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General Introduction 

Problems on the Theoretical Treatment of 
Electronic Structures for Extended Aperiodic Systelns 

by Quantum Chemical Calculations 

In this chapter, some problems on the conventional study by the molecular orbi tal and 

crystal orbital methods for the theoretical treatment of aperiodic polymers and perturbed 

crystals are summarized, and the btief discussion to overcome those points is given. 
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General Introduction 

Recently, the computer-aided approach has come into wide use in the tudy of 

science by the remarkable progress in technology, and nowadays, the rapid deyelopment 

and the extensive improvement of \'arious program packages enable every chemists to 

carry out the computational studies by the methods as quantum chemical calculations, 

molecular dynamics simulations, and so on. Therefore, the role of theoretical chemists 

will become more and more important, and thus, the cooperation betwcen theoretical 

and experimental studies \vill contri bute to the advance of chemical research such as 

the design of new functional materials. 

In the field of quantum chemistry, the methods to calculate the electronic structures 

of snlall molecules and completely periodic systems haye already been well established 

at the present time. The molecular orbital (MO) method is available for snulll molecules, 

\vhiIe the crystal orbital (CO) method for periodic systems. These theoretical approaches 

ar~ very useful in studying the electronic property of the systenls, and therefore, those 

are widely applied to \'arious systems. 

The MO calculation is a very po\verful tool on the theoretical study for electronic 

states of. mall molecules. By this method, various properties of molecules, for example, 

molecular structures, spectroscopic parameters, electron density distributions, energetic, 

and so on, can be obtained theoretically. 1 Furthermore, the methodology of MO approach 

including the treatment of electron correlation is much sophisticated, and rnany advanced 

program packages are deyeloped and used. 

The CO theory enables us to obtain the electronic characters of thc bulk systems 

as one-dimensional polymers, hvo-dimensional surfaces, and three-dimensional crystals 

\"ith perfect periodic arrangements. For instance, band structures and density of states 

\vhich characterize the periodicity can be determined from the CO approach .2,3 However, 

the impn.)\·ement and spread of general programs for the crystal computation is delayed 

in comparison with the molecule computation. 

On the other hand, there are some problems in applying these quantum chemical 

treatments to the large systems without periodicity or the extended systems with both 

periodic and aperiodic parts. In other \-vords, it is difficult to calculate random polymers 

or perturbed crystals by the MO or CO method directly. The cluster or supcrccll model 

is used in the usual MO or CO study, but the model has the difficulty which is mainly 

due to the limitation for the capacity of computer in practical computations. 

Generally, it is ob\'ious for anyone that the computational studies largely depend 

on the ability of computer (cpu time, memory, cost, and so on) and also the economical 

environment of user. That is, the practical works by the applications of the MO or CO 

calculation to extended aperiodic systems arc restricted within the upper linlit which 

can be permitted in the above-mentioned situation. Thus, it is hoped that a new manner 

is developed to study such systems more efficiently and more systematically instead or 

the con\'entional approaches. 
Here, the con\'entional approaches and the main problems on their applications 

to the theoretical treatment of aperiodic pol) mefS and perturbed crystals are summarized 

as follows. 
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General Introduction 

At first, the computational approach on aperiodic polymer systems is described. 

In studying the electronic structure of a polyrner system based on the quantum 

chemical calculation, the most different situation in comparison with the calculation of 

a small Inolecule is that it is irnpossible 10 calculate the whole 1110leclLlle of polYl11er 

with large size. For that reason, we need a model system of extended polymer by any 

way in the practical study. 

One approach to deal with a polYl11er is the cluster model in which a polymer is 

approximated by a molecule \\ i th several units of the polymer. Ho\\,ever, we can not 

know the electronic properties of the polymer from the calculated result of a cluster 

having the specific size because the electronic natures may depend on the cluster size. 

Therefore, to extract the characters of the polymer by this 1110del, the MO calculations 

of various clusters must be performed individually by taking the size of cluster larger. 

In the iterative calculations, we regard the converged properties of the energy per unit, 

the electron density distribution, and so on as that for the bulk limit of the polymer. 

This cluster approach can be applied to any nonperiodic polymers because the units 

which form a cluster are not limited to be the same with each other, but its application 

is restricted by the size of cI uster and the upper limit of cluster size is determined by 

the capacity of computer. Also, the detection of periodic state such as the band structure 

in a periodic polymer is not necessarily clear. 

Another is the CO calculation by assuming the perfect periodicity of a polymer, 

that is, a polymer is approximated as a one-dimensional crystal with periiodic sequence 

of its constituent unit. In this approach, the eigenvalue problem of polymer is solved 

under the periodic boundary condition to obtain the COs which satisfy the translational 

symmetry of polymer. By this crystal model, \ve can know the electronic property of 

the bulk state without the end effect and obtain the band structure or the density of 

states \vhich characterizes the periodic nature. Ho\vever, this method is so restricted by 

the periodic boundary condition itself, that is, it requires the periodical sequence of 

same uni ts in molecular geometry by \vhich it is difficult to treat the aperiodic eff ecL 

Thus, if the supercell which is a large periodic unit including aperiodic part is employed, 

polymers \vith local aperiodic part can be treated by the CO method, but it has little 

power on the study of electronic structures for random polymers. 

As is pointed out above briefly, the MO calculation and the CO calculation may 

be applied to random polymers and local ap<;riodic polymers, respectively, but, the 

methods have the problems on the treatment of the size effect in the cluster model and 

the aperiodic effect in the crystal model for nonperiodic polymer systems. In particular, 

for periodic polymers with aperiodic part within a local region, the most difficulty in 
studying the systems is caused by the fact that we must take into accoullil the following 

two states connecting with each other in a polymer chain simultaneously, that is, the 

periodic-extended state which can be represented appropriately by the C() as a polymer 

with periodicity and the aperiodic-localized state \vhich is suitable to be described by 

the MO as a cluster in periodic surroundings. Moreover, the optimal size of cluster or 

supercc11 can not be determined beforehand. 

3 



General Introduction 

At second, the computational approach on perturbed crystal systerns is described. 

In these s),stenls, because the periodicity of systems is broken in a local region, 

it is not eas)' to apply the CO theory to the perturbed systems. This theory assUlnes the 

perfect periodicity of \"hole systems, and, the periodic boundary condition is a serious 

restriction itself. In contrast with the CO approach, the MO approach has no limitation 

concerning the periodic sequence of constituent in the systems. Ho\\'e\'(~r, thi s rnethod 

can not reproduce the bulk electronic distributions si nce neighboring 1110lecules are 

absent by its free boundary condition, thus, the electronic states at the center and at the 

edge are different. 

In applying the CO and MO methods to the perturbed crystal sys tems, we must 

take the systems larger to satisfy the local or the bulk nature of the electronic states as 

follo\vs. In the crystal approach, a supercell which is an extended unit for the periodicity 

of the system must be large enough so that the interactions among perturbed parts in 

neighboring cells are negligible small and do not affect on the local dectronic states 

\vith each other. In the molecule approach, the size of a cluster molecule has to be 

sufficiently large in which the influences of molecular edges do not reach to the region 

around a local perturbed part and do not disturb the bulk electronic condition in its 

surrounding. Ho\ve\,er, it is impossible to kno\v a priori the effective size of uperccll 

or cluster in which the electronic structures of the perturbed systems can be described 

correctly \"ithout the effects of boundar) conditions. Therefore, we need to repeat the 

calculations against the systems \vi th different sizes to find the optimal size by moni toring 

the convergence of the local perturbed electronic property. These sitUiations suggest 

the serious problem that the larger the perturbed systems beconle, the n~ore enormous 

the computational efforts like as the calculations of integrals or the diagonalil.ation of 

matrices in the CO or MO study becolne. 

A local perturbation in an extended periodic system has mainly been dealt \vith 

by using the cluster model. Several reasons for using the cluster model instead of the 

supcrcell model may exists. Important one of them may be that the MO theory i very 

advanced and the calculations at the Hartree- Fock and the beyond- Hartree-Fock levels 

can be carry out by the general program packages with easy use. In other words, there 

is few packaged tools with popularity which can be used handily in the field of CO 

calculation. However, as for the evaluation of the bulk electronic structures in the pure 

and perfect periodic systems, it should be expected that the COs are more advantageous 

than the MOs, because the former satisfies the translational symmetry of the perfect 

periodic S) stem without the boundary effect while the latter includes the edge effect 

by the free boundary condition. Furthermore, the program package which enable us to 

calculate the bulk electronic properties for one-, t\VO-, and three-dimensional crystalline 

systems at the ab initio level is developed and released recently. That is, we have now 

arri "ed at the starting stage toward the deVelopment of a new method to examine the 

effects of local disordering in periodic systems effectively. 

Next, the brief discussion to conquer the subjects on the theoretical approach 

described above is given in the following. 
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General Introduction 

Many trials for the calculations of large extended molecular systems and their 

results for various moleculcs ha\ 'e been reported. Howe\,er, the fraglTIentation of system 

is pre-assumed, thus, further calculations against the different selection of fragments 
nlust be required in order to find the suitable size of fragment.+ 12 

Several attempts to treat locally perturbed periodic sys tems by Green function 

technique have been carried out. This ITIethod may surely be useful, but it may appear 

as to be more complicated in the practical works for c0l11putation of ills formulation. 

Moreo\'er, the partition for perturbed and unperturbed regions in the '- y. tern is assumed 

in advance, and also, the former region is calculated exactly while the latter region is 

dealt \vith approximately in e\'aluating the total electronic structure of sys tem. Therefore, 

the determination of interacting range is arbitrary and the calculated resuhs may largely 

depend on its selection. 13
-

J9 

To overcome the size effect in the cluster or supercell model, we should determine 

un-iquely the general interaction space among the partitioned fragments in extended 

aperiodic molecule or between the periodic and aperiodic parts in perturbed periodic 

system \vith no assumption for its range. It may be a\ ailable by the following calculation 

of t\vo-step procedure. Firstly, \ve obtain the electronic structure of appropriate cluster 

or periodic system exactly to usc as the starting point. Secondly, the inlleraction space 

is extracted from the starting system under a perturbation such as the connection with 

other fragments or apeliodic parts, and then, the eigenvalue problem is solved within 

the interaction space only to evaluate the electronic state of whole systenl successively. 

The most important point is that this approach should not have any assumptions with 

regard to the range of given perturbation in the system \vhen we estimate the electronic 

property of perturbed system. In other \vords, the key point in the idea is the separation 

of system into the size-dependent and size-independent parts at the MO or CO level. 

In order to realize this idea in practical works, the total orbital space of systelTI 

must be di\ 'ided into the following two subspaces constructed with the interaction and 

noninteraction spaces under a given perturbation by the general formulation theoretically. 

The method has been proposed as the elongation method by the MO calc:ulation.20
,2 1 

In this thesis, the general MO and CO approaches in place of the usual treatments, 

\vhich enable us to carry out the efficient and systematic studies of electronic structures 

for extended aperiodic systems based on the concept explained above, are proposed. 

Those are the extension of the elongation method. 

This thesis consists of the following chapters. In Chaps. 1 and 2, the CO-based 

elongation method is developed at the CNDO/2 level and the results of its application 

to the local aperiodicity in polymer and the molecular stacking on surface arc reported. 

In Chap. 3, the extraction of periodicity in the electronic structures of nonperiodic 

polymers by the MO-based elongation calculation using AMI parameters is discussed. 

In Chap. 4, Ab initio treatment of locally perturbed periodic systems are described by 

the two-dimensional CO method. Finally, as the general conclusion, the progresses on 

the theoretical treatment of electronic structures for extended aperiodic systems IS 

summarized contrasting the present approach with the conventional method. 
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General Introduction 
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Chapter 1 

Calculations of PolY111er Syste111s with Local Aperiodic Part: 
Elongation Method with Supercell Method 

In this chapter, we propose a ne\\' theoretical approach to treat polymer systems with 

local aperiodic part efficiently. This approach is the combination of Ithe elongation 

method \vith the supcrcell method \-vhich has been developed in our group, and we 

de"eloped this approach to obtain the electronic structure of a polyo1er having local 

aperiodicity by considering the locality of the interaction bet\veen periodic and local 

aperiodic parts. In order to confirm the validity of this method, several model calculations 

were performed at the complete neglect of differential overlap (CNDO/2) le\ el. That 

is, \\le applied this method to all- tra IlS polyacetylene interacting wi th a s'mall molecule, 

and to all-trans polyacetylene \vith partial substitution of hydrogen atolTIS by Ouorine 

atoo1S. We compared the results obtained by this calculation with those obtained by 

usual crystal orbital calculation concerning total energy, computational time and electron 

density distribution. The charge extension on polymer chain under the influence of 

aperiodici ty ,vas also discussed. 
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Chap. 1 : Elongation MethoJ with Supercell Method 

1.1. INTRODUCTION 

A theoretical method to calculate the electronic structures or conlplete periodic 

polynlers has already been established a the crystal orbital nlethod, I and it has been 

applied to various periodic polymers at the Hartree-Fock leYel.2 In the approach, a 

periodic polymer is considered as a one-dimensional crystal and the eigenvalue problem 

is solved under the Born-von-Kaman periodic boundary condition to obtain the crystal 

orbitals which satisfy the translational sYl1lmetry of the system. MOreOyef, the treatment 

at the post- Hartree-Fock level including the electron correlation effect has been developed 

in recent years. 3-7 Thus, the application of the ITIethods in quantum che111ical calculations 

to pol) mer sys tems with no periodicity remains as one important problem at present. 

The study in this direction is no\" in progress by various groups.8-1O 

Our group has developed the methods to deal with the aperiodicity of polymer 

systems. We have proposed 1\vo approaches, that is, the molecular orbital and the 

crystal orbital approaches. As an approach using the molecular orbital method, we 

considered the extension of the molecular cluster system, and proposed the method to 

obtain the electronic structure for the extension process of the system as the elongation 

method. II In this approach, we combine a small molecule or a nlolecular fragment 

with the end part of the starting cluster with appropriate size one after another by 

taking an important interaction into the eigenvalue problem of the extended system 

and dropping the unimportant part. By repeating this procedure, it is pos ible to calculate 

the electronic structure of periodic or aperiodic polymers systematically and efficiently, 

that is, a theoretical synthesis of polymers. Furthermore, the information about an 

electronic state in the local region of polymers can be extracted, for instance, local 

density of states in aperiodic polymers 12 or stationary condition of the electronic structure 

against the extension. 13 On the other hand, as an approach using the crystal orbital 

method (the supcrcell method),14 a perturbational treatment by using the iterative 

transfer perturbation method was reported, and \ve applied is to the interaction between 

a periodic polymer and a s111alllTIolccule, 15-18 or to polymers including the local aperiodic 
part. 19 

In the present chapter, as a ne\v approach using the crystal orbital method, we 

propose a \'cuiational treatment to calculate the electronic structure of polymer systems 

with local aperiodicity. In order to develop thi~ approach, we combined the elongation 

method 11, 13 "vith the supcrcell method. 14 In this method, the crystal orbi ~als for the unit 

cdl, \vhich is a minimum periodic unit for the translational symmetry, are transformed 

into those for the supcrcell, \vhich is a large periodic unit including several unit cells, 

at first. Next, \ve choose the orbital set interacting strongly with the local aperiodic 

part from the crystal orbitals for the supercell by an analogous procedure in the 

elongation method. 13 Then, we solve the eigenvalue problem represented with the 

selected orbital set. The procedure mentioned abo\ 'e, namely, selecting the orbital ct 

under the effect or local aperiodic part and solying the eigenvalue problem represented 

with the orbital set, is repeated until the local interaction converges. 
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Chap. 1 : Elongation Method with Supcrcell Method 

In order to demonstrate the generality and validity of our approach, we formulated 

and programmed these procedures at the complete neglect of differential overlap 

(CNDO/2) level,20,21 and several model calculations ,,'ere carried out. V"; e applied this 

method to all- trans polyacetylcne interacting \\'ith one small molecule HX (X=H,F,Li) . 

We chose a hydrogen molecule as a model of the simple system, and hydrogen Ouoride 

or lithium hydride as a model of the polar systeI11. Furthermore, all- trans polyacetylene 

substituted hydrogen atoms by fluorine atoms partially was dealt with by this method. 

In the following sections, we descri be the outline of this methodology and show the 

reliability of this treatI11ent by comparing the results obtained by using this method 

wi th those obtained by using the usual crystal orbital method. 
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Chap. 1 : Elongation Method with Supercell Method 

1.2. METHOD 

Crystal orbitals or a periodic polymer can be obtained by using the tight-binding 

approximation under the periodic boundary condition in the foIlo,ving fornl: 

N - \ M 

\Vi(kl/) = (1/ N)\ /2 2 2 cxp (ikll l) Cli(kl/)x(r- r( -La), (1.1 ) 
I=() ( = 1 

ku = 2JT{J / N (p = 1, ... ,N), (1.2) 

\vhere I specifies a unit cell in the polymer consisting of N cells, kll is the wave 

number vector, a the lattice vector, i an energy level, f an atomic orbital, and r the 

position vector of an electron, i denotes the imaginary unit H. Here, the periodic 

polymer is approximated as a one-dimensional crystal containing infinite unit cells, 

that is, infinite sequence of a minimum periodic unit for translational sYInmetry. 

The crystal orbitals for the unit cell can be transformed into those for the 

supercell by using the method proposed by us before. Here, supercell is a large periodic 

unit consisting of m unit cells with the lattice vector ma. Namely, the wave number 

vector kll , and the atomic orbital coefficients Cli of crystal orbitals for unit cell are 

transformed into those for the supercell as follo\vs: 

ks = mkll - 2jn (j; integer), (1.3 ) 

-
C(i(n/ks) = Cli (ku) cxp [i (n - l)kl/], (1.4) 

,vhere n denotes the nth cell in the central supercell and j should be selected in order 

that ks is in the range of the first Brilloin zone. The explanation of these relations i 
sho,vn in Refs . 14-19 

In the present approach, since we study the local aperiodicity in a periodic 

polymer, it is convenient to treat the system based on the supcrcell. Thus, as the first 

step, after solving the eigenvalue problem to obtain the crystal orbitals for unit cell, we 

transform the crystal orbitals into those for superccll. This transformation corresponds 

to that from reduced zone scheme to extended zone scheme, which means the extension 

of periodic unit for translational symmetry. 

Now, ,ve consider the interaction \vith local aperiodic part added to supercell. 

In the case of local interaction in a large system, there is no need to deal "vith the 

interaction with all orbitals of the large system. Thus, we divide the whole system into 

two subsystems at the orbital level, and solve the eigenvalue problem represented with 

the interaction orbital set in t\vo subsystems. Namely, the crystal orbitals for the 

supercell are divided into active orbitals which may be affected by the local interaction 

and frozen orbitals which will haye no change after interacting with the local aperiodic 

part, and we choose the specific orbital pairs interacting strongly with each other from 

the active and frozen orbitals, respectively. 
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Chap. 1 : Elongation Method with Supercell Method 

In order to perform the subdi"ision mentioned above, the rollo\\'ing interaction 

block of the Fock matrix is calculated, 

(I. Sa) 

(l.Sb) 

where F is Fock operator, {<D,} (i=l, ... ,N) and {tl'j} (j=l, ... , M) indicate the specific 

orbitals that are interacting \"ith each other, occ and vac represent occupied and 

"acant orbitals, respectively. The matrix elements in Eq. (1 .5) correspond to the orbital

based interaction terms of the Fock matrix bet\veen {cD,} and {lIJ j }. To find the orbital 

set in {ll'} \vhich interacts wi th {cI:>} strongly, the following technique is applied to 

FOCC and Fvac, respectively. That is, if there are N ° occupied and Nil vacant orbitals in 

{cI:>}, M n and MI' orbitals in {qJ}, we multiply the above Nil x M(), N n x MI' matrix by 

its adjoint M O x NI', Mil X N° matrix from the left side and diagonalize the obtained 
M() x M(), MI' X Mil matrix F+F, 

(1.6) 

\vhere U is the matrix whose columns are eigenvectors and E is the diagonal matrix 

of the eigenvalues. As the eigenvalues obtained here correspond to the magnitude of 

interaction bet\\'een {cI:>} and {lP}, \ve perform unitary transformation on {\.IJ } by using 

U and choose the orbital set \vith greater eigenvalue than an appropriate threshold 

from occupied and vacant spaces of transformed {W}. This procedure its analogous to 

that for the corresponding orbital 22 or the interaction frontier molecular orbital (MO).23.24 

In this \vay, the orbital space is modified to satisfy the variational condition approximately 

in \vhich Fock matrix elements bet\veen occupied and vacant orbitals are nearly equal 

to zero. 

In the following, we describe the method to solve the eigenvalue problem for 

the polymer systems with local aperiodic part by using the procedure mentioned above 

in detail. The schematic illustration of the calculation procedure at a viewpoint of the 

division in orbi tal space of the system is given in Fig. 1.1 and the corresponding 

matrix representation is summarized in Fig. 1.2. We explain the procedure along with 

these figures belo\v. The starting point is the crystal orbitals for the supercell obtained 

in the first step. Next, we find the orbital set in the supercell which will be affected by 

the interaction \vith the aperiodic part according to the techniques in Eqs. (1.S) and 

(1.6). In other ,vords, ,ve select the orbi tals which are not satisfied with the variational 

condition in total orbital space. The interaction blocks of the Fock matrix in Eqs. 

(1.Sa) and (I. Sb) are sho,vn as the shaded parts in Fig. 1.2 for each calculation step. 

We refer to "active" orbitals as the orbitals which are perturbed by the local interaction 

through the eigenvalue problelTI including the effect of the aperiodic part. Since "fro7.en" 

orbi tals means the orbi tals which only are transformed by the unitary matrix in Eq. 

1 1 



Chap. 1 : Elongation Method with Superccll Method 
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TlG. 1.1. Schematic illustration of the calculation procedure at a viewpoint of the division of orhital 
space of the system. The notation in this figure corresponds to that in the text. 

(1.6) and separated from the basis orbitals of the eigenvalue problem of the interacting 

system, these orbitals keep the bulk nature of. the periodic polymer described by the 

crystal orbital. Now, we note that because the Fock operator and crystal orbital depend 

on the \\fave number vector, we must carry out steps 2-4 in Figs. 1.1 and 1.2 for each 

value of the \vave number vector for the supcrcell in Eq. (1.3). 

As the second step, because the electronic state of the supcrceH is known and 

the variational condition is satisfied within the supercell, we consider the interaction 

between aperiodic and periodic parts in the system through core Hamiltonian (at the 

starting point, Fock operator including the interaction is unknown), that is, the interaction 

block is taken as follows: 
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(1. 7a) 

(l.7b) 
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where {X} represents the atomic orbitals at the aperiodic part, {\}J J corresponds to the 

crystal orbitals for the supcrcell in the first step. The terms between the aperiodic part 

and the periodic polymer in H arc constructed \vith core ternlS of the Fock operator 

only. After diagonalizing the Inatri~ F +F, we choose the following orbital sets from 

{\.IJ ); the interaction orbital set {'V '( O)} of which eigenvalue is greater than the 

threshold and the rest orbital set {'V(O)} with a smaller eigenvalue than the threshold. 

Then, the eigenvalue problem based on {X} U {tIJ I (O)} is solved by the self-consistent

field (SCF) proceoure, and we obtain the resulting orbital set {X(O)} and Fock operator 

F (0). In this process, the orbital set {\If(0)} is retained without changing itself. At the 

present stage, the whole system is divided into active orbitals {X(O)} and frozen 

orbitals {\If(0)}. 

As the third step, the interaction bet\veen the above active orbi tals {X(O)} and 

frozen orbitals {\.IJ(O)} is taken into account since the \ ariational condition among 

these orbital spaces is destroyed by extension of {X(O)}, fixing of {\.IJ(O)}, and changing 

of the Fock operator in SCF iteration at the second step. In this step, we choose the 

interaction orbital set from {'J1(0)}, namely, the interaction block is taken as follows: 

(l.8a) 

( 1.8b) 

\vhere the interaction blocks (XI FI 'IJ) and (\lfl FI \If) in F include the charge transfer 

effect bet\veen {X} and p ·V} and the polarization effect \vithin {\If}, respectively. We 

diagonalize the nlatrix F+F to obtain the interaction orbital set {'I/'(1)} which is not 

satisfied the variational conoition between {X(O)} and within {\V'(1 )}, and the rest of 

the orbital set {'J1(l)} satisfying that bet\veen {X(O)} and within {\If(l)}. We solve the 

eigenvalue problem represented with {X(O)} U {\lJ I (l)} by the SCF procedure. In this 

process, the orbital set {\ll (l)} is unchanged itself. Then, \ve obtain the orbital set 

{X(l)} as the solution of the eigenvalue problem and the Fock operator F (1). Here, 

active orbitals correspond to the solution {X(l)} and frozen orbitals to {lJl(l)}. 

When we consider the interaction behveen active and frozen orbitals ne~t, if the 

active space {X} is large enough and the interaction becomes weak, that is, the 

important effect of the local aperiodic part is. included in these active orbitals, it is 

expected that there may be the orbital set which is unaltered by the interaction in 

active space. Thus, \ve check the variational condition of not only frozen space but 

also active space. If there arc orbitals in the active space satisfying the condition, we 

can consider that the orbitals are separated from the interaction space of the system. 

We take into account this situation in the next step. 

As the fourth step, the fol!o\\'ing procedure is repeated until the interaction 

converges, that is, there are no interaction orbital sets with a greater eigenvalue than 

the threshold for the interaction block, \·"hich is not satisfied with the variational 

condition in the orbital space. In this step, we consider the interaction space as {X} 

14 
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and {t{J}, and choose the interaction orbital set 1'r0l11 {X} and {4J}, respectively. No\\', 

\\'e consider the Il + I th cycle in this step (the 1 st cycle corresponds to the third step 

mentioned above). First, \ve use the interaction block as follo\\'s: 

(1 .9a) 

(l.9b) 

where the orbital set {Wen)} represents the nth frozen orbitals, and the orbital set 

{X(n)} corresponds to the eigenvectors of the nth eigenvalue problelTI by the SCF 

procedure. We choose the interaction orbital set {cp /(n + I)} and the rest orbital set 

{<P(n + I)} from the preceding solution {X(n)} by diagonalizing the matrix F +F. 

Next, \ve take into account the interaction between {<p/(n + I)} and the preceding 

frozen orbitals {Wen)}, and the interaction block is defined as follows : 

(1. lOa) 

( 1. lOb) 

Here, \ve note that the block (<P 'I FI W) in F cones ponds to the charge transfer 

bet\\'een {<P'} and {4J}, and the block (WI FI lP) in F conesponds to the polarization 

within {W}. We diagonalize the matrix F+F, and choose the interaclion orbital set 

{W/(n+ l)} and the rest orbital set {\IJ(n+l)} from {\V(n)}. Then, the eigenvalue 

problem is solved \vitilin {<P/(n+l)}U{W/(n+ I)} by the SCF procedure to obtain the 

resulting orbital set {X(n + I)} and Fock operator F(n+ 1). In this process, the rest 

orbital set {<P(n+ l)} and {W(n+l)} have no change themselves. 

Next, we assume the interaction space for the n + 2 th cycle as {X(n + I)} and 

{'-IJ (n + l)}, and repeat the procedure in this step as mentioned above. Thus, at each 

cycle in this step, if there is, {cp} is removed from the interaction space because it is 

possible to consider that the interaction behveen {cf>(n + l)} and {\.IJ(n)} is small enough 

since the eigenvalues of the interaction block between them are s111aller than the 

threshold, and each {¢} is maintained itself unchanging through all cycles. Finally, if 

the interaction converges at the mth cycle, we.obtain the active orbitab as {cD(2)}, ... , 

{<P(nl)} and frozen orbitals as {W(m)}. 

We explain the concept and outline of this method as summary. We take the 

isolated system as a starting point. The Fock matrix based on orbitals in the system is 

diagonal within the supercell, and the matrix clements between the supercell and the 

aperiodic part have some values. If the eigenvalue problem of the whole system is 

solved c0111plctely, the matrix clements between occupied and vacant orbitals vanish 

(the variational condition). Therefore, we develop the method by \vhich the total 

orbital space is forced to satisfy the variational condition finally. For that purpose, the 

specific orbital pairs that the matrix element between occupied and vacant orbitals has 
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nonzcro valuc wcrc selcctcd as an intcraction orbital sct. Thcn, thc cigcnvaluc problcm 

is solvcd \vitllin thc selcctcd spacc. Aftcr this stcp, thc matIi\ elCl11cnts bctwccn thc 

intcraction orbitals and thc rcst orbitals may havc finitc valucs by mixing through thc 

dcnsity matrix. Thus, this selcction Inust bc done itcratively. 

Thc featurc of this trcatmcnt is the simplicity in practical calculation. In this 

approach, wc diagonalizc thc matrix F+F only to find thc intcraction orbital set, and 

soh'c thc eigcn\'aluc problem within thc interaction orbi tal spacc. Thus, thcrc is no 

need to trcat the \vholc system with a large dimcnsion and solvc a largc cigcnvaluc 

problcnl dircctly. The important effccts of chargc transfcr and cxchangc bet\vecn 

pcriodic and apcriodic parts can bc taken into account, and thc polarization effcct 

\viOlin the pcriodic part can bc also taken in this calculation by thc procedure mentioned 

in this section. Furthermore, the interaction orbital space is not an external parametcr 

and the determination of that is included in our calculation procedure itself. 
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AG. 1.3. The interacting system of polyacetylene and a small molecule fIX (X=F,H.Li) . The 
geometrical parameters used in this calculation are taken as follows : C-C = 1."+60 A, C=C = 1.350 A, 
C-H = 1.090 A, all bond angle = 120" and H-F = 0.917 A, H-H = 0.742 A, II-Li = 1.59..+ /\ . A small 

- molecule is placed on the ccntral double bond between carbon atoms C 1 apart from polymer chain 
hy the distance d. 

1.3. RESULTS AND DISCUSSION 

We performed several test calculations for the method described in the previous 

section in order to check the reliability and usefulness. The models used in test calculations 

and their structural parameters are shown in Figs. 1.3 and 1.4. The first model systems 

are all-trans polyacetylene interacting \vith one small molecule. We put a small molecule 

on the central double bond apart from the polymer plane by the distance d. The 

second model system is all- trans polyacetylene substi tuted t"vo hydrogen atoms bonding 

with the central double bond by fluorine atoms. In these models, we consider (C-lH-l) as 

a unit cell and (C4H-l)n -(C-lH4)-(C-lH-l)n as a supcrcell. By taking the size of supcrcell 

large, the models in Fig. 1.3 may be correspond to low level doping and in Fig. 1.4 to 

local abnormal bonding for periodic polymer systems. 

In this "vork, we took 10-5 as the threshold value and all calculations were 

performed at the CNDO/2 level. As the polyacetylenc supercell is large itself, we used 

...-- Unit cell -~ 
---~-----------r--------------------------

I I ' I 
I I I I 

H,' H H,/ H::::;.':::::.F· H2,' H4 H6/ Ha 

1/ I 1/ I ~,/ ~ ~/ ~ 
.:::::::::- ./C~ /c~ /* /C~ /c.:::::'" /c.:::::::::- /c~ /.:::::::::-c .......- , C C , C C ,- C C ,c .". 
1// / /1 1 1 /1 3

/
5 /1 7 

H " H H,' H F1~H1 " H3 H5,' H7 
___ _ t~ _________ _ :' __________ _ ,~ __________ ,~ __ _ 

... 

FIG. 1A. The substituted system of polyacetylene . ~he geometrical yaramcters lLlsed in this 
calculation are as follows : C-C = 1.460 A, C=C = 1.350 A, C-II = 1.090 A, C-F = 1.338 A, and aJJ 
bond angles = 120". The hydrogen atoms HI bonding with thc central double bond are substituted 
by fluorine atoms [I. 
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TABLE 1.1. Total energies and cpu times of supercell (C ..tl 4)/I-(C ..tI It) -(C..tII..t)11 interacting 
\ .... ilh the I IF molecule . 

