
A Study on
Distributed k-Mutual Exclusion AIg()rithms

~ JI) ~B-;X

Hirotsugu Kakugawa

February 1995

Abstract

The mutual exclusion problem is a problem of arbitrating access conflicts for resources. The

problem has been considered as a fundamental problem in computer science and extensively

studied from the first minute operating systems started providing multi-tasking or multi

programming feature. Recently, a large number of computers are connected to a computer

network. Such a system is called a distributed system. In a distributed system, several pro

cesses do their jobs by communicating with other processes on remote computers. When they

share resources, processes may request the same resource at the same time. If the resource

requires mutually exclusive access, then some regulation is needed to access it. This is the

distrib 'uted m'utual exclusion problem.

Most of previous works for the distributed mutual exclusion problem treat the case in which

only one resource exists in a distributed system. This model may be suitable for modeling,

e.g., access control of a distributed database. However, there are other cases in which more

than one identical resources exist in a distributed system. The problem of arbitrating identical

k resources is called the distributed k -mutual exchu;ion problem.

Distributed systems consist of many components such as computers and communication

links. In general, the probability that all components are sill1ultaneously in operational is

smaller than the probabilit.y that a component is in operational. This implies that when

we design a distributed system, we should expect that some components may fail. Fault

tolerance is therefore regarded as one of the most. important issues in designing distIibuted

systems. Unlike parallel computers. distributed systems are loosely coupled, so that it is easy

to add redundant components to increase the availabili ty of dist.ri bu ted systems in such a way

that even if several computers and/or communicat.ion links may fail. the rest of syst.em is still

in operational and alive component.s work correct.ly.

This dissertation investigates the distributed k-n1l1tual exclusion problems. We discuss two

approaches: the coterie approach and the self-stabilization approach. In Chapter 1. we give a

general introduction to the distribut.ed k-mutual exclusion problem. and address the objectives

of this dissertation.

Part I contains the coterie approach. In Chapter 2, we give an introduction to the coterie

based distributed mutual exclusion and introduce the concept of k-coterie as an extension of

coterie. In Chapter 3. the availability of k-coterie is investigated. In Chapter 4, a distributed

1

k-mut.ual exclu~ion algorithm using k-cot.erie is proposed and its correctness is proven. In

Chapt.er 5, t.o demonstrate the efficiency of t.he proposed algorit.hm, computer simulations of

the propo~ed algori t.hm are done.

III Part II. the self-st.abilization approach is discussed. A self-stabilizing syst.em is a sys

tem which converges t.o a legitimate (stable) syst.em stat.e without. centralized cont.rol even if

any transient errors happen. In Chapter 6, we give an introduct.ion to the self-stabilizat.ion

approach. Formal definitions of computational models are described. In Chapter 7 we pro

pose several self-stabilizing mut.ual exclusin algorithms. Forst, we propose a self-stabilizing

k-mutual exclusion algorithm for unidirectional and bidirectional ring networks whose sizes

are prime. The proposed algorithm does not require process identifiers. i.e., it is a uniform

system. Thus. it works for anonymous ring networks. Next, we invest.igate the self-stabilizing

I-mutual exclusion problem as a special case of the self-stabilizing J.:-mutual exclusion prob

lem. We propose a randomized self-stabilizing I-mutual exclusion algorithm for unidirectional

ring networks.

In Chapt.er 8, we summlize the results in t.his dissert.ation and discuss future t.asks.

I wish to thank my advisor Professor Masafumi Yamashita for his advice, suggestions and

encouragements. He taught me a research field of distributed algorithms a.nd suggested me to

study the distributed mutua.l exclusion problem.

I am very grateful to Professor Keiichi Yamagata, Professor Toshimasa VVatanabe. Professor

Ken 'ichi Hagihara. and Associate Professor Shin'ichi Wakabayashi for theilr invaluable disclls

sions and comments on this dissertation.

I would like to thank Professor Tadashi Ae, Associate Professor R.eiji Aibara, and Research

Associate Satoshi Fujita for their invaluable comments and discussions. I also thank Research

Associate Mr. Yasuhide Ito for his invaluable support.

I thank Professor Katsushi Inoue at Yamaguchi University, Professor Itsuo Takanami at

Iwate University. and Associate Professor Hiroshi Matsuno at Oshima National College of

Maritime Technology for their encouragement. Especially, Professor Inowe introduced me the

theoretical computer science and taught me how to do research.

I would like to thank Associate Professor Masaaki Mizuno and Kyoko Mizuno at Kansas

State University and Research Associate Yoko Kamidoi at Hiroshima City University for their

encouragement.

A special thank goes to Miss Yayoi Ushio for her encouragement and delicious tea-breaks.

3

Contents

1 Introduction

The Mutual Exclusion Problem

Distributed Systems

1.1

1.2

1.3

1.4

1.5

1.6

The Distributed Mutual Exclusion Problem

The Distributed k-Mutual Exclusion Problem

Fault Tolerance of Distributed Systems.

Organization of This Dissertation

I The Coterie Approach

2 The Coterie Approach for the Distributed k-Mutual Exclusion

2.1 Previous Works for the Distribut.ed I-Mutual Exclusion

2.1.1 The first distributed I-mutual exclusion algorithm by Lamport

2.1.2 Majority and voting ..

2.1.3 Coterie

2.1.4 Study on fault tolerance

2.1.5 Token-based algorithms

2.2 Previous Works for the Distributed k-Mutual Exclusion

2.3 Models and k-Coteries

3 Availability of k-Coterie

3.1 Assumptions and Definitions

3.2 k-Majority Coteries .

3.3 k-Singleton Coteries

3.4 Concluding Remarks

4 A Distributed k-Mutual Exclusion Algorithm using k-Coteriie

4.1 The Distributed k-Mutual Exclusion Algorit.hm

4.2 Correctness proofs .

4.3 Message complexity

5

13

13

14

15

15

16

16

19

21

21

21

22

23

24

25

25

26

31

31

33

37

37

39

39

41

43

6

4.4 Concluding Remarks .

5 Experimental Evaluation of the k-Mutual Exclusion Algorithm

5.1 Assumptions and the Simulation Model

5.2 Outline of the Simulation System

5.3 The Distributed k-Mutual Exclusion Algorithm by Kerry Raymond.

5.4 Simulation and Results.

5.5 Concluding Remarks ..

II The Self-Stabilization Approach

Contents

43

45

45

46

48

48

55

57

6 The Self-Stabilization Approach for the Distributed k-Mutual Exclusion 59

6.1 Computational Models 59

6.2 Previous Works 61

6.3 Preliminaries . 62

6.3.1

6.3.2

6.3.3

The process and net.work model.

Scheduling of processes

The self-stahilizing k-mut.ual exclusion problem

7 Self-Stabilizing Mutual Exclusion Algorithms

7.1 Self-St.abilizing k-Mutual Exclusion Algorithms

7.1.1 Burns and Pachl's Algorithm

7.2

7.3

7.1.2 Unidirectional Uniform Rings

7.1. 3 Bidirectional Uniform Rings .

A Self-Stabilizing I-Mutual Exclusion Algorithm with Randomization

7.2.1 The self-stabilizing system uuder a c-dragon

7.2.2 The randomized sc1f-stabili7,ing syst.em under a c-daemon ..

7.2.3 The randomized self-stabili7,ing I-mutual exclusion algorithm

Concluding Remarks

8 Conclusion

A Local Coteries and a Distributed Resource Allocation Algorithm

A.l The R.esource Model

A.2 The Resource Allocation Problem.

A.3 Local Coteries

A.4 A Dist.ributed Resource Allocation Algorithm

A.5 Correctness Proof ..

A.6 Concluding Remarks

62

63

64

67

67

67

69

72

79

80

81

81

90

91

93

94

94

95

96

99

102

Contents

B Implementations of Distributed k-Mutual Exclusion Algorithms
B.1 Our Distributed k-Mutual Exclusion Algorit.hm using k-Coterie

B.2 Raymond's Dist.ributed k-Mut.aul Exclusion Algorithm

B.3 The Behavior of a Process

7

103

104

108

110

List of Figures

5.1 The behavior of a process 46

5.2 The simulation system (in the case n = 5) 47

5.3 The average number of messages (k = 2, n = 5). 50

5.4 The average number of messages (k = 2, n = 8). 51

5.5 The average llumber of messages (k = 2, n = 11) . 52

5.6 The average number of messages (k = 3. n = 7). 53

5.7 The average number of messages (k = 4. n = 9). 54

9

List of Tables

3.1 pu(n, r, k) for some n (k = 1, ... ,6, r = 1, ... , k). . ..

3.2 Pl(n . T,k) for some n (k = 1, ... ,6, r = 1, ... ,k).

3.3 (k, r)-availabilities of Majl.;and Sgld k = 4, n = 14) ..

4.1 Message complexities of disributed k-mutual exclusion algorithms.

5.1 Cross over probabilities for k = 2

11

35

37
38

44

55

Chapter 1

Intro d uction

1.1 The Mutual Exclusion Problem

The mutual exclusion problem first arised when the concept of concurrent processes was intro

duced in operating systems. When more than one processes share memory cells, undesirable

situations may happen: Suppose that two processes PI and P2 which share a variable. say

x, wish to increment x by one. To increment the value of x, a process loads the value of x

into a register ill CPU, increments the value of the register by one, and then stores it back

into x. If P2 starts executing the above procedure after PI finishes its execution, the result

is correct, i.e .. the value of x is incremented by two. However. what if their executions are

interleaved? Consider, for example, the following interleaved execution sequence. PI loads x,

PI increments the register. P2 loads x, P2 increments the register, P2 stores the register into

x, and then PI stores the register into x. x is incremented by only one!

To guarantee such an undesirable situation does not happen. the concept of critical section

is introduced. A program text can be partitioned into two kinds of sections: sections in which

there are no accesses to shared resources (e.g., shared variables) and sections in which shared

resources are accessed. The la.tter sections are called critical sections or critical regions.

Then it is easy to see that. by synchronizing processes in such a way that at most one of

them is in a critical section. we can achieve one aim of avoiding undesirable situat.ions. For

instance, by ellcapsulating the three steps of increment procedure, (1) loading x into a register,

(2) incrementing the value of register, and (3) storing the value of the register, in a critical

section, we always get a correct result.

To make executions of critical sections mutually exclusive, a process wishing to enter a

critical section must issue an operation to get. a permission. Dijkstra introduced an abstract

data type called semaphore in [DijG8]. To enter a critical section, a process mnst issue a P

operation. If there is a process being in a crit.ical section at the time instant, the execution of

the process is suspended unt.ilno process is in a critical section. When a process exits a critical

13

14 Chapter 1. Introduction

s c:t.ion. it issues a V operation to penuit anothcr process to entcr a critical section. l Modern

CPUs ~upport P and V 01' similar instructions (c.g., test-and-set instruction) in order to

solve the m u t ual excl u~ion problem.

In this dissertation. we discuss the mutual exclu~ion problcm in a computer network (not

in a single computer).

1 .. 2 Distributed Systems

Recently. a large numbcr of computcrs are connccted to a computer network. A set. of comput

ers connected by a set. of communication links is called a distributed system. We characterize

distributed systems by the absence of shared memory. In a distribut.cd system, processes on

a computer do their tasks with other processes on remotc computers. To achieve cooperative

tasks (01' compctitive tasks), processes must cOllullunicate with other proccsses via communi

cation links since there is no shared memory.

The following motivates distributed systems[Hag90, Hag93]:

• High performance - Since the system consists of sevcral computers, independent tasks

cau be proce sed in parallel. Load balancing is easy.

• Distribution of users - When uscrs of the systcm arc geometrically distributed, it is

natural to process tasks dist.ributcdly.

• Extensiveness - In gencraL addition of computers and communication links can be done

ea. ily with mall modification of the current syst.em. Replaccment of comput.ers and

communication liuks is also casy. This propcrty comes from the nature that. dist.ributed

systems are loosely coupled.

• Fault-tolerance - A centralized system cannot provide serVIces when the ccntral ma

chine stops by failure. Distributed systems may provide services if there are several alive

components.

Distributcd systems havc many advantages compared with centralized systems. However,

designing distributed algorit.hms to control distributed systems is by no means easy because

of t.he following reasons: Computers must send/receive messagcs to other computcrs to get

enough information to do t.heir tasks. Mcssages are delivercd with delay and thcrefore in

principle there is no way t.o capture the global state of the syst.em. In addition, t.here is no

process which controls thc entire distributed system. Thereforc, to achicve fault-tolerance,

algorithm. must consider failures such a." process stops and mcssage losts .

1 To speak rigidly, operation~ P and V are defined as follows: When a process performs a P operation,
it executes next instruction (i.e .. it enters in a critical section) if there is no processes in a critical section.
Otherwise. it is blocked until no processes are in a critical section. A process performs a V operation when it
exits from critical section. The operating system unhlocks a process after a performance of a V operation.

1.3. The Distributed Mut11(Li E:cc1usion Problem 15

1.3 The Distributed Mutual Exclusion Problem

When processes in a distributed system share a resource which must be accessed exclu ively,

the access to the resource must be controlled ac; in the case of concurrent processes in stand

alone operating systems. To enter a critical section, a process must ac;sure that there is no

process which is being in a critical section in the distributed system.

Many algorithms have been proposed to solve the distributed mutual exclusion problem.

They are classified into two types[Ray91b]:

• Permission-based principle - A process P wlsmg to enter a critical section requests

some other processes to permit it to enter a critical section. If a permission is given from

each process P is asking, P can enter the critical section .

• Token-based principle - There is an object called a token in a distributed system and

it travels among processes. A process can enter a critical section while it is holding th

t.oken. The mutual exclusion is guarant.eed because there is only one token in t.he system

and t.here are no two processes having a token at the same time.

Several algorithms are surveyed in Chapter 2.

Consider a distributed system having two magnetic tape drives A and B. Suppose that two

processes P and Q wish to use two magnetic tape drives. In such a case, we must be careful

to avoid t.he state in which P reserves A and Q reserves B , since both P and Q are stuck

forever if both of them request another tape drive. Deadlock is the terminology t.o denote

such situations.

We also avoid a starvat.ion situatioll in which a request, is not satisfied forever (i.e, a magnetic

tape drive cannot be allocated forever).

In designing a mutnal exclusion algorithm. guarant.eeing the deadlock free property and

the starvation free property are important issues. Note that once a deadlock happen, it

cannot be solved; while starvation can.

1.4 The Distributed k-Mutual Exclusion Probleru

In the example of a distributed databac;e described above. only one item is shared by processes.

However. there are systems such that k identical resources are shared by processes.

For example, consider a Ethernet local area network and many computers execnting pro

cesses are connected to it . Since Et.hernet is a CSMA/CD (Carrier Sense Mult.iple Access

with Collision Detect) type local area network. the performance of t.he network becomes bad

suddenly when comput.ers send packets freqnently. To avoid such situation, a dist.ributed k

mutual exclusion can be applied. The bandwidt.h of a network can be considered as resources

and a program fragment in which a process sends a large amount of data via network can be

considered as a critical section. When a process wishes to send data. it must enter a critical

section. Then the total amount of traffic of a network can be controlled.

16 Chapter 1. Introduction

The simplest way of !wlving this problem is to solve the I-mutual exclusion problem for each

resource, i.e .. we distinguish each resource by labeling a unique name and provide a mutual

exclusion algorithm for each resource. This is a simple solution, however, a process must

choose which resource it wish to use even if the k resources are identical. By this solution,

many processes may be waiting for a resource even if there are free resources. This motivates

a study of distributed k-lllutual exclusion algorithms. The distributed k-mutual exclusion

problem is the main theme of this dissertation.

1 .. 5 Fault Tolerance of Distributed Systems

Fault t.olerance is an important issue and it is desirable that distributed systems can tolerate

from any failures. But implementations of fault tolerance are difficult or sometimes impossible.

For instance, it is shown that there is no consensus algorithm in totally asynchronous system

even if the nnmber of faulty process is one [FLP85, Tau9I]. Thus, it is common to classify

the failures into several classes and fault tolerant systems are discussed by assuming failure

classes.

For iustance, failures are classified as follows [Hag90, Hag93]:

• Crash failure - Processes (or links) completely stop when an error occur. If a failure

occurs, it never send any message.

• Send-omission failure - Messages may be lost when sending.

• General-omission failure - Messages may be lost when sending and/or receiving.

• Byzantine failure - Processes may send strange messages to cheat other processes.

Although several computers and/or links may stop by power down and the value of memory

cells or messages 011 links may be lost. they have complete functionality and may work correctly

again if power is supply recovers. Such failures are called transient failures.

A ystem which tolerates against any transient failures is called a self-stabilizing system

and was first discussed by Dijkstra [Dij74]. A self-stabilizing system is a system which con

verges without centralized control to a legitimate (stable) system state even if any t.ransient

errors occur. In the lattpr half of this dissertation, we propose several self-stabilizing mutual

exclu. ion algorit.hms.

1.,6 Organization of This Dissertation

This di . sertat.ion consists of two parts. We discuss the coterie approach of the distributed

k-mutual exclusion problem in Part 1. The self-stabilizat.ion approach is discussed in Part II.

Part. I include. Chapt.er 2 to Chapter 5 and Part II includes Chapter G to Chapter 7.

1.6. Organization of This Dissertation 17

In Chapter 2. we discuss the coterie approach. Previous works for distributed mutual

exclusion are also reviewed in this chapter. Coterie is a set of process groups such that a

process wishing to use a resource must. get permif)sion from all processes of a process group.

We propose a concept called k-coterie as an extension of coterie. In Chapter 3, t.he availability

of coterie is analyzed. Intuitively, the availability is the probability that at least one process

can use a resource in spite of process and/or link failures. Since there exists k resources, the

definition of availability is not enough. We introduce a new measure called (k,r)-availability.

The (k, r)-availability if) the probability that at least r processes can use resources at a time.

If k = r = 1, the (k, r)-availability is the cOllventional availability. We show a necessary

and a sufficient conditions for a class of coteries called k-majority coterie to be optimal in

the sense of (k, r)-availability. In Chapter 4, we propose a distributed k-mutual exclusion

algorithm using a k-coterie and its correctness is shown. To demonstrate the efficiency of the

proposed algorithm, the average message complexity of t.he algorithm is examined by computer

simulations. The simulat.ion results is shown in Chapter 5. In the simulation, each process is

executed on different workstations connected to a local area network.

In Chapter 6, we discuss the self-stabilization approach. A self-stabilizing algorithm is

an algorithm which tolerates from any transient failures and therefore, initialization is not

necessary for the system: it converges to a stable state automatically. In this dissertation, we

consider a uniform self-st.abilizing systems on ring networks. A system is called uniform if all

processes are identical and do not have process identifiers. In Chapter 7, we propose several

self-stabilizing mutual exclusion algorit.hms. First, we propose a self-stabilizing 1.:-mutual

exclusion algorithm on rings whose sizes are primes. Next, we consider the self-stabilizing

I-mutual exclusion problem as a special case. In [BP89], Burns and Pachl showed that there

exists no uniform deterministic self-stabilizing 1-mut.ual exclusion algorithm if the number

of processes on a ring is composite. We show that there exists a uniform probabilistic self

stabilizing mutual exclusion algorithm when the number of processes is composite.

In Chapter 8. we summarize the results in this dissertat.ion and present open problems and

future tasks.

Part I

The Coterie Approacll

19

Chapter 2

The Coterie Approach for thE~
Distributed k-Mutual Exclusion

In Part I, we investigate the distributed k-mutual exclusion problem by taking the coterie

approach. First, we discuss the distributed mutual exclusion (i.e., the distributed I-mutual

exclusion) based on coterie and survey previous works. Then, we motivate a study of the dis

tributed k-mutual exclusion. Finally. we int.roduce a concept k-coterie to solve the distributed

k-mutual exclnsion problem.

2.1 Previous Works for the Distributed I-Mutual Exclusion

The distributed I-mutual exclusion problem is one of the fundamental distributed problems

and many algorithms to solve the problem have been proposed. In this section, we survey

previons works of the distributed I-mutual exclusion.

2.1.1 The first distributed I-mutual exclusion algorithm by Lamport

The first distributed mutual exclusion algorithm is proposed by Lamport [Lam78]. To guaran

tee mutual exclusion , no deadlock. and no st.arvation. dist.ributed mutual exclusion algorithms

must have some arbitration mechanism. To t.his end. he proposed a logical clock in totally

asynchronous dist.ributed syst.ems. A logical clock is defined as follows [Lam78]:

• Ini tially. a logical clock of every process is zero.

• When an internal (local) event (e.g., update of a variable) occurs at a process P, a logical

clock of P is incremented by one.

• When a process Ps sends a message M to Pd , the value of Ps's logical clock, say cs, is

attached to M, i.e., a pair (M, cs) is sent. When Pd receives a message, it retrieves a

21

QQ Cha.pter Q. The Coterie Approa.ch. for the Di.'Jtributed k-Mutual Exc/u.'Jion

clock value of Ps (= cs) and compares wit.h its own logical clock Cd. Then, Pd'S logical

clock is updated by taking maximum of these two logical clocks. i.e., Cd := max(Cd, Cs).

Note that this logical time has no relat.ion to the physical time.

The priority among mut.ual exclusion requests is defined by a pail' of a logical time at which a

request is issued and a process identifier of a requesting process. The pair of a logical time and

a process identifier is call a timestamp. and it is assumed that every request message contains

a timest.amp. Since total ordering is defined on timestamps. processes can tell which request

has the highest priority. Thus, by usage of timestamps, his algorithm avoids starvations and

deadlocks.

In his algorithm, a process which enters a critical section sends request messages to all the

other processes. When a process receives a request message, the request is put into a priority

queue and it sends a reply message to the request.ing process. The requesting process enters

a critical section if it receives reply messages from the other processes and its request is the

highest among items is its priority queue. To exit from a critical section, it sends a release

message t.o the other processes and deletes its request from its queue. A process receiving a

r lease me. sage deletes the corresponding item from the priority queue. For every invocation

of a lllut.ual exclusion. it must send messages to the other processes in a distributed system. So,

this algorithm is based on the unanimous consensus method and requires 3(n - 1) messages

per invocation of a mu tual exclusion. If a process stops by a fail ure then other alive processes

cannot enter their critical sect.ions; thus it is not a good algorithm from the view point of the

fault tolerance.

Ricart. and Agrawala proposed an improved algorithm [RA81] which requires 2(n - 1) mes

sag;es p r invocation of mutual exclusion. but it sends a request message to every process like

Lamport's algorithm. Carvalho and Roucairol further improved the algorithm to reduce the

Hnmber of messages [CR83. RA83].

2.].2 Majority and voting

In Lamport's algorithm and Ricart and Agrawala:s algorithm. a process must communicate

wit.h all processes. To guarantee mutual exclusion. however, the unanimous consensus method

is not necessary. Thomas proposed t.he majority consensus algorithm to guarant.ee mutual

exclusion [Th079]. A process which ent.ers a crit.ical sect.ion must. get permissions from a

majority of all processes. Assuming t.hat more t.han a half processes are alive, alive processes

can ent.er their critical sect.ions, i.e .. t.hey can continue their tasks even if at most. half of the

system components st.op. This algorithm is definitely more resilient t.han Lamport's algorithm

[Lam78].

As a generalization of t.he majorit.y method, Gifford proposed the weighted voting [Gif79].

Each process is assigned a number of votes. A process must collect a majority of t.otal votes

. to enter a critical section. Note that. t.he majority met.hod by Thomas is a special case when

each process has one vot.e. Each computer has different relia.bilit.y, in general. If more votes

2.1. P7'ellio1t.~ Worb for the Dist7·ibuf.ed 1-Mutual Exclusion 23

are assigned t.o more reliable computers then it is expected that. the availabilit.y of system

increases. (Recall that t.he availability of mut.ual exclusion is the probabilit.y t.hat at least

one process in a distribut.ed syst.em can enter a critical section.) In addition, the number

of processes t.hat a process must exchange messages on an invocation of a mutual exclusion

can be cont.rolled by changing vote assignment.s. As an extension of the weighted vot.ing, In

[CAA90), Cheung, Ahamad and Ammar proposed t.he multi-dimensional voting met.hod as an

extension of the voting met.hod. The vote assigned to a process is a multi-dimensional vector.

2.1.3 Coterie

To decrease t.he number of messages per mutual exclusion invocation and to increase the

availability, the concept of coterie is proposed by Garcia-Molina and Barbara [GMB85). The

definition of coterie is as follows.

Definition 1 Let U be the set of all processes. A set C = {Q1, Q2, ... , Qm} f. 0 is (L coterie

if and only if the following cond'it'ions hold:

1. Non-emptiness: For each i, Qi f. 0.

2. Intersection property: For each 'i, j. Qi n Qj f. 0.

3. Minim(].Zity: For each i. j (i f. j). Qi Cl Q j.

Elements of a coterie is ca.lled quorums. o

A process wishing to ent.er a critical sect.ion sends a request message to every process in

a quorum Q E C. If it can get permission from every processes in a quorum, it can ent.er a

critical sect.ion. Mutual exclusion is guaranteed because every t.wo quorums has non-empty

intersection and processes in an intersection of quorums serve as an arbiter of mutual exclusion

requests. It is shown that (1) every voting assignment in the weighted voting scheme can be

expressed in terms of coterie and (2) there exist.s a coterie which cannot be expressed in terms

of the vote assignmellt[GMB85). Therefore. the majority method [Th079) and the cent.ralized

met.hod are also expressed in terms of coterie. Coterie is thus more powerful than the vote

assignment met.hod.

Garcia-Molina and Barbara [GMB85) proposed the concept domination of cotelies.

Definition 2 Let Q and R be coteries. Q dominates R if a.nd only if a condition

VR E R3Q E Q[Q ~ R] 1\ Q i= R

holds. A cotcr'ie Q is a non-dominated coterie if and only if there is no coterie which

dominat.es Q.

Chapter 2. Th.e Coterie Al)proach for the Distributed k-Muf.ual Exclusion

A coterie Q which dominates R is bettcr than R because of the following reasons:

•• Availability: Suppose that a set. of alive processes is S. By definition of domination, if

there exists R E Rand R ~ S then there exists Q E Q and Q ~ S. Intuitively, if a

systcm using R is operational at. the prescnce of failures then a system using Q is also

operat.ional. but. the opposite is not always true.

4. Message complexity: Assume that a system uses R and that a process communicates

with processes in R E R. By definition of domination, there is a quorum in Q E Q such

that Q ~ R. which implies that a process can usc Q instead of R if a system uses Q.

Because Q ~ R. the number of messages a process must send is smaller than or equal.

S .ven-t} algorithms using coterie has been proposed. Maekawa proposed an algorithm using

coterie constructed from finite projective planes. The size of quorums of the coterie is approx

imately Vii. He showed t.hat coteries based on finite projective planes are the optimal coteries

in the sense t.hat each process has equal amount of rcsponsibility to the mutual exclusion

control. A process wishing to enter a crit.ical section sends a request message to every process

in a quorum. It waits until permission is granted by all process in the quorum. After exiting

a cri tical sect.ion. it relcases the permission. To avoid deadlock. permissions are preempted

according to the priority defined by Lamport [Lam78]. (Sanders pointed out that Maekawa's

algorithm may cau e deadlocks [San87].) Each process requires O(fo) messages per mutual

exclusion invocation because the size of quorums is Vii. Singhal proposed a Maekawa-type

deadlock frce algorithm without additional messages for deadlock resolution [Sin91].

Not. only lllutual exclusion algorithms but. also propcrt.ies of coteries and construction meth

ods ar(' invest.igated by many researchers.

III [AA89]. Agrawal and Abbadi proposcd a coterie construct.ed by binary tree. The size

of quorum, of a coterie varies from log n to rn~ll Kumar proposed a hierarchical quorum

COn!-5ellSUS and a coterie with multilevel hierarchies whose quorum size is nO.63 [Kum91]. Ibaraki

and Kameda investigated properties of coteries from t.he point of view of boolean functions

[IK91] and showed a characterization of non-dominated cotcries. Neilsen, Mizuno and Raynal

propos d a met.hod for constructing a complex coterie from simple coteries [NM92. NMR92].

2.1.4 Study on fault tolerance

Barhara and Garcia-Molina discussed the availability of mutual exclusion [BGM87]. They

showed several hcurist.ics for vote assignment to increase the availability of mutual exclusion

for arbitrary network topology. Whcn the network topology is complete, the communication

links never fail. and reliability of each proccss is p > 0.5. then the majority method [Th079] is

show1l t.o be opt.imal in th(' sense of availabilit.y. Rangarajan and Tripathi proposed a variation

of finite projective pla.lH'S based coteries t.o increase the availability. The quorum size of the

coterie is In log n.

