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General Introduction

Problems on the Theoretical Treatment of
Electronic Structures for Extended Aperiodic Systems
by Quantum Chemical Calculations

In this chapter, some problems on the conventional study by the molecular orbital and
crystal orbital methods for the theoretical treatment of aperiodic polymers and perturbed
crystals are summarized, and the brief discussion to overcome those points is given.



General Introduction

Recently, the computer-aided approach has come into wide use in the study of
science by the remarkable progress in technology, and nowadays, the rapid development
and the extensive improvement of various program packages cnable every chemists to
carry oul the computational studies by the methods as quantum chemical calculations,
molecular dynamics simulations, and so on. Therefore, the role of theoretical chemists
will become more and more important, and thus, the cooperation between theoretical
and experimental studies will contribute to the advance of chemical research such as
the design of new functional materials.

In the field of quantum chemistry, the methods to calculate the electronic structures
of small molecules and completely periodic systems have already been well established
at the present time. The molecular orbital (MO) method is available for small molecules,
while the crystal orbital (CO) method for periodic systems. These theoretical approaches
are very useful in studying the electronic property of the systems, and therefore, those
are widely applied to various systems.

The MO calculation is a very powerful tool on the theoretical study for electronic
states of small molecules. By this method, various properties of molecules, for example,
molecular structures, spectroscopic parameters, electron density distributions, energetic,
and so on, can be obtained theoretically.' Furthermore, the methodology of MO approach
including the treatment of electron correlation is much sophisticated, and many advanced
program packages are developed and used.

The CO theory enables us to obtain the electronic characters of the bulk systems
as one-dimensional polymers, two-dimensional surfaces, and three-dimensional crystals
with perfect periodic arrangements. For instance, band structures and density of states
which characterize the periodicity can be determined from the CO approach.”” However,
the improvement and spread of general programs for the crystal computation is delayed
in comparison with the molecule computation.

On the other hand, there are some problems in applying these quantum chemical
treatments to the large systems without periodicity or the extended systems with both
periodic and aperiodic parts. In other words, it is difficult to calculate random polymers
or perturbed crystals by the MO or CO method directly. The cluster or supercell model
is used in the usual MO or CO study, but the model has the difficulty which is mainly
due to the limitation for the capacity of computer in practical computations.

Generally, it is obvious for anyone that the computational studies largely depend
on the ability of computer (cpu time, memory, cost, and so on) and also the economical
environment of user. That is, the practical works by the applications of the MO or CO
calculation to extended aperiodic systems are restricted within the upper limit which
can be permitted in the above-mentioned situation. Thus, it is hoped that a new manner
is developed to study such systems more efficiently and more systematically instead of
the conventional approaches.

Here, the conventional approaches and the main problems on their applications
to the theoretical treatment of aperiodic polymers and perturbed crystals are summarized

as follows.
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General Introduction

At first, the computational approach on aperiodic polymer systems is described.

In studying the electronic structure of a polymer system based on the quantum
chemical calculation, the most different situation in comparison with the calculation of
a small molecule is that it is impossible to calculate the whole molecule of polymer
with large size. For that reason, we need a model system of extended polymer by any
way in the practical study.

One approach to deal with a polymer is the cluster model in which a polymer is
approximated by a molecule with several units of the polymer. However, we can not
know the clectronic properties of the polymer from the calculated result of a cluster
having the specific size because the electronic natures may depend on the cluster size.
Therefore, to extract the characters of the polymer by this model, the MO calculations
of various clusters must be performed individually by taking the size of cluster larger.
In the iterative calculations, we regard the converged properties of the energy per unit,
the electron density distribution, and so on as that for the bulk limit of the polymer.
This cluster approach can be applied to any nonperiodic polymers because the units
which form a cluster are not limited to be the same with each other, but its application
is restricted by the size of cluster and the upper limit of cluster size is determined by
the capacity of computer. Also, the detection of periodic state such as the band structure
in a periodic polymer is not necessarily clear.

Another is the CO calculation by assuming the perfect periodicity of a polymer,
that is, a polymer is approximated as a one-dimensional crystal with periodic sequence
of its constituent unit. In this approach, the eigenvalue problem of polymer is solved
under the periodic boundary condition to obtain the COs which satisly the translational
symmetry of polymer. By this crystal model, we can know the electronic property of
the bulk state without the end effect and obtain the band structure or the density of
states which characterizes the periodic nature. However, this method is so restricted by
the periodic boundary condition itself, that is, it requires the periodical sequence of
same units in molecular gecometry by which it is difficult to treat the aperiodic effect.
Thus, if the supercell which is a large periodic unit including aperiodic part is employed,
polymers with local aperiodic part can be treated by the CO method, but it has little
power on the study of electronic structures for random polymers.

As is pointed out above briefly, the MO calculation and the CO calculation may
be applied to random polymers and local aperiodic polymers, respectively, but, the
methods have the problems on the treatment of the size effect in the cluster model and
the aperiodic effect in the crystal model for nonperiodic polymer systems. In particular,
[or periodic polymers with aperiodic part within a local region, the most dilficulty in
studying the systems is caused by the fact that we must take into account the following
two states connecting with each other in a polymer chain simultancously, that is, the
periodic-extended state which can be represented appropriately by the CO as a polymer
with periodicity and the aperiodic-localized state which is suitable to be described by
the MO as a cluster in periodic surroundings. Moreover, the optimal size of cluster or

supercell can not be determined beforehand.