Total energy (e\') 

d(A) Crystalorhital Thi s method 

00 -3331 .837656 
5.0 -3331 .842..+59 -3331 .842..+51 

11=1 ..+.0 -3331 .8-l3033 -3331 .8 ... B021 
3.0 -3331.8-+8886 -3331 .8-+8880 
2.0 -3331 .951273 -3331.95126-+ 

00 -503 7.5-+0280 
5.0 -5037 . .5-J.62% -5037.5-+6285 

n=2 ..+.0 -5037.5-+6932 -5037.5-+6907 
3 .0 -5037.552888 -5037.552869 
2.0 -5037.655-+75 -5037.655450 

00 -6743 .245051 
5.0 -6743 .251852 -6743.251834 

n=3 ..+.0 -6743 .252501 -6743.252468 
3.0 -6743 .258476 -6743 .258444 
2.0 -67"+3 .3610% -6743.361060 

00 -8448.951-170 
5.0 -8448.958850 -8448.958829 

ll="+ 4.0 -8448.959502 -8448.959462 
3 .0 -8448.%5481 -8448.965438 
2.0 -84-l9. 068109 -8-+-+9.068069 

00 - 10154.659159 
5.0 - 1015-+.6669% -10154.666973 

n=5 ..+.0 -10 LS4.667649 -101.54.667607 
3.0 - 1015-1-.673630 - 10154.673563 
2.0 -10154.776260 -10154.776189 

a cpu lime on IBM RISC System/6000 340. 
b Including calculation lime for unit cell. 

nearest neighbor approximation. 

cpu lime (min:s) a 

Crystalorhital Tius method h 

-+0:06 7:36 
..+3 :20 9:05 
..+6 :26 11 :36 
53 :06 16:3 1 

25-+:..+7 25:21 
270:07 26:09 
288:05 31 :..+7 
322:56 ..+ 1:..+7 

865:59 65:45 
933 :34 73 :59 
987: 14 71:55 

1099:30 87:45 

2241 : 14 172:56 
2407:44 .153:..+0 
2562:51 153 :31 
2805: 14 166:-+6 

..+713 :16 331:26 
5098:45 323 :59 
5396:29 289:56 
5953:47 295:58 

The total energies and cpu times of the models in Fig. 1.3 are listed in Tables 

1.1, 1.2, and 1.3. Total energies calculated by using our method agree "",ith those 

obtained by the conventional crystal orbital method for three molecules with various 

distances between supcrcell and molecule. The largest error is only 0.000 299 eV for 

the polyacetylene supcrcell (C4H4) II interacting wi th the HLi molecule at the distance 

d =2.0 A in Table 1.3. cpu times required for this method is much shorter than for the 

usual method in any case. Therefore, our approach can treat the large system more 

efficiently in cOlnparison "vith the usual crystal orbital approach. Furthermore, this 

advantage in calculation increases \vhen the system becomes large. In Table 1.4, total 

energies and cpu times for the model in Fig. J.4 are listed. In the case of substitution 

of aton1s, the agreement bel\\ een the two methods is also excellent and our computational 

time is faster. This advantage of computational tome sho\\'n in these test calculations is 

based on the fact that we select appropriately the interaction orbital set from the large 

system. That is, it is not required to solve the "vhole eigenvalue problerrl of the system. 
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TABLE 1.2. Total energies and cpu times of supercell (C ) It)Il-(C-lll..t)-(C-lII..t)n interacting 
wi th the I II I molecule. 

Total energy (eV) 

d(A) Crystal orbital Tlus method 

00 -2598.668058 
5.0 -2598.669266 -2598.669266 

n=1 4.0 -2598.669758 -2598.669758 
3.0 -2598.682212 -2598.682208 
2.0 -2598.823883 -2598.823859 

00 -4304.3 70576 
5.0 -430-+.372068 -4304.372069 

1Z=2 4.0 -430·l372562 -4304.372561 
3.0 -4304.385017 -4304.38-+979 
2.0 -4304.526762 -4304.526740 

00 -6010.075342 
5.0 -6010.077026 -6010.077026 

n=3 4.0 -6010.077520 -6010.077518 
3.0 -6010.089975 -6010.089920 
2.0 -60 to. 211734 -6010.231710 

00 -7715.781767 
5.0 -7715.783593 -7715.783593 

n=4 4.0 -7715.784087 -7715.784084 
3.0 -77 15.7965-+3 -7715.796487 
2.0 -7715.938306 -7715.938279 

00 -9421 .489460 
5.0 -9421.491400 -9421.491400 

11=5 4.0 -9421.491894 -9421.491891 
3.0 -9421.504350 -9421 .504295 
2.0 -9421.646114 -9421 .646084 

a cpu time on IBrv[ RISC System/6000 3-+0. 
b Including calculation time for unit cell . 

cpu time (min:s) a 

Crystal orbital This methtxl h 

37:47 5:35 
38:..+9 5:51 
40:23 7:00 
43 :5-+ 9: 14 

250: 18 17:43 
257:5-+ 21 : 10 
267:40 29:57 
289:04 28:36 

878:33 39:20 
900:07 52:07 
938:56 80:-+6 

1015:21 73 :52 

2296: 14 88:21 
2355:07 109:45 
2471:27 179:08 
2657:57 165:25 

4889:27 183: 16 
5054:25 227:40 
5247: 17 371 :59 
5668:53 321 :25 

For example, the dimensions of the eigenvalue problem to be diagonalized in SCF 

iterations for the case of substituted polyacetylene supcrcell (C4H4)4-(C4H2F2)-(C4H-l)-l 

are as follo\vs: 186x 186 [number of atomic orbitals (AOs) in the system] by the 

crystal orbital method \vhilc 18x 18 (at the step 2), 44x44 (at the step 3), 67x67 (at 

the 1st cycle in the step 4), 38 x 38 (at the 2nd cycle in the step 4) by this calculation. 

In this case, the number of final acti ve orbitals is 126 and frozen orbi tals is 60. 

The electron density distributions at the central part and end part in the supcrcell 

and small molecule HF are summarized in Tables 1.S(a) (model in Fig. 1.3) and 1.6(b) 

(model in Fig. 1.4). Because the results from our method reflect the symmetry of the 

system completely, the values for half-side of the chain are listed. From! these tables, it 

is shown that the atomic populations at both aperiodic and periodic parts (central and 

end parts) calculated by using the two methods are in excellent agreernent wi th each 

other. The agreement of the results by both methods for other models in Fig. 1.3 is 

also very good. 

These results sho\vn above support the validity of this method, and the accuracy 
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TABLE 1.3 . Total energies and cpu timcs of superceU (C olI 4 )/l-(C oll It)-(CtII ol)/l intcracting 
with thc I ILi moleculc. 

Total cncrgy (c \ ' ) 

d (t\) C rystal orhital Thi s mc thod 

co -2588.137732 
5.0 -2588.-+13058 -2588.-+ 13053 

11=1 -+.0 -2589.56-+576 -2589.56-+568 
3 .0 -2593.326889 -2593.326882 
2.0 -2597.3-+5509 -2597.3-+5-+93 

co --+293 .840923 
5 .0 --+29-l117089 --+29--1..117068 

11=2 -+.0 --+295.27057-+ --+295.2705-+3 
3 .0 --+299.041081 -4299.0-+ I 002 
2.0 --+303 .07-+287 --+303 .07-+158 

co -5999.5-+5808 
5.0 -5999.822327 -5999.822289 

11=3 -+.0 -600(l976230 -6000.976167 
3.0 -600-l. 7483-+6 -600-+.7-+82-15 
2.0 -6008.78-+270 -6008.78409-+ 

co -7705.252269 
5.0 -7705.528981 -7705.528931 

11=-+ -+.0 -7706.683000 -7706.682881 
3.0 -771O'-+555-B -7710.-+55409 
2.0 -7714.-+921-+6 -771-+.-+9190-+ 

co -9410.959977 
5.0 -9-+ 11. 236821 -9411.23676-+ 

n=5 4 .0 -9-+12.390878 -9-+12.3907-+5 
3 .0 -9-+ 16.163561 -9-+16.163395 
2.0 -9420.200380 -9420.200081 

a cpu time on IBM RISC Systcm/6000 3-+0. 
b Including calculation time for unit cell . 

cpu timc (min:s )a 

C rys talorhital Thlis IllctiHxl h 

-+8 : 13 13 :-+0 
50:01 18:39 
52: 16 25:32 
61:06 29:..+5 

303 :-+8 33 :52 
307:-+8 51 : 19 
317:01 70:15 
367:..+6 9 1:22 

1030:30 7-+: lO 
1057:29 101: 1-+ 
1085: 13 138:08 
1252:41 161:17 

2638:3-+ 153:..+0 
272-+: 16 172:01 
278-+:38 229:08 
2893: 13 276:3-+ 

5608: 13 273 :50 
5751:46 302:34 
5868:06 392:3-+ 
6086:34 ,·B8:37 

of the calculated results can be controlled by the threshold value for the olrbital selection. 

In Table 1.6, the convergence of total energies for the polyacetylene supcrcell 

(ColHol) II interacting with small molecules HX (X=F,H,HLi) at the distances d =5.0 and 

2.0 A is summarized in detail. The number of basis orbitals (number of AOs) and SCF 

iterations in crystal orbital calculations are as follo\vs: 225 and 8 (HF and HLi), 222 

Total encrgy (cY) 

11 No-substituted Crystal orbital 

-2558.5-+2622 --+027.314727 
2 --+26-+.2-+51-+3 -5733 .020895 
3 -5%9.9-+9911 -7-+38.7271-+6 
-+ -7675.6'16336 -91-W.-+34-+93 
5 -9381.36-J030 - 10850.1-+2878 

a cpu timc on I8!',,1 RiSe System/6000 3-+0. 
b Including calculation lime for unit cell. 

This mcthod 

--+027.3 1-+620 
-5733 .02063-+ 
-7-+38.726811 
-91-l--1..-+34125 

- 10850.142-+99 

20 

cpu time (rnin :s)a 

Crystal orbital This methoc1 b 

-+1 :49 15: II 
251:18 -l8: 11 
851:09 100:33 

2166:..+1 185:55 
-+589:31 375:19 
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'L\I1LE l.5. (a) The electron density dislributions of polyacctylenc slIpcrccll (C-lI I-l)s-(C -ll I-l) - «(~I 1-l)5 
interacting with thc I IF molecule .il Thc distance hetwecn the superccll and thc I IF molecule is 2.0 ;\. 
(b) The electron dCIlsity di tributions of substitutcd polyacctylcnc superccll (C) It)5-(C . .tI 12F2)-(C-lI l-lkb 

(a) Atom H F Cl C2 C3 C4 C 19 C20 e 21 C 22 

Crystal orbital 0.7913 7 .2139 3 .9881 3.9996 4.0089 4 .0009 4.0034 4 .OCB2 4 .0034 4J)()33 
'llus work 0.7914 7.2138 3 .9878 3.9995 4 .0091 4 .0015 4.0033 4 .0()32 4 .0033 4 .0(B2 

Atom III 1-12 113 114 III9 H2O H21 II22 
Crystal orbital 0.9985 0.9975 0 .9975 0.9978 0.9%8 0 .9968 0 .9968 0.9968 
Tlus work 0.9988 0.9977 0.9976 0.9977 0 .9968 0.9968 0 .9968 0.9968 

(b) Atom CI C2 C3 C4 C19 C20 C21 C22 

Crystal orbital 3.8434 4.()338 3.9864 4.0092 4.0029 4 .0033 4 .003 I 4.0032 
Tlus work 3.8436 4.0331 3.9871 4.0087 4.0031 4.0032 4.0032 4 .0032 

Atom Fl I12 113 II4 II19 H2O I121 1122 

Crystal orbital 7.1917 0.9729 0.9870 0.9946 0.9967 0.9967 0.9967 0.9967 
TlUs work 7.1908 0.9722 0.9863 0.9948 0.9968 0.9968 0.9968 0.9%8 

a The numbering of atoms is defined ill Fig. 1.3. 
b The mmlbering of atoms is dcfincd in Fig. lA. 

and 8 (HH). The \veak interaction behveen the polyacetylene and hydrogen molecule 

at the distance d =5.0 A converges very fast, and interaction orbital space is very 

small. In the other interacting systems, the total energy is converged at the 2nd cycle 

in step 4 completely. The total SCF iteration cycles are more than crystal orbital 

calculation, but the number of basis orbitals of the eigenvalue problem in much smaller. 

TABLE 1.6. Convergence of total encrgies for supercell (C 41 4)s-(C4H4)-(C4H4)s interacting 
with the IlX molecule . 

d=5.0 A Basis tvl0s Iteration d=2.0 A Basis MOs Iteration 

X=F 

Step 2a -0. 124409 b 6 5 -0 .6863 lOb 15 6 
Step 3 -0.000159 46 2 -0.020006 69 3 
Stcp 4 -0.000007 8 1 -0.000043 38 ] 

Slep 4 -0.000002 4 -0.000003 2 1 

X=l-I 

Step 2 a -0.000008 b 3 -0.326096 b 6 4 
Step 3 -0.000001 4 -0.074093 33 4 
Stcp 4 -0.000078 28 1 
Stcp 4 -O.OOOOO-f 9 1 

A=Li 

Step 2 a -0.-f39005 b 12 4 -18.889920b 15 5 
Step 3 -0,(140715 70 3 -0 .7045]0 89 7 
Stcp -+ -0.000057 4-f 1 -0.001301 97 3 
Step 4 -0.000004 8 1 -0.000031 28 I 

a alculation stcp in Fig. l.1. 
b Energics in e\' . 
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Chap. 1 : Elongation Method with SuperceIl Method 

Thus, total coolputation tiole is faster in thi s calculation. That is, our olethod sol\'es 

the sOlall eigenvalue probleol iterati\'ely instead of solving the large ei gen\'alue problem 

of the whole system in the usual calculation. 

Next, we sho\\' the interaction energies behveen polyoler and a small molecule 

obtained by this approach in Table 1.7. The interaction energy is obtained as the 

energy difference between the interacting system and the isolated system. The interacting 

system is stabilized when the size of the supcrcell is larger (from n =] to /1 =2). The 

reason for thi s stabilization may be considered that the repulsive interaction between a 

small molecule in the central supercell and one in the nearest neighbor sllpcrccll 

decreases in the large supcrccll because of the long distance between sOlall molecules. 

The interaction energies might appear at first glance to be almost converged at /1=4 or 

n =5, but, the differences between successively larger n (for n >5) are often nondecreasing 

and, thus, the convergence behavior is not obvious. This slo\v convergence of the 

interaction is caused by the long range interaction of the pi electron system. The \veak 

interaction between polyacetylene and HF or HH is almost of the sarrie order, while 

there is a larger interaction energy of the polymer with HLi than those with HF and 

HH . 

The electron densi ties of each small molecule HX (X=F,H,Li) on the polyacetylene 

supcrcell (C-lH-l)15 are shown in Table 1.8. The top line in this table disp.ays the atomic 

population of the isolated molecule. There is no electron transfer froml polyacetylene 

to HF molecule at all distances behveen the polymer and the mol(~cule. A small 

amount of electron transfer is found from polymer to HH molecule only at the distance 

d =2.0 A. In the case of the interaction with the HLi molecule, the amount of electron 

TABLE 1.7. Interaction energies hetween slJpercell (C} I-l)n-(C} I-l) -(C) l-l) 11 and llX ll101ccul ea 

n=1 1l=2 11 =3 1l=4 11=5 11=6 11 =7 

5.0 -0.0().:ffi -0.0060 -0.0068 -0.0074 -0.0078 -0.0082 -0.0085 
4.0 -O .OO~ -0.0066 -0.0074 -0.0080 -0.008-+ -0.0088 -0.0092 
3.0 -0.0112 -0.0126 -0.()l3-+ -0.0140 -0.01-l-l -0.0148 -0.0151 
2.0 -0.1136 -0.1152 -0.1160 -0.1166 -0.1170 -0.1174 -0.1177 

X=II 

5.0 -0.0012 -0.0015 -0.0017 -0.0018 -0.0019 -0.0020 -0.0021 
4.0 -0.0017 -0.0020 -0.0022 -0.0023 -0.0024 -0.0025 -0.0026 
3.0 -0.01-+2 -0.0144 -0.0146 -0.0147 -0.0148 -0.0149 -0.0150 
2.0 -0.1558 -0.1562 -0. 15CH -0.1565 -0.1566 -0.1567 -0.1568 

X=Li 

5.0 -0.2753 -0.2761 -0.2765 -0.2767 -0.2768 -0.2769 -0.2770 
4.0 - 1...+268 - 1.-+2% - 1.-+304 - 1.4306 -1.4308 - 1.4309 - 1.4310 
3.0 -5.1892 -5.2001 -5. 202-.f -5.2031 -5.2034 -5.2036 -5.2037 
2.0 -9.2078 -9.2332 -9.2.183 -9.2396 -9.2401 -9.2403 -9.2404-

a Energies in e V. 
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Chap. 1 : Elongation Method with Supcrcell Method 

TABU : 1.8 . Electron densities of small molecules I IX (X=l ;,1 IJ j) on 
polyacctylcIlc slIperccIl (C.) Gh-(C) I-I)-(C-II I-In · 

d(A) Ill;' IIlI Il1.i 

00 8 .0000 2.000() 2 .(X)()0 

5 .0 8 .0000 2.0000 2.0 I 1-+ 
-+.0 8.0000 2.0000 2.0603 
3.0 KO()()2 2.0007 2.2151 
2 .0 8 .0051 20189 2.-+903 

transfer is remarkable even apart from the polymer by d =s.() A and the tendency or 

electron transfer increases by approaching the polymer. The larger interaction energies 

in Table 1.7 between polyacetylene and HLi in comparison with the other molecules 

(HF and HH) are caused by this electron transfer effect. 

The net charge on each carbon atom on supcrcell (C-IH-I)15 interacting \\'ith 

small molecules at the distance d =2.0 A is summarized in Fig. I.S. FOlr each case, the 

net charges at the edge of the supercell is consistent with the value -0.003 of the 

isolated polyacetylene. In the case of the interaction with the HH nlolecule, the 

convergence of net charge is rapid and the e~tension of charges is limited \vithin 

altnost seven carbons frool the central carbon. On the other hand, in polymer chains 

interacting \\'ith HF or HLi molecule, charges are extended with oscillaltion around the 

isolated value. The range of charge extension is CIS for HF and C21 for HLi in one 

side of the chain. Particularly, by electron transfer from the polymler to the HLi 

molecule, considerable deviation from the isolated case is found in the charge distribution 
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FIG. 1.5. 0,'et charge on each carbon atoms in the sllpcrcell (C-II 1-1)15 interacting with a small 
molecule ax (X=f' ,l1,Li) at the distance d=2 .() A . The 1 st and the 30th atoms correspond to the 
central and the end atoms in the sllpcrcell, respectively, as is shown in Fig. 1.3 . 
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FIG. 1.6. Freezing paltem of electron density on each carbon atom in the supercell (C..H4)15 

interacting with a small molecule !-LX (X=F j-I ,Li) at the distance d=2 .0 A. The I sl and the 30th atoms 
correspond to the central and the end atoms in the supercell, respectively, as is shown in rig. 1.3 . 

on the polymer in the latter case. 

In our approach, total orbital space of the "V hole system can be divided into 

active and frozen spaces as mentioned in Sec. 1.2. Orbitals in active space can be 

considered as altered from original periodic crystal orbitals of the isolated polymer by 

interaction with aperiodic moiety, \vhilc orbitals in frozen space as unaltered after 

interaction keeping the bulky nature. Thus, it is expected that locali ty of aperiodici ty 

may be kno\vn from the features of these orbitals. 

Figure 1.6 sho\vs the freezing pattern of electron density in final frozen space, 

\vhich is the ratio of frozen electron density on each atom. This means that the higher 

the percentage of frozen density is, the less the change from the isolated state is. The 

carbon number, on which the electron density is frozen more than 9()~" is as follows 

for each case: C14 (HF), C9 (HH), and C23 (HLi). These sizes nearly correspond to 

the range of charge extension. 

In Figs. 1.7 and 1.8, the net charge and freezing diagram on substituted chain 

(C-tH-t)7-(C-tH2F2)-(C4H-t)7 are shown, respectively. It is shown in Fig. 1.7 that the net 

charge on the carbon bonding with fluorine atom varies very much frool the isolated 

value in particular. The oscillation of charges converges at the 15th carbon from the 

central carbon in the chain. From Fig. 1.8, the electron density on carbon apart more 

than the 17th carbon is frozen more than 907c,. 
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5 10 1 5 

Carbon number 
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RG. 1.7. Net charge on each carbon atom in the substituted supercell (C4H4n-(C4H2F2)-(C4H4n. 
The 1st and the 30th atoms correspond to the central and the end atoms in the supercell. 
respectively, as is shown in Fig. 1.-1-. 
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RG. 1.8. Freezing pattem of electron density on each carbon atom in the substituted supercell 
(C41 4h-(C41 12r:2)-(C4I-I4n. The 1st and the 30th atoms correspond to the central and the end atoms 
in the supercell, respectively. as is shown in Fig. lA. 
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Chap. I : Elongation Method with Supercell Method 

1.4. SUMMARY 

In the present chapter, we proposed a method to study the electronic structure 

of polymer systems with local aperiodicity and applied it to several models. We dealt 

,,,ith all- trans polyacetylene interacting \vith hydrogen fluoride, hydrogen molecule 

and lithium hydride and all- trans polyacetylene ,vith substitution of hydrogen atoms 

by fluorine atoms. The results obtained by using this method (total energies and 

electron density distributions) \vere in excellent agreement with those calculated by 

using usual crystal orbital method in good accuracy. Thus, it 'vas confinmed that the 

method proposed here has enough reliability in practical calculation. Computational 

times required in the two methods ""ere compared with each other, and it ,vas clear 

that our method has much larger advantage for any cases. 

We showed the usefulness of this method as mentioned above by using the 

CNDO/2 approximation. Of course, the calculation has no satisfying level of 

approximation. But, it is easy to develop this method in more advanced semiempirical 

calculations since this method has no special limitation. Moreover, it can be applicable 

to ab initio calculations if ,ve select the orbital set ,vhich satisfy the orthonormal 

condition in the same manner as described in the previous study of our group.13 

As one property of our approach, the total orbital space can be specified by 

active and frozen spaces. It may be expected that we can extract more information 
from local electronic states in a large system, \vhich are unable to be obtained in the 

usual crystal orbital calculation, by developing the method to analyze the active or 

frozen space. 
At the next step, an application of this method to the two-dimensional problem 

is possible. This approach may enable us to study the adsorption of molecules on the 

crystal surface or local defect structure and then the mechanism of the inhomogeneous 

catalytic reaction. In the near future, we will try the above subjects. 
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Chapter l 

Electronic Structures of 
Large, Extended, Nonperiodic Systems: 

Cluster Series of Polymer and 
Molecular Stacking on Surface 

The elongation method based on the molecular orbital (MO) theory, "vhich enables us 

to extend a polymer with any molecular fragments theoretically, has recently been 

developed by our group. As the next step, we introduced an approach based on the 

crystal orbital (CO) theory into above treatment. In the present chapter, the elongation 

method "vas de"eloped at the Hartree-Fock level "vith CNDO/2 parameters, and "vas 
applied to model systems composcd of the cluster series of polymer and the molecular 
stacking on surface. In the cluster-series calculations, hydrogen molecule [(H 2)n], 

hydrogen fluoride [(HF)n], polycthylene (PE), and polyacetylene (PA) '.vere created 

successively to approximate their one-dimensional periodic polymers by using the 

MO-based elongation method. In the molecular-stacking models, we described the 

hypothetical surface of crystal as periodically arranged hydrogen molecules by the 

COs, and several hydrogen molecules were stacked up on the surface one after another 

\vith the elongation procedure. Furthelmore, the lattice defect on surface in which a 

part of stacked layer is lacking "vas deal t "vi th by our approach. We also treated carbon 

monoxide chemisorption on periodic magnesium chain as a more rea.listic model. 

Results for these systems support the applicability of our method for nonperiodic 

interactions in one- and two-dimensional large systems. 
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2.1. INTRODUCTION 

In the field of quantum chemistry, the methods to calculate the electronic structures 

of small molecules or completely periodic polYl11ers ha\'e already been established at 

the present time. The MO nlethod is a\ 'ailable for small molecules, while the CO 

method for periodic polymers. 1.2 These 111cthods are very useful in studying the electronic 

propert) and therefore widely applied to yarious systems. Ho\veyer, we can not use 

them to study large molecules or aperiodic polymers straightforward because of the 

limit in the mcmory of computer as \vell as the computer time. In the case that it is 

impossible to calculate the \vhole system as it is, we approximate a part of large 

molecule as a cluster or a nonperiodic polymer as a periodic polymer with a supcrcell 

including an aperiodic part. Then, the calculation for each cluster or supcrccll \vith 

different size is carried out individually by using the MO method or the CO method 

for their various sizes. We consider the converged physicochemical properties of the 

cluster or superccll as those of the large molecule or aperiodic polymer itself, respectively. 

As mentioned above, however, the conventional methods have the limitation of 

application to large, extended, nonperiodic systems. For this reason, it will be inevi table 

to de\ 'elop a new theoretical approach to treat those sys tems efficiently and systematically. 

Se\'eral approaches with regard to this subject have been de\ eloped in recent years. 3-7 

Our group has proposed the elongation methexl as a ne\\' approach \vhich enables 

us to calculate the electronic structures of large molecular systems \vith nonperiodicity.8 

In this approach, we extend a cluster by the manner in \vhich a small rnolecule or a 

molecular fragment is connccted with the end part of the starting cluster with appropriate 

size one by one. In this \vay, \vhat \ve called, a cluster is propagated by a unit. This 

propagation is performed by taking into account only local interaction between the 

cluster molecule and the adding fragment. In this propagation process, \ve can separate 

the MOs of the cluster into two spaces, one is the orbitals which are altered by the 

interaction with fragmcnt and anothcr is those which are unaltered, and then, we solve 

the eigenvalue problem based on the former only. That is, we incorporate only the 

important interaction into the eigenvalue problem of the extended system and drop out 

the unimportant part. Thus, the dimension of the matrix which sh uld be diagonalized 

in each step of the propagation calculation can be retained almost con tant. When we 

repeat this procedure any times, we can synthesize periodic or aperiodic polymers with 

any length theorctically. Since the calculation procedure of this approach includes the 

extension process of the system itself systematically at the orbital level, we can calculate 

the electronic structures of large, extended, nonpcriodic systems efficiently. Moreover, 

as already reported in the previous studies of our group such as local density of state 

in aperiodic polymers, 9 stationary condi tion of the electronic structure against the 
extension,lo and stationary space analysis by the cluster-series model, 11 , 12 information 

on electronic slates in local region or large polymers can be extracted. 

On the other hand, the CO method can be applied to the systems \vith complete 

periodici ty (polymer, surface, and crystal) 13 and has been used in the band structure 
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calculations of periodic systems. In this approach, the eigenvalue problcn1 is solved 

under the Born-von-Kam1an periodic boundary condition in order to obllain the COs 

which satisfy the translational symmetry of the sys ten1. Thus, ,,\'c can obtain t he electronic 

property of bulk systcms by using the CO method . Ho\\,cycr, this n1ethod is so restricted 

by the periodic boundary condition itself, which requircs thc completely pcriodic 

structure of the system, and thus, can not be applicd to thc system \\lith local aperiodici ty. 

Consequently, we havc dcvcloped a mcthod to calculate the electronic statc of 

polymers \viih local aperiodic part, for instance, interaction with a small molecule, 

defcctivc structurc or abnormal bonding, based on the supcrccll method lLlsing COs. I~ 

That is, the COs of minimum translational unit (unit ccll) are transformcd into those of 

largc translational unit (supcrccll) in ordcr to treat the local aperiodici ty c~mbedded in 

the pcriodic polymcr. In thc previous work, we considcrcd thc intcraction bctwcen the 

supcrcell and the apcriodic part as a perturbation, and treated this by using the iterative 

transfer perturbation theory. 15 This trcatment has bcen applied to thc intcraction bctwccn 

a pcriodic polyn1cr and a small molecule or to the local aperiodicity within a polymcr. 16. 17 

In the chaptcr 1,18 we propos cd a ncw thcorctical approach using thc variational 

treatment bascd on the SCF CO mcthod to calculate efficiently thc polymcr system 

with local aperiodic part. This can be rcgarded as the combination between the elongation 

method and the supcrcell method. In practical calculations, this approach has proved to 

be reliable enough and it has great advantage in the computational time compared to 

the usual CO calculations. In this study, we have dealt with the systen1 in which a 

small molecule is interacting with a periodic polymer, thus, this approach should 

correspond to the propagation of the system only by one unit. As the next step, "ve 

developed this method to calculate the continuous propagation of the system by the 

elongation procedure. 

In the present chapter, we report the resul ts of model calculations for both of 

the cluster propagation and the molecular stacking on surface by using the elongation 

method . As mentioned already, the former is based on the MO method and the latter is 

bascd on the CO method. The Inain part of the calculation procedure for the two 

systems is almost the same. That is, as the first step, we calculate the starting duster 

by using the MO method and the starting surface by the CO method. Then, as the next 

step, the orbital separation of the cluster or the surface is carried out under the influence 

of adding fragment or stacking layer, respectively, and then, the eigenvalue problem of 

the extended system is solved. In this step, we use the same manner for the both 

extensions of the cluster and the surface. By repeating this procedure, \ve extend the 

cluster or the surface successively. For the molecular stacking on surface, we must 

take into account both of the extension process in a local region and the bulky nature 

in an extended surface. For this purpose, we employed the both of the elongation 

method and the supcrcell method, that is, we transform the COs of the starting surface 

for the uni t cell into those for the supercell according to the procedure of the superccll 

method at first. Next, the orbital separation of the system is carried out and the 

eigenvalue problem is solved by a similar manner as in the case of the propagation of 
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cluster. This procedure is repeated according to the elongation method in order to pile 

up layers on the surface. 

We formulated the procedures to treat the extension process of systelTI mentioned 

above and developed the program for these procedures at the CNDO/2 leyel. 19
-
21 At 

first, in order to confirm the generality of thi s method, the calculations for the propagation 

of cluster based on the MO method were performed. In these calculations, the hypothetical 

one-dimensional clusters which consist of hydrogen molecule or hydrogen fluoride , 

and the realistic one-dimensional periodic polymers, polyethylene or polyacetyiene, 

are elongated. Next, we calculated three models which correspond to the growth of 

crystal surface by using the elongation method based on the CO theory. In these 

calculations, as the first step of our study toward this direction, we considered one

dimensional chain constructed \vith hydrogen molecules as a "quasi" crystal surface. 

Although the real surface is periodic in hvo dimension in fact, we approximate the 

surface by one-dimensional periodical chain. Several layers of hydrogen molecules 

were approached on the quasi surfacc one by one to simulate the growth of the surfacc. 

Also, the model \vhich may correspond to the defective structure on the surface was 

calculated by this method. Finally, as a more realistic application, we treated the 

chemisorption of carbon monoxide on a periodic atomic chain composed of magnesium 

extending in one dimension. In the following sections, we describe the outline of this 

methodology and show the reliability of this treatment by comparing the results with 

those obtained by the usual MO or CO calculations for the cluster or surface. 

Finally, it should be pointed out that the main purpose of this study is to 

confirm the usefulness of our approach in the calculations of the electronic structures 

of large, extended, nonperiodic systems. If the generality of this method is confirmed, 

we \vill apply it to the more realistic systems like as aperiodic biopolyrners or two

dimensional crystal surfaces. Moreover, \ve expect that the three-dimensional extension 

will be possible by using the elongation method based on the two-dimensional COs. 

Attempt for this direction is no\\' in progress and will be published in the near future. 
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2.2. METHOD 

When the size of system is too large to calculate the electronic structure of the 

whole nlolecule by the quantum chemical nlethod, \ve usually use the cluster model. 

The electronic character of the system is determined as the s tationary nature against 

the size extension of clusters. B ul this model requires the calculations for each cluster 

individually, and thus the approach is not necessarily more systematic and efficient. 

For example, in the case of the calculation for the cluster A including appropriate 

units and the its extended cluster A + B \vith one more unit, we nlust perform the 

calculations on the both clusters individually and compare the energy per unit, the 

electron densi ty distri bution, and so on wi th each other in order to check the convergency 

for electronic nature of the system. If the dimension of the clusters is comparatively 

small, this approach will be useful. Ho\vever for large extended systems, the effort for 

the computations becomes enolmous. 

Ho\\' can \ve obtain the electronic property of extended systems by a systematic 

manner? Now, \\'e consider the case that the electronic structure of the cluster A is 

known, and then the fragment B is connected \vith the cluster A. Surely, we can 

obtain the electronic states of the extended cluster A + B by soh ing the eigenvalue 

problem based on the MOs for A and the atomic orbitals (AOs) for B directly. If \ve 

can select specific orbitals in the cl uster A \vhich are affected by the addition of the 

fragment B, we may use them instead of the all orbitals in the cluster A . Those 

selected orbitals thus obtained must be more effective basis orbitals in solving the 

eigenvalue problem in the extended system A + B . In extending the cluster, the above

mentioned selection of orbitals should be advantageous. 