2.2 . Previous Works for the Distributed k-Mutual EXc/1Lsion 25

2.1.5 Token-based algoritluns

The above algorithms are based on he permission-ha,sed principle, i.e .. a process can enter its

critical section only if cert.ain permission is granted.

Algorithms based on the token-based principle have also been proposed. Suzuki and Kasami

proposed an algorithm which requires at most n messages per invocation on mutual exclusion

[SK85j. An imaginary object called token is provided in the system aud a process which

holding the token is the process which has the privilege to enter its critical section. If a

process holds a token t.hen it is not necessary to send any request messages. Otherwise, it

sends a request message to every process. In their algorithm, the sequence number is used

to guarantee deadlock freedom and starvation freedom . Suzuki and Kasami also showed an

algorithm with bounded sequence number. The algorithm proposed by Ricart and Agrawala

[RA81j also uses the sequence number but the value is unbounded.

Raymond proposed another token-based algorithm [Ray89bj. Her algorithm dynamically

maintains a directed spanning tree of a net.work. The direction of an edge of a spanning

tree indicates the direct.ion of a token. A request message is forwarded along directed edges

of a spanning tree. This method docs not require a process sending its request message to

all processes. The number of messages required per invocation of mutual exclusion depends

on the topology of tree but typically O(log n) under light demands of mutual exclusions.

In the case that the demands of lllutual exclusions are heavy, approximately four messages

are necessary. Satyanarayanan and M u thukrishnan proposed a modification of Raymond's

algorithm such that it can provide least executed criterion as a fairness policy of mutual

exclusion by processes [SM92j.

Mizuno, Neilsen and Rao proposed an algorithm based on token-based principle using coter

ies [MLR9Ij. A process which is requesting to enter a critical section sends a request message

to a process of a quorum of a coterie.

2.2 Previous Works for the Distributed k-Mutual Exclusion

In this section. we review previous works for the distributed k-11lutual exclusion problem.

An algorithm for dist.ribut.ed k-mut.llal exclusion can be constructed from k 11lutual exclusion

algorithms. That is, we Ilame It. resources distinct. names and a process wishing to use a resource

chooses a resource name among k resources and issue a request. for the mutual exclusion

algorithm for the resource. This is a simple solution but has a drawback. Suppose that every

process specifics the same resource. they must wait a long time even if there are free resources.

By this reason . several distributed k-mut.llal exclusion algorithms have been proposed.

The first dist.ributed k-mutual exclusion algorit.hm is proposed by Raymond [Ray89aj. Her

algorit.hm is a modification of Ricart. and Agrawala's distributed I-mutual exclusion algorithm

[RA81]. According to her algorithm. a process nlllst send a reqnest message to every process

in a distributed system. It can enter a critical section if it receives n - k reply messages. where

26 Chapter 2. The Coterie Approach for the Distributed k-Mutual Exclusion

n is the number of processes. The algorithm requires 2n - k - 1 messages in the best ca.se and

2(n - 1) in the worst case. This algorit.hm t.olerates from fa.ilures of arbitrary k - 1 processes.

In [BC94], Ba.ldoni and Ciciani proposed a modificat.ion of Raymond's algorithm [Ray89a] so

that. it. can provide priorities (e.g., short. job first) for mut.ual exclusion requests. To avoid

starvatiolls, t.hey used ga.t.ed batch priorit.y queues.

Raynal proposed a resource allocation algorithm in [Ray91a]. He discussed allocation of

any amount of resources among M identica.l resources. This is a generalization of ~:-mutual

exclusion because k-mut.ual exclusion can be considered requesting one resource among k

resources. The algorit.hm proposed by Raynal also sends a request messa.ge to every processes .

In [SR92], Srimani alld Reddy proposed another algorithm which is a modification of Suzuki

and Kasami's algorit.hm [SK85]. The number of messages necessary for each mut.ual exclusion

invocat.ion is a half of that for Raymond's algorithm. The algorithm is token-based and k

tokens are circulated to guarantee k-mut.ual exclusion.

2.:~ Models and k-Coteries

In this s ction. the computational model we a.'3sume in Part I is described. A distributed

system consist.s of n processes and bidirectional communication links connected between

all pa.irs of processes. (That is, the network topology is a complete graph.) We assume that

the structure of a program that each process executes is as follows:

Process Pi;

begin

while true do

begin

I Non-Critical Section I

(Enter a Critical Section)

I Critical Section I

(Exit from a Critical Section)

I Non-Critical Section I

end

end.

2.3. Models and k-Coteries 27

Each process executes the same program. hut has uuique process identifier. Without loss of

generality. we assume that process ideut.ifiers are positive int.egers. which every proc S8 knows.

Processing speed of processes may be different. Some processes may execute a program fast

and others may do really slow; the processing speed of processes may change even during the

execution of a program. But it is guaranteed that a process can execute its next inst.ruction

within a finit.e time unless the execution of it.s algorithm has been terminated.

Each process has it.s own local clock. Each local clock may indicate different time. and no

processes can tell t.he global time. l Therefore, processes cannot make use of their local clocks

to synchronize with ot.her processes.

Since t.here is no ccntralized cont.rol t.o solve the problem and the only mechanism provided

in the system for information exchange between processes is the message passing, i.e.,

processes do not have shared memory. processes must collect enough informat.ion from other

processes t.hrough communication links. We assume t.hat links are error-free.

Each process has a message queue of infinite length. which st.ores messages arrived t.o it.

Operations provided for the message passing are as follows.

• SEND operat.ion

SEND is used t.o send a message. To send a message, a dest.ination process must be

specified. Messages sent by a process are eventually put into the message queue of the

destination process in a finite time.

• RECEIVE operation

As described. each process maintains a message queue. The first message in t.he queue is

ret.rieved by issuing RECEIVE. We assume that. a process can tell if the queue is empty

or not.

The order of messages is kept unchanged during the delivery. That is, if a process PI sends

messages m 'l and 7n2 in this order to P2 t.hen P2 receivcs 7nI and 7n2 in the same order. It is

guarant.eed that each message is delivered in a finit.e t.ime. But the message delivery delay is

unpredict.able; t.he delay may vary during t.he execution of a program.

Consider extending the concept of cot.erie for k-mut.llal exclusion. (The definit.ion of cot.elie

is shown in definition 1.) The I-mutual exclusion is guarant.eed because there are no two

distinct quorums in a cot.erie. Thus. k processes can be in t.heir critical sections if there are

k distinct quorums. and k + 1 processes cannot be in t.heir critical sections at a time if there

arc no k + 1 distinct quorums. By this intuition, we have t.he concept of k-·coterie. The formal

definition is as follows.

Definition 3 A non-empty set C of non-r.mpty S"ubsP.ts q of U ~s called a k-coterie if and

only if all of the following three conditions hold:

IThe definition of the distributed k-1I1utual exclusion problem requires the existence of the global time.

28 Clwpter 2. The Coterie Appm(Lch for the Distributed k-MutufLl Exclusion

.1. Non-intersection property:

For any h(< 1,;) elements Ql' Qil E C s'llch that Qi n Qj = 0 (i =f. j) for 1 ~ i. j ~ h.

there exi!lts an element Q E C s'uch that Q n Qi = 0 for 1 ~ i ~ h.

~? Intersection property:

For any 1,;+1 elempnts Ql, QI.;+1 E C. there exists a pair Qi and Qj such that QinQj =f.

0.

3. Minimality property:

For a.ny two distinct elements Qi and Qj in C. Qi <l Qj.

An element q of a I,;-coterie C is called a quor·um. o

Note that. a 1-coterie is a coterie. and therefore, the concept of a I,;-coterie is an extension

of a coterie.

Example 1 Let U = {1. 2 , 6}. The following G1, ... , G5 are I,;-coteries (k = 1,2,3) under

U . Note that a condition UiQi = U does not ha1'e to be tT'lte by the definition of k-coterie.

I. k = 1

C1 = {{1}}

C2 = {{1.2},{2,3},{3.1}}

• I,; = 2

C3 = {{1},{2}}

C4 = {{1,2},{3,4},{3,4}.{4.1}}

• I,; = 3

C5 = {{1.4}.{2,5}.{3,6},{1.5}.{2,6},{3.4}.{1,6},{2,4},{3,5}}

o

A majority method can be dcfiucd for k-mutual exclusion. The following k-coterie, a k

majority coterie. is a coterie that. each quorums consists of any W = f(n + l)/(k + 1)1

processes. This is callcd k-majorit.y since W is approximat.ely n/ k and there are no k + 1

grou ps of W processes.

Definition 4 Let W f(n + l)/(k + 1)1, where n is the number of processe!l. The set

Mah = {Qi I Qi ~ u. IQil = W} is called a k-majority coterie. 0

2.3. Models (mel /.;- Coteries 29

A majority cot.erie is defined when n :2: k2 •2 A k-coterie which corresponds to primary

the site method is called a k-singleton coterie. A k-sillgleton coterie is a k-coterie which

consists of k quorums such that each quorum consists of one process.

Definition 5 A k -singleton coterie Sgh: is a set {{ Pd , {PI.:}}. where Pi E U for i =

1, ... , k, and Pi 's are distinct. o

Fujita et a1. proposed a construction algorithm of a k-coterie whose quorum SIze IS

O(Vn log n) ill [FYA91]. Like a concept domination for coteries, a conc1ept domination for

k-coteries can be defined. Nielsen and Mizuno ext.ended the concept of non-domination for

k-coteries [NM94]. They also proposed a composition method for k-coteries.

Huang, Jiang and Kuo also reached k-coterie independently, which is slightly different from

ours, and investigated availability [STHK93]. Baldoni proposed k-coteriie [Ba194b, Ba194a] ,

which is completely different from ours. His k-coterie requests that ' intersection of any k

quorums is non-empty '. This idea is based on the following: every process has k permissions

and a process wishing to enter a critical section gets a permission from each process in a

quorum. If k processes are in their critical sections then another process wishing to enter a

critical section cannot get permissions since the int.ersection of any k quorums is non-empty,

which implies that there exists a process which passed all its permission to other process. The

message complexity of their algorithm is 3rn l.:/(I.:+l) - 11 in the best case and 5rn l.:/(I.:+l) - 11

in the worst. case.

2In [MYKC94]. Yuang and Chang claimcd that 1/. and k must satisfy following two conditions so that the
k-majority coteric is a k-coterie:

• kW ~ n .

• (I.: + l)W > 11.

where W is an illteger.

Chapter 3

Availability of k-Coterie

In this chapter, we investigate the availability of the distributed k-mutual exclusion by k

coterie. In [BGM87]. Barbara and Garcia-Molina showed t.hat if the network topology is

complete and communication links never fail and the reliability of each process is p > 0.5 then

the majority method [Th079] is optimal in the sense of availability. It is conjectured that a

k-majority coterie is an optimal coterie nnder some condit.ions because a k-majorit.y cot.erie is

a natural extension of majorit.y coterie (a coterie corresponding to the majority method). In

this section. we investigate the optimality of k-majorit.y coteries. Not only k-majority coterie

but also k-singleton coterie is investigate in this chapter.

3.1 Assumptions and Definitions

Before investigation of availability of k-coteries, we describe assumptions and define several

concepts. We investigate the availability of k-coteries under the following assumpt.ions:

1. The network topology of a distribut.ed system iH a complete graph: between each pair of

processes. there is a bidirectional communication link.

2. The communication links never fail.

3. For all processes P. t.he reliability of P, i.e .. t.he probability of P being in operat.ion, is

the same constant. 0 ~ p ~ 1.

Availability is a probability that at least one proceHs can achieve mutual exclusion in the

case of the I-mutual exclusion. For the purpose of investigation of fault-tolerance of the k

mutual exclusion. we extend this concept. Since k processes may enter their critical sections,

the probability t.hat r processes can enter their critical sections can be considered as a measure

of fault-tolerance of the k-mutual exclusion. where r is an integer such that 1 ~ r ~ k. This

idea is formalized as a concept of the (k. r)-availability.

31

32 Chapter 3. Availability of k-Coterie

Definition 6 Let C be a k-coterie over U. and r (1 ~ r ~ k) be an integer. The (k,r)

characteristic function FC ,k,1' of C is a function from 2U to {O, 1} defined as follows:

For each 5 ~ U. FC.k .,.(5) = 1 if and only if there exi.<;t r q'uontms Q1, •.• , Qr E C .<;a.ti.<;fying

both of the follow'ing two conditions;

Qi n Qj = (/) for 1 ~ i,j ~ r, i :/= j. and

for all i, Qi ~ 5.

o

That is . FC.b·(5) = 1 if and only if r processes can enter their critical sections, provided

that all processes in 5 are being up.

Definition 7 Let C be a k-coterie. and r (1 ~ r ~ k) be an integer. The (k,r)-availability

Rk.,·(C) of C i.<; the probability that at least r processes can enter a critical section.

Alore formally. let G = (V. E) be the topology of the distributed system under con.<;ideration.

Let V' and E' be. re.<;pecti'l7ely, the sets of proces.<;es and links in operation, and P,. (V', E')

denote the probability that this situation occurs. The topology of the distributed system in

opeTa.tion is the graph G' = (V', (V' x V') n E'). We say a quorum Q E C is available with

respect to G' if Q is a .mbset of the vertex set of a connected component of G'. If there are

r distinct available quor'U,ms Ql , Q,. E C with respect to G' such that Qi n Q j = (/) for

1 ~ ·i.j ~ r. ·i :/= j. we say that G' is r-available. Then the (k,r)-availability of C on G is

defined as follows :

RG ,k,,' (C) = P,.(V', E')
G/is "-available

The (k. 7') -av{1:ilability depends on G. Becw/./,se we assume that G is complete in this disserta-

tion. we omit G from RG.k:.,· . o

Not.e that the (1,l)-availability coincides with the availability.

Let 5 be a set. of processes being in operation. Then. Fc.k.1·(5) = 1 if and only if at least r

processes can enter a critical section (i.e .. G' = (5, (5 x 5)nE) is r-available) since the topology

of the distributed system is a complete graph. On the other hand, the probability that the

set of processe. being in operation is exactly 5 is plsl(1 - p)n-ISI. Thus, the (k, r)-availability

of a cot.erie C can be calculated using the following formula:

Rk ,,· (C) = L FC.k".(5)plsl(1 - p)n-IS I.
Sc;u

LI2't. C be a k-coteric. and r (1 ~ r ~ k) be an integer. Now, we construct a new J.:' -coterie

C' au follows:

3.2. k-Majority Cote7-ies

First. let

C' = {Q Q = Ql U ... U Q", Qi E C for 1 ::; i ::; r,

andQinQj=0forl::;i.j::;r, i#j}.

33

Next.. we remove all elements Q from C' such that Q' ~ Q for some Q' E C', in order for the

resultant C' satisfying the minimality property. Then C' has the following properties.

Property 1 C' is a l~J -coterie. o

Property 2 Let k' = l~J. Then,

F C.k:. ,• = FC',k'.l.

Hence.

o

We call C' the r-contracted coterie of C.

3.2 k-Majority Coteries

We investigate k-majority coteries Majk in terms of the (k, r)-availability.

Theorem 1 Let n be the number of proce8ses. k be an integer such that (n + 1) is a m:ultiple

of (k + 1). and r (1 ::; r ::; k) be an integp.r. Then. there is a coru;tant Pu (n, k, r) s1Lch tha.t for

any process rP.li(/.bility P (pu(n,k,7')::; P::; 1). Majk achieves the maximum (k,r)-availability.

Hencp.. Majk i8 the best k-coterie in terms of the (k,r)-availability ifp ~ pu(n,k.r), where

and

c(n. k, r)
Pu (n, k, r) = (I)

C n. ":, r + 1

c(n. k. r) = "~1 (?).
\=0

(Proof) Let C (# Majd be any k-coterie. We show that Rk.1.(Majd 2: Rk.,·(C) for any

P 2: pu(n. k,r). Let W = ,(n + 1)/(k + 1)1 (i.e .. W is the size of each quorum in Majk)'

Let C be any k-coterie such that Rk.1'(C) > Rk.1.(Majd. If every quorum Q in C had size

2: W. t.hen Rk.1.(Majd 2: Rk.1'(C) would hold, because if Fc.k.1·(5) = 1 th~en FMah ,k.,·(5) = 1

for any 5 ~ U. since 151 ~ rW. Therefore. t.here exist.s a quorum Qo with size < W in C.

Chapter 3. Availability of k-Coferie

First. we show that there exists a set 5 (~ U) with size rW such t.hat FC,k,7·(5) = O. Suppose

that. for allY 5 with size rW, FC.k ,1.(5) = 1 holds. Let U1 = U - Qo. Since lUll 2: n - W + 1,

lUll 2: kW. Arbitrarily choose a set 5 (~ Ud wit.h size rW. Since FC,k,7·(5) = 1. there

is a quorum Q1 (~ 5) in C whose size is at most W. Then we repeat this procedure for

U2 = U1 - Q1' In this way, we repeat this procedure (k - r) t.imcs and can fiud a sequence of

quorums Qo Qk-1' in C. Clearly, Qi n Qj = 0 for 0 ~ -i,j ~ (k - r), i =f- j. Since IQil ~ W

for 0 ~ i ~ (k - r), IUk- 1·+1 1 2: rW. ThuR, there exist. r quorums Qk-7,+1, ... ,QdE C) in

Uk - 1+ 1 such t.hat Qi n Q j = 0 for k - r + 1 ~ i. j ~ k, -i =f- j. It is a contradiction. since

Qi n Q j = 0 for 0 ~ i, j ~ k, -i =f- j.

Tilell, tllere exists a set S (~ U) witll size r W stlcll t.llat FC.k,l·(S) = o. Let ~ ==

Rk .. ,.(Majd - Rk".(C). Since FMah.b·(5') = 1 for every 5' with size rW, by definition.

7'W-l

D. > plsl{1 - pt- ISI - ~ (7)pi(l _ p)n-i

> p"W(I_ p)n-l'W _ c(n.k.r)p7'W-1(1- p)n-1'W+\

It is easy to show that .6 2: 0 if

c(n. k. r)
p2: (k)=pu(n,k,r) .

1 + c n, " r

o

Since c(n. k. r) < c(n. k, r + 1), t.he following corollary holds.

Corollary 1 If p 2: pu(n, k, k), then Majk is optimal in the sense of (k, r)-availability for all

1 ~ r ~ k. o

Table 3.1 shows pu(n, k,r) (k = 1. ... ,6 and r = 1, ... , k) for some n.

Theorem 2 For any non-negatille integer m, (2m + I)-majority coterie Maj2rn+l achieves

the rnaxim:um. (2m + 1, m + 1)-allailability. if the process reliability p 2: ~ and (n + 1) is a

muUiple of 2(m + 1).

(Proof) Let C (=f- Mahrn+l) be any (2m + 1)-coterie. and assume that C achieves a better

(27n + 1. m + I)-availability than Maj2rn+l for some p 2: ~. By C', we denote the (m + 1)

contracted cot.erie of C. Thcn by Property 1. C' is a I-coterie. By definition of Majk, the

3.2. "'-Majority Coterie3 35

1.:. W. n r=2 r = 3 r=4 r=5 r=6

I.: = 1, W = 5. n = 9 0.9961089 - - _.

k = 2, W = 5, n = 14 0.9993207 0.9999329 - - - -

I.: = 3, W = 4, n = 15 0.9982669 0.9999390 0.9999689 - -- -
I.: = 4, W = 3. n = 14 0.9906542 0.9997121 0.9999226 0.9999386 -- -

I.: = 5, W = 3. n = 17 0.9935484 0.9998937 0.9999847 0.9999918 0.9999924 -

I.: = 6, W = 3. 11. = 20 0.9952830 0.9999539 0.9999962 0.9999987 0.9999990 0 .9999990

Table 3.1: pu(n,r,k) for some n (1.: = 1 ,6. r = 1, ... ,k).

(m + I)-contracted coterie of Mahm+1 is I-majority coterie Maj1, since (n + 1) is a multiple

of 2(m + 1). Since Maj1 (i.e" majorit.y cot.erie) achieves t.he maximum (1, I)-availability (i.e.,

availability) for all p ~ ~ (Theorem 3.1 in [BGM87]), the (1. I)-availability of Maj1 is not

smaller than that of C'. a cont.radiction by Property 2. o

So far. we have derived a sufficient condit.ion for 1.:-majorit.y coterie to be optimal ill terms

of the process reliabilit.y p. Now. we proceed to state a lower bouud on the process reliabilit.y p

for I.:-majority coterie to be optimal. We first present how to construct. a new k-coterie C from

k-majority coterie Maj~:. and then by comparing their (1.:, r)-availabilities, derive t.he necessary

condit.ion.

Arbitrarily choose n. k. and r (such that. (n + 1) is a multiple of (I.: + 1), and fix them. We

construct a k-coterie C from Majk as follows: Let. Qo be any quorum in Majk' and Po be any

element ill Qo. Let Q1 = Qo - {Po}. Then.

C Majk + {Qd - {Q E Mah I Q = Q1 + {P}, P E U -- Qd

-{Q E Majk I QnQo = {Po}}.

We compare their availabilit.ies. Observe that FC.b·(S) = 1 for all S ~ U with size at least

rW +1. and that Fc,k".(S) = 0 for all S ~ U with size at. most rW -2, where W = (n+l)/(1.:+1)

(i.e .. t.he size of quorum ill Majd. On t.he ot.her hand. by definition. FMaj A:,k,7' (S) = 1 if and

only if lSI ~ rW. Define r+ and r- a.'3 follows:

r+ {S ~ U I FMah. k ,7·(S) = 0 & Fc.k.7·(S) = I}

r- {S ~ U I FMa.il .. k ,7'(S) = 1 & Fc,k.7·(S) = O}

Not.e that by the observations, lSI = rW - 1 if S E r+. and lSI = rvi' if S E r-. Since

Q1 is the only quorum wit.h size W - 1 in C, S E r+ if and only if Q1 ~ S. Po (j. S. and

lSI = r W - 1. by definition of C. Therefore.

36 Ch.apter 3. A'l1ailability of k- Coterie

(
n- W)

TW-1-(W-1)

(
J.:W - 1)

(1' -1)W .

Next. we show that S E r- if and only if Ql n S = 0, Po E S and lSI = rW. To show

if part. assume that Fc .I.:.,·(S) = 1 holds (since FMah.l.: ,,·(S) = 1). Since Po E S, there is a

quorum Q containing Po in C, a contradiction since Q n Qo = {Po}. As for only if part, if

either Po rt S or Ql n S i= 0, then one can easily find l' quorums G1, ... , G" in C such that

S =: U~'=l G i and G i n Gj = ° for 1 ~ i, j ~ r, i i= j. Therefore,

(
n- W)
rW -1

(
I.:W -1).
rW -1

By defiuition,

~ Rk .,,(C) - R/';'?(Majd

Ir+lp"w-l(1- pt-("W-l) -lr-lp"w(1- p)n-,'W

p,W-l(1 - p)"-'w x { C~~ ~~) (1 - p) - G: = Dp}·
Therefore. ~ > 0 if and only if

p > (kW - l) (I.:W-l) .
("-l)W + "W-l

(kW - l)
("-l)W

o

Theorem 3 Let n be tli" number of proceS8es , I.: be an integer such that (n + 1) is a multiple

of (k + 1). an d l' (1 ~ T ~ k) be an integer. Then. there is a constant Pl (n, k, 1') such that

for any prO(,C88 reliability p (0 < P < Pl(n. 1.:,1')). Majk doe", not achieve the ma.ximum (1.:.1')

(wa'ilability. Hence. Majl.: is not the bes t I.:-cot erie in terms of (k, T)-a'vailability if 0 < p <
PI(n.l.:,r). whpre

(
kW -1)

("-l)W
Pl = ~~~~~~--

(kW-l) (I.'W-l)·
(,'-l)W + "W-l

o

Ta ble 3.2 shows Pl(n. /". 1') (I.: = 1. 6. l' = 1, k) for some n.

3.3. k-Sinyleton Coteries 37

k. W.11 l' = 1 1'=2 '1'=3 1'=4 1'=5 l' = 6

k = 1. W = 5. 11 = 9 0.5000000 - - - -

k = 2. W = 5. 1/. = 14 0.0078740 0.9921260 - -- - -
k = 3. W = 4. 'II = 15 0.0060241 0.5000000 0.9939759 - - -
k = 4. W = 3. n = 14 0.0178571 0.2631579 0.7368421 0.9821429 - -
k = 5. W = 3. 11 = 17 0.0108696 0.1538462 0.5000000 0.9891304 0.9891304
k = 6. W = 3. 11. = 20 0.0072993 0.0099UlO 0.3373494 0.6626506 0.9009901 0.9927007

Table 3.2: Pl(n,r,k) for some n (k = 1. ... ,6, r = 1, ... ,k).

3.3 k-Singleton Coteries

This section shows a sufficient condition for k-singleton coteries to be optimal in terms of the

process reliabili ty p.

Theorem 4 Lrt n be the n'umber of processes. a.nd k (~ n) a.nd r (1 ~ T ~ k) be integers.

Then, there eX'ists a consta.nt q(n. k, T) > 0 s'Uch that (any) k-singleton coterie Sglk is optimal

for all process reliability p (0 ~ p ~ q(n,k,r)). Hence. Sglk is the best k-coterie in the sense

of (k,r)-availability ifp ~ q(n.k.r).

(Proof) Let C be any k-coterie which is not a k-singleton coterie. We show that there exists a

constant t > 0 such that for all process reliability p (0 ~ P ~ t). the (k, r)-availability of SglJ.:

is larger than or equal to that of C. The proof here is similar to that of Theorem l.

Let 6. = Rk:.l.(Sgl,J - Rk,l'(C) , By definition, for all S with size at most r - 1, FSglk.k.,,(S) =

Fc.k.1·(S) = O. Define

7no I{S I FSgI A •• k.,·(S) = 1.ISI = r }I· and

7nl I{S I FC.k.,,(S) = 1. lSI = r}l·

Then. clearly, 7no > 7nl, since C is not a k-singleton coterie. Therefore, by definition.

L'> 2: p"(l - p)n-r - t (:) pill _ P)n-i
i=1+1

It is easy to see that there is a constant t such that 6. 2: 0 for all P (0 ~ P ~ t).

Since the number of different k-coteries are finite. the theorem follows. o

3.4 Concluding Reluarks

In this chapt.er. we investigated t.he goodness of two typical k-cot.eries. k-majority coteries and

k-singleton coteries, in terms of the (k. r)-availahility. Intuitive interpretation of the (k, r)

availability of a k-coterie is the probabilit.y that r processes can enter their critical sections

(in spite of process failures).

38 Ch.apf.er 3. A lIailabilif.y of 1.:- Coterie

p
o 0 o I 0 " . - 03 ., o -1 o 5 06 o 7 os 0 9

·1. 1 :'Ill\jl. 0.0000 0.lo5S4 0.5519 0.i\39~ 0.9602 0.9935 0.9994 1 .0000 1.0000 1 .0000 1 .0000
Sg 0.0000 0.3439 O. S~0 4 U. / .';~,~ U.1I7U4 .~.'3/.'; 0.9 74-1 ~I~ u .9984 0.999!J I.(JOOO

4. 2 :'Ill\j. 0.0000 0.0015 0.0439 0 . J195 0 .. '; 141 0.71180 0 .9 417 0.9917 0.9996 1 .0000 J .(JOOO
SK I10 (J .OOOO 0 .00523 0 . 1808 0 .. 483 0 . .5.48 . 0 .68.5 ~:.!()~ Jl.~163 . 9728 0 .9963 1 .0000

4. 3 l\laj. 0 .0000 0.0000 0.0004 0 .0083 0 .0 .';83 0 . 2120 0 .3373 0 .6405 0 .8883 0 .998.; 1 .0000
~K I1' 0.0000 0.003. 0 . 0272 U.083. 0 . 1792 0 '.:$12 5 .0.4 •. ';1 0 .651. 0.819:.. 0.94 . .. l.OOOO

4. -1 "' [aj . 0.0000 0.0000 0.0000 0 .0000 0 .0006 0.006.> 0.0398 0 . 1608 0 . 4481 0. 8 416 I.ClOOO
5,;11 0.0000 0 .0001 O . OOI~ _ 0.0081 0.0:"56 O.()(;._ .> Jl .. l~_~ Jl.._401 .3164 0 .5 _JO 1.0000

Table 3.3: (I.: , 1')-availabilities of Majkalld Sgldl.: = 4, n = 14).

