although several computers and/or links may stop by power down and the value of memory
cells or messages on links may be lost, they have complete functionality and may work correctly
again if power is supply recovers. Such failures are called transient failures.

A system which tolerates against any transient failures is called a self-stabilizing system
and was first discussed by Dijkstra [Dij74]. A self-stabilizing system is a system which con-
verges without centralized control to a legitimate (stable) system state even if any transient
errors occur. In the latter half of this dissertation, we propose several self-stabilizing mutual

exclusion algorithms.

1.6 Organization of This Dissertation

This dissertation consists of two parts. We discuss the coterie approach of the distributed
k-mutual exclusion problem in Part I. The self-stabilization approach is discussed in Part II.
Part I includes Chapter 2 to Chapter 5 and Part II includes Chapter 6 to Chapter 7.
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In Chapter 2, we discuss the coterie approach. Previous works for distributed mutual
exclusion are also reviewed in this chapter. Coterie is a set of process groups such that a
process wishing to use a resource must get permission from all processes of a process group.
We propose a concept called k-coterie as an extension of coterie. In Chapter 3, the availability
of coterie is analyzed. Intuitively, the availability is the probability that at least one process
can use a resource in spite of process and/or link failures. Since there exists k resources, the
definition of availability is not enough. We introduce a new measure called (k,r)-availability.
The (k, r)-availability is the probability that at least r processes can use resources at a time.
If k. = r = 1, the (k.r)-availability is the conventional availability. We show a necessary
and a sufficient conditions for a class of coteries called k-majority coterie to be optimal in
the sense of (k,r)-availability. In Chapter 4, we propose a distributed k-mutual exclusion
algorithm using a k-coterie and its correctness is shown. To demonstrate the efficiency of the
proposed algorithm, the average message complexity of the algorithm is examined by computer
simulations. The simulation results is shown in Chapter 5. In the simulation, each process is
executed on different workstations connected to a local area network.

In Chapter 6, we discuss the self-stabilization approach. A self-stabilizing algorithm is
an algorithm which tolerates from any transient failures and therefore, initialization is not
necessary for the system: it converges to a stable state automatically. In this dissertation, we
consider a uniform self-stabilizing systems on ring networks. A system is called uniform if all
processes are identical and do not have process identifiers. In Chapter 7, we propose several
self-stabilizing mutual exclusion algorithms. First, we propose a self-stabilizing k-mutual
exclusion algorithm on rings whose sizes are primes. Next, we consider the self-stabilizing
1-mutual exclusion problem as a special case. In [BP89]. Burns and Pachl showed that there
exists no uniform deterministic self-stabilizing 1-mutual exclusion algorithm if the number
of processes on a ring is composite. We show that there exists a uniform probabilistic self-
stabilizing mutual exclusion algorithm when the number of processes is composite.

In Chapter 8. we summarize the results in this dissertation and present open problems and
future tasks.



Part 1

The Coterie Approach
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Chapter 2

The Coterie Approach for the
Distributed k-Mutual Exclusion

In Part I, we investigate the distributed A-mutual exclusion problem by taking the coterie
approach. First, we discuss the distributed mutual exclusion (i.e., the distributed 1-mutual
exclusion) based on coterie and survey previous works. Then, we motivate a study of the dis-
tributed A-mutual exclusion. Finally, we introduce a concept k-coterie to solve the distributed

k-mutual exclusion problem.

2.1 Previous Works for the Distributed 1-Mutual Exclusion

The distributed 1-mutual exclusion problem is one of the fundamental distributed problems
and many algorithms to solve the problem have been proposed. In this section, we survey

previous works of the distributed 1-mutual exclusion.

2.1.1 The first distributed 1-mutual exclusion algorithm by Lamport

The first distributed mutual exclusion algorithm is proposed by Lamport [Lam78]. To guaran-
tee mutual exclusion, no deadlock, and no starvation, distributed mutual exclusion algorithms
must have some arbitration mechanism. To this end, he proposed a logical clock in totally

asynchronous distributed systems. A logical clock is defined as follows [Lam78|:

e Initially. a logical clock of every process is zero.

e When an internal (local) event (e.g., update of a variable) occurs at a process P, a logical

clock of P is incremented by one.

e When a process P, sends a message M to Py, the value of P,’s logical clock, say c,, is

attached to M, i.e.. a pair (M, cs) is sent. When Py receives a message, it retrieves a

21



22 Chapter 2. The Coterie Approach for the Distributed k-Mutual Ezclusion

clock value of Py (= ¢g) and compares with its own logical clock ¢4. Then, Py;’s logical

clock is updated by taking maximum of these two logical clocks. i.e., ¢q := max(cg, c).

Note that this logical time has no relation to the physical time.

The priority among mutual exclusion requests is defined by a pair of a logical time at which a
request is issued and a process identifier of a requesting process. The pair of a logical time and
a process identifier is call a timestamp, and it is assumed that every request message contains
a timestamp. Since total ordering is defined on timestamps. processes can tell which request
has the highest priority. Thus, by usage of timestamps, his algorithm avoids starvations and
deadlocks.

In his algorithm, a process which enters a critical section sends request messages to all the
other processes. When a process receives a request message, the request is put into a priority
queue and it sends a reply message to the requesting process. The requesting process enters
a critical section if it receives reply messages from the other processes and its request is the
highest among items is its priority queue. To exit from a critical section, it sends a release
message to the other processes and deletes its request from its queue. A process receiving a
release message deletes the corresponding item from the priority queue. For every invocation
of a mutual exclusion, it must send messages to the other processes in a distributed system. So,
this algorithm is based on the unanimous consensus method and requires 3(n — 1) messages
per invocation of a mutual exclusion. If a process stops by a failure then other alive processes
cannot enter their critical sections; thus it is not a good algorithm from the view point of the
fault tolerance.

Ricart and Agrawala proposed an improved algorithm [RA81] which requires 2(n — 1) mes-
sages per invocation of mutual exclusion. but it sends a request message to every process like
Lamport’s algorithm. Carvalho and Roucairol further improved the algorithm to reduce the
number of messages [CR83. RA83].

2.1.2 Majority and voting

In Lamport’s algorithm and Ricart and Agrawala's algorithm. a process must communicate
with all processes. To guarantee mutual exclusion. however, the unanimous consensus method
is not necessary. Thomas proposed the majority consensus algorithm to guarantee mutual
exclusion [Tho79]. A process which enters a critical section must get permissions from a
majority of all processes. Assuming that more than a half processes are alive, alive processes
can enter their critical sections, i.e., they can continue their tasks even if at most half of the
system components stop. This algorithm is definitely more resilient than Lamport’s algorithm
[Lam78].

As a generalization of the majority method, Gifford proposed the weighted voting [Gif79].
Each process is assigned a number of votes. A process must collect a majority of total votes
* to enter a critical section. Note that the majority method by Thomas is a special case when

each process has one vote. Each computer has different reliability, in general. If more votes
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are assigned to more reliable computers then it is expected that the availability of system
increases. (Recall that the availability of mutual exclusion is the probability that at least
one process in a distributed system can enter a critical section.) In addition, the number
of processes that a process must exchange messages on an invocation of a mutual exclusion
can be controlled by changing vote assignments. As an extension of the weighted voting, In
[CAA90], Cheung, Ahamad and Ammar proposed the multi-dimensional voting method as an

extension of the voting method. The vote assigned to a process is a multi-dimensional vector.

2.1.3 Coterie

To decrease the number of messages per mutual exclusion invocation and to increase the
availability, the concept of coterie is proposed by Garcia-Molina and Barbara [GMB85]. The
definition of coterie is as follows.

Definition 1 Let U be the set of all processes. A set C = {Q1.Q2,...,Qm} # 0 is a coterie
if and only if the following conditions hold:

1. Non-emptiness:  For each i, Q; # 0.
2. Intersection property: For each i,j. Q; N Q; # 0.

8. Minimality:  For eachi.j (i #j). Qi € Q;.

Elements of a coterie is called quorums. ]

A process wishing to enter a critical section sends a request message to every process in
a quorum @ € C. If it can get permission from every processes in a quorum, it can enter a
critical section. Mutual exclusion is guaranteed because every two quorums has non-empty
intersection and processes in an intersection of quorums serve as an arbiter of mutual exclusion
requests. It is shown that (1) every voting assignment in the weighted voting scheme can be
expressed in terms of coterie and (2) there exists a coterie which cannot be expressed in terms
of the vote assignment[GMB85]. Thercfore, the majority method [Tho79] and the centralized
method are also expressed in terms of coterie. Coterie is thus more powerful than the vote
assignment method.

Garcia-Molina and Barbara [GMB85] proposed the concept domination of coteries.
Definition 2 Let Q and R be coteries. @ dominates R if and only if a condition
VReRIQe QQC RIANQ#R

holds. A coterie Q is a non-dominated coterie if and only if there is no coterie which
dominates Q.
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A coterie @ which dominates R is better than R because of the following reasons:

o Availability: Suppose that a set of alive processes is S. By definition of domination, if
there exists R € R and R C S then there exists @ € Q@ and @ C S. Intuitively, if a
system using R is operational at the presence of failures then a system using Q is also

operational. but the opposite is not always true.

o Message complexity: Assume that a system uses R and that a process communicates
with processes in R € R. By definition of domination, there is a quorum in @ € @ such
that @ C R. which implies that a process can use Q instead of R if a system uses Q.

Because @ C R. the number of messages a process must send is smaller than or equal.

Several algorithms using coterie has been proposed. Maekawa proposed an algorithm using
coterie constructed from finite projective planes. The size of quorums of the coterie is approx-
imately /n. He showed that coteries based on finite projective planes are the optimal coteries
in the sense that each process has equal amount of responsibility to the mutual exclusion
control. A process wishing to enter a critical section sends a request message to every process
in a quorum. It waits until permission is granted by all process in the quorum. After exiting
a critical section. it releases the permission. To avoid deadlock, permissions are preempted
according to the priority defined by Lamport [Lam78]. (Sanders pointed out that Maekawa’s
algorithm may cause deadlocks [San87].) Each process requires O(y/n) messages per mutual
exclusion invocation because the size of quorums is /n. Singhal proposed a Mackawa-type
deadlock free algorithm without additional messages for deadlock resolution [Sin91].

Not only mutual exclusion algorithms but also properties of coteries and construction meth-
ods are investigated by many researchers.

In [AA89]. Agrawal and Abbadi proposed a coterie constructed by binary tree. The size
of quornms of a coterie varies from logn to ["T“] Kumar proposed a hierarchical quorum
consensus and a coterie with multilevel hierarchies whose quorum size is n%-%* [Kum91]. Ibaraki
and Kameda investigated properties of coteries from the point of view of boolean functions
[IK91] and showed a characterization of non-dominated coteries. Neilsen, Mizuno and Raynal

proposed a method for constructing a complex coterie from simple coteries [NM92. NMR92].

2.1.4 Study on fault tolerance

Barbara and Garcia-Molina discussed the availability of mutual exclusion [BGM87]. They
showed several heuristics for vote assignment to increase the availability of mutual exclusion
for arbitrary network topology. When the network topology is complete, the communication
links never fail. and reliability of each process is p > 0.5. then the majority method [Tho79] is
shown to be optimal in the sense of availability. Rangarajan and Tripathi proposed a variation

of finite projective planes based coteries to increase the availability. The quorum size of the

coterie is y/nlogn.
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2.1.5 Token-based algorithms

The above algorithms are based on he permission-based principle, i.e.. a process can enter its
critical section only if certain permission is granted.

Algorithms based on the token-based principle have also been proposed. Suzuki and Kasami
proposed an algorithm which requires at most n messages per invocation on mutual exclusion
[SK85]. An imaginary object called token is provided in the system and a process which
holding the token is the process which has the privilege to enter its critical section. If a
process lolds a token then it is not necessary to send any request messages. Otherwise, it
sends a request message to every process. In their algorithm, the sequence number is used
to guarantee deadlock freedom and starvation freedom. Suzuki and Kasami also showed an
algorithm with bounded sequence number. The algorithm proposed by Ricart and Agrawala
[RA81] also uses the sequence number but the value is unbounded.

Raymond proposed another token-based algorithm [Ray89b]. Her algorithm dynamically
maintains a directed spanning tree of a network. The direction of an edge of a spanning
tree indicates the direction of a token. A request message is forwarded along directed edges
of a spauning tree. This method does not require a process sending its request message to
all processes. The number of messages required per invocation of mutual exclusion depends
on the topology of tree but typically O(logn) under light demands of mutual exclusions.
In the case that the demands of mutual exclusions are heavy, approximately four messages
are necessary. Satyanarayanan and Muthukrishnan proposed a modification of Raymond’s
algorithm such that it can provide least executed criterion as a fairness policy of mutual
exclusion by processes [SM92].

Mizuno, Neilsen and Rao proposed an algorithm based on token-based principle using coter-
ies [MLRI1]. A process which is requesting to enter a critical section sends a request message

to a process of a quorum of a coterie.

2.2 Previous Works for the Distributed k-Mutual Exclusion

In this section. we review previous works for the distributed k-mutual exclusion problem.
An algorithm for distributed A-mutual exclusion can be constructed from k& mutual exclusion
algorithms. That is, we name k resources distinct names and a process wishing to use a resource
chooses a resource name among k resources and issue a request for the mutual exclusion
algorithm for the resource. This is a simple solution but has a drawback. Suppose that every
process specifies the same resource. they must wait a long time even if there are free resources.
By this reason. several distributed k-mutual exclusion algorithms have been proposed.

The first distributed k-mutual exclusion algorithm is proposed by Raymond [Ray89a]. Her
algorithm is a modification of Ricart and Agrawala’s distributed 1-mutual exclusion algorithm
[RA81]. According to her algorithm. a process must send a request message to every process

in a distributed system. It can enter a critical section if it receives n — k reply messages. where
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n is the number of processes. The algorithm requires 2n — k — 1 messages in the best case and
2(n —1) in the worst case. This algorithm tolerates from failures of arbitrary k& — 1 processes.
In [BC94], Baldoni and Ciciani proposed a modification of Raymond’s algorithm [Ray89a] so
that it can provide priorities (e.g., short job first) for mutual exclusion requests. To avoid
starvations, they used gated batch priority queues.

Raynal proposed a resource allocation algorithm in [Ray9la]. He discussed allocation of
any amount of resources among M identical resources. This is a generalization of k-mutual
exclusion because k-mutual exclusion can be considered requesting one resource among k
resources. The algorithm proposed by Raynal also sends a request message to every processes.

In [SR92]. Srimani and Reddy proposed another algorithm which is a modification of Suzuki
and Kasami’s algorithm [SK85]. The number of messages necessary for each mutual exclusion
invocation is a half of that for Raymond’s algorithm. The algorithm is token-based and &

tokens are circulated to guarantee k-mutual exclusion.

2.3 Models and k-Coteries

In this section. the computational model we assume in Part I is described. A distributed
system consists of n processes and bidirectional communication links connected between
all pairs of processes. (That is, the network topology is a complete graph.) We assume that

the structure of a program that each process executes is as follows:

Process P;;
begin
while true do
begin

[ Non-Critical Section]

(Enter a Critical Section)

ICritical Section ]

(Exit from a Critical Section)

[ Non-Critical Section]

end
end.
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BEach process executes the same program. but has unique process identifier. Without loss of
generality. we assume that process identifiers are positive integers. which every process knows.
Processing speed of processes may be different. Some processes may execute a program fast
and others may do really slow: the processing speed of processes may change even during the
execution of a program. But it is guaranteed that a process can execute its next instruction
within a finite time unless the execution of its algorithm has been terminated.

Each process has its own local clock. Eaclh local clock may indicate different time. and no
processes can tell the global time.! Therefore, processes cannot make use of their local clocks
to synchronize with other processes.

Since there is no centralized control to solve the problem and the only mechanism provided
in the system for information exchange between processes is the message passing, i.e.,
processes do not have shared memory. processes must collect enough information from other
processes through communication links. We assume that links are error-free.

Each process has a message queue of infinite length., which stores messages arrived to it.

Operations provided for the message passing are as follows.

e SEND operation
SEND is used to send a message. To send a message. a destination process must be
specified. Messages sent by a process are eventually put into the message queue of the

destination process in a finite time.

¢ RECEIVE operation
As described. each process maintains a message queue. The first message in the queue is
retrieved by issuing RECEIVE. We assume that a process can tell if the queue is empty

or not.

The order of messages is kept unchanged during the delivery. That is, if a process P; sends
messages m; and ms in this order to P, then P receives m; and my in the same order. It is
guaranteed that each message is delivered in a finite time. But the message delivery delay is

unpredictable; the delay may vary during the execution of a program.

Consider extending the concept of coterie for k-mutual exclusion. (The definition of coterie
is shown in definition 1.) The 1-mutual exclusion is gunaranteed because there are no two
distinct quorums in a coterie. Thus, k processes can be in their critical sections if there are
k distinct quorums. and k 4 1 processes cannot be in their critical sections at a time if there
are no k+ 1 distinct quorums. By this intuition, we have the concept of k-coterie. The formal

definition is as follows.

Definition 3 A4 non-empty set C of non-empty subsets q of U is called a k-coterie if and
only if all of the following three conditions hold:

1The definition of the distributed k-mutual exclusion problem requires the existence of the global time.
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1. Non-intersection property:
For any h(< k) elements Qy.....Qn € C such that Q; N Q; =0 (i # j) for 1 <4.j < h,
there exists an element Q € C such that QN Q; =0 for 1 <1 < h.

2. Intersection property:
For any k+1 elements Qy, .... Qry1 € C. there exists a pair Q; and Q; such that Q;NQ; #
0.

4. Minimality property:
For any two distinct elements Q; and Q; in C, Q;  Q;.

An element q of a k-coterie C is called a quorum. a

Note that a 1-coterie is a coterie, and therefore, the concept of a k-coterie is an extension

of a coterie.

Example 1 Let U = {1,2....,6}. The following C1,...,C5 are k-coteries (k = 1,2.3) under
U. Note that a condition U;Q; = U does not have to be true by the definition of k-coterie.

S Jere=Al
= {{1}}
C: = {{1.2}.{2,3},{3.1}}
L=
Cs = {{1},{2}}
Cs = {{1,2}, {3.4}, {3.4}. {4.1}}
Skt

Cs = {{1.4}.{2.5}. {3.6}. {1.5}. {2, 6}, {3.4}.{1,6}.{2.4},{3,5}}

A majority method can be defined for k-mutual exclusion. The following k-coterie, a k-
magjority coterie, is a coterie that each quorums consists of any W = [(n + 1)/(k + 1)]
processes. This is called k-majority since W is approximately n/k and there are no &k + 1

groups of W processes.

Definition 4 Let W = [(n + 1)/(k + 1)], where n is the number of processes. The set
Maj, = {Q: | Q: CU. |Q;i| = W} is called a k-majority coterie. O
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A majority coterie is defined when n > k%2 A k-coterie which corresponds to primary
the site method is called a k-singleton coterie. A k-singleton coterie is a k-coterie which

consists of & quorums such that each quorum consists of one process.

Definition 5 A k-singleton coterie Sgli. is a set {{P1}...., {P.}}, where P; € U fori =
1,...,k, and P;’s are distinct. 0

Fujita et al. proposed a construction algorithm of a k-coterie whose quorum size is
O(y/nlogn) in [FYA91]. Like a concept domination for coteries, a concept domination for
k-coteries can be defined. Nielsen and Mizuno extended the concept of non-domination for
k-coteries [NM94]. They also proposed a composition method for k-coteries.

Huang, Jiang and Kuo also reached k-coterie independently, which is slightly different from
ours, and investigated availability [STHK93]. Baldoni proposed k-coterie [Bal94b. Bal94al,
which is completely different from ours. His k-coterie requests that ‘intersection of any k
quorums is non-empty’. This idea is based on the following: every process has k permissions
and a process wishing to enter a critical section gets a permission from each process in a
quorum. If & processes are in their critical sections then another process wishing to enter a
critical section cannot get permissions since the intersection of any &k quorums is non-empty,
which implies that there exists a process which passed all its permission to other process. The
message complexity of their algorithm is 3[nf/*+1) — 1] in the best case and 5[n*/(¥+1) — 1]

in the worst case.

2In [MYKC94]. Yuang and Chang claimed that n and k must satisfy following two conditions so that the
k-majority coterie is a k-coterie:
o kW < m,
o (k+1)W >n

where W is an integer.



Chapter 3

Availability of k-Coterie

In this chapter, we investigate the availability of the distributed A-mutual exclusion by k-
coterie. In [BGMS8T7]. Barbara and Garcia-Molina showed that if the network topology is
complete and communication links never fail and the reliability of each process is p > 0.5 then
the majority method [Tho79] is optimal in the sense of availability. It is conjectured that a
k-majority coterie is an optimal coterie under some conditions because a k-majority coterie is
a natural extension of majority coterie (a coterie corresponding to the majority method). In
this section, we investigate the optimality of k-majority coteries. Not only k-majority coterie

but also A-singleton coterie is investigate in this chapter.