General Introduction

At second, the computational approach on perturbed crystal systems is described.

In these systems, becausc the periodicity of systems is broken in a local region,
it is not casy to apply the CO theory to the perturbed systems. This theory assumes the
perfect periodicity of whole systems, and, the periodic boundary condition is a serious
restriction itself. In contrast with the CO approach, the MO approach has no limitation
concerning the periodic sequence of constituent in the systems. However, this method
can not reproduce the bulk electronic distributions since neighboring molecules are
absent by its free boundary condition, thus, the electronic states at the center and at the
edge are different.

In applying the CO and MO methods to the perturbed crystal systems, we must
take the systems larger to satisly the local or the bulk nature of the electronic states as
follows. In the crystal approach, a supercell which is an extended unit for the periodicity
of the system must be large enough so that the interactions among perturbed parts in
neighboring cells are negligible small and do not affect on the local clectronic states
with ecach other. In the molecule approach, the size of a cluster molecule has to be
sufficiently large in which the influences of molecular edges do not reach to the region
around a local perturbed part and do not disturb the bulk electronic condition in its
surrounding. However, it is impossible to know a priori the effective size of supercell
or cluster in which the electronic structures of the perturbed systems can be described
correctly without the effects of boundary conditions. Therefore, we need to repeat the
calculations against the systems with different sizes to find the optimal size by monitoring
the convergence of the local perturbed electronic property. These situations suggest
the serious problem that the larger the perturbed systems become, the more enormous
the computational efforts like as the calculations of integrals or the diagonalization of
matrices in the CO or MO study become.

A local perturbation in an extended periodic system has mainly been dealt with
by using the cluster model. Several reasons for using the cluster model instead of the
supercell model may exists. Important one of them may be that the MO theory is very
advanced and the calculations at the Hartree-Fock and the beyond-Hartree-Fock levels
can be carry out by the general program packages with easy use. In other words, there
is few packaged tools with popularity which can be used handily in the field of CO
calculation. However, as for the evaluation of the bulk electronic structures in the pure
and perfect periodic systems, it should be expected that the COs are more advantageous
than the MOs, because the former satisfies the translational symmetry of the perfect
periodic system without the boundary effect while the latter includes the edge effect
by the free boundary condition. Furthermore, the program package which enable us to
calculate the bulk clectronic properties for one-, two-, and three-dimensional crystalline
systems at the ab initio level is developed and released recently. That is, we have now
arrived at the starting stage toward the development of a new method to examine the
effects of local disordering in periodic systems effectively.

Next, the brief discussion to conquer the subjects on the theoretical approach

described above is given in the following.



General Introduction

Many trials for the calculations of large extended molecular systems and their
results for various molecules have been reported. However, the [ragmentation of system
is pre-assumed, thus, further calculations against the different selection of fragments
must be required in order to find the suitable size of fragment.*"

Several attempts to treat locally perturbed periodic systems by Green function
technique have been carried out. This method may surely be useful, but it may appear
as to be more complicated in the practical works for computation of its formulation.
Moreover, the partition for perturbed and unperturbed regions in the system is assumed
in advance, and also, the former region is calculated exactly while the latter region is
dealt with approximately in evaluating the total electronic structure of system. Therefore,
the determination of interacting range is arbitrary and the calculated results may largely
depend on its selection.” "’

To overcome the size effect in the cluster or supercell model, we should determine
uniquely the general interaction space among the partitioned fragments in extended
aperiodic molecule or between the periodic and aperiodic parts in perturbed periodic
system with no assumption for its range. It may be available by the following calculation
of two-step procedure. Firstly, we obtain the electronic structure of appropriate cluster
or periodic system exactly to use as the starting point. Secondly, the interaction space
is extracted from the starting system under a perturbation such as the connection with
other fragments or aperiodic parts, and then, the cigenvalue problem is solved within
the interaction space only to evaluate the electronic state of whole system successively.
The most important point is that this approach should not have any assumptions with
regard to the range of given perturbation in the system when we estimate the electronic
property of perturbed system. In other words, the key point in the idea is the separation
of system into the size-dependent and size-independent parts at the MO or CO level.

In order to realize this idea in practical works, the total orbital space of system
must be divided into the following two subspaces constructed with the interaction and
noninteraction spaces under a given perturbation by the general formulation theoretically.
The method has been proposed as the elongation method by the MO calculation.*”*'

In this thesis, the general MO and CO approaches in place of the usual treatments,
which enable us to carry out the efficient and systematic studies of electronic structures
for extended aperiodic systems based on the concept explained above, are proposed.
Those are the extension of the clongation method.