We derived a necessary and a sufficient. conditions on the process reliability p for k-majority

coterie to achieves the maximum (I.:. r)-availability. We also showed that there is a constant

q (> 0) snch t.hat for any process reliabilit.y 0 < p < q. (any) I.:-singleton coterie achieves the

maximum (I.:. r)-availabili ty. The invest.igation revealed t.hat I.:-majori ty (I.: 2 2) is no longer

optimal for all p > t. (As a matter of a result, 3-majorit.y is not optimal even if p = 0.9939

for n = 15 and r = 3.)

Table 3.3 shows the (I.:. r)-availability of l.:-majority and k-singleton coteries when n = 14

and I.: = 4. It. can be observed t.hat as r increases, the process reliability p at which the

(I.:, r)-availabilit.ies of Sglk and Mah reverse also increases. For example, the (4, 4)-availability

of Sgl4 is larger than that of Maj4 even if p = 0.7, but. the (4. 1)-availability of Maj4l has

already heen larger than that of Maj4 when p = 0.3. (This tendency can be shown formally.)

Ther fore. when we choose appropriate I.:-coteries in practical applications, we should take

into account parameter r as an important. one.

For simplicit.y of analysis, throughout. t.he chapter we assume that (n + 1) is a multiple of

(I.: + 1). when k-majority is investigat.ed. It is strongly conjectured that the tendencies of

k-majorit.y in t.his chapter should hold for general k. and an analysis of this case is left as a

future work.

Chapter 4

A Distributed k-Mutual Excillsion
Algorithm using k-Coterie

In this chapt.er. we proposc a distribut.cd k-mut.ual exclusion algorithm which uses a k-cotcrie.

Different from algorit.hms proposed in [Ray89a, Ray9Ia. SR92]. the numbcr of messages sent

by processes can be smaller. Anothcr advantage of this algorithm is that it provides so-called

the graceful degradation propert.y; sincc a critical section entrance request is granted if all

members in a quorum grant it, even though a largc part of the systcm are being down. thcre

is a possibility that a proccss can enter a critical section.

4.1 The Distributed k-Mutual Exclusion Algorithln

To avoid deadlocks and starvations, the t.imcstamp int.roduced by Lamport[Lam78] is uscd.

Let t be thc logical time at which a process P initiat.es a reqncst.. Thcn. the pair (t. P) is the

timcstamp at.t.ached t.o t.hc request. Not.e that since an ident.ificr of a process is unique, so is

pair (t, P). As usual. we define a total order among t.imestamps by the lexicographical order

assuming that the ident.ifiers are non-negat.ive integers.

Now. we prcsent a det.ailed description of our algorithm. Our algorithm and Maekawa's

algorithm [Mae85p are t.he same, except t.he following differcncc:

In Maekawa's algorit.hm. for each proccss P, a (l\lOrum Q is statically detcrmincd, and

insists on gathering permission from all members in Q. This approach may be reasonable

for solving t.hc I-mutual exclusion problem. since failing to gather pcrmission from Q likely

suggests t.hat. a.not.her process is being in a critical sect.ion, i.e .. P cannot gathcr pcrmission

from any quorum. On the other hancl. when the],:-nmt.ual cxclusion problem is considered,

insisting on Q does not. secm to be a good idea, since alt.hough Q is busy, P may be able to

find anot.her quorum from which it can gather permission. becanse there are (k - 1) quorums

1 It is shown that Maekawa's algorithm [Mac85] canllot avoid deadlocks [SaIl87] . Vie adopt the version
suggested by Sanders[SaIl87] .

39

Chapter 4. A Distributed ~:-M7Ltu(tl Exclusion Algorithm usi1lg k- Coterie

which do not. intersect with Q. Thus. Ollr algorit.hm tries to find such a quorum.

Let C be a k-coterie. Each process P has local variables YES, NOTNOW, and PERM.

Variables YES (resp. NOTNOW) keeps the set of processes which have agreed (by message

OK) (resp. disagreed (by message WAIT)) on P entering a critical section, and variable

PERM keeps the process (i.e., more rigorously, t.he R.EQUEST it init.iates) that P has agreed

on ent.ering a crit.ical sect.ion (by message OK) but. has not. yet received a message RELEASE

stating that it. has left t.he critical sect.ion, if t.here is such a process. Since P never give

permission to t.wo processes at a time. PERM is eit.her empty or a singleton set. Initially,

YES, NOTNOW, and PERM are the empt.y set. Not.e t.hat P may receive OK messages from

processes in NOTNOW. In such cases, these processes are moved from NOTNOW to YES.

The process P also maintains a priority queue QUEUE for keeping REQUESTs ill the order

of their timest.amps.

The algorithm is given in English as in many lit.eratures (e.g., [Mae85]) to save space.

The Algorithm

• When P 'W'i,,,,hes to enter a critical $ection:

It selects a quorum Q from C, and sends REQUEST(t, P) to every member Pj in Q

(includillg P itself). and waits for a reply (OK or WAIT) from Pj , where (t, P) is the

timest.amp (i.e .. t is the current. logical local time in P). If every Pj answers an OK, P

can enter t.he cri tical section.

If some processes answer WAITs, P adds the processes answering OK (resp. WAIT) to

YES (resp. NOTNOW), select.s another quorum Qf which minimizes IQ n YESI from

quorum. ill C not intersecting with NOTNOW (if there is such a quorum), and repeats

the procedure from the first, except. t.hat. t.his time, P sends REQUEST(t, P) only to

members in (Qf - YES). (Hence, each process receives at most one REQUEST message

from P.) If P cannot find a quorum satisfying the condit. ion, then P waits for receiving

OK messages.

During t.he above procedure, P may receive an OK from a process Pj in NOTNOW.

Then. P t.est.s if a quorum is included in YES after moving Pj from NOTNOW to YES,

and P can enter the critical section if t.he t.est. succeeds.

41' Wh ('n P leave$ the critical $ection:

It. sends a RELEASE message t.o each process in YESuNOTNOW.

• WhfT/. P recpi'/le$ REQ UEST(t. Pj) from a prOCell$ Pi-' Process P sends back OK, if

PERM is empty. and adds REQUEST(t, Pj) t.o PERM.

If PERM is {REQUEST(ts , Ps)}. i.e .. not empty. t.hen P acts as follows. Process P
insert.s REQUEST(t. Pj) in QUEUE. Let REQUEST(t,., P,,) be the request having the

4.2. Correctness proof~ 41

smallest t.imestamp (i.e., the one having t.he highest priorit.y) among those in QUEUE.

If (t.Pj) > min{(t.~.PS),(t1·,P1')}' then P sends ba,ck a WAIT t.o Pj. Otherwise, i.e.,

if REQUEST(t. Pj) has the highest priorit.y, P sends a message QUERY t.o resume

the permission from Ps unless Ps is being in a critical section, andl waits for a reply

(RELINQUISH or RELEASE) from Ps • (If P has already sent a QUERY t.o Ps and

is waiting for a reply, then no further QUERY s are necessary to send.) If P receives

a RELINQUISH. t.hen it exchanges REQUEST(ts . Ps) and REQUEST(t. Pj). i.e., it

moves REQUEST(ts ' Ps) from PERM to QUEUE and REQUEST(t, Pj) from QUEUE

to PERM. sends a WAIT to all processes ill QUEUE to which P has not sent a WAIT

since t.he last QUERY was issued, and finally sends an OK to Pj .

• When P receives a. RELEA SE message from Pj:

P removes the request from Pj in PERM. If QUEUE is not empty, then let REQUEST(t,.,

P,,) be the request. having the highest priority in QUEUE. Then, P moves it from QUEUE

to PERM, sends an OK to P,., and sends a WAIT to all processes ill. QUEUE to which

P h<ts not sent a WAIT since the l<tst. QUERY w<ts issued.

• When P receives (J, Q U ER Y messa.ge from P j :

If P is not in a critical section and Pj is in YES, then P moves Pj from YES to NOTNOW

and sends back a RELINQUISH message to Pj' If either P is being in a crit.ical section

or Pj is not in YES. then P does not.hing.

An example of implementation of this algorithm is shown in Appendix B.

4.2 Correctness proofs

Now. we show the correct.ness of the proposed algorit.hm. We show that the algorit.hm guar

antees k-lllutual exclusion. deadlock free. and starvat.ion free.

Theorem 5 The algorithm. guarantees k-mutuaZ exclusion.

(Proof) Any process P can enter a critical section if and only if t.here is a quorum Q snch that

Q ~YES. If more than l,: processes are being in critical sections at a time, then by definition

of k-cot.erie. there are processes P and Pj snch that. YESs of P and Pj have a process P,. in

common. a contradict.ion since if YES of a process Ps includes P,. then PERM of p.~ contains

a REQUEST from P a.c; it.s only element.. 0

Theorem 6 The algorithm is de(ullock jrPP..

(Proof) Assume that a deadlock happens. Consider a directed graph whose nodes are processes

and links are edges defined as follows: there exists an edge from P to Pj in the graph if and

Cha1Jtcr 4. A Di.9"ributed ~:-Muturtl Exclusion Algorithm using k- Coterie

only if Pj has the permission of a process P" alld P is reqnesting it, i.e., P is waiting for

its release. Sillce the system is in a deadlock state. there exists a cycle in the graph. Let

Po, PI, ... , Pm - 1 be processes that f01'ms a cycle such t.hat.

and ti be the priority (t.he timest.amp at. which a mutual exclusion request was issued) of

process Pi. Not.e that wit.hout loss of generality. we can assume that. no process Pt is in a

critical sectioB. (If such process Pi exists. it eventually exits from a critical section and releases

the permissions it keeps and the cycle of the graph is broken in a fillite time.)

Each process P preempt.s its permission having sent to a process Pj if a new reqnest. whose

priority (defined by timestamp) is higher t.han Pj ·s. Since a cycle is formed, the permission

which is kept by Pi+lmodm is not preempted by Pi for all -i. But ti > ti+Imodm holds for each

'i, we have to > to; a contradiction. o

Thl~orem 7 Th.e algorithm is starvation free.

(Proof) Assll111e that there exists a process P which st.arves. In general, more than one

process may st.arve. Wit.hout loss of generality. we assume that P's REQUEST is the one

having th earliest (i.e .. smallest) timestamp. Since the system is deadlock-free by Theorem 6,

nOll·-starviug processes wishing to enter their crit.ical sections will eventually enter t.hem and

therefore the timestamps t.hey attach to REQUEST increase. Since REQUESTs are discarded

when the corresponding RELEASEs arrive. the syst.em will eventually reach a configuration

such that the timestamp of P's REQUEST is the smallest. one among those existing in the

system not only now but also forever.

Let Q be t.he quorum that. P selects. Then P sends a REQUEST t.o all members Pj E Q,
and all Pj will eventually receive the REQUEST and store them in their QUEUEs. As

howed above. the system will eventually reach a configurat.ion such that the timestamp of

P's REQUEST i. the smallest one in the syst.em. and therefore P's REQUEST will eventually

be moved to the head of QUEUE at each Pj E Q. Process Pj returns an OK to P if its

PERM is empt.y. Suppose t.hat PERM cont.ains a REQUEST from another process P", Then

P j scnds a QUERY to P". it. will eventually reach P". P
"

will return either a RELINQUISH or

a RELEASE. alld finally it will eventually reach Pj . since P,.'s REQUEST has a timestamp

larger than p's R.EQUEST. In either case. Pj returns an OK to P. At P, a QUERY never

arrive after an OK since the timestamp of P's REQUEST is the smallest even in a future.

Now, a contradict.ion is derived since P will eventually receive OKs from all members Pj E Q

and can enter its critical section. 0

4.3. Message complexity

4.3 Message complexity

Let C be the k-coteric used in the algorithm. The nllluhcr of messages required per mutual

exclusion entrance is 31QI in the best case, since a process send~ REQUEST, receives OK

and sends RELEASE. to and from all mcmbers of Q, where Q is the quorum in C sdE'cted

by the process. as [Mae85]. Since there proposed an algorit.hm for constructing a k-cot,Nie

whose quorum size is O(vnlogn) [FYA91j. the message complexity of our algorithm hecome

O(vnlog n). in the best case.

When a process P fails to gather perllli~sion from all melllber~ ill a quorum Q (i.e .. when

a WAIT message arrives), unlike Maekawa:~ algorithm, the algorithm selects another quornm

and tries to gather permission from members of another quorum. Therefore, the algorithm is

by no means efficient. as far a.') the worst. ca.')e message complexit.y is concerned; 6n messages

per critical section ent.rance is required. where n is the number of processes. (For example,

the worst case occurs in a process P. when for all process Pj (:f. P). P sends REQUEST to

Pj, Pj send~ QUERY t.o some process p!" PI' sends RELINQUISH to Pj, Pj sends OK t.o P,

P sends RELEASE to Pj, and Pj sends OK to P7 ••)

This is definitely a serious problem, and ill order to avoid such situations, we mnst bound

the number of "retries" so that the total number of processes that P can send request messages

is bounded by a reasonable function c(n). It is easy to see that Theorems 5 - 7 hold, even if

we bound the number of retries in terms of bounding function c(n). provided that c(n) ~ c.

where c is the maximum quorum si7,c of C. and therefore. the number of messages required

per critical sect.ion entrance is bounded from above by 6c(n). in the worst case. For instance.

if we take c(n) = IQI. where IQI is the si7,e of a qnorum. then t.he lllessage complexity is 61QI.

But by bounding the number of ret.ries. processes may be required to wait a longer time than

our original algorithm. since processes may be able to find a free quorum by furthcr retries.

4.4 Concluding Remarks

In this chapter. we proposed a distribut.ed k-lllutual exclusion algorithm based on the concept

of k-coterie. The message complexit.y of our algorithm is 3c in the best ca.')e. and 6n in

the worst case. where c and n are tlte maximum quorum size and the number of processes,

respectively. The worst ca.'3e message complexity, 6n. is extremely bad. but by introducing a

bounding function c(n) (~ c) which bounds the number of processes to which a process can

send a request. the worst case message complexity can be reduced to 6c(n), at the expense of

the increase of waiting t.ime for entering a critical section. An obvious open quest.ion is what

c(n) should be used for the purpose here.

In [Ba194b]. Baldoni proposed a distributed algorithm for the k-out of-M resources allocation

problem which requires 3rnk/(k+l) -1l in t.he best case and 5rnk/(k+l) - 11 in the worst case.

Manabe and Aoyagi also proposed the same definition of k-coteric independently [MA93] and

proposed a distributed k-mutual exclusion algorithm which require 51QI + 3 messages in the

ChfLpter 4. A Distrihuted k-Mlltual Exclusion Algorithm using ~;-Coterie

Algoritluns Message Complexity
the best case the worst case

Raymond [Ray89a] 2n - k - 1 2{71, - 1)
Raynal [Ray91a] 0 3(n - 1)
Srimani and Reddy [SR92] 0 n+I.:-1
Baldoni [BaI94b] 3fnk /(k+l) - 11 5fnk /(k+l) - 11

Ours 31QI 6n

Table 4.1: Message complexit.ies of disribut.ed h:-mutual exclusion algorithms

worst. case and 31QI +3 ill t.he best case where IQI is the size of quorum used in their algorithm.

III appendix A. we consider more general case in such a way that a set of resources avaiable

to a process is different from processes. To this end, we introduce a concept of local cot.erie

allel propose a dist.ributed resources allocat.ion algorit.hm.

As a final rcmark, we would like t.o st.ress that t.here can be many different metrics t.o measure

thc goodness of k-mutual exclusion algorithm. besides the message and the time complexit.ies.

For example. from t.he view of fault. tolerance, availability is considered to be a good measure

for llH'asuring t.he goodness of a I.:-rot.erie and invest.igated in the previous chapter. However,

invest.igat.ion of h:-mutual exclusion algorithm using ot.her metrics is still remained open, and

this is left as a future work.

Chapter 5

Experimental Evaluation of tlle
k-Mutual Exclusion Algorithm

In the previous chapter, a J.:-mutual exclusion algorithm using a J.:-coterie is proposed and its

message complexities in the best and worst. case are discussed. It is difficult to evaluate the

average message complexit.y of distributed algorit.hms by analysis, in general. In this chapter,

we evaluate t.he message complexity of t.he average case of t.he proposed distributed k-mutual

exclusion algorithm by computer simulations. We also evaluate an algorithm by Raymond

proposed in [Ray89a] and show the advant.ages of our algorithm.

5.1 Assulnptions and the Simulation Model

In Chapter 2, we assumed that the distributed syst.em assumed 11l Part I is totally asyn

chronous. To evaluate the average behavior of distributed algorithms, such a.'3sumption is

not appropriat.e: we a.ssume t.hat each process shares the same time flow , i.e .. the distributed

system is synchronous. Not.e that the algorithm on t.he system is designed under the a.'lsump

tion of a.'3ynchrony. Because we assume a global clock. we can define a common time unit; a

quantum time is a unit time used in this chapter.

The model of behavior of each process is as follows: Each process has four states (Normal,

Requesting. In-CS and Exiting) and changes its states according to conditions .

• Normal st.ate - When a process is ill this stat.e, it does not do active t.ask. i.e., it is

passive. If it receives a message from another process then it processes the message. But

a mut.ual exclusion reqnest happens with probability p (0 :S p :S I) every quant.um time.

If a mutual exclusion request happen, the state become Requesting state .

• Requesting state - This is the state that a process is executing a procedure for mutual

exclusion request (e.g .. sending request messages. waiting permissions. etc.). When a

process successfully enters a critical section. the state become In-CS state.

45

Chaptcr 5. Expcrimenf.al El1alnation of the k-Mntnal Exclnsion Algorithm

Requesting state

with proh. p o
Normal state

o ~~ __ - __ A_jt_r.T_T._: 0
Exiting state In-CS state

Figure 5.1: The behavior of a process

• In-CS st.ate When a process is in a critical section. it. is in this state. Aft.er some

specified time Tcs is passed after ent.ering a critical sect.ion, t.he process comes out a

crit.ical section and its state become Exiting st.ate .

• Exiting state - A process is in this st.ate when it is executing a procedure of exiting a

critical section such as returning permissions. After fiuishing an exiting procedure, the

stat.e become Normal st.at.e.

The behavior of a process is illustrated in Figure 5.1

5.2: Outline of the Simulation System

In this section. the simulat.ion system is briefly described. Since the purpose of t.his chap

ter is not di cllssing a simulation method it.self, we describe the outline of the design and

implementation of the system.

The simulation system is executed on several workst.at.ions that are interconnected by a

local area net.work. Processes are executed on different workst.ations. i.e., when a dist.ributed

system which consists of 11. processes is simulated, 11. workstat.ions are used. (Sec Figure 5.2.)

5.2. Outline of the Simulation Syst em.

Local Area Network

(Ethernet)

W o'l"kstation 1
(Executing Pl"oce8s- 1)

W O'I"J,:8tat.ion 4
(Execnting P'I"Oce8.Q-4)

W o'l"ksta,tion 2
(El:ec1ding P'I"Ocess-2)

W oTkstation 5
(Executing Proce.~s-5)

W o1'kstation .9
(Executing Process-3)

Figure 5.2: The simulation systcm (ill the case n = 5)

Therefore. each process is executed truly in parallel.

As descri bed above. we are a.'3sUlning that the speed of time flow at each process is the same.

To implement such situation , one of solutions is letting the time flow of a process be the same

as (or proportional to) that of real time. We let. the time unit at processes be TQ second.

(In our experiment, one unit of time. TQ is 1 second.) Therefore, the speed of time flow at

a process does not depend on the processing speed of workstat.ions, i.e., the same time flow

is guaranteed. Each workstat.ion has real time clock: therefore implementation is easy. Since

1 second is enough long time for CPUs. the local comput.at.ion time at processes is negligibly

short.

The message exchange between processes are implemented by inter process communication

facilities[Sun90j. Since strp.n.m comnmnication is synchronous. if two processes try to send

message at the same time then these processes fail int.o deadlock state; a process waits for

message reception of the ot.her process, and the other process waits for message reception of

another one. Therefore, mcssage passing must be asynchronous. Thus, message exchange

between processes is implemented by using asynchronous datagram communication.

The simulat.ion program is written in programming language C. An executable file is placed

at each workst.at.ion and execut.ed by remot.e execut.ion feat.ure. Program fragment.s of imple

mentation of the proposed algorithm and Raymond's algorithm are shown in Appendix B.

48 Chapter 5. ExpeTimenta/ Ella/uaf.ioT/. of the k-Mutua/ Exclusion A/gonf.hm

5.3 The Distributed k-Mutual Exclusion Algorithm by Kerry
Raymond

In this section. we briefly explain the distributed k-mutual exclusion algorithm proposed by

Raymond [Ray89a].

In her algorithm, sequellce number ([Lam78]) is used to avoid deadlock and starvation. A

process X wishing to enter a critical section sends a REQUEST message to the other n - 1

processes, where n is the number of processes in the distributed system. When a process

Y receives a REQUEST message, it sends a REPLY message unless it is in a critical section

or requesting a mutual exclusion wit.h higher sequence number than X's sequence number.

Otherwise, Y defers sending a REPLY message to X.

The process X can enter its critical section if it receives n - k REPLY messages. Since

n -- k = (n - 1) - (k - 1), receiving n - k REPLY messages guarantees that the number of

processes which are not in their crit.ical sections nor are requesting with higher priority is less

t.han k. Thus. X can enter its crit.ical sect.ion.

Since a process enters a critical section if it receives only n - k REPLY, it may receive REPLY

lllessages when it is in a crit.ical section, after exiting a critical section, or when it is requesting

next mutual exclusion. and so on. The algorithm is designed to ignore such delayed messages.

See [Ray89a] in detail.

H is easy to see that the algorithm require at least 2n - k - 1 messages per mutual exclusion

invocation. In the worst case, 2(n-l) messages are necessary. This method is not fault-tolerant

comparing wit.h our algorithm because alive processes are not in operational if arbitrary k

processes are stopped.

5.4 SiInulation and Results

Conditions of the experimcnt are as follows:

•• a quantum time TQ is 1 second.

~. Tcs , thc t.ime that. a process is in a clitical section, is 1 quantum time,

•• a k-cot.f'ri(' used by our algorithm is the k-majority coterie. and

•• th experiment is donc for 500 quantum time.

B cause l.: -majority cot.erie is a coterie whose quorum size is not small, the message com

plexity of our algorithm hecome smaller if we use a coterie whose quorum sizes are smaller.

We llse k-majorit.y cot.nic because it is simple.

The experiment is dOlle for:

II k = 2. n = 5.8, 11.

5.4. Simuirdion and Results 49

• k = 3, n = 7, and

• k = 4. n = 9.

For each experiment . p. the probability of mutual exclusion request, is varied from 0.01

to 1.0. Workstations used for the experiment are 7 AV-300's (Nippon Data General) and 4

DS-7400's (Nippon Data Genera.l) on which the DG/UX operating system (version 4.32 for

AV-300, version 4.02 for DS-7400) is available.

Under conditions as described above, the total number of messages sent during the exper

iment and the number of entrance of critical sections are counted. From these two data. the

average number of messages per mutual exclusion invocation is calculated. Let this value be

j.1" which is computed by the following formula.

j.1,=

where Mi is the number of messages that process -i. sends and Ci be the number of times that

process i enters a critical section during the experiment (1 :S i :S n).l

Results of the experiment are shown in Figure 5.3 - Figure 5.7.

In case that p is small (for instance, in ca.c;;e of k = 4, n = 9; see Figure 5.7). II, (the

number of messages which our algorithm requires to enter a critical section) is much smaller

than that of Raymond's algorithm, as expected. Figure 5.7 shows that it achievcs the best

case 31QI = 6 when p = 0.01. We can see from figures that II, gradually increases with the

increase of p if p is small (for instance, p < 0.2 in case of k = 4. n = 9). But when p become

larger, II, suddenly increases and when p comes ncar to 1.0, II, saturates. This observation is

described a.c; follows. When p is enough small, mut.ual exclusion requests do not collide often.

In addition to it. even if a process fails to get permissions from a quorum, the prohabili ty that

it gets permissions from a next quorum is large. Therefore. the number of additional messages

is rather small. But p increases. collisions often happen and the probahility that processes

choose another coterie but fails to get permissions become large and preemption also happens

often; this cause a sudden increase of tl,.

Consider the case t.hat 11, is fixed and n increases (see Figure 5.3, Figure 5.4. and Figure

5.5). In this rase. the increase of n causes the increase of the probability of collision of mutual

exclusion requests. Therefore, II, increases. Let Pxover be a probability that the number of

message of our algorithm become larger than t.hat. of Raymond's. We call Pxover cross over

probability. In the ca.c;;e of 11, = 2, the cross over probabilities can be found from figures and

shown them in Table 5.1 It is interesting that t.he product of the number of processes and

cross over provability is almost the samc. From this observation. the message com plexi ty of

our algorithm depends of the total probability of mutual exclusion requests in the distributed

1 For convenience. let process identifier be an integer hetween 1 and 71.

SOl Clwpter S. Experimental EV(Lluation of the k-Mutual Exclusion Algorithm

M e88age8/ Mutex

25

20
-tr- Our Algorithm

Raymond's Algorithm

15

10

5

o
Request Prob. p

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.

Figure 1. The Number of Messages

Figure 5.3: The average number of messages (k = 2, n = 5).

5.4. Sim1tiation and Resu/t$ 51

M p-ssages/ M'utex

25

20

Raymond's

15

10

5

o Request Frob . p

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.

Figure 1. The Number of Messages

Figure 5.4: The average number of messages (I.; = 2. n = 8).

Clwpte1' 5. Experimental E11alurdion of the k-Mutual Exclusion Algorithm

M eS8([.[jp.8/ Mv.tex

45

40

35 --tr- Our Algorithm

30

25

20

15

10

5

0
Request Prob. p

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.

Figure 1. The Number of Messages

Figure 5.5: The average number of messages (I.: = 2, n = 11).

5.4. Simulation and Results 53

M eSSGfJP.s/ M'utex

25

20
-tr- Our Algorithm

Raymond '8 Algorithm

15

10

5

o
Request Prob. p

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.

Figure 1. The Number of Messages

Figure 5.6: The average number of messages (k = 3, n = 7).

54 Chapter 5. Experimental Evaluation of the k-Mutual Exclusion Algorithm.

MF.ssages/M'I"tr.x

35

30

--tr- Our Algorithm

25
-B- Raymond's Algorithm

20

15

10

5

o
Request Prob. p

.01 .02 .03 .05 .07 .1 .2 .3 .5 .7 1.

Figure 1. The Number of Messages

Figure 5.7: The average Humber of messages (k = 4, n = 9).

5.5. Concl7triiug Remarks 55

n Pxover (cross over pro babili ty) n . Pxover

5 ~ 0.9 ~ 0.45
8 ~ O.G ~ 0.48
11 ~ 0.4 ~ 0.44

Table 5.1: Cross over probabilities for II, = 2

system. It is easily guessed that the product of nand Pxover depends of the k-cot.f'rie the

algorithm uses, however. we use this observation to guess the range of p such that our algorithm

is more efficient. than Raymond 's algorithm in the sense of message complexity.

The larger k becomes (for instance. compare cases k = 2. n = 5 and II, = 4, n = 9; see

figure 5.3 and figure 5.7), the smaller ~J, becomes if p is small. This is why that. t.he size of

quorum become smalkr if k become larger. Note that the k-majori ty coterie is used in this

experiment.. If we use anot.her coteries whose qUorUlll size is small, /t becomes smaller.

It is shown that our algorithm requires Gn messages per mutual exclusiolll invocat.ion. Even

if II, = 2 and P = 1.0, the number of messages per lllutual exclusion invocation is approximately

3n which is half of the worst case message complexity Gn.

5.5 Concluding Remarks

In this chapt.f'l', we evaluated our distribut.ed k-Illutual exclusion algorithm which uses 11,

coteries. As a drawback of our algorithm. t.he numher of messages become much larger than

Raymond's algorit.hm requires. But the probabilit.y of mutual exclusion is small and k is large,

our algorithm require less messages. Since we can choose a k-coterie whose quorum size is

small, the number of required messages can be reduced.

The time between t.he time of mutual exclusion request happen and the time of ent.rance of

critical sect.ion can be considered as a measure of evaluation of mutual exclusion algorithm.

But the simulation model we adopt.ed is not appropriat.e to evaluate the time hecause the

delivery time of messages are much smaller t.hat time unit. To evaluate such measure, we need

another simulation model and a simulation system implementing such model. This is left as

a future task .