3.1 Assumptions and Definitions

Before investigation of availability of k-coteries, we describe assumptions and define several

concepts. We investigate the availability of k-coteries under the following assumptions:

1. The network topology of a distributed system is a complete graph: between each pair of

processes. there is a bidirectional communication link.
2. The communication links never fail.

3. For all processes P. the reliability of P, i.e.. the probability of P being in operation, is
the same constant 0 < p < 1.

Availability is a probability that at least one process can achieve mutual exclusion in the
case of the 1-mutual exclusion. For the purpose of investigation of fault-tolerance of the k-
mutual exclusion. we extend this concept. Since k processes may enter their critical sections,
the probability that r processes can enter their critical sections can be considered as a measure
of fault-tolerance of the k-mutual exclusion. where 7 is an integer such that 1 < r < k. This

idea is formalized as a concept of the (k.r)-availability.

31
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Definition 6 Let C be a k-coterie over U, and r (1 < r < k) be an integer. The (k,r)-
characteristic function Fc ., of C is a function from 2V to {0,1} defined as follows:
For each S C U, F¢,,.(S) =1 if and only if there exist v quorums Qy, ..., Q, € C satisfying

both of the following two conditions;

Q: N Q=0 for L <t i< ity and
for alls, @; C 8.

That is, Fc1.,(S) = 1 if and only if 7 processes can enter their critical sections, provided

that all processes in S are being up.

Definition 7 Let C be a k-coterie. and v (1 < r < k) be an integer. The (k,r)-availability
Ry (C) of C is the probability that at least v processes can enter a critical section.

More formally. let G = (V. E) be the topology of the distributed system under consideration.
Let V' and E' be, respectively, the sets of processes and links in operation, and P.(V',E')
denote the probability that this situation occurs. The topology of the distributed system in
operation is the graph G' = (V', (V! x V') N E'). We say a quorum Q € C is available with
respect to G' if Q is a subset of the vertex set of a connected component of G'. If there are
v distinct available quorums Q,...,Q, € C with respect to G' such that Q; N Q; = O for
1 <i.j <roi# j, we say that G' is r-available. Then the (k,r)-availability of C on G is
defined as follows :

oY= 3 PV, E)
G'is r-available
The (k,7)-availability depends on G. Because we assume that G is complete in this disserta-
tion. we omit G from Rg j ... O

Note that the (1.1)-availability coincides with the availability.

Let S be a set of processes being in operation. Then, F¢ . (S) = 1 if and only if at least r
processes can enter a critical section (i.e.. G' = (S, (S x S)NE) is r-available) since the topology
of the distributed system is a complete graph. On the other hand, the probability that the
set of processes being in operation is exactly S is p!SI(1 —p)"~ISl. Thus, the (k,r)-availability

of a coterie C can be calculated using the following formula:

Rk.v’(c) = Z FC,};,T(S)})IS‘(l _p)n—|S|.
SCU

Let C be a k-coterie, and 7 (1 < r < k) be an integer. Now, we construct a new k’-coterie
C' as follows:
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First. let

C={Q | Q=@ U---UQ,. Q;eCforl<i<r,
and Q;NQj=0for 1 <i.j<r t#j}

Next. we remove all elements @ from C’ such that Q' C Q for some Q' € C’, in order for the

resultant C’ satisfying the minimality property. Then C’ has the following properties.

Property 1 C' is a | £]-coterie. O

Property 2 Let k' = |%|. Then,
Fe o = Fer g 1.

Hence.

Ry (C) = Ry a(C").

We call C' the r-contracted coterie of C.

3.2 k-Majority Coteries
We investigate k-majority coteries Maj; in terms of the (k,7)-availability.

Theorem 1 Let n be the number of processes, k be an integer such that (n+ 1) is a multiple
of (k+1), and r (1 <7 < k) be an integer. Then. there is a constant p,(n,k,r) such that for
any process reliability p (pu(n,k.7) < p < 1). Maj, achieves the mazimum (k,r)-availability.
Hence. Majy is the best k-coterie in terms of the (k,r)-availability if p > pu(n,k.7), where

c(n.k,r)
pu(n.k.r) = c(n.k.r)+ T

and

rW-1 -
c(n, h.7) = Z (L>
=0

(Proof) Let C (# Maj,) be any k-coteric. We show that Ry ,.(Maj,) > Ry..(C) for any
P2 pu(n.k,r). Let W = [(n+1)/(k+1)] (i.e.. W is the size of each quorum in Maj ).

Let C be any k-coterie such that Ry,.(C) > Ry..(Maj,). If every quorum Q in C had size
2 W. then Ry ,.(Maj,) > Ry.(C) would hold, because if Fe .,(S) =1 then Fyaj, k.(S) =1
for any § C U. since |S| > rW. Therefore. there exists a quorum Qo with size < W in C.
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First. we show that there exists a set S (C U) with size 7W such that F¢ . (S) = 0. Suppose
that for any S with size 7W, F¢ 1...(S) =1 holds. Let Uy = U — Q. Since |Uy| > n— W 41,
|Uy| > kW. Arbitrarily choose a set S (C Up) with size rW. Since Fe(S) = 1. there
is a quorum @7 (C S) in C whose size is at most W. Then we repeat this procedure for
U, = U; — Q. In this way, we repeat this procedure (A — r) times and can find a sequence of
quorums Q. .... Qj—, in C. Clearly. Q;NQ; =0 for 0 <i,j < (k—r), 7 # j. Since |Q;| < W
for 0 < ¢ < (k= 7). |[Uk—pt1| = 7W. Thus, there exist r quorums Qr—,41,.... Qr(€ C) in
Uk—rs1 such that Q; N Q; = @ for k —r+1 < 4,5 < ki # j. It is a contradiction. since
QNQ;=0for 0<4i, 5k 4]

Then, there exists a set S (C U) with size rW such that Fe¢y,(S) = 0. Let A =
Ri.(Majg,) — Ri.»(C). Since Fuaj, k. (S") = 1 for every S’ with size 7W, by definition.

r*W-—-1 o
P VPR T 1 FYbr e
p'*l(1-p) ; (i)p(l »)
c(n,k,r

er(l : p)n—rW A

>
V

v

)er—l ( = p)n—r-W+1'

where
rW-—-1 =
elnlali= Z (')
=0
It is easy to show that A > 0 if

c(n.k.r)

ra e == P (W R 1)
p_l-{-c(n.k‘r) PulnokyT)

Since ¢(n.k.7) < e(n, k,7 + 1), the following corollary holds.

Corollary 1 If p > pu(n,k, k), then Majy. is optimal in the sense of (k,r)-availability for all
1<r<k. 0

Table3.1 shows py(n, k.r) (h=1,x., 6 and r = 1,...,k) for some n.

Theorem 2 For any non-negative integer m, (2m + 1)-majority coterie Maj,, ., achieves
the mazimum (2m + 1,m + 1)-availability. if the process reliability p > % and (n+1) is a
multiple of 2(m + 1).

(Proof) Let C (# Maj,,, ;) be any (2m + 1)-coterie, and assume that C achieves a better
(2m + 1.1 + 1)-availability than Maj,,,,, for some p > % By C'. we denote the (m + 1)-
contracted coterie of C. Then by Property 1, C’ is a 1-coterie. By definition of Maj;., the
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[ k. W. n =T = e =i e=a | =0 i
E=1W=5n=9 0.9961089 - -~ - —
k=2 W=5n=14 0.9993207 | 0.9999329 — — -~ =
k=3 W=4n=15 0.9982669 | 0.9999390 | 0.9999689 — ——r —
k=4, W=3.n=14 0.9906542 | 0.9997121 | 0.9999226 | 0.9999386 — —
R=BWe =3, =0T 0.9935484 | 0.9998937 | 0.9999847 | 0.9999918 | 0.9999924 —
=60 = 3. m — 20 0.9952830 | 0.9999539 | 0.99999G2 | 0.9999987 | 0.9999990 | 0.9999990

Tables8. 1:: pulwyr. k) for some ' (b= 1, 2.06. ¢ = 1.5, k)

(m + 1)-contracted coterie of Maja,,+1 is 1-majority coterie Maj, since (n + 1) is a multiple
of 2(m + 1). Since Maj; (i.e., majority coterie) achieves the maximum (1, 1)-availability (i.e.,
availability) for all p > % (Theorem 3.1 in [BGMS8T7]), the (1.1)-availability of Maj; is not
smaller than that of C’. a contradiction by Property 2. O

So far, we have derived a sufficient condition for k-majority coterie to be optimal in terms
of the process reliability p. Now, we proceed to state a lower bound on the process reliability p
for k-majority coterie to be optimal. We first present how to construct a new k-coterie C from
k-majority coterie Maj. and then by comparing their (&, 7)-availabilities, derive the necessary
condition.

Arbitrarily choose n. k. and 7 (such that (n + 1) is a multiple of (k + 1), and fix them. We
construct a k-coterie C from Maj;, as follows: Let Qg be any quorum in Maj, and Py be any
element in Q. Let Q1 = Qo — {Po}. Then.

C = Maj,+{Q:} - {QeMaj, |Q=0Q:1+{P}, PeU - Q1}
—{Q € Maj;, | QN Qo = {Po}}.
We compare their availabilities. Observe that Fe1.,.(S) =1 for all S C U with size at least
rW+1. and that F¢ ;. ,.(S) = Oforall § C U with size at most rTW 2, where W = (n+1)/(k+1)

(i.e.. the size of quorum in Maj;). On the other hand. by definition. Fyaj, x.»(S) = 1 if and
only if |S| > rW. Define I'* and I'~ as follows:

Lt {S CU | Prajik,r(S) =0 & Fe k. (S) = 1}
e {S g U | FMa_iA--kJ‘(S) =1& FC.k.v'(S) = 0}

Note that by the observations, |S| = 7W —1if S € I't, and |S| = 7W if S € T~. Since
@1 is the only quorum with size W —1in C, S € Tt if and only if @y C S. P, ¢ S. and
S| =rW - 1. by definition of C. Therefore.
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T

(e et )

Next. we show that S € I'” if and only if Q1 NS = 0. Py € S and |S| = rW. To show
if part. assume that Fc¢..(S) = 1 holds (since Fumaj,.k,»(S) = 1). Since Py € S, there is a
quorum @ containing Py in C, a contradiction since Q N Qg = {Py}. As for only if part, if
either Py € S or Q1 NS # 0, then one can easily find » quorums Gy, ...,G, in C such that
S=Ui_;Giand G;NnG;j=0for1<ij<r i# j. Therefore,

n—-W
| i =
gt (TW - 1)
W -1
W —-1)"
By definition,

A = Ry.(C)— Ri,(Maj;)
|F+ ler—l(l e p)n—(rW—l) X IF—|er(1 - p)n—rW

W s KW —1 KW -1
= e (Y )a-n- (G0 T)e)

Therefore. A > 0 if and only if

(i)

p > e Wi
((f‘ﬂn}v) e

0

Theorem 3 Let n be the number of processes, k be an integer such that (n+ 1) is a multiple
of (k+1). and r (1 < r < k) be an integer. Then. there is a constant py(n,k.7) such that
for any process reliability p (0 < p < py(n. k.r)), Maj, does not achieve the mazimum (k.r)-

availability. Hence., Majy is not the best k-coterie in terms of (k,r)-availability if 0 < p <

pi(n, k). where
AW -1
P = ((1'—1)W)
(2w) + Gaw2a)

Table 3.2 shows py(n. k.7) (k=1...., S 1 R k) for some n.
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[ﬁ k, W. n H Jr==f I = 1 =23 l r=4 l r=25 ] r=206 ]
= =" 0.5000000 — — —
=20 Wa= b, =14 0.0078740 | 0.9921260 — — —_ -
b=3.W=4.n=15 0.0060241 | 0.5000000 | 0.9939759 - e —
E=4. W =3, n=14 0.0178571 0.2631579 | 0.7368421 0.9821429 —_ i
=6 W= 3, =17 0.0108696 | 0.1538462 | 0.5000000 | 0.9891304 | 0.9891304 —
= W=3n=720 0.0072993 | 0.0099010 | 0.3373494 | 0.6626506 | 0.9009901 0.9927007

Tabletd.2: i vy b Or SOMe W (fo = Fysss O o 15 s K )

3.3 k-Singleton Coteries

This section shows a sufficient condition for k-singleton coteries to be optimal in terms of the

process reliability p.

Theorem 4 Let n be the number of processes. and k (< n) and v (1 < r < k) be integers.
Then, there exists a constant q(n.k,7) > 0 such that (any) k-singleton coterie Sgly is optimal
for all process reliability p (0 < p < q(n,k,r)). Hence, Sglj, is the best k-coterie in the sense
of (k,7)-availability if p < q(n.k.r).

(Proof) Let C be any k-coterie which is not a k-singleton coterie. We show that there exists a
constant £ > 0 such that for all process reliability p (0 < p < t). the (k,r)-availability of Sgl

is larger than or equal to that of C. The proof here is similar to that of Theorem 1.
Let A = Ry, ,(Sgl),) — Ry.»(C). By definition, for all S with size at most 7 — 1, Fsg, 1. (S) =

Fe 1.(S) = 0. Define
|{S | Fsgh..k.r(s) = 1.|S| — 'r}| and

mygy

mq

Then, clearly. mgy > m;. since C is not a k-singleton coterie. Therefore, by definition.
L n
N — i .’ ¥ = n—i‘
A2p'(1-p) ,»_,Z;,l("')p( p)

It is easy to see that there is a constant ¢ such that A >0 for all p (0 <p < ¢).

Since the number of different k-coteries are finite. the theorem follows.

3.4 Concluding Remarks

In this chapter. we investigated the goodness of two typical k-coteries, k-majority coteries and
k-singleton coteries, in terms of the (k.r)-availability. Intuitive interpretation of the (k,r)-
availability of a k-coterie is the probability that r processes can enter their critical sections

(in spite of process failures).
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[ P ]
kyn J[ B0 1 oL | 03 | &% | O [ V8 [ G816t ] A 1 o8 [ 58 |
4, 1 Naj, 0.0000 | 0.1584 | 0.5519 | 0.8392 | 0.9602 | 0.9935 | 0.9994 1.0000 | 1.0000 | 1.0000 | 1.0000

Skl 0,0000 | 0.3439 | 0.5004 0.7500 | 0.8704 0.0375 0.9744 0.9019 | 0.9984 0.9990 1.0000 |
4, 3 Najy 0.0000 | 0.0015 | 0.0439 | 0.2195 | 0.5141 0.7R80 | 0.9417 | 0.9917 | 0.9996 | 1.0000 | 1.0000
Skl 0.0000 0.0523 0.1808 0.3183 0.5248 0.GR75 0.8308 | 0.9163 0.9728 | 0.9963 | 1.(
1.3 | Majp 0.0000 | 0.0000 | 0.0004 | 0.0083 | 0.0583 | 0.2120 | 0.3373 | 0.6405 | 0.8883 | 0.9985 | 1.0000
Tel 0.0000 | 0.0037 0.0272 | 0.0837 0.1792 | 0.3135 | 0.4752 | 0.6517 | 0.8192 | 0.94%" 1.0000 |
1,4 NMaj ) 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.0065 | 0.0398 | 0.1608 | 0.4481 | 0.8416 1.0000
Sel} 0.0000 0.0001 0.0016_| 0.0081 0.0256_| 0.0625 0.1296_| 0.2401 0.3164 0.5220 1.0000 |

Table 3.3: (k,r)-availabilities of Majrand Sgli(k = 4, n = 14).

We derived a necessary and a sufficient conditions on the process reliability p for k-majority
coterie to achieves the maximum (A, 7)-availability. We also showed that there is a constant
¢ (> 0) such that for any process reliability 0 < p < q. (any) k-singleton coterie achieves the
maximum (k. r)-availability. The investigation revealed that k-majority (k > 2) is no longer
optimal for all p > % (As a matter of a result, 3-majority is not optimal even if p = 0.9939
for n =15 and r = 3.)

Table 3.3 shows the (k.7)-availability of k-majority and A-singleton coteries when n = 14
and & = 4. It can be observed that as r increases. the process reliability p at which the
(K, 7)-availabilities of Sgl;, and Majj, reverse also increases. For example, the (4, 4)-availability
of Sgly is larger than that of Majs even if p = 0.7, but the (4.1)-availability of Maj,; has
already been larger than that of Maj, when p = 0.3. (This tendency can be shown formally.)
Therefore. when we choose appropriate k-coteries in practical applications, we should take
into account parameter 7 as an important one.

For simplicity of analysis, throughout the chapter we assume that (n + 1) is a multiple of
(k4 1). when k-majority is investigated. It is strongly conjectured that the tendencies of
k-majority in this chapter should hold for general k. and an analysis of this case is left as a

future work.



Chapter 4

A Distributed k-Mutual Exclusion
Algorithm using k-Coterie

In this chapter. we propose a distributed A-mutual exclusion algorithm which uses a k-coterie.
Different from algorithms proposed in [Ray89a. Ray9la. SR92|. the number of messages sent
by processes can be smaller. Another advantage of this algorithm is that it provides so-called
the graceful degradation property; since a critical section entrance request is granted if all
members in a quorum grant it, even though a large part of the system are being down. there

is a possibility that a process can enter a critical section.

4.1 The Distributed k-Mutual Exclusion Algorithm

To avoid deadlocks and starvations, the timestamp introduced by Lamport[Lam78] is used.
Let ¢ be the logical time at which a process P initiates a request. Then, the pair (t. P) is the
timestamp attached to the request. Note that since an identifier of a process is unique, so is
pair (¢, P). As usual. we define a total order among timestamps by the lexicographical order
assuming that the identifiers are non-negative integers.

Now, we present a detailed description of our algorithm. Our algorithm and Maeckawa’s
algorithm [Mae85]! are the same, except the following difference:

In Maekawa’s algorithm, for each process P, a quorum Q is statically determined, and
insists on gathering permission from all members in Q. This approach may be reasonable
for solving the 1-mutual exclusion problem. since failing to gather permission from Q likely
suggests that another process is being in a critical section. i.e.. P cannot gather permission
from any quorum. On the other hand. when the A-mutual exclusion problem is considered,
insisting on Q does not seem to be a good idea, since although Q is busy, P may be able to

find another quorum from which it can gather permission, because there are (k — 1) quorums

'It is shown that Maekawa’s algorithm[Mac85] cannot avoid deadlocks [San87]. We adopt the version
suggested by Sanders[San87].
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which do not intersect with @. Thus. our algorithm tries to find such a quorum.

Let C be a k-coterie. Each process P has local variables YES, NOTNOW, and PERM.
Variables YES (resp. NOTNOW) keeps the set of processes which have agreed (by message
OK) (resp. disagreed (by message WAIT)) on P entering a critical section, and variable
PERM keeps the process (i.e., more rigorously, the REQUEST it initiates) that P has agreed
on entering a critical section (by message OK) but has not yet received a message RELEASE
stating that it has left the critical section, if there is such a process. Since P never give
permission to two processes at a time. PERM is ecither empty or a singleton set. Initially,
YES, NOTNOW, and PERM are the empty set. Note that P may receive OK messages from
processes in NOTNOW. In such cases, these processes are moved from NOTNOW to YES.
The process P also maintains a priority queue QUEUE for keeping REQUESTSs in the order
of their timestamps.

The algorithm is given in English as in many literatures (e.g., [Mae85]) to save space.

The Algorithm

e When P wishes to enter a critical section:

It selects a quorum @ from C, and sends REQUEST(t, P) to every member P; in Q
(including P itself), and waits for a reply (OK or WAIT) from P;, where (¢, P) is the
timestamp (i.e., ¢ is the current logical local time in P). If every P; answers an OK, P

can enter the critical section.

If some processes answer WAITs, P adds the processes answering OK (resp. WAIT) to
YES (resp. NOTNOW), selects another quorum Q" which minimizes |@ N YES| from
quorums in C not intersecting with NOTNOW (if there is such a quorum), and repeats
the procedure from the first, except that this time, P sends REQUEST(t, P) only to
members in (Q'—YES). (Hence. each process receives at most one REQUEST message
from P.) If P cannot find a quorum satisfying the condition. then P waits for receiving
OK messages.

During the above procedure, P may receive an OK from a process P; in NOTNOW.
Then, P tests if a quorum is included in YES after moving P; from NOTNOW to YES,
and P can enter the critical section if the test succeeds.

o When P leaves the critical section:
It sends a RELEASE message to cach process in YESUNOTNOW.

o When P receives REQUEST(t. P;) from a process Pj: Process P sends back OK, if
PERM is empty. and adds REQUEST (¢, P;) to PERM.