However, the effects of the fragment B on the cluster A can Ibc evaluated 

exactly only if the interaction bet\veen the cluster A and the fragment B is exactly 

evaluated. In other words, if the electronic structure of the extended clu:~ter A + B is 

kno\vn, we can classify the orbitals in the system into 1\vo groups; one is altered 

orbi tals and another is unaltered ones by the in teracti on wi th the fragmen t B. The 

method to extract and separate the orbital space in cluster-extending calculations has 

already been published as the stationary conditions of the electronic structures against 

the extension of molecular systems and has been applied to the elongation 

calculations. 1
O-

12 

In order to develop the method to perform the elongation calculation, at the 

starting point, the interaction between the cluster A and the fragment B through core 

Hamiltonian is taken into account and the effective bases are selected based on the 

interaction. At this stage, if \ve solve the eigenvalue problem represented with the 

cJlective orbitals in the cluster A and the AOs in the fragment B, the Fock operator of 

the extended cluster A + B which includes a part of the interaction bet\\'een the cluster 

A and the fragment B can be determined. At the same time, the orbitals which are 

obtained as the solution of the eigenvalue problem also include the effect of the 

fragment B partially. In contrast to the above-mentioned orbitals, the other orbitals 
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which are remo\'ed from the basi s orbitals are not arfected by the interaction. Thus, in 

order to introduce the perturbation by the fragment B completely, we treat the interaction 

between the selected orbitals and the remaining orbitals successi\'ely. For Ilhis purpose, 

we again select the basis orbi tals based on the Fock operator obtained here and determine 

new Fock operator by soh'ing the eigenvalue probleln \vithin new basis orbital space. 

In this way, by repeating the procedure, the influence of the fragment B on the cluster 

A based on the interaction with each other can be included in the electronic structure 

of extended system A + B by degrees. Finally, \\'e can determined the specific orbitals 

in the system \"hich are altered (active orbitals) and unaltered (frozen orbitals) by the 

cluster extension. The frozen orbitals can be regarded as also stationary orbitals against 

the extension by one more unit as discussed in the previous works of our group.I()..12 

The situation mentioned above is also true in the case that the molecule B is 

stacked up on the extended crystal surface A. Thus, the applicabili ty of the method is 

not limited to the cluster-extending calculation. 

The elongation method is the method to perform the quantum chemical 

calculations on the largely extended chemical systems such as one-dimensional polymers 

connected by chemical bondings bet\veen units or molecular crystals \vithout bonds 

between them. Also, this approach includes the orbital mixing between the cluster A 

and the fragment B as the results of the charge transfer and exchange interactions 

together with the polarization effect as sho\vn in Subsection 2.2.3 in detail. 

In this study, \VC performed elongation calculations on the two sy terns, that i , 
the propagation or cluster based on the MO method and the stacking of rnolecules on 

surface based on the CO method. However, the main technique used in the both 

calculations, " lhich is the selection of effective basis orbitals for the eigenvalue problem 

and the division of the system at the orbital level, is the same. In this section, at first, 

we explain only the outline of the calculation procedure for the both systems in 

Subsections 2.2.1 and 2.2.2. Next, the procedure of orbital separation in the system, 

which is comnlon technique for the two systems, is described in detail in Subsection 

2.2.3. 

2.2.1. Elongation Calculation Based on the MO Method 

In Fig. 2.1, the calculation procedure for the propagation of cluster molecule is 

sumlnarized schematically. At first, we carry out the MO calculation for the cluster 

including a small number of units. Next, we consider the system in which one adding 

fragment, C in Fig. 2.1, connected with the end part of the starting cluster. When we 

solve the eigenvalue problem of the propagated cluster, we can select. the specific 

orbitals from the orbital space of the starting cluster \vhich give a large influence on 

the eigenyalue problem. After that we use the selected MOs in the starting cluster and 

the AOs in the adding fragment as the basis of the eigenvalue problem. In practice, we 

must select the MOs and solve the eigenvalue problem iteratively in one-unit propagation 

so as to reach the self-consistent field as \vill be described in Subsection 2.2.3 . In this 
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HG. 2 . 1. Schematic illustration of the calculation procedure in the molecular-orbital -based 
clongation method for the propagation of cluster. 

process, finally, we can determine the MOs in the propagated cluster which are altered 

by the interaction \vith adding fragment (active MOs) and the MOs which are unchanged 

by the interaction (frozen MOs). That is, total orbital space in a cluster molecule is 

divided into active space ( B + C in Fig. 2.1) and frozen space (A in Fig. 2.1). In the 

nexl propagation of the cluster, we regard the finally obtained active MOs as the MOs 

of the ne\v starting cluster, and include only the interaction between the final active 

MOs and the ne\",ly adding AOs of the next fragment, D in Fig. 2.1, into the eigenvalue 

problem. On the other hand, final frozen MOs are fixed against the addition of the next 

fragment as the stationary orbitals. By repeating these procedures mentioned above, 

the total orbital space of extended systems is divided into a series of A, B, C, D, ... , N 

as sho\vn in Fig. 2.1, the electronic structures of periodic or aperiodic polymers with 

any length can be calculated wi thout increasing the dimension of the rnatrix which 

must be diagonalized in the successive elongation cycle. The method to select the 

interaction orbitals used in this \\'ork is described in Subsection 2.2.3 in detail. 

2.2.2. Elongation Calculation Based on the CO Method 

We sho\\' the schematic illustration of the calculation procedure for the tacking 
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flG . 2.2. Schematic illustration of the calculatioh procedure in the crystal-orbital -based 
elongation mcthod for thc stacking of molecules on surface. 

of molecules on surface in Fig. 2.2. Because \ve are interested in the extension within a 

local region on surface, it is con\'enient to treat the system based on the supcrccll. For 

that purpose, we transform the COs of the surface for a unit cell into the COs for a 

supercell. Except using the COs of the starting surface instead of the MOs of the 

starting cluster, the similar procedures as those described in the previous subsection 

are emplo) ed in the extension calculation of the system. In the following, \\'e explain 

the transforn1ation method of the COs from the unit cell to those for the superccll. 
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It is kno\vn that COs of a one-dimensional crystal can be obtained by using the 

tight-binding approxin1ation under the periodic boundary condition in the follo\\'ing 

form: 

N - l M 

\.}J i (kll ) = (l / N) I 2 2 2 ex p (i k)) C
II 

( kll ) X I ( r - r I - I a) , (2. 1 ) 
I=() 1= I 

ku = 2JT{J / N (p = 1, ... ,N), (2.2) 

where I specifics the I th unit cell in the crystal consisting of N cells, kll the wave 

number Ycctor, a the lattice vector, i an energy level, f an atomic orbital, and r the 

position vector of an electron, and the symbol i denotes the imaginary unit H. 
Here, the periodic crystal is based on the minimum unit satisfying the translational 

symmetry of the system. The COs for the unit cell can be transformed into those for 

the supcrccll by using the method proposed already by us as the supcrcell method. 

Here, the superccll is a large periodic unit consisting of m unit cells with lattice vector 

m.a. According to the supercell method, the wave number \ ector kll and the AO 

cocfficients Cli are transformed as follo\vs: 

ks = mkll - 2Jrj (j: integer, 0 s ks S 2 Jr), (2.3) 

(2.4) 

\vhere n denotes the nth cell in the central supcrcell and j should be selected in order 

that ks is in the range of the first Brillouin zone. It corresponds to the transformation 

from reduced zonc scheme to extended zone scheme, \vhich means the exten. ion of 

periodic unit for translational symmetry, from viewpoint of band structure .. 

The calculation procedure of the stacking of molecule on surface is the same 

as that for the propagation calculation of cluster. That is, as the starting point, we 

obtain supcrcell's COs of surface by using the CO calculation and the supcJrcell method. 

Next, active COs and frozen COs are determined by evaluating the influence of the 

interaction between a newly stacking molecule and the starting surface. Then, the 

system is extended by fixing the frozen COs successively. Finally, we can obtain the 

electronic structure of surface on \vhich several, layers of molecules are piled up. 

2.2.3. Orbital Separation (Determination of Active and Frozen Ol4bitals) 

In the case of dealing with local interaction in a large system, we need not 

consider the interactions among all orbitals in the large system. For example, in extending 

the chemical system by connecting molecules successively \vith each other, it is 

conceiyable that the influence of the newly connected species on the electronic structure 

of the extended system is limited within the local region around the connecting region 

between the two systems when total system becomes larger. In other words, \\ hen the 
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selection of intcraction orbitals which arc influenced by an adding fragnlent can bc 

done effcctiycIy fronl the total orbital space of the ,,,hole system, all that wc havc to 

do is to solve the eigcnvalue problem only within the intcraction spacc instead of 

solving the eigenvalue problem in the total space. 

By using the elongation method based on the idea dcscribed in thc above 

paragraph, in the prcsent casc, the MOs of the starting clus ter or the COs of the 

starting surface can be diyided into active and frozen MOs or CO after one-unit 

cxtension as mentioned in Subscctions 2.2.1 and 2.2.2. 

The problem is that how can ,ve select the interaction orbitals ,vhich can be 

used as the cffcctive bascs of the cigcnvalue problem? In thi s ,,'ork, ,vc apply the 

variational condition in order to perform the selcction of orbitals as has been u ed to 

extract the stationary orbi tals. 10- \2 

That is, when a given cluster or surface is elongatcd by one unit by connection 

with an adding fragment, thc variational condition is that thc matrix elcrnents of MO

or CO-bascd Fock matrix bctween occupicd and vacant orbitals in the extended system 

should be zero. Thus, ,ve define the orbitals \vhich do not satisfy the variational 

condition in the clustcr or surface as effectivc intcraction orbitals. 

To show the procedure for the orbital selection in the system, it is considered 

that thc orbitals {\f1 j } ()=l, ... ,M) arc kno,vn at first, and then, those are perturbed by 

the interaction with {<PJ (i=l, ... ,N) which are combined to {\IJ}. Here, to find the 

interaction orbitals and perform the division of orbital space mentioned above, the 

following rectangular blocks of MO- or CO-based Fock matrix hould be obtaincd, 

(2.5a) 

(2.5b) 

where F is thc Fock operator for the perturbed system, and occ or vac indicates 

occupicd or vacant orbital, respectively. The matrix elements in Eq. (2.5) correspond 

to the terms between occupied and vacant paces of Fock matrix based on the orbitals 

{<P} and {\f1} . To satisfy the variational condition, the matrix elements should bc zero. 

Our purpose is to extract specific orbitals from {\IJ} which have nonzero valucs of the 

matrix elements in Eq. (2 .5). In order to find the orbitals in {\.{J} \vhich interact with 

{q)} effectively, the following technique is applied to F ocC and F vac
, respectively. That 

is, if the number of the occupied orbitals is N ° and that of the vacant orbiltals i N V in 

{<D} and those in {\f1} arc M (J and M \' orbitals, respectively, \ve multiply the abo, e 

N I
' x MO and N ° x M I' matrices by those adjoint M (J x N V and M V x N ° nlatrice from 

the left sidc. The M O x M O and M V x M I
- matrices arc thus obtained, that is the matrix 

F +F, are diagonalized. This means that, 

(2.6) 
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where U is the matrix whose columns are eigenvectors and E is the diagonal matrix 

composed of the eigenvalues. The eigen\'alues obtained here reflect the Inagnitude of 

the Fock matrix elements bet\veen occupied and \'acant spaces of the orb it tals {cI)} and 

{tl'}. Therefore, the eigenvalues should be measures to indicate \\'hether the variation 

condition is satisfied or not. Thus, we perform unitary transformation on {tIJ} by using 

U and select the orbitals which have greater eigen\'alue than an appropriate threshold 

value (10-5 in this work) in occupied and vacant spaces of the transformed {tJl}. These 

orbitals can be regarded as the interaction orbitals \\'hich do not satisfy the variational 

condition against the extension by the addition of orbitals {<P}. This procedure is 

analogous to that for the corresponding orbital 22 or the interaction frontier orbitaI. 23
.
2

-l 

A similar manner is also applied in the elongation calculation to extract the stationary 

space of electronic states against the cxtension of molecular ),stems . JO- 12 We refer to 

the selected orbitals \vith greater eigenvalues as "interaction orbitals" (lvl0s or Cas) 

and to the rest orbitals \vith smaller eigenvalues as "noninteraction orbitals " hereafter. 

In other words, \-ve define "interaction orbitals" as the orbitals which do not satisfy the 

variational condi tion and "noninteraction orbi tals" as the orbitals which satisfy the 

condition in the total orbital space of system. Then, we solve the eigenvalue problcm 

based on "interaction orbitals" only by the self-consistent-field (SCF) procedure, and 

the "noninteraction orbitals" are removed from the basis orbitals in the eigenvalue 

problem. In this \vay, we modify the orbital space of the cxtended system 0 as to 

satisfy approximately the variational condition in whieh Fock matrix elements between 

occupied and vacant orbitals are nearly equal to zero. No\v, in practice, it i noted that 

this selection must be done iteratively in order to satisfy the condition as explained 

belo\v. 

In the following, \ve describe in detail the method to solve the eigenvalue 

problem forcxtended system by using the technique mentioned in the previous paragraph. 

The schematic ill ustration of the calculation procedure at the viewpoint of orbital 

separation is given in Fig. 2.3 and the matrix rcpresentations which correspond to each 

step in Fig. 2.3 are summarized in Figs. 2.4(a)-2.4(c). The interaction block of the 

Fock matrix in Eq. (2.5) are also shown as the shaded parts in Fig. 2.4. W'e explain the 

procedures along with these figures. Here, we note in stacking calculation based on the 

CO method that the Steps 2-4 must be carried out for each wave number vector k.l. for 

supcrccll, because Fock operator and cas depend on the wave number vector under 

the periodic boundary condition. But, the procedures for MO and CO treatments are 

the same except for the k -dependence. 

In Step 1, cas for unit cell {'I'll} are transformed into those for supcrccIl {Y/} 

as mentioned in the subsection B [Eqs. (2.1)-(2.4)]. This step is needed only for 

stacking calculation based on the CO method. 

In Step 2, we take into account the interaction between starting orbitals (Mas in 

tarting cluster or cas in starting surface) and adding AOs (in fragment or layer) 

through core Han1iltonian at the first because Fock operator of the extended system is 

unkno\vn at the starting point. As shown in Fig. 2.4(a), the Fock matrix based on Mas 
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or COs is diagonal within starting duster or surface, and the interaction blocks are 

shown as shaded parts and taken as f ol1ows: 

(2.7a) 

39 



Chap. 2 : Electronic Structures of Large, Extended , Non-Periodic Systems 
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HG. 2 A. The matri~ representation of each calculation step in the elongation method which 
corresponds to Fig. 2.3, (a) step 2, (b) step 3, and (c) step-l. 

core term in Fock operator. By diagonalizing the nlatri .'\ F +F, {\IJ } is classified into 

interaction orbitals {\IJ/(O)} and noninteraction orbitals {"P(O)}. Then, we sol\'e the 
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eigenvalue problerl1 based on {X} ffi {"tV' (O)} by the SCF procedure to obtain the resulting 

orbitals {X(O)} and Fock operator F(O). In this step, total orbitaL are separated into 

active orbitals {X(O)} and frozen orbitals {lV(O)}. At each step, active orbitals are 

defined as the orbitals perturbed by the adding AOs through the eigenvalue problem 

including the interactions among therTIsc1ves, \vhile frozen orbitals arc those only 

unitary transfornled and dropped frOlTI the basis orbitals or the eigenvalue problem. 

In Step 3, the interaction between the acti\ e orbital {X(O)} and frozen orbitals 

{lJl(O)} in Step 2 must be again taken into account, since the \'ariational condition 

among them may be destroyed by the change of Fock operator in SCF iteration at Step 

2. Thus, as shown in Fig. 2.4(b), we define the interaction blocks as folk)\\,s: 

(2.8a) 

(2.8b) 

We diagonalize the matrix F+F and select the interaction orbitals {'V'(l)} \vhich do 

not satisfy the variational condition \vith {X(O)} and within {lJl'(l)}, and the 

noninteraction orbitals {1J1 (l)} which satisfy the condi tion with {X(O)} and within 

{1J1(l)}. After this selection of interaction and noninteraction orbitals, the eigenvalue 

problenl represented with {X(O)}ffi{qJ'(l)} is solved by the SCF procedure. Then, \ve 

obtain the orbitals {XCI)} as the solution of the eigenvalue problem and the Fock 

operator F(l). Here, ne\v acti, e orbitals correspond to the solution {X(l)} and new 

frozen orbitals to {'IJ(l)}. In this way, the variational condition is destroyed by the 

SCF calculation. Thus, the procedure in this step must be repeated until the condition 

is satisfied in the whole system. That is, we iterate this step as long a the interaction 

orbitals exist. 

When ,ve consider the interaction behveen active and frozen orbitals, if the 

active space {X} is large and the deviation of the variational condition in this space 

becomes a little, it is expected that there may be the noninteraction orbitals in the 

acti, e space. Thus, we check the variational condition not only for frozen space but 

also for active space. If there are noninteracting orbitals in active space, they can be 

separated from the interaction space of system. This separation is carried out in the 

next step. 

In Step 4, the following procedure is repeated until the local interaction converges, 

that is, the number of interaction orbitals becomes zero, as pointed out in the last part 

of Step 3. No\v, we consider the 11 + 1 th cycle of this step (the 1st cycle corresponds to 

Step 3). In this step, we choose the interaction orbitals from a part of active space {X} 

and f r07.en space {lIJ} by the foIIo\\ring two-step procedure (see Fig. 2.3). Fir t, we 

confirm the variational condition of active space by using the interaction blocks as 

follo\vs: 

(2.9a) 
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(2.9b) 

where {'V(n)} represents the nth frozen orbitals, {X(n)} corresponds to the solution 

of the nth eigen\'alue problem. By diagonaliz.ing the matrix F +F, \\'e select the interaction 

orbitals {<p '(n + I)} and noninteraction orbitals {<P(n + I)} from {X(Il)} in active space. 

Here, {<P' (n + l)} does not satisfy the variational condition and {<P(n + l)} does. Next, 

we test the condition also for the frozen orbitals by taking the interaction blocks as 

follo\vs: 

(2. lOa) 

(2.10b) 

Diagonalization of the matrix F+F is carried out to detern1ine the interaction orbitals 

{tp'( n + l)} \\'hich does not satisfy the \ ariational condition and the noninteraction 

orbitals {\V(n + I)} \\'hich satisfy the condition. After selecting the interaction orbitals 

{<P'(n + l)} and {\V'(n+ l)} from active and frozen spaces, respectively, the eigenvalue 

problcn1 is solved \vithin the orbital space {<p'(n + l)}(f){t!f'(n+ I)} by the SCF procedure 

to obtain the resulting orbitals {X(n+l)} and Fock operator F(n+ 1). This step is 

summarizcd in Fig. 2.4(c). In this step, ,,'e can scparate total orbital space into the 

active space {<p}(f){X} and the frozen space {tV}. 

Next, we take {X(n + I)} and {Wen + I)} as the interaction space for the n + 2 th 

cycle, and repeat the procedure in this step as mentioned above. Thus, at each cycle of 

this step, if there is, {<p} is removed from the interaction space and each {ct>} remains 

in\'ariant through all cycles, because the interaction between {<P(1l + l)} and ep(n)} is 

considered to be small enough. That is, we assume that the variational condition of 

{C])(1l + l)} is not destroyed by the interaction with eV(n + I)} through the change in 

Fock operator. Finally, when the interaction converges, the interaction orbitals vanish 

and the variational condition is satisfied approximately in the total orbital space of the 

system. That is, at the m th cycle, the active orbitals can be determined as {cl)(2)} , ... , 

{cD(m)} and the frozen orbitals as {tIJ(m)}. At this point, we obtain the electronic 

structure of the system \vith one-unit extension, ultimately, the cluster is elongated by 

one unit or the surface is stacked by one layer. . 

No\v, it is noteworth) that the important effects of charge transfer and exchange 

between starting orbitals and adding AOs are included in the blocks of (XI FllJ1) and 

(<1)'1 FI tJ1), and also, the polarization effect \vithin starting orbitals is included in the 

block (tIll .PI tV) at Steps 3 and 4. 

In the continuous extension of the system, the Steps 2-4 arc repeated any time ' 

wi th the following treatment. We diagonalize the Fock matrix wi thin the active space 

and ,,'ilhin the frozen space to detero1ine final actiYe orbitals {tv,) and frozen orbitals 

{'Il f }' As the starting orbitals of next elongation cycle, the active orbitals {tl'{/} are 
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used, which correspond to {tIJ} in Step 2, and the frozen orbitals {t}J f } are fi:\ed in the 

ne:\t elongation. That is, the frozen orbitals are separated from the total orbital space of 

the system and are kept \vithout any changes through all calculation cycles. In other 

words, the Steps 2-4 are carried out within the orbital space which includes the active 

orbi tals and the adding orbi tals of the fragment or layer. We sho\\' a schematic ill ustration 

of orbital separation by this procedure in Fig. 2.5. 

~I c:?ll c:?ll c:?ll c:?ll ~ - G 
Starting orbi tals A ( s 

Step 2 Non-interaction Interaction 
~--------------~ 

SCF 

~ ~ 

~ Ic:?ll c:?ll c:?ll e=:::> I ~ I~ 
Frozen Active 

Step 3 on-in teraction Interaction 

SCF 

~ J 

~-I-e=:::>--I e=:::>--I-C;;-~'~~I~ 
FrOZeJl~ Active 

6 Ie=:::> I e=:::> I e=:::> I 
Frozen Interaction Non-interaction 

Step -t. 

on- interaction I ntcraction on -interaction 

SCF 

t 
GI le=:::>I 

Frozen 

JJ Iteration 

Active 

l'illa1~ 
Frozcn Activc 

D Diagollahzalioll D 
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I-1G. 2.5 The summary of calculation sleps based on the orbItal selection. 
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Finally, we summarize briefly the concept and the outline of this elongation 

method. We take the isolated system (cluster or surface) as the starting point, and 

combine it with the adding molecule (fragment or layer). At the starting point, the 

Fock matrix is diagonalized within the starting orbital space, and the matrix elements 

between the starting orbitals and adding AOs have nonzero values. If the eigenvalue 

problem of the \vhole system is solved completely, the matrix clements bet\\'een occupied 

and vacant orbitals must vanish (the variational condition). Therefore, \ve developed 

the method by which the total orbital space of the system satisfies the condition 

\vithout solving the eigenvalue problem for the total orbital space. For thi s purpose, 

the specific orbitals that have nonzero matrix elements between occupied and \'acant 

orbitals are selected as "interaction orbitals". Then, the eigenvalue problem is solved 

within the selected space by using the "interaction orbitals" as effective basis orbitals 

of the eigenvalue problem. After this step, the variational condition may be destroyed 

by the SCF procedure because of the change in Fock matrix. Thus, this selection must 

be done iteratively. The procedure of this method is very simple in practical calculation 

in the meaning that we have only to perform the diagonalization of the m.atrix F +F to 

find the interaction orbitals. The characteristic feature of our approach is that the 

determination of the subspace in \vhich the SCF problem is solved is included in the 

calculation process. Thus, \-ve can control the accuracy of calculation by a threshold 

val ue to find the interaction orbi tals \-vi thout specifying the interaction space. Moreover, 

the orbital division in this method gives us the information on the olagnitude of 

interaction in large, extended, nonperiodic systems. 

2.2.4. Further Development of the Elongation Method 
toward Ab Initio Calculations 

Ab initio calculations require the time-consuming steps of one- and t,vo-electron 

integrals. However, we expect that the elongation method may have an advantage for 

this poi nL That is, because the extension is carried out as a succes i ve scrie', \ve can 

reuse the already-evaluated integrals fully. For example, \vhen a starting system A is 

extended by adding B, we have only to compute the integrals within B and between 

A and B since those within A have already been calculated in the starting point. This 

is similar in any step of the extension series, thus, the integrals which should be 

estimated at a step are only those including ne\vly adding AOs. The development of 

the elongation method in this direction is now in progress. 
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2.3. RESULTS AND DISCUSSION 

We perfonned se\ eral model calculations by using the method described in the 

section 2.2. At first, we det110nstrate the results for the propagation of cluster in order 

to check the reliability. Next, this elongation method is applied to three rnodels for the 

stacking of molecules on surface. Finally, we report briefly the results for local 

chemisorption of carbon monoxide on magneSiUt11 chain. 

In this section, we do not analyze the electronic structures obtained by the 

calculations in detail, because the purpose of this study is to test the applicability of 

our approach for various extended systems. 

In this \vork, we assumed 10-5 as the threshold value of orbi tal selection and all 

results \vere obtained at the SCF level by using the CNDO/2 approximation. We 

specif) "usual" calculation as the MO calculation for each cluster molecule with 

different size in Subsection 2.3.1 and as the CO calculation under nearest neighbor 

approximation of each surface \vith different number of stacked layers in Subsection 

2.3.2. These calculations were also carried out for the comparison with the results by 

the elongation method. 

2.3.1. Propagation of Various Clusters 

We applied the MO-based elongation method to several extended ystems of 

hydrogen molecule, hydrogen fluoride, polyethylene, and polyacetylene. Since the 

purpose of these test calculations is to confirm the validity of our method, we show 

only the total energies of the systems together with computational times in comparison 

with usual cluster calculations. 

The models and their geometrical parameters used in the propagation calculations 

are shown in Figs. 2.6(a)-2.6(d). Each of them corresponds to model polymer of 

hydrogen molecule, hydrogen fluoride, polyethylene, and polyacetylene, respectivel). 

In performing these calculations, the clusters were propagated by arranging periodically 

in one dimension. We carried out t\\'o-directional elongations, that is, the molecular 

rragn1ents were added to the both ends of the cluster by one unit. The polymers with 

chemical bondings in Figs. 2.6(c) and 2.6(d) \vere extended by substituting the end 

hydrogen atom by the adding fragment, that is., we substitute the Is coefficient of the 

hydrogen aton1 by the 2s coefficient of carbon atom of the adding fragment. 

(a) I Iydrogcll molecule 

H--H ==> H--H H-H H--H<== H--H 

Fragment 

(h) I Iydrogcn Duoride 

F 
I 
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I 
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H F 
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Hz Hz 
(c) Polyethylene 

H C C H C== 
Hz 
C 

"c Hz 
Fragmcnt 

(d) Polyacetylene 

H 
C 

H/~C 
H 

Fragment 

H/ "c/ "c/ H 
Hz Hz 

Starting cluster Fragmcnt 

==> H 

2 
Starting cluster Fragment 

FIG. 2.6. The clusters calculated by the elongation process. We assumed and fixed lhe following 
geometrical parameters; (a) bond lenglh of hydrogen molecule = 0.7-12 A and intennolecular 
dis tance = 1.0 A, (b) bond length of hydrogen fluoride = 0.917 A and intennoleculalr distance = 
1.5 A, (c) r(C-C) = 1.45 A, r(C-ID = 1.09 A, and all bond angles = 109.5°, and (d) r(C-C) = lA76 A, 
r(C=C) = 1.326 A, r(C-II) = 1.08-l A, LCCC = 124.0", and L C=CII = 120.0". 

The results of the calculations are listed in Tables 2.1-2.4. In these tables, 11 

denotes the number of clongated units and the starting cluster corresponds to 11 =0. 
From these tables, it is obvious that our approach has enough rcliabihty and great 

advantage in the computational time in comparison \vith the usual cluster calculations. 

TABLE 2.1. Total energies and cpu times of extension calculation for hydrogen 
molecular cl lIster (H2) 11 -(H2h-(I 12)11 . 

Total energy (e V) cpu time (min:s)a 

1l Cluster Elongation Cluster Elongationb 

- 197.628026 - 197.628026 0 :01 0:01 (----- ) 
2 -276.383-H8 -276.383418 0:02 0:02 (0:03) 
3 -355.138332 -355.138327 0:04 0:02 (0:05) 
4 -433 .893127 -433 .893122 0:08 0:03 (0:08) 
5 -512.647897 -512.647890 0:14 O:W (0: 12) 
6 -591 .402673 -591 .402661 0 :22 0:06 (0: ] 8) 
7 -670.157461 -670.157443 0:34 0:07 (0:25) 
8 -748.9 12265 -748.912241 0:50 0:08 (0:33) 
9 -827.667083 -827.667056 I : ] I 0: 10 (O :--B) 

10 -906.421915 -906.421883 1:39 0: 11 (0: 54) 
11 -985.176761 -985.176723" 2:]':; 0: 13 (1:07) 
12 - 1063 .93 161 9 - 1063.93 1575 2:59 0: 16(1 :23) 
13 - I 142.686489 - 1142.686437 3 :44 0: 18 (IAI) 
14 - 1221 .M 1369 - 1221.4-+1311 4:33 0:21 (2 :02) 
15 - 1300.196260 - 1300.196194 5:59 0:24 (2 :26) 

16 - 1378.951 16 I - 1378.951087 7:37 0:27 (2 :53) 
17 - 1457.706070 - 1457.705989 8:53 0:31 (3 :2-+) 
18 - 1536.460988 - 1536.460899 10:42 0:32 (3 :.56) 
19 -1615.215914 - 1615.215817 13:32 0:37 (4:33) 
20 - 1693.9708-+8 - 1693 .970743 16:02 OA1 (5: 14) 

a CplI time on IB~ 1 IUSC System '60005301 I. 
b The vallie ill parentheses indicates the slim of cpu time lip to the 11th extension . 
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TABLE 2.2. Total energies and cpu times of extension calculation for hydrogen 
fluoride molecular cluster (I fF)/l -(l IF) .r(l n~n ' 

Total energy (eV) cpu time (min:s) a 

11 Cluster Elongation Cluster Elongationb 

1 --U536.959 158 --UJ3 6. 959169 0: 11 0:07 (----- ) 
2 -6182.+19012 -6182 . ..+49020 0:32 0: 1..+ (0 :21) 
3 -7727.939661 -7727.93967"+ I : 1..+ 0:21 (0:..+2) 
..+ -9273.-+30921 -9273.-+30936 2:29 0:31 (I : 13) 
5 -10818.922682 -10818.922698 ..+:29 0:37 ( 1:50) 
6 - 1236-+ . ..+ 1-+871 - 1 236-+.-+ 1-+889 7:06 0:-+7 (2:37) 
7 - 13909.907"+32 - 13909.907..+52 11:16 1:00 (337) 
8 - 15-l55'-+00322 - 15..+55.400327 17:02 1:09 (..+:-UJ) 
9 - 17000.893509 - 17000.893516 2..+:2..+ 1:27 (6 : 13) 

10 - 185-+6.386%6 - 185-UJ.386976 33:53 1:-+8 (8.01 ) 
11 -20091 .880670 -20091.880682 -l6:0"+ 2:06 (10:07) 
12 -21637.37460 I -21637.37..+616 61: 10 2:38 (12:..+5) 
13 -23182.8687..+4 -23182.868762 79:51 3 :02 (15."+7) 
1..+ -2..+728.36308..+ -2..+728.363105 102:06 3 :30 (19: 17) 
15 -26273 .857609 -26273.857633 128:..+8 "+:22 (23 :39) 
16 -27819.352308 -27819.352335 160:05 5:06 (28:-+5) 
17 -2936-+.8..+7171 -2936-UW71 &3 197:27 5 :37 (3..+:22) 
18 -30910.342190 -30910.34220-+ 2..+2:25 6 : 19 (40 '''+1) 
19 -32"+55.837357 -32455.837374 288:4-+ 6 :..+4 (47:25) 
20 -34001.332665 -3..+001.332685 327:..+9 8 :02 (55:27) 

a cpu time on IBrvI RISC System/6000 530H. 
b The value in parentheses indicates the sum of cpu time lip to the 11 th extension .. 

Moreover, since the increment of the errors in the continuous elongation is very small, 

the, alidity of the calculated results should be maintained in the more ext.ensions. The 

diagrams of computational times for polyethylene and polyacetylene systems are given 

TABLE 2.3 . Total energies and cpu times of extension calculation for 
polyethylene molecular cluster I r-(CI 12 )n-(CI 12)4-(Cl 12)/l-1 r. 