Part II

The Self-Stabilization AppI~oach

57

Chapter 6

The Self-Stabilization Approach for
the Distributed k-Mutual Exclusion

A self-stabilihing system is a system which convcrges t.o a legitimate (corrcct) systcm state even

if thc system starts from an arbitrary systcm state. The conccpt of self-stabili~ing systems

is proposcd by Dijkstra in [Dij74]. Evcn if a syst.em state changes from a legi tim ate state to

a nOll-Icgitimate state by transient. fa.ilures (e.g .. message omission, restart of proccss. etc.).

the syst.cm st.art.s thc execution of a sclf-stabili7,ing algorithm from t.he statc and evcntually

reaches to a lcgitimate state again. Thus. sclf-stabili~illg systems are rcsilient to any transicnt

failures. Since the fault-tolerance of distributed syst.ems is an import.ant issuc, t.he study of

self-stabilizing systems getting more active. 1

In t.his chapter, we sUll1marize comput.at.ional models lIscd in studies of self-stabilihing sys

tems. Next. we give a review of prcvious works for t.he self-stabili7.ing mutual cxclusion prob

lem which arc related to this dissertation. Finally. wc give formal dcfinit.ions of computational

models and the self-stabilizing k-ll1utual cxclusion problcms lIsed in Part 2.

6.1 Computational Models

Usually. dist.ribut.ed algorithms adopt an asynchronous message passing model for information

exchange bct.ween processcs. Self-stabili7,ing algorit.hms. howcver. adopt the following modcls

for communicat.ions .

• State communication model - A communication model such t.hat evcry process can

know it.s neighbors' states. There is no explicit. message sending/re1ceiving st.cps in t.he

1 A term self-stabilizing algo'/'ithm formally refers to j1lst an algorithm which has self-stabilizing property
execu ted by processes and a term self-stabilizing system. formally refers to a system consisting of a network
(processes and com1l1unicationlinks) and a self-stabilizing algorit hm executed by a process. In this dissertation.
we Use terms "self- stahilizing systems" and "self-stabili7.ing algorithms" interchangeably.

59

60 ChfL1JfeT 6. The Self-Stabilization ApprofLch for the Distributed k-Mui1wl &r.rlusion

descript.ion of a.Il aJgoritllm based on t.his model. It is assumed that neighbors' states

can br kllOWll wit.hou t. time delay.

• Register communication model - A communication link between process PA and PE

is assumcd to consist of two rcgisters RAanrlRn . When PA sends a message to Pn, PA

writes dat.a into t.he register R A . To receive a message from PA , PE reads t.he register

R A . To srud a lllessage to PA , PE writes data iut.o the regist.er RB and then PA.. read

from it..

• Message cOl1uIlunicatioIl model - Processes use an asynchronous message passing to

exchange informat.ion. Since it is asynchronous, the delay for message delivery is finit.e

but it cannot be predicted.

Since distributed syst.ems consist of more than one processes, a scheduling of executions

of processes is one of all important issues in designing distributed algorithms. The following

models are proposed as sched ulers (adversaries).

• Central daemon (or, c-daemon) - A scheduler such that only one process is chosen to

be ex(\cllt.ed at. acll step. A process cau read states of all its neighbor processes and

updates i t.s st.ate in oue step.

• Distributed daemon (or, c-daemon) - A scheduler such that arbitrary number of pro

cesses arc chosen to be executed at each step. A process can read states of all its neighbor

process and updates its state in one step.

• Read/write daemon (or, r/w-daemon) - This model can be adopted if a communication

model is t.h rrgist.er communication model. At each step. only one process is chosen to

be eX<'("ll t.ed and each process can take an action such that an internal transition followed

by reading from or writing to a register.

Many distribut.ed algorithms assume the existence of unique process identifier. The following

models related t.o proc('ss identifier have been considered.

• Uniform Tll('r(' is no process ident.ifier and every process has the same algorithm.

Thu . all processes are completely identical.

• Semi-uniform All process except one or several (constant) number of processes are

identical. Special process(es) has different algorit.hm from other processes.

• Unique identifier Every process has a unique process identifier.

6.2. PTeviou.9 Wad.;s 61

6.2 Previous Works

In this section. we review the previous works for the self-stabiliLjing mutual exclusion problem.

The first paper in which self-stabiliLjat.ion is proposed is [Dij74] by Dijkstra. in 1974. He

proposed a self-stabilizing algorithm on bidirectional rings which solves the llllltllal exclusion

problem. III his paper, he int.roduced daemons as models of scheduler and his algorithm based

011 state comlllunication. c-daemon, and semi-uniform model. In a riug network. he assumed a

special process called the "bottom" process. The idea of the algorithm is as follows. Depending

on a relation wi tIl neighbors' states. a process is said t.o have an token if a predicate holds.

By the execut.ion of a process, a token circulates along a ring. If a token arrives at a bottom

process, the moving direction of a token is reflected by the bot.tom process. If t.wo tokens

collide , one token disappears and the ot.her token remains. Thus. if there are more than one

tokens on the ring then the number of t.okens decrease by collisions of tokens and event.ually the

number of t.okens become one. Since t.he number of t.okens is at. least one by t.he construction of

the algorithm. the number of t.okens in a ring become one which is a legitimate confignrat.ion. 2

He showed algorithms which require K states (where K > nand n is the number of processes),

4 states, and 3 st.ates.

It is desirable t.hat there is no exceptional process in a distributed system. A distributed

system is uniform if every process has the same algorithm and no process identifier. Dijkstra

showed that. t.here is no uniform deterministic self-st.abilizing mutual exclusion algorithm 011 a

ring network whose size is composit.e[Dij82]. (The same result can be seen in [BP89].) Burns

and Pachl proposed a uniform deterministic self-st.abilizing mutual exclusion algorit.hm on

unidirectional ring networks whose size is prime assuming state communication model under c

daemon. The proposed algorithm require O(n 2) states for each process, and then, they showed

a method of reducing the number of stat.es. Finally. they obt.ained an algorit.hm requiring

approximately n 2 / In n states. It is shown by Ceger that a deterministic self-stabilizing mu tual

exclusion algorit.hm assuming state communication model under c-daemon require at least

n - 1 state [Bur94]. Burns and Pachl pointed out that there is a gap between lower bound

and upper hOllnd of the number of st.ates and this is still an open problem. Recently, Huang

proposed a uniform deterministic self-stabilizing mutual cxclusion algorit.hm on bidircctional

rings [Hua93]. His algorithm is a composition of a leader election algorithm and Dijkstra's

self-stabilizing mutual exclusion algorit.hm. Since the ring is uniform, a distinguished process

assumed by Dijkstra's algorit.hm is elected by a leader election algorithm. The Humber of

st.ates that Huang's algorithm requires is 3n.

Since determinism and uniformit.y are st.rong requirements for self-stabilizing systems. sclf

stabilizing syst.cms with relaxed requirements has been proposed. In addition, not. only ring

networks but gcneral networks are also considered in othcr researches.

Israeli and Jalfon proposed a self-stabilizing mutual exclusion algorithm lOn gencralnctworks

2 A syst0m state (tuple of states of all processes) is called a config1/.7'ation. Formal definition ill given ill the
next section.

62 Clwpte1' 6. The Self-Stabilizntion Appro{/,ch for th.e Distributed k-MutufLl E;r;clu$ion

by random walk of token [IJ90j. A process which have a t.oken can be considered as having

a privilege to enter a crit.ical sect.ion and it sends a token to a neighbor process which is

randomly chosen. A token is eliminated whcn two tokens collide. Even if there are more: t.han

one t.okens in a network. it is expected that they collide with high probability. They showed

that (1) the upper bOllnd of the expected :-;t.eps t.hat. the number of t.okens converges t.o one,

and (2) the (exact) expected steps that. the number of t.okens converges to one in the case that

the network is a bidirrd.ionru ring.

Dolev. Israeli and Moran proposed a semi-uniform sclf-st.abili7.ing mutual exclusion algo

rit.hm on general net.works [DIM90, DIM93j. They assumed a specia.l process in net.works.

Their algorit.hm is clyna.mic in the sense t.hat. it tolerat.es changes of nct.works (addition and/or

removal of processes a.nd links) during execut.ion of t.he algorit.hm provided that a special

process never removed. Their algorithm is composed of two self-stabili7.ing algorithms: a. self

stabili7.ing spanning t.ree algorithm and a self-stabili7.at.ion lllut.ual exclusion algorithm based

on random wa.lk of a t.oken on a spanning t.ree.

Nishikawa. Masuzawa and Tokura proposcd a uniform self-st.abilizing probabilistic leader

elect.iolt algorithm on t.ree networks and complete networks [NMT92]. It is observed that

the self-stabilizing mutual exclusiolt cannot be solved determinist.ically on symmetry networks

[Dij74j. The proposed algorithm by Nishikawa et 0.1. uses randomization to break a symmetry.

They show cl that a compositiolt of their uniform self-stabilizing leader election algorithm

and scmi-ulliform mut.ual exclusion algorit.hm proposed in [DIM90j yields a uniform mutual

exclusion algorithm.

Herman proposed a nniform self-st.abili7.ing probabilist.ic mut.nal exclusion algorit.hm on ring

network whosr size is odd ill [Her90j. He assumed t.hat. every process is executed synchronously.

Each process has only one bit a.s a state. i.e .• the number of states is two.

Not only using randomi7.ation to provide self-stabili7,ing propert.y. a specialnet.work t.opology

is proposed. For instance. Ghosh proposed a det.erministic self-stabilizing mutual exclusion

algorithm and 011 a spccial network topology in [Gh091].

6.3 Preliminaries

In this sect.ion. we give formal definitions of concepts and t.erms used in the self-st.abilization

approach.

6.3.1 The process and network nlodel

A unidirectional uniform ring system is a triple. R = (n. Ii, Q) where n is the number of

processe. ill t.he syst.em. 8 is a transi tion algorithm. Q is a fini t.e set of state of process. The

processe are arranged on a ring, i.e .. processes Po. PI, Pn - 1 are arranged in a clockwise

manner. (Right is clockwise direction aBd left is count.erclockwise direction.) Let. Qi be the

state et of proce .. Pi. Not.e that Qi = Qj for all i. j, but. we use this not.ation fOol' the

6.3. PTe l-im. i71 aries 63

simplicity of explanation. The systems is called uniform since the 8 and Q are the samc for

every process .

A configuration of R is an n-tuplc of a statc of processes; a state of process Pi is qi E Qi

then a configuration of t.he system is, = (qo. ql qn-l). Let. r bc thc sct of all configurations,

i.e., r = Qo x Ql X ... x Qn-l' The t.ransition algorit.lllll Ii of a process is given by a set of

guarded commands:

IF (guard l) THEN (command l)

IF (guard2) THEN (command2)

IF (guardm) THEN (command m)

Guards are predicat.es 9j(qi, qi-d and commands are assignment stat.ements qi := !j(qi. qi-l)'

A uniform ring syst.em is called a randomized uniform ring system if random bit gen

erator is used in a command. To describe randomi~ed hehavior of proces es when we write

algorithms. we a.SSllme that a random bit generat.or is provided as a primitive function. Espe

cially, t.he uniform ring system is called a deterministic uniform ring system if random

bit generator is not. used in any commands.

A bidirectional uniform ring system is defined similarly. Guards are predicates

9j(qi,qi-l.qi+l) and commands are a.c;signment stat.elllent.s qi:= !j(qi.qi-l,qi+d.

6.3.2 Scheduling of processes

It is said that Pi has a privilege at a configurat.ion , if anrl oIlly if gj (qi, qi-l) for some

1 ~ j ~ m. Pi can execute (change state) only when it. has a. privilege. In generaL there exists

more them Olle process which have privilege. III this dil:isertation, we consider the following

types of sched uler in order to choose processes to be ex('cu ted:

• c-daemon (central daemon) - the scheduler chooses any process among privileged pro

cesses and let t.he process execute .

• c-rlragoll (central dragon) - the sched uler chooses a process among privileged processes

wit.h uniform probability and let t.he process execut.e.

A scheduler chooses a process which has a privilrge and executes a command whose guard is

true. Even if more than one one guard is t.me, only one command is chosen aIld be exeCll ted.

After the execution. assume that the st.at.e of Pi is changed t.o q. Then, the configuration

becomes

,'= (qO.ql qi-l.q.qi+l qm)

This relation between configurations is denoted by , --+ ,'. The transitive closure of the

relation --+ is denoted by --+.. To explicit.Iy describe that the transit.ioll is made by process

P. we write ~. A computation or a transition sequence !1 starting from ,0 E r is an

infinite sequence of configuration ,0, ,1 where ,j --+ ,j+l for all j 2: o.

64 Ch rt1)ter 6. The Sclf-Sfabilizntion Approach for the Distributed k-Mutual Excl'IJlsion

6.3.3 The self-stabilizlllg k-nlutual exclusion problem

Let A be a set of configurations of a. uniform ring syst.em R = (n. 8, Q). A deterministic

uniform ring system R is a deterministic self-stabilizing mutual exclusion syste'm for

A if and only if all of t.he following condi t.ions hold:

• No Deadlock: For any configurat.ion "'I E r. there exists at lea.st one "'I' E r such that

"'I~"'I'.

• Closure: For any "'I E A and >.' E r. "'I ~ "'I' implies that "'I' E A.

• No Livelock: For any "'10 E r and any (infinite) computation ~ = "'10. "'11, there exists

a j such that "'Ij E A.

• Fairness: For any >'0 E A and any (infinite) transition sequence ~ = >'0, >.1 and any

process Pi (0 ::; -£ < n). there exists infinite t.ransitions made by Pi.

• k-Illutual Exclusion: For each configurat.ion >. E A. the number of processes which

have a privilege at >. is exactly k.

Thc set of configurations A is called a set of legitimate configurotions since the system

takes a configurat.ion in A whcn thc system is stabilized.

A ralldomi7,cd uniform ring syst.em R is a randomized self-stabilizing mutual exclusion

system for A if and only if all of thc following conditions hold:

• No Deadlock: (samc a.s determinist.ic version)

• Closure: (same as deterministic version)

• No Livelock: For any "'10 E r. let. V be the set of all possible (infinite) computation

~ i = "'I~. "'If and di be t.he smallest. index of configuration such that "'I~. E A for each

~ i. Then. t.he expected value of di for each ~ i E V is finite.

• Fairness: (same as dct.cl'lninistic version)

• Mutual Exclusion: (same as deterministic version)

Whcn a ring syst.em R = (n. 8. Q) is self-stabilizing mutual exclusion systems for A, the

system Sis dcnotcd by four tuple S = (n.8.Q,A).

We define a self-stabili7,ing h:-mutual exclusion problem wit.h additional requirement. Let

lI(>') he a set of processes which have a privilege at a configurat.ion >. and V be a any set of k

processcs. Type-2 self-stabilizing k-mutual exclusion problem is a problem such that

there exists a computation st.art.ing from any legitimat.e configurations>. E A which reaches a

configurat.ion >.'. where lI(>.') = V. Type-l self-stabilizing k-mutual exclusion problem

is a problem without this rcquircmcnt. Not.e that. t.ype-l and type-2 are the same when k = 1.

6.3. Prelim.innries 65

Type-2 problem requires that there must exist a computation which reaches any arra.ngement

of privilege from any legitimate cOllfignratioll. As we will show. there is no algorithm which

solves t.ype-2 problem on uuidirectional rings.

Chapter 7

Self-Stabilizing Mutual Exclusion
Algorithms

7.1 Self-Stabilizing k-Mutual Exclusion Algorithms

In this section. we propo:ie (deterministic) :ielf-stabilizing k-mutual exclusion algorithm:i under

a c-daemon on unidirectional and bidirectional ring networks. The solution is not trivial by

the following rea:ions. (1) If the number of tokell:i i:i less than k. t.he number of tokellS must be

illcrea1::>ed. This implics that token collision schcme cannot be applicd simply. (2) When t.he

number of tokens is exactly ~;, collisioll of token:i must. be avoided. (3) Otherwise. the number

of tokens must be decrea:ied.

Since it is easy t.o show that there is no self-stabilizing k-nllltual exclusion algorithm under

a c-daemon. we assume a fair schedule of a c-dacmon. 1 The proposed algorithms are based on

the algorit.hm by Burn:i and Pachl's uniform detcrministic self-st.abilizing I--mutual exclusion

algorithm [BP89]. First. we cite their algorit.hm and explain it because it is neceS:iary in the

proofs of our algorithms.

7.1.1 Burns and Pachl's Algorithm

The self-st.abilizing k-mutual exclusion algorithms proposrd in 7.1.2 and 7.1.3 is based on the

self-stabilizing mutual exclusion algorit.hm proposed by Burns and Pachl in [BP80]. Before

describing our k-mutllal exclusion algorit.hms. wc cite Burns and Pachl's algorit.hm So

(n, 80 , Qo, Ao) first. In t.he rest of t.his sect.ion. we call Burns and Pachl's algorithm as BP.

Let n ;::: 5 be t.he prime number of procc:ises. A set of statcs is Qo and a statc 'li E Qo of

each process Pi is a tuple li.ti, where Ii E {O.l. n - 2} and ti E {O} U {2, 3, n - 2}. The

first field li is called label and the second fields ti is called tag.

1 A schedule is faiT if a process which have a privilege is executed within a finite steps.

67

68 Chapter 7. Sclj-StniJ-ilizing Mutunl Exclusion Algorithms

For the simplicit.y of description of t.he algorit.hm. we define the following predicates:

RAU)

Rn('i.)

(Ii "# Ii - l + 1) 1\ (li "# 0 V ti-l = 0 V ti-l "# Ii - li - l V ti-l < td,

(Ii = li-l + 1) 1\ (ti-l "# ti) 1\ (Ii "# 0)

A set. of gua.rded commanci:::; 80 of So is defined as follows.

Rule BP-A:

IF RA(-i.) THEN l i .ti := (li- l + l).(li -li - I).

R.ule BP-B:

IF Rn(-i.) THEN li .ti := li.ti-l'

Ari thmetic operations on labels and ta.gs a.re com pH t.ed modulo n - l.

Legitimate configurations are configurations taking the following forms .

.... 1 - 2.0. I - l.O.l.O.l.Jl. 1 + 1.0.1 + 2.0

where I is any label and underlined state is a state of which a process that has a privilege.

After execution of the privileged process. the configuration become the following configura

tion.

. .. , 1 - 2.0, I - 1.0.1.0.1 + 1.0, I + 1.0,1 + 2.0, ...

Note that the privilege is moved to t.he right. process.

Thr next. lemma holds for So [BPSaj.

Lemma 1 Thp no deadlock property holds. i.e .. there exist" a process P which has a. pri:vilege

by Rnle BP-A or Ru.le BP-B at any (;()njiguration. 0

Now. we defille several terms used in this algorit.hm. (These terms are also used in the

rest. of this sc'ct.ion.) Let II.t 1 .12 .t2 be stat.es of two consecutive processes P1 ,P2 in clockwise

odeI' on a ring respectively. We say that. P2 has a gap if and only if 12 "# II + 1 (mod n - 1)

is true and it.s gap size is defined by 12 - II. A M~gment is a maximal sequence of processes

s = (Pi .Pi+1 Pj) which does not include a process having a gap and Pi (Pj) is called t.he

head (tail) process of s. For a segment s = (Pi. Pi+1 • Pj). we say t.hat the segment is well

formed if and ouly if tx, = Ij+l -Ij(mod n -1) hold~ for every x (i ~ x ~ j).

We describe t.he way of stabilization of t.he BP algorithm briefly. At a legitimate confignra

tion. the number of segments is 1 and the segment. is well formed. For any initial configurat.ion.

the number of segment.s is at most n at t.he configurat.ion. The application of Rule BP-A and

Rule BP-B docs not. increase the number of segment.s. Rule BP-A works as a movement. of a

privilege and (if-neasing t.he number of segments if there are more than one. Rule BP-B works

to make a ' egmcnt. well formed. Even if a c-daemoll t.ry to keep the number of segments. every

segment ' bccolllP well formed and t.here is at least. one process which cannot make a move.

Thus. the numhf'r of segments decreases within a finite st.eps unt.il it become one.

7.1. Se[j-Sto.1J'irizing l.:-Mnfnn[Exclusion Al.CJo7·ithm.~ 69

7.1.2 Unidirectional Uniform Rings

Now. we show a t.ype-1 self-st.abilizing I.:-mutual exclusion algorithm on unidirectional ring

Sl = (n.b1.Q1. A1)' We assnme that. n 25 is prime.

Algorithm SSUUR(I.:)

Let a state set be Q1 = {l.t}, l E {O, 1. n - 2}. t E {O} U {2, 3 n - 2}. Each field l, t

are called label <tne! tag respectively. A set of guar<iC'ci coml1uuHb is as follows. Not.e t.ha.t a set

of guarded commands is given to each Pi but it is identical for all processes.

First. we define the following predic<ttes.

RAU)

RB(i)

Rule U ni- A:

(Ii t- li-1 + 1) /\ (Ii t- 0 V ti-1 = 0 V ti-I t- li - li-I V ti-1 < td.
(li = li-I + 1) /\ (ti-1 t- td /\ (Ii t- 0)

IF RAU) THEN

kti := (li-I + l).(li - li-d·

Rule Uni-B:

IF RB(-i.) THEN

li.ti := li·ti-I.

Rule U ni-C:

IF (n - I.: ~ li ~ n - 2) /\ -,(RA(i) V RB('i)) THEN

do nothing.

The ari thmdic operat.ion for labels and t.ags are co 111 pu t.ed modulo n - 1.

A set of legi timate configurations is a set of following configurations .

.... 1 - 2.0,1 - 1.0.1.0. l.0. 1 + 1.0.1 + 2.0

for any label 1.

Now. the correctness of t.his algorithm is present.ed.

o

Lemma 2 At any If.gitimate configuration. there ar£' p.xactly I.: processe8 have privileges. i. e ..

k-mut'ual exci-u.sion propp.rt.y holds. In addition. closure property also holds.

(Proof) Let. A E Al be a.ny legitimate configurat.ion. whidt can be expressed as

.... I - 2.0.1 - 1.0.1.0.1.0.1 + 1.0.1 + 2.0

for some 1. Let. Po be a process which has a privilege at A by Rule Uni-A and Io.to be the

state of Po. (Not.e that. to = 0.)

70 Ch.apter 7. Self-Stabilizing Mutual Exclusion Algorit.hms

• If lo E {n - 1.: • 71, - 2}:

For each 1 E {n - 1.: lo - 1. lo + 1. ... ,71, - 2}, There exists exactly one Pi such that

li = 1 and it has a privilege by Rule Uui-C. There exist.s two processes such that li = lo

holds. One of them has a privilege by Rule Ulli-C and another has a privilege by Rule

Ulli-A. Thus, thc number of processes having a privilege by Rule Ulli-C is k - 1, and

none of t.hese is Po. Thus, exactly k processes have a privilege.

Since a configuration never change by executions of Rule Uni-C. we consider only exe

cutions of Rule Uni-A by Po. Let " be the next configuration. " takes a form of

.... l - 2.0.1 - 1.0.1.0.1 + 1.0, 1 + 1.0.l + 2.0

which is a legitimat.e coufiguration. Therefore. closure propert.y holds .

• If lo tt {n - k, n - 2}:

For each 1 E {n - 1.: , n - 2}, there exists only one Pi such t.hat li = l. Thus. the

uumber of processes which have a privilege by Rule Uni-C is k - 1 and none of t.hem is

Po. Thus. exact.ly I.: processes have a privilege. The closure property can be shown by

the same proof given above. 0

Lemma 3 The Ja'i'rne.'l8 property holds.

(Proof) By the dcfinition of SI, t.here exist.s exactly one process P which has a privilege by

Rule Uni-A at any configuration A E AI. By the assumption of the fairness execution of

processes by a c-daemoll. P is executed within a fillite steps. Then. a process which has a

privilege by Rule Uni-A moves to the right process. 0

Lemma 4 ThP. no dea.dlock property hold8.

(Proof) Since each guard of Rule Uni-A and Rule Uni-B is t.he same a,.'5 that of Rule BP-A

and Rule BP-B by Burns and Pachl[BP89]. Thus, by the same proof for no deadlock property

shown in [BP89]. t.he no deadlock property of proposed algorit.hm is shown. 0

Now. we have the following theorem.

Theorem 8 S1 is a typp-l 8elJ-stabilizing J.:-m.'ll.t ·l/,al exclusion sy8tem..

(Proof) Since' Rule U ni-C never change t.he configllration, we do not consider executions of

Rule Uni-C without loss of gcnerality. (Note that. we assume a fair c-daemon.) There is no

configuration snch that every privilege is a privilege by Rule U ni-C and there exist.s at least

one process which have a privilege by Rille Ulli-A by the discussion in Lemma 4. Thus, for

any configurat.ion 10. the configurat.ion reaches ,1 sneh that

.... l - 2.0.l - 1.0.1.0.1.0.1 + 1.0.l + 2.0

1.1. SelJ-Sf.nbilizing k-M1lhlfLl Exclusion Algorithms 11

by the sallle proof givell in [llP89]. This is a legitimat.c configurat.ion. o

Next theorelll claims that there exists no algorit.hm for t.he type-2 k-mut.ual exclusioll prob

lem on unidirect.ional rings.

Theorem 9 For each n 2: 6 and k, (3 :s; k :s; n - 3). there pxists no type-2 self-stnbilizing

k-m'llt'ual exdllsion algorithm on -unidirertional ring of sizc n.

(Proof) Assume that there exists a type-2 sclf-sta.bili7,ing k-mutual (~xclusion algorit.hm on a

unidirectional ring. Let. A be a set of legitimate config11rations and AO E: A. Then. there

exists a legitimate configurat.ion Al E A and a comput.at.ion AO -+* Al such that consecutive k

processes have a privilege at AI '

Without. loss of generality, processes Po, PI, ... , PI.;-l have a privilege at All. It is easy to see

that locat.ions of privileges never change by executions of Pi (0 :s; i :s; k -- 2). (Otherwise,

the number of privileges hccome less than k.) Thus. t.he movement of privilege happens only

when PI.;-l loses a privilege after several executions of PI.;-l. Then. PI.; has a privilege next.

By the same way. PI.; loses a privilege and then PI.: + 1 has a privilege. This is repeated until

Pn - l has a privilege. Not.e t.hat any execut.ions of Pi (0 :s; i :s; k - 2) do not Icause a movement

of privileges. since the ring is unidirectional.

Now consider t.he following t.wo cases.

e If k:S; In/2J :
A confignration such t.hat any two privileges among k privileges arc not adjoining each

other is not reachable.

eIfk>ln/2J:
A configuration such that any processes which do not. have a privilege arc not. adjoining

each other is not reachable. 0

Corollary 2 There i.e; no self-stabilizing k-mutv.al exr:iv..c;ion algorithm under a c-ria.fmon for

k ~ 2 b'ut thfrc exists algorithm v:n.de'r a. fair c-dapmon.

(Proof) Assullle that thcre exist.s all algorit.hm under a (non-fair) c-daemon. Let Po· Pl Pn - l

be a processes in clockwise on a. ring. Consider a legitimate configuratioll at which process

Po has a privilege. Exccl1t.e Po until it loses a privilege. It. docs lose a privilege because the

fairness property is not. satisfied (consider a schedule executing only Po)· A privilege moves

to its right. process Pl' Do the same thing for Pl' Then t.he privilege llloves to t.he right.

Repeat this procedure 11nt.il a privilege docs not move any more. (A privilege do not. move at

some process Pi within a finit.e steps; othcrwise privileges collide and the number of privileges

decrease.) Then. execut.e only Pi. Ot.her process do not. ha.ve a chance enjoying privilege: the

fairness property is not. sat.isfied. 0

72 Chapter 7. Self-Sf.(l.bilizing Mutnnl Exclusion Algo1'ithms

Note t,hat for n > 5 IS prune, 51 is a self-stabilizing system for the type-2 problem if

k = 2. n - 2. n - 1,

7.1.3 Bidirectional Uniform Rings

We propose a type-2 self-stabilizing k-ll1utual exclusion algorithm 52 on bidirectional rings

for size n 2: 5 is prime. The proposrcl algorithm is based on the following idea. Consider a

bidirectional ring consisting k tracks (rings). Each process execute the I-mutual exclusion

algorithm for uniclired.ional rings proposed by Burns aud Pachl[BP89] in parallel for each

track. A process ha.'i a privilege when it. has a privilege at least one track in the sense of Burns

and Pachl" s algori thm. If each track are executed infini t.cly often, each track stabilizes and

the number of privileges become one for each track. Thrn. t.he number of privilege become at

most k in the ring. To satisfy a k-mut.ual exclusion prop('rty, t.he number of privileges must

be exactly k. which implies that no proc('ss has a privilege at most one track.

The definition of 52 = (n, 82 , Q2. A2) is shown below.

Algorithm 5SBUR(k)

Let t.he statr set be Q2 = {(iJ.tj.i].t] ij.tj) Ii) E {0.1, ... ,n-2}.t) E {0}U{2.3 ,n

I} }. and f2 be a set of all configuration.