If PERM is {REQUEST(t,, Ps)}. i.c.. not empty. then P acts as follows. Process P
inserts REQUEST(¢. P;) in QUEUE. Let REQUEST(t,.. P.) be the request having the
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smallest timestamp (i.e.. the one having the highest priority) among those in QUEUE.
If (t. P;) > min{(t,. Py).(t,. P.)}. then P sends back a WAIT to P;. Otherwise, i.e.,
if REQUEST(t, Pj) has the highest priority, P sends a message QUERY to resume
the permission from P, unless Py is being in a critical section, and waits for a reply
(RELINQUISH or RELEASE) from P,. (If P has already sent a QUERY to P, and
is waiting for a reply, then no further QUERYs are necessary to send.) If P receives
a RELINQUISH. then it exchanges REQUEST(ts. Ps) and REQUEST(t, Pj). i.e., it
moves REQUEST(t,. P,) from PERM to QUEUE and REQUEST(t, P;) from QUEUE
to PERM. sends a WAIT to all processes in QUEUE to which P has not sent a WAIT
since the last QUERY was issued, and finally sends an OK to P;.

o When P receives a RELEASE message from Pj:

P removes the request from P; in PERM. If QUEUE is not empty, then let REQUEST (¢,.,
P,) be the request having the highest priority in QUEUE. Then, P moves it from QUEUE
to PERM, sends an OK to P,, and sends a WAIT to all processes in QUEUE to which
P has not sent a WAIT since the last QUERY was issued.

o When P receives a QUERY message from P;:

If P is not in a critical section and P; is in YES, then P moves P; from YES to NOTNOW
and sends back a RELINQUISH message to P;. If either P is being in a critical section
or P; is not in YES. then P does nothing.

An example of implementation of this algorithm is shown in Appendix B.

4.2 Correctness proofs

Now. we show the correctness of the proposed algorithm. We show that the algorithm guar-

antees k-mutual exclusion. deadlock free. and starvation free.
Theorem 5 The algorithm guarantees k-mutual exclusion.

(Proof) Any process P can enter a critical section if and only if there is a quorum @ such that
Q CYES. If more than k processes are being in critical sections at a time, then by definition
of k-coterie. there are processes P and P; such that YESs of P and P; have a process P, in
common. a contradiction since if YES of a process P, includes P, then PERM of P, contains
a REQUEST from P as its only element. m

Theorem 6 The algorithm is deadlock free.

(Proof) Assume that a deadlock happens. Consider a directed graph whose nodes are processes

and links are edges defined as follows: there exists an edge from P to Pj in the graph if and
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only if P; has the permission of a process P, and P is requesting it, i.e., P is waiting for
its release. Since the system is in a deadlock state. there exists a cycle in the graph. Let

Py, Py, ..., P,,—y be processes that forms a cycle such that

Py— P == Ppy = Py,

and t; be the priority (the timestamp at which a mutual exclusion request was issued) of
process P;. Note that without loss of generality, we can assume that no process P; is in a
critical section. (If such process P; exists. it eventually exits from a critical section and releases

the permissions it keeps and the cycle of the grapl is broken in a finite time.)

Each process P preempts its permission having sent to a process P; if a new request whose
priority (defined by timestamp) is higher than P;'s. Since a cycle is formed, the permission
which is kept by Pii1modm 1s not preempted by P; for all <. But ¢; > ¢;11modm holds for each

7, we have ty > to: a contradiction. (m]

Theorem 7 The algorithm is starvation free.

(Proof) Assume that there exists a process P which starves. In general, more than one
process may starve. Without loss of generality. we assume that P's REQUEST is the one
having the earliest (i.e.. smallest) timestamp. Since the system is deadlock-free by Theorem 6,
noun-starving processes wishing to enter their critical sections will eventually enter them and
therefore the timestamps they attach to REQUEST increase. Since REQUESTSs are discarded
when the corresponding RELEASEs arrive. the system will eventually reach a configuration
such that the timestamp of P’s REQUEST is the smallest one among those existing in the

system not only now but also forever.

Let @ be the quorum that P selects. Then P sends a REQUEST to all members P; € Q,
and all P; will eventually receive the REQUEST and store them in their QUEUEs. As
showed above. the system will eventually reach a configuration such that the timestamp of
P’s REQUEST is the smallest one in the system. and therefore P's REQUEST will eventually
be moved to the head of QUEUE at each P; € Q. Process P; returns an OK to P if its
PERM is empty. Suppose that PERM contains a REQUEST from another process P,.. Then
Pj sends a QUERY to P,. it will eventually reach P,.. P, will return either a RELINQUISH or
a RELEASE. and finally it will eventually reach P;. since P.'s REQUEST has a timestamp
larger than P's REQUEST. In either case. P; returns an OK to P. At P, a QUERY never
arrive after an OK since the timestamp of P’s REQUEST is the smallest even in a future.
Now. a contradiction is derived since P will eventually reccive OKs from all members P; € Q

and can enter its critical section. (]
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4.3 Message complexity

Let C be the k-coterie used in the algorithm. The number of messages required per mutual
exclusion entrance is 3|@| in the best case, since a process sends REQUEST, receives OK,
and sends RELEASE. to and from all members of Q. where @ is the quorum in C selected
by the process. as [Mae85]. Since there proposed an algorithm for constructing a k-coterie
whose quorum size is O(y/nlogn) [FYA91], the message complexity of our algorithm become
O(y/nlogn). in the best case.

When a process P fails to gather permission from all members in a quorum @ (i.e.. when
a WAIT message arrives), unlike Maekawa's algorithm, the algorithm selects another quorum
and tries to gather permission from members of another quorum. Therefore, the algorithm is
by no means efficient. as far as the worst case message complexity is concerned; 6n messages
per critical section entrance is required, where n is the number of processes. (For example,
the worst case occurs in a process P. when for all process P; (# P). P sends REQUEST to
P;, P; sends QUERY to some process P,.. P, sends RELINQUISH to P;, P; sends OK to P,
P sends RELEASE to P;. and P; sends OK to P,.)

This is definitely a serious problem, and in order to avoid such situations, we must bound
the number of “retries” so that the total number of processes that P can send request messages
is bounded by a reasonable function c(n). It is easy to sce that Theorems 5 — 7 hold, even if
we bound the number of retries in terms of bounding function ¢(n), provided that ¢(n) > ¢,
where ¢ is the maximum quorum size of C. and therefore. the number of messages required
per critical section entrance is bounded from above by 6e(n), in the worst case. For instance,
if we take c(n) = |Q|. where |Q] is the size of a quorum. then the message complexity is 6/Q).
But by bounding the number of retries. processes may be required to wait a longer time than

our original algorithm. since processes may be able to find a free quorum by further retries.

4.4 Concluding Remarks

In this chapter. we proposed a distributed k-mutual exclusion algorithm based on the concept
of k-coterie. The message complexity of our algorithm is 3c in the best case, and 6n in
the worst case. where ¢ and n are the maximum quorum size and the number of processes,
respectively. The worst case message complexity, 6n. is extremely bad, but by introducing a
bounding function ¢(n) (> ¢) which bounds the number of processes to which a process can
send a request. the worst case message complexity can be reduced to 6¢(n), at the expense of
the increase of waiting time for entering a critical section. An obvious open question is what
¢(n) should be used for the purpose here.

In [Bal94b)]. Baldoni proposed a distributed algorithm for the k-out of-M resources allocation

k/(k+1) _ 1] in the worst case.

problem which requires 3[n*/(*+1) — 17 in the best case and 5[n
Manabe and Aoyagi also proposed the same definition of k-coterie independently [MA93] and

proposed a distributed k-mutual exclusion algorithm which require 5|Q| -+ 3 messages in the
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Algorithms Message Complexity

the best case the worst case
Raymond [Ray89a 2n—k—1 2(n—1)
Raynal [Ray91a] 0 3(n—1)
Srimani and Reddy [SR92] 0 n+k—1
Baldoni [Bal94b] 3[nF/H+ _ 17 | 5[n®/FD 1]
Ours 3|Q| 6n

Table 4.1: Message complexities of disributed A-mutual exclusion algorithms

worst case and 3|Q|+3 in the best case where |Q| is the size of quorum used in their algorithm.

In appendix A. we consider more general case in such a way that a set of resources avaiable
to a process is different from processes. To this end, we introduce a concept of local coterie
and propose a distributed resources allocation algorithm.

As a final remark, we would like to stress that there can be many different metrics to measure
the goodness of A-mutual exclusion algorithm. besides the message and the time complexities.
For example. from the view of fault tolerance, availability is considered to be a good measure
for measuring the goodness of a k-coterie and investigated in the previous chapter. However,
investigation of A-mutual exclusion algorithm using other metrics is still remained open, and

this is left as a future work.



Chapter 5

Experimental Evaluation of the
k-Mutual Exclusion Algorithm

In the previous chapter, a k-mutual exclusion algorithm using a k-coterie is proposed and its
message complexities in the best and worst case are discussed. It is difficult to evaluate the
average message complexity of distributed algorithms by analysis. in general. In this chapter,
we evaluate the message complexity of the average case of the proposed distributed k-mutual
exclusion algorithm by computer simulations. We also evaluate an algorithin by Raymond

proposed in [Ray89a] and show the advantages of our algorithm.

5.1 Assumptions and the Simulation Model

In Chapter 2. we assumed that the distributed system assumed in Part I is totally asyn-
chronous. To evaluate the average behavior of distributed algorithms, such assumption is
not appropriate: we assume that each process shares the same time flow, i.e.. the distributed
system is synchronous. Note that the algorithm on the system is designed under the assump-
tion of asynchrony. Because we assume a global clock. we can define a common time unit; a
quantum time is a unit time used in this chapter.

The model of behavior of each process is as follows: Each process has four states (Normal,

Requesting. In-CS and Exiting) and changes its states according to conditions.

e Normal state — When a process is in this state, it does not do active task. i.e., it is
passive. If it receives a message from another process then it processes the message. But
a mutual exclusion request happens with probability p (0 < p < 1) every quantum time.

If a mutual exclusion request happen, the state become Requesting state.

o Requesting state — This is the state that a process is executing a procedure for mutual
exclusion request (e.g.. sending request messages. waiting permissions. etc.). When a

process successfully enters a critical section. the state become In-CS state.
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\ Requesting state

with prob.

Normal state

Aﬂ(fT' Tcs

Qk iy

Exiting state In-CS state

Figure 5.1: The behavior of a process

e In-CS state — When a process is in a critical section. it is in this state. After some
specified time Teg is passed after entering a critical section, the process comes out a

critical section and its state become Exiting state.

e Exiting state — A process is in this state when it is executing a procedure of exiting a
critical section such as returning permissions. After finishing an exiting procedure, the

state become Normal state.

The behavior of a process is illustrated in Figure 5.1

5.2 Outline of the Simulation System

In this section. the simulation system is briefly described. Since the purpose of this chap-
ter is not discussing a simulation method itself, we describe the outline of the design and
implementation of the system.

The simulation system is executed on several workstations that are interconnected by a
local area network. Processes are executed on different workstations. i.e., when a distributed

system which consists of n processes is simulated. n workstations are used. (See Figure 5.2.)
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Workstation 4 W”"‘k*“r'"jti"" 5
(Ezecuting Process-4) (Ezecuting Process-5)
Local Area Network
(Ethernet)
/ /
Workstation 1 Workstation 2 Workstation 3

(Ezecuting Process-1) (Ezecuting Process-2) (Ezecuting Process-3)

Figure 5.2: The simulation system (in the case n = 5)

Therefore. each process is executed truly in parallel.

As described above. we are assuming that the speed of time flow at each process is the same.
To implement such situation, one of solutions is letting the time flow of a process be the same
as (or proportional to) that of real time. We let the time unit at processes be Ty, second.
(In our experiment, one unit of time, Ty is 1 second.) Therefore, the speed of time flow at
a process does not depend on the processing speed of workstations, i.e., the same time flow
is guaranteed. Each workstation has real time clock: therefore implementation is easy. Since
1 second is enough long time for CPUs. the local computation time at processes is negligibly
short.

The message exchange between processes are implemented by inter process communication
facilities[Sun90]. Since stream communication is synchronous. if two processes try to send
message at the same time then these processes fail into deadlock state: a process waits for
message reception of the other process, and the other process waits for message reception of
another one. Therefore, message passing must be asynchronous. Thus, message exchange

between processes is implemented by using asynchronous datagram communication.
The simulation program is written in programming language C. An executable file is placed
at each workstation and executed by remote execution feature. Program fragments of imple-

mentation of the proposed algorithm and Raymond’s algorithm are shown in Appendix B.
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5.3 The Distributed k-Mutual Exclusion Algorithm by Kerry
Raymond

In this section. we briefly explain the distributed k-mutual exclusion algorithm proposed by
Raymond [Ray89a].

In her algorithm, sequence number ([Lam78]) is used to avoid deadlock and starvation. A
process X wishing to enter a critical section sends a REQUEST message to the other n — 1
processes, where n is the number of processes in the distributed system. When a process
Y receives a REQUEST message, it sends a REPLY message unless it is in a critical section
or requesting a mutual exclusion with higher sequence number than X’s sequence number.
Otherwise, Y defers sending a REPLY message to X.

The process X can enter its critical section if it receives n — & REPLY messages. Since
n—k = (n—1)— (k- 1). receiving n — k REPLY messages guarantees that the number of
processes which are not in their critical sections nor are requesting with higher priority is less
than k. Thus, X can enter its critical section.

Since a process enters a critical section if it receives only n — k REPLY, it may receive REPLY
messages when it is in a critical section, after exiting a critical section. or when it is requesting
next mutual exclusion. and so on. The algorithm is designed to ignore such delayed messages.
See [Ray89a] in detail.

It is easy to see that the algorithm require at least 2n — k — 1 messages per mutual exclusion
invocation. In the worst case, 2(n—1) messages are necessary. This method is not fault-tolerant
comparing with our algorithm because alive processes are not in operational if arbitrary &

processes are stopped.

5.4 Simulation and Results

Conditions of the experiment are as follows:

e a quantum time Tg is 1 second.
o Tcg, the time that a process is in a critical section. is 1 quantum time,
o a k-coterie used by our algorithm is the k-majority coterie. and

o the experiment is done for 500 quantum time.

Because k-majority coterie is a coterie whose quorum size is not small, the message com-
plexity of our algorithm become smaller if we use a coterie whose quorum sizes are smaller.
We use k-majority coterie because it is simple.

The experiment is done for:
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o k=3, n=T, and
o F=4. =%

For each experiment. p. the probability of mutual exclusion request, is varied from 0.01
to 1.0. Workstations used for the experiment are 7 AV-300’s (Nippon Data General) and 4
DS-7400’s (Nippon Data General) on which the DG/UX operating system (version 4.32 for
AV-300, version 4.02 for DS-7400) is available.

Under conditions as described above, the total number of messages sent during the exper-
iment and the number of entrance of critical sections are counted. From these two data. the
average number of messages per mutual exclusion invocation is calculated. Let this value be
u, which is computed by the following formula.

>

1<i<n

-2

1<i<n

H

where M; is the number of messages that process # sends and C; be the number of times that
process ¢ enters a critical section during the experiment (1 < i < n).!

Results of the experiment are shown in Figure 5.3 — Figure 5.7.

In case that p is small (for instance, in case of k = 4, n = 9; see Figure 5.7). p (the
number of messages which our algorithm requires to enter a critical section) is much smaller
than that of Raymond’s algorithm, as expected. Figure 5.7 shows that it achieves the best
case 3|Q| = 6 when p = 0.01. We can see from figures that p gradually increases with the
increase of p if p is small (for instance, p < 0.2 in case of k =4, n = 9). But when p become
larger, p suddenly increases and when p comes near to 1.0, p saturates. This observation is
described as follows. When p is enough small, mutual exclusion requests do not collide often.
In addition to it. even if a process fails to get permissions from a quorum, the probability that
it gets permissions from a next quorum is large. Thercfore, the number of additional messages
is rather small. But p increases, collisions often happen and the probability that processes
choose another coterie but fails to get permissions become large and preemption also happens
often; this cause a sudden increase of .

Consider the case that k is fixed and n increases (see Figure 5.3, Figure 5.4. and Figure
5.5). In this case. the increase of n causes the increase of the probability of collision of mutual
exclusion requests. Therefore, p increases. Let pyover be a probability that the number of
message of our algorithm become larger than that of Raymond’s. We call pyover cross over
probability. In the case of k = 2, the cross over probabilities can be found from figures and
shown them in Table 5.1 It is interesting that the product of the number of processes and
cross over provability is almost the same. From this observation, the message complexity of

our algorithm depends of the total probability of mutual exclusion requests in the distributed

1 : 7 g :
For convenience, let process identifier be an integer between 1 and n.
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N | Pxover (Cross over probability) [ 7 - pyover
5 ~ 0.9 =~ (.45
8 =~ 0.6 ~ 0.48
11 ~ 0.4 ~ 0.44

Table 5.1: Cross over probabilities for k = 2

system. It is easily guessed that the product of n and pyover depends of the k-coterie the
algorithm uses. however. we use this observation to guess the range of p such that our algorithm
is more efficient than Raymond’s algorithm in the sense of message complexity.

The larger & becomes (for instance. compare cases k = 2. n. =5 and k = 4, n = 9; see
figure 5.3 and figure 5.7), the smaller g becomes if p is small. This is why that the size of
quorum become smaller if & become larger. Note that the k-majority coterie is used in this
experiment. If we usc another coteries whose quorum size is small, 2 becomes smaller.

It is shown that our algorithm requires 6n messages per mutual exclusion invocation. Even
if k = 2 and p = 1.0, the number of messages per mutual exclusion invocation is approximately

3n which is half of the worst case message complexity 6n.

5.5 Concluding Remarks

In this chapter. we evaluated our distributed A-mutual exclusion algorithm which uses k-
coteries. As a drawback of our algorithm. the number of messages become much larger than
Raymond’s algorithm requires. But the probability of mutual exclusion is small and % is large,
our algorithm require less messages. Since we can choose a k-coterie whose quorum size is
small, the number of required messages can be reduced.

The time between the time of mutual exclusion request happen and the time of entrance of
critical section can be considered as a measure of evaluation of mutual exclusion algorithm.
But the simulation model we adopted is not appropriate to evaluate the time because the
delivery time of messages are much smaller that time unit. To evaluate such measure. we need
another simulation model and a simulation system implementing such model. This is left as

a future task.
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Chapter 6

The Self-Stabilization Approach for
the Distributed k-Mutual Exclusion

A self-stabilizing system is a system which converges to a legitimate (correct) system state even
if the system starts from an arbitrary system state. The concept of self-stabilizing systems
is proposed by Dijkstra in [Dij74]. Even if a system state changes from a legitimate state to
a non-legitimate state by transient failures (e.g.. message omission, restart of process. etc.).
the system starts the execution of a self-stabilizing algorithm from the state and eventually
reaches to a legitimate state again. Thus. self-stabilizing systems are resilient to any transient
failures. Since the fault-tolerance of distributed systems is an important issue. the study of
self-stabilizing systems getting more active.

In this chapter, we summarize computational models used in studies of self-stabilizing sys-
tems. Next. we give a review of previous works for the self-stabilizing mutual exclusion prob-
lem which are related to this dissertation. Finally, we give formal definitions of computational

models and the self-stabilizing k-mutual exclusion problems used in Part 2.

6.1 Computational Models

Usually. distributed algorithms adopt an asynchronous message passing model for information
exchange between processes. Self-stabilizing algorithms. however. adopt the following models

for communications.

e State communication model — A communication model such that every process can

know its neighbors’ states. There is no explicit message sending/receiving steps in the

1A term self-stabilizing algorithm formally refers to just an algorithm which has self-stabilizing property
executed by processes and a term self-stabilizing system formally refers to a system consisting of a network
(processes and communication links) and a self-stabilizing algorithm executed by a process. In this dissertation,
Wwe use terms “sclf-stabilizing systems™ and “self-stabilizing algorithms” interchangeably.
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description of an algorithm based on this model. It is assumed that neighbors’ states

can be known without time delay.

e Register communication model — A communication link between process P4 and Ppg
is assumed to consist of two registers R andRp. When P4 sends a message to Pp, Py
writes data into the register R4. To receive a message from P4, Pp reads the register
R4. To send a message to Py, Pp writes data into the register Rp and then P4 read

from it.

e Message communication model — Processes use an asynchronous message passing to
exchange information. Since it is asynchronous, the delay for message delivery is finite

but it cannot be predicted.

Since distributed systems consist of more than one processes, a scheduling of executions
of processes is one of an important issues in designing distributed algorithms. The following

models are proposed as schedulers (adversaries).

e Central daemon (or, c-daemon) — A scheduler such that only one process is chosen to
be executed at each step. A process can read states of all its neighbor processes and

updates its state in one step.

¢ Distributed daemon (or, c-daemon) — A scheduler such that arbitrary number of pro-
cesses are chosen to be executed at each step. A process can read states of all its neighbor
process and updates its state in one step.

e Read/write daemon (or, r/w-daemon) — This model can be adopted if a communication
model is the register communication model. At each step. only one process is chosen to
be executed and each process can take an action such that an internal transition followed

by reading from or writing to a register.