This thesis consists of the following chapters. In Chaps. 1 and 2, the CO-based
clongation method is developed at the CNDO/2 level and the results of its application
to the local aperiodicity in polymer and the molecular stacking on surface are reported.
In Chap. 3, the extraction of periodicity in the electronic structures of nonperiodic
polymers by the MO-based clongation calculation using AM1 parameters is discussed.
In Chap. 4, Ab initio treatment of locally perturbed periodic systems are described by
the two-dimensional CO method. Finally, as the general conclusion, the progresses on
the theoretical treatment of clectronic structures for extended aperiodic systems is
summarized contrasting the present approach with the conventional method.
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Chapter 1

Calculations of Polymer Systems with Local Aperiodic Part:
Elongation Method with Supercell Method

In this chapter, we propose a new theorctical approach to treat polymer systems with
local aperiodic part efficiently. This approach is the combination of the clongation
method with the supercell method which has been developed in our group, and we
developed this approach to obtain the electronic structure of a polymer having local
aperiodicity by considering the locality of the interaction between periodic and local
aperiodic parts. In order to confirm the validity of this method, several model calculations
were performed at the complete neglect of differential overlap (CNDO/2) level. That
is, we applied this method to all-trans polyacetylene interacting with a small molecule,
and to all-trans polyacetylene with partial substitution of hydrogen atoms by fluorine
atoms. We compared the results obtained by this calculation with those obtained by
usual crystal orbital calculation concerning total energy, computational time and electron
density distribution. The charge extension on polymer chain under the influence of
aperiodicity was also discussed.



Chap. 1 : Elongation Method with Supercell Method
1.1. INTRODUCTION

A theoretical method to calculate the electronic structures of complete periodic
polymers has already been established as the crystal orbital method,' and it has been
applied to various periodic polymers at the Hartree-Fock level.” In the approach, a
periodic polymer is considered as a one-dimensional crystal and the eigenvalue problem
is solved under the Bérn-von-Kaman periodic boundary condition to obtain the crystal
orbitals which satisly the translational symmetry of the system. Morcover, the treatment
at the post- Hartree-Fock level including the electron correlation effect has been developed
in recent years.”’ Thus, the application of the methods in quantum chemical calculations
to polymer systems with no periodicity remains as one important problem at present.
The study in this direction is now in progress by various groups.*"

Our group has developed the methods to deal with the aperiodicity of polymer
systems. We have proposed two approaches, that is, the molecular orbital and the
crystal orbital approaches. As an approach using the molecular orbital method, we
considered the extension of the molecular cluster system, and proposed the method to
obtain the electronic structure for the extension process of the system as the elongation
method."" In this approach, we combine a small molecule or a molecular fragment
with the end part of the starting cluster with appropriate size one after another by
taking an important interaction into the eigenvalue problem of the extended system
and dropping the unimportant part. By repeating this procedure, it is possible to calculate
the electronic structure of periodic or aperiodic polymers systematically and efficiently,
that is, a theoretical synthesis of polymers. Furthermore, the information about an
clectronic state in the local region of polymers can be extracted, for instance, local
density of states in aperiodic polymers'? or stationary condition of the electronic structure
against the extension.”” On the other hand, as an approach using the crystal orbital
method (the supercell method),' a perturbational trcatment by using the iterative
transfer perturbation method was reported, and we applied is to the interaction between
a periodic polymer and a small molecule, ™" or to polymers including the local aperiodic
parl.m

In the present chapter, as a new approach using the crystal orbital method, we
proposc a variational treatment to calculate the electronic structure of polymer systems
with local aperiodicity. In order to develop this approach, we combined the elongation
method """ with the supercell method." In this method, the crystal orbitals for the unit
cell, which is a minimum periodic unit for the translational symmetry, are transformed
into those for the supercell, which is a large periodic unit including several unit cells,
at first. Next, we choose the orbital set interacting strongly with the local aperiodic
part from the crystal orbitals for the supercell by an analogous procedure in the
clongation method.” Then, we solve the eigenvalue problem represented with the
selected orbital set. The procedure mentioned above, namely, selecting the orbital set
under the effect of local aperiodic part and solving the eigenvalue problem represented
with the orbital set, is repeated until the local interaction converges.

8



Chap. 1 : Elongation Method with Supercell Method

In order to demonstrate the generality and validity of our approach, we formulated
and programmed these procedures at the complete neglect of differential overlap
(CNDO/2) level,***" and several model calculations were carried out. We applied this
method to all-trans polyacetylene interacting with one small molecule HX (X=H,F,Li).
We chose a hydrogen molecule as a model of the simple system, and hydrogen fluoride
or lithium hydride as a model of the polar system. Furthermore, all- trans polyacetylenc
substituted hydrogen atoms by fluorine atoms partially was dealt with by this method.
In the following sections, we describe the outline of this methodology and show the
reliability of this treatment by comparing the results obtained by using this method
with those obtained by using the usual crystal orbital method.