A set. of guarded commands 82 is defined as follows. Let a configurat.ion be (qo, Q1· . •.. qn-d,
CJ) = (iJ.tJ.i].t]. " .. lj.t]·). To make t.he description simple. we define the following functions

and pr('(licates:

RACi..j)

RD(i.j)

5p (j)

Rs(j)

(ij =I- l)-l + 1) 1\ (lj =I- 0 V tj_l = 0 V tj_l =I- l) -1)_1 V tj_l < tj).

(l~. = i)-l + 1) 1\ (t)-1 =I- t;) 1\ (i) =I- 0).

{i I (1 ::; oj::; k) 1\ (ij = l;_l)}'

15 p (j) I. an d

II {((l) = i;-1 + 1) 1\ (i}+1 = ij)) V ((i) = i)_I) 1\ (lj+l = ij + 1))
l-:;i-:;k

V((ij = ij_l + 1) 1\ (l;+1 = lj + I))}

1\ 'Vi.j'(l::; i::; k.j -1::; jf::; j + l)[tj, = 0]

1\ 7rj 2: 1.

A transition rules h~ for a process Pj is as follows. (Though process identifiers j - 1. j . j + 1
d d' f . 'f) appears. "2 = lI2 or any J. J .

Rule Bi-A:

IF -,Rs(j) 1\ ~i.(1 ::; ·i ::; k)[RAU, j)] THEN

For rach if such t.hat RA (-if. j) is true:

7.1. Selj-StniJilizlng k-MlfhuLI E :r:c1llsion Algorifhm.s

ij' .tj' := (i)'_l + l).(t)' - t)'_I)'
For each -i' snch t.hat RB (-if. j) is true:

. / . , 0 , , /

ij.tj :=ij.tj _I'

Rule TIi-B:

IF RsU) 1\ (7rj = 1) 1\ (7rj+l ~ 1) THEN

do not.hing.

Rule TIi-C:

IF Rs(j) 1\ (7rj = 1) 1\ (7rj+l = 0) THEN

For i' = minSp(j):

ij'-t)' := (i;'_1 + 1).(t)' - t)'_l)'

Rule Bi-D:

IF Rs(j) 1\ (7rj ~ 2) 1\ (7rj+1 ~ 7rj - 1) THEN

do n()thing.

Rule TIi-E:

IF Rs(j) 1\ (7rj ~ 2) 1\ (7rj+l < 7rj - 1) THEN

For -if = minSp(j):

i)'.t)' := (l)'-1 + 1).(t)' - tj'_l)'

Rule Bi-F:

IF :h(1 ::; -i ::; k)[RBU,j)] THEN

For each -if such t.hat RB (if . j) is t.rne:
_/ " "0'

ij .tj := ij .tj_l'

73

A legitimat.e configuration A E A2 is as follows: (1) Each track is in a legitimate configuration

ill the scnse of TIP. (2) each process Pj has a privilcge of TIP at most one tra.ck. A set of

legitima.te configurations A2 is the set of t.he following configura.tions. Let 'Y = (qo. fIl fIn-I)

be a confignrat.ion snch t.hat qj = (l; .tJ .iJ.t] ij .tj). Then. 'Y E A2 if and only if t.he next

condition holds .

• Vi. j[t) = 0] .

• For each -i. (l~ .l~ i~t-l) is a. cyclic shift of (li, li .li + 1. li + 2 Ii + n - 3. Ii + n - 2)

for some Ii. (Arithmetic operatioll is compnted modulo n - 1.)

• For each j.j{-i jl) = 1)_I}j::; 1. o

Now. the COlTrctness proof of S2 is presented below.

Lemma 5 The num.ber of proce88es which. have (J. pri-uilege 1,8 exactly k at any legitimate

configura tion.

74 Chapter 7. Self-Stabilizing Mutual Exclusion Algorithms

(Proof) It is clear by the defillition of the set. of legitimate configurations. o

Lemma 6 The clos'u.re property holds.

(Proof) Let>. E A2 be any legitimat.e configuration. The guards of Rule Bi-B or Rule Bi-C

are true at processes which have a privilege at >. . (If the right. process has a privilege then

it has a privilege by TIllIe Bi-B. Otherwise it has a privilege by Rule Bi-C.) Assume that a

process Pj which has a privilege.

• The case t.hat Pj had a privilege by Rule Bi-B:

The next configuration is the same as >..

• The case that Pj had a privilege by Rule Di-C:

After application of Rule Bi-C. Pj does not have a privilege and Pj +1 has a privilege at

a track ill t.he sense of DP. This configuration is ill A2 . 0

Lemma 7 The jairne88 property holds.

(Proof) Let>. E A2 be any legitimate configurat.ion. At a configuration >.. there exists processes

Pa • Ph such that their right processes do not have a privilege since k < n. These processes

p(~, Ph have a privilegr by Rule Bi-C. (Ot.her processes which have a privilege is by Rule

Bi-C.)

The application of Rule Di-B does lIot change t.he configurat.ion. By the fairness assumption

of a c-daemon. a process P among Pa. Ph is executed wit.hin a finite steps. After execution

of procrss P. it. loses a privilege and t.he right. process of P ha.') a privilege inst.ead. Thus,

the movement of privilege within a fillite steps is guaranteed by the fairness of a c-daemon.

Therefore. every process has a privilege infinitely oft.en in a infinite computation. Note that

fairness property doe. not hold wit.hout. fairness of a c-daemon. 0

Lemma 8 The no dfndlock property holds.

(Proof) Assullle t.hat a configuration 'Y E r2 is a deadlock configuration. i.e., guards of rules

are false at every process. Since the number of process is prime. t.he same proof of no deadlock

property of Burns and Pachl's algorit.hm (Lemma 4.3 in [BP89]) can be applied to t.his lemma.

Thus. at least one of guards of Rule BP-A or that of Rule BP-B is true at some process.

If the guard part of TIule BP-B is true at. some tracks. a privilege by Rule Bi-F exists; a

contradiction. Therefore. Vdj[RA(i.j)] is t.rue. Let ·io.jo be integers such that RA(io,]io) is

true.

• When Rs (jo) is t.rue:

Since V 1' E {I3. c. D. E} (Guard of Rule Di-r) = RsUo). one of guards of Rule Bi-D. Bi-C,

Bi-D and Bi-E is t.rue: a contradiction.

7.1. Self-Stabilizing k-M1dual Exclu.~in1/. Aly01·ifh11l.~ 75

• When oRs (jo) is t.ruc:

The guards of Rule Bi-A is tme: a cont.radict.ion. o

Next. lem111a is shown in [LS92] .

Lemma 9 Let mi be the n-umbeT of gnp.'! ()f the 'i-th tmr;k and (it (i = 0.1, ... , m - 1) be gaps

of the ·i.-th tm(:k. Then. L-)=-r/gj = m - l(mod n - 1).

Lemma 10 TheTc i8 no config'U,mtion8 s11.('.h that a.ll privileges aTe privilege8 by Rule n~-n

and/or Hule n·;-D.

(Proof) Assumc that. there is a confignrat.ion 'Y at. which all privilegcs are privilege's by Rulc

Bi-B anel/or Bi-D. Sillce algorit.hm BP is livelock frc>c. t.here exists j such that. t.he guards of

Rulc BP-A (= RA(i.j)) or that. of Rule BP-B (= RnU.j)) is true for each t.rack .j. If wc

assume that. t.he guard of BP-B is t.ruc for S011l(' i.j. t.hen t.he guard of Bi-F becomc t.rue and

it is a cont.radict.ion. Thus, thc guard of BP-B is not. t.rue at. each t.rack. i.e .. oR n c;.. j) is t.rue

for all 'i., j.

• Thc case that. t.he guard of Bi-B is t.rne at Pj :

Sincc R 5 (j) is t.rue. t.here exist.s .j snch t.hat. l}+l = l) is t.rue and t)+l = t) = 0 is t.rue.

Thus we have RA U. j + 1) is t.rue. If we assume t.hat. oRs (j + 1) is t.rue then the guard

of Rule Bi-A is t.rue: a cont.radict.ion. Tlllls. Rs(j + 1) is t.rue. which implics that onc

of guards of Rule Bi-B. Bi-C, Bi-D alld Bi-E is t.rue. (Not.e that. logical-OR of guards of

Rlllc Bi-B. Bi-C. Bi-D and Bi-E is Rs(j).) Therefore. Pj +1 has a privilcge by Rule Bi-B

or n ule Bi-D by assumpt.ion.

• The case t.hat. t.hc guard of Rule Bi-D is true at Pj :

Therc exist.s -i such t.hat. l)+l = l) is true SillCC 7rj 2 1. and RA (i, j + 1) is t.rue since

t)+l = t) = O. By t.he same reaSOll discussed abovc. Pj +1 has a privilege by Rule' Bi-B

or R.ule Bi-D.

By abovc discussion. every process has a privilege by Rule Bi-B or Rule Bi-D. Thus.

\f·i.j[Rs(j) 1\ oRne;.j)] is true. SincE" every gap si7.e is 0 for each track. the Sllm of all

gap size'S is 0 for eack t.rack. By t.he definit.ion of Rs(j). each t.rack has at. most. n - 1 seg

ment.s. By t.his fact and by lcmma 9. the n1lmber of segments at. each t.rack is 1. Th1ls. we have

'E j 7rj ::; k. 011 t.he ot.her ha1lcl. if Rs(j) is t.me t.hen 7rj 2 1 is t.rue. which implies L-j7rj 2 n: a

contra.Oictioll. 0

The next. lemma. shows t.hat. if cach t.rack IS legit.ima.t.e then t.he ent.ire ring will reach a

legit.imat.e configurat.ion wit.hin a finit.e st.eps.

76 ChfLpfer 7. Se~f-SifLbilizin9 MuiufLl Exclusion Algo1'ithms

Lemma 11 FOT each';' (1 ~ -;. ~ k), ()'8St/,me that the -i.-til. tmck is in (L legitimate configura.tion

in the senu' of BP at. (J. configu.ra.tion 1'0. Then, faT nny comp'/I,tation ~ starting from 1'0 .such

that ~ = 1'0 -+ 1'1 -+ .. '. there exi8t8 (J. finite int('grT T .'l'l/.ch that 'Y-r E A2.

(Proof) TIl(' behavior of 52 when each track is legit.imate in the ~ense of BP is the same as the

behavior of the followillg (self-stabili~ing) system 53. The system 53 consists of a bidirectional

ring of ~i7,e n alld it~ algorithm is described below. Each process Pj takes the following state:

1fj (0 ~ 1fj ~ /,:, Ejl;:~7rj = k < n).2 The algorithm of 53 works to make 1fj be at most one at

any configuration . The legitimate configurations are configurations such that 0 ~ 7r j ~ Jl for

each j. We say that Pi has a token if and only if 1fi 2:: 1 and 7ri is called the number of tokens

of Pi. The algorithm (transition relation) of 53 is as follows.

Rule Hi-B':

IF (7rj = 1) 1\ (7rj+1 2:: 1) THEN

do not.hing.

Rule Hi-C':

IF (7rj = 1) 1\ (7rj+1 = 0) THEN

1fj := O. 7rj+1 := 1.

Rule Bi-D':

IF (7rj 2:: 2) 1\ (7rj+1 2:: 1fj -1) THEN

do 11 oth'ing.

Rule Hi-E':

IF (1fj 2:: 2) 1\ (7rj+1 < 1fj - 1) THEN

7rj:= 1fj -1. 1fj+1:= 1fj+1 + 1.

It is easy t.o see that. E7;:~7rj = k always holds by the definition of the algorithm. Now, we

show t.hat self-stabili'l,ing propert.ies of 53.

No dea.dlock prop(,Tty:

At. a init.ial confignration, E7;:~1fj = k, 2 ~ k < n holds and Bi-r is true at process P j for

ome j and some r E {B' ,C' ,D' ,E'} ~ince V1' E {D',C' .D' ,E'} (The guard of Rule Bi-7') = (7rj ~~ I),

Next, we show t.hat a configurat.ion snch that all privileges are privileges by Rule Hi-B' and/or

Rule Bi_D, cloes llot exist.. Assume the cont.rary, Let Pj be a process which ha.s a privilege

by Rule Hi-B' or Rule Hi-D', TheIL we have 1fj+1 2:: 1. Thus. Pj + 1 also has a privilege, By

ass umption. t.he privikge of Pj +1 is also a privilege by Rule Bi-B' or Rule Bi-D '. Hy repea.ting

this argument. we conclude that every process ha.s a privilege by Rule Bi-B ' or Rule Bi-D',

whicb contra.dicts the' fa.ct that E7;:~ 7r j = k < n,

2 Although the network of 53 is a bidirE'ctional ring, the next state of a process is determin ed by its state
and the sta.te of its right process. In a st ri ct sense, definiti on of 53 does no t match the definition of the
self- sta.hi lizi ng f'ystelll d ,fined in Chapter G. The (another) definition of self-stahilization for 54 is omitted
because it can he dcfincd silllila,rly.

7.1. 5 elf- Stnbiliz'ing h:- M nhwl E:t clu 8 ion A l.fjOT·ith,m.Q 77

ClosuTe Propp-rty:

Every privilege at a legitimate coufignrat.ioll A is a privilege by TIllIe Bi-D' and/or TIn!r Di-C·.

It is easy to see t.hat a configuration after A is also a legitimate configuration.

No livelock propedy:

Assume that a livelock happens. By thc proof of no deadlock property, we can conclude

that at least. oue process have a privilege by Rule Bi-C' or Rule Bi-E'. For a configuration

,= (qO' qn-l). we defined M(f) = ma.x{7rj I 0 ~ j < n}. For any,' such that,~" ,', it is

clear that M(,') ~ M(,). By assumption. t.here exists a configuration " and a computation

6. start.ing from " such t.hat. Mo = M(,') = M(,") ~ 2 for all " ~. ,". More over, t.here

exists ," such t.hat " ~ * ," in the comput.ation 6., the number of processes Pj such that

7rj = Mo is t.he same at. all configurations after ,". Let J be a set of j such that. 7rj = Mo
and 7rj+l < Mo at ,". Sincc k < n, we have 7ri =I=- Mo for some i (0 ~ i < n). In addition,

consecutive processes at. which 7ri = Mo holds excrpt Pj (j E J) do not have a privilege by

Rulc Bi-C' nor Rule Bi-E' .

• The case that Pj has a privilege by Rulc Bi-D' for cach j E J at any cOllfigllration after

," :
If wc assume that. some process Pi (0 ~ .;, < n) applicd Rule Bi-C' or Rule Di-E' after

," then 7r i+ 1 < 7r i was t.rue before thc exeCll t.ion of the rule. That is, a token is moved

if the right proccss has less tokens. Since a set of processes such that 7ri = M o nevcr

change. t.hc numbcr of applications of Rule Bi-C' and Bi-E' is finite and no process will

have a privilege by Rulc Bi-C' nor Rille Bi-E' wit.hin a finit.e steps; a contradiction .

• Otherwise, i.e., there exists a configuration aftcr ," and j E J. Pj has a privilege by

Rule Bi- E' at the configuration:

In this case. we have 7rj+l < 7rj - 1 = Mo - 1. Unless Pj apply a. rule, 7rj+l does

not increase. Thus. once Pj has a privilege by TIule Di-E', the privilege is not lost by

the execution of Pj +1 • Thcrefore. Pj applied Rule Bi-E' within a finite steps by the

assumpt.ion of fairness of a c-daemon. After application of TIule Di-E' by Pj. the number

of tokens of Pj brcomc 7rj - 1 = Mo - 1 and t.hat of Pj+l bccomc 7rj+l + 1 < Mo. Since

thc number of t.okens of other procrsscs is t.hc Samc. thc number of proccsses which have

Mo tokens decrrascs by the execut.ion of Pj: a cont.radiction.

Therefore. we ('onclucir t.hat livelock never OCCllrs and t.he S3 syst.cm reaches a legitimate

configuration wi thin a fiui te steps. 0

Lemma 12 No li'llel()c/';]Jmpcrty holds for S2·

(Proof) By lelllma 10. a livclock snch that. t.he ~al1lC configurat.ion is repeated does not occur.

Thus therc is at least O1lr process which have a privilege by TIllIe Bi-A. Bi-C. Di-E or Bi-F.

By thc assumption of fairness of a. c-daemon. onc of sneh process is executed with in a fiuite

78 Chfllder 7. Self-Stnbiiizing MlltllfLi Exclusion Algorith.ms

steps and the configurat.ion changes. Thus. we do not. take the executions of Rllie Bi-B and

Rule Bi-D iuto consid('ration.

Assume that t.here ('xists a configllration "(E r 2 and a computation t6. which is a livelock

computation. If every track reaches a legitimate configuration in the sense of BP. the entire

ring also reaches a legitimate configuration by lemma 11. Thus. we assume that t.1H're exists

a configuration "(' ("(---4 '" "(') and t.he I-t.h track such that t.he I-th t.rack is not a legit.imate

configurat.ion ill t.he sense of BP at every cOllfiguration "(" ("(' ---4 * "(") in the computat.ion 6.

and the I-t.h track neve'r change after "('. (Otherwise. t.he track will be legitimat.e.) By the

definition of 52' an application of Rule Bi-A or Rule Bi-C or Rule Bi-E implies an application

of Rule BP-A (and BP-B depending on the condition) for some track, and an application of

Rule Bi-F implies an application of Rule BP-B for some t.racks.

Since at least one of Rule Bi-A, Bi-C or Bi-E is applied infinit.ely oft.en in t6., there is a track

which is infinitely oft.en changes its configuration: thus there exists a track which become

legitimate in t.he' sense of BP wit.hin a finite st.eps. Let. 10 be such a track with t.he smallest

suffix. At the Io-t.h t.rack. a privilege is moved from left to right. If a process P has a. privilege

by Rule BP-B at. t.he I-t.It track then R.ule BP-B is applied when P executes Rule BP-A at the

Ia-th track:. a coutradict.ion. Thus, t.here exists no privilege by Rule BP-B at the I-tIt track

and exist.s only privileges by Rule BP-A.

Let] be a set. of illdices of processes wItich have a privilege at the I-tIt track in t.he sense

of BP. Th 11. j E], a process Pj has a privilege by Rule Bi-E when it has a privilege by Rule

BP-A at the la-tIt t.rack. Note tbat. if t.he privilege of Pj is a privilege by Rule Bi-A or Rule

Bi-C then Rule BP-A is applied at. the I-t.ll t.rack. This contradicts the assumption. (Since

tIt Ia-t.ll track is in a legit.imate configurat.ion in the sense of BP and a privilege is circulating

by Rule BP-A. Pj has a privilege except. Rule Bi-B or Rllie Bi-D when Pj has a privilege

by Rul BP-A at. the Io-t.It track.) In addition. Ia < I holds by the definition of R.ule Bi-E.

Since Rs (j) is true at Pj • the number of segments at the I-th track is at most n - 1. Because

tf-l = tJ = tJ+l = 0 is true for each j E] and there is no privilege at the I-t.h track. if we

a sumc that. t.h(' number of segments at t.he I-th track is 1 then all t.ags at the I-t.ll t.rack are

0, which implie's that the track is well formed in t.he sense of BP and it is a contradiction.

Thus the number of segments of the I-th track s is 2 :S s :S n - 1 and the gap size at Pj is 0

for each proce'ss Pj which has a privilege by R.ule BP-A at the I-th t.rack.

By lemma 9 and the' fact 2 ~ s ~ n - 1. there exist.s a gap whose size is not. O. In other

words. if go. gl' gs-l i. a. equenc(' of consecut.ive gap sizes in clockwise order t.hen there

exists h such t.hat. gh # O. If PH has a gap gIL then PH does not. have a privilege by Rule TIP-A.

The reason of this fact is described as below. Consider a configurat.ion at which a privilege

by Rule BP-A at the Io-th track. If PH has a privilege by Rule BP-A at the I-th track then

Rs(H) become false sillce the gap size is not 0 and Rule Bi-A is applied which implies that

the configura.t.ion of the I-th tra.ck is modified. This cont.radicts the assumption.

Tlm . • RA(I.H) = (l1 = 0) 1\ (t1-1 # 0) 1\ (l1-1 # 0) 1\ (t1-1 ~ t1) is trne at. PH. By

1.2. A Selj-SfalJilizillg l-Mnfual Exdu.~ioll Algorithm with RfL7IIio1lltzatioll 19

this fact, a label of thc leftmost proccss in a segmellt. whosc gap size is not 0 is O.

Let a segmcnt 5 bc a scgmcut whosc gap size is not. 0 and its left segment 5_1 has a gap

size O. (It is clear that such segmcnt exi:-;ts by thc above cli:-;cussion.) By the assumpt.ion. t.he

head process Po of 5 has label 0 and it.s left process P- 1 (i.e .. t.he tail proce s of 5 _1) has

non-zero label and nOll-zero tag. Thus, 5_1 contains a process whose labcl is 0 and t.hc length

of 5- 1 is more than one since the guard of Rule BP-B i:-; false at cvery process. The s('qncnce

of labels of the I-th track (starting from t.he label of PH) is as follows.

where Ii,l = 0 and [i,j ~ [i.j+1 holds for each i.. j. That is, the sequcnce of labcls is scquences

of non-decrcasing sequences start.ing from O.

Assume that. t.he head proccss of PL of t.he segmcnt. 5_ 1 has labcl O. Then, thc guard of

Rule BP-A is t.rue sincc t.hc gap size of 5_1 is O. Thus. L E J and the tag of PL is O. Each

process docs not has a privilegc by Rule BP-B and t.he numbcr of processes which havc a label

o in each scgmcnt is at. most onc since the llttlllhcr of s('gment.s is more than onc. TIllIS. each

process in t.hc scgmcnt 5_ 1 has a tag 0: a contradiction. Thereforc, t.hc label of PL iH O. But

t.here is no such sequence of non-decrcasing sequenccs since the number of segment.s is more

than one: a contradict.ion.

By above discussion. we conclude that each track reaches a lcgitimate configurat.ion within

a finite stcps. This fact. and lcmma 11, this lcmma holds. 0

We have the following thcorem:

Theorem 10 52 is (I. type-2 selJ-8tabilizing k-mutuaZ exdusion system Jor n ~ 5 i.<; prime. 0

7.2 A Self-Stabilizing I-Mutual Exclusion Algorithrn with Ran
domization

In this section, we investigate the I-mutual exclusion problem as a special case of t.hc k

mutual exclusion problem. We consider t.he I-nlllt.ual exclusion problem on unidircctional

rings assuming st.ate communication undcr a c-daemon and a c-dragon and propose uniform

I-mutual exclusion algorithms.

Since the ring is unidirectional. t.he solntion is not trivial. If t.hc ring is bidircct.ional.

random walk of t.okcns can be used to stabilizat.ion of the number of tokens as descrihed in

[U90]. How('ver. a unidirectional ring und('r a c-daemon cannot use random walk mcthod

because the movemcnt. of token is onc dircction (i.e .. the choice for a processes is moves t.he

token right or not) and a c-daemon may choose a schedule of processes not to collide t.okcns.

It is shown t.hat there is no self-stabilizing I-mut.ual exclusion algorithm if t.he number

of process is composit.c[nP89]. We propose a uniform randomized self-stabilizing I-nmt.llal

80 Gil npfcr 7. Selj-Sfnlnlizing Mutual Exclusion Algorithms

exclusion algorit.hm for any size of rillg. The proposed algorit.hm can escape the- malicious

schedulc of a c-dacmon a.nd it self-st.ahilizes with high probabilit.y wit.hout deadlock.

Before proposing an algorithm of randomized version. we propose a self-stabili~ing deter

ministic mut.ual exclusion algorithm under a c-dragon. Since the scheduler guarantees the

probabilistically fair execution of process. t.he algorithm is much simpler.

1.2.1 The self-stabilizing system under a c-dragon

In this su bsect.ion we investigate sclf-stabili7.ing IllU tual exclusion systems on unidirectional

ring under a c-dragon.

Theorem 11 For each n > 1. there exists (L determinist-ic self-stabilizing syst~m 'u.nder a

c-dmgon.

(Proof) The case n = 1 is trivial. Burns and Pachl proposed a deterministic self-st.abilizing

mutual exclusioll system uncleI' a c-daemon for n = 2 in [BP89j; their system also works

correctly unde-r a c-dragoll. Thus. we consider the case n ~ 3.

The lllut.ual exclusion system we propose is as follows. Let the state set Q = {a. I. ... , n -. 2}.
Let Po, Pu - 1 be processes in the system (in clockwise order) and qi be the state of process

Pi. Note that. we show a set of rules for each process Pi, but every process have the same

algori t.lllll. TIl<' algorithm of Sn is as follows:

Rule: IF qi - l + 1 =I- fJi THEN fJi := fJi-l + 1(lllodn - 1)

A legitimat.e- configuration A is a configuration such that only one process has a privilege at

A. For l'xamplp,

0,1,1.2.3,4.5,6.7.8

i· a legit.imat.e configurat.ion when n = 10.

If a processes P has a privilege. we say t.hat P has a token. It is easy to see that. (1) There

exist.s at. lea.<.;t. onc token in the system at allY configurations, and (2) The number of tokens

never increase by t.he execution of any set of processes.

By execut.ioll of a privileged process, it loses a privilege and a privilege may move t.o t.he right

process. Therefore, we can consider t.hat. a t.oken moves t.o right. Consider a configuration at

which t.he Humber of tokens is more than one. Let Ti and Tj be any two different t.okens . The

dist.allce- of t.he t.wo tokens is defined by t.he minimum distance of processes on which t.okens

are. If t.wo tokPllS are on consecutive processes, t.he distance is one. If two tokens collide,

t.he Humber of tokens decreases by t.he definit.ion of the algorit.hm . Because the scheduler (a

c-dragon) choos('s a privileged process to be executed. we can rega.rd t.he movement of tokens

as random walk of t.oken. on a unidirectional ring.

Now consider any two t.okens Ti. Tj and fix them. Let. d(Ti. Tj. ,,) be the dist.ance of two

tokens Ti. Tj at. a. configurat.ion ". We consider d(Ti. Tj' ,,) a.c;; a st.at.e of a Markov chain. Note

7.2. A SelJ-StlLbilizi7lfj i-Mutual E:r.dusioll Algorithm wdh RfWcio71lizntio71 81

that the stat.e 0 is an absorbing wall and r 71,/2l i. a reflecting wall. Since the proba.bility of

trallsit.iol1 from state i to state i-I and from st.at.e i t.o stat.e i + 1 arc both 1/2 for each

1 ~ -i. < l 71,/2 J. Thus, it is ea."y to see t.hat the expect.ed st.eps t.hat two tokens 'ri, 'rj collide is

fini te.

Since a c-dragon chooses a privileged process to be executed with uniform probahility. t.he

expect.ed int.erval steps that one of process corresponding t.o tokens Ti, Tj is executed is finit.e.

Therefore, the expected steps that every tokens collide is finit.e. which implies that the expected

steps t.hat the number of tokens become one is fiuit.e. This is a legitimate configuration. 0

7.2.2 The randomized self-stabilizing systelu under a c-daemon

In this snbsection. we a propose randomized self-st.abilizing syst.em under a c-daemon. Burns

and Pachl [BP89} showed that the number of processes of a ring is composite then there

exists no det.erministic self-stabilizing syst.em under a c-daemon. As we saw above. t.he self

stabilizing 11111 tnal exclusion system for each n is ea.')ily obtained by assUlllling a c-dragon.

The next interest. lies in a self-stabili?;at.ion assuming a c-daemon: Which additional device

is necessary for the existence of self-st.abili:tillg mut.ual exclusion system for every n under a

c-daemon? Onr answer is that if each process has a random-hit generator then the expected

steps t.hat. the Humber of privileges become OIle is finite uuder any schedule.

TIH' outline of reason why there exist.s no deterministic algorit.hm is as follows[BP89}: Where

n ~ 4 is composit.e, 71, can be decomposed a.') 71, = xy. where x. y ~ 2. We can const.ruct a

x blocks of processes of length y and by choosing -i.-th process in a block and execute i-th

process of all blocks. By this schedule, the numher of processes having privi.lege is at lea.')t x.

Since the behavior of process is deterministic, a c-daemon can choose a schedule of execution

of processes to keep a symmetry of configuration. The case explained above, configurations

consist.s of a blocks of length b. To break symmet.ry of configurations by malicious scheduling

of a c-dacllloll. randomization is added to process behavior.