Many distributed algorithms assume the existence of unique process identifier. The following

models related to process identifier have been considered.

e Uniform — There is no process identifier and every process has the same algorithm.
Thus. all processes are completely identical.

e Semi-uniform — All process except one or several (constant) number of processes are

identical. Special process(es) has different algorithm from other processes.

e Unique identifier — Every process has a unique process identifier.
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6.2 Previous Works

In this section, we review the previous works for the self-stabilizing mutual exclusion problem.

The first paper in which self-stabilization is proposed is [Dij74] by Dijkstra in 1974. He
proposed a self-stabilizing algorithm on bidirectional rings which solves the mutual exclusion
problem. In his paper, he introduced daemons as models of scheduler and his algorithm based
on state communication, c-daemon, and semi-uniform model. In a ring network, he assumed a
special process called the “bottom™ process. The idea of the algorithm is as follows. Depending
on a relation with neighbors’ states. a process is said to have an token if a predicate holds.
By the execution of a process, a token circulates along a ring. If a token arrives at a bottom
process, the moving direction of a token is reflected by the bottom process. If two tokens
collide, one token disappears and the other token remains. Thus. if there are more than one
tokens on the ring then the number of tokens decrease by collisions of tokens and eventually the
number of tokens become one. Since the number of tokens is at least one by the construction of
the algorithm, the number of tokens in a ring become one which is a legitimate configuration.?
He showed algorithms which require K states (where K > n and n is the number of processes),
4 states, and 3 states.

It is desirable that there is no exceptional process in a distributed system. A distributed
system is uniform if every process has the same algorithm and no process identifier. Dijkstra
showed that there is no uniform deterministic self-stabilizing mutual exclusion algorithm on a
ring network whose size is composite[Dij82]. (The same result can be seen in [BP89].) Burns
and Pachl proposed a uniform deterministic self-stabilizing mutual exclusion algorithm on
unidirectional ring networks whose size is prime assuming state communication model under c-
daemon. The proposed algorithm require O(n?) states for each process, and then, they showed
a method of reducing the number of states. Finally. they obtained an algorithm requiring
approximately n?/Inn states. It is shown by Ceger that a deterministic self-stabilizing mutual
exclusion algorithm assuming state communication model under c-daemon require at least
n — 1 state [Bur94]. Burns and Pachl pointed out that there is a gap between lower bound
and upper bound of the number of states and this is still an open problem. Recently, Huang
proposed a uniform deterministic self-stabilizing mutual exclusion algorithm on bidirectional
rings [Hua93]. His algorithm is a composition of a leader election algorithm and Dijkstra’s
self-stabilizing mutual exclusion algorithm. Since the ring is uniform, a distinguished process
assumed by Dijkstra’s algorithm is elected by a leader election algorithm. The number of
states that Huang’s algorithm requires is 3n.

Since determinism and uniformity are strong requirements for self-stabilizing systems, self-
stabilizing systems with relaxed requirements has been proposed. In addition. not only ring
networks but general networks are also considered in other researches.

Israeli and Jalfon proposed a self-stabilizing mutual exclusion algorithm on general networks

2A system state (tuple of states of all processes) is called a configuration. Formal definition is given in the
next section.
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by random walk of token [IJ90]. A process which have a token can be considered as having
a privilege to enter a critical section and it sends a token to a neighbor process which is
randomly chosen. A token is eliminated when two tokens collide. Even if there are more than
one tokens in a network. it is expected that they collide with high probability. They showed
that (1) the upper bound of the expected steps that the number of tokens converges to one,
and (2) the (exact) expected steps that the number of tokens converges to one in the case that
the network is a bidirectional ring.

Dolev, Isracli and Moran proposed a semi-uniform self-stabilizing mutual exclusion algo-
rithm on general networks [DIM90, DIM93]. They assumed a special process in networks.
Their algorithm is dynamic in the sense that it tolerates changes of networks (addition and/or
removal of processes and links) during execution of the algorithm provided that a special
process never removed. Their algorithm is composed of two self-stabilizing algorithms: a self-
stabilizing spanning tree algorithm and a self-stabilization mutual exclusion algorithm based
on random walk of a token on a spanning tree.

Nishikawa. Masuzawa and Tokura proposed a uniform self-stabilizing probabilistic leader
election algorithm on tree networks and complete networks [NMT92]. It is observed that
the self-stabilizing mutual exclusion cannot be solved deterministically on symmetry networks
[Dij74]. The proposed algorithm by Nishikawa et al. uses randomization to break a symmetry.
They showed that a composition of their uniform self-stabilizing leader election algorithm
and semi-uniform mutual exclusion algorithm proposed in [DIM90] yields a uniform mutual
exclusion algorithm.

Herman proposed a uniform self-stabilizing probabilistic mutual exclusion algorithm on ring
network whose size is odd in [Her90]. He assumed that every process is executed synchronously.
Each process has only one bit as a state, i.e., the number of states is two.

Not only using randomization to provide self-stabilizing property, a special network topology
is proposed. For instance. Ghosh proposed a deterministic self-stabilizing mutual exclusion

algorithm and on a special network topology in [Gho91].

6.3 Preliminaries

In this section. we give formal definitions of concepts and terms used in the self-stabilization

approach.

6.3.1 The process and network model

A unidirectional uniform ring system is a triple. R = (n.4.Q) where n is the number of
processes in the system.  is a transition algorithm. () is a finite set of state of process. The
processes are arranged on a ring. i.e.. processes Py. ;. ..., P,_; are arranged in a clockwise
manner. (Right is clockwise direction and left is counterclockwise direction.) Let Q; be the

state set of process P;. Note that Q; = @; for all 7.j, but we use this notation for the
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simplicity of explanation. The systems is called uniform since the § and @Q are the same for
every process.

A configuration of R is an n-tuple of a state of processes; a state of process P; is ¢; € Q;
then a configuration of the systemis ¥ = (go. 1+ .... gn—1). Let T' be the set of all configurations,
ie, T =Q¢ x Q1 X+ x Qpn_q. The transition algorithm ¢ of a process is given by a set of
guarded commands:

IF (guard,) THEN (command,)
IF (guard,) THEN (command,)

IF (guard,,) THEN (command,,)

Guards are predicates g;(g;, ¢i—1) and commands are assignment statements ¢; := f;(qi. gi—1).
A uniform ring system is called a randomized uniform ring system if random bit gen-
erator is used in a command. To describe randomized behavior of processes when we write
algorithms. we assume that a random bit generator is provided as a primitive function. Espe-
cially, the uniform ring system is called a deterministic uniform ring system if random
bit generator is not used in any commands.

A bidirectional uniform ring system is defined similarly. Guards are predicates

9i(qi,qi—1. gi+1) and commands are assignment statements ¢; := f;(qi. gi—1, gi+1)-

6.3.2 Scheduling of processes

It is said that P; has a privilege at a configuration v if and ouly if g;(gi,qi—1) for some
1 < j < m. P; can execute (change state) only when it has a privilege. In general. there exists
more than one process which have privilege. In this dissertation, we consider the following

types of scheduler in order to choose processes to be executed:

e c-daemon (central daemon) — the scheduler chooses any process among privileged pro-

cesses and let the process execute.

o c-dragon (central dragon) — the scheduler chooses a process among privileged processes

with uniform probability and let the process execute.

A scheduler chooses a process which has a privilege and executes a command whose guard is
true. Even if more than one one guard is true, only one command is chosen and be executed.
After the execution. assume that the state of P; is changed to q. Then, the configuration
becomes

Y = (qos Q1e vees Gim1+ Q- Git 1 +os Gm)
This relation between configurations is denoted by v — v'. The transitive closure of the
relation — is denoted by —*. To explicitly describe that the transition is made by process
P. we write 5. A computation or a transition sequence A starting from v € T' is an

infinite sequence of configuration ¥y, 71, .... where y; — ;41 for all j > 0.
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6.3.3 The self-stabilizing k-mutual exclusion problem

Let A be a set of configurations of a uniform ring system R = (n.6,Q). A deterministic
uniform ring system R is a deterministic self-stabilizing mutual exclusion system for

A if and only if all of the following conditions hold:

e No Deadlock: For any configuration v € T', there exists at least one 4’ € T' such that
!
(k]

e Closure: For any v € A and X € I'. v — o/ implies that ' € A.

e No Livelock: For any 7y € I' and any (infinite) computation A = .71, .... there exists

a j such that y; € A.

e Fairness: For any Ao € A and any (infinite) transition sequence A = Ag, A;.... and any

process P; (0 <7 < n). there exists infinite transitions made by P;.

e k-mutual Exclusion: For each configuration A € A. the number of processes which

have a privilege at A is exactly k.

The set of configurations A is called a set of legitimate configurations since the system
takes a configuration in A when the system is stabilized.
A randomized uniform ring system R is a randomzized self-stabilizing mutual exclusion

system for A if and only if all of the following conditions hold:

e No Deadlock: (same as deterministic version)
e Closure: (same as deterministic version)

e No Livelock: For any v, € T, let D be the set of all possible (infinite) computation
A = v, 4i.... and d; be the smallest index of configuration such that 7{"1' € A for each
A*. Then. the expected value of d; for each A? € D is finite.

e Fairness: (same as deterministic version)

e Mutual Exclusion: (same as deterministic version)

Wilen a ring system R = (n.6.Q) is self-stabilizing mutual exclusion systems for A, the
system S is denoted by four tuple S = (n.6.Q, A).

We define a self-stabilizing A-mutual exclusion problem with additional requirement. Let
II(A) be a set of processes which have a privilege at a configuration A and V be a any set of k
processes. Type-2 self-stabilizing k-mutual exclusion problem is a problem such that
there exists a computation starting from any legitimate configurations A € A which reaches a
configuration \'. where II(\') = V. Type-1 self-stabilizing k-mutual exclusion problem
is a problem without this requirement. Note that type-1 and type-2 are the same when k& = 1.
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Type-2 problem requires that there must exist a computation which reaches any arrangement
of privilege from any legitimate configuration. As we will show. there is no algorithm which

solves type-2 problem on unidirectional rings.
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Self-Stabilizing Mutual Exclusion
Algorithms

7.1 Self-Stabilizing k-Mutual Exclusion Algorithms

In this section. we propose (deterministic) self-stabilizing k-mutual exclusion algorithms under
a c-daemon on unidirectional and bidirectional ring networks. The solution is not trivial by
the following reasons. (1) If the number of tokens is less than k. the number of tokens must be
increased. This implies that token collision scheme cannot be applied simply. (2) When the
number of tokens is exactly k. collision of tokens must be avoided. (3) Otherwise. the number
of tokens must be decreased.

Since it is easy to show that there is no self-stabilizing A-mutual exclusion algorithm under
a c-daemon. we assume a fair schedule of a c-dacmon.! The proposed algorithms are based on
the algorithm by Burns and Pachl’s uniform deterministic sclf-stabilizing 1-mutual exclusion
algorithm [BP89]. First. we cite their algorithm and explain it because it is necessary in the

proofs of our algorithms.

7.1.1 Burns and Pachl’s Algorithm

The self-stabilizing k-mutual exclusion algorithms proposed in 7.1.2 and 7.1.3 is based on the
self-stabilizing mutual exclusion algorithm proposed by Burns and Pachl in [BP89]. Before
describing our k-mutunal exclusion algorithms, we cite Burns and Pachl’s algorithm S, =
(n, 69, Qo, Ag) first. In the rest of this section, we call Burns and Pachl’s algorithm as BP.

Let n > 5 be the prime number of processes. A set of states is @y and a state q; € Qg of
each process P; is a tuple l;.t;, where [; € {0.1.....n — 2} and t; € {0} U{2,3,....n — 2}. The
first field I; is called label and the second fields ¢; is called tag.

1A schedule is fair if a process which have a privilege is executed within a finite steps.
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For the simplicity of description of the algorithm. we define the following predicates:

Ra(i) = (Li#FLa+D)A(Li#FOVE =0V #L-L1 Vi <t),
Rp(i) = (Li=La+1)A(tia#t)A(L#0)

A set of gnarded commands 6y of Sy is defined as follows.

Rule BP-A:
IF R,(:) THEN I;.t; := (li—1 + 1).(4; — l;—1).

Rule BP-B:
IF Ru(+) BHEN L.t i= it 1

Arithmetic operations on labels and tags are computed modulo n — 1.

Legitimate configurations are configurations taking the following forms.
sl = 2.0,1 - 1.0.1.0,.0.1 + 1.0, 1 + 2.0, ...

where [ is any label and underlined state is a state of which a process that has a privilege.
After execution of the privileged process. the configuration become the following configura-
tion.
b= 200, 1= 1.0,0.050 4 1.0, 14 1.0, 4 2.0, ..

Note that the privilege is moved to the right process.
The next lemma holds for S, [BP89].

Lemma 1 The no deadlock property holds. i.e., there exists a process P which has a privilege
by Rule BP-A or Rule BP-B at any configuration. O

Now. we define several terms used in this algorithm. (These terms are also used in the
rest of this section.) Let ly.t1, 5.t be states of two consecutive processes Pp, P, in clockwise
oder on a ring respectively. We say that P, has a gap if and only if I, # l; + 1(mod n — 1)
is true and its gap size is defined by l; — l;. A segment is a maximal sequence of processes
s = (P, Piy1..... P;) which does not include a process having a gap and P; (P;) is called the
head (tail) process of s. For a segment s = (P;. Piyq..... Pj), we say that the segment is well
formed if and only if t; = lj41 — lj(mod n — 1) holds for every z (¢ < z < j).

We describe the way of stabilization of the BP algorithm briefly. At a legitimate configura-
tion, the number of segments is 1 and the segment is well formed. For any initial configuration,
the number of segments is at most n at the configuration. The application of Rule BP-A and
Rule BP-B does not increase the number of segments. Rule BP-A works as a movement of a
privilege and decreasing the number of segments if there are more than one. Rule BP-B works
to make a segment well formed. Even if a c-daemon try to keep the number of segments. every
segments become well formed and there is at least one process which cannot make a move.

Thus. the number of segments decreases within a finite steps until it become one.
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7.1.2 Unidirectional Uniform Rings

Now. we show a type-1 self-stabilizing k-mutual exclusion algorithm on unidirectional ring

S; = (n.61.Q1.A1). We assume that n > 5 is prime.

Algorithm SSUUR(k)

Let a state set be Q; = {l.t}, 1 € {0,1....n — 2}, t € {0} U {2,3.....n — 2}. Bach field I,¢
are called label and tag respectively. A set of guarded commands is as follows. Note that a set
of guarded commands is given to each P; but it is identical for all processes.

First, we define the following predicates.

Ra(i) = (Li#FLa+DALi#FOVE =0V # -1l Vi <),
Rp(1) (=L +1)A (i1 #6L)A(L#0)

Rule Uni-A:
IF R4(:) THEN
lbpe=i(l i) daalea )

Rule Uni-B:
IF Rp(i) THEN
Inb=lats 31

Rule Uni-C:
IF (n—k <l; <n—2)A=(Ra(i)V Rp(i)) THEN

do nothing.

The arithmetic operation for labels and tags are computed modulo n — 1.

A set of legitimate configurations is a set of following configurations.

el =2,0,1—=1:0,1.0, 1.0, { +1.0. ¢+ 2.0, ...,

for any label I. O

Now. the correctness of this algorithm is presented.

Lemma 2 At any legitimate configuration. there are exactly k processes have privileges. i.e..

k-mutual exclusion property holds. In addition. closure property also holds.
(Proof) Let A € A; be any legitimate configuration. which can be expressed as
a0 = 100Dk 0 1509 {2200 o0

for some I. Let Py be a process which has a privilege at A by Rule Uni-A and ly.tg be the
state of Py. (Note that ty = 0.)
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o Ifly € {n—k....n-2}
For each | € {n — k.....ly — 1.lo + 1,....n — 2}, There exists exactly one P; such that
l; =l and it has a privilege by Rule Uni-C. There exists two processes such that [; = [,
holds. One of them has a privilege by Rule Uni-C and another has a privilege by Rule
Uni-A. Thus, the number of processes having a privilege by Rule Uni-C is & — 1, and

none of these is Py. Thus, exactly k processes have a privilege.

Since a configuration never change by executions of Rule Uni-C. we consider only exe-

cutions of Rule Uni-A by Py. Let o' be the next configuration. 7' takes a form of
vl —2.0.1-1.0.1.0,1 4+ 1.0.1 + 1.0.1 4+ 2.0. ...

which is a legitimate configuration. Therefore, closure property holds.

e Iflgg{n—Fk,...n—2}
For each | € {n — k....,n — 2}, there exists only one P; such that {; = I. Thus. the
number of processes which have a privilege by Rule Uni-C is & — 1 and none of them is
Py. Thus. exactly k processes have a privilege. The closure property can be shown by

the same proof given above. o

Lemma 3 The fairness property holds.

(Proof) By the definition of Sy, there exists exactly one process P which has a privilege by
Rule Uni-A at any configuration A € A;. By the assumption of the fairness execution of
processes by a c-daemon. P is executed within a finite steps. Then. a process which has a

privilege by Rule Uni-A moves to the right process. o

Lemma 4 The no deadlock property holds.

(Proof) Since each guard of Rule Uni-A and Rule Uni-B is the same as that of Rule BP-A
and Rule BP-B by Burns and Pachl[BP89]. Thus, by the same proof for no deadlock property
shown in [BP89]. the no deadlock property of proposed algorithm is shown. O

Now. we have the following theorem.
Theorem 8 Sy is a type-1 self-stabilizing k-mutual exclusion system.

(Proof) Since Rule Uni-C never change the configuration, we do not consider executions of
Rule Uni-C without loss of generality. (Note that we assume a fair c-daemon.) There is no
configuration such that every privilege is a privilege by Rule Uni-C and there exists at least
one process which have a privilege by Rule Uni-A by the discussion in Lemma 4. Thus, for

any configuration vp, the configuration reaches 7, such that

weed —2.0,1-1.0,1.0.1.0.1 4+ 1.0, 1 + 2.0. ...
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by the same proof given in [BP89]. This is a legitimate configuration. O

Next theorem claims that there exists no algorithm for the type-2 k-mutual exclusion prob-

lem on unidirectional rings.

Theorem 9 For each n > 6 and k, (3 < k < n — 3). there exists no type-2 self-stabilizing

k-mutual exclusion algorithm on unidirectional ring of size m.

(Proof) Assume that there exists a type-2 self-stabilizing k-mutual exclusion algorithm on a
unidirectional ring. Let A be a set of legitimate configurations and A\g € A. Then. there
exists a legitimate configuration A; € A and a computation Ay —* A; such that consecutive k
processes have a privilege at A;.

Without loss of gencrality, processes Py, Py, ..., P._1 have a privilege at Ay. It is easy to see
that locations of privileges never change by executions of P; (0 < 2 < k — 2). (Otherwise,
the number of privileges become less than k.) Thus. the movement of privilege happens only
when Pj._1 loses a privilege after several executions of Pj,_;. Then, P, has a privilege next.
By the same way, Py loses a privilege and then Py, has a privilege. This is repeated until
P,_1 has a privilege. Note that any executions of P; (0 < ¢ < k—2) do not cause a movement
of privileges. since the ring is unidirectional.

Now counsider the following two cases.

o If k < |n/2):
A configuration such that any two privileges among A privileges are not adjoining each

other is not reachable.

o If k> |n/2]:
A configuration such that any processes which do not have a privilege are not adjoining

each other is not reachable. O

Corollary 2 There is no self-stabilizing k-mutual exclusion algorithm under a c-daemon for

k> 2 but there exists algorithm under a fair c-dacmon.

(Proof) Assume that there exists an algorithm under a (non-fair) c-daemon. Let Py. Py. ..., P,,_;
be a processes in clockwise on a ring. Consider a legitimate configuration at which process
Py has a privilege. Execute Py until it loses a privilege. It does lose a privilege because the
fairness property is not satisfied (consider a schedule executing only Py). A privilege moves
to its right process P;. Do the same thing for P;. Then the privilege moves to the right.
Repeat this procedure until a privilege does not move any more. (A privilege do not move at
some process P; within a finite steps; otherwise privileges collide and the number of privileges
deCl‘ease.) Then. execute only P;. Other process do not have a chance enjoying privilege: the

fairness property is not satisfied. 0
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Note that for n > 5 is prime, S; is a self-stabilizing system for the type-2 problem if
k=2.n-2.n-1,

7.1.3 Bidirectional Uniform Rings

We propose a type-2 self-stabilizing A-mutual exclusion algorithm S; on bidirectional rings
for size n > 5 is prime. The proposed algorithm is based on the following idea. Consider a
bidirectional ring consisting k tracks (rings). Each process execute the 1-mutual exclusion
algorithm for unidirectional rings proposed by Burns and Pachl[BP89] in parallel for each
track. A process has a privilege when it has a privilege at least one track in the sense of Burns
and Pachl's algorithm. If each track are executed infinitely often, each track stabilizes and
the number of privileges become one for each track. Then. the number of privilege become at
most & in the ring. To satisfy a k-mutual exclusion property, the number of privileges must
be exactly k. which implies that no process has a privilege at most one track.