Total energy (eV) cpu time (min :s)a 

II Cluster Elongation Cluster Elongationb 

1 -1..+57.-+51870 -1457.-+51871 0:26 0: 17 (-----) 
2 -1930.27890..+ -1930.278905 1:09 0:30 (0:47) 
3 -2-lO3 . I 06253 -2403 .106240 2:-+6 0 :55 (1 :..+2) 
..+ -2875.934106 -2875.93"+093 5:2..+ 1:16 (2:58) 
5 -33-+8.762143 -3348.762129 9: 12 1 :49 (4:..+7) 
6 -3821.590"+39 -3821 .590422 15: 17 2: 15 (7:02) 
7 -..+29..+.-+ 18996 -..+29·l418974 23 :-+8 2:..+1 (9:"+3) 
8 --l767.2..+7724 -..+767.2..+7702 35:26 2:55 (12:38) 
9 -524<lO76677 -5240.076643 50: 19 3 :31 (16:09) 

10 -5712.905766 -5712.905730 70:25 3:..+9 (19:58) 
11 -6185.735020 -6185.734971 94:53 4 :52 (24:50) 
12 -6658.56-W3 ] -6E 58.56-+380 126:37 ..+:57 (29:..+7) 
13 -713 1.39398-+ -7131.393920 16-l"+9 6 : 19 (26:06) 
1..+ -760"+.223&39 -7604.223772 209:28 6 :53 (32 :59) 
15 -8077.053677 -8077.053596 256: 15 8:50 (41 :..+9) 

a cpu time on IBM RlSe System/6000 53011. 
b The value in parentheses indicates the slim of cpu time up to the 11th extension. 
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TABLE 2 A. Total energies and cpu times of extension calculation for 
polyacetyJcne molecular cluster I 1-(C21 r 2)/I-(C 2H 2)-dC 2J 12)/I-J 1. 

Total energy (eV) cpu lime (min:s)a 

II Cluster Elongation Cluster J :longationh 

-25%.502795 -2796.502795 2:22 1:36 (-_._-- ) 

2 -3-W9.362937 -3449.362937 6:-W 2: 11 (3 :-+7) 
3 --+302.223779 --+302 .223773 15:23 3:30 (7:17) 
-+ -5155.085125 -5515.085116 30:25 "+:30 (11 :..+7) 
5 -6007.946920 -6007.946897 5-l06 5:0-+ (16: '11) 
6 -6860.809139 -6860.809106 89:37 6:09 (23 :00) 
7 -7713.671683 -7713.671639 1..+0:23 7:33 (30:33) 
8 -8566.53-+563 -8566.534506 207:03 9:37 (-+0: 10) 
9 -9..+19.397820 -9419.397750 309:25 11:19 (51 :29) 

10 -10272.261231 -10272.2611-+8 415:59 13 :24 (6-+:53) 

a cpu time on IBtvI RlSC System/6000 5301 I. 
b The value in parentheses indicates the sum of cpu time up to the nth extension. 

in Figs. 2.7(a) and 2.7(b) to compare our approach with the usual cluster approach. In 

the extension of the system, the elongation method can calculate the system as cluster 

series successively by connecting each cluster, that is, we need not to calculate the 

whole molecules "vith different sizes individually as the usual cluster rnodel. In the 

elongation calculation, noninteraction orbitals which are removed from the basis of the 

eigenvalue problem can be determined. Therefore, eigenvalue problerrl with small 

dimension having only the interaction orbitals is solved iteratively instl~ad of large 

eigenvalue problem of the "vhole system. Thus, the cpu time consumed in one-unit 

extension by our calculation is much shorter than the usual calculation. Moreover, 

total cpu time up to nth extension of the elongation method is also shorter than the 
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Cluster 
~ Elongation 
• Elongation (Sum) 

2 3 4 5 6 7 8 9 10 

Elongation cycle : II 

(b) Polyacetylene 

RG. 2.7 . The computational times for the propagation of clusters which approximate one
dimensional periodic polymers by using usual cluster model or the ~'10-based elongation method , 
(a) polyethylene and (b) polyacetylene . 

time required for the one cluster with size n.. From the comparison of the both methods, 

it is expected that the advantage of our method increases more and more when the 

system becomes much larger as aperiodic biopolymers. 

TABLE 25. The divided orbital space in elongation calculation for 
clusters of hydrogen molecule or hydrogen fluoride. 

o 12)11-(1 12~ -O 12)11 (HF) 11-(1 JT}~-(1{I~) 11 

Active frozen A.ctive l ;rozen 
Total Total 

fl AOs Occ. Vac. Occ. Vac. AOs Occ. Yac. Occ . Yac. 

I lOa -b .) 
~ c 
.) Ob OC 30 a 22 b 6 c 2b Or 

2 14 7 7 0 0 40 26 8 6 0 
3 18 9 8 0 1 50 30 8 10 2 
4 22 10 10 I I 60 30 10 18 2 
5 26 10 10 3 3 70 30 10 26 4 
6 30 12 12 3 3 80 30 10 34 6 
7 34 12 12 5 5 90 30 10 42 8 
8 38 12 12 7 7 100 30 10 50 10 
9 42 12 12 9 9 110 30 10 58 12 

]0 46 12 12 ] 1 11 120 30 10 66 14 

a The totaillumbcr of atomic orbirals (/\Os) in the cluster as well as that 
of molecular orbitals Cvl0s). 

bThc number of occupied ~10s in the orbital space. 
r The number of vacant l"dOs in the orbital space . 
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TABLE 26. The dividcd orbital space in elongation calculation for 
clusters of polyethylene or polyacetylenc. 

H-(CI 12) /1-(0 I2)4-(CH2) n-I-! 11-(C21 12)n-(C 2 f I 2)4-(C 21(2) /1-1 I 

Active l ;rozcn Activc Frol.cn 
Total Total 

Il AOs Occ. Vac . Occ. Yac. AOs Occ . Vac. Occ . Vac . 

38 a 19 b 19 c Ob Or 62 a 31 b 31 c Oh Or 

2 50 25 25 0 0 82 38 38 3 3 
3 62 31 31 0 0 102 ~2 -+0 9 11 
~ 7~ 3-+ 32 3 5 122 ~2 ~2 19 19 
5 86 3~ 32 9 II 1~2 ~2 ~2 29 29 
6 98 3~ 32 15 17 162 ~2 ~2 39 39 
7 110 3~ 32 21 23 182 ~2 ~2 ~9 ~9 

8 122 3~ 32 27 29 202 ~2 ~2 59 59 
9 13~ 34 32 33 35 222 ~2 ~2 69 69 

10 1~6 3~ 32 39 ~I 2~2 ~2 ~2 79 79 

a The total number of atomic orbirals (AOs) in the cluster as well as that 
of molecular orbitals (MOs) . 

b The number of occupied ~,IOs in the orbital space . 
c The nWl1bcr of vacant ~'10s in the orbital space. 

The divided orbital spaces which are final active and frozen orbitals In these 

calculations are summarized in Tables 2.5 and 2.6. The first freezing of occupied 

orbitals appears at n =4 for hydrogen molecule, at n = 1 for hydrogen n uoride, at n =4 

for polyethylene, and at n=2 for polyacetylene. This means that the orbitals begin to 

be frozen against the following propagation of clusters; from (H2)9 to (H2) II for hydrogen 

molecule, from (HF)4 to (HF)6 for hydrogen fluoride, from H-(CH2)IO-H to H-(CH2)12-H 

for polyethylene, and from H-(CH)12-H to H-(CH)\()-H for polyacetylene. In repeating 

the extension, the active space becooles constant, and constant number of orbital is 

newly frozen against each extension. This situation has been discussed in our previous 

study on stationary orbitals 10 and it has been pointed out that the analysis of the 

stationary space gives us the infornlation on the electronic state from cluster to polymer. II 

As described in these works, it is expected that the band structure can be reconstructed 

from our duster-series calculation. 12 

Next, energy increments ~E(n) = E(n) - E(n-l) which corresponds to the 

energy per two units of polymer are shown in Figs. 2.8(a)-2.8(d). For cornparison, the 

energies of periodic polymers obtained by the CO calculations including up to the 15th 

neighbor interaction are also sho\vn together. For all cases, the energies per two units 

are con\'erged into those of the periodic polymers at n=10. In the case of hydrogen 

molecule, the convergence is very fast in comparison with other cases because of the 

weak interaction between molecules. The converged values are listed below together 

with the \'alues of the CO calculations. 

Hydrogen molecule 

Hydrogen n uoride 

Llli( 1 0) 

-78.7548 eV 

-1545.4935 e Y 
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-78.745~----------------------------~ 

I---+-- Energy incrcment (c V) I 
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o 2 3 4 5 6 7 8 9 10 
Elongation cycle : 1l 

(a) IIydrogcn molccule 

-472.8291 eV -472.8296 e V 

-852.8634 eV -852.8640 eV 

The energy increment ~E corresponds to the energy of periodic pol) mer exactly. 

Thus, the elongation method can reproduce the property of periodic polymer in the 

case of the periodical propagation. 
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-472.820 r-----------------, 

I-*-- Energy increment (e\ ') I 
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-472.830 

Crystal orhital calculation 

-472.835 
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HG. 2.8 . The energy increment in each elongation cycle corresponding to the energy per two units 
of clusters shown in Fig. 2.6 . The solid line indicates the energy increment by elongation calculation 
and the dashed linc the energy of pericxlic polymer by crystal orbital calculation, (a) hydrogen 
molecule, (b) hydrogen fluoride, (c) polyethylene, and (d) polyacetylene. 
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FlG. 2.9. The models llsed in the calculation for stacking of molecules on surface. The following 
geometrical parameters were n assumed; bond length of hydrogen molecule = 0.7-l2 A and 
intennoleclliar distance = 10 A. 1 he layers of hydrogen molecules are approached on surface at 
equal interval d. 

2.3.2. Molecular Stacking on Surface 

The stacking calculations of three models for the gn.)\vth on cry 'tal surface 

illustrated in Figs. 2.9(a)-2.9(c) were carried out by using the CO-based elongation 

method . We used (H2)s as a unit cell and [(H2)s]7 = (H 2)35 a~ a supcrcell, and the 

supcrcell is the model of "quasi" crystal surface. In modell, one hydrogen molecule is 

added on the supcrcell one by one. Three hydrogen molecules approach to the supcrcell 

one after another in model 2, and in model 3, two hydrogen molecules are put upon the 

top of the layers in model 2. The latter case may correspond to a lattice defect on 

surface. In these models, we stacked up n layers successively on the surface at an 

equal interval. 

The total energies and cpu times of mlxlel 1 are listed in Table 2.7 at three 

distances d =2.0, 1.6, and 1.2 A between layers. The agreements between the usual 

CO calculation by using the nearest neighbor approximation and the elongation 

calculation are excellent. The computational time by our approach is much faster than 

the usual CO method. In our calculation, when \ve need to obtain the result at n = m , 

we have to calculate from n = 1 to n = m. However, the cpu time required for the 

elongation calculation from n = 1 to n = m is shorter than that in the llsual C() calculation 

only at 11 =m. In other woros, our approach can calculate up to m th cycle in shorter 

time than the usual CO calculation for the only one yalue for n. 
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TABLE 2.7. Total energies and cpu times of tacking calculation for model 1. 

Total energy (c\') cpu time (min:s) a 

d(A) Il Crystal orbi Lc11 Elongation Crys ta I orbi till Elongationb 

- 1 ... H 8.227053 -1418.227049 95: 16 1 1 : 52 ( 13 : I 2) 
2 -1458.252508 - 1458.252508 lW:27 2:-tO (15:52) 

2.0 3 -1498.277917 -1498.277917 114:23 1:~ (17AO) 
4 -1538.303308 -1538.303308 124:35 1:55 (19:35) 
5 -1578.3 286R5 -1578.328686 135:5R 2:03 (21 :38) 

- 1417.827242 - 1417.8272-lO 94: -)8 11:50 (13: 10) 
2 - 1457A90382 - 1457A903R2 10.+:37 3:45 (16:-)5) 

1.6 3 - 1497.153286 -1497. 153286 115:06 1:50 (1R :45) 
4 - 1536.816176 -1536.816176 125:56 1 :57 (20:42) 
5 - 1576A79056 -1576.479056 137:41 2:0-l (22A6) 

- 1416.093566 -1416.093533 94:36 12: 18 (13 :38) 
2 -145-l152076 -145 .. -1-.152068 104: 11 ..+:38 (18: 16) 

1.2 3 -1492.209366 -1492.209360 114:38 2:5-l (21: 10) 
4 -1530.266521 -1530.266515 126: 18 1: 57 (23: 07) 
5 -1568.323670 -1568.323664- 138:27 2:05 (25: 12) 

a cpu time on IBM RISC System/6000 340. 
b The value in parentheses indicates the SlIm of cpu time up to the lIth extension. 

(a) Model 1 

-HS 

-H4 

-H3 Stacked five layers 

-H2 

-H1 

-H H-H H-H H-H H-H H-H H--H 
1 2 3 4 5 Surface 31 32 33 34 35 

(b) t\'1odels 2 and 3 

-H13H-H15 

-H10H-H12 

-H7 H-H9 Stacked five layers 

-H4 H -H6 

-H1 H -H3 

H H-H -----.", H-H ••• H-H H-H H--H 
1 2 3 9 10 Surface 31 32 3334 35 

RG. 2 .10. The numbering of atoms in the follo ... "ing models, (a) model 1 in Table 2.8 and (b) modcls 
2 and 3 in Table 2.10. The model is symmetrical and only half side of the system is shown . 

55 



Chap. 2 : Electronic Structures of Large, Extended, Non-Periodic Systems 

TABLE 2.8. ' llIC elcctron dcnsity distrihutions on slU1acc on which stackcd fi\'c layers and OIl 

atoms in fi vc laycrs for model 1. a 

Layer 

d=2.0 A III H2 113 H..+ lIS 

Crystal orhital 1.0005 1.0000 1.0000 1.0000 1.0000 
Elongation I .OO()S 1.0000 1.000n 1.(X)OO 1.0000 

Surface 

d=20 j\ III II2 II3 11..+ 115 IB 1 II32 IB3 1I3..+ II35 

Crystal orbital 1.0002 0.9995 0.9998 1.0001 0 .9999 1.00(X) 1.0000 1.0000 1.0000 I.O(X)O 
Elongation I .0002 0.999"+ 0.9999 1.0000 1.0000 1.0000 1.0000 I .onoo 1.0000 1.0000 

Layer 

d=1.6 A III H2 1I3 11..+ II5 

Crystal orbital 1.0018 1.0000 1.0000 1.0000 1.0000 
Elongation 1.0018 1.0000 1.0000 1.0000 1.0000 

Surface 

d= 1.6 A III H2 II3 1I4 tI5 1131 II32 II33 I B-t. II3S 

Crystal orbital 1.0008 0.9984 0.9992 1.000-+ 0 .9995 1.0000 1.0000 1.0000 1.0000 1.0000 
Elongation 1 .0008 0.998-+ 0.9992 1.0003 0.9996 1.0000 1.0000 1.0000 LOOt 0 1.0000 

Layer 

d=1.2 A III 112 H3 1I..+ H5 

Crystal orbital 1.00S5 1.0002 1.0000 1.0000 1.0000 
Elongation 1.0055 1.0002 1.0000 1.0000 1.0000 

Surfacc 

d=1.2 A III H2 H3 H4 H5 II31 1132 II33 1 I3.-l II35 

Crystal orbital 1.0025 0.9953 0.9973 1.0012 0.998-l 1.0000 1.0000 1.0000 1.0000 1.0000 
Elongation 1.0025 0.9951 0.997..+ 1.0010 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 

a The numbcring of atoms is showll ill Fig . 2.10(a). 

The electron density distributions of model 1 are summarized in Table 2.8 in 

which the numbering of atoms is given in Fig. 2.10(a). This table indicates that the 

atomic populations of additional layers and the central and end parts of the 'upcrcell 

are in good agreement between the both methods for various distances. 

In Table 2.9 the total energies and cpu times of models 2 and 3 are summarized, 

and in Table 2.10 the electron density distributions by the both nlethods are shown, 

where the numbering of atoms is written in Fig. 2.10(b). Also in the cases of models 2 

and 3, the results obtained by using our method agree with those obtained by using the 

usual CO method in good accuracy and our calculation has much advantage in 

computational time. 
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TABLE 2.9. Total energies and cpu times of stacking calculation for models 2 and 3 . 

d=1.6 /\ Total energy (e\') cpu time (min: s)a 

i\lodel II Crystal orbital Elongation Crystal orbital Elongation b 

- 1.+95 . .+26-B6 -1.+95.-+26 ... B3 116:02 13 : 17 ( 1-1-:37) 
2 - 1612.68-B87 -1612.68-+386 152:55 9:05 (23 :-1-2) 
3 - l729.9-1-186-+ - l729. 9.+ 1863 198:37 10:-1-2 (3-1-:2-l) 
.+ -18.+7.199353 -18-+7. 199350 25-+: 12 12:35 (-+6:59) 

2 5 -196-+.-1-56913 -196-+-'+56909 318:32 1.+:-1-1 (61:'+0) 
6 -2081.71-1-558 ... 2081.71.+553 39.+:28 17:09 (78:-1-9) 
7 -2198.972288 -2198.972282 -+88:0.+ 19:-l2 (98:3 I) 
8 -2316.230099 -2316.230092 590:3'+ 22:26 (120:57) 
9 -2-1-33.-+87988 -2-1-33.-+87981 709:-1-6 2:):3 I (1-+6:28) 

10 -2550.7'+5952 -2550.7.+59-l3 8-+7:27 28:-1-2 (175: 10) 

I -1.+57 .... W-B61 -1-l57.-+-+-+350 106: 10 11 :08 ( 12:28) 
2 -157-l.709550 - 157-1-.7095-+5 1.+0:21 8:39 (23: 16) 
3 - 1691.967362 -1691. 967359 180:06 9:-1-0 (33 :22) 
.+ -1809.22-1873 -1809.224869 23.+: 1.+ 12:3'+ (-+6 :58) 

3 
5 -1926.-+82423 -1926.482417 296:36 1-l:-l2 (61:-1-1) 
6 -20.+3.740045 -20'+3.740038 368: 16 17:20 (79:00) 
7 -2160.9977'+9 -2160.997741 .+5-l08 20:27 (99: 16) 
8 -2278.25553.+ -2278.255525 551:25 22:50 (121 :21) 
9 -2395.513397 -2395.513388 668:22 26:05 (1.+7:02) 

10 -2512.771336 -2512.771326 800:28 29:23 (l75:51) 

a cpu time on IBi\1 RlSC System/6000 340. 
b The value in pareIltheses indicates the sum of cpu time up to the nth extension. 

TABLE 2.10. The electron density distributions on surface on which stacked five layers at d= 1.6 
f and on atoms in five layers for models 2 and 3. a 

i\lodel 2 
Layer III H2 H3 II-I- II5 Il6 II7 Il8 II9 IllO 

Crystal orbital 0 .9981 0.9651 1.0387 0.9981 0.9670 1.0349 0.9982 0.967.+ 1.03-l1-l 0 .9982 
Elongation 0 .9981 0.9651 1.0387 0.9981 0.9670 1.0349 0.9982 0.967-1- 1.03--W 0.9982 

Layer 1111 H12 Ill3 1114 H15 

Crystal orbital 0.9676 1.03-1-2 0.9977 0.9615 1.0407 
Elongation 0.9676 1.03-1-2 0.9977 0.% 15 1.0-J.07 

Surface III Il2 H3 II.+ 115 116 II7 H8 1I9 lIlO 

Crystal orbital 
Elongation 

1.0008 1.0052 0.9957 0 .9991 0.9975 1.0005 0.9992 1.0002 0.9997 1.0000 
1.0008 1.0050 0.9959 0.9988 0.9978 1.0002 0.9995 1.0000 0.9999 l.OOOO 

Surface 1131 H32 1133 1I34 1135 

Crystal orbital 1.0000 1.0000 1.0000 1.0000 1.0000 
Elongation l.OOOO 1.0000 1.0000 1.0000 1.0000 
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TABJ JE 2. ] O. (Continued. ) 

~lodel 3 
Layer 

( ' rystal orhital 
J :1 onga ti on 

Layer 

Crystal orhital 
Elongation 

Surface 

Crystal orhital 
Elongation 

Sun'ace 

Crystal orbital 
Elongation 

III 

n.9981 
0,9981 

II1I 

0.96 ... H 
0.96-+ I 

III 

1.0008 
1.0008 

IBI 

1.0000 
I .O<X)O 

1I2 113 II-t H5 

0.9651 1.()387 0.9981 n.9670 
0,9651 1.0387 0.9981 0.9670 

JI]2 rIU IIl-t II 15 

1.0389 .................... 1.0036 0.998-t 
1.0389 1.0036 0.998-t 

1I2 I13 It-t 115 

1.0052 0.9957 0.9991 0.9975 
1.0050 0.9959 () ,9988 0,9978 

IB2 1133 IB-t H35 

1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 

a The lllunbcring of atoms is shown in Fig . 2.1O(b). 

II6 II7 118 119 I I 10 

1.03-t9 0.9982 Oc)()75 1.03 .. B () , <J<J50 
1.03-t9 0.9982 0.9675 ] .03-B n.9950 

JIG In II8 119 11]0 

1. (X)05 0.9992 1.0002 0.9997 1.0000 
1.0002 0.9995 1,0000 0.9999 1.0000 

Next, the sum of electron density on each hydrogen atom in the surface is listed 

in Table 2.11 for the three models. In models 1 and 2, no electron transfers are found 

bel\\'een the surface and the layers at the two distances of d =2.0 and 1.6 A. Small 

amounts of electron transfer from the surface to the layers are found only at d =1.2 A. 
In model 3 for lattice defect, electron transfer from the surface to the layers appears in 

the case of n=1, in \vhich the defect site is created on the surface directly. For the 

systems having 010re than n=2, the perfect layers bet,,'een the surface and the defective 

layer may screen electron transfer, and thus the tendency of the electron transfer is the 

same as that of model 2. 

The net charges on each site of the surface for model 1, in which five layers are 

piled up on at the equal interval d, are shown in Figs. 2.11(a)-2.11(c). In t.he case of d 

=2.0 A, the de\'iation of the charge density from the \'alue for bulky chain is little 

recognized, and of d=1.6 A, it is observed a little around the central molecule. For d 

=1.2 A, the effect of the stacking layers is extended \vitl1in nearly five moilecules at the 

center of the surface. For the all cases, t.he central site on which layers arc stacked has 

minus charge and its neighboring sites have plus. 

TABLE 2.11 . The sum of electron density on surface of models 1, 2, and 3 . a 

10dcl 1 Mcx1cl2 todcl 3 

11 d = 2 .0 1\ 1,6A 1.2 j\ 2.0 A 1.6 ;\. 1.2 A 2.0 /\ 1.6 ;\ 1.2 ;\ 

69.999 69.996 69,989 69.999 69.996 69.988 69.998 69.993 69.979 
2 69,999 69.996 69.989 69.999 69.9% 69.987 69.999 69.996 69.987 
3 69 .999 69.996 69,989 69,999 69,9% 69.987 69.999 69.996 69.987 
-t 69.999 69.996 69.989 69.999 69.996 69.987 69.999 69.996 69.987 
5 69.999 69.9% 69.989 69.999 69.996 69987 69,999 69.996 69.987 

a The slim of electron density on isolated surface -(ll2hs " = 70. 
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rIG. 2.11. The distribution of net charge on surface in model 1 on which five layers are piled up at 
the distance d, (a) d=2.0 A, (h) d= 1.6 A, and (c) d= 1.2 A. 

The charge distributions on five-Iayers-stacked-up surface of model 2 are given 

for three distances bet,,'een layers in Figs. 2.12(a)-2.12(c). In each case, by comparing 

with the surrounding sites, the central site is not heavily affected by the stacking. The 

charges of the nearest site are minus, "vhile that for second nearest plus. The diffusion 

of the charge distri bution is found in wide range on the surface \vhen layers place upon 

at the interval of d =1.2 A. 
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rIG. 2.12. The distribution of Ilet cha~ge on surface in model 2 OIl which five layers are piled up at 
the distance d, (a) d=2.0 A, (b) d= 1.6 A, and (c) d= 1.2 A. 
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The effect of continuous addition of layers on the charge distributions of models 

2 and 3 at the distance of d = 1.2 A are sho\vn in Figs. 2.13(a)-2.13( c) and Figs. 

2.14(a)-2.14(c), respectively. In model 2, from a little difference between Figs. 2.13(a) 

and 2.13(b), the second layer appears to interact with the surface \veakly through the 

first layer, that is, the newly placed layer may effect on the nearest and second nearest 

layers. While, the third layer has no influence on the surface since the charge distributions 

in Figs. 2.13(b) and 2.13(c) are quite similar with each other. (At the distance d=2.0 

A, the distribution on surface reI11ains unchanged against the addition of layers, and 
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FIG. 2.13. The change of charge distribution on surface in model 2 on which n layers arc stacked 
up at the interval d= 1.2 A, (a) n= l, (b) 11=2, and (c) 11=3 . 

the newly adding layer may interacts only with the nearest layer since the charge 

distributions on the layers apart from the top layer by more than hvo layer are not 

affected by the addi tion of top layer. This si tuation is the same as that at the distance d 

=1.6 A.) In model 3, on the central molecule of the surface on which defect is created 

and on the second nearest molecule from the defect, atomic populations decrease, 

while on the nearest molecule, the populations increase in the case of first stacking as 
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is shown in Fig. 2.14(a). In the case with more than two layers, there are several 

perfect layers between the top defect and the surface, and charge distributions on 

surface is shown in Figs. 2.14(b) and 2.14(c) and its tendency is almost similar with 

that of model 2 by comparison of Fig. 2.13 with Fig. 2.14. (From comparison like this, 

it finds that the charge distributions on the surface apart from the top defective layer 

u 
en 
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..c 
u 

v 
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Stlli'acc site 
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FIG . 2. 1-l The change or charge di stri hution 011 surface ill model 3 011 which n layers are stacked 
up at tile interval d=1.2 A, (a) 11= 1, (h) 11=2 , and (c) n=3 . In tlus model , the nth layer corrcsponds to 
defective structurc. 
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TABLE 2.12. The dividcd orhi tal spacc in elongation calculation for thc stacking 0 11 

surface of modcl 2. 

d=2.0 A d= 1.6 /\ d= 1.2 ;\ 

Ae ti vc 17ro7.Cll Active Frozcn r\ cti YC l ;rol.cn 
Total - ---

1/ AOs Oec. Yac. Oce. Vac . Oce. Vac. Oee. Vac . Occ. \ 'ae . Oce. Vac . 

76 a 12b 10 c 26 b 28 c 13 b 10 c ?~b 
-~ 28 c l-lb 12c 2-lb 26 c 

2 82 12 8 29 33 1..+ 10 27 3 1 16 I I 25 30 
3 88 9 7 3S 37 13 8 3 1 36 16 10 28 3-l 
-l 9-l 9 7 38 ..+0 11 8 36 39 16 10 3 1 37 
5 100 9 7 41 -l3 11 8 39 ..+2 15 10 3S -l0 
6 106 9 7 -l-+ -l6 11 8 -l2 -l5 1-l 10 39 -l3 
7 11 2 9 7 -l7 -l9 11 8 -l5 -l8 1-l 10 -l2 -l6 
8 118 9 7 50 52 11 8 -l8 51 1-l 10 -l5 -l9 
9 12-l 9 7 53 55 11 8 51 5-t. 1-l 10 -l8 52 

10 130 9 7 56 58 11 8 5-l 57 1-l 10 51 55 

a T he total number of orbitals in the system . 
b'The numhcr of occupied orbitals in the space . 
c T he numher of vacant orbital s in the space. 

by m layers in model 3 are consistent with those in model 2, that is, In=2 at d =2.0 A, 
m=2 at d=1.6 A, and m=4 at d=1.2 A.) It is suggested that the effect of defect may 

reach to the In -1 th layers from the defect. 

The orbital space in stacking cycle of model 2 is listed in Table 2.12. The active 

spaces at three di stances become larger in the foIlo\ving order; d =2.0 A < d = 1.6 A < 
d=1.2 A and become constant as follows; 16(total), 9(occ), 7(vac) at d =2.0 A, 19(tota1), 

11(occ), 8(vac) at d=1.6 A, and 24(total), 14(occ), 10(vac) at d =1.2 A. Because of the 

weak interaction bchveen layers constructed with hydrogen molecules, the active space 

in stacking on surface is smaller than that in the propagation of cluster listed in Table 

2.6. 

2.3.3. Local Chemisorption on Surface 

In this subsection, we report briefly the results by the application of thi s method 

to the local chemisorption on surface as the model for more realistic system. We 

approached one carbon monoxide to atomic chain of magnesium with one-dimensional 

periodicity as shown in Fig. 2.15. For this sys tem, we performed only elongation 

calculations and usual CO calculations were not carried out since it consumes much 

computational time. Thus, results shown in thi s subsection arc obtained by using 

CO-based elongation method. Ho\vever, we assume that the accuracy of results is 

sufficient because it is shown in subsection 2.3.1 that our approach is reliable to the 

system with chemical bonding in good accuracy. 

The potential energy curve and the change of net charge on each at.om (carbon 

and oxygen atoms in carbon monoxide, magnesium atom at chemisorption site on 

surface) versus the di stance between the surface and a molecule are sunlmarized in 
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------- Supercell = [Cr-.lg)3]11 =(~ lgh3 ------~ 

Mg-Mg = 2.9585A 

H G . 2.15. The model sys tem for local chemisorption of carbon monoxide on atomic chain of 
magnesium. 

Figs . 2.16(a) and 2.16(b), respectively. The minimum point of the energy potential is 

almost at d =1.9 A. The net charge on the oxygen atom has little change compared 

with the other atoms. The plus charge on carbon atom increases with approaching to 

magnesiunl chain, and magnesium atom has minus charge, because the charge transfer 

from carbon to magnesium occurs. 

Of course, these calculations in this work can not reproduce the real system 

extended in three dimensions. But, we may expect that our approach to treat local 

chemisorption on periodic surface can mimic the real system efficienllly. That is, 

usually, the periodic surface is approximated by the cluster of several layers, and a 

molecule is placed on the cluster. In this approach, however, the size of the cluster 

required for the estimation of bulk limit is not necessarily clear. With regard to thi s 

point, our CO-based elongation method is satisfactory and able to describe the electronic 

structure of the surface. 
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fIG . 2.16. The results of calculation for chem..isorption, (a) potential energy curve and (b) net charge 
on magnesium atom at chemisorption site and each atom of carbon monoxide. 
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2.4. SUMMARY 

In this "vork, we developed the elongation method at the Hartree- Fock level by 

using the CNDO/2 approximation and applied it to the models for the propagation of 

clusters to describe periodic polymer systems. The clusters of hydrog1cn molecule, 

hydrogen fluoride, polyethylene, and polyacetylene \vere elongated in one dimension. 

The results obtained by using the elongation calculation and by using the usual clus ter 

calculation were in excellent agreement. The energy increment in the continuous 

elongation was in complete agreement \vith the energy of periodic polymer calculated 

by the CO method. It suggests that the elongation method can reproduce the property 

of periodic polymer efficiently, for instance, the band structure as discussed in the 
° d O LO-1 2 preVIOUS stu Ies. 

Also, the method based on the CO theory to treat the extension \vithin local 

region on surface was developed by using the combination of the elongation method 

with the supercell method. We performed the calculations of three models for the 

growth of crystal surface and gcx)d results were obtained. Although only the hypothetical 

models constructed with hydrogen molecules arranged in one dimension were dealt 

with, it should be emphasized that the obtained results suggest the applicability of our 

method to more realistic systems and it will be carried out in practice if this method is 

extended to t\vo-dimensional systems. 

We indicated the usefulness of our method within the CNDO/2 approximation 

in this chapter. However, since our method has necessarily no special linlitations and 

conditions, it can be used in more advanced semiempirical calculations. Several 

calculations are now calTying out in our group and we ,viII report the results in ncar 

future . Moreover, it can be applicable to ab initio calculations if we select the active 

and the frozen orbitals from both of the variational and the orthonormality conditions 

in the extended system. 

As a next step, we will attempt to apply our method to two-dimensional problems 

and various realistic systems like as adsorptions on crystal surface or local defective 

structures, and moreover, catalytic effects. In studying in this direction, usually, the 

periodic surface is approximated by the cluster of several layers, and a molecule is 

placed on the cluster. In this approach, however, the size of the cluster which is 

required to estimate sufficiently the bulk limit of surface is not necessaril) evident. 