7.2.3 The randomized self-stabilizing I-mutual exclusion algmrithm

We show a sclf-stabili;t,ing lllutual exclusion algorithm for a. ring size n. It is shown tliat there

exists a deterministic self-stabilizing algorit.hm for a ring of si?;e 2 in [BP89]. The ca.<;e for

n = 1 is trivial. Therefore, it is enough to consider t.he case n ~ 3.

The idea of proposed algorithm is based 011 a algorithm by Burns aud Pachl [BP89}. A st.ate

set of processes is a 3-tuple l.t.r. The first field of states is called label, the second is called

tag. and the last is called random signature. To st a.bilize the ring. we adcl a toss-a-coin

fea.ture t.o each process to break a symmetry of ring (with high probability) in spite of a c

daemon. The random signature is a signat.ure of a segment. which is randomly generated. To

break a symmet.ry of the ring. signatures of segments are compared.

Now we desnibe a formal definit.ion of proposed algorit.hm. A state set of processes is

82 Chapter 7. Self-Stabilizing Mutunl Exclusion Algorithms

{l.t.r Il E {O, l. 2 ,n - 2}, t E {O, 2,3, ... ,n - 2}.r E {0.1}}. We define following predicates:

Ai (Ii f li-l + 1) 1\ (Ii f 0 V ti = 0 V ti f li - li-l V ti ~ ti-r)

Bi (li = li-l + 1) 1\ (ti f ti-l V ri f ri-r) 1\ (Ii f 0)

Ci ,Ai 1\ (li f li-l + 1) 1\ (ti = ti-l) 1\ (ri ~ ri-r)

ni (li-l=n-2)

The algorithm is described below. The procedure RandomI3it() generates a random bit (i.e.,

o or 1) with the same probability 1/2.

Rule A: IF Ai 1\ ai THEN

Ii := li-l + 1

ti := li - li-l

ri := RandomI3it()

Rule A ': IF Ai 1\ 'O'i THEN

Ii := li - l + 1

ti:= Ii -li - l

Rule B: IF Bi THEN

Rule c: IF Ci THEN

Ii := li-l + 1

ti := Ii - li-l

A legitimate configurat.ions is a configurat.ion snch t.hat

.... 1 - 2.0.r -3.l - l.0.7· _2.1.0.r _l.l.O.ro.1 + 1.0.rl, 1 + 2.0.r2, '"

for some 1 E {O, L .. ., n - 2}. In addit.ion. each legitimat.e confignration must be the following

form as to random signat.ure r i.

n - 3.0.r, n - 2.0.r, O.O.r', 1.0.1", l.0.7-'.l.0.1'.l.0.1'

for 1',1" E {O. I}. That is. processes between a process having label 0 and the left process

of a privileged process have t.he same random signat.ure. The ot.her processes (i.e .. processes

between a privileged process and a process having la.bel n-1) have the same random signature.

For instance. a configura.t.ion

5.0.0,6.0.0.0.0.1.1.0.1,2.0.1. 2.0.0. 3.0.0. 4.0.0.

7.2. A Se1j-St.a,bilizing i-Mutual E:r;c/usion Algorithm with R01/domization 83

is a legitimat.e configuration when n = 8.

Correctness proof
Before showing the proof. we define several terms used in the following proof. Let. Po, PI, ... ,

Pn-l be a consecutive processes in a clockwise order on t.he ring and li.ti.Ti be a st.ate of

process Pi. A segment s is a sequence of consecut.ive processes s = Pa. Pa+1 , Il) snch that

li = li-l + 1 for each 'i = a + 1, a + 2 band la i= la-l + 1 and lb+l i= h + 1. Let tt(,) be

the number of segn1f'nt. at ,. We say that t.here is a gap between processes Pb and P ,1+1 if

lHl i= lb + 1. The gap size of a segment. s = Pa, Pa+1 Pb is [,,+1 -lh. A process Pa (Pb) is

called a head process (a tail process) of s. A segment s = Pa,Pa+1, ... ,Pb is well formed

if (ti = ti-l /\ Ti = Ti-l) V (li = 0) for each i = a + 1. a + 2, band th = lb+l - lb.

Now, we give the corrcctness proof of proposed algorit.hm.

Lemma 13 FOT any f.Onjig'Umtion , E r. the numb('r of segments is at least one.

(Proof) It is clear becanse the possible labels are n - 1. o

Lemma 14 The algorithm i$ deadlock free.

(Proof) Assumc that dradlock happens. Let, be allY deadlock configuration. Since logical

OR of guard of all rules is Ai V Bi V Gi. a condit.ion ,Ai /\ ,Bi /\ ,Gi holds for every process

i at ,. For every head process of a segment.. li = 0 /\ ti i= 0 /\ ti = li - li-l ./\ ti > ti-l holds

because ,Ai and li i= li-l + 1. Thus, for every segment s at ,. Head(..,) has label O.

The number of segments is at least 1 by lemma 13. we consider following two cases .

• When the number of segments is 1:

The tail process has label 0 because t.he number of segment. is one and the head process

has label O. Therefore. ti = OV ti i= li -li-l is trne at t.he head process since li -li-l = O.

By definition of TIule A and Rule A'. the head process has a privilege by Rule A or Rule

A': a contradiction .

• Otherwise:

Because the numher of segments is more than one alld every head process has label O. a

process whose lal)(-'l is 0 is a head process. Since no proccss has a privilege by Rule B,

every process in a segment ha.'l the same tag and random signature. which contradicts

the fact that ti > ti-l holds for at head process of every segmcnts. 0

Lemma 15 Closure property hold..,.

(Proof) Let). be any legit.imate configuration. By the dcfiuition of rules. it is clear t.hat the

head process of the only segment always have plivilcge by one of Rule A or Rule A'. It is easy

to see that the next confignration of). is also a legitimate configuration. 0

Chapt.er 7. Self-Stabilizing Mut.ual Exclusion Al,lJ07"ithms

Lelnma 16 Fairne,c;s propcdy holds.

(Proof) Let A be allY legitimat.e configuration. By the definition of legitimate configurations,

the number of processes which have a privilege is one and by lemma 15, the privilege moves

to a right. process by a execution. Therefore. the privilege circulates the ring. 0

Lemma 17 M·u.t.'lta[exclusion 'is g'U, (],rant(~ ed.

(Proof) It. is cl('ar by the definition of legitimate configurations. o

Above lcmma.<.; proves four property of self-stabilizing systems. We prove that the expected

steps tlH' system stabilize is finit.e.

Lemma 18 Let 10 E r be any configuration and!::::. = ,0,,1,,2 be any infinite computation

staTting from 10. Then. there exist8 0 ~ I < 00 8v.eh tha.t a transition II ~ 11+1 ,is an

applir;(J,tion of R ·u.le A Or Rule A . Or Rule C.

(Proof) Assllllle t.hat. t.here exists 10 E r a11d an infinite computation!::::. = la' II, 12 such

that. a t.ransitio11 Ij -2. j+l is au application of Rule B for each j ~ O. Application of Rule B

never change members of segments and changes only a tag. By definition of Rule B. a tag does

not propaga.t,(, over a gap (and label 0). Thus, for any segment ,<;. the number of applications

of n 111(' B for s is fini t.e if 110 other rnlcs are applied and there exists a configuration I J such

that. 10 ~ - 1.7 aHd there is no privilege hy Rule B at I J.

B('cause the algorit.hm is deadlock free (by le111ma 14) . there exists a process t.hat has a

privilege alld t.ile privileges are privileges hy one of Rule A or Rule A' or Rule C. Therefore,

one of these rules are applied. 0

Lemn1.a 19 Til" configuration reaches a legitimate configuration within a finite steps Ii! the

n'U.mlwr of segmrnts at an initial configuration I i.e; one.

(Proof) Let I E r be any configuration of which the number of segments is one. It is easy to

see that the number of segments is non-increasing by the definition of algorithm. Thus, for

any If E r sHch that I ~ * If. the number of segments at If is one. By lemma 18. the head

process ('x(>cutcs one of Rule A. Rule A'. or Rule C. By execution of any of these rules. the

head process cha.nges and the label of the new head process increases by one. Therefore. within

a fillit(' steps from I' the configuration become a configuration snch that the label of a head

process of the sf'gment is O. Let. this configuration he 10 and let processes be Po. Pl Pn-l

in clockwise order in the ring and Po is the head process at 10.

By lemma 18. Po executes one of Rule A. A' or C and its tag and random signature become

the sallH' as Pn - I ·s. Note that the tag is zero. Let the coufiguration after Po executed a

rule he II. Silllilarly. PI executed a rule and its tag and signature become as the same as

7.2. A Selj-Stnliilizing l-Mutunl Exclusion Algorithm with R(wrio7llization 85

Po. Repeat.ing this argument, it is ca,sy t.o see t.hat. the' configuration become the legitimate

configuration. 0

Lemma 20 For any configuration, E r stu:h that the number of 8egment is n at " the

number of segments become n - 1 by an execution of (J. r'u.le.

(Proof) There is no privilege by Rule B since the length of every segments is 1. By t.his fact

and by lemma 14. every privilege is a privilege by Rule A or Rule A' or Rule C. The execution

of any of these rules makes a segment. of length 2 aud the Humber of segments become n - 1.

o

Lemma 21 Lf-t ,0 be any segment such that ~(,o) > 1 and s be any segment at ,0. Thpn,

there exi8ts no computation staTting ,0 such th(J.t the number of application of Rule B by

processe.r; in -" i8 infinite if the proceS8es cOT/..',isting of s nel1er change.

(Proof) Let ,<; consists of processes Pl. P2 • Pm ill clock wise order of the ring. Assume that

there exists a computation such that. t.he number of application of Rule B is infinite. Recall

that the procrsscs consisting of s never change during the computat.ion and no process ill s

applies Rulr A. A', nor C by assumpt.ion.

Let ,1 be a configuration just after a process ill s applied Rule B after ,0. Similarly. every

time a process in s applies Rule B. defiue a configurat.ion ,i. Then we have a sequence of

configuration ,0. ,1, '2 For each ,i. we associate a illteger Vi which is represented by m-bit

vector whose j-th bit is 1 if and only if Pj has a privilege by Rule B. The most significant bit

(1st bit) of 71i correspouds to PI and t.he lea.<;t significant bit (m-th bit.) of 'Vi correspoIHls to

Pm. Thus. 1st bit. of 'Vi is always 0 because PI is a head process.

Then. it is ca.sy to see that the number sequcllcc '/10.711.712 ••.. IS a decreasing sequence.

Because 'Vi 2: 0 for all -i. there exists no such number sequence. This is a contradict.ion. 0

Lemma 22 Lr.t ,0 be any segment $'Uch that ~(,o) > 1. Assume tha.t there exists a. r.omputa

tion staTting from ,0 s'Uch tha.t the number of segmf.nts never change. Then, thprf exists no

segment wh OSf head procpss nc'vcr ch(LTlgc8.

(Proof) Assume that there exist.s such segment. s. ily lelllma 21. therc exists no computation

such that. oIlly Rule B is applied. Thus. Rule A, A' or C is applied within a finite st.eps. which

implies t.hat. t.here exists a segment s' whose member changes infinitely many timcs during an

infinit.e computation. Let P be a head process of 8. TheIl. P also become a memher of s'

infinit.ely often because a segment moves to only one direction on a ring: this is a contradiction.
o

Next lemma shows that any schedule which try to keep the Humber of segments leads to a

configuration in which all segments are well formed.

86 Chapter 7. Selj-StniJilizing Muturti Exclusion Algorifhm..s

LeInma 23 Let 'o E r be a.ny configuration such tha.t the r/.7l.mber of segments of 10· U ('o),

is 2 ~ U(10) ~ n - 1. Ass?l.me tha.t there exi.'lts an infinitp. computation tJ. = 10, II. 12 s1tch

that U(10) = U(,j) for all j 2:: 0. Thwn. there exi",t.e; I .'H/.eh tha.t every segment at Ii i.e; well

formed for a.ll .j 2:: I.

(Proof) Let L = U(,O) (= ~(,d = U(f2) = ...) and 81.82 8L be a sequence of segments

in clockwise order of t.he ring. Not.e that processes consist.ing segments change wit.h the

comput.at.ion proceeds, but. the number of segment.s is kept. by the assumption.

Let. l be t.he label of the t.ail process of .'11 at 10. Then. by lemma 22. the head process of

82 execut.es a rule and become the tail process of 81 within a finit.e st.eps and its label is 1 + l.
Repeat.ing this discussion. it is easy to see that the configurat.ion reaches a configuration such

that t.he label of the tail process of 81 become ° wit.hin a finit.e steps. Let this confignration

be II and PI = Tail(sl)'

Consider a configuration jI'2 such that PI become the head process of 81 for t.he first time

after 11' (It is easy to see that such configuration exists by 22.) By the definition of rules, PI

never change its t.ag and random signat.ure betwecn II and 12. Thus. t.he right. processes of

PI ill t.he sallle signat.ure inherit P1 's t.ag and random signat.ure. Therefore, the segment 81 is

well formed a.t. 12.

The randolll signature of a. segment. is generated again when t.he new tail process t.akes label

0, but t.he segment is still well formed. By repeat.ing t.he same argument.. 82.83 8L become

well formed within a finit.e st.eps. Thcrefore. every segment. become well formed within a finite

teps. 0

The range of labels and definition of gap is the same as the ones in [BP89]. Lin and Simon

showed t.he next. lemma in [LS92] for the algorit.hm in [BP89]. Thns. the next, lemma also

holels for our algorithm.

Lemma 24 Let I E r bp any eonfigv.mtion and 81 8 L bp. segments at I and gi bf a gap of

Si. where L = ~(,), Then. 2:1::;i::;L gi = L - 1 mod n - 1

(Proof) Proof can be found in [LS92]. o

Lemma 25 Lft 'o be any conjig'U,mtion .e;1/.ch that. 2 ~ U(10) ~ n - 1 and every segmp.nt is well

formed at. 'o a.rld tJ. = ,0.,1 be any infinite computation. Then, there exists a head process

of a 8eg'ment. ",ay P, a.nd Ik: s'1.l.ch that P does not. ha.ve a privilege by Rule A nor Rule A' a.t

Ik·

(Proof) As ume that. evrry head process has a privilege by Rule A or Rule A' at. Ij for all

j. This implies that Ai is true at all head process at. Ij. Although The label of a head

process changes with t.he' computation proceeds. the relat.ive relat.ion of labels of tail process

and head process which are consecutive processes on a ring is kept (e.g. ti f. Ii - Ii-I). In

7.2. A Selj-Sf.alJ'ilizing l-Mut7w1 Exdu8io71 Algorithm with R{Jn<iomizrttio1/. 87

addition. the tag of each scgment never change during the computation. Therdore. a condition

ti = 0 V ti #- Ii -li - 1 V ti < ti-l is always true for all head processes of segment .'Ii. Ot.herwis ,

Ai become false when Ii = O.

Since all segments are well formed. ti = li - li - l holds. Thereforr. the above condition

becomes ti = 0 V ti < ti-l' Because ti < ti-l docs not. hold for all head processes. thcre

exists j such t.hat. tj 2: tj - l. Since above coudit.ion is t.ruc. tj = 0 holds. Now consider the

right segmeut. Sj" where .i' = j + 1. To t j' = 0 V tj' < t j' - 1 be truc. tj' = 0 holds since

tj'-l = t j = 0 and tags are non-negat.ive. R.cpeat.iug t.his discussion. we have ti = 0 for all i,

which contradicts the lemma 24. 0

Now, we show that the nlllnber ofscgmcnts decreases wit.h high probability and t.hr rxpected

steps that the ring converges to a legitimat.e coufigurat.ioll is finite.

Lemma 26 Lft 10 be any ill:it'ial confi!ll/:ration surl!. thnt 2 ~ U(,o) ~ n-l. Then. tl!." expected

steps that thf n.'um.ber of Sf'gm.ClIts deCrCa8f'S is fi'TIitf'.

(Proof) Assume that 6. = 10, II. 12 be any infinite computat.ion such that the !lulllber of

segme11ts 11evrr decrease. By lemma 23. t.here exists I such that all segments are well formed

at Ii for any i 2: I. We consider configurations aft.er II.

Since every segments arc well formed and the numbcr of segment.s are kept. there is no

process which has a privilege by Rule B at. any configuration Ii (i 2: 1). By lemma 25. t.here

exists a process P and a configuration I J (.1 2: 1) SHch that. P is a head process of a segmcnt

S j and does not. ha.." a privilege by Rule A 1101' Rulr A'. Si nce every head process has a privilcge

by assumption. P = Hcad(8 j) has a privilege by R.ule C.

At the computation after IJ. every process nrver challge its tag. and relative relat.ion of

labels at. head processes never change (e.g .. li #- li-l). Thus. ti = 0 V ti #- Ii - I i - l V ti < ti-l
(see Ad is always false at. Head(Sj). Ot.herwise. it. docs llOt have a privilege by TIule C at. I J.

Therefore. at. configurat.iolls II>, (k 2: .1). Head(sj) ha.." a privilege by Rule A or TIule A' when

its label is not 0 and it. ha..s a privilege by Rule C ot.herwise. When Head(sj) has a privilege

by Rule C. the label of t.he left process of Head(Sj) is not. n - 2 nor 0 hecause. if ot.herwise. it

has a privilege by Rule A or Rule A' (see Ad.
Let 8j-l be t.he left. segment. of Sj. Then. Head(sj) ha..., a privilege by Rule A when t.llC label

of Tail(sj_l) is n - 2. By an applicat.ion of Rule A by Hcad(sj). new random signat.ure of

Sj-l is generat.ed. Therefore. every time the value of label circulates. Sj-l has new random

sign at U reo

Now consider t.he right segment. Sj+l of Sj. If Head(sj+l) ha.." a chance to have a privilege

by Rule C at configurat.ions after I J. we can cOllclll<ie t.hat. S j generat.es new random signature

every time t.he value of label circulates by a similar discussion described above. Otherwise

(i.e., Sj+l never have a privilege by Rule C). Sj also generates new random signature every

time t.he lab('l of Tail(sj) is n - 2 by TIule A.

88 Chapter 7. Seli·Stabilizing Mutual Exclusion Algori-l.hm..~

Let TO. Tl be a sequence of indexes of configurat.ions such t.hat. S j and S j-l changed random

signatures at. lca.r;t once at some configurat.ions between IT,_1 and "'iT" Then, it is easy to see

that there exists a constant T determined by the algorithm such that T/-l - T/ < T < 00 for

all I.

Since random signature is randomly chosen fr0111 {0.1}. the probability Ti ~ Ti-l holds at

Head(sj) is 3/4. The expected steps t.hat. Ti ~ Ti-l become false is at most 4T/3. IfTi ~ Ti-l

become falsr. t.he head process of S cannot make a step by Rule C and it is clear that a daemon

cannot choosr a schedule that keeps t.he number of segment. Thus. the number of segment

decrease. 0

We have t.he t.heorem from above lemmas.

Theorem 12 FOT each n ~ 1, til ere exi!d8 a. randomized 8df-8tabilizing mutual exda8'ion

8ystCm. for (J. ring of size n 'Under a ('-daemon. o

Not.e t.hat t.he algorithm docs not. work nnder d-daelllon. (Consider a configuration such

t.hat a st.at.r of rvery process is 0.0.0 and a schednle such that all processes are executes at

every st<'p. Then. the number of segment.s never decrrase.)

Reduction of the nunlber of states
The proposrd algorithm above requires 2(n - l)(n - 2) = 8(n2

) states. Dy the similar

t.echnique proposed in [BP89j. we can reduce the number of stat.es of above algorithm.

The numbrl' of possible tag value is reduced in the following algorithm. it ranges over {O, 1}.
First. wr drfinr following predicates:

Ai (Ii -I li-l + 1) 1\ (li -I 0 V ti = 0 V ti -I f(li - li-l) V ti ~ ti-d

Bi (li = li-l + 1) 1\ (ti -I ti-l V Ti -I ri-l) 1\ (l i -I 0)

Ci ,Ai 1\ (li -I Ii-l + 1) 1\ (ti = ti-d 1\ (Ti ~ 7'i-l)

Cl'i (li-l =n-2)

The labels range over {O. l. n - 2}. t.he random signatures range over {O, 1}. The function

/ is a functioll from {O. 2. 3 n - 2} and defined as follows.

Note that /(1,;) = 0 iff A: = O.

{
0 if k = 0

/(1,;) = 1 ot.herwise

The algori t.h III is the following. The difference is that. new tag is given by / (li - Ii - d. The

set of legi timate configurations is the same as the set. defined in the previous version.

7.2. A Sclj-Sf,abiliz'ing l-Mutunl E:r.clu.sion Algorithm with Ranciomizntion

Rule RA: IF Ai 1\ (Yi THEN

li := li-l + 1

ti := !(li - li-d

ri := RandomBit.O

Rule RA': IF Ai 1\ -,ai THEN

li := li-l + 1

ti := f(li - li-d

Rule RB: IF Bi THEN

Rule RC: IF C i THEN

li := li-l + 1

ti := f(li - li-l)

ri := ri-l

89

By modifying the algorit.hm. the we need a new definition of well formed. A segment. Si is

well formed iff every process of s has a t.ag f(gi), where gi is the gap size of Si. The condition

for random signature is the same as the original definition.

Lemma 27 Th~ algorithm 8atisfic8 the (J) closure property. (2) fairness property, and (3)

m'Ut'ual exclusion.

(Proof) Becanse t.he behavior of the ring is t.he same as the origiual algorithm, the same proof

for closure property holds. Thus, the fairness property and mutual exclusion property also

h~d. 0

Lemma 28 The algorithm satisfies no ricrullock property.

(Proof) The proof is t,he identical to the proof of lemma 14 except ti = Ii ,- li-l is replaced

by ti = f(li - li-l) and ti i= li - li-l is replaced by ti i= f(li - Ii-I). 0

Lemma 29 The algorithm, satisfies no li-11e10r-k property.

(Proof) Lemmas 18. 19. 20. 23 hold by t.he same proof. Lemma 25 is shown by replacing

ti = li -li-l by ti = f(li -li-d and ti i= li -li-l by ti i= f(li - li-d in the proof. Not.e that

ti = 0 does not hold at. all head processes because ti = 0 implies li = li-l and contradicts the

24. Lemma 26 is also shown by replacing ti = li - li-l by ti = f(li - li-d and ti i= Ii - li-l

by ti i- f(li - li-d ill t.he proof. 0

Now we have t.he following theorem.

90 Chapte1' 7. Self-Stabilizing Mutual Exclusion Algorithms

Theorem 13 For each n 2 1, thf.re f.xists a random:juri sdf-sta/)ilizing mll.tu(Ll exrl'l/,8ion

system which require8 4(n - 1) statf.8]Jer proce88 for (J. ring of size n 'nnder a c-daemon. 0

7.3 Concluding Remarks

III this chapter. we proposed several self-stabilizing mu tual exclusion algorithms.

In the first section, we proposed a deterministic self-stabilizing k-mutual exclnsion algorithm

under a c-daC'll1on 011 unidirectional and bidirectional ring networks whose size is prime and

showed their correctness. It is easy to show that tliere is no self-stabilizing algorithm whose

size n is composite and n docs not have a factor k. (The proof can be shown by the similar

method used in Theorem 2.1 in [13P89].) In the ca.'ie that n has factor k. whether there exists

an algorithm or not is an open problem.

In the next section, we investigated self-st.abilizing mutual exclusioll systems under assmup

tions of a c-daemoll, a c-dragon and randomi,mtion. We showed that the number of states

per process r('(luire is 0(n) if we assume dragons and randomized behavior of processes un

der a c-daemon. The known determinist.ic algorithm for I-mutual exclusion systems requires

0(n2 j In n) but. Ollr algorithm a.ssuming randomiz{'d behavior for each process requires only

O(4(n - 1)),

Carl-Johan Seger proved that any uniform detcl'lninistic self-stabiliziug I-umt.ual exclusion

system under a c-daemon for a ring whose size is n requires at least n - 1 states [13nr94],

He showed t.hat t.here exists a schedule of processes which cause a livelock if we assume the

existencc of a self-stabilizing systcm and t.he number of stat.es of processes is less t.han n - 1.

This lower honnet by Seger is a bound gnaranteeing no livelock. On the other hand. Israeli

and Jalfon [I.l90] showed that Q{logn) st.ates is necessary for uniform self-stabilizing syst.em

on unidirectional ring. Their lower bound guarant.ees no deadlock property. Thus. there is a

gap for lower bounds of the number of stat.es between achieving no livelock and no deadlock.

There is a gap bet.ween lower bounds and proposed algorithms. The following problems are

left as future t.asks .

• Does t.her(' exist deterministic self-st.abilizing mutual exclusion systems undcr a c.-daemon

which requires a statc set whose siJl:c is less than 0(n2 jlnn)?

• Does there exist deterministic self-stabilizing mutual exclusion systems undcr a c-dragon

which requircs a state sct whosc size is less than n - 1?

Chapter 8

Conclusion

In this dissert.at.ion, we have investigated the distribut.ed k-mut.ual exclusion problem by two

approaches: the coterie approach and t.he self-st.abilization approach. We proposed several

algorithms for distributed k-mut.ual exclusion.

In Part L we have studied the coterie approach.

In Chapter 2. we have proposed a cOllcept called k-cot.crie as an ext.ension of cot.erie. To

allow k processes be in their critical sect.ions, k-coterie has dist.inct k quorums but docs not

have k + 1 quorums. Processes can ent.er t.heir crit.ical scction wit.hout interfering wit.h ot.her

processes; on t.he other hand. processes int.erfcre if we usc another definition of /':-coteri

proposed ill [nC94. MA93].

III Chapt.er 3. t.he analysis of availabilit.y of cot.erie has been shown. We have shown a

sufficient. condit.ion and a necessary condit.ion such tat. a I.:-majority coterie is opt.imal uncleI'

all assumption that a topology of communication links arc complet.e network and every process

fails wit.h tlH' same probability.

III Chapter 4. we have proposed a dist.ributed k-llllltual exclusion algorithm using a k-coterie.

We have ShOWll that the message complexit.y of t.hc proposed algorit.hm is ~~IQI. where IQI is

the size of a quorum.

In Chapter 5. we have shown the goodness of our distributed k-mllt.uru exclusion algorithm

by comparing wit.h Raymond's algorit.hm by comput.er simulat.ion. The simulation was done

using workst.ations which are connected t.o a local area net.work. Since each process was exe

cuted on diffrrent workstations. algorithms are simulat.ed in real-time: which can be considered

as being close to a real distributed syst.em. The simulation result shows that. the proposed

algorithm in Chapter 4 is much bet.t.er than Raymond's algorit.hm if k is large and mutual

exclusion rrqu('st. is not frequent..

In Part II. we have studied the self-stabilization approach. In Chapter 6, we have explained

comput.at.ional models and given a survey for the rC'search area of self-stabilizing mutual ex

clusion. We also discussed a motivat.ion of self-st.abilizing approach. Self-st.abilizing syst.ems

91

92 Chapter 8. Conch£sion

call tolerate any kind of trall~iellt failures. Thus. Self-st.abilizing systems are fault-tolerant

systems.

In Chapter 7. we have investigated self-stabilzing k-mutual exclusion on ring nct.works.

First. we have invest.igat.ed t.wo type~ of self-stabilizing h:-lllut.ual exclusion problems on uni

directional and bidirectiollal rings. We have shown that t.here exists no type-2 problem (i.e.,

a confignrat.ion of any rtrrangemellt of privileges can be reachable from any configuration)

does not exist on uuidirectional rings. We have proposed a type-I self-stabilizing k-mutual

exclusion algorit.hm 011 ullidirectional rings alld type-2 self-st.abilizing k-mutual exclusion al

gorithm on bidirect.ional rings under c-daemon. These algorithm require that t.he number of

process of a ring is prime. In the case that the llllluber of process has a factor f f. k. there

is a ~chcdule of processes which doe~ not reach a legitimate configuration. Next.. we inves

tigat.ed s('lf-~tahilizing l-mutual exclu~ion problcm as a special case of k-lllutual exclusion.

We have proposed a ra.ndomized self-~t.abilizing I-mutual exclusion algorithm for any size of

unidirectional ring under c-daemon. In t.he algorithm. randomization is used because t.here is

no algorithm if t.he number of process is composite.

The ('ot.erie approach is an approach t.hat reduces the number of messages for dist.ributed

mutual exclusion a.lld illcrea.ses the availability. The algorithm proposed in Chapt.er 4, does

not. cOllsider a.IlY failures such a.'l message omissions. process failures. etc. The design of an

a.lgorithm which t.olera.tes such failures is the next step of the work.

In [BaI94b. BaI94a). Da.lcloni proposed k-coterie. which is completely different. from ours.