Chap. 1 : Elongation Method with Supercell Method
1.2. METHOD

Crystal orbitals of a periodic polymer can be obtained by using the tight-binding
approximation under the periodic boundary condition in the following form:

N-1 M

W, (k)=1/N)"?S S exp(ik,D) C, (k) x,(r=r, ~la), (1.1)

=0 t=1

k,=2m | N (p=1:..N), (1.2)

where [ specifies a unit cell in the polymer consisting of N cells, k, is the wave
number vector, a the lattice vector, i an energy level, 1 an atomic orbital, and r the
position vector of an electron, i denotes the imaginary unit v~1. Here, the periodic
polymer is approximated as a one-dimensional crystal containing infinite unit cells,
that is, infinite sequence of a minimum periodic unit for translational symmetry.

The crystal orbitals for the unit cell can be transformed into those for the
supercell by using the method proposed by us before. Here, supercell is a large periodic
unit consisting of m unit cells with the lattice vector ma. Namely, the wave number
vector k,, and the atomic orbital coefficients C, of crystal orbitals for unit cell are

u?

transformed into those for the supercell as follows:
k., = mk,—-2jm (j;integer), (1.3)
Comy (k)= C,(k,) expli(n-1Dk,], (1.4)

where n denotes the nth cell in the central supercell and j should be selected in order
that &, is in the range of the first Brilloin zone. The explanation of these relations is
shown in Refs."""”

In the present approach, since we study the local aperiodicity in a periodic
polymer, it is convenient to treat the system based on the supercell. Thus, as the first
step, after solving the eigenvalue problem to obtain the crystal orbitals for unit cell, we
transform the crystal orbitals into those for supercell. This transformation corresponds
to that from reduced zone scheme to extended zone scheme, which means the extension
of periodic unit for translational symmetry.

Now, we consider the interaction with local aperiodic part added to supercell.
In the case of local interaction in a large system, there is no need to deal with the
interaction with all orbitals of the large system. Thus, we divide the whole system into
two subsystems at the orbital level, and solve the eigenvalue problem represented with
the interaction orbital set in two subsystems. Namely, the crystal orbitals for the
supercell are divided into active orbitals which may be affected by the local interaction
and frozen orbitals which will have no change after interacting with the local aperiodic
part, and we choose the specific orbital pairs interacting strongly with each other from
the active and frozen orbitals, respectively.

10



Chap. 1 : Elongation Method with Supercell Method

In order to perform the subdivision mentioned above, the following interaction

block of the Fock matrix is calculated,
Fo ("] Fl s (1.5a)
F\-nc = <(I) ncc’ F} W \'1\C> ! ‘ ( | Sb)

where F is Fock operator, {®,} (i=1,...,N)and {'V;} (j=1,..., M) indicate the specific
orbitals that are interacting with each other, occ and vac represent occupied and
vacant orbitals, respectively. The matrix elements in Eq. (1.5) correspond to the orbital-
based interaction terms of the Fock matrix between {®,} and {'/';}. To find the orbital
set in {W} which interacts with {P} strongly, the following technique is applied to
F™and F', respectively. That is, if there are N occupied and N" vacant orbitals in
{®}, M’ and M" orbitals in {¥'}, we multiply the above N" x M, N” x M" matrix by
its adjoint M’ xN", M" x N° matrix from the left side and diagonalize the obtained
M’xM’, M"x M’ matrix F'F,

U'F'FU=E, (1.6)

where U is the matrix whose columns are eigenvectors and E is the diagonal matrix
of the eigenvalues. As the eigenvalues obtained here correspond to the magnitude of
interaction between {®} and {V'}, we perform unitary transformation on {¥} by using
U and choose the orbital set with greater eigenvalue than an appropriate threshold
from occupied and vacant spaces of transformed {‘V'}. This procedure is analogous to
that for the corresponding orbital *2 or the interaction frontier molecular orbital (MO).23 e
In this way, the orbital space is modified to satisfy the variational condition approximately
in which Fock matrix elements between occupied and vacant orbitals are nearly equal
to zero.

In the following, we describe the method to solve the eigenvalue problem for
the polymer systems with local aperiodic part by using the procedure mentioned above
in detail. The schematic illustration of the calculation procedure at a viewpoint of the
division in orbital space of the system is given in Fig. 1.1 and the corresponding
matrix representation is summarized in Fig. 1.2. We explain the procedure along with
these figures below. The starting point is the crystal orbitals for the supercell obtained
in the first step. Next, we find the orbital set in the supercell which will be affected by
the interaction with the aperiodic part according to the techniques in Eqs. (1.5) and
(1.6). In other words, we sclect the orbitals which are not satisfied with the variational
condition in total orbital space. The interaction blocks of the Fock matrix in Eqgs.
(1.5a) and (1.5b) are shown as the shaded parts in Fig. 1.2 for each calculation step.
We refer to "active" orbitals as the orbitals which are perturbed by the local interaction
through the eigenvalue problem including the effect of the aperiodic part. Since "frozen"
orbitals means the orbitals which only are transformed by the unitary matrix in Eq.

11



Chap. 1 : Elongation Method with Supercell Method
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FIG. 1.1. Schematc illustration of the calculation procedure at a viewpoint of the division of orbital
space of the system. The notation in this figure corresponds to that in the text.