The definition of S; = (n, 62, Q2. A2) is shown below.

Algorithm SSBUR(k)

Let the state set be Qy = {(1}.t}, 3.t3. lj“tj‘) | 1% € {0.1,...n - 2}.t§ e {0}u{2.3,...,n—
1}}, and T’y be a set of all configuration.

A set of gnarded commands 8, is defined as follows. Let a configuration be (qo, q1+.... ¢n—1).
q; = (I}.2]. 2.2, ....lj’?’.t;‘-’). To make the description simple. we define the following functions

and predicates:

Ra(i.j) = (AL +DA@GAOVE  =0VE AL -1 Vi, <t),
Rp(i.j) = (=0 +1)A(t5_y #t5) Al #£0),
Sp(i) = {ilQ<i<k)Al=1_,)}
m; = |Sp(j)] and
Rs(j) = [l AW =ty+ D) =5) V(0 =L)AL, =15 +1))
1<:<k

V(=L + 1) A, =1+1)}
AVij(1<i<kj—-1<j <j+1)[th =0]
N Rl

A transition rules 6% for a process P; is as follows. (Though process identifiers j — 1. 7.7 +1
appears. 63 = &3 for any j.j'.)

Rule Bi-A:
IF -Rs(j) A Ji(1 <i < k)[Ra(i.j)] THEN

For each ' such that Ra(i'.7) is true:
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TN RS N e
For each ¢’ such that Rp(i'. j) is true:

gt g
Cai el

Rule Bi-B:
IF Rs(j) A (mj =1) A (mj41 2> 1) THEN

do nothing.

Rule Bi-C:
IF Rs(j) A (mj =1) A (mj41 = 0) THEN
For 7' = min S,(j):

] " ti.,

Bl = (1 +1).085 = #5_,).
Rule Bi-D:
IF Rs(j) A (mj > 2) A (mj41 > m; — 1) THEN

do nothing.

Rule Bi-E:
IF Rs(j) A(m; 2 2) A (mj41 < mj — 1) THEN
For i' = min S,(j):
Bt =, 4 )08 —2y).
Rule Bi-F:
IF 3i(1 < i < k)[Rp(4.j)] THEN
For each ¢ such that Rp(i'.j) is true:
Hat] =i 4

’

i.
feis
A legitimate configuration A € A, is as follows: (1) Each track is in a legitimate configuration

in the sense of BP, (2) each process P; has a privilege of BP at most one track. A set of
legitimate configurations A, is the set of the following configurations. Let v = (go.q1. ... gn—1)
be a configuration such that q; = (l}.t}.lf.t?. lftj") Then. v € A, if and only if the next
condition holds.

o Vi j[ti = 0].

o For each 4. (I3.1%.....1% ;) is a cyclic shift of (' 1.+ 1L.IP 4+ 2...I' +n - 3.1' 4+ n - 2)

for some I*. (Arithmetic operation is computed modulo n — 1.)

e Foreach j. |{i |1} =15_,}| < 1. i

Now. the correctness proof of S, is presented below.

Lemma 5 The number of processes which have a privilege is exactly k at any legitimate

configuration.
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(Proof) It is clear by the definition of the set of legitimate configurations. 0

Lemma 6 The closure property holds.

(Proof) Let A € Ay be any legitimate configuration. The guards of Rule Bi-B or Rule Bi-C
are true at processes which have a privilege at A . (If the right process has a privilege then
it has a privilege by Rule Bi-B. Otherwise it has a privilege by Rule Bi-C.) Assume that a

process P; which has a privilege.

e The case that P; had a privilege by Rule Bi-B:

The next configuration is the same as A.

e The case that P; had a privilege by Rule Bi-C:
After application of Rule Bi-C. P; does not have a privilege and Pj; has a privilege at
a track in the sense of BP. This configuration is in A,. O

Lemma 7 The fairness property holds.

(Proof) Let A € A, be any legitimate configuration. At a configuration A, there exists processes
P,. Py, ... such that their right processes do not have a privilege since & < n. These processes
P,, Py. ... have a privilege by Rule Bi-C. (Other processes which have a privilege is by Rule
Bi-C.)

The application of Rule Bi-B does not change the configuration. By the fairness assumption
of a c-daemon, a process P among P,. P;. ... is executed within a finite steps. After execution
of process P. it loses a privilege and the right process of P has a privilege instead. Thus,
the movement of privilege within a finite steps is guaranteed by the fairness of a c-daemon.
Therefore. every process has a privilege infinitely often in a infinite computation. Note that

fairness property does not hold without fairness of a c-daemon. O

Lemma 8 The no deadlock property holds.

(Proof) Assume that a configuration v € I'; is a deadlock configuration, i.e., guards of rules
are false at every process. Since the number of process is prime. the same proof of no deadlock
property of Burns and Pachl’s algorithm (Lemma 4.3 in [BP89]) can be applied to this lemma.
Thus, at least one of guards of Rule BP-A or that of Rule BP-B is true at some process.
If the guard part of Rule BP-B is true at some tracks, a privilege by Rule Bi-F exists; a
contradiction. Therefore. Vi3j[R 4(7.7)] is true. Let 7, jo be integers such that R 4(ig. 7o) is
true.

e When Rg(jg) is true:
Since V,.¢(s. c. p. g}(Guard of Rule Bi-r) = Rs(jo). one of guards of Rule Bi-B. Bi-C,
Bi-D and Bi-E is true; a contradiction.
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e When = Rg(jo) is true:
The guards of Rule Bi-A is true: a contradiction. o

Next lemma is shown in [LS92].

Lemma 9 Let m; be the number of gaps of the i-th track and g; (i = 0.1,...,m — 1) be gaps
of the i-th track. Then. E;-"z"olgj =m — 1(mod n — 1).

Lemma 10 There is no configurations such that all privileges are privileges by Rule Bi-B
and/or Rule Bi-D.

(Proof) Assume that there is a configuration 7 at which all privileges are privileges by Rule
Bi-B and/or Bi-D. Since algorithm BP is livelock free. there exists j such that the guards of
Rule BP-A (= Ra(¢.7)) or that of Rule BP-B (= Rp(i.7)) is true for each track ¢. If we
assume that the guard of BP-B is true for some 7. 7. then the guard of Bi-F become true and
it is a contradiction. Thus. the guard of BP-B is not true at each track. i.e., " Rp(s. 7) is true

for all 4. j.

o The case that the guard of Bi-B is true at Pj:
Since Rg(j) is true. there exists ¢ such that lj‘+1 = lj- is true and t§+1 = t; = 0 is true.
Thus we have R4(2.j + 1) is true. If we assume that =Rg() + 1) is true then the guard
of Rule Bi-A is true; a contradiction. Thus. Rg(7 + 1) is true. which implies that one
of guards of Rule Bi-B, Bi-C, Bi-D and Bi-E is true. (Note that logical-OR of guards of
Rule Bi-B. Bi-C. Bi-D and Bi-E is Rs(j).) Therefore. Pj4; has a privilege by Rule Bi-B
or Rule Bi-D by assumption.

o The case that the guard of Rule Bi-D is true at P;:
There exists 7 such that ljﬂ = I;'- is true since m; > 1. and R4(4,5 + 1) is true since
tj_H = f} = 0. By the same reason discussed above. P;ji; has a privilege by Rule Bi-B
or Rule Bi-D.

By above discussion. every process has a privilege by Rule Bi-B or Rule Bi-D. Thus,
Vi.j[Rs(j) A —Rp(i.j)] is true. Since every gap size is 0 for each track, the sum of all
gap sizes is 0 for eack track. By the definition of Rgs(j). each track has at most n — 1 seg-
ments. By this fact and by lemma 9, the number of segments at each track is 1. Thus. we have
Z;7m; < k. On the other hand. if Rs(j) is true then m; > 1 is true. which implies £;7; > n: a

contradiction. i

The next lemma shows that if each track is legitimate then the entire ring will reach a

legitimate configuration within a finite steps.
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Lemma 11 For cach i (1 <@ < k). assume that the i-th track is in a legitimate configuration
in the sense of BP at a configuration . Then, for any computation A starting from vy such

that A = vy — 1 — -+ -. there exists a finite integer T such that v, € As.

(Proof) The behavior of S; when each track is legitimate in the sense of BP is the same as the
behavior of the following (self-stabilizing) system S3. The system S3 consists of a bidirectional
ring of size n and its algorithm is described below. Each process P; takes the following state:
T S g Sk 2;}:_0175- =k < n).2 The algorithm of S3 works to make 7; be at most one at
any configuration. The legitimate configurations are configurations such that 0 < 7; < 1 for
each j. We say that P; has a token if and ouly if 7; > 1 and =; is called the number of tokens

of P;. The algorithm (transition relation) of S3 is as follows.

Rule Bi-B™:
IF (7w = 1) Ad7ry41 2 1) THEN
do nothing.

Rule Bi-C:
IF(m; = 1) A (7,51 = 0) THEN
mj = 0. mj4p = L.

Rule Bi-D:
IE G 2 2) Al 2y = L) PHEN

do nothing.

Rule Bi-E:
IF (m; > 2) A (mj41 < m; — 1) THEN

mji=m5 — 1 i =i + L

It is easy to see that E;-lz_olﬂj = k always holds by the definition of the algorithm. Now, we

show that self-stabilizing properties of Sj.

No deadlock property:

At a initial configuration. 2?:_0171'1- =k, 2 < k < n holds and Bi-r is true at process P; for
some j and some 7 € {B".C".D".E'} since V,¢(p'.c'.p" g} (The guard of Rule Bi-r) = (m; > 1).
Next, we show that a configuration such that all privileges are privileges by Rule Bi-B' and/or
Rule Bi-D" does not exist. Assume the contrary. Let P; be a process which has a privilege
by Rule Bi-B" or Rule Bi-D". Then. we have mjy; > 1. Thus, Pjy; also has a privilege. By
assumption. the privilege of Pj , is also a privilege by Rule Bi-B’ or Rule Bi-D’. By repeating
this argument. we conclude that every process has a privilege by Rule Bi-B’ or Rule Bi-D’,

which contradicts the fact that E?:—ol"j =<

2 Although the network of S is a bidirectional ring, the next state of a process is determined by its state
and the state of its right process. In a strict sense, definition of S3 does not match the definition of the
self-stabilizing system defined in Chapter 6. The (another) definition of self-stabilization for Sy is omitted
because it can be defined similarly.
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Closure Property:
Every privilege at a legitimate configuration A is a privilege by Rule Bi-B’ and/or Rule Bi-C'.

It is easy to see that a configuration after A is also a legitimate configuration.

No livelock property:

Assume that a livelock happens. By the proof of no deadlock property., we can conclude
that at least one process have a privilege by Rule Bi-C' or Rule Bi-E'. For a configuration
¥ = (qo: - Gn-1). we defined M(y) = max{r; | 0 < j < n}. For any v’ such that y —~ 7', it is
clear that M(~') < M(~). By assumption, there exists a configuration 4’ and a computation
A starting from v such that My = M(v') = M(y") > 2 for all ¥/ —* 4"". More over, there
exists 7" such that 4" —* 4" in the computation A. the number of processes P; such that
m; = My is the same at all configurations after v". Let J be a set of j such that m; = M,
and mj41 < My at 4", Since k < n, we have m; # M, for some ¢ (0 < i < n). In addition,
consecutive processes at which m; = My holds except P; (j € J) do not have a privilege by
Rule Bi-C” nor Rule Bi-E".

e The case that P; has a privilege by Rule Bi-D" for each j € J at any configuration after
s
If we assume that some process P; (0 < 2 < n) applied Rule Bi-C’ or Rule Bi-E" after
7" then m;y1 < m; was true before the execution of the rule. That is, a token is moved
if the right process has less tokens. Since a set of processes such that m; = M, never
change. the number of applications of Rule Bi-C" and Bi-E’ is finite and no process will

have a privilege by Rule Bi-C’ nor Rule Bi-E' within a finite steps; a contradiction.

e Otherwise, i.e., there exists a configuration after 4" and j € J. P; has a privilege by
Rule Bi-E’ at the configuration:
In this case. we have 741 < mj —1 = My — 1. Unless P; apply a rule, m;4; does
not increase. Thus. once P; has a privilege by Rule Bi-E’, the privilege is not lost by
the execution of Pji,. Therefore. P; applied Rule Bi-E' within a finite steps by the
assumption of fairness of a c-dacmon. After application of Rule Bi-E’ by P;. the number
of tokens of P; become 7; —1= My — 1 and that of Pj; become 743 + 1 < Mj. Since
the number of tokens of other processes is the same. the number of processes which have

M, tokens decreases by the execution of P;: a contradiction.
Therefore. we conclude that livelock never occurs and the Sz system reaches a legitimate
configuration within a finite steps. m]
Lemma 12 No livelock property holds for Ss.

(Proof) By lemma 10. a livelock such that the same configuration is repeated does not occur,
Thus there is at least one process which have a privilege by Rule Bi-A. Bi-C, Bi-E or Bi-F.

By the assumption of fairness of a c-daemon. one of such process is executed with in a finite
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steps and the configuration changes. Thus. we do not take the executions of Rule Bi-B and
Rule Bi-D into consideration.

Assume that there exists a configuration v € I'; and a computation A which is a livelock
computation. If every track reaches a legitimate configuration in the sense of BP. the entire
ring also reaches a legitimate configuration by lemma 11. Thus. we assume that there exists
a configuration 7/ (y —~ 9') and the I-th track such that the I-th track is not a legitimate
configuration in the sense of BP at every configuration v (v/ —* 4”) in the computation A
and the I-th track never change after y'. (Otherwise. the track will be legitimate.) By the
definition of S,. an application of Rule Bi-A or Rule Bi-C or Rule Bi-E implies an application
of Rule BP-A (and BP-B depending on the condition) for some track, and an application of

Rule Bi-F implies an application of Rule BP-B for some tracks.

Since at least one of Rule Bi-A, Bi-C or Bi-E is applied infinitely often in A, there is a track
which is infinitely often changes its configuration; thus there exists a track which become
legitimate in the sense of BP within a finite steps. Let I be such a track with the smallest
suffix. At the Jy-th track, a privilege is moved from left to right. If a process P has a privilege
by Rule BP-B at the I-th track then Rule BP-B is applied when P executes Rule BP-A at the
Iy-th track: a contradiction. Thus, there exists no privilege by Rule BP-B at the I-th track

and exists only privileges by Rule BP-A.

Let J be a set of indices of processes which have a privilege at the I-th track in the sense
of BP. Then. j € J. a process P; has a privilege by Rule Bi-E when it has a privilege by Rule
BP-A at the Io-th track. Note that if the privilege of P; is a privilege by Rule Bi-A or Rule
Bi-C then Rule BP-A is applied at the I-th track. This contradicts the assumption. (Since
the Iy-th track is in a legitimate configuration in the sense of BP and a privilege is circulating
by Rule BP-A. P; has a privilege except Rule Bi-B or Rule Bi-D when P; has a privilege
by Rule BP-A at the Iy-th track.) In addition. Iy < I holds by the definition of Rule Bi-E.
Since Rg(j) is true at Pj. the number of segments at the I-th track is at most n — 1. Because
tJIA_1 = tJI- = t§+1 = 0 is true for each j € J and there is no privilege at the I-th track. if we
assume that the number of segments at the I-th track is 1 then all tags at the I-th track are
0, which implies that the track is well formed in the sense of BP and it is a contradiction.
Thus the number of segments of the I-th track s is 2 < s < n — 1 and the gap size at P; is 0
for each process P; which has a privilege by Rule BP-A at the I-th track.

By lemma 9 and the fact 2 < s < n — 1. there exists a gap whose size is not 0. In other
words, if gg.gy.....gs—1 18 a sequence of consecutive gap sizes in clockwise order then there
exists h such that g;, # 0. If Py has a gap g5, then Py does not have a privilege by Rule BP-A.
The reason of this fact is described as below. Consider a configuration at which a privilege
by Rule BP-A at the [y-th track. If Py has a privilege by Rule BP-A at the I-th track then
Rg(H) become false since the gap size is not 0 and Rule Bi-A is applied which implies that
the configuration of the I-th track is modified. This contradicts the assumption.

Thus, “"RA(I.H) = (I = 0) A (th_y #0) A (Ih_y # 0) A (th_, > tL) is true at Py. By
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this fact, a label of the leftmost process in a segment whose gap size is not 0 is 0.

Let a segment S be a segment whose gap size is not 0 and its left segment S_; has a gap
size 0. (It is clear that such segment exists by the above discussion.) By the assumption. the
head process Py of S has label 0 and its left process P_y (i.e.. the tail process of S_1) has
non-zero label and non-zero tag. Thus, S_; contains a process whose label is 0 and the length
of §_1 is more than one since the guard of Rule BP-B is false at every process. The sequence
of labels of the I-th track (starting from the label of Py) is as follows.

ll.l N 11‘2. 11_3. eea 12,1. 12_2. 12‘3. cena 13.1. 13‘2. 13.3, “en

where l;7 = 0 and l; ; < I; j41 holds for each 4. j. That is, the sequence of labels is sequences
of non-decreasing sequences starting from 0.

Assume that the head process of Pr of the segment S_; has label 0. Then, the guard of
Rule BP-A is true since the gap size of S_; is 0. Thus. L € J and the tag of Py is 0. Each
process does not has a privilege by Rule BP-B and the number of processes which have a label
0 in each segment is at most one since the number of segments is more than one. Thus. each
process in the segment S_; has a tag 0: a contradiction. Therefore, the label of P is 0. But
there is no such sequence of non-decreasing sequences since the number of segments is more
than one; a contradiction.

By above discussion. we conclude that each track reaches a legitimate configuration within

a finite steps. This fact and lemma 11, this lemma holds. ]

We have the following theorem:

Theorem 10 S, is a type-2 self-stabilizing k-mutual exclusion system for n > 5 is prime. O

7.2 A Self-Stabilizing 1-Mutual Exclusion Algorithm with Ran-
domization

In this section, we investigate the 1-mutual exclusion problem as a special case of the k-
mutual exclusion problem. We consider the 1-mutnal exclusion problem on unidirectional
rings assuming state communication under a c-daemon and a c-dragon and propose nniform
I-mutual exclusion algorithms.

Since the ring is unidirectional, the solution is not trivial. If the ring is bidirectional,
random walk of tokens can be used to stabilization of the number of tokens as described in
[1390). However. a unidirectional ring under a c-daemon cannot use random walk method
because the movement of token is one direction (i.e.. the choice for a processes is moves the
token right or not) and a c-daemon may choose a schedule of processes not to collide tokens.

It is shown that there is no self-stabilizing 1-mutual exclusion algorithm if the number

of process is composite[BP89]. We propose a uniform randomized self-stabilizing 1-mutual



80 Chapter 7. Self-Stabilizing Mutual Ezclusion Algorithms

exclusion algorithm for any size of ring. The proposed algorithm can escape the malicious
schedule of a c-daemon and it self-stabilizes with high probability without deadlock.

Before proposing an algorithm of randomized version, we propose a self-stabilizing deter-
ministic mutual exclusion algorithm under a c-dragon. Since the scheduler guarantees the

probabilistically fair execution of process, the algorithm is much simpler.

7.2.1 The self-stabilizing system under a c-dragon

In this subsection we investigate self-stabilizing mutual exclusion systems on unidirectional

ring under a c-dragon.

Theorem 11 For cach n > 1, there exists a deterministic self-stabilizing system under a

c-dragon.

(Proof) The case n = 1 is trivial. Burns and Pachl proposed a deterministic self-stabilizing
mutual exclusion system under a c-daemon for n = 2 in [BP89]; their system also works
correctly under a c-dragon. Thus, we consider the case n > 3.

The mutual exclusion system we propose is as follows. Let the state set @ = {0, 1....,n—2}.
Let Py, .... P,,—1 be processes in the system (in clockwise order) and ¢; be the state of process
P;. Note that we show a set of rules for each process P;, but every process have the same

algorithm. The algorithm of S,, is as follows:
Rule: IF ¢; 1 + 1 # q; THEN ¢; := q;_1 + 1(modn — 1)

A legitimate configuration A is a configuration such that ouly one process has a privilege at
A. For example.
0,1,1.2,3,4,5,6,7,8

is a legitimate configuration when n = 10.

If a processes P has a privilege, we say that P has a token. It is easy to see that (1) There
exists at least one token in the system at any configurations. and (2) The number of tokens
never increase by the execution of any set of processes.

By execution of a privileged process, it loses a privilege and a privilege may move to the right
process. Therefore, we can consider that a token moves to right. Consider a configuration at
which the number of tokens is more than one. Let 7; and 7; be any two different tokens. The
distance of the two tokens is defined by the minimum distance of processes on which tokens
are. If two tokens are on consecutive processes, the distance is one. If two tokens collide,
the number of tokens decreases by the definition of the algorithm. Because the scheduler (a
c-dragon) chooses a privileged process to be executed. we can regard the movement of tokens
as random walk of tokens on a unidirectional ring.