Thc ba.sic idea of his dist.ributed k-ll1ut.ual exclusion algorit.hm is t.hat each process has k

perlllissiolls (or. t.okens): a. process wishing to enter a critical section must collect tokens fro111

each pro('('ss ill a quorum. To ma.ke this scheme work. the requirements for a quorum set C is

as follows:

• IntC'rsC'ctioll Prop('rty: For any (]1 (]k+l E C. n~~} (]i f. 0 .

• Minima.lit.y Prop<'rty: For any (]i.(]j E C such that (]i f. (]j, (]i <Z (]j.

By 0111' defillition of k-C'ot.erie, each process has one token. On the other hand. each process

has k tokens by Baldoni's k-cot.erie. We believe t.hat. t.here is a unified scheme for these ideas.

For cxample. there lllay br a condition for a qnorum set to achive 4-mutual exclusion when

each proccss lta.s 2 tok(,lls. The investigat.in of unified k-coterie scheme is left as a future task.

The ~·)('lf-stabili7,a.t.ion approach is a strong approach for transient failures. The design of

cot rir based mut.ual exclusion algorit.hms which t.olerates transicnt failures by using a concept

of self-st.abili7.at.ion is a interesting t.heme. However. designing a self-stabilizing algorithm

and proving the COIT('ct.ness are difficult t.asks. The aut.omat.ic construction of self-stabilizing

algorit.hm is all illlporta.1lt, for reali7.iug self-stabilizing syst.ems.

In this dissertat.ion. we have trea.t.cd the coterie approach and t.he self-stabilizing approach

separately. A unificat.ion of t.hese two approaches is au anot.her ta.sk.

Appendix A

Local Coteries and a Distributed
Resource Allocation Algorithnl

The distributNl k-mutual exclusion problem treats a situation such that every process in a

distributed syst.em shan" all resources uniformly. nut it is natural to consider that a set of

resources availahle to a process is different by processes. This may happen by limit.ations of

access rights or some geometrical reasons.

Consider a sit.uation such that a process PI has access rights to resources 1'1.1'2,1'3 and a

process P2 has access right.s to resources 1'3,1'4 and each process issues a resonrce request when

it requires resources, In such case, the k-mutual exclusion is not suitable to arbitrate the

conflicts of resource requests. III addition, if two processes P3, P4 do not share any resources

then it is desirable that. resource allocation is done without interference. The mutual exclusion

and the k-mutual exclusion problems are special cases of the resource allocation problem. Such

problem is proposed and investigated as ·'t.he drinking philosophers problem'" by Challdy and

Misra [CM84]. In their paper. they showed a token-based resource allocation algorit,lull for a

special case in such a way that. each resource is shared by only two processes. The ohjective

of this appendix is to solve the problem under t.he frame work of coterie and its variants,

Generalized resource sharillg model is also appear in t.he paper by Miyamoto [Miy94]. ill which

an allocation problem of nr/Onyrno'l/.s resources which aI'£' shared by any number of processes

is investigat.ed. He used cot.erie approach to solve the problem.

In this appendix, we consider a problem of allocating named resources: a process requests

any amount resources and allY of free resources are allocateo but a process must kllOW the

names of allocat.ed resources to use them. We propose a new concept. of local coterie and a

resource allocation algorithm using a local coterie.

93

94 Appendi:'C A. LONd Coteries (Lnd (£ Di.sh·ibuterl Resource Allocation Algorithm

A.I The Resource Model

A distributed system consists of n processes U = {Pl' P2 , Pn}. bidirectional communica.tion

links each connecting two processes, and m. resonrces R = {rl. 1'2 rm} shared by processes.

Processes P E U are allowed to usc some of the resources l' E R. We denote this relation by

function 0' : U -+ 2R. For any 1t E U.

a(P) = {r E RIP has an access right to r} E 2R.

When V is a set of processes, with abuHe of not.at.ion. o:(V) denotes UpEVa(P). The triple

(U. R. 0:) is called the share structure of the system.

We define a configuration c of the distributed system as a tuple of the states of all processes

and communication lillks. Then a computation 7f of the system can be described by a (possibly

iufinite) sequence of configurations starting from the initial configuration. Note that the

computation is not determined uniquely in general. even if the initial configuration (including

inpu t) is given because of the asynchrony of system.

When the system is at configurat.ion c. processes P may be accessing some resonrces r. For

any P E U. fJp(c) denotes the set of resonrces T which are being accessed by P when the

system is at configuration c.

A.2 The Resource Allocation Problem

Consider a distributed system in which each process repeats the local computat.ion and the

resource access phases forever. The fonner phase does not. include resource access inst.ruct.ions,

and the latter is a series of resource access inst.ruct.ions which st.arts with a resource request

instruction for requesting some resources and ends up with a resource release instruction for

releasing all l'('sources it is accessing. Let S = (U. R. a) be its share structure. Each time the

resource access phase is executed. the number of resources a process P requests can change

between 1 and la(P)I.
The resource allocation problem is the problem of implementing the resource requests

and release instructions in such a way t.hat whCllever a process P requests k (:::; la(P)I)

resourc s. eventually k resources are allocated to P. Furt.hermore, as the restriction arising

from the share structure. any comput.ation 7f = Co. CI Ci, ... of the resulting distrihuted

system must. satisfy the following two conditions:

Allocation Validity: For any configuration Ci and any set V ~ U of processes,

U pp(cd ~ a(V).
PEV

Mutual Exclusion: For any configurat.ion Ci and a.ny two different processes P. pI E U.

A.S. Local GoieTies 95

Allocation Validity guarantees that. a process P only acc('sses resources to which it has an

access right. and Mutual Exclnsion guarantees that ('very resource is allocated to at. most one

process at a t.ime.

A.3 Local Coteries

In general. t.he resource allocatioll problem treats cases in which resonrces are shared by

different set.s of processes unlike the mut.ual exclusion problem. Consider a case in which two

processes P and pi do not share any resource. Then it. is a natural requirement t.hat their

requests be interference free. (It lllay or may not. be possible. depending on the remaining

part of a share structure.) As long as the same qUOrllm set. is associat.ed to P and pi, the

interference inevitably occurs.

In order t.o take into account the share st.ructure. For p(J.ch pro(,f:s<" P. we associa.tr (possibly

different) quorum <"ets Q p ~ 2u reflect.ing the share strnct.ure. We call the set {Q piP E U}

a local coterie with respect to a share st.ructure (U. R. (\'). The formal definition of t.he local

coterie is as follows.

Definition 8 A non-empty set {Q piP E U} i8 a local coterie with re8pcct to a. share

str'ucture (U. R. n) 'if a.nd only if the following conditions a:rf: sati<"jieri.

• Non-emptiness: 'tiP E U[Qp f 0].

• Intersection Property: 'tiP. pi E U[a(P) n a(pl) f 0 =} 'tIq E Q p. 'tIq' E: Q pi [q n q' f 0]].

• Minimality: 'tiP E U. 'tIq, q' E Qp[q cz. q']. o

Note that t.he ciefillition of local coterie illcludes that of coterie as a special case when IRI = 1

and c~(P) = R for all P E U.

First. we show a simple construct.ion algorithm for a local coterie with respect. to a share

structure (U. R. (Y).

Algorithm Loca.ICoterie(U. R. (Y);

begin

qp := {P} for all P E U:
for all r in R do

for each P, pi in U such that P f pi do

if T E a(P) n a(pl) then

qp := qp U {Pi};

qP' := qpl U {P}
fi

96 All[!r7u/i,c A. Lowl Cofcric3 and (L Disi1'iulJfcd RC30urce Allocation Algorithm

od

od;

Qp:= {qp} for all P E U;

return {Qp I P E U}

end.

Theorem 14 Thf algoTithm Loca.lCoterif(U, R. cr) correctly comp1£tes a. local coterie with re

spects to a. shorp structurf' (U,R,cr). in time O(IRIIUI 2).

(Proof) The llon-cmpt.incss and t.he lllillimalit.y t.rivially holds since a quorum set Q p contains

only onc quorum for ('ach process P E U. Assume that. the int.crsection propert.y does not

hold. Let P1 ,P2 be processes such t.hat PI =1= P2 and (a(Pd na(P2) =1= 0) 1\ (qp\ nqp2 == 0)\

where qp, E Qp, for -i = 1. 2. Since 7' E cr(Pd na(P2) for some r E R. P2 E Qp] and PI E Q p 2

by the defiuit.ion of the algorithm. This implics {Pl' Pd ~ qPl n qP2 because Pi E Qp, for

each Pi E U: a contradiction.

It. is easy t.o sec the ('xccntion time of t.hc algorit.hm is O(IRIIUI2). o

Corollary 3 For any .<;Ii (lrf' stnu;t1trf (U. R. a). there exists a local coterie C 'With respects to

... 11 are structl/.Tl' (U. R. cr). 0

A.4 A Distributed Resource Allocation Algorithm

Now. we are rcady t.o int.roduce our algorit.hm. Wc first. explain an ontline of the algorit.hm.

cl.lld then describe it in ({ct.ail.

The proccsscs altoget.hrr maint.ain a dist.ribut.ed dat.abase which keeps pairs of a process

and a resource it. is c1lrrent.ly acccssing. A process PH wishing to access k resources sends

a query askin~ whethn or not there arr /,: resonrces available to 'u. 1 If the answer is yes.

then the k resources arc allocat.ed t.o Pu. Hence. the algorithm is assertion-bascd. as well as

quorum- ba.scd.

Let {Qu} be a local cot.('rie. where Qu is t.he quorum set. associated with process Pt(. Then

an out.line of t.he a.lgorithm is as follows.

In our algorit.hm. a pro('(\ss Pv is (pa.rt.ia.lly) rcsponsible for the resources which are accessible

from a proccss Pw su '11 that Pv appears a.s an elelllent. of a qUOrulll q in Qw' Let Rv be the set

of resources for which PlI is respollsible. For each resource 7' E Rv. Pv remembers the process

which current.ly accesses 7' (or the fact it. i:-; free. otherwise). A proccss Pu wishing to access

k resources selects all arbitrary quorum q E Qtt. and sends a qucry message (QUERY) to every

1 We say that a resource T i~ Q1.ailable to flu if T E n{ fl") and '" is currently free, Oll the other hand, that
P u is acce8sib/p to 7' simply llH'ans T E o:{ P II).

A.4. A Distributed Resource Allocat.ion Algorithm 97

process P1I in fJ· A process Pv receiving query (QUERY) sends back the names of resources

available t.o PlL • UpOll receiving t.he list. of available resource nallles from every process Pv E q.

Pu selects arbitrarily k resource names which appear in every list and sends a lock message

(LOCK) wit.h the k names to every process Pv t.o let. it updat.e the current states of the k

resources. When Pu releases the k resources. it. seuds an unlock message (UNLOCK) with the k

names to every process Pv to let it change t.he states of the resources into free.

The above explanat.ion is just an outline of t.he algorithm and it does not contain explana

tions how to avoid deadlocks and starvations and how to treat. cases in which Pu cannot find

k resources availahle to Pu' Moreover, in order for the algorit.hm work correctly. t.he query

step must be carried ont in the lllutually exclusive way. Nevertheless, we would like you to

observe that if P u decides to access a set of resources r. then r is currently available to Pu ,

i.e., Pu has access right to rand r is not. used by some process. by definition of local coterie.

The algorithm assumes t.hat each process PH maint.ains the following local variables. For

convenience of explanat.ion. as in t.he above rough explanat.ion, define

and

Pit. ES,.

• elL - the current logical time at. Pu. Init.ially. it. is O. and is automatica.lly illcremented. 2

• Du t.he array t.o hold for each resource 7' E Ru. if l' is LOCKed or not. More precisely,

for each r E Ru. Du (1') = (Pu' t) if l' is locked by (LOCK) message with timest.amp t

issued by Pu' Otherwise. if r was lastly released by (UNLOCK) message with tinH'stamp

t. then Du(r) = (. .1. t). Initially. Du = (1..0) for all 7' E Ru.

• Wu it holds the name of process t.o which Pu sends the current states of resources

held in Du and is waiting for a reply. III other words. Wu is the process from which Pu

is wait.ing for (LOCK) message. after sending (RESPONSE) message. If Pu is not in this

sit.uat.ioll. WH = .i.

• Tu it. holds t.he t.imestamp attached to t.he (QUERY) message that the process held in

Wu issned. Tu = 1. if Wu = .i.

• Xu - the priorit.y queue to hold (QUERY) messages wait.ing at PH for their tunis. They

are sort.ed in t.he order of their t.imestamps.

We describe our a.lgorit.hm AllocReso'U,rce in an event. driven form.

Algorithm AllocResource

Let {Qu} be t.he local cot.erie used in t.he algorithm.

2Dy using a ~tandard technique that \I!\es ullique process idelltifiers. evellts occurreJ 111 the system are

totally orJered by means of t.he logical timc[Lam78].

98 A1)1)C1I1Zi:r; A. Lowl Coteries and a Di8tribut,cd Resource Allocation Alyorithm

1. When a process PH wishes to access k (~ !c,,(n)l) resources:

Process Pu arbitrarily selects a qnorum q E Qu. and sends (QUERY, Pu . CH) t.o every

process ill q.3 Recall that Cu is the current lop;ical time at Pu and is attached to the

mcssage as the timestamp. Then it. waits unt.il both of t.he following two condit.ions hold:

• It has received (RESPONSE. Pv . Dv) messages at least. once from each proceRs Pv E q.

N ot.e that. Pl) : ..){'\nds (RESPONSE. Pv , Dv) llH'Rsage carrying the latest version of Dv

as soon as Dv is updated. even if it has sent an older version to Pu (sec Cas<e 7).

Note also t.hat, Pu does not. need t.o store old versions. It simply discards them and

holds t.he latest. Olle (see Case 3) .

• R('call t.hat evny Dv cont.ains the st.at.es of all reRources in O'(Pu) from t.he view of

Pv. Let Au ~ O'(Pu) be the set of resources l' satisfying Dv o (1') = CL t*) . where t*

is t.he maximulll value occurred in the second (i.e., time) field of Dv (1') among all

Pv E q. and PliO is the process achieviug t*. Int.uitively, Au is the set of rrSOllirces

currently availahle to Pu , as we will show in t.he next. section. The secono conditioll

is that Au cont.ains at least k resources.

If bot.h of the above conditions hold. Pu t.hen arbit.rarily selects a set Su of k resources

from Au. sends (LOCK. Pu. Cu, SlL) mcssage to every process Pv E q. and accesses Su.

2. When process PH releases the set Su of accessing resources:

Process PH sends (UNLOCK, PlP C lL , SH) messagc t.o every process Pv E q.

3. When process PH receives (RESPONSE. Pv. Dv) message from a process Pv:

Process Pu stores Dv' If it has received an older version of Dv. then it discards it and

stores t.he lat.est. one. Because the 1l1eRsage order is assumed to be unchangeable in each

communicat.ion link. Pu always holds the lat.est. version among versions received so far.

4. When a process Pv receives (QUERY, PH' t) from process Pu:

If Wv = .1. i.e .. if process Pv docs not wait for (LOCK) message from another process. it

sends (RESPONSE. Pv • Dv) message t.o PlO and sets Wv := PH and Tv := t. Recall that t

is t.he logical time at Pu at which the (QUERY) message wa.c; issued (see Case 1).

Otherwise. Wv = P1U for some proceRs Pw E U. i.e .. Pw waits for the t.wo condit.ions

in Case 1 t.o hold. If Tv < t. i.e .. if Pw has higher priorit.y (since Tv is the timestamp

att.ached t.o Pw's (QUERY)). Pv st.ores (QUERY. Pu. t) t.o queue Xli' Otherwise. if Tv > t,

Pu hru t.he priorit.y. Then in order to preempt. t.he right. to lock resources which Pv

gave to PW ' Pv . ('lids (PREEMPT. Pv) to Pw . and wait.s for Pw replying either (RETURN)

or (LOCK)message (see Cases 1 and 8). after Rtoring t.he (QUERY) messages issued by Pu

and Pw t.o Xv. When Pv again needs t.o send (PREEMPT) t.o Pw while waiting for a reply

from Pw , '/1 ignorrs it..

3The lIumb0r k of reqllPst.illg resources is not a parallleter of (QUERY).

A.S. Correctness Proof 99

5. When process Pv receives (RETURN, Pw) message from process Pw:

Process Pv takes the (QUERY. Px • t) message from t.he t.op of queue Xv' It is the (QUERY)

message which has the highest priority. Then Pv ~){,llds (RESPONSE, Pu , Dv) t.o Px , and

sets Wv := Px and Tv := t.

G. When process Pv receives (LOCK. Pw, t, Sw) message from process Pw:

Process Pv updates its data Dv; it. sets Dv{r) := (Pw.t). for each T E Sw' Then it

continues (the algorithm fragment for) Case 5 if Xv is not empty.

7. When process Pv receives (UNLOCK, Pw, t. Sw) message from process Pw:

Process Pv updates its data D l1 : it sets Dv{r) := (~. t). for each r E Sw' If Wu i= ~,
then it sends (RESPONSE. Pv' Dv) message to Wv ' Ot.herwise. it continues Case 5 if Xv

is not. empty.

8. When process Pw receives (PREEMPT, Pv) message from process Pv:

If it. has sent back (LOCK) message to Pv , then it simply ignores t.he (PREEMPT) message.

Ot.herwise. process Pw sends back (RETURN. Pw) message. aucl then Pw discards DlI which

was sent from Pv. That is. the response (RESPONSE. Pl!' Dv) is canceled by t.he (PREEMPT)

message. o

Although in the above description of AllocRp.8ource. (RESPONSE) carries all data D v, it is

clearly reducible. At a process. say Pu, only the data on t.he resources in a(Pu) in Dv will be

used.

A.5 Correctness Proof

In this section. we show the correctness of our algorit.hm AllocRe$o·u,rce. provided that. processes

accessing resources release them within a finite timc.

Theorem 15 Algorithm. AllocResov.Tce g'/.U/,mntees Allocation Validity cond:ition.

(Proof) This theorem holds since each process Pu selects t.he resources from the candidate set

Au, which is a subset of a{Pu). 0

In order to proceed the remaining propcrt.ies. recall t.hat a process Pu wishing for k resources

arbitrarily selects k resources from Au determined from Dv's for Pl! E q E Qu. sends (LOCK)

message carrying the names of k resources to every Pv • and accesses them. On the other

hand. process P1J updates Dv responding to the (LOCK) message. If two processes which share

resources received Dv's simultaneously, they conld select. t.he same resources and access them

Simultaneously. Our algorithm guarantees that such situations never occur. We introduce the

notion of Q-r('gion to prove it formally.

100 Appcndix A. Local Coicries (wd a Di.~f.rilnLtcrl Resource Allocation AlgoriUtm

A process PH requesting k resources sends (QUERY) llH'ssagc t.o every mcmbcr Pv of a quorum

q E Q1/' and collcct.s Dv's until the two coudit.ioIls of Case 1 hold. If a (PREEMPT) l1H'ssagc from

Pw E (j arrives ill t.he meaIlwhile, it. discards Dw and wait.s for !lCW Dw. Rccall that. rccciving

a Dv from cvcry P v E (j is a llecessa.ry condition. but. is not sllfficient. We say that PH is in

thc Q-region if Pu has rcceivcd a Dv from evcry Pv E (j. hilt has neithcr sent (LOCK) message

nor l'<'ccived (PREEMPT) mcssage sincc t.hen.

Lemula 30 Lf'f Pu a.nd Pv be a.ny two processp.s such tha.t a(Pu) n a(Pv) =I- 0. Thf.n Pu and

Pv arc never in their Q-regions simuitnneo1LsZy.

(Proof) ASSUIll(' t.hat there exists two processes PH' Pv such that a(Pu) n a(Pv) =I- 0 and Pu) Pv

arc in t.heir Q-rcgioIls at a t.imc. Let Pw be a process such that Pw is in both quorums Pu and

Pv chose. Not.e that t.hcre exists snch Plo since O'(Pu) n Cl'(Pv) =I- 0. Without loss of gcncrality,

aSSUlllC t.hat Plo scnt (RESPONSE) to PH first. By the definition of algorithm, Pw extracts

the requcst from Pv after sending (RESPONSE) to Pu. By assumpt.ion, Pw sent (RESPONSE) to

Pv before (LOCK) or (RETURN) is sent fro111 Pu ' This action cont.radicts the defini t.ion of the

algorithl1l. o

Suppos(' t.hat. a resource r has bccn allocat.ed. If Pv didn't knew this fact, Au could include

l' whcll a procrss Pv sent Dv for the first. time to Pu, wltich implies that. r may be allocated to

morr t.han one process since the candida.t.e set All is dct.el'lllined from Dv's. The next lemma

guarant.('('s t.hat. such situations never occur.

Lenl.ma 31 L('1 Pu nnd Pv be a.ny two process('s s'neh that r E O'(Pu) n Cl'(Pv) =I- 0. Assume

t.hat l' 11.0,,<; bp(,71 (l.lloc(J,t(~d to Pu ' and Pv i.<; now in itc; Q-region, Further, assume tha t Pu used

fjlW7'UTTI (j1L E Q1I for its r('sourcp 1'e'1'/l.('.<;1 and Pv 'i.<; 'l(.sing quo1''U:m qv E Qv' By the definition

of 10('(1/ rot('rif'. (ju n (jv =I 0. Then for any Pw E (ju n (jv' Dtv(r) = (Pu ' t) for some t.

(Proof) Since Ptl is accessing a resource r. it had sent (LOCK) message to every process in

(ju whell it. exit.s fro111 Q-region a.nd t.hen it. st.arted accessing r. Every Pw E (ju n (jv sends

a (RESPONSE) lll('ssage to Pv after it reccives a (LOCK) message from Pu ' When P w receives

(LOCK) from PH' it. updates its local database such that r is allocated to Pu with its allocation

t.imC'. When Pw sends (RESPONSE) message to P1n PlU knows that. r is already allocated. Thus.

Dw(7') = (PH' t) for somc t. 0

Theorenl. 16 Alg07"it1im AllocRcso'llrre .'/uamnip(,.<; Mutual Exci'U.<;ion condition.

(Proof) A~SllllH' that a resource r E 0'(Pu) n 0'(Pv) is allocated to both Pu and Pv simult.ane

ously, The proof is by induction. Mut.ual Exclusion condit.ion holds at the initial stat.e of t.he

'y telll since no resources are allocat.ed to processes. By Icmma 30. any two processes sharing

resources ar(' not in their Q-regions sillluit.aneolls1y. Wit.hout loss of generality, we assume

A.S. Correcfnc.qs Proof 101

that Pu lcavcs i t.s Q-rcgioll first by ~endillg (LOCK) messagc to allocat.c r to Pu' Thcn. Pv can

enter its Q-region only after all processes ill qu n'11} receiving (LOCK) mcssag'e from Pu , where

qu E Qu (q7J E Qv) is the quorum t.hat. PH (P1)) chooses for response request. Sincc Pu and Pv
share resources. qu n qv is not empty. Let. Pw be allY process in qu nqv. Then, Pw updatcs

it.s dat.aba.se so t.hat Dw(r) = (Pu, tu) holds for somc ttL by receiving (LOCK) message from Pu'

By lemma 31. every (RESPONSE) message scnt to Pu from Pw contains data Dw(r) = (Pu, tu).

Therefore Pv cannot choose r; a contradiction. 0

Theorem 17 Algorithm AllocReso'l.lTce is deadlock free.

(Proof) Since processes request all rcsources necessary when t.he resource access phase starts,

we do not. consider deadlocks caused by nested rcquests. We consider the deadlocks at the

query step.

Assume that. a deadlock happens. Since t.he Humber of processes is finite, there cxists a

time such t.hat. t.he number of processes being deadlocked does not increase afterwards. We

consider what will happen. Alt.hough t.here may cxist. processes which do not seud and/or

receive messages in general, without loss of generality, we can assume that there are no such

processes.

Let V ~ U be the set of processes being deadlock. and assume that Pu E V is the process

whose timest.amp attached to the (QUERY) message is thc smallcst (i.e., highest priority) among

V. The (QUERY) message by Pu will arrivc to every process in a quorum '1 E Qv in a fillite time.

Since thc logical clock monot.onically increases. t.he timestamp of Pu's (QUERY) will become the

highest among all processes. By the definition of the algorithm. each process Pv in q behaves

as follows. If Pv sent (RESPONSE) message to a process Pw E U but it ha.':! not received the

corresponding (LOCK) message, t.hen Pv sends (PREEMPT) message t.o Pw to switch t.he qncry

right to PH' If Pv receives (RETURN) message from Pw • it will send (RESPONSE) message to

Pl!' Otherwise. it will send (RESPONSE) message to Pu . when Pw rcturns (LOCK). since Pu's

(QUERY) has the highest priority. On the other hand. processes t.hat share resourccs with P u

does cannot. hr ill their Q-region. and hence. rcsources arc not. allocat.eei t.o t.hcm. Therefore,

within a finite t.ime. enough number of resources in ('((Pu) become free and the request by Pu

will be sat.isficd wit.hin a finite t.ime. a contradiction. 0

Next t.heorem can bc provcd by a similar argumrnt..

Theorem 18 Algorithm AllocReso'Urce i8 8tarll(l.tion jn'e. o

Now. we can conclude that. the algorit.hm AllofRe."o/l.rce correctly solves the reSOllrce allo

cation problem.

Theorem 19 Algorithm AllocRes01lrce solves th" rr..c;Ollrce allocation problem. o

102 Appendix A. Local Coteries (wd a D'isf1'ibufcrl Resource Allocation Algorithm

A.6 Concluding Remarks

In this appendix. we have discussed t.he resource allocation problem, and proposed a distrib

uted algorithm. Unlike other conflict resolution problems such as the mutual exclusion and

the k-mntual exclusion problems, we consider cases in which processes may have access rights

to different sets of resources. In order to take into acconnt. t.he resource share relation of the

system. we havc introduced a new concept called local cot.erie.

The nllluber of messages necessary to exchange per resource reqnest can be shown to be

41ql, where q E Qtt in the best case and (7 + 100(Pu)I)lql, where q E Qu in the worst case.

In ca.ses sneh that each resource is shared by small number of processes, since the quorum

size Iql, q E Qu can be small, our algorithm is suitable. The algorithm by Baldoni [Da194b]

requires O(n M /(M+l)) message per resource allocation. where 71. is the number of proccsses and

M is the numher of resources. If M is large, the message complexity of Baldoni's algorithm

become approximately 0(71.). which is less efficient than onrs.

Finally. we would like to tonch some future works. As a general advantage of quorum-based

approach. our algorithm is robust against process and/or link failures: as far as at lea.')t one

quorum "survives", there is a possibility that resource allocation can be achieved. However,

discussing t.he fault-tolerance aspect of this algorithm in detail is left. as a future work. The

local cot.erie construction algorithm proposed in this appendix is simple. However. the local

coteries produced are not always good ones. Constructing better local coteries is also left as

a future ta.'ik.

Appendix B

Implementations of Distributed
k-Mutual Exclusion Algorithrrls

The examples of implementation of two distribut.ed k-nl1ltual exclusion algorithms is shown

in this appendix. We show the implementation of our algorit.hm proposed in Chapt.er 4 and

the algorithm proposed by Raymond [Ra.y89a].

Each program fragment of t.he implement.at.ioll of dist.ributed k-mutual exclusion algorithm

shown below is a part of t.he source code which is used in t.he simulat.ion in Chapt.er 5 and

listed witho1lt any modifications.

The t.emplate of the implement.ation of algorit.hms is as follows:

Algori th m () :

{
I Initialization of Variables. etc. I

while (TRUE){

}

Si teBehavior(): /* decides t.he behavior of t.he process * /

Do active behavior decided by Sitr.Behavior().

if (no messages arri'ved)

continue:

I Recf'i·llr. a rne8sage I

Do pn .. 'lsive beha.vior dependr.nt on the rerr.ived me88age.

103

104 A7JPC7Irlix B. Implementations of Distrilru.terl l.:-Muhwl Exclusion Algorithms

The procedure SiteBehaviorO is a procedure t.o drcide a behavior of a proce:-;s. For ill

stance. a process is ill Normal state. it. decides t.o reqnest. a mut.ual exclusion wit.h specified

probability. According t.o such decision. process do its act.ive behavior. If a mutual exclusion

request happen. t.he process scnds request. messages. for inst.ance. After finishing active be

havior, the process checks message arrival. If a message is arrived, it read the message and

process the message according t.o its message t.ype. This is t.he passive behavior.