With regard to this point, our CO-based elongation method would be sati~:>factory and 

able to describe the electronic states of bulk surface. 
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Chapter 1 

Interface and Local Defect States in a Polymer: 
Periodicity in Electronic States of a Nonperiodic Polymer 

Vole have de\ 'e1oped an approach at the Hartree-Fock level by \vhich it is possible to 

calculate the electronic structures or large polymers \vith or without periodic sequences 

systematically. This elongation method is based on the concept of a cluster-series 

calculation \vhich means the successive connection of cluster molccules at the molecular 

orbital level in approximating a large polymer as a cluster molecule. It has already 

been reported that \ve can extract the periodic condition of the electronic states within 

the series of extended clusters by using the cluster-series model. Recently, we tried to 

introduce the elongation methcxl into the program package of semiempirical ITIolecular 

orbital methods MOPAe. In the present chapter, \ve report results of applications to 

the calculations of three polymer systems by using AM 1 parameters, that is, the first 

system is the periodic polymer, the second is the interface between t\VO blocks in a 

polymer chain, and the third is the local defect \vithin a periodic polymer. In calculations 

of periodic polymers, clusters of polyethylene, polytetrafluoroethylene, polyacetylcne, 

or polydifluoroacetylcne were elongated in one direction, and the interfaces between 

the above polymer blocks with cthylene- or acetylene-type chain were dealt with by 

the two-directional elongation method. Also, the solitonic structures with one plus or 

111inus charge within polyacetylene chain were created in elongation calculations of the 

bidirectional extension as models for the local defect in a periodic polymer. Moreover, 

we discussed periodic states of electronic structures in these systems from cluster-series 

calculations. 
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3.1. INTRODUCTION 

In studying the electronic structures of polymer s) stems based on the quantum 

chemical calculation, the most different point in comparison \vith the calculation of 

small molecules is that it is impossible to calculate whole n10lecules of polymer with 

large size. For that reason, we need a model system for the large polymer by any way 

in practical calculations. 

One approach to deal with polymer systems is the cluster model in which a 

polymer is approximated by a cluster molecule with several units of the polyn1er. In 

applying this model to extract the electronic property of the polymer, the molecular 

orbital calculation of each cluster molecule \vith different size is performed individually, 

and in those calculations, we monitor the phycochemical property, e.g., the energy per 

unit or the electron density distribution, in \vhich we take the cluster size larger, and 

regard the converged value as that for the bulk limit of the polymer. The merit of this 

cluster approach is the applicability to any nonperiodic polymers because the units 

\vhich form the cluster molecule are not limited to be the same \vith each other, \vhile, 

the demerit is that the size dependence of application and that the detection of the bulk 

limit is not necessary clear. Also, how can we extract the periodicity of electronic 

sllructures such as the band structure in the case of periodic polymers? 

Another is the crystal orbital calculation in which the perfect periodicity of a 

polymer chain is assumed; that is, the polymer is approximated as the one-dimensional 

clrystal with periodic sequence of its constituent unit. In this calculation, the eigenvalue 

problem of the system is solved under the periodic boundary condition to obtain the 

crystal orbitals which satisfy the translational symmetry of the system. By this crystal 

approach, \ve can know the electronic property of the bulk state without the end effect 

and obtain the band structure or the density of states based on the periodic nature. But, 

this method is so restricted by the periodic boundary condition itself, that is, it requires 

the periodic condition of molecules by which it is difficult to treat the effect of local 

aperiodicity in periodic polymers. 

Surely, the methods based on the molecular orbital theory or the crystal orbital 

theory are well established and developed at present as very useful tools for the study 

of small molecules or one-, two-, and three-dimensional periodic systems, respectively, 

and those have been widely applied to variou.s systems. I
-
3 However, some problems 

still remain in the application of the methods to large, extended, nonperiodic polymer 

systems as is pointed out above briefly. Those are the treatment of the size effect in the 

cluster model and the aperiodic effect in the crystal model. In particular, for polymers 

\vith aperiodicity within a local region, the most difficulty in dealing with the systems 

is caused by the fact that we must take into account the following two states connecting 

with each other in a polymer chain simultaneously; that is, the periodic-extended state 

"vhich can be represented appropriately by the crystal orbi tal as a polymer "vith periodicity 

and the aperiodic-localized state which is suitable to be described by the molecular 

olrbital as a cluster molecule in periodic surroundings. 
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In ordcr to inycstigate thc e1cctronic structurcs of largc, e\:tcndcd, nonperiodic 

rTIolccules, scycral approachcs havc bccn dcyeloped by various groups in rcccnt yeaL. 

For instancc, local spacc appro\:imation to combinc fragmcnts conncctcd by a localizcd 

bonding interaction, -l.5 Grecn matri\: mcthod for a local pcrturbation in thc pcriodic 

polYIller,6.7 localizcd electron pair thcory for the calculation of ground statc cnergics of 

largc molecules, RNDDO fragmcnt self-consistent field appro\:inlation for largc electronic 

systcms,9 a dividc-and-conqucr approach to thc ab initio computation of largc 

nnolecules, 10 an ab initio mcthod for approximation of thc frozcn molccular fragnlcnt, 11.12 

and so on. Morcovcr, thc treatmcnts of local dcf ccts in a solid bas cd on embcdded-clustcr 

approach arc also in progrcss. 13
-

15 

On the othcr hand, our group has rccently developcd thc elongation mcthod for 

thc study of any polymcr systems \vith or without pcriodicity.16 In this method, by 

extending a clustcr molccule continuously, wc can synthcsize periodic or apcriodic 

polymcrs theorctically. Also, application of this mcthod to the calculation of local 

dcnsity of statcs in apcriodic polymcr has becn rcported. 17 Morcovcr, it has been 

shown that \ve can cxtract the pcriodic nature in a polymcr chain by an analysis of 

stationary space in thc cluster-serics calculation based on thc elongation mcthod. 18 

}\nd, it has been confirmcd to be ablc to reconstruct the band structurc of pcriodic 

chains from the analysis. 19,20 Furthermore, the trials to dcvelop thc elongation method 

bascd on the crystal orbital thcory wcrc carried ouel.22 and now in progrcss. 

The elongation nlcthod is a natural cxtension of clustcr model, that is, a polymer 

chain is approximated as a clustcr molccule. But, the calculations of clustcrs \vith 

different sizes can be carricd out as a clustcr series in our model in tcad of treating thc 

dusters as one molecule individually in thc usual clustcr model by thc following 

rnanncr. In thc elongation mcthod, we cxtend a clustcr molcculc by connccting a 

rnolccular fragment with the end part of the cluster one after anothcr as is shown in 

Fig. 3 . l. This figure rcpresents thc outlinc of thc cluster-scries calculation by thc 

elongation method schcmatically. A starting clustcr with a suitablc numbcr of its 

constituent units is extended by connccting with any fragmcnt moleculcs continuously. 

In order to carry out the succcssivc size extension of the system cfficicntly and 

systcmatically, undcr thc inOuence of newly combincd fragmcnts, thc scparation of 

olrbital space in a cluster can bc pcrformcd at the m lccular orbital (MO) lcvcl. That is, 

we can dcterminc the MOs which arc affcctcd (activc MOs) and which arc unaltcrcd 

(frozcn MOs) by thc connection of a ncw fragmcnt in one-unit cxtcnsion. This situation 

is dcscribed in Fig. 3.1 in thc following way; the orbital spacc in a starting clustcr can 

be dividcd into frozcn spacc A and actiyc spacc B undcr thc interaction with atomic 

orbitals C in thc first fragment. Thc e1cctronic structurc of thc c\:tcndcd cl ustcr can bc 

determined by solving only the eigcnvaluc problem within B + C. At this tagc, all 

rvlOs in the one-unit-elongatcd clustcr arc scparatcd into active MOs as B + C and 

frozen MOs as A. Thcn, in extcnding onc more uni t, only the interaction bchvecn thc 

activc MOs and a ncxt adding fragment is takcn into account fully. In other words, the 

frozen MOs arc fixed and kept unchanged in the following extension. Thc illustration 
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Starting cluster 

t Interac ti on with adding fragment 

B 

Starting cluster 

<== 0 Orbita l separation 

Fragment 

Eigenva lue problem 

~~_B+_C~l-~~_B~' __ C~ <==0 
Ex tend ed cluster 

Elongation 

~~ __ C __ +_D __ ~ 
~ Extension of cluster 

Pericxlic or apericxlic polymer with any length 

AG. 3.1. Schematic illustration of the outline for the process of elongation calculation by which the 
cluster molecule is extended in one direction successively, that i. , the cluster-series model for the 
theoretical synthesis of the electronic structure for periodic or aperiodic polymers with any lengths . 

in Fig. 3.1 sho\\'s this stage as follows; the previous active space B + C can be specified 

as the new frozen and active spaces Band C by the connection with new atomic 

orbitals D in the second fragment. The eigenvalue problem of the extended system 

can be solved by removing the frozen spaces A and B. That is, the electronic structure 

of a two-unit-extended cluster is determined by the old and new frozen MOs of A and 

B and the new active MOs of C + D. These procedures of separation and ex.tension 

can be repeated until we can obtain the polymer with desired length. Furthermore, at 

the same time, we can obtain the series ,;vith separated orbital spaces of MOs in an any 

periodic or aperiodic polymer as A, B,C, D, ... ,N in Fig. 3.1. In practical elongation, 

in solving the eigenvalue problem of the ex.tended cluster series only within the active 

space, the self-consistent-ficld (SCF) calculation for the active MOs in an original 

duster plus the atomic orbitals in an added fragment can be replaced by a series of 

SCF steps with a largely reduced number of basis orbitals. The detail of explanation 

concerning the treatment of SCF procedure is described in the next section. Also, the 

active space of extended cluster series is retained as almost constant in successive 

connection with fragments, and thus, we can treat the large sys tem without increasing 

the dimension of SCF step by the orbital division. 
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As is mentioned above briefly, the elongation method includes the extension 

process itself to be able to perform the efficient extension of polyn1er systems by the 

cluster-series model and the systematic analysis of electronic structures at the MO 

level by the orbital separation. Also, it can be considered that a series of frozen 

orbitals represents the electronic states of the polymer since those orbitals are separated 

as the MOs which are independent of the extension of the system, and it may be 

expected that we can extract the periodicity of the electronic structure \vithin a cluster 

series by analyzing the frozen space in elongation calculations at the n10lecular orbital 

level. That is, the periodic or the nonperiodic nature of the electronic structure in a 

polymer including both periodic and aperiodic parts should appear in the freel.ing 

pattern of electron density which can be obtained from the elongation method. 

In this \vork, we tried to combine the elongation method wi th the program 

package of MOPAC23 by which semiempirical molecular orbital calculations for the 

wide range of molecules can be performed at various levels of the approximation. The 

Inain purpose of this work is to confirm and demonstrate the usefulness and generality 

of our approach in studying large, extended, nonperiodic polymer systems. For that 

purpose, \ve applied the method to following peliodic polymers, that is, polyethylene, 

polytetraJluoroethylene, polyacetylene, and polydifluoroacetylene. Also, as some 

samples of applications to aperiodic polymer systems, calculations of polyethylene

polytetrafluoroethylene and polyacetylene-polydifluoroacetylcne interfaces and of 

positive- and negative-charged solitons in polyacetylene were carried out. 

In the following sections, we describe the calculation procedure of the elongation 

mlethod and show results obtained by using this method in comparison with those 

olbtained by using original MOPAC. Also, we discuss the characteristic of electronic 

states \vith periodicity in a periodic or nonperiodic polymer chain. 
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3.2. METHOD 

It has been pointed out in the previous ,yorks of our group that after the extension 

of cluster by one unit is finished, if we select the MOs in an original cluster which 

satisfy both the orthonormality condition and the variational condition beL\yeen adding 

fragment and \vitllin the cluster in extended system, those orbitals are also good MOs 

in the extended cluster, that is, the MOs are stationary against the size extension and 

stationary orbitals are unaltered under the effect of additional fragments. '8
-
2o In this 

study, an analogous method by which we can extract the stationary orbital mentioned 

abo\'e \Vas employed in order to determine the acti\'e and the frozen orbitals for the 

one-unit extension. That is, we choose and distinguish the MOs which satisfy and do 

not satisfy the variational condition, which means that the matrix elements of the 

MO-based Fock matrix between occupied and vacant orbitals must be zero in the 

system. (Here, it must be noted that because we employ the semiempirical MO methods 

in this ,York, the orthonormality condition is self-satisfied in the system automatically.) 

In the situation that the effect of a newly connected fragment is almost localized 

within the region at the cluster end (this situation is expected in the case that the size 

or the cluster is much larger than that of the fragment), it is not necessary to take into 

account the interaction between all orbitals in the cluster and atomic orbitals in the 

fragment. Thus, the selection of interaction and noninteraction orbitals in the total 

orbital space of the system can be done, and then, it is reasonable that we have only to 

solve the eigenvalue problem of the extended cluster within the interaction space. 

Several methods \vhich can define the interaction and noninteraction orbitals of the 

system may be applicable. In this work, we determined the "interaction" orbital as the 

molecular orbi tal which does not satisfy the variational condi tion and the "noninteraction" 

orbital as the orbital which does the condition. That is, the SCF calculation can be 

replaced by the SCF series of eigenvalue problem with interaction orbitals as more 

effective basis orbitals . As described in the latter part in detail, under the influence of a 

newly connected fragment, by repeating the orbital selection of interaction and 

noninteraction orbitals and solving the eigenvalue problem within interaction space of 

the system, we can extract the following MOs in the extended cluster which are 

perturbed by the interaction of the adding fragment (active MOs) and which are not 

done (frozen MOs) finally in each extension process by using the elongation method. 

In order to divide the total orbital space of the extended cluster into the interaction 

and the noninteraction orbital spaces at the MO level as described above, here, we 

consider the situation that given orbitals {<pJ (i=1 ,"', N) and {t:{J j} (j =1, ... , M) interact 

with each other. How can ,ve determine and select the specific orbitals in {tfJ} which 

are affected by the interaction with {cI>} or which are unaltered? For that propose, the 

following technique can be applicable based on the variational condition, that is, the 

rectangular parts of MO-based Fock matrix is defined as foIlo\vs: 

(3.1a) 
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(3 .1 b) 

where F denotes Fock operator, occ and vac indicate occupied and vacant molecular 

orbit~ls, respectively. In the above expression of Eqs. (3.1a) and (3 .1 b), the blocks of 

(q) I F l tp) include the effects of ~harge transfer and exchange interaction between { (f>} 

and {lJ.1}, and the blocks of (lJ.11 Fltp) describe the polarization effect within {l..{f}. The 

selection of MOs in {tIJ} which interact with {Cl)} cflectively can be done by the 

following procedure on the matrices F oce and F vae
, respectively. That is , if the orbital 

space {l.JJ} includes MO occupied MOs and MI' vacant MOs, we multiply the above 
N VxMrI , N ° xMI

' matrices (N I' =N+M I
' , N °=N+MO) by its adjoint MOxN I

' , 

MI' x N ° matrices from the left-hand side, respectively, and then, \ve diagonalize the 

obtained M O x MO, MI' X M I' matrices Fa+Fa (a = occ or vac) individually. Next, \ve 

perform the unitary transformation on {W} by using obtained eigen\ ectors and choose 

orbi tals \vi th greater or smaller eigenvalue of the diagonalized matrix than an appropriate 

threshold value from both occupied and vacant orbital spaces of the unitary-transformed 

{lJ.1}, respectively, because the square root of the eigenvalues of F+F represent the 

strength of the interaction between {l.IJ} and {cD}. Also, as is described above, the 

elements in Eq. (3.1) include all terms of polarization, charge transfer, and exchange 

interactions of the interacting system which cause orbital mixing. In other words, if we 

can create the orbital pairs with zero values of their matrix elements, they do not lnix 

with each other without interacting. This procedure is analogous to that for the 

corresponding orbital 24 or the interaction frontier orbitals.25
.
26 Also, the arne manner 

was applied in the elongation calculation in order to extract stationary orbitals against 

the extension of the system as mentioned above. IH
-
2o We refer to selected molecular 

orbitals wi th greater or smaller eigenval ues than the appropriate threshold value to as 

"interaction" MOs or "noninteraction" MOs, respectively, through this text. In other 

words, we define "interaction" MOs as orbitals \vhich are not satisfied wi th the variational 

condition and "noninteraction" MOs as orbital s \vhich are satisfying the condition in 

the total orbital space of the system. We solve the eigenvalue problem within the 

interaction orbi tal space only by the self-consistent-field (SCF) procedure, and at the 

same time, the noninteraction orbital space is removed from basis orbitals of the 

eigenvalue problem to be retained unchanging in SCF iterations. In this way, we can 

specify the interactive and noninteractive orbital spaces in the total orbital space of the 

system. 

As we explained the outline of the elongation caleulation by Fig. 3.t in the 

previous section, the size of cluster is extended continuously by adding molecular 

fragments one after another. In the elongation calculation by one unit, the SCF iteration 

of the extended cluster is required. But, by selecting (non)interaction orbitals in each 

step by the procedure mentioned above, we can replace the extended SCF calculation 

by a series of SCF steps with small dimension. Thi s is one of the characteristic 

features of the elongation method. As another characteristic, after one-unit extension 
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of the system, the orbital space can be separated into active and frozen orbitals. We 

show the practical steps of calculation in detail in the following. 

We sho\", the formulation to solve the eigenvalue problem of the extended 

system by using the technique which we mentioned in the previolls paragraphs. The 

Step 1 

Step 2 

Step 3 

Final 

Connection or fragment 

~ ______________ ~ ______________ ~I ~ /I 

Starting orbitals Adding AOs 

jr I Selection I 
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rIG . 3.2. The procedure for the orbital separation in the system to determine the active and the 
frozen orbitals in one-unit extension by the clongatiolllllcthoci . 
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schenlatic illustration of the calculation procedure at a vie\\'point of orbital separation 

is given in Fig. 3.2 and the MO-bascd matrix in each step is summarized in Figs. 

3 .3(a)-3.3( c). The interaction blocks in Eg. (3.1) arc also shown as the shaded parts in 
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FIG . 3.3. The MO-based h)Ck matrix ill each calculation step or the elongation method shown ill 
Fig. 3.2, (a) step 1, (b) step 2, and (c) ster 3 . Shaded parts correspond to the interaction hlocks for 
orhital scJectioll at each step . 

Fig. 3.3. We explain the procedures along with these figures. 
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As the starting point of the elongation calculation, \ve carry out the molecular 

orbital calculation of the starting cluster \"ith an appropriate size. Then, any n10lecular 

fragments which are or are not the same with each other can be connected with the 

cluster molccule one by one successively. In other words, at the starting point, \"e 

know only molecular orbitals and Fock operator of the starting clu tel', and the effect 

of connection of fragments is dealt with in following steps shown in Figs. 3.2 and 3.3. 

In step 1, because the Fock operator of the extended system including the 

influence of fragment is unkno\"n at the starting point, it is considered that the starting 

cluster interacts \vith the adding fragment through core Hamiltonian at first. That is, as 

is shown in Fig. 3.3(a), the Fock matrix which is based on MOs in the system is 

diagonal within the starting cluster, and thus, interaction blocks are taken as follows: 

(3.2a) 

F vac = < X I iI I t{J v ac) , (3 .2b) 

where {X} represents adding AOs in the fragment, {W} corresponds to starting orbitals 

of the cluster calculated before the elongation procedure, and H is the core term in 

Fock operator. By diagonalizing the matrix F+F and comparing the obtained eigenvalues 

with the threshold, starting MOs are divided into interaction orbitals {'-P/( O)} and 

noninteraction orbitals {tIJ(O)}. Then, we solve the eigenvalue problem based on 

{X}(±) {W' (O)} by the" SCF procedure in order to obtain both resulting orbitals {X(O)} 

and Fock operator F(O) including the effect of the fragment partially. In this step, 

total orbitals are separated into two orbital spaces of active orbitals {X(O)} and frozen 

orbitals {W(O)}. Hereafter, "active" orbitals mean the gathering of all orbitals which 

are perturbed by the connecting AOs through the eigenvalue problem including the 

effect of the fragment, and "frozen" orbitals are the orbitals which are only unitary 

transformed and dropped from the eigenvalue problcm. 

In step 2, the interaction between above active orbitals {X(O)} and frozen 

orbitals {qJ (O)} in step 1 must be taken into account since the variational condi tion 

among these orbitals is destroyed by the change in Fock operator in the SCF iteration 

at step 1. In this step, as is shown in Fig. 3 .3(b), we define the interaction blocks as 

follo\vs: 

(3.3a) 

(3 .3 b) 

According to the procedure in Eq. (3.1), we diagonalize the matrix F+F which consists 

of the blocks in Eq. (3.3) to specify interaction orbitals {qJ'(l)} which are not satisfied 

by the variational condition between {X(O)} and within {'l"(l)} and also noninteraction 

orbitals {qJ (l)} which are satisfying the condition between {X(O)} and \vithin {tp (l)}. 
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After this selection of orbitals, the eigenvalue problcnl represented with 

{X(O )}C:B{'-J1' (l)} is soh'ed by the SCF procedure. Then, the orbitals {X(l)} arc obtained 

as the sol ution of the eigenvalue problelTI. Also, \ve obtain the Fock operator F( 1). In 

this process, new active orbitals correspond to the solution {X(l)} and new frozen 

orbi tals to {'-l' (l)}. In this way, the variational condi tion is not necessary satisfied after 

the SCF calculation. Thus, the procedure in this step must be repeated until the condition 

is satisfied in the whole system. In this approach, the checkpoint for the satisfaction of 

the variational condition is the number of interaction orbitals in the systenl and we 

iterate this step by checking whether the number of interaction orbitals beconles zero 

or not as long as the number of interaction orbitals is not equal to zero. 

In repeating step 2, when the active space becomes larger and the deviation 

from the variational condition becomes smaller, it is expected that noninteraction MOs 

may appear in this space. To confirnl the situation, \ve check the variational condition 

not only in the frozen space but also in the acti ve space in the next step. If there arc 

any orbitals in the active space, we pernlit that those orbitals can be separated from the 

interaction space of the system. By this treatment, the dilTIension of the SCF problem 

can be largely reduced in the next step. 

In step 3, we repeat the following treatment until the local interaction converges 

which can be confirmed by checking whether the number of interaction orbitals becomes 

zero or not. Now, the n + 1 th cycle of this step is described and the first cycle corresponds 

to step 2. In this step, as is mentioned above, we choose the interaction orbitals from 

the active space {X} and the frozen space {\.l'}, respectively, by the follo\ving two-step 

procedure. In the first step, we test the variational condition of the active space by 

using the interaction blocks as follows: 

(3.4a) 

(3.4b) 

where {\.l'(n)} is the set of frozen orbitals after the nth iteration, {X(n)} corresponds 

to the solution of the eigenvalue problem in the nth cycle and Fock operator F(n) is 

determined by the nth procedure. At first, we find the sets of interaction and 

noninteraction MOs {<J>'(n + I)} and {cI:>(n + I)} from {X(n)} in the active space by 

diagonalizing the matrix F+F. In the second step, we check also the condition of 

frozen space by taking the interaction blocks as follows: 

(3.5a) 

F vac = < cp , ( 11 + I) C:B tIJ (Il yxc IF (Il) 141 (n) vac) . (3.5b) 

Diagonalization of the nlatrix F+F enables us to determine interaction orbitals 

{\J1'(n+ l)} and noninteraction orbitals {\.l'(n+l)} in the frozen space. After these 
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two-step selections of interaction orbitals {cD ' (n + In and {'-V '(n+ I)}, the eigenvalue 

problem is solved within {cI) ' (11 + l)} c:B {llJ '(n+ 1)} by the SCF procedure to obtain 

resulting orbitals {X(1l + I)} and Fock operator F(Il+ I). This step is summarized in 

Fig. 3.3(c). In this step, we can separate the total orbital space into the acti,e space 

{eI)} c:B {X} and the frozen space {lV}. 

In the next cycle of this procedure, we assume {X(n + I)} and {lV(n + l)} as the 

interaction space for the n + 2 th cycle and repeat the procedure in this step as is stated 

above within the space. By this manner, at each cycle of step 3, if there is , {eJ)} in the 

active space is removed from the interaction space and we regard each {cI)} as invariant 

through all cycles. This treatment of {eD} is based on the fact that the interaction 

between {eD(n + I)} and {lJl(n)} is weak enough as eigenvalues of interaction block 

between them are smaller than the threshold, that is, we assume that the variational 

condition of {eDen + l)} will not be destroyed by the interaction with {lJl(n + l)}. Finally, 

if the interaction converges at the m th cycle in this step, the active MOs can be 

extracted as {eD(2)}, ... ,{cD(m)} and the frozen MOs as {lJl(m)}, thus, ,"'e can obtain 

the electronic structure of the system in which one-unit extension is finished. That is, 

the procedure in Fig. 3.1 that a starting cluster is elongated by the connection with the 

first fragment is completed, and the active and frozen MOs as {cD(2)}, ... ,{ct>(m)} and 

{lJ.I(m)} correspond to B+C and A in Fig. 3.1, respectively. In the next addition of 

fragment D in Fig. 3.1, the active MOs of B+ C can be regarded as new starting MOs 

by the following manner. 

In the continuous elongation of the system, that is, in the connection with more 

than the second fragment, steps 1-3 can be repeated in any times according to the 

following way. We diagonalize the active- and the frozen-MO-based Fock matrices in 

order to determine the final sets of active and frozen orbitals {W(/} and {tIJ f }. Active 

orbitals {lJl a } are used as starting orbitals in the next elongation cycle, which correspond 

to {l.J1} in step 1 of the procedure in Fig. 3.2, while, frozen orbitals {tV f } are fixed in 

the next elongation calculation. That is, frozen MOs are separated from the total 

orbital space of the system and those are maintained without interaction through the 

successive extension cycle. In other words, steps 1-3 in the next elongation are carried 

out within the selected space which is constructed with active MOs in one-unit-extended 

cluster and adding AOs in a next-connecting fragment 

We show in Fig. 3.4 schematically the summary of the orbital separation in the 

system by this calculation procedure of each step in Fig. 3.2. 

The characteristic feature and merit of the calculation procedures of this method 

is their simplicity in the practical calculation, that is, '\Ie have only to diagonalize the 

matrix F +F in order to find interaction orbitals and solve the eigenvalue problem 

based on those orbitals. And, the SCF calculation within active space can be carried 

out by a series of SCF steps only with small number of interaction orbitals as effective 

basis orbitals of the eigenvalue problem. Moreover, since our approach includes the 

determination of the divided subspaces in which the SCF problem must be solved in 

the calculation process as described in this section at the MO level, we need not to 
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FIG 3 .-l lbe summary of calculation steps based on the vIewpoint of orbital selectIOIl . 

specify the interaction orbital space. Also, we can separate the total orbital space of the 

system as the active and frozen spaces, and the successive extension of a cluster series 

does not increase the active space after the extension by appropriate units. The division 

of the orbital space in this approach gives us the information on the periodicity in the 

electronic structure of a periodic or aperiodic polymer. 
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3.3. RESULTS AND DISCUSSION 

We applied the elongation method to three polynler systems ,,,ith or ,vithout the 

periodic geometry. The first example is periodic clusters of polyethylene (PE), 

pollytetraOuoroethylene (PFE), polyacetylene (PA), and polydifluoroacetylene (PFA). 

The cluster of periodic polymer was elongated in one direction. The second system is 

the: interface state in a nonperiodic polymer. The polymers \vith ethylene and 

tetraOuoroethylene blocks (PE-PFE) and with acetylene and diOuoroacetylene blocks 

(PA.-PFA) in a chain are treated by the two-directional elongation calculation. The 

third application is conce1l1ed with the locally defective structure in a periodic polYJTIer. 

The elongation method was applied to the calculation of positively or negatively 

charged soliton defect (S+ or S-) in polyacetylene by extending the polymer chain fronl 

the charged center in two directions. For the purpose of comparison with a perfect 

chain, the periodic polyacetylene chain was also extended by the bidirectional elongation 

method. 

The elongation of a cluster was carried out by substituting the end hydrogen 

atom in the cluster by the carbon atom in an adding fragment. That is, we regarded the 

Is coefficient of the end hydrogen atom as the 2s coefficient of the adding carbon 

atom. Thus, each cluster end was terminated by the hydrogen atom to be able to treat 

the system as a closed shell system. 

In the following subsections, we sho\v results for periodic polymers, polymers 

including the interface, and polymers with the local defect structure which were obtained 

frolm the cluster-series calculations by using the elongation method and compare those 

with results from the usual cluster approach by using the original MOPAC in order to 

check the reliability and usefulness of our elongation method. We also describe the 

fonmation of the periodic state in the electronic structure of these polymer systems 

wi th or wi thout the periodic structure. 

In this "vork, we assumed 10-5 in (eV)2 unit as the threshold value of the orbital 

selection for the interaction and the noninteraction MOs. By choosing a threshold 

value as appropriate, we can control the accuracy of results and the computational 

errort in the elongation method. All calculations were performed at the SCF level by 
. . . 2728 

USIng the AM 1 approxImatIon. . 

The geometry of polymers which were dealt with in this work was determined 

by the optimization procedure of the original MOPAC before the elongation calculation 

was carried out. We assumed cluster molecules as planar molecules, and the optimization 

was performed only on the largest cluster for each polymer system by using "EF" and 

"PRECISE" options. Also, in the case of periodic polymer systems, "TV" option was 

applied to satisfy the periodic condition of the molecule. For periodic polymers, the 

cluster molecules of H-[CzH411O-H (PE), H-[C zF4JIO-H (PFE), H-[C2H2]IO-H (PA), and 

H-[C
2
F211O-H (PFA) were optimized by the following two-step procedures. That is, in 

this: periodic case, the cluster including ten units was optimized at first by using "TV" 

option, and then, the cluster terminal at both ends was covered by t,,,o hydrogen 
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atoms. Next, we optimized the tcrminal hydrogcn atoms only by fixing thc geometry 

of central units finally. Thc structures around thc interfacc between diffcrent blocks of 

polymers \vere determined from the optimized geometry for the clustcr molecules of 

H-I[C2H-lll-l-[C2Ftll-l-H (PE-PFE) and H-[C2H2]1-l-[C2F2]1-l-H (PA-PFA). The defectivc 

structurc of a chargcd soliton in polyacctylene was creatcd from results of the gcometry 

opt.imization for H-[C2H212o-[CsHs]-[C2H212o-H clustcr moleculc having plus or olinus 
charge (S+ or S-). In extending thc polymcr systems, thc clusters ,vith optiolizcd 

structures were divided into thc uni t including two carbon atoms, and then, cach unit 

was connected ,vith each other in accordance ,vith the elongation method. 

3.3.1. Periodic Polymers 

Results for the application of the elongation method to periodic polymers are 

shown in this subsection. Periodic polyethylene (PE), polytetrafluoroethylene (PFE) , 

polyacetylene (PA), and polydifluoroacetylene (PFA) wcre calculated at the AMI 

lcvd. 

Thc calculated polymer systems with the periodicity and their geometrical 

parameters are shown in Figs. 3.S(a)-3.S(d). The extension \-vas started from the cluster 

molecule \-vith one unit including two carbon atoms and thirteen units was connected 

successively with the starting cluster one after another. Finally, thc cxtended cluster 

had fourteen units in the chain. 

(a) Polyethylene (PE) 

Hz Hz 
C H<=: C H 

/,,/ ,,/ 
H C C 

Hz Hz 
Starting cluster fragment 

(b) PolytetraOuoroethylcne (PFE) 
Fz Fz 
C H C= C H 

/ ,, / "'/ 
H C C 

Fz Fz 
Starting cluster Fragment 

(c) Polyacetylene (PA) 

H 
C H ¢:= 

/~ / 
H C 

H 

H 
C H 
~/ 

C 
H 

Starting cluster Fragment 

(d) PolydiOuoroacetylene (PFA.) 

F F 
C H C= C H 

H/ ~C/ ~C/ 
F F 

Starting cluster Fragmcnt 

BG. 3.5. The periodic polymers caleulated by the one-directional elongation, (a) 
polyethylenc, (b) polytetrafluorocthylene, (c) polyacetylene, and (d) polydiOuo,roaeetylcne. 
The optimized geometrical parameters are as follows : (a) r(C-C) = 1.51361 A, r(C-II) = 
1.12195 A, LCCC = 111 .28425" and the angle between CH bond and the polymer plane = 
53.55811", and for the tcmunal hydrogen at9m, r(C-II) = 1.11319 A and LIICC = 111.18802°; 
(b) r(C-C) = 1.61192 A, r(C-F) = 1.36771 A, LCCC = 109.53719° and the angle between CF 
bond and thc polymer planc = 52.222-l5

n

, and for the ter:!ninal hydrogen aton~" r(C-II) = 
1.12897 A and LHCC = 107.47552'· ; (c) r(C-C) = 1.4-WO-l A, r(C=C) = 1.3..+790 A, r(C-II) = 
1.10-l12 A, LCCC = 122.96388 and LC=CH = 120.5-+100 , and for the termi~al hydrogen 
atom r(C-II) = 1.09-l6-l ;\ and LHCC = 122.83133 ; (0) r(C-C) = 1.-l7374 A, r(C=C) = 
1.37881 A, r(C-F) = 1.3-l967 A, LCCC = 123.Q2731 " and LC=CF = 120 . .5:'?6,r, and for the 
tenninal hydrogen a tom, r(C-H) = 1.1oo3-l A and LJICC . = 123.7493.) . fhe geometry 
optimization was carried Ollt for c1ustcrs which Includc tell 11l11tS With twenty carbon atoms 1Il 

the main chain . 
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TABLE 3 .1. Total energies and energy increments for a series of periodic polyethylene 
clusters H-(C2I-lq)-(C 2.f-4)n-H and orbital spaces which were obtained from the elongation 
procedure. The starting cluster is the cluster with n=O and was elongated by thirteen units in 
one direction successively. These results were obtained by using Aivll parameters . 