Now consider any two tokens 7;,7; and fix them. Let d(7;.7;.7) be the distance of two

tokens 7;.7; at a configuration . We consider d(7;.7;.7) as a state of a Markov chain. Note



7.9. A Self-Stabilizing 1-Mutual Exclusion Algorithm with Randomization 81

that the state 0 is an absorbing wall and [n/2] is a reflecting wall. Since the probability of
transition from state ¢ to state « — 1 and from state i to state 7 + 1 are both 1/2 for each
1< i< |n/2]. Thus, it is easy to see that the expected steps that two tokens 7;, 7; collide is
finite.

Since a c-dragon chooses a privileged process to be executed with uniform probability, the
expected interval steps that one of process corresponding to tokens 7;, 7; is executed is finite.
Therefore, the expected steps that every tokens collide is finite. which implies that the expected

steps that the number of tokens become one is finite. This is a legitimate configuration. O

7.2.2 The randomized self-stabilizing system under a c-daemon

In this subsection. we a propose randomized self-stabilizing system under a c-daemon. Burns
and Pachl [BP89] showed that the number of processes of a ring is composite then there
exists no deterministic self-stabilizing system under a c-daemon. As we saw above, the self-
stabilizing mutual exclusion system for each n is casily obtained by assuming a c-dragon.
The next interest lies in a self-stabilization assuming a c-daemon: Which additional device
is necessary for the existence of self-stabilizing mutual exclusion system for every n under a
c-daemon? Our answer is that if each process has a random-bit generator then the expected
steps that the number of privileges become oue is finite under any schedule.

The outline of reason why there exists no deterministic algorithm is as follows[BP89]: Where
n > 4 is composite, n can be decomposed as n = zy, where z,y > 2. We can construct a
z blocks of processes of length y and by choosing #-th process in a block and execute ¢-th
process of all blocks. By this schedule, the number of processes having privilege is at least z.
Since the behavior of process is deterministic, a c-daemon can choose a schedule of execution
of processes to keep a symmetry of configuration. The case explained above, configurations
consists of a blocks of length b. To break symmetry of configurations by malicious scheduling

of a c-daemon. randomization is added to process behavior.

7.2.3 The randomized self-stabilizing 1-mutual exclusion algorithm

We show a self-stabilizing mutual exclusion algorithm for a ring size n. It is shown that there
exists a deterministic self-stabilizing algorithm for a ring of size 2 in [BP89]. The case for
n =1 is trivial. Therefore, it is enough to consider the case n > 3.

The idea of proposed algorithm is based on a algorithm by Burns and Pachl [BP89]. A state
set of processes is a 3-tuple L.t.r. The first field of states is called label, the second is called
tag. and the last is called random signature. To stabilize the ring. we add a toss-a-coin
feature to each process to break a symmetry of ring (with high probability) in spite of a c-
daemon. The random signature is a signature of a segment which is randomly generated. To
break a symmetry of the ring. signatures of segments are compared.

Now we describe a formal definition of proposed algorithm. A state set of processes is
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{l.tor |1 €{0.1.2.....n — 2}, t € {0.2.3,....n— 2}, 7 € {0.1}}. We define following predicates:

Ai = (LiFLAa+DAL#EOVE=0VE#FL—L Vi <tio)
B; = (islia+)A{#LaVr#Fria) AL #0)

Gvs b ANl E st L N (St A (S i)

& = (i g=n—=2)

The algorithm is described below. The procedure RandomBit() generates a random bit (i.e.,
0 or 1) with the same probability 1/2.

Rule A: IF A; A a; THEN
lLi=L_ 141
tii=1; — lig
r; := RandomDBit()

Rule A’: IF A; A ~a; THEN

li=li1+1
ti=1li—li
Tit=Tioy

Rule B: IF B; THEN
li == ti

Ti = Tio

Rule C: IF C; THEN

li=1li1+1
hi=hi—ka
TP =T

A legitimate configurations is a configuration such that
Sose l et 2.0.7‘_3. I L3 4 1.0.7‘_2. I.O.T_l. I.O.T(). l + 1.0.7‘1. l + 2.0.T2,

for some € {0,1,....n — 2}. In addition. cach legitimate configuration must be the following
form as to random signature 7;.

n — 3.0.r,n — 2.0.7,0.0.7',1.0.7'. ....1.0.7' . 1.0.7. L.O.7, ...

for 7,7 € {0.1}. That is. processes between a process having label 0 and the left process
of a privileged process have the same random signature. The other processes (i.e.. processes
between a privileged process and a process having label n—1) have the same random signature.
For instance. a configuration

5.0.0,6.0.0,0.0.1,1.0.1, 2.0.1. 2.0.0. 3.0.0. 4.0.0,
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is a legitimate configuration when n = 8.

Correctness proof

Before showing the proof, we define several terms used in the following proof. Let Py, Py, ...,
P,_, be a consecutive processes in a clockwise order on the ring and l;.t;.r; be a state of
process P;. A segment s is a sequence of consecutive processes s = Py. Pyy1,.... P, such that
li=lL1+1foreachi=a+1,a+2,....band I, # 1,1 +1 and lp4; # l; + 1. Let §(7) be
the number of segment at y. We say that there is a gap between processes P, and Pyyq if
Ihe1 # b+ 1. The gap size of a segment s = Py, Pyyq..... Py is 41 — Ip. A process P, (Py) is
called a head process (a tail process) of s. A segment s = Py, Pyyq. ..., Py is well formed
i (t =1y ATi = 7i—1) V (l; = 0) foreach 2 = a-+ 1. a+2;...b and t; = ly..1 — 1.

Now, we give the correctness proof of proposed algorithm.
Lemma 13 For any configuration v € T'. the number of segments is at least one.

(Proof) It is clear because the possible labels are n — 1. 0O

Lemma 14 The algorithm is deadlock free.

(Proof) Assume that deadlock happens. Let v be any deadlock configuration. Since logical
OR of guard of all rules is A; V B; V C;, a condition = A; A =B; A =C; holds for every process
¢ at . For every head process of a segment. I; = 0At; #0At; =1 — l;_1 At; > ti—; holds
because = A; and I; # l;_; + 1. Thus, for every segment s at . Head(s) has label 0.

The number of segments is at least 1 by lemma 13. we consider following two cases.

e When the number of segments is 1:
The tail process has label 0 because the number of segment is one and the head process

has label 0. Therefore, t; = 0Vt; # I; —l;_; is true at the head process since I; —1;_; = 0.

By definition of Rule A and Rule A'. the head process has a privilege by Rule A or Rule

A’: a contradiction.

o Otherwise:
Because the number of segments is more than one and every head process has label 0. a
process whose label is 0 is a head process. Since no process has a privilege by Rule B,
every process in a segnient has the same tag and random signature, which contradicts

the fact that ¢; > t;_; holds for at head process of every segments. a

Lemma 15 Closure property holds.

(Proof) Let A be any legitimate configuration. By the definition of rules, it is clear that the
head process of the only segment always have privilege by one of Rule A or Rule A’. Tt is easy

to see that the next configuration of A is also a legitimate configuration. O
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Lemma 16 Fairness property holds.

(Proof) Let A be any legitimate configuration. By the definition of legitimate configurations,
the number of processes which have a privilege is one and by lemma 15, the privilege moves

to a right process by a execution. Therefore. the privilege circulates the ring. O

Lemma 17 Mutual exclusion is guaranteed.

(Proof) It is clear by the definition of legitimate configurations. u|

Above lemmas proves four property of self-stabilizing systems. We prove that the expected

steps the system stabilize is finite.

Lemma 18 Let vy € ' be any configuration and A = vy. 71,72, ... be any infinite computation
starting from . Then. there exists 0 < I < oo such that a transition yy — 41 18 an
application of Rule A or Rule A" or Rule C.

(Proof) Assume that there exists 9 € I' and an infinite computation A = g, 71, 72. ... such
that a transition v, ljﬂ is an application of Rule B for each j > 0. Application of Rule B
never change members of segments and changes only a tag. By definition of Rule B. a tag does
not propagate over a gap (and label 0). Thus, for any segment s. tlie number of applications
of Rule B for s is finite if no other rules are applied and there exists a configuration vy such
that v —~ 77 and there is no privilege by Rule B at ~;.

Because the algorithm is deadlock free (by lemma 14). there exists a process that has a
privilege and the privileges are privileges by one of Rule A or Rule A’ or Rule C. Therefore,

one of these rules are applied. 8]

Lemma 19 The configuration reaches a legitimate configuration within a finite steps if the

number of segments at an initial configuration vy is one.

(Proof) Let v € I' be any configuration of which the number of segments is one. It is easy to
see that the number of segments is non-increasing by the definition of algorithm. Thus, for
any v € T such that ¥ —* v/, the number of segments at 7' is one. By lemma 18. the head
process executes one of Rule A, Rule A'. or Rule C. By execution of any of these rules. the
head process changes and the label of the new head process increases by one. Therefore. within
a finite steps from ~. the configuration become a configuration such that the label of a head
process of the segment is 0. Let this configuration be vy and let processes be Py. Py..... P,_1
in clockwise order in the ring and P is the head process at 7.

By lemma 18. P executes one of Rule A. A’ or C and its tag and random signature become
the same as P,_;'s. Note that the tag is zero. Let the configuration after Py executed a

rule be ;. Similarly, P, executed a rule and its tag and signature become as the same as
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Py. Repeating this argument, it is easy to see that the configuration become the legitimate

configuration. o

Lemma 20 For any configuration v € T' such that the number of segment is n at v, the

number of segments become n — 1 by an execution of a rule.

(Proof) There is no privilege by Rule B since the length of every segments is 1. By this fact
and by lemma 14. every privilege is a privilege by Rule A or Rule A’ or Rule C. The execution
of any of these rules makes a segment of length 2 and the number of segments become n — 1.
0

Lemma 21 Let vy be any segment such that §(~vy) > 1 and s be any segment at vo. Then,
there exists no computation starting vy such that the number of application of Rule B by

processes in s is infinite if the processes consisting of s never change.

(Proof) Let s consists of processes Py. Ps. .... P, in clock wise order of the ring. Assume that
there exists a computation such that the number of application of Rule B is infinite. Recall
that the processes consisting of s never change during the computation and no process in s
applies Rule A, A’, nor C by assumption.

Let 41 be a configuration just after a process in s applied Rule B after 4. Similarly. every
time a process in s applies Rule B. define a configuration ;. Then we have a sequence of
configuration yp. 1, ¥2..... For each ;. we associate a integer v; which is represented by m-bit
vector whose j-th bit is 1 if and only if P; has a privilege by Rule B. The most significant bit
(1st bit) of v; corresponds to P; and the least significant bit (m-th bit) of v; corresponds to
P,,. Thus, 1st bit of v; is always 0 because P; is a head process.

Then. it is easy to see that the number sequence vg.v1,v;.... is a decreasing sequence.

Because v; > 0 for all 4, there exists no such number sequence. This is a contradiction. B

Lemma 22 Let vy be any segment such that §(yo) > 1. Assume that there ezxists a computa-
tion starting from vy such that the number of segments never change. Then, there exists no

segment whose head process never changes.

(Proof) Assume that there exists such segment s. By lemma 21, there exists no computation
such that only Rule B is applied. Thus. Rule A, A" or C is applied within a finite steps. which
implies that there exists a segment s’ whose member changes infinitely many times during an
mfinite computation. Let P be a head process of s. Then. P also become a member of s’

infinitely often because a segment moves to only one direction on a ring: this is a contradiction.
0

Next lemma shows that any schedule which try to keep the number of segments leads to a

configuration in which all segments are well formed.
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Lemma 23 Let vy € T be any configuration such that the number of segments of vo. #(0),
18 2 < f(vo) < n— 1. Assume that there exists an infinite computation A = vy, 71. Y2+ ... such
that §(vo) = #(7y;) for all j > 0. Then. there emists I such that every segment at v; is well
formed for all i > I.

(Proof) Let L = #(v) (= #(m1) = #(72) = ...) and s7.82.....51 be a sequence of segments
in clockwise order of the ring. Note that processes cousisting segments change with the
computation proceeds, but the number of segments is kept by the assumption.

Let I be the label of the tail process of s; at 4. Then. by lemma 22, the head process of
so executes a rule and become the tail process of s; within a finite steps and its label is [ + 1.
Repeating this discussion. it is easy to see that the configuration reaches a configuration such
that the label of the tail process of s; become 0 within a finite steps. Let this configuration
be 13 and Py = Tail(sy).

Consider a configuration gy such that P, become the head process of s; for the first time
after v;. (It is easy to see that such configuration exists by 22.) By the definition of rules, P,
never change its tag and random signature between v; and ;. Thus. the right processes of
Py in the same signature inherit P;’s tag and random signature. Therefore, the segment s, is
well formed at ,.

The random signature of a segment is generated again when the new tail process takes label
0, but the segment is still well formed. By repeating the same argument, ss, s3. .... s become
well formed within a finite steps. Therefore. every segment become well formed within a finite

steps. O

The range of labels and definition of gap is the same as the ones in [BP89]. Lin and Simon
showed the next lemma in [LS92] for the algorithm in [BP89]. Thus. the next lemma also

holds for our algorithm.

Lemma 24 Let vy € I' be any configuration and sy.....sy be segments at v and g; be a gap of
si, where L =H#(v). Then. 3, c;cp 9i=L—1modn—1

(Proof) Proof can be found in [LS92]. O

Lemma 25 Let vy be any configuration such that 2 < f(9) < n—1 and every segment is well
formed at g and A = vg.71. ... be any infinite computation. Then, there exists a head process
of a segment. say P, and ;. such that P does not have a privilege by Rule A nor Rule A’ at
Vi

(Proof) Assume that every head process has a privilege by Rule A or Rule A’ at «; for all
J. This implies that A; is true at all head process at ;. Although The label of a head
process changes with the computation proceeds. the relative relation of labels of tail process

and head process which are consecutive processes on a ring is kept (e.g. t; # l; — l;_1). In
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addition, the tag of each segment never change during the computation. Therefore. a condition
t; =0Vit; # l; —li_1 Vit; < t;_y is always true for all head processes of segment s;. Otherwise,
A; become false when ; = 0.

Since all segments are well formed. ¢; = I; — I;_; lolds. Therefore. the above condition
becomes t; = 0V t; < t;_;. Because t; < t;_; does not hold for all head processes. there
exists j such that t; > #;_;. Since above condition is true, t; = 0 holds. Now consider the
right segment sj.. where j' = j + 1. To tjp = 0V ity < tjp_1 be true, t;y = 0 holds since
tj—1 =t; = 0 and tags are non-negative. Repeating this discussion, we have t; = 0 for all 1,

which contradicts the lemma 24. (]

Now, we show that the number of segments decreases with high probability and the expected

steps that the ring converges to a legitimate configuration is finite.

Lemma 26 Let yg be any initial configuration such that 2 < f(vy) < n—1. Then. the expected

steps that the number of segments decreases is finite.

(Proof) Assume that A = v5,71.72.... be any infinite computation such that the number of
segments never decrease. By lemma 23. there exists I such that all segments are well formed
at 9; for any « > I. We consider configurations after ;.

Since every segments are well formed and the number of segments are kept. there is no
process which has a privilege by Rule B at any configuration ~; (¢« > I). By lemma 25, there
exists a process P and a configuration vy (J > I) such that P is a head process of a segment
s; and does not has a privilege by Rule A nor Rule A", Since every head process has a privilege
by assumption. P = Head(s;) has a privilege by Rule C.

At the computation after ;. every process never change its tag. and relative relation of
labels at head processes never change (e.g.. l; # li—1). Thus, t; =0Vt # L — L1 Vi, <tiy
(see A;) is always false at Head(s;). Otherwise. it does not have a privilege by Rule C at ;.
Therefore, at configurations v (k > J). Head(s;) has a privilege by Rule A or Rule A" when
its label is not 0 and it has a privilege by Rule C otherwise. When Head(s;) has a privilege
by Rule C. the label of the left process of Head(s;) is not n — 2 nor 0 because. if otherwise, it
has a privilege by Rule A or Rule A’ (see A;).

Let s;_1 be the left segment of s;. Then, Head(s;) has a privilege by Rule A when the label
of Tail(s;_1) is » — 2. By an application of Rule A by Head(s;), new random signature of
$j—1 is generated. Therefore, every time the value of label circulates. s;_; has new random
signature.

Now consider the right segment s;41 of s;. If Head(s;+1) has a chance to have a privilege
by Rule C at configurations after v;. we can conclude that s; generates new random signature
every time the value of label circulates by a similar discussion described above. Otherwise
(ie., §j4+1 never have a privilege by Rule C). s; also generates new random signature every
time the label of Tail(s;) is n — 2 by Rule A.
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Let 19, 71. ... be a sequence of indexes of configurations such that s; and s;_; changed random
signatures at least once at some configurations between v,, _, and v,,. Then, it is easy to see
that there exists a constant 7' determined by the algorithm such that 7, — 7 < T < oo for
all [.

Since random signature is randomly chosen from {0. 1}, the probability 7; < r;—; holds at
Head(s;) is 3/4. The expected steps that 7; < 7;_; become false is at most 47'/3. If r; < r;_;
become false. the head process of s cannot make a step by Rule C and it is clear that a daemon
cannot choose a schedule that keeps the number of segment. Thus, the number of segment

decrease. o
We have the theorem from above lemmas.

Theorem 12 For each n > 1, there exists a randomized self-stabilizing mutual exclusion

system for a ring of size n under a c-daemon. 8]

Note that the algorithm does not work under d-daemon. (Consider a configuration such
that a state of every process is 0.0.0 and a schedule such that all processes are executes at

every step. Then, the number of segments never decrease.)

Reduction of the number of states

The proposed algorithm above requires 2(n — 1)(n — 2) = O(n?) states. By the similar
technique proposed in [BP89], we can reduce the number of states of above algorithm.

The number of possible tag value is reduced in the following algorithm, it ranges over {0, 1}.
First, we define following predicates:

Ai = (Li#FLa+D)AL#FOVE =0V # f(li— L) Vi <tig)
B; = (Li=slia+)A({ti#FticaVri#Frio) A(L#0)

o = AN =5 Gareb s (e tae 1) A< T 1)

@ = (-1=n-2)

The labels range over {0. 1.....n— 2}, the random signatures range over {0,1}. The function

f is a function from {0.2,3.....n — 2} and defined as follows.

f(L:):{ 0 it =10

1 otherwise

Note that f(k) =0 iff k = 0.
The algorithm is the following. The difference is that new tag is given by f(I; — l;_1). The

set of legitimate configurations is the same as the set defined in the previous version.
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Rule RA: IF A; A o; THEN
el
ti := f(li —liz1)
r; := RandomBit()

Rule RA’: IF A; A na; THEN

L=ha4+1
t: = flli—1iq)
Ty =T

Rule RB: IF B; THEN
ti = ti—1

Ty 1= Ti—1

Rule RC: IF C; THEN

i =12 +'1
ti = f(li = li1)
T{ ‘=Ti-1

By modifying the algorithm, the we need a new definition of well formed. A segment s; is
well formed iff every process of s has a tag f(g;). where g; is the gap size of s;. The condition

for random signature is the same as the original definition.

Lemma 27 The algorithm satisfies the (1) closure property. (2) fairness property, and (3)

mutual exclusion.

(Proof) Because the behavior of the ring is the same as the original algorithm, the same proof
for closure property holds. Thus, the fairness property and mutual exclusion property also
hold. O

Lemma 28 The algorithm satisfies no deadlock property.

(Proof) The proof is the identical to the proof of lemma 14 except t; = I; — I;_; is replaced
by t; = f(I; = l;_1) and t; # l; — l;_; is replaced by t; # f(l; — li—1). a

Lemma 29 The algorithm satisfies no livelock property.

(Proof) Lemmas 18. 19. 20. 23 hold by the same proof. Lemma 25 is shown by replacing
ti=l;—l;_1 by t; = f(l; = l;_1) and t; # I; — li—1 by t; # f(l; = li_1) in the proof. Note that
ti = 0 does not hold at all head processes because t; = 0 implies l; = l;_; and contradicts the
24. Lemma 26 is also shown by replacing t; = I; — li_y by ti = f(li = li_y) and t; # l; — l;
by t; # f(l; = ;1) in the proof. (=]

Now we have the following theorem.
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Theorem 13 For each n > 1, there exists a randomized self-stabilizing mutual exclusion

system which requires 4(n — 1) states per process for a ring of size n under a c-daemon. O

7.3 Concluding Remarks

In this chapter. we proposed several self-stabilizing mutual exclusion algorithms.

In the first section, we proposed a deterministic self-stabilizing A-mutual exclusion algorithm
under a c-dacmon on unidirectional and bidirectional ring networks whose size is prime and
showed their correctness. It is easy to show that there is no self-stabilizing algorithm whose
size m is composite and n does not have a factor k. (The proof can be shown by the similar
method used in Theorem 2.1 in [BP89].) In the case that n has factor k. whether there exists
an algorithm or not is an open problem.