B.l Our Distributed k-Mutual Exclusion Algorithm using k
Coterie

void
KakugawaProcess(k, p, quantum, cycle, tcs)

int k;

{

double p;
int quantum;
int cycle;
int tcs;

SiteID
int
SiteSet
bool

Message
char
static bool
static bool
extern void

Y, Z;
Sy, Sz, WaitingY, WaitingSy;
Quorum, NextSites;
WaitingOkWait, NoMoreQuorum, WaitingTErnpty,
WaitingAnswer, WaitingExit;
Msg;
msgbody[80] ;
LexicoLess () ;
SelectAQuorum(), GetConsensusP();
Si teBehavior () ;

TransitNormalState() ;

WaitingOkWait
NoMoreQuorum
WaitingTEmpty
WaitingAnswer
Wai tingExit

false;
false;
false;
false;
false;

SetSiteSetErnpty(Quorum);
SetSiteSetEmpty(NextSites);

for (;;){

/***
*** DECISION OF BEHAVIOR OF SITE
***/

SiteBehavior(k, p, quantum, cycle, tcs);

if (ExitMutexJob)
return;

if (EnterCSRequestHappen){
/**
** MUTEX REQUEST HAPPEN
**/

TransitRequestingState();
EnterCSRequestHappen = false;
RequestingCS = true;
MaxSeq = MaxSeq + 1;
Seq = MaxSeq;
SelectAQuorum(Quorum, Coterie, SetK, SetT);

L1:
SiteSetDifference(NextSites, Quorum, SetK);
SendRequestToSet(NextSites);

B.l. Our- DisfTib7tf erl k·MutucLi E:l; du.~ion Al!)or-itli.lII U.~il1g k· Coterie

WaitingOkWait = truej
}

if (RequestingCS

}

and (NoMoreQuorum or (WaitingOkWait and SiteSetEmptyP(NextSites»»{
WaitingOkWait = falsej
if (GetConsensusP(SetK, Coterie»{

/**
** ENTER THE CS
**/

TransitInCriticalSectionState()j
RequestingCS = falsej
ExecCS = truej
NoMoreQuorum = falsej

} else if (not NoMoreQuorum){
/**

}

** FAILED TO GET A QUORUM ... RETRY!
**/

if (SelectAQuorum(Quorum, Coterie, SetK, SetT»{
goto L1j

} else {
NoMoreQuorum = truej

}

if (ExitCSRequestHappen){
/**

}

** REQUEST OF EXITING THE CRITICAL SECTION HAPPEN
**/

ExitCSRequestHappen = falsej
ExecCS = falsej
TransitExitingCriticalSectionState()j
SendReleaseToSet(SetK)j
SetSiteSetEmpty(SetK)j
WaitingTEmpty = truej

if (WaitingTEmpty and SiteSetEmptyP(SetT»{
/**

}

** EXIT THE CS
**/

WaitingTEmpty = falsej
TransitNormalState()j

if (not PendingMessage(»
continuej

Msg = ReceiveMessage()j
Y = SenderID(Msg)j

sscanf(GetMessageString(Msg), MESSAGE_TYPE_FORMAT, msgbody, &SY)j
MaxSeq = max(MaxSeq, SY)j

/***
*** MUTUAL EXCLUSION REQUESTING PROCESS
***/

if (StrEqual(msgbody, OK_MESSAGE»{
/**

** OK MESSAGE (procedure ReceiptOK)
**/

if (WaitingOkWait){

}
SiteSetRemove(NextSites, Y)j

if (RequestingCS){
SiteSetAdd(SetK, Y)j
SiteSetRemove(SetT, Y)j

} else {
SendRelease(Y) j

105

106

}

Appendix B. Implementations of Di.sh·ibntcrl k-Mutual Exclusion Algorithms

SiteSetRemove(SetT, Y)j
}

DisposeMessage(Msg)j
continuej

if (StrEqual(msgbody, WAIT_MESSAGE»{
/**

}

** WAIT MESSAGE (procedure ReceiptWAIT)
**/

if (WaitingOkWait){
SiteSetRemove(NextSites, y) j

}
SiteSetAdd(SetT, Y)j

DisposeMessage(Msg)j
continue;

if (StrEqual(msgbody, QUERY_MESSAGE»{
/**

}

** QUERY MESSAGE (Procedure ReceiptQuery)
**/

if (ExecCS && SiteSetMemberP(SetK, Y»{
SendAnswerNo(Y);

} else {

}

if (SiteSetMemberP(SetK, y»{
SendAnswerRelease(Y);
SiteSetRemove(SetK, Y);
SiteSetAdd(SetT, y);

} else {
/* already released before query arrives */
; /* ignore it */

}

DisposeMessage(Msg)j
continuej

/***
*** TOKEN MANEGER PROCESS
***/

if (StrEqual(msgbody, REQUEST_MESSAGE»{
/**

** REQUEST MESSAGE (procedure ReceiptRequest)
**/

if (HaveToken){
SendOk(Y, Sy);
HaveToken = falsej

} else {
if (LexicoLess(LatestTokenHolderSeqNo,LatestTokenHolderSiteID, Sy,Y»{

SendWait(Y)j
EnPQueue(PQueue, Y,SY)j

} else {
if (not WaitingAnswer){

WaitingY = Y;
WaitingSy = Sy;
SendQuery(LatestTokenHolderSiteID);
WaitingAnswer = true;

} else {
if (LexicoLess(WaitingSy,WaitingY, Sy,Y»{

SendWait(Y);
EnPQueue(PQueue, Y,Sy);

} else {
SendWait(WaitingY);
EnPQueue(PQueue, WaitingY,WaitingSy);
WaitingY = Yj
WaitingSy = Sy;

B.l. Our Distributed k-Mutual Exclusio n AI!}orith1ll using /,;- Co tc7'ie

}

}
}

}
/* See ReceiptANSWER_*** for following actions */

}

DisposeMessage(Msg);
continue;

if (StrEqual(msgbody, RELEASE_MESSAGE»{
/**

}

** RELEASE MESSAGE (procedure ReceiptRELEASE)
**/

if (WaitingAnswer){
goto GetPseudoAnsRel;

}

if (PQueueEmptyP(PQueue){
HaveToken = true;

} else {

}

Z = PQueueHeadltem(PQueue);
Sz = PQueueHeadPriority(PQueue);
DiscardPQueueHead(PQueue);
SendOk(Z, Sz);
HaveToken = falsej

DisposeMessage(Msg);
continue;

if (StrEqual(msgbody, ANSWER_RELEASE_MESSAGE»{
/**

}

** ANSWER_RELEASE MESSAGE (Token Manager Process)
**/

if (WaitingAnswer){
/* continued action of ReceiptREQUEST */
EnPQueue(PQueue, LatestTokenHolderSiteID,LatestTokenHolderSeqNo);

GetPseudoAnsRel:
WaitingAnswer = false;
SendOk(WaitingY, WaitingSy);

} else {
SendFatalError(IIANSWER_RELEASE arrived when !WaitingAnswer");

}

DisposeMessage(Msg);
continue;

if (StrEqual(msgbody, ANSWER_NO_MESSAGE»{
/**

}

** ANSWER_NO MESSAGE (Token Manager Process)
**/

if (WaitingAnswer){
WaitingAnswer = false;
/* continued action of ReceiptREQUEST */
SendWait(WaitingY);
EnPQueue(PQueue, WaitingY,WaitingSy);

} else {
SendFataIError(IIANSWER_NO arrived when !WaitingAnswer");

}

DisposeMessage(Msg);
continue;

/* ignore bogus msg */
DisposeMessage(Msg)j

107

108 Appendix B. 11I/.]Jle7l1cntafion ,~ of DistTibutcd k-Mutual Exclusion AlgoTithm,s

}
}

/***
*** GetConsensusP() - Check if all sites in a quorum send OK or not.
***/

static bool
GetConsensusP(SetK, Coterie)

{

}

SiteSet SetK;
kcoterie Coterie;

int q,; qs, n, i;
int f
SiteSet quorum;

n = GetTotalSites();
qs = HowManyQuorums(Coterie);

for (q = 0; q < qs; q++){
f = true;
NthQuorum(quorum, Coterie, q);
for (i = 0; i < n: i++){

}

if (SiteSetMemberP(quorum, i»{
if (!SiteSetMemberP(SetK, i»{

f = false;
break;

}
}

if (f)
return(true);

}
return(false);

static bool
LexicoLess(sl,xl, s2,x2)

int 51, 52;
SiteID xl, x2;

{
return«sl < s2)

or «sl == s2) and (xl < x2»);
}

B.2 Raymond's Distributed k-Mutaul Exclusion Algorithm

void
RarmondProces5(k, p, quantum, cycle, tcs)

lnt k;

{

double p;
int quantum;
int cycle;
int tcs;

Si teID
Message
Si teID
int
int
char
int
void
extern void

z·
M~g;
y.
Sy;
Count;
msgbody[80] ;
LexicoLess(), Not_In_CS();
SendRequestMessage(), SendReplyMessage();
Si teBehavior () ;

TransitNormalState();

B. 2. Raymond 's Dist7'ibutcd k-Mutaul Exd11.~io1/. AI.<Jorith71l

for (;;){

/***
*** DECISION OF BEHAVIOR OF SITE
***/

SiteBehavior(k, p, quantum, cycle, tcs);

if (ExitMutexJob)
return;

if (EnterCSRequestHappen){
/**

}

** MUTEX REQUEST HAPPEN
**/

TransitRequestingState();
EnterCSRequestHappen = false;
Requesting_CS = true;
Our_Seq = Max_Seq + 1;
for (Z = 1; Z <= N; Z++){

}

if (Z != me) {

}

SendRequestMessage(Z, Our_Seq);
Reply_Count[Z] = Reply_Count[Z] + 1;

if (ExitCSRequestHappen){
/***
*** EXIT THE CRITICAL SECTION
***/

ExitCSRequestHappen = false;
Executing_CS = false;
TransitExitingCriticalSectionState();
for (Z = 1; Z <= N; Z++){

}

if (Defer_Count[Z] != O){
SendReplyMessage(Z, Defer_Count[Z]);
Defer_Count[Z] = 0;

}

TransitNormalState();
}

if (!PendingMessage(»
continue;

Msg = ReceiveMessage();
Y = SenderID(Msg);
sscanf(GetMessageString(Msg), MESSAGE_TYPE_FORMAT, msgbody);

if (StrEqual(msgbody, REQUEST_MESSAGE»{

}

/**
** REQUEST MESSAGE
**/

sscanf(GetMessageString(Msg), REQUEST_FORMAT, msgbody, &Sy);
Max_Seq = max(Max~Seq, Sy);
if (Executing_CS

or (Requesting_CS and LexicoLess(Our_Seq,me, Sy,Y»){
Defer_Count[yJ = Defer_Count[YJ + 1;

} else {
SendReplyMessage(Y, 1);

}
DisposeMessage(Msg);
continue;

if (StrEqual(msgbody, REPLY_MESSAGE»{
/**

** REPLY MESSAGE
**/

109

110 Appendix B. Imp/cm cntntio1/.s of Di.~f. 1 ·i but erl k-MufufL/ Exclusion A/go1"ifhms

}

}

}

}

sscanf(GetMessageString(Msg), REPLY_FORMAT, msgbody, &Sy, &Count);
Reply_Count[Y] = Reply_Count[Y] - Count;
if (Requesting_CS

}

and (Not_In_CS())= N - k»{
/**
** ENTER THE CS
**/

Requesting_CS = false;
Executing_CS = true;
TransitInCriticalSectionState();

DisposeMessage(Msg);
continue;

1* ignore bogus msg */
DisposeMessage(Msg);

int Cnt;
SiteID Z;

Cnt = 0;
for (Z = 1; Z <= N; Z++)

if «Z != me)
and (Reply_Count[Z] 0»

Cnt = Cnt + 1;

return (Cnt) ;

B.3 The Behavior of a Process

The program fragment of a process behavior used 11l Chapt.er 5 is shown below. Functions

whose name ('nd by Hook are functions for collect.ing st.at.istic data. For instance, a function

EnterCSHook () is called when a process ent.ers a critical section and the number of times a

process ent.ers a critical section is counted by this function.

float ProceedCSAt = 0.0
float _TransitNormalAt = 0.0
float _MutexRequestHappenedAt = 0.0
static int InNormalStateTimeCounter = 0;

State
bool
bool
bool

MachineState = STATE_INITIAL;
EnterCSRequestHappen = false;
ExitCSRequestHappen = false;
ExitMutexJob = false;

extern void
EnterKMutexProcessHook(),
ExitKMutexProcessHook(),
SendHook(),
CSRequestHook () ,
EnterCSHook () ,
Exi tCSHook () ,
FinishMutexJobHook();

B.S. Th e B ehr.wior of a Process

void
SiteBehavior(k, p, quantum, cycle, tes)

int k;

{

}

double p;
int quantum;
int cycle;
int tcs;

float eval;

cval = CurrentClock();

if (cval >= (float)eyele){
ExitMutexJob = true;
return;

}

switch (MachineState){
case STATE_INITIAL:
case STATE_NORMAL:

if (cval >= _TransitNormalAt + (float) InNormalStateTimeCounter){
InNormalStateTimeCounter += 1;
if (Random() < (float) p){

EnterCSRequestHappen = true;
}

}
break;

case STATE_REQUESTING:
1* do nothing *1

break;
case STATE_IN_CRITICAL_SECTION:

if (eval >= (_ProceedCSAt + (float)tes)){
ExitCSRequestHappen = true;

}
break;

case STATE_EXITING_CRITICAL_SECTION:
1* do nothing *1
break;

default:
fprintf(stderr, "Cannot happen in SiteBehabiourO\n");
exit(-1). } ,

void
TransitNormalState()
{

}

State oldstate;

_TransitNormalAt = CurrentCloek();
InNormalStateTimeCounter = 0;
oldstate = MachineState;
if ((MaehineState != STATE_EXITING_CRITICAL_SECTION)

&& (MaehineState != STATE_INITIAL)){
fprintf(stderr, "bogus state transition to NORMAL state\n");
exit (-1). } ,

MachineState = STATE NORMAL;
if (oldstate == STATE EXITING CRITICAL SECTION)

FinishMutexJobHook(); - -

void
TransitRequestingState()
{

_MutexRequestHappenedAt = CurrentClock();
if (MachineState != STATE_NORMAL){

fprintf(stderr, "bogus state transition to REQUESTING state\n");
exit(-1);

111

11 2 Appendix n. 11IIpiemenfation8 of Dish'ilmted k-Mutual Exclusion Alq01'itlm/,s

}

}
MachineState = STATE_REQUESTING;
CSRequestHook () ;

void
TransitInCriticalSectionState()
{

}

_ProceedCSAt = CurrentClock();
if (MachineState != STATE_REQUESTING){

fprintf(stderr, "bogus state transition to InCriticalSection state\n");
exit(-1);

}
MachineState = STATE_IN_CRITICAL_SECTION;
EnterCSHook () ;

void
TransitExitingCriticalSectionState()
{

}

if (MachineState != STATE_IN_CRITICAL_SECTION){

}

fprintf(stderr, "bogus state transition to InCriticalSection state\n");
exit(-1);

MachineState = STATE_EXITING_CRITICAL_SECTION;
ExitCSHook();

Bibliography

[AA89]

[Ba189]

[Ba194a]

[Ba194b]

Divyakant Agrawal and AmI' El Abbadi. An efficient solution to the (li~tributed

mutual exclusion problem. In Principlcs of Distribu.ted Comp'uting, pages 193 200,

August 1989.

Henri E. Bal. Programming languages for dist.ributed simulation comput.ing sys

tems. A CM Computing Sur'lIcys, 21 (3):2Gl -322. September 1989.

Roberto Baldoni. Mutual Exclusion in DistTibv,ted System8. PhD thesis. U niversita

di Roma "La Sapienza", 1994.

Roberto Baldoni. An O(n M I(M +1)) distributed algorithm for the k-ont of-m re

sources allocation problem. In The 14th Interna.tional Conference on Distrib'uted

Computing Systems, pages 81 - 88, 1994.

[BC94] Roberto Baldoni and B. Ciciani. Distrilmted algorithms for multiple entries to a

crit.ical section wit.h priority. Information Processing Letters. 50:1G5- 172. 1994.

[BGM87] Daniel Barbara and Hector Garcia-Molina. The reliability of voting mechanisms.

IEEE Tran!;actions on Comvuters, C-3G(10):1197- 1208, October 1987.

[BP89] J. E. Burns and J. Pachl. Uniform sclf-stabili'l,ing rings. A CM Transactions on

Programming Languages and Systems. 11(2):330 -344. April 1989.

[BS91] Rajive L. Bagrodia and Chicn-Chung Shell. Midas: Integrated design and sim

ulation of distributed systems. IEEE Transactions on Software Engineering,

17(18):1042- 1058. October 1991.

[Bur94] J. E. Burns. private communication. J nly 1994.

[CAA90] Shun Yan Cheung, Must.aquc Ahamad. and Mostafa H. Ammar. Multi-

dimensional voting: A grneral method for implcmcnt.ing synchronizat.ion in dis

tributed systems. In Procf?p.dings of 10th International Conference of Distrib'uted

Computing Systems, pagcs 3G2- 3G9, 1990.

113

114

[CM84]

Bibliography

K. M. Chandy and J. Misra. The drinking philosophers problem. A CM Transac

tions on Programming Lang'u,agcs and Systp.ms, 6(4):632--646, Octobcr 1984.

[CR83] O. S. F. Carvalho and G. Roucairol. On mut.ual exclusion in comput.er networks.

Commv:n.iwtions of the ACM, 26(2):146 -147. Febrnary 1983.

[CTW92] Don Coppersmith, Prasad Tetali, and Pct.er Winklcr. Collisions among random

walks on a graph. SIAM Journal of Discrete Mathematics, 6(3):363- 374. August

1992.

[Dij68] E. W. Dijkstra. Programming Lang'Uages. chapter Sequential Communicating Pro

cesses. Academic Press. N.Y .. 1968.

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spit.e of distributed control. Communi

cations of the ACM, 17(11):643- 644. November 1974.

[Dij82] E.W. Dijkstra. Self-stabilizat.ion in spite of distributed control. In Reprinted in

Selected Writing on Computing: A Per80nal Per8pectille. pages 41- 46. Springer

Verlag, Berlin, 1982.

[DIM90] S. Dolev, Amos Israeli, and S. Moran. Self stabilization of dynamic systems as

suming only read/write atomicity. In Proceeding8 of the 9th A CM Symposium on

Principle8 of Distrib'u,ted Comp1.l,ting, pages 103- 117. ACM, 1990.

[DIM91] Shlomi Dolcv, Amos Israeli, and Shlomo Moran. Uniform dynamic self-stabilizing

leader election. Lecture Notes for Computer Science 579, pages 167- 180, 1991.

[DIM93] Shlomi Dolev. Amos Israeli, and Shlomo Moran. Self stabilization of dynamic

syst.ems assuming only read/write at.omicit.y. Distributed Computing, 7:3- 16,1993.

[FDG94] Mit.chell Flatcbo, Ajoy Kumar Datt.a. and Sukumar Ghosh. Readings in Di.<;trib

'Uted Computing Systems. chapter Self-St.abilization in Distributed Syst.ems, pages

100- 114. IEEE Computer Society Press. Los Vaqueros Circle, Los Alamos, CA,

USA. 1994.

[FLP85]

[FYA91]

[Gh091]

Michael J. Fischer, Nancy A. Lynch. and Michacl S. Pat.erson. Impossibilit.y of

dist.ributed consensus with one faulty process. Journal of the ACM, 32(2):374- 382,

April 1985.

Sat.oshi Fujita, Masafumi Yamashit.a, and Tadashi Ae. A non trivial solution of

the distributed k-mutual exclusion problem. ISA '91 Algorithms LNCS 557, 1991.

Sukllmar Ghosh. Binary self-st.abilization ill distributed systems. Information

Proce8sing Letters. 40(3): 153- 159, N ovcmber 1991.

Bibliography 115

[Gif79] D. K. Gifford. Weightcd votillg for rcplicat.rd data. In Proceedings of 7th Sympo-

8i'u.m on Operating Syste'ms, pages 150 162. ACM. 1979.

[GMB85] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a dist.ributed

syst.cm. Journal of the ACM. 32(4):841 860. Oct.obcr 1985.

[Hag90] Kcn'ichi Hagihara. Dist.ri bu ted algori t.hms. Journal of Information PTocessing

Socidy of .lapan, 31(9):1245- 1256, Sept.cmber 1990. (ill Japanese).

[Hag93] Ken'ichi Hagihara. Algorithms for fault-tolcrant distributcd sys1l:ems. Journal of

InfoTmation Processing Society of .lapan, 34(11):1336- 1340. Novembcr 1993. (ill

J apanesc).

[Her90] Tcd Herman. Probabilistic self-stabilization. InfoTmation PT'ocessing Letters,

35(2):63- 67. June 1990.

[Hua93] Shing-Tsaan Huang. Leader elcction ill uniform rings. ACM Transactions on

Programming Languages and Systems. 15(3):563- 573. July 1993.

[IJ90] Amos Israeli and Marc J alfon. Token managcment schemes aILd random walks

yicld self stabilizing mutual exclusion, In Proceedings of the 9th A CM Symposium

on Principles of Distrib'uted Computing. pagcs 119 131. ACM. 1990.

[IK91] Toshihide Ibaraki and Tiko Kameda. Thcory of coteries. In Proc. 3rd Symp, on

Pam.llel and Distrib'uted Systems. pages 150- 157. 1991.

[Kum91] Akhil Kumar. Hierarchical quorum conSCllSllS: A ncw algorithm for managing

rcplicated data. IEEE Transa.ctions on Comp'll,ters. 40(9):996--1004. Septrmber

1991.

[Lam78] Leslie Lamport. Time, clocks. and thc ordering of evcnts ill a distribut.cd syst.cm.

Comm:u.nications of the ACM. 21(7):558- 565. July 1978.

[LS92] C. Lin and J. Simon. Observing self-stabilizat.ion. In Proceedings of the 11 til A CM

Symposium on Principles of Distributed Computing. pagcs 113- 123. ACM. 1992.

[MA93] Yoshifumi Manabe and Shigcmi Aoyagi. A dist.ributed k-mutllal exclusion algo

rithm using k-cotcrie . IEICE Japan. SIC Computation Record. COMP91-13:11-

18. May 1993. (in Japancsc),

[Mae85] Mamoru Maekawa. A IN algorithm for mutual exclusion ill decentralizcd systems.

ACM Transactions on Computer Systems. 3(2):145- 159. March 1985.

[Mis86] Jayadcv Misra. Distribut.ed discret.c-cvcnt simulat.ion. A CM Comp'U,ting S'u.rveys,

18(1):39- 65. March 1986.

116

[Miy94]

BiMiography

Hidcnori Miyamoto. A Ht.lldy on quorum based approach for solving t.he anony

mous resource conflict resoillt.ion problem. Mast.er's t.hesis. Hiroshima Univcrsit.y,

February 1994.

[MLR91] Masaaki Mizuno, MitclH'1l L.Ncilscn, and Raghavendra Rao. A token based dis

tributed mutual exclusion algorithm based on quorum agreements. In Proc. of

11 til. Interna.tional Conference on Di8trib'll,ted Compv,ting SY8tems, pages ' 361- 3G8,

May 1991.

[MYKC94] Shyan Ming Yuan and Her K un Chang. Commcnts on I'availability of /':-coterie".

[NM92]

[NM94]

IEEE Transaction8 on Comput.ers, 43(12):1457. December 1994.

Mitchell L. Neilscn and Masaaki Mizuno. Cot.erie join algorithm. IEEE Transac

tion8 on Parallel and Dist.rib·uted SY8tem8, 3(5):582- 590, 1992.

Nitchcll L. Neilsen and Masaaki Mi,mno. Nondominated k-coteries for multiple

mut.ual exclusion. Informa.tion Proce8.',ing Letter8, 50:247- 252, 1994.

[NMR92] Mit.chell L. Ncilsen , Masaaki Mizuno. and Michel Raynal. A general mct.hod to

ddinc quorums. In Proceedings of 12th International Conference of Distributed I

Computing System8, pages 657 664. 1992.

[NMT92] Naoki Nishikawa, Toshilllit.su Masuzawa, and Nobuki Tokura. Uniform self

stabilizing algorit.hm for mut.ual cxclusion. IEICE Japan. J75-D-I(4):201- 209,

April 1992. (in Japancsc).

[RA81] GIC'nll Ricart auel Ashok K. Agrawala. An opt.imal algorithm for mutual exclusion

in computer nctwork. Comm:u.nica.tions of the ACM. 24(1) :9- 17, January 1981.

[R.A83] GlC'llll Ricart and Ashok K. Agrawala. Aut.hor's response to IOn mutual exclusion

in computer networks' by Carvalho and Roucairol. Communications of the ACM\

26(2):147 148. February 1983.

[Ray86] MichC'1 Raynal. Algorithm8 for M·ut'll.al Exclusion. North Oxford Academic. 1886.

(Trauslatcd by D. Beeson).

[Ray89a] KrlTY Raymond. A distrihuted algorithm for multiple entries to a critical section.

Informa.tion Proce.'ising Letter8. 30:189 -193. February 1989.

[Ray89h] KClTY Raymond. A trec-based algorit.hm for distribut.ed mutual exclusion. ACM

Tra fl.8action8 on Computer System8. 7(1):61- 77. Febrnary 1989.

[Ray91a.] Michel Raynal. A di~t.ribut.cd solntion t.o t.he k-out. of-m resources allocation

prohlem. III Lecture Notes in Com1mter Science 497, pages 599- 609. Spring;er

Verlag. 1991.

Bibliography 117

[Ray91b] Michel Raynal. A simplc taxonomy for dist.ribut.ed mutual exclusion algorit.hms.

ACM Operating Systems Re'l1'iew. 25(2):47- 51. 1991.

[San87] Bcvcrly A. Sanders. Thc information st.ruct.urc of mutual exclusion algorit.hms.

ACM Transactions on Comp1/,tr:r Sy.<;tr-m.,<;. 5(3):284 299, August 1987.

[Sc1193] Marco Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45 67. March

1993.

[SG92] Abraham Silberchat.z and Pctcr B. Galvin. Opemt'ing SY8tems Conr.epts Fourth

Edition. Addison-Wesley, Reading, MA. 1992.

[Sin91] Mukesh Singhal. A class of dcadlock-frcc mackawa-type algorithms for mutual

exclusion in distributed systems. D'l.<;tTib 'uted Computing. pages 131 138, April

1991.

[SK85]

[SM92]

[SR92]

[SS94]

Ichiro Suzuki and Tadao Kasami. A distributed lllutual exclusion algorithm. ACM

Tran.'>actions on Computer System.'>. 3(4):344- 349. November 1985.

R, Satyanarayanan and D. R. Mut.llllkrishllall. A note on Raymond's tree

based algorithm for dist.ributcd mutual cxclusion. Information Proce,<;.<;ing Let

ter,ci. 43(5):249- 255, Octobcr 1992.

Pradip K. Srimani and Rachamallu L.N. Reddy. Anot.her distributcd algorithm for

multiplc entries to a critical section. Inform.ation Proces.'>ing Letters, 41(1):51- 57 ,

January 1992.

Mukcsh Singhal and Niranjan G. Shivaratri. Ad'panced Concepts in Opr-rating

Sy.<;tems - distributed. da.tnbase. and muitiproce880r operating system.". McGraw

Hill. 1994.

[STHK93] Jchn-Ruey Jiang Shing-Tsaan Huang and Yu-Chcn Kuo. k-cotcrics for fault

t.olerant k ent.ries to a cri tical scction. In Proceedings of 13th International Con

ference of Distributed Compll,ting Sy.'>t.r.ms. pagcs 362- 369. 1993.

[Sun90]

[Tan95]

[Tau91]

[Tho79]

Sun Microsystcms. INC. Network Programming G-uide. part number: 800-3850-10

rcvision a of 27 edition. 1990.

Andrew S. Tanenbaum. Distr'lb'u.ted Operating SY8tems. Prentice Hall. 1995.

Gadi Taubcnfeld. On thc nonexistence of resilicnt consensus protocols. Informa

tion Processing Letter,';. 37:285- 289. March 1991.

R. H. Thomas. A majorit.y conscnsus approach t.o concurrency control for multiple

copy databases. A CM Tran8action8 on D(1.taba..'>e Systems. 4(2), 1979.

118

[Tok89]

[Yam93]

Bibliography

Nobuki Tokura. A tool for distributed algorit.hm simulation. Journal of Informa

tion Processing Society of Japan. 30(4):380- 386. April 1980.

Masafumi Yamashita. The distributed m11t.ual exclusion problem and cot.eries.

Journal of Informat'ion Proces8ing SociP.iy of Japnn. 34(11):1350- 1357, November

1003. (in Japanese).

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063