Total energy a 

Energy increment b Total 
!l Cluster Elongation t:...En = En - En_I AOs 

0 -339.128714 c 
1 -650. 800()'+ 2 -650.800042c -311.671328 c 26 
2 -962.-f69159 -962.-+69159 -311.669117 38 
3 -1274.138279 -1274.138279 -3 11.669120 50 
4 -1585.807-lO 1 - 1585.807400 -311.669121 62 
5 -1897.476524 -1897.476523 -311.669123 74 
6 -2209.145647 -2209.145645 -311.669122 86 
7 -2520.814770 -2520.814768 -311.669123 98 
8 -2832.483893 -2832.483891 -311.669123 110 
9 -3144.153017 -3144.153014 -311.669123 122 

to -3455.822140 -3455.822137 -311.669123 134 
11 -3767.491264 -3767.491260 -311.669123 146 
12 4079. 160387 -4079.160383 -311.669123 158 
13 -4390.829511 -4390.829506 -311.669123 170 

a Calculations were performed on IBM RISC System/6000 340. 
b Values were obtained from results of the elongation method. 
c Energies are shown in e V unit. 

Orbital space 

Active r:ro7.en 

Occ. Vac. Occ. \'ac . 

13 13 0 0 
19 19 0 0 
21 22 4 3 
21 22 to 9 
21 22 16 15 
21 22 22 21 
21 22 28 27 
21 22 34 33 
21 22 40 39 
21 22 46 45 
21 22 52 51 
21 22 58 57 
21 22 6-+ 63 

In Tables 3.1-3.4, total energies of each cluster with different size of PE, PFE, 

TABLE 3.2. Total energles and energy increments for a senes of peri (xli c 
polytetrafluoroethylene clusters II-(C2F4)-(C2F4)n-II and orbit.al spaces which were obtained 
from the elongation procedure. The starting cluster is the cluster with Il=O and was elongated 
by thirteen units in one direction successively. These results were obtained by using AMI 
parameters. 

Orbital space 

Acti ve Frozen Total energy a 

------------ Energy incrementb Total 
Il Cluster Elongation t:...Efl = En - En-1 AOs Occ. Vac. Occ. Vac . 

o -2225.512435 c 

1 -4422.297263 
2 -6619.032676 
3 -8815.756892 
4 -11012.477469 
5 -13209.196606 
6 -15405.915099 
7 -17602.633277 
8 -19799.351292 
9 -21996.069215 

10 -24192.787087 
11 -26389.504926 
12 -28586.222746 
13 -30782.940553 

-4422.297263 c 

-6619.032675 
-8815.756887 

-11012.477452 
-13 209. 196578 
-15405.915058 
-17602633221 
- 19799.351219 
-21996.069124 
-24192.786977 
-26389.504797 
-28586.222597 
-30782.940384 

-2196.784828 c 

-2196.735412 
-2196.724212 
-2196.720565 
-2196.719126 
-2196.718480 
-2196.718163 
-2196.717998 
-2196.717905 
-2196.717853 
-2196 717820 
-2196.717800 
-2196717787 

50 
74 
98 

122 
146 
170 
194 
218 
242 
266 
290 
314 
338 

a Calculations were perfonned on IBrvl RiSe System/6000 340. 
b Values were obtained from result" of the elongation method 
C Energies are shown in eV unit. 
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66 
66 
66 
66 
66 
66 
66 
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13 
19 
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28 
30 
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30 
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30 
30 
30 
30 
30 

o 
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10 
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43 
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151 
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'L\13LE 3.3 . TOlal energies and energy increments for a series of periodic pol)acetylcne 
clusters I l-(C21 12)-(C 21 12),,-1 I and orbital spaces which were obtaincd from the elongation 
procedurc. The starting cluster is the cluster with 11=0 and was elongated by thirteen units in 
Olle direction successively. -I1lese results were obtained by using A~ll parameter . 

Orbital space 

Total energy a Active Frozen 
Energy increment b Total 

II Cluster Elongation !1E" = En - En_I AOs Occ. \'ac. Occ. \'ac . 

0 -310.336790 e 

1 -593 .521691 -593.521691 e -283.18-+90 I e 22 II II 0 0 
2 -876.7232-+9 -876.723249 -283.201558 32 16 16 0 0 
3 -1159.92788-+ -1159.927882 -283 .20-+633 -+2 20 18 I 3 
-+ - 1-+-+3 .133102 - 1-+-+3. 133098 -283.205216 52 21 18 5 8 
5 -1726.338417 - 1726.338409 -283.205311 62 21 18 10 13 
6 -2009.543732 -2009.5-+3719 -283.205310 72 21 18 15 18 
7 -2292.7-+9033 -2292.7-+90 13 -283 .20529-+ 82 21 18 20 23 
8 -2575.95-+320 -2575.95-+29-+ -283.205281 92 21 18 25 28 
9 -2859.159598 -2859.15956-+ -283 .205270 102 21 18 30 33 

10 -3142.364869 -31-+2.364827 -283.205263 112 21 18 35 38 
11 -3-+25.570136 -3425.57008-+ -283 .205257 122 21 18 40 -+3 
12 -3708. 775399 -3708.775339 -283.205255 132 21 18 -+5 4S 
13 -3991. 980661 -3991.980591 -283.205252 1-+2 21 18 50 53 

a Calculations were perfomled on IBwl RISC System/6000 340. 
b Val ues were obtained from resul ts of the elongation method. 
e Energies are shown in e V unit. 

PA, and PFA by using the conventional eluster model and the elongation approach arc 

TABLE 3.-+. Total energies and energy increments for a senes of periodic 
polydifluoroacetylcne clusters I I -(C2f2) -(C2I~)11- 1 I and orbital spaces which were obtained 
from the elongation procedure. The starting cluster is the cluster with 11=0 and was elongated 
by thirteen units in one direction successively . These results were obtained by using A~ll 
parameters. 

Orbital space 

Acti ve Frozen Total energy a 
_____________ Energy increment b Total 

II Cluster Elongation !1EIl = En - En_1 AOs Occ. Vac. Occ. Vac. 

o - 1253.5529-+9 c 

1 -2-+79.189308 
2 -3704.807765 
3 4930.420510 
-+ -6156.030379 
5 -7381.638665 
6 -8607.2-+6033 
7 -9832. 8528-U) 
8 -11 058.-+59309 
9 - 1228-+.065546 

10 - 13509.671633 
11 - 1-+735.277616 
12 - 15960.883529 
13 - 17186.-t89391 

-2479. 189309 c 

-3704.807765 
-4930.420506 
-6156.030366 
-7381.638635 
-8607.245981 
-9832.85276-+ 

-11058.459192 
- 12284.065386 
- 13509.671-+2-+ 
-1-+735.277355 
-15960.883211 
-17186.-+89015 

-1225.636360 c 

- 1225.618456 
-1225.612741 
-1225.609860 
- 1225.608269 
- 1225.607346 
- 1225.606783 
-1225.606-+28 
-1225.606194 
-1225.606038 
-1225.605931 
-1225.605856 
- 122S.60580-+ 

34 
50 
66 
82 
98 

114 
130 
146 
162 
178 
194 
210 
226 

a Calculations .. , 'ere performed on IB~ [ RIse System 60003-+0. 
b Values were obtained from results of the elongation method. 
c Energies are shown in e V unit. 
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Chap. 3 : Periodicity of Electronic Structure in a Polymer 

listed. Also, energy increments in extension cycle of clusters obtained fronl the results 

of the elongation method are summarized in Table 3.1-3.4. Re ults of total energies 

obtained from both calculations are in good agreement \\'ithin the order of almost 

10.3 _.10.
5 

in eV unit for all periodic polymers. This accuracy of results in the elongation 

calculation is quite satisfactory indeed. The absolute value of the largest error in our 

cluster-series approach is only O.()OO 376 eV in the case ofPFA with 11= 13. Furthermore, 

frorn the results of the energy per one connected unit which is defined as the increment 

in the total energ) of two continuous elongation calculations listed in Tables 3.1-3.4, 

we see that the convergence of the energy per unit for the hydrocarbon polymers (PE 

and PA) is faster than for the fluorine-substituted polymers (PFE and PFA) as follows: 

the energy of PE or PA becomes almost constant at two-units extension while PFE or 

PFA has the converged energy after the fifth or sixth elongation. Finally, when the 

cluster includes fourteen units, each periodic polymer has the following converged 

energy per its unit, that is, -311.6691 eV (PE), -2196.7178 eV (PFE), -283.2053 eV 

(PA), and -1225.6058 eV (PFA). 

The net charge on each carbon atom in the final polymer chain with fourteen 

units is shown in Fig. 3.6. The plotted line is flat in the central part of the periodic 

chain, and it suggests that the electronic state in the Oat part is bulky. The end effect 

appears as the deviation from the Oat line at both cluster ends, and the effect is much 

extended in the acetylene chains (PA and PFA) than the ethylene chains (PE and PFE). 

In these calculations, we merely elongated the clusters one after another successively 

'0:) 
Z 

0.3 

0.2 

0.1 

-0. , 

-0.2 

-0.3 
1 3 5 

-.-Net charge on C (PE) 
-{)- Nct chargc on C (PFE) 
_____ Net chargc on C (PA) 
-0- Net chargc on C (PFA) 

7 9 1 1 13 15 17 19 21 23 25 27 

Carbon lllUllbcr 

FIG . 3 .6. The distribution or the net charge on each carbon atom ill the final polymers or ethylene 
(PE), tetraf1uOfoetbylenc (PI '1~), acetylenc (PA), and difluoroacetylcne (Pl 'A) with l-lunits cxtcnded 
by the elongation mcthod . The atom C 1 is the end atom ill the starting cluster and the atom C28 IS 

the enu atom ill the last fragment. 
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in one direction, that is, the special attention concerning the symmetry of molecules 

was not considered at all. But, resulting charge distributions on polymer chains reflect 

the s yrnmetrical geolnetry of molecules. 

'We show orbi tal spaces which are determined in cluster-series calculations by 

using the elongation method in Tables 3.1 (PE), 3.2 (PFE), 3.3 (PA), and 3.4 (PFA), 

The freezing of molecular orbitals (MOs) in size-extending calculations of each polymer 

system appears in the third extension for all systems concerned. In elongation cycles, 

the number of active MOs becomes constant at 11=3 (PE), 11=5 (PFE), 11=4 (PA), and 

11=7 (PFA). The number of active MOs remains as a constant at n=13 because we 

assumed the periodic sequence of geometry and the end effect in the geometry of 

terminal unit of polymers is not included. The constant active space indicates that the 

constant MOs are newl) frozen against the connection of a new adding fragment, that 

is, six occupied and vacant MOs (PE), eighteen occupied and six vacant MOs (PFE), 

five occupied and vacant MOs (PA), and eleven occupied and five vacant MOs are 

ne\vly frozen in each system. This situation suggests that the electronic state in the 

clu ter is stationary against the size extension by the addition of fragments and the 

periodicity of the electronic structure can be extracted by the periodic freezing pattern 

of the electron densi ty as has been pointed out in the previous works of our group. 18-20 

Next, to demonstrate the periodic condition based on the freezing pattern, diagrams 

of the frozen density on carbon atoms in each chain, \vhich is the percentage of the 

frozen electron density obtained from frozen occupied MOs, are drawn in Figs. 3.7(a)-

3.7(d). As is shown in these figures, the formation of highly periodic patterns are 

observed in all polymer chains. This periodicity characterizes the bulk limit of the 
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electronic state ,"ith the translational symmetry. The freezing patterns of the last 

extension with n=13 are given in Figs. 3.8(a) and 3.8(b). In the case of hydrocarbon 

chains, the electron density around C20-C21 (PE) and C19-C20 (PA) can be frozen 

against the bonding with C27-C28. On the other hand, the frozen density in fluorine 

substituted systems of PFE and PFA is distributed in wide range of the chain in 
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FIG. 3 .7 . The freezing pattem of the electron density on each carbon atom in elongation cycles, (a) 
PE, (b) PFE, (c) PA, (d) PFA. The number of connected fragments with the starting cluster is 
included in the graph. The atom C l is the end atom in the starting cluster and the atom C28 is the 
end atom in the last fragment. 

con1panson with PE and PA. In this way, \ve can know the periodicity at the MO 

level. 
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~Freezjng pattern against the last extension on PA 
--0-- freezing pattern against the last extension on PFA 

n 1 2 -----l~~13 

3 5 7 9 1 1 13 15 17 19 21 

Carbon number 

(b) PA and PFA 

23 25 27 

FIG. 3.8. The plot of the newly frozen density on eaeh carbon atom against the last extension of 
the system, (a) ethylene system and (b) acetylenc system. The C27 and C28 carbon atoms are 
included in thc last cOJU1ected fragment. 

3.3.2. Interfaces between Polymer Blocks 

In this subsection, we report results of the application by the two-directional 

extension to the interface between polyethylene and polytetraOuoroethylene blocks 

(PE-PFE) and between polyacetylene and polydifluoroacetylene blocks (PA-PFA) as 

sho\\'n in Figs. 3.9(a) and 3.9(b), respectively. All calculations in this section were 

(a) Poly(ethylcne-tctrafluoroethylene) (pE-PFE) 

Hz Hz Fz 
C C C H <== 

/"" /""'/""/ He==> H C C 
Hz Hz Fz 

Fragment Starting cluster 

(b) Poly(acctylenc-difluOfoactylelle) (PA-PJ:'A) 

H H F 
C C C He:: 

/'\ ~ /,\/~/ 
H C ~ H C C 

H H F 
Fragment Starting cluster 

Fz 
C H ""/ C 

Fz 
Frugmcnt 

F 
C H 
~/ 

C 
F 

Fragment 

FIG. 3.9. The interface hetween two polymcr blocks by applying the two-directional extension, (a) 
pollycthylcllc-polytctrafluorocthylcnc and (b) polyacetylene-polydifluoroacetylcne. The geomctry 
of the system was obtaincd by tllC optimization calculation for the final polymcr as is mcntioncd in 

the text. 
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performed by using AM 1 parameters. 

Total energies obtained from the usual cluster and the elongation calculations 

are listed in Tables 3.5 (PE-PFE) and 3.6 (PA-PFA) together with energy increments 

in each elongation. The agreement between both results is also as good as the periodic 

polyrners in Sec. 3.3.1. The energy per two added fragments of the cluster including 

the interface is almost converged at the fourth-unit (PE-PFE) and at the fifth -unit 

(PA-PFA) addition, and the values of the energy -2508.3869 eV (PE-PFE) and -1508.8115 

eV (PA.-PFA) at n=10 are consistent with the sUln of each periodic polymer -2508.3869 

eV (PE+PFE) and -1508.8111 eY (PA+PFA), respectively. The energy of terolinal 

units in both cases is stabilized by the change of the geooletry due to the end effect, 

and it is expected that the influence of the cluster end is restricted within alol0st one 

unit in PE-PFE and PA-PFA at the cluster terminal because the energy is also kept 

in\ ariable at cluster end \vhen the periodic units are connected as is sho\vn in Sec. 

3.3. J. Because the stabilization in acetylene chain is larger than the ethylene chain, the 

electronic structure of bulk state may be more perturbed by the terminal unit in PA-PFA 

chain than in PE-PFE chain. 

In order to vie\\' the influence of the interface bonding and the end effect of the 

cluster terminal on the electronic structure of the polymer system at the molecular 

orbital level, the orbital spaces of PE-PFE and PA-PFA interfaces in elongation cycles 

are sho\vn in Tables 3.5 and 3.6. The freezing of molecular orbitals begins from n=3 

TABLE 3.5. Total cnergies and energy incrcmcnt') for a clustcr scrics of hlock copolymcr 
which arc including thc interface betwecn two blocks of polycthylcnc and 
polytclrafiuoroethylcnc II-Cc;.H-l) Il -(C 2H-l-C2F4)-(C2F4) /I -II and the number of molccular 
orbitals included in thc divided orbital space at each extension cyclc by the elongation 
method. 111C starting clustcr with 1l=0 was elongatcd from both ends of thc cluster by 
thirtccn units in two dircctions succcssively. Thesc rcsults were obtaincd by using thc AMI 
method. 

Orbital space 

Total cncrgy a Activc Frozen 
Encrgy increment b Total 

!1 Cluster Elongation !1EIl = En - En_I AOs Occ. Vac. Occ. Vac . 

0 -2536.836533 e 

I -5045.287508 -5045.287508 e -2508.450975 c 7-l 49 25 0 0 
2 -7553 .692607 -7553 .692607 -2508. 405099 110 73 37 0 0 
3 -10062.086653 -10062.086643 -2508.3 9-lO3 6 146 83 -l7 14 2 
4 -12570.-l7684-+ -12570.476821 -2508.390178 182 86 52 35 9 
5 - 15078.86.5-l19 -15078.865382 -2508.388561 218 87 52 58 21 
6 -17587.253235 -17587.253182 -2508.387800 2.5-l 87 52 82 33 
7 -20095.640661 -20095.6-lO590 -2508.387408 290 87 52 106 -l5 
8 -2260-l. 027869 -22604.027780 -2508.387190 326 87 52 130 57 
9 -25112.-l1-l9-l2 -25112.-l1-l833 -2508.387053 362 87 52 15-+ 69 

10 -27620.801903 -27620.80 177-l -2508.3869-l1 398 87 52 178 81 
I 1 -30129.188709 -30129.188560 -2508.386786 -l3-l 87 52 202 93 
12 -32637.575259 -32637.575089 -2508.386529 .. no 87 52 226 105 
13 -351-l5.977028 -351-l5.976835 -2508.40 1746 506 87 51 250 118 

a Calculations wcre pcrfonncd on IBt,,! RISC Systcm/6000 3-+0. 
b Values wcrc obtaincd from results of the clongation mcthod. 
e Encrgics are shown in c V 1I1li t. 
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TABLE 3 .6. .Total energies and energy increments for a cluster series of block copolymer 
wl11ch are IllcluUlIlg the interface hctween two blocks of polyacetylene and 
pOI~'ulnl~oroacetyl .elle II- (C~II2)11- (C ~ II2 -C2I~) - (C2F2)I1- If and the number of molecular 
orbl tals mcluueu III the dIvIded orbItal space at each extension cycle by the elongation 
m~thod . The .s tarting . cluster ,vith n=O was elongated from both ends of the cluster by 
tlurteen UllltS ll1 two directions successivel y. These results were obtained by using the A~ II 
method. 

Total energy a 

J ~nergy increment b Total 
IZ Cluster Elongation t1En = En - En_I AOs 

0 -1 536A5+-W7 e 

1 -30-+5.309992 -30-+5.309992 e -1508.8555-l5 e 5-l 
2 -+55-l.1-+ 191-+ --+55-J..l-+ 1914 -1508.83 1922 80 
3 -6062. %40 18 -6062.9640 I 1 - 1508.822097 106 
-+ -7571 .781362 -7571 .781331 - 1508.817320 132 
5 -9080.596188 -9080.596136 -1508.814805 158 
6 - 10589.-+09610 -10589.4095 16 -1508.813380 184 
7 -12098. 222210 -12098.222074 -1508.812558 210 
8 -13607.034288 -13607.034100 - 1508.812026 236 
9 - 15115.8-+6046 -15115.8-+5798 -1508.811698 262 

10 -1662-+.657616 -16624.657307 -1508.811509 288 
II -18133.-+69335 -18133 .468960 - 1508.811653 314 
12 - 196-+2.283202 -196 ... 12.282758 - 1508.813798 340 
13 -2 1151.122718 -2 1151.122189 -1508.839431 366 

a Calculations were perfomled on IBN! RlSe System/6000 340. 
b Values were obtained from results of the elongation method. 
e Energies arc shown in e V unit. 

Orbital space 

J\cti ve I :rol'.en 

Occ. Vac. Occ. Vac. 

33 21 0 0 
-+9 31 0 0 
62 -+0 3 1 
65 -+5 16 5 
69 -+9 28 12 
66 47 -+7 2-+ 
66 -+7 63 3-+ 
66 48 79 -B 
66 -t8 95 53 
66 ...J.8 111 63 
66 48 127 73 
66 48 1-+3 83 
67 -+6 158 95 

tn PE ... PFE and n=3 in PA ... PFA. The dimension of the active space for PE ... PFE 

interface becomes constant from n=5 to n=12 as 87 occupied and 52 vacant MOs, and 

24 occupied and 12 vacant MOs are newly frozen against the 6 ... 12th extension and the 

number of ne"vly frozen MOs in those elongations is the same with the sum of that in 

the case of periodic PE (6 occupied and 6 vacant MOs) only and periodic PFE (18 

occupied and 6 \'acant MOs) only. Thus, the formation of electronic states with the 

periodicity in PE ... PFE is suggested, that is, it seems that the effect of the intert'ace is 

included in the extension process from n=1 to n=4. Against the addition of the last 

fragment at n=13, since the dimension of active orbitals is the same with n=5-12 

except that the number of \'acant orbitals decreases into 51 MOs, the periodicity of the 

electronic state in PE-PFE may not be destroyed by the unit at the cluster terminal 

with the end effect. On the other hand, in elongation cycles for the cluster series of 

PA-PFA interface, the constant active space with 66 occupied and 48 vacant MOs is 

limited within the extension cycles from n=8 to n=12 and the dimension of newly 

frozen space with 16 occupied and 10 vacant MOs against the 9-12th connection is 

consistent with the sum of that for periodic PA (5 occupied and 5 vacant MOs) and 

PFA (11 occupied and 5 vacant MOs) which form periodic electronic states as is 

shown in Sec. 3.3.1. At n = 13, the space of active occupied MOs increases into 67 

MOs and that ot' vacant MOs decreases into 46 MOs, thus, the periodic condition of 
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the ekctronic structure may be perturbed by the influence of the interface until 11 =7 

and by the end effect at n=13 in PA-PFA. As shown above, the range of the periodic 

state jin PA-PFA is smaller than in PE-PFE. It may be caused by the long range 

interaction in the n:; electron system. 

We have pointed out that the effect of a local defect in a periodic polymer chain 

can bc detected as the disorder on the periodic freezing pattern of electron density.20 

Indeed, in the case of local interfaces like as PE-PFE and PA-PFA in this work, the 

disordering patterns are obtained and sho\vn in Figs. 3.10(a)-3.l0(d). A little change 

from the periodic condition in the pattern of PE-PFE appears and is wcll localized 

within the cluster center at the interface bonding. The aperiodic freezing is mainly 

limited \vithin the central one unit in each ethylene and fluoroethylene block and the 

periodicity of electronic structure in the region around the interface is well preserved. 

The 24 occupied MOs which are newly frozen at each extension cycle contribute to 

the fOltmation of the periodic freezing in extensions from n=6 to 11=13. Moreover, it is 

found that the end effect included in the terminal unit does not affect on the electronic 

state at the termi nal of ethylene and fluorocthylene chains judging from the nondisordered 

freezing pattern \vith n=13 at the region as is sho\\'n in Figs. 3.l0(a) and 3.l0(b). In 

contrast to the a electron system of PE-PFE, in Figs. 3.l0(c) and 3.l0(d) of PA-PFA, 

the freezing pattern \vithout the periodicity around PA-PFA interface is extracted in 

the wiide range of the n:; electronic chain with conjugated acetylene backbone. The 

inOuence of the interface may be reached to ClO-Cll in acetylene block and to C7-C8 

in fluoroacetylene block at a viewpoint of the periodicity of the freezing pattern. This 

range \-vi th perturbed pattern suggests that the bulk state is more disturbed in PA chain 

than in PFA chain by the interface bonding. In the extensions which form the periodic 
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pattern at 11=9-12, the 16 occupied MOs are ne\vly frozen at each elongation process. 

The last 13th pattern of PA-PFA chain is disturbed by the end effect in the terminal 

fragment at both ends of acetylene and f1uoroacetylene blocks. By these analyses of 

the orbital space determined in elongation calculations, we can knov" the periodic and 

the aperiodic characters of electronic state in a nonperiodic polymer. 
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fIG . 3 . 10. The freezing pattern of each block fonning PE-PFE and PA-PFA interfaces, (a) PE, (b) 
PFE, (c) PA, and (d) PFA. The first carbon atom corresponds to the atom at the interface on the 
center of chain alld the 28th carbon atom corresponds to the chain end in each hlock. The number 
of connected fragments \vith the starting cluster is included in the graph . 
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HG. 3.11. The net charge distrihution on carhon atoms in main chains of hlock copolymers 
including PE-PH~ and PA-PFA interfaces . The sites numbered as I arc the central carhon atoms 
f onning the interface between each hlock and the si tes Illunhercd as 28 arc the tenllinal carhon 
atoms in each block. 
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The distributions of the net charge on each carbon atom in the final cluster \\'ith 

28 units of PE-PFE and PA-PFA are shown in Fig. 3.1 I. In the chain of PE-PFE, 

except the central sites of the interface C I and C2, the net charge on both polYITIer 

blocks is con\"erged rapidly into a constant \"alue which is corresponded to the bulk 

limit of each polymer chain, respectively. In the case of PA-PFA, the net charge 

around the interface is oscillating roughly in the Cll-C12 range on PA block and in 

the C7-C8 range on PFA block, and the charge oscillation on acetylene chain ren1ains 

a little in the range of whole molecule while on fluoroacetylene chain converges 

completely in the central of cluster. This difference of the charge extension on the 

polynler reJlects the localizability of (} electron and the delocalizability of JL electron. 

Also, the \"alue at the edge of substituted blocks PFE and PFA is ITIOre deviated from 

the con\"erged value than of nonsubstituted blocks PE and PA. These characteristic 

natures of charge distributions well correspond to the description based on the periodici ty 

of frelCzing pattern of electron density 111entioned above. 

3.3.3. Local Defects in a Periodic Polynler 

Results for the pericxlic polyacetylene (PA) shown in Fig. 3.12(a) and the 

polyacetylene including a solitonic defect with plus or minus charge (S+ or S-) sho\"n 

in Fig. 3.12(b) were obtained by using the AMI method and are described in this 

section. 
Here, before \\le show results by the elongation calculation, ,,'e mention a 

(a) Polyacetylene (PA) 
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FIG. 3 . 12. The procedure of elongation ill two directions by ~\"h.ich we.~reate polyacetylclle chain, 
(a) pcriodic ncutral chain and (h) positiYC and ne¥Jll\'e solttOIl1C challls. I he gcolllctn~al pa~alllctcrs 
or period ic polyacetylenc used ill the calculatIon are thc samc \\'lth thosc 111 hg. 3 . .:1 . Also, 
polyacc tylenc with chargcd-soliton defecL') was optllluzed and the optlIlllzed structurc \vas used III 

calculations as described in thc tcxt. 
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characteristic feature of charged-soli tonic defect structures obtained by the optimization 

procedure briefly. A feature which characterizes the soliton defect may be considered 

as the change in the bond alternation on the main chain which consists of conjugated 

carbon atoms.
29 

So, we checked the difference in the bond length between neighboring 

single and double bonds at each site in the optimized cluster. From the change in these 

differences, the bond alternation are almost reco\'ered on the site C15 in half-side of 

the chain, and thus, the charged defects S+ and So. are almost localized within several 

units at the center in the chain . On the terminal, the alternating pattern is disturbed by 
the inJluence of the cluster end. 

The total energies of PA, S+, and So. are listed in Tables 3.7-3.9 and the 

corresponding energy increments are also shown in these tables. The results obtained 

b) using the cluster model and the elongation method agree excellently with each 

other. The energy per added t\\'o units of PA is almost constant in elongations and the 

value -566.4105 eV is determined at 11=20. The energy increments for S+ and So. 

indicate that the energies of these defects are converged at the seventh elongation in 

which the elongated cluster has 33 carbon atoms in the chain in which main structural 

disorder is contained as mentioned above. The polymers \vith S+ and So. have the 

TABLE 3 .7. Total energIes and energy increments for a cluster senes of periodic 
polyacetylene H-(C2H2)n-(C2II2n-(C2II2)n-H. The dimension of each orbital space detcnnined 
by the successive elongation calculations . Twenty units were cOllnected successively with 
both ends of the starting cluster having 11=0 by the two-directional elongation. Results were 
obtained by lu>ing the ANll IIamiltonian. 

Orbital space 

Total energy a Active Frozen 
Energy increment b Total 

Il Cluster Elongation Mil = En - En-! AOs Occ. \lac . Occ. Vac . 

0 -876.7232-N e 
1 - 1-+43 .133102 - 1443 .133103 e -566.409854 e 52 26 26 0 0 
2 -2009.5-B732 -2009.5 ... 13732 ... 566 . ..+10629 72 36 34 0 2 
3 -2575. 95 ... H20 -2575.954317 -566.410585 92 40 36 6 10 
4 -3142.36-1869 -3142.36-l859 -566 .... 005-+2 112 40 36 16 20 
5 -3708.775399 -3708.775381 -566.-+10522 132 40 36 26 30 
6 -4275.185920 -..+275.185891 -566.410510 152 ..+J 36 35 ..+0 
7 -4841 .596436 -"+8-l1 .5%396 -566.-+10505 l72 ..+1 36 ..+5 50 
8 -5-lO8.006950 -5408.006896 -566.-+10500 192 ..+1 36 55 60 
9 -597..+.-+l7462 -5974.-+ 1739..+ -566."+~0498 212 ..+1 36 6S 70 

10 -6540.827973 -6540.827889 -566.-+10495 232 41 36 75 80 
11 -7 107. 238-l8..+ -7107.238383 -566."+10"+9"+ 252 ... 0 36 85 90 

12 -7673 .64899"+ -7673 .648876 -566.-+10493 272 41 36 95 100 
13 -82"+0JJ59505 -82"+0.059368 -566.-+10492 292 ..+1 36 105 110 
1..+ -8806.470015 -8806.469859 -566'-+ 1 0491 312 ..+1 36 115 120 
IS -9372.880525 -9372.880350 -566.-+10..+91 332 ..+1 36 125 130 
16 -9939.291035 -9939.2908"+1 -566'-+ 1 0..+91 352 -+1 36 135 1..+0 

17 -10505.7015-+5 - 10505.701331 -566.-+1 0..+90 372 ..+1 36 1..+5 ISO 
18 - 11072. 112055 -11072.111821 -566.-+10490 392 ..+1 36 155 160 
19 - 1 1638.522565 - 11638.5223 I I -566.410490 ..+12 ..+1 36 165 170 
20 - 1220..+.93307"+ - 1220-+.932801 -566.-1-10490 -1-32 -1-1 36 175 180 

a Calculations were perfonned on IBM RISC Systeml6000 340. 
b Values were obtained from results of the elongation method . 
e l-:nergies are shown in eV unit. 
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TABLE 3 .8. Total energies and energy increments for a solitonic pol yacetylene cluster-series 
lIlcludmg on~ plus charge III the polymer ehain I I-(C21 12)n-(C2I I2-CI I-C 21 12)-(C 2I 12 )n-l l. The 
dll~lenslOil of each orbItal space detennined by the successive elongation calculations. Twenty 
lllUts were cOlUlected successively with both ends of the startin o cluster havino n=O by the 
two-directional elongation. Results were obtained by using the A e-11 ITamiltonial~. . 