(1.6) and separated from the basis orbitals of the eigenvalue problem of the interacting
system, these orbitals keep the bulk nature of the periodic polymer described by the
crystal orbital. Now, we note that because the Fock operator and crystal orbital depend
on the wave number vector, we must carry out steps 2-4 in Figs. 1.1 and 1.2 for each
value of the wave number vector for the supercell in Eq. (1.3).

As the second step, because the electronic state of the supercell is known and
the variational condition is satisfied within the supercell, we consider the interaction
between aperiodic and periodic parts in the system through core Hamiltonian (at the
starting point, Fock operator including the interaction is unknown), that is, the interaction

block is taken as follows:



Chap. 1 : Elongation Method with Supercell Method
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IIG. 1.2. Matrix representation of the calculation procedure in Fig. 1.1. The shaded part of the
matrix at each calculation step corresponds to the interaction block of the Fock matrix in the text.

FC = (3| H| WY, (1.7a)
F* = (x| H| ¥}, (1.7b)
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where {y} represents the atomic orbitals at the aperiodic part, {'V } corresponds to the
crystal orbitals for the supercell in the first step. The terms between the aperiodic part
and the periodic polymer in H are constructed with core terms of the Fock operator
only. After diagonalizing the matrix F'F, we choose the following orbital sets from
{W }; the interaction orbital set {W'(0)} of which eigenvalue is greater than the
threshold and the rest orbital set {'(0)} with a smaller eigenvalue than the threshold.
Then, the eigenvalue problem based on { )} U{V''(0)} is solved by the self-consistent-
field (SCF) procedure, and we obtain the resulting orbital set {X(0)} and Fock operator
F(0). In this process, the orbital set {¥(0)} is retained without changing itself. At the
present stage, the whole system is divided into active orbitals {X(0)} and frozen
orbitals {'W(0)}.

As the third step, the interaction between the above active orbitals {X(0)} and
frozen orbitals {'(0)} is taken into account since the variational condition among
these orbital spaces is destroyed by extension of {X(0)}, fixing of {W¥(0)}, and changing
of the Fock operator in SCF iteration at the second step. In this step, we choose the
interaction orbital set from {¥(0)}, namely, the interaction block is taken as follows:

F = (X(0)* U W(0)"™| F(0)[W(0)™°), (i
F™ = (X(0)*UW(0)™|F(0)|W(0)"™), (1.8b)

where the interaction blocks (X|F|W) and (W|F|W) in F include the charge transfer
effect between {X} and {V'} and the polarization effect within {W}, respectively. We
diagonalize the matrix F'F to obtain the interaction orbital set {W’'(1)} which is not
satisfied the variational condition between {X(0)} and within {'V'(1)}, and the rest of
the orbital set {W(1)} satisfying that between {X(0)} and within {'¥(1)}. We solve the
cigenvalue problem represented with {X(0)}U{W'(1)} by the SCF procedure. In this
process, the orbital set {W (1)} is unchanged itself. Then, we obtain the orbital set
{X(1)} as the solution of the eigenvalue problem and the Fock operator F(1). Here,
active orbitals correspond to the solution {X (1)} and frozen orbitals to {'¥(1)}.

When we consider the interaction between active and frozen orbitals next, if the
active space {X} is large enough and the interaction becomes weak, that is, the
important effect of the local aperiodic part is. included in these active orbitals, it is
expected that there may be the orbital set which is unaltered by the interaction in
active space. Thus, we check the variational condition of not only frozen space but
also active space. If there are orbitals in the active space satisfying the condition, we
can consider that the orbitals are separated from the interaction space of the system.
We take into account this situation in the next step.

As the fourth step, the following procedure is repeated until the interaction
converges, that is, there are no interaction orbital sets with a greater eigenvalue than
the threshold for the interaction block, which is not satisfied with the variational
condition in the orbital space. In this step, we consider the interaction space as {X}

14



Chap. 1 : Elongation Method with Supercell Method

and {V'}, and choose the interaction orbital set from {X} and {W}, respectively. Now,
we consider the 7+ 1th cycle in this step (the Ist cycle corresponds to the third step
mentioned above). First, we use the interaction block as follows:

FC = (W(n)"™|F (n)| X(n)>y, (1.9a)
F' = (W(n)™|F (n)| X(n)"™), (1.9b)

where the orbital set {W(n)} represents the nth frozen orbitals, and the orbital set
{X(n)} corresponds to the eigenvectors of the nth eigenvalue problem by the SCF
procedure. We choose the interaction orbital set {P'(n+1)} and the rest orbital set
{®P(n+1)} from the preceding solution {X(n)} by diagonalizing the matrix F'F.
Next, we take into account the interaction between {®'(n+1)} and the preceding
frozen orbitals {¥'(n)}, and the interaction block is defined as follows:

FoC = (D' (n+ D)™ UW(n)"™|F (n)|W(n)=°), (1. 10a)
FY = (D'(n+ D™ UW ()™ F (n)|¥(n)™). (1.10b)

Here, we note that the block (®'|F|W) in F corresponds to the charge transfer
between {®'} and {W}, and the block (W|F|W) in F corresponds to the polarization
within {W}. We diagonalize the matrix F'F, and choose the interaction orbital set
{W'(n+1)} and the rest orbital set {W(n+1)} from {¥(n)}. Then, the eigenvalue
problem is solved within {®'(n+1)}U{W'(n+ 1)} by the SCF procedure to obtain the
resulting orbital set {X(n+1)} and Fock operator F(n+1). In this process, the rest
orbital set {®(n+ 1)} and {W¥(n+1)} have no change themselves.