In the next section, we investigated self-stabilizing mutual exclusion systems under assump-
tions of a c-daemon, a c-dragon and randomization. We showed that the number of states
per process require is ©(n) if we assume dragons and randomized behavior of processes un-
der a c-daemon. The known deterministic algorithm for 1-mutual exclusion systems requires
O(n?/Inn) but our algorithm assuming randomized behavior for each process requires only
O(4(n —1)).

Carl-Johan Seger proved that any uniform deterministic self-stabilizing 1-mutual exclusion
system under a c-daemon for a ring whose size is n requires at least n — 1 states [Bur94].
He showed that there exists a schedule of processes which cause a livelock if we assume the
existence of a self-stabilizing system and the number of states of processes is less than n — 1.
This lower bound by Seger is a bound guaranteeing no livelock. On the other hand. Israeli
and Jalfon [IJ90] showed that Q(logn) states is necessary for uniform self-stabilizing system
on unidirectional ring. Their lower bound guarantees no deadlock property. Thus. there is a
gap for lower bounds of the number of states between achieving no livelock and no deadlock.
There is a gap between lower bounds and proposed algorithms. The following problems are

left as future tasks.

e Does there exist deterministic self-stabilizing mutual exclusion systems under a c-dacmon

which requires a state set whose size is less than ©(n?/Inn)?

e Does there exist deterministic self-stabilizing mutual exclusion systems under a c-dragon

which requires a state set whose size is less than n — 17
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Conclusion

In this dissertation, we have investigated the distributed A-mutual exclusion problem by two
approaches: the coterie approach and the self-stabilization approach. We proposed several

algorithms for distributed A-mutual exclusion.

In Part I. we have studied the coterie approach.

In Chapter 2. we have proposed a concept called k-coterie as an extension of coterie. To
allow & processes be in their critical sections, k-coterie has distinct & quorums but does not
have k + 1 quorums. Processes can enter their critical section without interfering with other
processes; on the other hand. processes interfere if we use another definition of k-coterie
proposed in [BC94, MA93].

In Chapter 3. the analysis of availability of coterie has been shown. We have shown a
sufficient condition and a necessary condition such tat a k-majority coterie is optimal under
an assumption that a topology of communication links are complete network and every process
fails with the same probability.

In Chapter 4. we have proposed a distributed A-mutual exclusion algorithm using a k-coterie.

Q|. where |Q| is

We have shown that the message complexity of the proposed algorithm is 3
the size of a quorum.

In Chapter 5. we have shown the goodness of onr distributed A-mutual exclusion algorithm
by comparing with Raymond’s algorithm by computer simulation. The simulation was done
using workstations which are connected to a local area network. Since each process was exe-
cuted on different workstations, algorithms are simulated in real-time: which can be considered
as being close to a real distributed system. The simulation result shows that the proposed
algorithm in Chapter 4 is much better than Raymond’s algorithm if & is large and mutual

exclusion request is not frequent.

In Part II. we have studied the self-stabilization approach. In Chapter 6, we have explained
computational models and given a survey for the research area of self-stabilizing mutual ex-

clusion. We also discussed a motivation of self-stabilizing approach. Self-stabilizing systems
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can tolerate any kind of transient failures. Thus. Self-stabilizing systems are fault-tolerant
systems.

In Chapter 7, we have investigated self-stabilzing A-mutual exclusion on ring networks,
First, we have investigated two types of self-stabilizing A-mutual exclusion problems on uni-
directional and bidirectional rings. We have shown that there exists no type-2 problem (i.e.,
a configuration of any arrangement of privileges can be reachable from any configuration)
does not exist on unidirectional rings. We have proposed a type-1 self-stabilizing kA-mutual
exclusion algorithm on unidirectional rings and type-2 self-stabilizing A-mutual exclusion al-
gorithm on bidirectional rings under c-daemon. These algorithm require that the number of
process of a ring is prime. In the case that the number of process has a factor f # k. there
is a schedule of processes which does not reach a legitimate configuration. Next. we inves-
tigated self-stabilizing 1-mutual exclusion problem as a special case of A-mutual exclusion.
We have proposed a randomized self-stabilizing 1-mutual exclusion algorithm for any size of
unidirectional ring under c-dacmon. In the algorithm. randomization is used because there is
no algorithm if the number of process is composite.

The coterie approach is an approach that reduces the number of messages for distributed
mutual exclusion and increases the availability. The algorithm proposed in Chapter 4, does
not consider any failures such as message omissions. process failures, etc. The design of an
algorithm which tolerates such failures is the next step of the work.

In [Bal94b. Bal94a]. Baldoni proposed k-coterie. which is completely different from ours.
The basic idea of his distributed A-mutual exclusion algorithm is that each process has k
permissions (or. tokens): a process wishing to enter a critical section must collect tokens from
cach process in a quorum. To make this scheme work. the requirements for a quornum set C is
as follows:

e Intersection Property: For any q;.....qr4+1 € C. I"I}.""llqi A

=

e Minimality Property: For any ¢;.q; € C such that q; # q;, ¢; € q;.

By our definition of k-coterie, each process has one token. On the other hand, each process
Las A tokens by Baldoni’s k-coterie. We believe that there is a unified scheme for these ideas.
For example. there may be a condition for a quorum set to achive 4-mutual exclusion when
each process has 2 tokens. The investigatin of unified k-coterie scheme is left as a future task.

The self-stabilization approach is a strong approach for transient failures. The design of
coterie based mutual exclusion algorithms which tolerates transient failures by using a concept
of self-stabilization is a interesting theme. However. designing a self-stabilizing algorithm
and proving the correctness are difficult tasks. The automatic construction of self-stabilizing
algorithm is an important for realizing self-stabilizing systems.

In this dissertation. we have treated the coterie approach and the self-stabilizing approach

separately. A unification of these two approaches is an another task.



Appendix A

Local Coteries and a Distributed
Resource Allocation Algorithm

The distributed A-mutual exclusion problem treats a situation such that every process in a
distributed system share all resources uniformly. But it is natural to consider that a set of
resources available to a process is different by processes. This may happen by limitations of

access rights or some geometrical reasons.

Consider a situation such that a process P, has access rights to resources 71.75.73 and a
process Py has access rights to resources r3, 74 and each process issues a resource request when
it requires resources. In such case, the k-mutual exclusion is not suitable to arbitrate the
conflicts of resource requests. In addition, if two processes P53, Py do not share any resources
then it is desirable that resource allocation is done without interference. The mutual exclusion
and the k-mutual exclusion problems are special cases of the resource allocation problem. Such
problem is proposed and investigated as “the drinking philosophers problem™ by Chandy and
Misra [CM&4]. In their paper. they showed a token-based resource allocation algorithm for a
special case in such a way that each resource is shared by only two processes. The objective
of this appendix is to solve the problem under the frame work of coterie and its variants.
Generalized resource sharing model is also appear in the paper by Miyamoto [Miy94]. in which
an allocation problem of anonymous resources which are shared by any number of processes

1s investigated. He used coterie approach to solve the problem.

In this appendix, we consider a problem of allocating named resources: a process requests
any amount resources and any of free resources are allocated but a process must know the
names of allocated resources to use them. We propose a new concept of local coterie and a

resource allocation algorithm using a local coterie.
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A.1 The Resource Model

A distributed system consists of n processes U = {Py. P, .... P, }. bidirectional communication
links each connecting two processes, and m resources R = {ry,7rs..... Tm } shared by processes,
Processes P € U are allowed to use some of the resources 7 € R. We denote this relation by

function o : U — 2%, For any u € U.
a(P) = {r € R| P has an access right to r} € 2F.

When V is a set of processes, with abuse of notation. a(V') denotes Upcya(P). The triple
(U. R. ) is called the share structure of the system.

We define a configuration ¢ of the distributed system as a tuple of the states of all processes
and communication links. Then a computation 7 of the system can be described by a (possibly
infinite) sequence of configurations starting from the initial configuration. Note that the
computation is not determined uniquely in general. even if the initial configuration (including
input) is given because of the asynchrony of system.

Wlhen the system is at configuration ¢, processes P may be accessing some resources 7. For
any P € U. pp(c) denotes the set of resources r which are being accessed by P when the

system is at configuration c.

A.2 The Resource Allocation Problem

Consider a distributed system in which each process repeats the local computation and the
resource access phases forever. The former phase does not include resource access instructions,
and the latter is a series of resource access instructions which starts with a resource request
instruction for requesting some resources and ends up with a resource release instruction for
releasing all resources it is accessing. Let S = (U. R, «) be its share structure. Each time the
resource access phase is executed. the number of resources a process P requests can change
between 1 and |a(P)].

The resource allocation problem is the problem of implementing the resource requests
and release instructions in such a way that whenever a process P requests k (< |a(P)])
resources, eventually & resources are allocated to P. Furthermore, as the restriction arising
from the share structure. any computation 7 = ¢g.¢y.....¢i. ... of the resulting distributed

system must satisfy the following two conditions:

Allocation Validity: For any configuration ¢; and any set V- C U of processes,

U rrle) € (V).

P&V

Mutual Exclusion: For any configuration ¢; and any two different processes P, P’ € U,

pp(ci) Nppi(ci) = 0.
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Allocation Validity guarantees that a process P only accesses resources to which it has an
access right. and Mutual Exclusion guarantees that every resource is allocated to at most one

process at a time.

A.3 Local Coteries

In general. the resource allocation problem treats cases in which resources are shared by
different sets of processes unlike the mutual exclusion problem. Consider a case in which two
processes P and P’ do not share any resource. Then it is a natural requirement that their
requests be interference free. (It may or may not be possible. depending on the remaining
part of a share structure.) As long as the same quorum set is associated to P and P’ the
interference inevitably occurs.

In order to take into account the share structure. For each process P. we associate (possibly
different) quorum sets Qp C 2V reflecting the share structure. We call the set {Qp | P € U}
a local coterie with respect to a share structure (U. R. «v). The formal definition of the local

coterie is as follows.

Definition 8 A non-empty set {Qp | P € U} is a local coterie with respect to a share

structure (U. R. ) if and only if the following conditions are satisfied.

e Non-emptiness: VP € U[Qp # 0].
e Intersection Property: VP. P' € Ula(P)Na(P') # 0 =Yg e Qp.Vq € Qpqgnq’ # 0]].

e Minimality: VP € U.Vq.q' € Qplqg € ¢']. <

Note that the definition of local coterie includes that of coterie as a special case when |R| = 1
and a(P) = Rfor all P e U.

First. we show a simple construction algorithm for a local coterie with respect to a share
structure (U. R. «v).

Algorithm LocalCoterie(U. R. «):
begin
qp := {P} for all P € U
for all 7 in R do
for each P, P’ in U such that P # P’ do
if r € a(P) Na(P') then
qp = qpU{P'}:
gp = qp U{P}
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od
od:
Qp :={qp} for all P € U:
return {Qp | P € U}
end.

Theorem 14 The algorithm LocalCoterie(U, R. ) correctly computes a local coterie with re-
spects to a share structure (U, R, ). in time O(|R||U|?).

(Proof) The non-emptiness and the minimality trivially holds since a quorum set Q p contains
only one quorum for each process P € U. Assume that the intersection property does not
hold. Let Py. P, be processes such that Py # P, and (a(Py) N a(Pz) #0) A (gp, Ngp, = 0),
where qp, € Qp, for i = 1.2. Since r € a(P;) Na(P;) for somer € R. P, € Qp, and P, € Qp,
by the definition of the algorithm. This implies {Py, P>} C qp, N qp, because P; € Qp, for
each P; € U: a contradiction.

It is easy to see the execution time of the algorithm is O(|R||U|?). O

Corollary 3 For any share structure (U, R.«). there exists a local coterie C with respects to
share structure (U, R.«). o

A.4 A Distributed Resource Allocation Algorithm

Now, we are ready to introduce our algorithm. We first explain an outline of the algorithm,
and then describe it in detail.

The processes altogether maintain a distributed database which keeps pairs of a process
and a resource it is currently accessing. A process P, wishing to access k resources sends

a query asking whether or not there are k resources available to u.!

If the answer is yes,
then the & resources are allocated to P,. Hence. the algorithm is assertion-based, as well as
quorum-based.

Let {Qu} be alocal coterie, where @, is the quorum set associated with process P,. Then
an outline of the algorithm is as follows.

In our algorithm. a process P, is (partially) responsible for the resources which are accessible
from a process P, such that P, appears as an element of a quorum ¢ in Q,,. Let R, be the set
of resources for which P, is responsible. For each resource r € R,, P, remembers the process
which currently accesses 7 (or the fact it is free. otherwise). A process P, wishing to access

k resources selects an arbitrary quorum ¢ € @,,. and sends a query message (QUERY) to every

1We say that a resource r is available to P, if » € a(P,) and 7 is currently free. On the other hand, that
P, is accessible to r simply means r € a(P,).
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process D, in q. A process P, receiving query (QUERY) sends back the names of resources
available to P,. Upon receiving the list of available resource names from every process P, € g,
P, selects arbitrarily A resource names which appear in every list and sends a lock message
(Lock) with the k names to every process P, to let it update the current states of the k
resources. When P, releases the & resources. it sends an unlock message (UNLOCK) with the &
names to every process P, to let it change the states of the resources into free.

The above explanation is just an outline of the algorithm and it does not contain explana-
tions how to avoid deadlocks and starvations and how to treat cases in which P, cannot find
k resources available to P,. Moreover, in order for the algorithm work correctly, the query
step must be carried out in the mutually exclusive way. Nevertheless, we would like you to
observe that if P, decides to access a set of resources 7. then r is currently available to P,
i.e., P, has access right to r and r is not used by some process, by definition of local coterie.

The algorithm assumes that each process P, maintains the following local variables. For

convenience of explanation. as in the above rough explanation, define
Sy = {Py | P, € q for some q € Qy}

and

R,= |J a(P).

Py €S,

o C, — the current logical time at P,. Initially. it is 0, and is automatically incremented.?

e D, - the array to hold for each resource 7 € R,,. if r is LOCKed or not. More precisely,
for each 7 € R,. Dy(r) = (Py,.t) if 7 is locked by (LOCK) message with timestamp ¢
issued by P,. Otherwise, if 7 was lastly released by (UNLOCK) message with timestamp
t, then D, (r) = (L.t). Initially, D,, = (L,0) for all 7 € R,,.

o W, — it holds the name of process to which P, sends the current states of resources
lLeld in D,, and is waiting for a reply. In other words, Wy, is the process from which P,
is waiting for (LOCK) message. after sending (RESPONSE) message. If P, is not in this
situation. W,, = L.

o T, — it holds the timestamp attached to the (QUERY) message that the process leld in
W isswed e = Lot W ="L

e X, - the priority queue to hold (QUERY) messages waiting at P, for their turns. They

are sorted in the order of their timestamps.

We describe our algorithim AllocResource in an event driven form.

Algorithm AllocResource
Let {Q,} be the local coterie used in the algorithm.

2By using a standard technique that uses unique process identifiers. events occurred in the system are
totally ordered by means of the logical time[Lam78].
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1. When a process P, wishes to access k (< |«w(u)|) resources:
Process P, arbitrarily selects a quorum ¢ € Q,. and sends (QUERY, P,.C,) to every
process in ¢.2> Recall that C, is the current logical time at P, and is attached to the

message as the timestamp. Then it waits until both of the following two conditions hold:

e It has received (RESPONSE. P,. D, ) messages at least once from each process P, € g.
Note that P, sends (RESPONSE. P,, D,) message carrying the latest version of D,
as soon as D, is updated. even if it has sent an older version to P, (see Case 7).
Note also that P, does not need to store old versions. It simply discards them and
holds the latest one (see Case 3).

e Recall that every D, contains the states of all resources in «(P,) from the view of
P,. Let A, C «(P,) be the set of resources r satisfying D,-(r) = (L,t™). where t*
is the maximum value occurred in the second (i.e., time) field of D, (r) among all
P, € q. and P, is the process achieving t*. Intuitively, A, is the set of resources
currently available to P,, as we will show in the next section. The second condition

is that A, contains at least k resources.

If both of the above conditions hold. P, then arbitrarily selects a set S, of k resources

from A,,. sends (LOCK, P, C,, S,,) message to every process P, € q. and accesses S,,.

2. When process P, releases the set S, of accessing resources:

Process P, sends (UNLOCK. P,, C,,, S,,) message to every process P, € q.

3. When process P, receives (RESPONSE. P,. D,) message from a process P,:

Process P, stores D,. If it has received an older version of D,,. then it discards it and
stores the latest one. Because the message order is assumed to be unchangeable in each

communication link. P, always holds the latest version among versions received so far.

4. When a process P, receives (QUERY, P,.t) from process P,:

If W, = L. ie., if process P, does not wait for (LOCK) message from another process. it
sends (RESPONSE. P,. D,,) message to P,, and sets W, := P, and T, := t. Recall that ¢
is the logical time at P, at which the (QUERY) message was issued (see Case 1).

Otherwise. W, = P, for some process P, € U. i.e.. P, waits for the two conditions
in Case 1 to hold. If T, < t. i.e., if P, has higher priority (since T, is the timestamp
attached to P,’s (QUERY)). P, stores (QUERY. P,.t) to queue X,. Otherwise. if T}, > t.
P, has the priority. Then in order to preempt the right to lock resources which P,
gave to P,. P, sends (PREEMPT. P,) to P,. and waits for P, replying either (RETURN)
or (LOCK)message (see Cases 1 and 8). after storing the (QUERY) messages issued by Py,
and P, to X,. When P, again needs to send (PREEMPT) to P,, while waiting for a reply
from P,. v ignores it.

3The number k of requesting resources is not a parameter of (QUERY).
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When process P, receives (RETURN, Pw) message from process P,:

(S

Process P, takes the (QUERY. P,.t) message from the top of queue X,,. It is the (QUERY)
message which has the highest priority. Then P, sends (RESPONSE, P,, D,,) to P,, and
gets W o= I andi i =",

6. When process P, receives (LOCK. P,.t, S,,) message from process P,:

Process P, updates its data D, it sets D,(r) := (Py.t). for each 7 € S,,. Then it

continues (the algorithm fragment for) Case 5 if X, is not empty.

7. When process P, receives (UNLOCK, P,,t. S,,) message from process P,:
Process P, updates its data D,: it sets D,(r) := (L.t), for each r € Sy,. If W,, # L,
then it sends (RESPONSE, P,. D,) message to W,. Otherwise. it continues Case 5 if X,

is not empty.

8. When process P, receives (PREEMPT, P,) message from process P,:

If it has sent back (LOCK) message to P,, then it simply ignores the (PREEMPT) message.
Otherwise, process P, sends back (RETURN. P,,) message. and then Py, discards D,, which
was sent from P,. That is, the response (RESPONSE. P,. D,,) is canceled by the (PREEMPT)

nessage. o

Although in the above description of AllocResource. (RESPONSE) carries all data D, it is
clearly reducible. At a process, say P,, ouly the data on the resources in «(P,) in D, will be

used.

A.5 Correctness Proof

In this section. we show the correctuness of our algorithm AllocResource. provided that processes

accessing resources release them within a finite time.
Theorem 15 Algorithm AllocResource guarantees Allocation Validity condition.

(Proof) This theorem holds since each process Py, selects the resources from the candidate set
Ay, which is a subset of a(P,). .

In order to proceed the remaining properties, recall that a process P,, wishing for k resources
arbitrarily selects k resources from A, determined from D,’s for P, € q € Q,,. sends (LOCK)
message carrying the names of & resources to every P,. and accesses them. On the other
hand, process P, updates D, responding to the (LOCK) message. If two processes which share
resources reccived D,’s simultaneously, they could sclect the same resources and access them
simultaneously. Our algorithm guarantees that such situations never occur. We introduce the

notion of Q-region to prove it formally.
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A process P, requesting k resources sends (QUERY) message to every member P, of a quorum
q € Q. and collects D,,’s until the two conditions of Case 1 hold. If a (PREEMPT) message from
P, € q arrives in the meanwhile, it discards D,, and waits for new D,,. Recall that receiving
a D, from every P, € ¢ is a necessary condition. but is not sufficient. We say that P, is in
the Q-region if P, has received a D, from every P, € q. but has neither sent (LOCK) message

nor received (PREEMPT) message since then.

Lemma 30 Let P, and P, be any two processes such that a(P,) N a(Py,) # 0. Then P, and

P, are never in their Q-regions simultaneously.