Orbital space 

Total energy a Active Frozen 
------------ Energy increment b Total 

fl Ouster Elongation Mn = En - ~l- l !\Os Occ. Vac . Occ. Vac . 

o -727.009323 e 

I -129-l.095528 
2 -1860.8332 18 
3 -2-l27AI7913 
-l -2993 .921775 
5 -3560.381511 
6 --l126.817576 
7 -4693.2-H2D-l 
8 -5259.658-H8 
9 -5826.072323 

10 -6392.-l8-l539 
1 J -6958.895865 
12 -7525.306742 
13 -8091.717387 
1-l -8658.127921 
15 -9224.538403 
16 -9790.948891 
17 -10357 .359-l77 
18 -10923 .770-l57 
19 -11490.183497 
20 -12056.60959-l 

-1294.095528 e 

-1860.833218 
-2-l27 A17909 
-2993.92 1768 
-3560.381491 
-4126.817528 
-4693 .241134 
-5259.658323 
-5826.072201 
-6392.-l8-l40 1 
-6958.895713 
-7525.306576 
-809 I .7 17212 
-8658.127738 
-9224.538214 

. -9790.948695 
-10357.35927-l 
-10923 .7702-l5 
-11490.183276 
-12056.609361 

-567.086205 e 

-566.737690 
-566.58-l691 
-566.503859 
-566.459723 
-566.436037 
-566.423606 
-566.-l17189 
-566A13878 
-566A12200 
-566.411312 
-566.410863 
-566.410636 
-566.410526 
-566.410476 
-566.410481 
-566.410579 
-566.410971 
-566A13031 
-566.426085 

47 
67 
87 

107 
127 
1-l7 
167 
187 
207 
227 
247 
267 
287 
307 
327 
3-l7 
367 
387 
407 
427 

a Calculations were performed on IBM RISC System/6000 340. 
b Values were obtained from results of the elongation method . 
e Energies arc shown in eY unit. 

23 
33 
-l3 
53 
54 
+4 
43 
42 
-l2 
42 
40 
-to 
40 
-to 
-to 
-to 
40 
..U) 
..U) 

42 

2-l 
3-l 
-l4 
52 
55 
-l5 
43 
42 
38 
38 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 

o 0 
o 0 
o 0 
o 2 
9 9 

29 29 
-to 41 
51 52 
61 66 
71 76 
83 88 
93 98 

103 108 
113 118 
123 128 
133 138 
1-l3 148 
153 158 
16..1 168 
171 178 

energy per combined two units at n=17 as -566.4106 eV and -566.4113 eV, respectively. 

In connecting of a few units at telminal, the stabilization in the energy occurs. 

The orbital spaces of PA, S+, and S- determined by the elongation procedure are 

listed nn Tables 3.7-3.9. As is expected from the constant increment in the energy per 

two units of PA listed in Table 3 .7, the convergence into the constant active space is 

obtained quickly and 41 occupied and 36 vacant MOs are included in the space. In the 

case oj[' the charged solitons, the number of M~s included in the active space is almost 

constant at the seventh extension. The active space is constant perfectly at n=11-19 in 

S+ and n = 12-18 in S- and this results suggests that the electronic states become nearly 

periodic as the bulk limit of periodic PA. In comparison with PA, the delay of freezing 

of MC)s in S+ and S- which may be caused by the influence of a given charge is 

detected, that is, the first frozen MOs appear against the second (vacant MOs) and the 

third (occupied MOs) connection of the fragment in neutral PA while against the 

fourth (vacant MOs) and the fifth (occupied MOs) in S+ and S-. The number of ne\vl)' 

frozen 10 occupied and vacant MOs against the 12-19th (S+) and the 13-18th (S-) 

extensilons agrees with that in PA. 
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TABLE 3.9. T~tal energies and energy increments for a soliton..ic polyacetylene cluster-series 
II1cludmg one mlllllS charge III the polymer chain H-(C2II2)/I-(C 2H2-CII-C21I2)-(C2H2)n-I 1. The 
ul~lenslOn of each orhital space detei~nineu by the slIccessive elongation calculations. 'hventy 
Ulll1ts ~vere. connecteu ~ucces sively wIth both ends of the starting cluster having 11 =0 hy the 
two-dIrectIonal elongatIon. Results were obtained by using the A~ 11 IIamiltonian . 

Orbital space 

Total energy a Active l ;rozen 
Energy incrcment b Total 

1/ Cluster Elongation 6. Ell = En - En_ I AOs Occ. Vac . Occ. Vac. 

0 -735.695232 e 

- 1302.876103 - 1302.876103 e -567.180871 e -l7 2-l 23 0 0 
2 - 1869.66-4373 - 1869.66-4373 -566.788270 67 3-l 33 0 0 
3 -2-l36.28293-+ -2-l36.282931 -566.6 18558 87 -l-l -l3 0 0 
-l -3002.811890 -3002.8] 1883 -566.528952 107 5-l 51 0 2 
5 -3569.290699 -3569.290679 -566.478796 127 57 57 7 6 
6 --l135.741169 --l135.7-l1123 -566 A5()..W...t. 147 58 58 16 15 
7 --l702.17560 1 --+702 . 175520 -566.434397 167 -l7 -l6 37 37 
8 -5268. 6008-l7 -5268.600732 -566.425212 187 -l7 -l7 -l7 -l6 
9 -5835.020738 -5835.020570 -566.419838 207 4-l 40 60 63 

10 -6-tO 1 A37-l-l3 -6-tO 1.437228 -566 .416658 227 -l4 -+0 70 73 
II -6%7.852153 -6967.851891 -566.414663 247 44 -l0 80 83 
12 -753-l.265629 -753-l.265316 -566.-l13425 267 -l2 38 92 95 
13 -8100.678276 -8100.67791-l -566.412598 287 -l2 38 102 lOS 
1-l -8667.090377 -8667.089%6 -566AI2052 307 -l2 38 112 115 
15 -9233.502097 -9233 .501Ml -566.-l11675 327 -l2 38 122 125 
16 -9799.91357-l -9799.9 13077 -566All-l36 347 -+2 38 132 135 
17 - 10366.324958 -10366.32-l-l23 -566.4113-l6 367 -l2 38 1-l2 145 
18 - 10932.736599 -10932.736029 -566.-l11606 387 -l2 38 152 155 
19 -11-l99.150152 -11-l99.1495..f5 -566.413516 -+07 -l2 36 162 167 
20 -12065.576629 -12065.575986 -566.426-141 427 42 36 172 177 

a Calculations were perfonneu on IB~1 RlSC System/6000 340. 
b Values were obtaincd from results of the elongation method . 
e Energies are shown in e V uni 1. 

To investigate the peIiodic character of the electronic structure in a polymer at 

the MO level, diagrams of the frozen electron density at each cycle for S+ and S- are 

depicted and shown in Figs. 3.13(a) and 3 .13(b). As for the freezing pattern of periodic 

PA, since the polymer is assumed to have the periodic geometry, the highly periodic 

states are formed in e:'\tending the polymer chain as is described in Sec. 3.3.1. On the 

other hand, the periodicity is destroyed in S+ and S- with chargcd defect in the chain. 

The range of disordering is extended to C17-C1.8 in the half-chain and the discontinuity 

bet\vc4en the aperiodic and the periodic patterns is observed in elongations of the 

polym,er chains with the S+ and S- defects. This separation of the freezing patterns 

describes the interfacc of electronic states in the polymer. Also, in the periodic range, 

the number of newly frozen MOs is 10 occupicd and vacant MOs and is consistent 

with that in periodic PA. The end erfect appears in S+ only at the last connection or the 

unit. 
The distributions of net charge on each site in the chain of final S+ and S

clusters are plotted in Figs. 3.14(a) and 3.14(b). In both plots, the large and wide 

oscillation of charges on carbon atoms is shown but the charges on hydrogen atoms 
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Carbon number 

remain as almost invariant as compared \-vith oscillating charges on carbon atoms. That 

is, the given plus or minus charge in S+ or S- is extended in delocalized J{ electron 
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Carbon lllunber 

FIG. 3 .13. The freezing pattem of the electron density 011 each carbon atom ill the polymer chain of 
(a) S I and (b) S-. The carbon number 1 and 43 represent the atoms at the cellter and the end or the 
chain , respectively. The number or connected fragments with the starting cluster is included in the 
graph . 
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(a) S+ 

systenl on conjugated carbon chain. The oscillation is converged morc rapidly in S

than in S+. The end effect on charge distribution is almost limited in the terminal 

carbon. The amplitude of oscillation appears as changing around C17-C18 on the 
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FIG . 3 . 1-+. The plot of charge distribution on each site of the polymer chain , (a) S ! and (b) S -. The 
site I is t.he cenu·al part and the site -+3 is the end part of the chain . 
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chain at a vic\vpoint of its periodicity and this fact corresponds \vell to the discontinuous 

patterns of thc frozen densi ty as mentioned above. 
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3.4. SUMMARY 

In this chapter, we tried to convert the elongation method into the program 

package of MOPAC in order to apply the approach to ,vide range of nlolecules. For 

the purpose that \ve confirm reliability and generality of the elongation method and 

sho\\' the samples of the analysis by using the approach, three polynler systems were 

dealt ,,,ith b) the cluster-series calculation. At first, we performed calculations for 

periodic clusters constructed \vith polyethylene, polytetrafluoroethylene, polyacetylene, 

and polydifluoroacetylene. Next, the interfaces of poly(ethylene-tetralluoroethylene) 

and poly(acetylene-dilluoroacet) lene) were calculated. At last, the soliton defect ,vith 

plus or minus charge in polyacetylene was created. By comparison with the original 

MOPA.C results concerning total energies of these S) stems, it was confirmed that the 

elongation calculation has enough validity in practical calculations. 

The calculated results were obtained at the AMI level in this work. Ho,vever, 

our approach does not include the special condition in theoretical treatment, thus, the 

application of the elongation method to the calculations at the ab initio level is accessible 

b) sclecting the orbi tals which satisfy the orthonormality condition as mentioned in 

the text. Moreover, the elongation method based on the crystal orbital theory is now 

developed in order to stud) the clectronic structure on a crystal surface. 

The analysis by using the elongation calculation of polymers with or without 

periodici ty enable us to determine and extract the periodic character of the electronic 

structure in a periodic chain and around a local interface or a defect at the molecular 

orbi tal level. The character of electronic states appears as the divided orbi tal spaces 

and the freezing pattern of electron density. The influence of the interface, the defect 

and the cluster end can be detected by the disordered diagram on the pattern of the 

frozen density. Thus, \ve can kno\\' the periodic and nonperiodic features of the electronic 

structure in a polymer. 
The elongation method is based on the cluster-series calculation and its application 

is not restricted to periodic polymers and polymers with a local aperiodicity. That is, 

we can connect molecular fragments with each other one after another in any directions 

by any times and it is possible to elongate a random aperiodic polymer like as a 

biopolymer by using this approach. The calculation of several polypeptides is now in 

progress in our group and results will be reported in the near future. 
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Chapter 4 

Theoretical Approach for Locally Perturbed Periodic Systems: 
Development of Ab Initio Crystal Elongation Method 

We haye recently proposed the elongation method ,vhich is a novel molecular orbi tal 

method at the Hartree- Fock leyel to calculate the electronic structures of large periodic 

or aperiodic polymers efficiently. This method has an idea of the successive connection 

of any fragments to obtain the electronic properties of large molecules with any units 

by a cluster-series model. In this approach, the stationary conditions of the electronic 

states in a series of clusters against the size extension have been formulated. Studies 

for molecular systems have suggested that the elongation technique with the stationary 

conditions may be applicable to periodic systems described by the crystal orbital. In 

this study, ,ve develop a new quantum chemical approach for the study of locally 

perturbed periodic systems by the ab initio crystal orbi tal calculation. A one-dimensional 

polymer, a hvo-dimensional surface, and a three-dimensional crystal with a local 

disordering part can be treated systematically by introducing the elongation technique 

based on the stationary conditions into a large extended supcrccll model. In the present 

chapter, ,ve propose a general approach of the ab initio crystal elongation method to 

take into account the local perturbation destroying the perfect periodic arrangement 

directly in accordance with an effective variational treatment. The description for the 

methodology of this approach is given in detail. Results of test applications to a 

perturbed t\vo-dimensional surface are shown. A local adsorption of carbon monoxide 

on (001) surface composed with magnesium oxide is examined as a sample model to 

confirrn the accuracy of ab initio crystal elongation method. The utili ty of our method 

is clarified by an application to the perturbed surface. 
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4.1. INTRODUCTION 

Recently, the molecular orbital method becomes a powerful tool which enable 

us to study the electronic structures of small molecules. By this method , various 

properties of molecules, for e:\ample, their geometrical structures, electron density 

distri butions, energetic, and so on , can be obtained theoretically. I Furthermore, the 

methodology of molecular orbi tal theory is much sophisticated at present and nlany 

advanced program packages are de\ 'eloped and used. On the other hand, the bulk 

electronic characters of the systems as one-dimensional polymers, two-dirTIensional 

surfaces, and three-dimensional crystals with perfect periodic arrangements can be 

determined by the crystal orbital method under the periodic boundary condition. Also, 

from the cr) stal orbi tal calculation, we can obtain the band structure and the densi ty of 

states which characterize the perfect periodic systems.2
.
3 However, the improvement of 

packaging for the crystal calculation is delayed in comparison with the molecule 

calculation. 

But, there arc some problems in applying these quantum chemical methods to 

the systems \vith both periodic and aperiodic parts in their geometry. In other words, it 

is difficult to study locally perturbed periodic systems by the molecular orbital or the 

crystal orbital calculation. In these systems, because the periodicity of systems is 

broken ina local region, it is not easy to apply the crystal orbi tal theory to the 

perturbed systems. This theory assumes the perfect periodicity of whole systems, and , 

it is so restricted by the periodic boundary condition itself. In contrast with the crystal 

orbital method, the molecular orbital method has no limitation concerning the periodic 

sequence of constituent in the systems. However, this method can not reproduce the 

bulk c11ectronic distributions since neighboring molecules are absent by its free boundary 

condition, thus, the electronic states at the center and at the edge arc different. 

In applying these calculation methods to the periodic systems perturbed in a 

local region, \ve must take the systems larger to satisfy the local or the bulk nature of 

the electronic states. In the crystal approach, a superccll which is an extended unit for 

the periodicity of the system must be large enough so that the interactions among 

perturbed parts in neighboring cells are negligible small and do not affect on the local 

electronic states with each other (local nature). In the molecule approach, the size of a 

cluster molecule has to be sufficiently large. in which the influences of molecular 

edges do not reach to the region around a local perturbed part and do not disturb the 

bulk electronic condition in its surrounding (bulk nature). 

These situations suggest the serious problem that the larger the perturbed systems 

becomle, the more enormous the computational efforts like as the calculations of one

and t\-vo-electron integrals or the diagonalization of matrices in the iterations of the 

sclf-consistent-ficld (SCF) procedure become. Moreover, as another side of the problem, 

it is pointed out that \ve can not know a priori the effecti\ e size of a supcrcell or a 

cluster in \vhich the electronic structures of the perturbed systems can be described 

correclll), without the effects of boundary conditions. Therefore, we need to repeat the 

108 



Chap. 4 : Quantum Chemical Approach for Locally Perturbed Periodic Systems 

calculations against the systems with different sizes to find the optilnal size by monitoring 
the convergence of the local perturbed electronic property. 

The cluster model which approxiInates an extended perturbed system by a finite 

molecule and the superccll model which uses a large cell including a locally perturbed 

part as a unit cell have conventionally been applied to the studies of locally perturbed 

periodic systems by using the molecular orbital and the crystal orbital methods, 

respectively. However, in these models, a similar neck point exists in their applications 

to practical calculations as mentioned above. That is, a most important problem is the 

size selection of the system which can give the exact electronic states for both of a 

local-perturbing aperiodic and an extent-surrounding periodic regions in the systenl. 

But, \ve can not determine the effective size of a cluster or a superccll for the system 

before practical calculations with various sizes are carried out. 

Attempts to treat the locall) perturbed periodic systems by the quantum chemical 

methods are no\\' in progress. The embedded cluster model is adapted in these calculations 

based on the Green function technique as an approach. This method may surely be 

user ul, but it may appear as to be more complicated in the practical works for the 

calculations of its formulation. Moreover, in these approaches, the partition for the 

perturbed and the unperturbed regions in the system must be assumed before the 

calculation of the system is performed in practice, and also, the former region is 

calculated exactly while the latter region is treated approximately in evaluating the 

total electronic structure. Therefore, the determination of the interacting region is 

arbitrary and the calculated results may largely depend on its selection.4-lO 

Also, trials for the molecular orbital calculations of the large extended molecular 

systerns have been proposed. Results for many molecules are reported. But, because 

the fragmentation of the system is pre-assumed, further calculations against the different 

selection of fragments must be required in order to find an suitable size of the fragment. 11 - 19 

To overconle the problem of the size effects in the cluster model or the supcrcell 

model, we should determine uniquely the general interaction space among the partitioned 

fragments in an extended molecule or bet\veen the periodic and aperiodic parts in a 

perturbed periodic system in the calculation procedure \vith no assumption for its 

range. It may be a\ ail able by the following calculation of two-step procedure. Firstly, 

we ob~ain the electronic structure of an appropriate cluster or a periodic system exactly. 

Secondly, an interaction space is extracted from. the starting system under a perturbation 

such as a connection \vith other fragments or aperiodic parts, and then, the eigenvalue 

problem is solved \vithin the interaction space only to evaluate the electronic state of 

whole system successively. The most important point is that this approach should not 

have any assunlptions with regard to the range of given perturbation in the system 

,,'hen \ve estimate the electronic property of the perturbed system. 
In order to realize this idea in practical calculations, we must divide the total 

orbital space of a system into the interaction space and the noninteraction space under 

a given perturbation by a general formulation theoretically. As an approach for that 

purpose, \ve have de\'cloped the elongation technique by the uniform localization at 
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the levels of extended Htickel,20,21 ab initio,22 and local densi ty functional 23,2-t 

calculations for many molecular systenls. Also, the stationary conditions or electronic 

state have been introduced into the elongation method as the cluster-series models for 

various polYlner sys tems.
2
5-28 The utili ty of thi s approach by the crystal orbi tal calculation 

has already becn sugges ted in a one-dimensional c~ e. 29.30 

In the original formulation for the stationary condi tions by the molecular orbi tal 

meth(Jd, we consider the extension process that a cluster molecule with an appropriate 

size is extended by connecting a molecular fragment with the cluster end. The molecular 

orbital calculation of the original and the extended clusters is perfor'med successively. 

Then, the molecular orbitals in the original cluster which satisfy both the orthonormality 

and the variational conditions of the extended system are extracted as the stationary 

orbitals against the molecular extension. That is, the stationary orbitals are defined as 

the orbitals included in the original clustcr \vhich can be regarded as good nlolecular 

orbitals also in the extended cluster without changing by an adding fragment. In other 

words, the stationary orbitals are well-defined original orbitals also in the extended 

system, thus, those are unaltered under the connection with a fragment and stationary 

again ... ;t the size extension of a starting cluster. 

We can repeatedly extend the system by freezing the stationary orbitals in 

interacting with a next fragment by any times until the polymer constructed \vith any 

units 'fvith desired length can be obtained finally. Because the adding fragments which 

are continuously connected with an extended cluster one by one must not be limited to 

be the same species \vi th each other, this elongation method can be applied to any 

periodic and aperiodic polymers. 

These stationary conditions of the electronic structure enable us to determine 

the stationary orbitals uniquely by a simple manner, and thi s method can give us an 

infornlation concerning the periodic and the aperiodic characteristics of electronic 

states in a periodic or an aperiodic polymer as a freezing pattern of electron density by 

an anal ysis of the stationary space. 25-28 We employ the condi tions in this work to find 

the interaction and the noninteraction orbitals in a locally perturbed periodic system. 

A local perturbation in an extended periodic system has mainly been deaH with 

by using the cluster model. Several reasons for using the cluster model instead of the 

supercell model may exists. Important one of them may be that the molecular orbita.l 

theory is very advanced and the calculations. at the Hartree-Fock and the bcyond

Hartree-Fock levels can be carry out by the general program packages with easy use. 

In other words, there is fe\-\' packaged tools with popularity which can be used handily 

in the field of crystal orbital calculation. However, as for the evaluation of the bulk 

electronic structures in the pure and perfect periodic systems, it should be expected 

that the crystal orbital is more advantageous than the molecular orbital, because the 

former satisfies the translational symmetry of the perfect periodic sys tem without the 

boundary effect while the latter includes the edge effect by the free boundary condition. 

Furthermore, the program package which enable us to calculate the bulk electronic 

properties for one-, two-, and three-dimensional crystalline systems at the ab initio 
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Ic\'eI is dC\'elopcd and relcascd rcccntly. That is, We ha\'c now arrivcd at thc startina e 

stage lloward thc development of a ncw mcthod to c:\aminc thc cffects of local disordering 
in periodic systems effectively. 

On thc othcr hand, thc stcps of intcgration and diagonalization rcquire much 

computations in thc ab initio calculation. Howc\'cr, it is considcred that the latter may 

becornc more scrious in an c:\tended systcm in comparison with thc formcr, bccause 

thc nlany-centercd intcgral can bc ncglected or appro:\imated with long distancc betwecn 

basis functions while the number of basis orbitals of the eigen\ aluc problcm can not 
be reduced by a largc size of thc systcnl. 

Thereforc, as thc first step in this direction to develop a uscful approach \vith 

generality by thc quantum chcmical calculation for thc cfficient study of locally perturbed 

periodic systems, wc try to introduce thc elongation mcthod into thc pcriodic Hartrce

Fock calculation in order to carry out a more cffective variational treatment for large 

extended supercell systems. 

In the present study, we formulate a general approach by using the elongation 

procedure at the level of the ab initio crystal orbital calculation in order to obtain the 

electronic naturcs of locally perturbed periodic systems, for example, a polymer 

interacting ,vith a small molecule and an abnormal bonding in a polymer (one

dimensional), a surface having a dcfect structure and a local adsorption on a surface 

(hvo-dlimensional), a crystal ineluding an impurity atom and a lattice defect within a 

crystal (three-dimensional). The procedure of this approach is essentially similar to 

that for the corresponding orbital or the interaction fronticr orbita1.3 1
-
33 It includes thc 

detemlination of the interaction and the noninteraction regions in thc orbital space of 

the perturbed system, in \vhich the periodic orbitals are perturbed or not, by applying 

the stationary conditions of the elongation method. 

For the purposc that wc make it possible to perform thc calculations of various 

systemls, the elongation method is introduced into the general program package of 

CRY ST AL88.3
.
34 By CRY ST AL88 and 92 programs, we can calculate thc electronic 

states at the ab initio lcvel both for molecules by the molecular orbital method and for 

onc-, two-, and thrce-dimensional periodic systems such as polymers, surfaces, and 

crystals by the crystal orbital mcthod .
3s

-
n 

In order to chcck and confirm the generality of our ab initio crystal elongation 

approach, several test calculations are performed on thc two-dimcnsional locally 

perturbed system "vith a molecular adsorption on a crystal surface. As a sample system, 

wc treat the system in which a carbon monoxide adsorbs on (001) face of magncsium 

oxide. This system has been studied by the cluster approach and by the suprecell 

approach. +W6 The perturbed cluster calculation of this system has also been reported.
8 

In Section 4 .2, we give the formulation of the ab initio crystal elongation method 

in detail, and in Scction 4.3, wc demonstrate the utility of this method by comparing 

obtained results from this approach with thosc from the conventional supcrcell 

calculation. Section 4 .4 gives the summary of this study. 
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4.2. METHOD 

Previously, in our works by the molecular orbital calculation, the stationary 

conditions of the electronic structure against the extension of cluster series have been 

defined as follo\vs. As is explained below briefly, the stationary orbitals must satisfy 
both the orthonormality and the variational conditions.25-27 

Now, consider that a starting cluster A is extended by bonding with an adding 

fragment B to produce an extended cluster A + B. In order to be well-defined molecular 

orbita.ls (Mas) in the extended cluster A+ B, {'If' r CA)} and {1/I]'CA)}, which are Mas 

of the original cluster A, must satisfy the following two conditions as is shown in Fig. 
4.1 : 

(i) The orthonormality condition, 

(1/ ,;1 (A)I1J1J(A) = 0ijOnh' 

(ljl;1 (A)I ¢; (A + B) = 0, 

(ii) The variational condi tion, 

(1/' io (A)I P(A + B)llj,]'(A) = 0, 

(ljlr CA)I P(A+ B)I ¢,;'CA + B) = (ljJ;CA)1 P(A+ B)I ¢;CA+ B» = 0, 

where, the symbols a, b = 0 or v, the superscripts 0 and v indicate occupied and 

virtual MOs, respectively, and l( A + B) is the Fock operator of the extended cl uster 

A+B. {¢(oCA+B)} and {¢;(A+B)} represent the remaining Mas of the cluster 

A + B . Then, {'ljl rCA)} and {'lj';' C A)} can be called stationary orbitals against the extension 

from A to A + B. Thus, if the electronic structures of both clusters A and A + Bare 
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satisficd by thc stationary orbitals . In other words, the orbitals satIsfYIng these conditions can be 
regarded as to be stationary. 
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" 
deterrnined and F( A + B) is kno,vn, it is possible to define the stationary space uniquely 
based on these orthonormality and yariational conditions. 

The procedure to extract the stationary orbitals has already been proposed and 

applied to elongation calculations for hydrogen fluoride and three isomers of periodic 

polyacetylene.
25 

Stationary space analysis of the electronic structure of a polymer 

systenrl by the cluster-series model has also been reported. 26 Then, applications of an 

analysis by the cluster-series model to electronic states around the local defects in all 
trans polyacetylene has been published. 27 

As is shown above, the original procedure assumes that p( A + B) is known. In 

this "vork, we usc an approach which does not need the assumption as is explained in 

the f oIlo"ving. 

Of course, this method to extract the stationary orbitals is not limited to the 

calculation for the extension of a molecular system, for example, a cluster A is extended 

to a cluster A + B by connecting with a fragment B as mentioned above. That is, ,ve 

apply the stationary conditions of the electronic state to the locally perturbed periodic 

systenl in which a crystal surface with two-dimensional peliodicity C is perturbed by 

adsorbing a molecule D in this study. 

Three-step procedure is developed to extract the stationary orbitals in our present 

study. Here, we note that the crystal orbital and the Fock operator in a periodic 

Hartree-Fock scheme depend on the wave number vectors, thus, the steps for elongation 

procedure described below in details must be carried out at each representation point 

in the ,vave number vector space. Also, the general procedure of this approach can be 

applied directly to the molecular systems by regarding the crystal orbi tals as the 

molecular orbitals such as in the case of the extension of molecular clusters as well as 

in the case that the periodic crystalline systems are perturbed. This three-step procedure 

is summarized in Fig. 4.2 schematically. 

The first step is the same to the method which has been used in the original 

version, that is, we extract the orbitals from the periodic system which satisfy the 

orthonormality condition. To specify such orbitals, we form two rectangular overlap 

matrices between orioinal orbitals and added or substituted atomic orbitals (AOs) in e 

the perturbing part as follows [Fig. 4.3(a)1: 

(4.1a) 

s;~ = < 1/' ~ I X r > (j = 1, ... , N \' ; r = 1, ... , M) (4.1b) 

'''here, {1/'IO} and {1/';'} arc original orbitals in the occupied and yirtual spaces of the 

systeml, {X,.} indicates perturbing AOs. Then, the diagonalization of the products 

8°So+ and SVS'H are carried out toe\'aluate the eigenvalues of these matrices, respectively. 

From estimation of the eigenvalues obtained here, we classify the original occupied 

and virtual orbital spaces into {1/'(O)} with the zero eigenvalues and {1/'/(O)} ,vith the 
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FIG. 4 .2. Schematic illustration for the calculation procedure of the crystal elongation method . 
The explanations of steps 1-3 are given in the text in detail and these s teps are carried out for 

each wave number vector . 

nonzero eigenvalues . In other word, the former space satisfies and the laLLer space 

breaks the orthonormality condition of system, respectively. After this orbital selection, 
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by solving the eigenvalue problem within the space of {V,'(O)} and {X} only at once 

to obtain the sol ution {X(O)}, \ve can generate initial orbi tals of the perturbed system 
as {VJ(O)} and {X(O)}. 

Next, we calculate initial Fock operator F(O) using the density matrix from 

initial orbitals. Because we do not know the Fock operator including full perturbation, 

in the following steps, we must determine the interaction orbitals which can be regarded 

as effective basis orbitals of the eigenvalue problem based on the variational condition 

and solve the problem represented with the orbitals to incorporate the perturbation by 

degrees into the electronic structure. 

In solving the eigenvalue problem of the whole system, we can replace the SCF 

problem by a series of the SCF steps represented with specific interaction orbitals 

only. In other words, noninteraction orbitals can be removed form the eigenvalue 

problem. Therefore, we can treat the system without increasing the dimension of the 

SCF it.eration by the following steps. 

The second step is the determination of interaction and noninteraction orbitals 

which are unsatisfied and satisfied with the variational condition in the total orbital 

space, respectively. For that purpose, the follo\ving rectangular Fock matrices are 

defined [Fig. 4.3(b)]: 

(4.2a) 

0: = < VJ;J (0)1 F(O)I x, (0») 
[i = 1, ... , N°(O); s = N V (0)+ 1, ... ,Nv (0)+ M(O)], (4.2b) 

(4.2c) 

F;; = < V'; (0)1 F(O)I X,(O») 
[j= 1, ... ,NV(0); t= N°(O)+l, ... ,N°(O)+M(O)], (4.2d) 

\vhere" N° (0) and NI' (0) are the dimensions of occupied and virtual orbital spaces in 

{V,(O)}, M(O) denotes the number of orbitals included in {X(O)} which arc obtained 

in the first step. Then, to find the interaction and the noninteraction orbitals, the 

matrices FOF o+ and FVF v+ are diagonalized and the orbitals whose eigenvalues are 

greater or less than a threshold value are selected as the interaction or the noninteraction 

orbital from occupied and virtual spaces in {lp(O)}, respectively. Thus, {VJ(O)} can be 

divided into the interaction orbitals {V'' (l)} and the noninteraction orbitals {V' (l)} 

\vhich satisfy and do not satisfy the variational condition. After solving the eigenvalue 

problem within {V'' (1 )}c:B{X(O)} according to the SCF technique, we obtain resulting 

orbitals {X(l)} which include partial perturbation within {V,'(l)}c:B{X(O)} while 

remained orbitals {V' (I)} are unchanged 'vvithout any perturbations in the SCF iterations 

because this space is removed from basis orbitals of the eigenvalue problem as an 

invariant. Next, new Fock operator F(1) is calculated by using {1/' (1)} and {X(l)}. 
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As is shown in the second step, the noninteraction orbitals are fixed in the SCF 

procedure, but the other orbitals are relaxed by mixing with each other, thus, the 

yariatilonal condition of {'lJ" (l)} may be broken against F(l). SO, we must repeat the 

stcps for the orbital selection and the eigenvaluc problem until the perturbation is 

included fully to obtain the electronic state which satisfy the variational condition 

self-consistently. This convergence can be checked by the number of interaction orbitals, 

that is, when all of the interaction orbitals vanish, we can recognize that the perturbation 

is taken into conlpletely. Then, the all orbitals which satisfy the variational condition 

in the total orbital space can approximately be obtained, and thus, the electronic 

structure of thc perturbed system can be correctly evaluated. In the next step, we 

descri be the procedure of this repeating process. 

The third step is itcrations of the eigenvalue problem within the interaction 

orbital space. In this step, the SCF process of the wholc systcm can be rcplaced by a 

series of SCF steps in the interaction space only as follows. To make this step more 

effectively, the basis orbitals of the cigenvalue problem are selectcd from both spaces 

of {1//} and {X} by checking \"hether the variational condition is satisfied or not in 

each spacc. That is, the orbitals \vhich do not satisfy the variational condition in these 

spaces are regarded as the interaction orbi tals and used as basis orbitals. The remaining 

orbitals in these spaces arc the noninteraction orbitals which satisfy the condition and 

are not perturbed in the eigenvalue problem by fixing those. In other words, we take 

into account only the orbital mixing among the interaction orbitals, therefore, what we 

have to do is to solve the eigenvalue problem within the interaction space. By applying 

the selection of interaction and nonintcraction orbitals in the total orbital space, it is 

possible to reduce reasonably the number of basis orbitals for the eigenvalue problem. 