Next, we assume the interaction space for the n+ 2th cycle as {X(n+1)} and
{W(n+1)}, and repeat the procedure in this step as mentioned above. Thus, at each
cycle in this step, if there is, {®} 1s removed from the interaction space because it is
possible to consider that the interaction between {dP(n + 1)} and {\P'(n)} 1s small enough
since the ecigenvalues of the interaction block between them are smaller than the
threshold, and cach {P} is maintained itself unchanging through all cycles. Finally, if
the interaction converges at the mth cycle, we obtain the active orbitals as {P(2)},...,
{®P(m)} and frozen orbitals as {W(m)}.

We explain the concept and outline of this method as summary. We take the
isolated system as a starting point. The Fock matrix based on orbitals in the system is
diagonal within the supercell, and the matrix elements between the supercell and the
aperiodic part have some values. If the eigenvalue problem of the whole system is
solved completely, the matrix elements between occupied and vacant orbitals vanish
(the variational condition). Therefore, we develop the method by which the total
orbital space is forced to satisfy the variational condition finally. For that purpose, the
specific orbital pairs that the matrix element between occupied and vacant orbitals has

15



Chap. 1 : Elongation Method with Supercell Method

nonzero value were selected as an interaction orbital set. Then, the eigenvalue problem
is solved within the sclected space. After this step, the matrix elements between the
interaction orbitals and the rest orbitals may have [inite values by mixing through the
density matrix. Thus, this sclection must be done iteratively.

The feature of this treatment is the simplicity in practical calculation. In this
approach, we diagonalize the matrix F'F only to find the interaction orbital set, and
solve the eigenvalue problem within the interaction orbital space. Thus, there is no
need to treat the whole system with a large dimension and solve a large cigenvalue
problem directly. The important effects of charge transfer and exchange between
periodic and aperiodic parts can be taken into account, and the polarization effect
within the periodic part can be also taken in this calculation by the procedure mentioned
in this section. Furthermore, the interaction orbital space is not an external parameter
and the determination of that is included in our calculation procedure itself.
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FIG. 1.3. The interacting system of polyacetylene and a small molecule HX (N=FH.,.i). The
geometrical parameters used in this calculation are taken as follows: C-C = 1.460 A, C=C = 1.350 A,
C-H = 1.090 A, all bond angle = 120° and H-F = 0.917 A,H-H=0.742 A, H-Li = 1.594 A. A small

- molecule is placed on the central double bond between carbon atoms C1 apart {rom polymer chain
by the distance d.

1.3. RESULTS AND DISCUSSION

We performed several test calculations for the method described in the previous
section in order to check the reliability and usefulness. The models used in test calculations
and their structural parameters are shown in Figs. 1.3 and 1.4. The first model systems
are all-rrans polyacetylene interacting with one small molecule. We puta small molecule
on the central double bond apart from the polymer plane by the distance d. The
second model system is all- frans polyacetylene substituted two hydrogen atoms bonding
with the central double bond by fluorine atoms. In these models, we consider (C,H,) as
a unit cell and (C,H,),-(C,H,)-(C,H,), as a supercell. By taking the size of supercell
large, the models in Fig. 1.3 may be correspond to low level doping and in Fig. 1.4 to
local abnormal bonding for periodic polymer systems.

In this work, we took 107 as the threshold value and all calculations were
performed at the CNDO/2 level. As the polyacetylene supercell is large itself, we used

<— Unitcell — - CyHy —3=
""17""""'_1',' """""" S0 B TV TR '7""
I’ v S l' 'l
H H A i e H 4 H6 ./ H8
’ ’
i a5 g M iy
§C /C?’\\C /CQC /C \,\,‘\\C /C§C /C\\"\\C /CQC /C\Ta'tc //C =
’ (4 ’
’ Y
Fu b P A P gt FRlh AN
H 0 H H S H F1==H1 S H3 HS 4 H7
’ 4 ’
p 4 ¢ ‘
’ . 3

~———  Supercell - (C4lly), - (CHCF=CFCH) - (C4Hy),- —>

FIG. 1.4. The substituted system of polyacetylene. The geometrical parameters used in this
calculation are as follows: C-C=1.460 A,C=C=1350A,C-H=1.090 A, C-F=1338 A, and all
bond angles = 120°. The hydrogen atoms H1 bonding with the central double bond are substituted

by fluorine atoms F1.
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TABLE 1.1. Total energies and cpu times of supercell (C 4Hy),-(C 4Hy)-(CyHy), interacting
with the HIF molecule.