(Proof) Assume that there exists two processes P,. P, such that a(P,)Na(P,) # @ and P,, P,
are in their Q-regions at a time. Let P, be a process such that P, is in both quorums P, and
P, chose. Note that there exists such P, since a(,) Na(P,) # 0. Without loss of generality,
assume that P, sent (RESPONSE) to P, first. By the definition of algorithm, P, extracts
the request from P, after sending (RESPONSE) to P,. By assumption, P, sent (RESPONSE) to
P, before (LOCK) or (RETURN) is sent from P,. This action contradicts the definition of the
algorithm. O

Suppose that a resource 7 has been allocated. If P, didn’t knew this fact, A, could include
r when a process P, sent D, for the first time to P,. which implies that 7 may be allocated to
more than one process since the candidate set A,, is determined from D,’s. The next lemma

guarantees that such situations never occur.

Lemma 31 Let P, and P, be any two processes such that v € a(P,) Na(P,) # 0. Assume
that r has been allocated to P, and P, is now in its Q-region. Further, assume that P, used
quorum ¢, € Q. for its resource request and P, is using quorum q, € Q.. By the definition
of local coterie. q, N qy, # 0. Then for any Py, € qu N qy. Dy(r) = (Py.t) for some t.

(Proof) Since P, is accessing a resource 7. it had sent (LOCK) message to every process in
¢u when it exits from Q-region and then it started accessing r. Every P, € ¢, N q, sends
a (RESPONSE) message to P, after it receives a (LOCK) message from P,. When P, receives
(LOCK) from P,. it updates its local database such that r is allocated to P, with its allocation
time. When P, sends (RESPONSE) message to P,. P, knows that r is already allocated. Thus,
D, (r) = (P,.t) for some t. o

Theorem 16 Algorithm AllocResource guarantees Mutual Exclusion condition.

(Proof) Assume that a resource r € «( P,) N a(P,) is allocated to both P, and P, simultane-
ously. The proof is by induction. Mutual Exclusion condition holds at the initial state of the
system since no resources are allocated to processes. By lemma 30. any two processes sharing

resources are not in their Q-regions simultaneously. Without loss of generality, we assume
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that P, leaves its Q-region first by sending (LOCK) message to allocate r to P,. Then. P, can
enter its Q-region ouly after all processes in g, N ¢, receiving (LOCK) message from P,, where
qu € Qu (@ € Q) 1s the quorum that P, (P,) chooses for response request. Since P, and P,
share resources. q, N ¢, is not empty. Let P, be any process in ¢, N q,. Then, P, updates
its database so that D, (r) = (P, t,) holds for some t,, by receiving (LOCK) message from P,.
By lemma 31. every (RESPONSE) message sent to P, from P, contains data D, (1) = (Py,ty).

Therefore P, cannot choose 7; a contradiction. (]

Theorem 17 Algorithm AllocResource is deadlock free.

(Proof) Since processes request all resources necessary when the resource access phase starts,
we do not consider deadlocks caused by nested requests. We consider the deadlocks at the
query step.

Assume that a deadlock happens. Since the number of processes is finite, there exists a
time such that the number of processes being deadlocked does not increase afterwards. We
consider what will happen. Although there may exist processes which do not send and/or
receive messages in general, without loss of generality, we can assume that there are no such
processes.

Let V' C U be the set of processes being deadlock. and assume that P, € V is the process
whose timestamp attached to the (QUERY) message is the smallest (i.e., highest priority) among
V. The (QUERY) message by P, will arrive to every process in a quorum g € @, in a finite time.
Since the logical clock monotonically increases. the timestamp of P,’s (QUERY) will become the
highest among all processes. By the definition of the algorithm. each process P, in ¢ behaves
as follows. If P, sent (RESPONSE) message to a process P, € U but it has not received the
corresponding (LOCK) message, then P, sends (PREEMPT) message to P, to switch the query
right to P,. If P, receives (RETURN) message from P,. it will send (RESPONSE) message to
P,. Otherwise. it will send (RESPONSE) message to P,. when P, returns (LOCK). since P,’s
(QUERY) has the highest priority. On the other hand. processes that share resources with P,
does cannot be in their Q-region. and hence, resources are not allocated to them. Therefore,
within a finite time, enough number of resources in a(/,) become free and the request by P,

will be satisfied within a finite time. a contradiction. (]

Next theorem can be proved by a similar argument.

Theorem 18 Algorithm AllocResource is starvation free. O

Now. we can conclude that the algorithm AllocResource correctly solves the resource allo-

cation problem.

Theorem 19 Algorithm AllocResource solves the resource allocation problem. a
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A.6 Concluding Remarks

In this appendix. we have discussed the resource allocation problem. and proposed a distrib-
uted algorithm. Unlike other conflict resolution problems such as the mutual exclusion and
the A-mutual exclusion problems, we consider cases in which processes may have access rights
to different sets of resources. In order to take into account the resource share relation of the
system. we have introduced a new concept called local coterie.

The number of messages necessary to exchange per resource request can be shown to be
4lq
In cases such that each resource is shared by small number of processes, since the quorum

, where ¢ € @, in the best case and (7 + |« (P,)|)|q|, where ¢ € @, in the worst case.

size |q|. ¢ € Q. can be small, our algorithm is suitable. The algorithm by Baldoni [Bal94b]

M/(M+1)) nessage per resource allocation. where n is the number of processes and

requires O(n
M is the number of resources. If M is large, the message complexity of Baldoni's algorithm
become approximately O(n), which is less efficient than ours.

Finally. we would like to touch some future works. As a general advantage of quorum-based
approach. our algorithm is robust against process and/or link failures: as far as at least one
quorum “survives”, there is a possibility that resource allocation can be achieved. However,
discussing the fault-tolerance aspect of this algorithm in detail is left as a future work. The
local coterie construction algorithm proposed in this appendix is simple. However. the local
coteries produced are not always good ones. Constructing better local coteries is also left as

a future task.



Appendix B

Implementations of Distributed
k-Mutual Exclusion Algorithms

The examples of implementation of two distributed k-mutual exclusion algorithms is shown
in this appendix. We show the implementation of our algorithm proposed in Chapter 4 and
the algorithm proposed by Raymond [Ray89a].

Each program fragment of the implementation of distributed A-mutual exclusion algorithm
shown below is a part of the source code which is used in the simulation in Chapter 5 and
listed without any modifications.

The template of the implementation of algorithms is as follows:

Algorithm():
{

linitmli,za.tion of Variables, etc.'

while (TRUE){

SiteBehavior(); /* decides the behavior of the process */

IBO active behavior decided by Sitchhamior(M

if (no messages arrived )

continue;

LRem,-'ixnn a message '

B)n passive behavior dependent on the reccived message.J

103
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The procedure SiteBehavior() is a procedure to decide a behavior of a process. For in-
stance. a process is in Normal state. it decides to request a mutual exclusion with specified
probability. According to such decision. process do its active behavior. If a mutual exclusion
request happen. the process sends request messages. for instance. After finishing active be-
havior, the process checks message arrival. If a message is arrived, it read the message and

process the message according to its message type. This is the passive behavior.

B.1 Our Distributed k-Mutual Exclusion Algorithm using k-

.
Coterie
void
Kakuéawaprocess(k, P, quantum, cycle, tcs)
in s
double p;
int quantum;
int cycle;
int tcsy
SitelD Wi ey
int Sys Sz, WaitingY, WaitingSy;
SiteSet Quorum, NextSifes;
bool WaitingOkWait, NoMoreQuorum, WaitingTEmpty,
WaitingAnswer, WaitingExit;
Message Msg;
char msgbody [80] ;

static bool LexicoLess();
static bool SelectAQuorum(), GetConsensusP();
extern void SiteBehavior();

TransitNormalState() ;

WaitingOkWait = false;
NoMoreEuorum = false;
WaitingTEmpty = false;
WaitingAnswer = false;
WaitingExit = false;

SetSiteSetEmpty(Quorum) ;
SetSiteSetEmpty(NextSites) ;

for (53)d

/ k%%

**k DECISION OF BEHAVIOR OF SITE
*okox /

SiteBehavior(k, p, quantum, cycle, tcs);

if (ExitMutexJob)
return;

if (EnterCSRequestHappen){
[ *x
**/MUTEX REQUEST HAPPEN
*%

TransitRequestingState();
EnterCSRequestHappen = false;

RequestingCS = true;

MaxSeq = MaxSeq + 1;

Seq = MaxSeq;

SelectAQuorum(Quorum, Coterie, SetK, SetT);

il
SiteSetDifference(NextSites, Quorum, SetK);
SendRequestToSet (NextSites);
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WaitingOkWait = true;
&

if (RequestingCs
and (NoMoreQuorum or (WaitingOkWait and SiteSetEmptyP(NextSites)))){
WaitingOkWait = false;
if (GetConsensusP(SetK, Coterie)){
*x
** ENTER THE CS
* %

TransitInCriticalSectionState();
RequestingCS = false;
ExecCS = true;
NoMoreQuorum = false;
} else if (not NoMoreQuorum){

[ **
**/FAILED TO GET A QUORUM ... RETRY!
*ok
if (SelectAQuorum(Quorum, Coterie, SetK, SetT)){
goto L1;
} else {
NoMoreQuorum = true;
}
}
if (ExitCSRequestHappen){
/x*

**/REQUEST OF EXITING THE CRITICAL SECTION HAPPEN
*ok

ExitCSRequestHappen = false;
ExecCS = false;
TransitExitingCriticalSectionState();
SendReleaseToSet (SetK) ;
SetSiteSetEmpty(SetK);
WaitingTEmpty = true;

47

if (WaitingTEmpty and SiteSetEmptyP(SetT)){
/%

** EXIT THE CS
*%/

WaitingTEmpty = false;
TransitNormalState();

if (not PendingMessage())
continue;

Msg = ReceiveMessage();

Y = SenderID(Msg);

sscanf (GetMessageString(Msg), MESSAGE_TYPE_FORMAT, msgbody, &Sy) ;
MaxSeq = max(MaxSeq, Sy);

/::: MUTUAL EXCLUSION REQUESTING PROCESS
i;*?gtrsqual(msgbody, 0K_MESSAGE)){
/:: 0K MESSAGE (procedure ReceiptOK)
i;*éWaitingﬂkWait){
SiteSetRemove(NextSites, Y);

if (RequestingCS){
SiteSetAdd(SetK, Y);
SiteSetRemove(SetT, Y);
} else {
SendRelease(Y);
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SiteSetRemove(SetT, Y);

DisposeMessage(Msg) ;
continue;

if (StrEqual(msgbody, WAIT_MESSAGE)){
/%%
**% WAIT MESSAGE (procedure ReceiptWAIT)
*x/
if (WaitingOkWait){
SiteSetRemove(NextSites, Y);

SiteSetAdd(SetT, Y);

DisposeMessage (Msg) ;
continue;

}

if (StrEqual(msgbody, QUERY_MESSAGE)){
/%%
** QUERY MESSAGE (Procedure ReceiptQuery)
*%/
if (ExecCS && SiteSetMemberP(SetK, Y)){
SendAnswerNo(Y);
} else {
if (SiteSetMemberP(SetK, Y)){
SendAnswerRelease(Y);
SiteSetRemove(Setk, Y);
SiteSetAdd(SetT, Y);
} else {
/* already released before query arrives */
; /* ignore it */

}
}
DisposeMessage(Msg) ;

continue;

}

[ *xk
*x* TOKEN MANEGER PROCESS
*okok /
if (StrEqual(msgbody, REQUEST_MESSAGE)){
/**
** REQUEST MESSAGE (procedure ReceiptRequest)
* ok
if (HaveToken){
Send0k (Y, Sy);
HaveToken = false;
} else

if (LexicoLess(LatestTokenHolderSeqNo,LatestTokenHolderSiteID, Sy,Y)){

SendWait (Y);
EnPQueue (PQueue, Y,Sy);
} else {
if (not WaitingAnswer){
WaitingY = Y;
WaitingSy = Sy;
SendQuery(LatestTokenHolderSitelID) ;
WaitingAnswer = true;
} else {
if (LexicoLess(WaitingSy,WaitingY, Sy,Y)){
SendHaitEY);
EnPQueue (PQueue, Y,Sy);
} else {
SendWait (WaitingY);
EnPQueue (PQueue, WaitingY,WaitingSy);
WaitingY = Y;
WaitingSy = Sy;

——
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}

/* See ReceiptANSWER_*** for following actions */

}
}

DisposeMessage (Msg) ;
continue;

}

if (StrEqual(msgbody, RELEASE_MESSAGE)){
[ **
** RELEASE MESSAGE (procedure ReceiptRELEASE)
*k /[
if (WaitingAnswer){
goto GetPseudoAnsRel;

if (PQueueEmptyP (PQueue)){
HaveToken = true;

} else {
Z = PQueueHeadItem(PQueue);
Sz = PQueueHeadPriority(PQueue);
DiscardPQueueHead (PQueue) ;
Send0k(Z, Sz);
HaveToken = false;

DisposeMessage(Msg) ;
continue;

}

if (StrEqual(msgbody, ANSWER_RELEASE_MESSAGE)){
[ *%
** ANSWER_RELEASE MESSAGE (Token Manager Process)
*% /
if (WaitingAnswer){
/* continued action of ReceiptREQUEST */
EnPQueue(PQueue, LatestTokenHolderSitelID,LatestTokenHolderSeqNo);
GetPseudoAnsRel:
WaitingAnswer = false;
SendOk (WaitingY, WaitingSy);
} else {
SendFatalError ("ANSWER_RELEASE arrived when !WaitingAnswer");
}

DisposeMessage (Msg) ;
continue;

}

if (StrEqual(msgbody, ANSWER_NO_MESSAGE)){
/*%
** ANSWER_NO MESSAGE (Token Manager Process)
*k/
if (WaitingAnswer){
WaitingAnswer = false;
/* continued action of ReceiptREQUEST */
SendWait (WaitingY) ;
EnPQueue(PQueue, WaitingY,WaitingSy);
} else {
SendFatalError ("ANSWER_NO arrived when !WaitingAnswer");
}

DisposeMessage (Msg) ;
continue;

}

/* ignore bogus msg */
DisposeMessage (Msg) ;
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[ *%x
*** GetConsensusP() - Check if all sites in a quorum send 0K or not.
* kK /
static bool
GetConsensusP(SetK, Coterie)
SiteSet SetK;
kcoterie Coterie;

int
SiteSet quorum;

int §, g8, M, L3
’

n = GetTotalSites();
gs = HowManyQuorums (Coterie) ;

for (q = 0; q < gs; q++){
f = true;
NthQuorum(quorum, Coterie, q);
for (1 = 0; i < n; i++){
if (SiteSetMemberP(quorum, i)){
if (!SiteSetMemberP(SetK, i)){
f = false;
break;

}

1
it ()
return(true);

return(false);

static bool
LexicoLess(s1,x1, 82,x2)
int sl, s82;
Siteld xi1, x23%

return((s1 < s2)
or ((s1 == s2) and (x1 < x2)));

B.2 Raymond’s Distributed k-Mutaul Exclusion Algorithm

void
RaymondProcess(k, p, quantum, cycle, tcs)
int :
double p;
int quantum;
int cycle;
int el
{
SiteID Z3
Message Msg;
Sitel p
int Sy;
int Count ;
char msgbody [80] ;
int LexicoLess(), Not_In_CS();
void SendRequestMessage(), SendReplyMessage();

extern void SiteBehavior();

TransitNormalState();

EEEEE———



B.2. Raymond’s Distributed k-Mutaul Exclusion Algorithm

for (354

* % K

*x% DECISION OF BEHAVIOR OF SITE

*kk [
SiteBehavior(k, p, quantum, cycle, tcs);

if (ExitMutexJob)
return;

if (EnterCSRequestHappen){
[ *x
**/MUTEX REQUEST HAPPEN
*ok

TransitRequestingState();
EnterCSRequestHappen = false;
Requesting_CS = true;
Our_Seq = Max_Seq + 1;
for (Z = 1; Z <= N; Z++){
if (Z !=me) {
SendRequestMessage(Z, Our_Seq);
Reply_Count[Z] = Reply_Count[Z] + 1;

}
}

if (ExitCSRequestHappen){
/ * k%
*x* EXIT THE CRITICAL SECTION
*kok [/
ExitCSRequestHappen = false;
Executing_CS = false;
TransitExitingCriticalSectionState();
for (Z = 1; Z <= N; Z++){
if (Defer_Count[Z] != 0){
SendReplyMessage(Z, Defer_Count[Z]);
Defer_Count[Z] = 0;

TransitNormalState();

if (!PendingMessage())
continue;

Msg = ReceiveMessage();

Y = SenderID(Msg);

sscanf (GetMessageString (Msg) , MESSAGE_TYPE_FORMAT, msgbody) ;

if (StrEqual(msgbody, REQUEST_MESSAGE)){
[ *x
**x REQUEST MESSAGE
wok /

sscanf (GetMessageString(Msg), REQUEST_FORMAT, msgbody, &Sy);

Max_Seq = max(Max_Seq, Sy);
if (Executing_CS

or (Requesting_CS and LexicoLess(Our_Seq,me, Sy,Y))){

Defer_Count[Y] = Defer_Count[Y] + 1;
else
SendReplyMessage(Y, 1);

DisposeMessage (Msg) ;
continue;

}

if (StrEqual(msgbody, REPLY_MESSAGE)){
/*%
** REPLY MESSAGE
*x /

109
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sscanf (GetMessageString(Msg), REPLY_FORMAT, msgbody, &Sy, &Count);

Reply_Count [Y] = Reply_Count[Y] - Count;
if (Requesting_CS
and (Not_In_CS() >= N - k)){
/**
** ENTER THE CS
*% [/
Requesting_CS = false;
Executing_CS = true;
} TransitInCriticalSectionState();
DisposeMessage (Msg) ;
continue;

}

/* ignore bogus msg */
DisposeMessage (Msg) ;

}
}

int
§ot_1n_cs()

int Cnt;

SitelD Zj

Cnt = 0;

for (Z = 1; Z <= N; Z++)

and (Reply_Count[Z] == 0))
Cnt = Cnt + 1;

return(Cnt) ;

B.3 The Behavior of a Process

The program fragment of a process behavior used in Chapter

5 is shown below. Functions

whose name end by Hook are functions for collecting statistic data. For instance, a function

EnterCSHook() is called when a process enters a critical section and the number of times a

process enters a critical section is counted by this function.

float _ProceedCSAt = 0.0;
float _TransitNormalAt = 0.0;
float _MutexRequestHappenedAt = 0.0;
static int InNormalStateTimeCounter = 0;

State MachineState = STATE_INITIAL;

bool EnterCSRequestHappen = false;
bool ExitCSReqnestHagpen = false;
bool ExitMutexJob = false;

extern void
EnterKMutexProcessHook(),
ExitKMutexProcessHook(),
SendHook (),
CSRequestHook (),
EnterCSHook () ,
ExitCSHook (),
FinishMutexJobHook () ;



B.3. The Behavior of a Process

void

SiteBehavior(k, p, quantum, cycle, tcs)
int k;
double p;
int quantum;
int cycle;
int tess
{

float cval;
cval = CurrentClock();

if (cval >= (float)cycle){
ExitMutexJob = true;
return;

switch (MachineState){
case STATE_INITIAL:
case STATE_NORMAL:
if (cval >= _TransitNormalAt + (float) InNormalStateTimeCounter){
InNormalStateTimeCounter += 1;
if (Random() < (float) p){
EnterCSRequestHappen = true;

}

break;
case STATE _REQUESTING:
/* do nothing */
break;
case STATE_IN_CRITICAL_SECTION:
if (cval >= (_ProceedCSAt + (float)tcs)){
ExitCSRequestHappen = true;
}
break;
case STATE_EXITING_CRITICAL_SECTION:
/* do nothing */
break;
default:
fprintf(stderr, "Cannot happen in SiteBehabiour()\n");

exit( -1 );

void
$ransitNorma18tate()

State oldstate;

_TransitNormalAt = CurrentClock();
InNormalStateTimeCounter = 0;
oldstate = MachineState;
if ((MachineState != STATE_EXITING_CRITICAL_SECTION)
&& (MachineState '= STATE_INITIAL)){
fprintf(stderr, "bogus state transition to NORMAL state\n");

exit( -1 );

MachineState = STATE_NORMAL;
if (oldstate == STATE_EXITING_CRITICAL_SECTION)
FinishMutexJobHook () ;

void
IransitRequestingState()

-MutexRequestHappenedAt = CurrentClock();

if (MachineState '= STATE_NORMAL){
fprintf(stderr, "bogus state transition to REQUESTING state\n");

exit( -1 );
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h
MachineState = STATE_REQUESTING;
CSRequestHook () ;

void
%ransitInCriticalSectionState()

_ProceedCSAt = CurrentClock();

if (MachineState '= STATE_REQUESTING){
fprintf(stderr, "bogus state transition to InCriticalSection state\n");
exit( -1 );

MachineState = STATE_IN_CRITICAL_SECTION;
EnterCSHook () ;

void
TransitExitingCriticalSectionState()

if (MachineState != STATE_IN_CRITICAL_SECTION){
fprintf(stderr, "bogus state transition to InCriticalSection state\n");
exit( -1 );

MachineState = STATE_EXITING_CRITICAL_SECTION;
ExitCSHook () ;
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