That is, \ve can carry out the SCF problem of large system without increasing its 

dimension. Two-step procedure 'is applied in order to perform the orbital selection as is 

descri bed below. Here, we explain the (n + 1) th cycle of this step. At first, we test the 

variational condition of {X(Il)} by taking the rectangular Fock matrices as follows 

[Fig.4.3(c)J: 

~ = < X; (n )1 F( n )1 tJ 1 ; ' (n ) > r r = 1, ... , MO (n ); j = ], ... , N v (n) ], (4.3a) 

F;; = < X:' ( n ) 1 F ( n ) 1 'lJ" 7 (Il ) > [s = 1, ... , M v (n ); i = 1, ... , N° (n ) ], (4.3 b) 

where" MO(n) and MI'(n) denote the numbers of occupied and virtual spaces In 

{X(n)} which corresponds to the orbitals obtained by the eigenvalue problem at the 

(n)th cycle of this step, {v,(n)} is the orbital space with N°(n) occupied and N:(n) 

virtual orbitals \vhich remain with no perturbation after the (n)th repetition, and F(n) 

specifies the Fock operator evaluated by the (n) th iteration. The interaction orbitals in 

{X(n)} can be selected by diagonalizing FOF o
+ and FVF v

+ matrices and e\'aluating 

their eigenvalues, respectively. At second, we can find the interaction orbitals in 

{'lJ'1 (n)} by thc following rectangular Fock matrices [Fig. 4.3(d)]: 
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PJ = < 1/' i() ( n)/ F( n )/1/' ;' (n ) ) [i = 1, ... , N° (n ) ; j = 1, ... , N v ( n ) ] , (4.4a) 

F7s = < 1/'i() (n)/ F( n)/ <p;1' (n + 1) 

[i = 1, ... , N ° (12); S = N I
' (12) + 1, ... , N I

' (11) + M' (11 + 1)], (4.4b) 

(4.4~) 

F;:, = < 1/' ;' (n )1 F (n )1 ((J/ 0 (n + 1) 

[j = 1, ... , N \' (n ); u = N° (n) + 1, ... , N ° ( n) + M' (n + 1) ], (4.4d) 

\vhere, {q/( n + l)} represents the interaction orbi tals in {X(n)} selected by the first 
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selectJion. Diagonalization of products FOFo+ and FVFl'+ enable us to specify the 

interaction orbitals according to the magnitude of eigenvalues. At last, the eigenvalue 

problem is solved within {'ljl'(11 + l)}@{cp'(I1+ I)} determined as the interaction space 

in this step by the SCF method to obtain resulting orbitals {X(n + I)} and ne\\' Fock 
operator F(n + 1). 

In repeating the next cycle, we assume {7./,(n + l)} and {X(n + I)} as the interactive 

space for the (n + 2 )th cycle. In other words, at each cycle of this step, if there is, {qJ} 

is rernoved from the interactive space and each {qJ} is kept as invariant through all 

cycles. This treatment is reasonable based on the fact that the interaction between 

{cp(n + 1)} and {V' (n)} is sufficiently \veak because it is confirmed that the eigenvalues 

of rectangular Fock matrices between them are less than a threshold value, thus, the 

variational condition of {<p(n + l)} will not be broken by the interaction with 

{V'(n+l)}. 

Finally, \vhen a given perturbation converges at the (m) th cycle, the total 

orbital space of the system can be determined as a gathering of divided spaces {7./' (m)} 

and {qo(2)}, ... ,{cp(ln)}. Now, we consider the physical meaning of these orbital spaces. 

{v,(m)} is the orbital space including the orbitals \vhich are not used as the basis 

orbitals of the eigenvalue problem to introduce the perturbation, that is, the final 

noninteraction orbitals, thus, these orbitals are not affected by the perturbation at all 

and regarded as keeping the bulk nature of original system. On the other hand, the 

orbitals in {cp(2)}, ... ,{cp(m)} are the series of interaction orbitals which are perturbed 

by the eigenvalue problem including the interaction between an original system and a 

perturbing part. We diagonalize the Fock matrix within {7./1(m)} and {cp(2)}, ... ,{cp(m)} 

to determine the final orbitals {7./J a } and {7./I!}, respectively. Strictly speaking, we can 

regard the orbitals in {7.//,J as be altered and in {7./ II} as be unaltered by the perturbation, 

and thus, those correspond approximately to the active and the frozen orbitals by 

original formulation, respectively. 
In the further continuous elongation of the system, {7./J I} can be treated as the 

fixed orbitals against the next perturbation in the case that it is possible, and then, the 

procedures explained in this section can be repeated by any times. 
The variational treatment of this elongation method is very simple in practical 

calculations and dose not require any special techniques and complicated skills in 

developing the program. That is, we have only to find the interaction orbitals by 

diagonalizing the matrices FOF o+ and FVFv+, then, solve the eigenvalue problem 

based IOn these orbitals continuously in each step. This orbital selection is expected as 

a reasonable way since the square root of the eigenvalue of FF+ represents the strength 

of the interaction and the clements in FF+ include all terms of polarization, charge 

transfer, and exchange effects within the interacting system which cause the orbital 

mixing. In other words, it can be considered that by creating the orbital pairs with zero 

values of Fock matrix elements, they do not mix with each other. Thus, in the calculation 

of our elongation method, only the orbital mixing among the interaction orbitals is 

introduced by the step'wise procedure as a more effective treatment for the SCF step. 
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Moreover, because this approach incl udes the specification of the orbi tals in which the 

perturbation is dominant by divided orbital spaces, we need not to assume the interaction 

space before the calculation. In other \vords, we do not have to monitor the calculated 

results for various systems wi th different ranges of interaction and the size dependence 

of results by changing the cluster size variously in the cases for the conventional 

cluster model and the embedded cluster approach. Therefore, our method can be 

expected as a starting point toward a general quantum chemical approach in order to 

study the electronic structures of the locally perturbed periodic systems by the periodic 

Hartrce-Fock scheme. 
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4.3. RESULTS AND DISCUSSION 

To confirm the utility of our ab initio crystal elongation method in practical 

calculations, we perform calculations for the locally perturbed two-dimensional periodic 

surface systems. The perturbed systems in which a carbon monoxide is adsorbed 

vertically on (001) surface for magnesium oxide crystal with various coverages are 

treated as is shown in Fig. 4.4. 

The following conditions of crystal Hartree-Fock calculations for truncation 

parameters are adopted in this study; monoelectronic integral overlap threshold: 10-4, 

Coulomb overlap threshold: 10-4 , Coulomb penetration threshold: 10-4, exchange overlap 

threshold: 10-4 , and exchange pseudo-penetration threshold: 10-6 • The meanings of 

these thresholds are explained in more detail in Refs. 3 and 9. These values have been 

suggested as a standard conditions in this system by the authors of CRYSTAL88.8 The 

specific points with fifteen number in the two-dimensional space of wave number 

\'ectors are extracted as the representation points in the eigenvalue problem. The 

convergence of SCF iterations in the calculation is considered to be reached when the 

absol ute val ue for the deviation of the total energy of the system from that at the 

preceding SCF cycle is below 10-8 a.u. The Pisani's basis sets constructed with nine 

independent functions (three s and six p) are applied for Mg2+ (8-61G) and 0 2
- (8-S1G) 

which have been optimized for the bulk MgO crystal. 36 Since it has already been 

sho\vn that the electronic structure is almost unaltered by using a minimal STO-3G 

instead an extended 3-21 G as the basis set,4{j the Pople's STO-3G basis set is employed 

for CC) molecule. -t7 ,48 

o 
1'.'500 A 

C 

FlG. -l.-l A local co adsorption on (001) surface or ~JgO crystal. The a~sorp~on is simulated 
bv approaching CO molecule vertically to MgO surface throug.? ~ atom . [he dIstance. between 
l~ttice points or a square lattice for ~lgO (001) surface IS 2.10.)6 A and the ho~d1l1g dli_tancc ~ll 
CO molecule is 1.1500 A. The shaded and the white halls correspond to Mi and 0 lOllS 111 

~dgO (CX)!) surface, respecti vely . 
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An important point in the calculation of molecular adsorption is the size of 

system \vhich can describe exactly the electronic states of both the adsorption site 

perturbed by a molecule and the periodic unperturbed surrounding sites in a bulk 

crystal surface. As the periodicity is assumed in the supercell model, we must take the 

size of supercell so as to be large enough in which adsorbates do not affect on the 

electronic structures with each other and each of them can be regarded as an isolated 

molecule. On the other hand, the bulk condition of adsorbent within a giyen layer may 

probably be satisfied by the crystal orbital without the end effect. However, it must be 

e~anlined that how many layers should be required in order to be able to represent 

correctly the electron density distribution in the most outer layer or crystal on "vhich a 

molecule adsorbs as the bulk limit of surface for a real crystal. For that reason, we 
should evaluate these effects before the adsorption calculations. 

Therefore, "ve calculate the perfect MgO crystal surfaces which consist of up to 

fi\ e la) ers and the CO molecules arranged periodically corresponding to the various 

surface coverages. The (001) surface of MgO crystal forms a square lattice and the 

value of 2.1056 A for the bulk MgO crystal is applied to the distances between 

nearest-neighboring Mg2+ ion and 0 2- ion in the surfaces. The intramolecular bonding 

distance of CO nl0lecule is fix.ed as 1.1500 A and the coverages correspond to 111, 
1/2, 114, 1/8, 119, 1116, and 1118 (a coverage lIx means that one CO molecule adsorbs 

on per x Mg2+ ions). The electron densities of Mg2+ and 0 2- ions in the top layer are 

listed in Table 4.1. From these results, it is clarified that a three-layered slab should be 

required at least to give the correct electron density distributions on (001) surface. On 

the other hand, we give the plot of total energies for periodic CO molecules together 

\"ith that for isolated molecule in Fig. 4.5. This energy profile indicates that the 

influences among neighboring molecules are almost converged inLo the isolated molecule 

at the coverage of 1/8. That is, it may be expected that the local CO adsorption on 

(00]) surface of MgO crystal can be evaluated exactly by the supercelJ model as the 
three-Ilayered slab wi th 118 coverage. 

Judging from the results in Table 4.1 and Fig. 4.5, we carry out the perturbed 

calcuLations for the systems of CO adsorption on MgO (001) surface by the one-, two-, 

and three-layered slabs wi th 111, 112, 114, and 118 coverages. The local adsorption 

systeols are shown in Fig. 4 .6(a)-4.6(d). The CO molecule is placed upon the Mg2+ ion 

in the top layer being attached to the surface through C atom vertically at the distance 

TABLE .. +'1 . Electron densities on Mg2+ and 0 2
- ions in the t~p layer of a slah 

cOllstmcted with one-five planes for (001) surface of ~\'1g0 crystal. 

Nmnher of layers 2 3 5 

10.0550 1O.0-J06 10.0370 10.0371 10.0371 
9.9450 9. 959-l 9.9575 9.9575 9.9575 

il The electron densities on ~vrg2+ and 0 2- lIsing 8-61G (Nlg2+) and 8-51G (02- ) ~asis 
sets obtained from the pericxlic I Iartee-Fock calculation by CRYSTAI.B8 arc listed. 
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d bc{\\'cen C atom in CO molccule and M 0 2
+ ion IOn MoO s t' TI 0 t t' 

o 0 0 e e ur acc. le pOln or 
energy ~ll11mUm IS searched by changing the distance d by 0.1 A. In CO adsorption 

calculations on (001) surface of MgO crystal, the value of 10.6 is applied as thc 

threshold to the orbi tal selection of interaction and noninteraction orbi tals in the 

ab initio crystal elongation method. 
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FIG . -l5. Total energies of periodically arranged CO molecules corresponding to the following 
surface coverages of 1/1,112,1 /4,1/8,1/9,1116,1/18, and isolated CO molecule . The energies per 
one molecule llsing STO-3G basis set obtained by CRYSTAL88 are plotted. In order to estimate 
the molecule-molecule interactions on ~lgO smface with various surface coverages, the periodic 
I lar tree -Fock calculations were performed on seven peri<xiic arrangements of CO molecules in the 
absence of the under! ying ivlgO surface . \V c should select the coverage by which the interaction 
bel\o\'een molecules can he regarded a~ be negligihle small in order to simulate the local CO 

adsorption on MgO surface . 
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FIG . ~. 6 . T he sys tems of CO adsorpti on on 190 (00 1) surface used in thi s s tu~ ~· hy slahs for 
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123 



Chap. 4 : Quantum Chemical Approach for Locally Perturbed Periodic Systems 

T.r\f3LE -l2. Total elle:gics and cpu times of the CO adsorption calcula tions for the systems 
with a one-layer slab of ivlg0 (001) surface hy the sllpcreell and the ciollgatiollll1ethods a 

Monola yer model Total energy (a .u.) cpu time (sec .) 

Coverage d (A) Supercell Elongation Supcrceli Elongation 

6 .0 -385. 82-+5--W -385. 82..+5--W 32 1 318 
5 .0 -385.82-+632 -385.82-l632 322 319 

11 1 "+.0 -385.8251-+..+ -385.825 1-+..+ -+07 ..+16 
3 .0 -385.828597 -385.828597 512 523 
2.0 -385.825117 -385.825117 686 7 16 

6 .0 -660."+3579"+ -660 '-+3579"+ ..+99 ..+78 
5 .0 -660."+35886 -660'-+35886 503 ..+79 

112 "+.0 -660 '-+36-+ 12 -660.-B6-+11 608 595 
3 .0 -660. -+-+0089 -660.4-«)()86 683 759 
2.0 -660."+37274 -660.437274 795 8-+0 

6 .0 - 1209.648130 -1209.6-+8131 1771 1-+28 
5.0 - 1209.648223 - 1209.6-+8223 1786 1..+32 

11-+ "+ .0 - 1209.6"+8753 -1209.6-+8753 2157 1771 
3 .0 - 1209.652500 -1209.652498 2657 2220 
2.0 - 1209.65002..+ -1209.650023 2-1-63 2533 

6 .0 -2308 .071..+75 -2308 .07147-+ 5549 3761 
5.0 -2308.071570 -2308.071568 5657 3726 

118 -1- .0 -2308.072108 -2308.07210-+ 7280 -l-l86 
3 .0 -2308.075898 -2308.075889 6032 5581 
2.0 -2308.073612 -2308.07360-+ 8122 6793 

a The calculations for the surface coverages of 1/ 1, 1/2, and 1/4 and that of 1/8 werc carried 
out on IBivl RISC System/6000 340 and 580, respectively . 

In order to demonstrate the utility of our approach, the total energies of the 

various systems with the distances d = 6.0, 5.0, 4.0, 3.0, and 2.0 A for the coverages 

of 111, 112, 114, and 118 by using the conventional supcrccll and the crystal elongation 

models and the cpu times required in the calculations are summarized in Tables 4.2 

(monolayer slab), 4.3 (bilayer slab), and 4.4 (trilayer slab). We find that the agreements 

bet,\'ecn results from both methods are quite satisfactory with good accuracy ,vith each 

TABLE "+.3 . Total energies and cpu times of the CO adsorption calculations for the sys tems 
with a two-layer slah of MgO (001) surface by the supcrcell and the elongation methods . a 

Bilayer model 

Coverage d (A) 

6 .0 
5 .0 

1'1 "+.0 
3.0 
2.0 

6 .0 
5.0 

1/2 -1-.0 
3 .0 
2.0 

Total energy (a.u.) 

Supcrcell Elongation 

-660.489238 -660 .489238 
-660.-+89362 -660.-+89362 
-660.489910 -660.489910 
-660.-+93..+92 -660.493-+92 
-660.-+89955 -660 .-+89955 

- 1209.765-+-+9 -1209.765-.J..t9 
-1209.765582 - 1209.7 ()5582 
- 1209.7661..+9 - 1209.766148 
- 1209.769975 - 1209 .769973 
- 1209.767203 -1209.767202 
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cpu timc (scc.) 

Superccll Elongation 

170..+ 1659 
1708 166-+ 
1542 1496 
2161 2279 
2513 261..+ 

3292 3037 
3319 3048 
36-+8 3368 
3 189 3955 
379 1 -+482 
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TABLE -J.3 . (Continued.) 

Bilayer model Total energy (a.u .) cpu lime (sec.) 

Coverage d ( \) Supcrcell Elongation Supercell EI onga ti 011 

6.0 -2308.307783 -2308.307783 I-J123 1056-J 
5.0 -2308.307916 -2308.307916 I-J221 10585 

1 -J -J.O -23 08. 308-l87 -2308.308-l88 155...J2 11366 
3 .0 -2308.312388 -2308.3 12386 16835 13328 
2.0 -2308.31000 1 -2308.309999 166M 156-J6 

6.0 -4505.391123 --J505.391123 55110 3018...J 
5 .0 --J505.391259 --J505.391258 53950 30560 

118 -J.O --J505.391839 --J505.391836 5708-J 30990 
3 .0 -4505.395786 --J505.39577-J 65263 35555 
2.0 --J505.39361 1 -4505.393603 64803 .5O...J9-J 

a The calculations for the surface coverages of 111, 1/2, and 1I-J and that of 118 were carried 
out on IBi\ r RISC System/6000 3...JO and 580, respectively. 

other at the various distance and it is confirmed that the cr) stal elongation approach is 

sufficnently reliable and applicable. The cpu times by hvo mcthods indicatc that our 

calculation bccomes as to bc incrcasingly advantageous when the systcnl bccomcs 

much larger. Especiall), as for the system of a three-layered slab model with the low 

coycrage of 1/8 which can bc c\.pected to descri bc the most rcalistic si tuation of local 

TABLE 4.-J. Total energies and cpu times of the CO adsorption calculations for the sys tems 
with a three-layer slab of MgO (001) surface by the supercell and the elongation methods . a 

Trilayer model Total energy (a.u.) cpu lime (sec .) 

Coverage d(A) Supercell Elongation Supcrcell Elongation 

6.0 -935.153876 -935.153876 4068 3859 
5 .0 -935. 154035 -935. l5...J035 4077 3857 

1'1 -to -935.154618 -935.1S-U> 18 4512 -J2-Jl 
3.0 -935. 158238 -935.158238 -J985 5036 
2.0 -935. 154759 -935.154759 4712 524-t-

6.0 -1759.095062 -1759.095062 8322 7554 
5 .0 - 1759.09521-J - ] 759.09523-J 8379 7580 

112 -J.O - 1759.095839 -1759.095839 9092 8285 
3 .0 -1759.099709 -1759.099706 7863 9959 
2.0 -1759.097009 -1759.097008 9563 10802 

6 .0 -3406.%7-J3-J -3406. 967-J34 52025 30987 

5.0 -3406. %7606 -3406.967606 52098 309M 
1/-J 4 .0 -3-J06.%8216 -3406.968216 53598 3-J564 

3 .0 -3-J06.972 160 -3406.972157 55696 40156 

2.0 -3406. %9850 -34<X) .969847 59769 -J5123 

6.0 -6702.710855 -6702.710855 191961 96178 

5 .0 -6702.711030 -6702.711028 I 9529-J 96209 

l i8 -J.O -6702.7116-18 -6702.7116-+5 205696 108359 

3.0 -6702.7 15639 -6702.715627 227956 129320 

2.0 -6702.71354...J -6702.713532 235161 153267 

a The calculations for the surface coverages of 11 1, 1 '2, and 1 -J and that of lI8 were carried 
out on IBi\l RISe System/6000 3-J0 and 580, respectively. 
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TABLE. -l.5. cpu timcs required in thc integral and UIC SCI· steps for CO adsorption 
calculatIons on a thrcc-Iaycred slah of ~ tgO (On 1) surface with 1/8 surface coverage 
hy Ule slipercell and the elongatIOn approaches .a 

d (A) Integral SCF by sllpercell SCF hy elongation 

6 .0 8-+9-l 183-+67 8768-+ 
5 .0 8-+97 186797 87712 
-l.0 8537 197159 99822 
TO 8618 219338 120702 
2.0 8778 226383 1-l-+-l89 

a The cpu times on IB~l RIS C 5ystem/6000 580 arc shown in scconds . 

CO adsorption on MgO (001) surface, our approach show obviously the great advantage 

in computation times. The cpu times consumed in the integral and the SCF steps are 

listed in Table 4.5 for the model system of three planes with 118 coverage. It is sho\vn 

in this table that the latter step is much time-consuming than the former step and our 

approach can succeed in reducing the computation time in this step by the treatment of 

the elongation technique. 

Results of our crystal elongation calculations for the one-, two-, and three-plane 

surfaces at the energy minimum are shown in Table 4.6. The surface-molecule distance 

which gives the minimum energy appears to exist around the value of 2.3 A. The 

binding energy defined as the energy difference between the isolated and perturbed 

systcnls increases with decreasing the surface coverage as from 111 to 118 (particularly 

TABLE 4 .6. Smnmaries of calculated results for CO adsorption on MgO (001) surface 
obtained at the configuration for the energy minimum. 

Coverage 111 lI2 114 118 

(a) One-plane slah 
.1E (kcal/mol)a 2 .1214 6.1022 6.8058 7.0102 
Q(CO)b 13 .9850 13.9807 13 .9787 13 .9781 
~Q(CO)C 0.0150 0.0193 0.0213 0 .0219 
Q(~;ff2+) d 10.0667 10.0668 10.0653 10.0653 
Q(O -)d 9.9482 9.9-l79 9 .9-+67 9 .9-+62 

(h) Two-plane slah 
.1E (kcallmol)a 2. 1177 6.1311 6.8516 7.0667 
Q(CO)b 13.9829 13 .978-+ 13 .9766 13 .9760 
.1Q(CO)C 0.0171 0 .0216 0.0234 0 .02..tO 
Q(Mg2+)d 10.0532 10.0532 10.0519 10.0518 
Q(02-)d 9.96-+9 9.%34 9.9617 9 .9609 

(c) Three -plane slab 
5 .9711 6.6917 6 .9061 ~E (kcal /mol) a 2 .0048 

Q(CO)b 13.9858 13.978-+ 13 .976-l 13 .9759 

~Q(CO)C 0.0142 0.0216 OJ)236 0 .02-l1 
Q(~lo2+) d lO.O-l62 10.0-l97 10.0-+8-l 10 .0~-l 

Q(Of)d 9.9632 9.%15 9.9598 9 .9590 

a ~E = E(perfecl fgO) + E(isolatcd CO) - E(MgO with adsorhed CO) is the binding energy. 
b Total electron density of a&wrhed CO molecule . 
C .1Q = Q(isolated CO) - Q(ad orbed CO) indicates transferred electrons from ~O mo~ecllJ .e . 
d Electron densities 011 Mg2+ and 02- ions at the adsorptIOn and the nearest nelghtx)nng sHes 

on the top layer of adsorhed surface . 

126 



Chap. 4 : Quantum Chemical Approach for Locally Perturbed Periodic Systems 

TABLE -l7. Change of electron densities all independent ions in ~lgO surface before and after CO 
adsorption. a 

Site Adsorption Nearest 1 Nearest 2 Nearest 3 Nearest -+ Nearest 5 

(a) One-plane slab 
Layer 1 0.0103 0.0012 0.0005 0.0012 0.0005 O.(X)03 

(h) Two-plane slah 
Layer 1 0.0112 0.0015 0.0005 0.0011 0.0008 0.000-+ 
Layer 2 -0.000 1 -0.0001 -O.cXX)l -O.lX)() 1 -O.l)()() I -0. ()()() 1 

(c) Three-plane slab 
Layer 1 0.011-'+ 0.0015 0.0005 0.0011 0.0008 O.(X)()-+ 
Layer 2 -0.0003 -0.0001 -0.000 1 -0.0001 -0.0001 O.O()()() 

Layer 3 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

a The six sites in the table is given in Fig. 4.7 and the layers 1-3 are the top, the second, and the third 
layers of ~1g0 surface . 

as from 1/1 to 112). This stabilization of adsorbed system may arise essentially due to 

reduced repulsive interaction between adsorbates as is shown in Fig. 4.5. It is indicated 

that the electron densit) of adsorbed molecule decreases in comparison with that of the 

isolated nlolecule and a small amount of electrons transfer from CO molecule to MgO 

surface. Also, this tendency of electron transfer increases a little by reducing the 

surfaoe coverage from high coverage (1/1) to low coverage (1/8). 

We list the change of electron densities on 118 covered surface before and after 

adsorption obtained by subtracting the values of ions in the perfect MgO from that in 

the adsorbed MgO for one-three slabs in Table 4.7. This system have six independent 

• : Adsorption SI te 

FIG. -+.7. The six indepelldent sites inlhe top layer of CO-ads(:rbcd .MgO (001) ~urface with 1/8 
coverage . The six independent sites correspo~d to the adsorptlOn SIte .and ~he fI~st - flfth nearest 

. hh' ' t 'l'he adsorptI'Oll sl' tes are specified hy the blacked poSItions . fhe fne nearest SItes nelg onng Sl es . ( c 2 '2 . . 
are represented by numbers on the shaded 1 Jg + and the whitened 0 - posluons . 
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sites of the adsorption and the first-fifth nearest sites by the synlmetry of CO-adsorbed 

MgO surface as is given in Fig. 4.7. At the energy minimum, the electrons from CO 

molecule distribute almost on Mg2+ ion at the adsorption site in the top layer. The 

cIectron densi ty on the first nearest 0 2- site increases a little. The third nearest Mg2+ 

site nlay be affected by two neighboring CO molecules since this site is located 

halfway between the nearest adsorption si tes. There may be Ii Hie inn uence on the 

second Mg2+, the fourth 0 2
-, and the fifth Mg2+ sites. Fr0l11 these results of local CO 

adsorption on MgO (001) surface, the interaction may almost localized on the adsorption 

site and the first nearest site, and also, it may giYe no effects on the cIectron density 

distri butions of Mg2+ and 0 2
- ions in the second and the third layers by the screening of 

the top layer. 

The potential energy curve and the change of electron density for the three-layered 

model \"ith 118 coverage are shown in Figs. 4.8(a) and 4.8(b). The stabilization of 

CO-adsorbed MgO system is mainly observed at the points within the surface-molecule 

distance of 3.5 A, and also, the energy minimum may exist at the distance of 2.3 A 
\"ith the stabilization energy of 6.9 kcallmol. The electron densities of MgO surface 

and CO molecule are hardly affected by their interactions at the surface-molecule 

distances of 6.0-3.5 A. In the range with 3.5-3.0 A separations between Mg2+ ion in 

surfaCic and C atoln of molecule, CO molecule appears to be polarized weakly in the 

crystal! field of surface by transferring snlall amount of electrons from 0 atoln to C 

atom 'within CO molecule and there is little transfer of electrons between surface and 

molecule. By approaching CO molecule into the region within the distance of 3.0 A 
from adsorption site, a few electrons on 0 atom in CO molecule mainly transfer to 

Mo2+ ion in MoO surface via C atom in CO molecule and the electron density of the o 0 
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H,G, .. l8 , Dependence of (a) total energy and (b) electron density for the three-layered model 
wIth 1/8 coverage versus the surface-molecule distance in the vertical adsorption process , 

7 

nearest neighboring 0 2
- ion is kept to be almost invariant without the innuence of 

adsorbing CO molecule. 

At last of this section, we should give a brief discussion for the utility of 

molecular orbital and crystal orbital calculations for the locally perturbed periodic 

systenls. The studies about this subject have been carried out by the molecular orbital 

calculation with the cluster model. But, one fundamental problem exists in the cluster 

approach. It is that we can not reproduce perfectly the bulk electronic distributions of 

the perfect periodic systems by the clusters since the electronic structures at the center 

and at the edge of clusters are different from each other by the end effects from the 

truncation of cluster size. Thus, the results by the cluster approach may largely depend 

on the cluster sizes and forms, particularly, it is considered that because three-dimensional 

clusters have nlany interfaces between inner a?d outer regions, the search of the best 

cluster may be more difficult, and \ve can not know the optimal cluster in advance. On 

the other hand, the bulk electronic states can be described by the crystal orbitals which 

satisfy the symmetry of systems. That is, the crystal orbital method is considered to be 

more reasonable than the molecular orbital method in the studies of the periodic 

systenls. However, we must use the supcrcell described by the crystal orbitals which 

requires nluch computations for the locally perturbed periodic system. For that reason, 

we propose a method to carry out efficient studies for the perturbed periodic systems 

from a standpoint of the crystal orbital approach and e\.pect that this approach can 

contribute to the development of surface science. 
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4.4. SUMMARY 

In this work, we propose an approach based on the crystal orbital calculation in 

order to study the locally perturbed periodic systems systematically by a quantum 

chemical method. We formulate the ab initio crystal elongation method which can 

treat the aperiodic effects in the periodic systems by the \'ariational procedure in 

accordance ,,,ith the stationary conditions of electronic state de\'eloped in the elongation 
method for the molecular systems. 

This method is applied to calculations for CO adsorption on (001) surface of 

MgO crystal. The agreement of total energies for \'arious adsorbed systems between 

our elongation 1110del and usual supercell model is excellent, and thus, it is confilmed 

that the elongation method has sufficient accuracy and efficiency for large systems in 

practical applications. 

The calculated results suggests the following situation at the low limit of surface 

coverage. A small amount of electron transfer (---0.02) will occur from CO molecule to 

MgO surface at the energ) minimum. The energy minimum will exist around at the 

position ,,,ith the distance behveen surface and molecule of 2.3 A. The binding energy 

of CO adsorption on MgO surface will be ,...,7 .0 kcallmoi. Also, from the change of 

electron density distributions before and after CO adsorption for a slab with one-three 

planes, it finds that the effects of CO molecule on MgO surface will be almost localized 

on the adsorption Mg2+ site and a little influence will be given on the first nearest 

neighboring 0 2- sites in the top layer. In other words, the second and the third layers 

are not affected by the adsorbed CO molecule. 

The crystal elongation calculation can be performed at the various levels of 

approximation ,vi thin the periodic Hartree-Fock scheme by a simple procedure of the 

orbital selection under the influence of the aperiodic part. The main technique of this 

approach is the diagonalization of SS + and FF+ matrices based on the orthonormality 

and the valiational conditions in order to find the interaction and the noninteraction 

orbi tals. Furthermore, this approach requires no assumption of the interaction range by 

the aperiodic effects in the perturbed system. We can determine the region self

consisllently in the elongation calculation. 
We propose the crystal elongation method to study the locally perturbed periodic 

systemls based on a view point of the crystal orbital calculation and we expect that this 

approach will be able to contribute the new development of surface science as well as 

the ad\ anced cluster approach. 
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General Conclusion 

Progresses on the Theoretical Treatlnent of 
Electronic Structures for Extended Aperiodic Systems 

by Quantum Chelnical Calculations 

In the pre"ious four chapters, a new quantum chemical approach on theoretical studies 

for electronic structures of extended aperiodic systems by molecular orbital and crystal 

orbital methods has been formulated, and the generalities and usefulness of its treatment 

have been demonstrated on the various examples by applying the method to extended 

nonperiodic systems. In this chapter, some progresses in this work are summarized and 

some perspecti\ es are discussed as a conclusion of this thesis. 
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General Conclusion 

On the theoretical approach of extended systems with no periodicity, for instance, 

polymers, surfaces, and crystals incl uding localized defects or interacting with molecules, 

some problems exist in the conventional treatment of those systems using the molecular 

orbital (MO) and crystal orbital (CO) methods. The most important point is summarized 

as follows. Since the usual cluster or supercell approach represents an extended system 

as a finite model, the definition of model system affects largely on calculated results. 

That is, the size of cluster or supercell must be sufficiently large so that the electronic 

structure can be described correctly only within the finite region. But, the optimal size 

of model can not be determined in advance, and also, the computer has the upper limi t 

in practical calculations of the systems with various sizes as the maximum size depends 

on the po\ver and capacity of machine. Thus, a ne\\' theoretical treatment for extended 
aperiodic systems must be developed. 

As mentioned in Chaps. 1-4, it is clarified that the large reduction in computer 

time as compared to the con\ entional treatment can be achieved without loss of accurac) 

by the method formulated in those works. The key point of this approach is that it is 

possible to separate the total orbital space in the large system into the interactive and 

noninteractive spaces. By this orbital division, the SCF calculation of the system can 

be replaced by a series of the SCF steps with small number of effective basis orbitals 

and the eigenvalue problem can be solved without increasing the dimension. And also, 

the regions in \vhich the electronic structure is altered and unaltered by a perturbation 

can be specified as active and frozen orbitals. The unperturbed range within the perturbed 

system can be represented by the freezing pattern of electron densi ties which enables 

us to analyze the periodicity of the electronic state in a nonperiodic system. 

The utility of its application is demonstrated at the semiempirical and ab initio 
levels and the generality of its formulation is confirmed by the MO and CO calculations 

for various systems. The most characteristic feature of this method in comparison with 

the conventional treatment is that no assumption for the size of fragments is required 

in partitioning the "vhole system into subsystems of perturbed and unperturbed regions. 

That is, it is concluded that this approach can be regarded as a new theoretical method 

to study extended aperiodic systems by a more general procedure with great advantage 

in computational time which is applicable to both the cluster model based on the MO 

theory and the supercell model based on the CO theory. 
To carry out the more quantitative calculation and analysis of electronic structure, 

the post-Hartree-Fock treatment including the effect of electron correlation must be 

introduced into the MO and CO studies of large systems. The progress in this direction 

"vill be realized by developing the method to estimate the local electron correlation 

such as the CI technique within a local region described by the localized orbitals. 

Finally, it is noted that although only the starting stage on this field has been 

estabhshed in this thesis, as mentioned above, this new quantum chemical approach on 

theoretical studies for electronic structures of extended aperiodic systems by the MO 

and CO methods has enough potential to contribute the further advance of polymer 

and surface science. 
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