Total energy (eV) cpu time (min:s)?
d(A) Crystal orbital This method Crystal orbital This method”
© -3331.837656
5.0 -3331.842459 -3331.842451 40:06 7:36
n=1 4.0 -3331.843033 -3331.843021 43:20 905
3.0 -3331.848886  -3331.848880 46:26 11:36
2.0 -3331.951273 -3331.951264 53:06 16:31
o -5037.540280
5.0 -5037.546296  -5037.546285 25447 25121
n=2 4.0 -5037.546932 -5037.546907 270:07 26:09
3.0 -5037.552888  -5037.552869 288:05 31:47
2.0 -5037.655475  -5037.655450 322:56 41:47
® -6743.245051
5.0 -6743.251852 -6743.251834 865:59 65:45
n=3 4.0 -6743.252501 -6743.252468 933:34 18759
3.0 -6743.258476  -6743.258444 987:14 TS5
2.0 -6743.361096  -6743.361060 1099:30 87:45
® -8448.951470
5.0 -8448.958850  -8448.958829 2241:14 172:56
n= 4.0 -8448.959502 -8448.959462 2407:44 153:40
2310 -8448.965481 -8448.965438 2562:51 1534340
2.0 -8449.068109  -8449.068069 2805:14 166:46
o -10154.659159
5.0 -10154.666996  -10154.666973 4713:16 331:26
n=5 4.0 -10154.667649  -10154.667607 5098:45 323:59
3.0 -10154.673630  -10154.673563 5396:29 289:56
2.0 -10154.776260  -10154.776189 5953:47 295:58

3 cpu time on IBM RISC System/6000 340.
b Including calculation time for unit cell.

nearest neighbor approximation.

The total energies and cpu times of the models in Fig. 1.3 are listed in Tables
1.1, 1.2, and 1.3. Total energies calculated by using our method agree with those
obtained by the conventional crystal orbital method for three molecules with various
distances between supercell and molecule. The largest error is only 0.000 299 eV for
the polyacetylene supercell (C,H,),, interacting with the HLi molecule at the distance
d=2.0 A in Table 1.3. cpu times required for this method is much shorter than for the
usual method in any case. Therefore, our approach can treat the large system more
cefficiently in comparison with the usual crystal orbital approach. Furthermore, this
advantage in calculation increases when the system becomes large. In Table 1.4, total
cnergies and cpu times for the model in Fig. 1.4 are listed. In the case of substitution
ol atoms, the agreement between the two methods is also excellent and our computational
time is faster. This advantage of computational tome shown in these test calculations is
based on the fact that we sclect appropriately the interaction orbital set from the large
system. That is, it is not required to solve the whole eigenvalue problem of the system.
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TABLE 1.2. Total energies and cpu times of supercell (C41y),-(C4Hy)-(Cylly), interacting
with the HH molecule.

Total energy (eV) cpu time (min:s)?
d (A) Crystal orbital This method Crystal orbital This method®

® -2598.668058

40 -2598.669266 -2598.669266 37:47 535
n=1 4.0 -2598.669758 -2598.669758 38:49 Stk

3.0 -2598.682212 -2598.682208 40:23 7:00

2.0 -2598.823883 -2598.823859 43:54 9:14

© -4304.370576

5.0 -4304.372068 -4304.372069 250:18 17:43
n=> 4.0 -4304.372562 -4304.372561 257:54 21:10

3.0 -4304.385017 -4304.384979 267:40 29157

2.0 -4304.526762 -4304.526740 289:04 28:36

o -6010.075342

5.0 -6010.077026 -6010.077026 878:33 39:20
n=3 4.0 -6010.077520 -6010.077518 900:07 52:07

3.0 -6010.089975 -6010.089920 938:56 80:46

2.0 -6010.231734  -6010.231710 1015:21 7352

® -7715.781767

5.0 -7715.783593 -7715.783593 2296:14 88:21
n=4 4.0 -7715.784087 -7715.784084 2356:07 109:45

3.0 -7715.796543 -7715.796487 2471:27 179:08

2.0 -7715.938306 -7715.938279 2657:57 165:25

o -9421.489460

5.0 -9421.491400 -9421.491400 4889:27 183:16
n=s 4.0 -9421.491894  -9421.491891 5054:25 227:40

3.0 -9421.504350 -9421.504295 5247:17 371:59

2.0 -9421.646114 -9421.646084 5668:53 321:25

2 ¢pu time on IBM RISC System/6000 340.
®Including calculation time for unit cell.

For example, the dimensions of the cigenvalue problem to be diagonalized in SCF
iterations for the case of substituted polyacetylene supercell (C,H,),-(C,H,F,)-(C,H,),
are as follows: 186X 186 [number of atomic orbitals (AOs) in the system] by the
crystal orbital method while 18X 18 (at the step 2), 44 x 44 (at the step 3), 67X 67 (at
the Ist cycle in the step 4), 38 X 38 (at the 2nd cycle in the step 4) by this calculation.
In this case, the number of final active orbitals is 126 and frozen orbitals 1s 60.

The clectron density distributions at the central part and end part in the supercell
and small molecule HF are summarized in Tables 1.5(a) (model in Fig. 1.3) and 1.6(b)
(model in Fig. 1.4). Because the results from our method reflect the symmetry of the
system completely, the values for half-side of the chain are listed. From these tables, it
is shown that the atomic populations at both aperiodic and periodic parts (central and
end parts) calculated by using the two methods are in excellent agreement with each
other. The agreement of the results by both methods for other models in Fig. 1.3 is
also very good.

These results shown above support the validity of this method, and the accuracy
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TABLE 1.3. Total energies and cpu times of supercell (C4Hy),-(C 4Hy)-(C4Hy), interacting
with the HLi molecule.

Total energy (eV)

cpu time (min:s)®

This method®

d (A) Crystal orbital This method Crystal orbital

® -2588.137732

5.0 -2588.413058  -2588.413053 48:13 13:40
n=1 4.0 -2589.564576  -2589.564568 50:01 18:39

3.0 -2593.326889  -2593.326882 52:16 25:32

2.0 -2597.345509  -2597.345493 61:06 29:45

® -4293.840923

5.0 -4294.117089  -4294.117068 303:48 33:52
n=2 4.0 -4295.270574 4295270543 307:48 51:19

3.0 -4299.041081 -4299.041002 317:01 FO:1S

2.0 -4303.074287  -4303.074158 367:46 91:22

® -5999.545808

50 -5999.822327  -5999.822289 1030:30 74:10
n=3 4.0 -6000.976230  -6000.976167 1057:29 101:14

3.0 -6004.748346  -6004.748235 1085:13 138:08

2.0 -6008.784270  -6008.784094 1252:41 161:17

o -7705.252269

5.0 -7705.528981 -7705.52893 1 2638:34 153:40
n=4 4.0 -7706.683000  -7706.682881 2724:16 172:01

3.0 -7710.455543 -7710.455409 2784:38 229:08

21 7714492146 -7714.491904 2893:13 276:34

o -9410.959977

50 -9411.236821 -9411.236764 5608:13 273:50
n=>5 4.0 -9412.390878  -9412.390745 5751:46 302:34

St -9416.163561 -9416.163395 5868:06 392:34

2.0 -9420.200380 -9420.200081 6086:34 438:37

2 ¢cpu time on IBM RISC System/6000 340.
® Including calculation time for unit cell.

of the calculated results can be controlled by the threshold value for the orbital selection.

In Table 1.6, the convergence of total energies for the polyacetylene supercell
(C,H,),, interacting with small molecules HX (X=F,H,HLi) at the distances d =5.0 and
2.0 A is summarized in detail. The number of basis orbitals (number of AOs) and SCF
iterations in crystal orbital calculations are as follows: 225 and 8 (HF and HLi), 222

TABLE 1.4. Total energies and cpu times of substituted supercell (C4H.),-(C 4Hy1)-(C 4Hy), -

No-substituted

Total energy (eV)

cpu time (min:s)?

Crystal orbital

This method

Crystal orbital

This method®

N de N —

-2558.542622
-4264.245143
-5969.949911
-7675.656336
-9381.364030

~027.314727
-5733.020895
-7438.727146
-9144.434493
-10850.142878

-4027.314620
-5733.020634
-7438.72681 1
9144434125
-10850.142499

41:49
251:18
851:09

2166:41
4589:31

15411
48:11
100:33
185:55
375:19

# ¢pu time on IBM RISC System/6000 340.
Including calculation time for unit cell.
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TABLE 1.5. (a) The electron density distributions of polyacetylene supercell (C4H 4)s-(C 4Hy)-(CyHy) 5
interacting with the HEF molecule® The distance between the supercell and the HEF molecule is 2.0 A,
(b) The clcclron density distributions of substituted polyacetylene supercell (C 4Hy)s-(CyH,E)-(C aH4)s?

(a) Atom H F Cl - S W Cc4 Cl9 C20 C21 (22

Crystal orbital 0.7913 7.2139 3.9881 3.9996 4.0089 4.0009 4.0034 40032 4.0034 4.0033
This work 0.7914 7.2138 3.9878 3.9995 40091 40015 40033 40032 4.0033 4.0032

Atom H1 H2 HS H4 H19 H20 H21 H22
Crystal orbital 0.9985 09975 0.9975 0.9978 0.9968 0.9968 0.9968 0.9968
This work 0.9988 0.9977 0.9976 0.9977 0.9968 0.9968 0.9968 0.9968
(b) Atom Cl1 & 3 c4 (#19 C20 C21 C22

Crystal orbital 3.8434 4.0338 3.9864 4.0092 4.0029 40033 4.0031 40032
This work 3.8436 4.0331 3.9871 4.0087 4.0031 4.0032 4.0032 4.0032

Atom i H2 H3 H4 H19 H20  H21 H22

Crystal orbital 7.1917 0.9729 0.9870 0.9946 0.9967 0.9967 0.9967 0.9967
This work 7.1908 0.9722 0.9863 0.9948 0.9968 0.9968 0.9968 0.9968

2 The numbering of atoms is defined in Fig. 1.3.
®The mlmbcrmu of atoms is defined mn Fig. 1.4.

and 8 (HH). The weak interaction between the polyacetylene and hydrogen molecule
at the distance d=5.0 A converges very fast, and interaction orbital space is very
small. In the other interacting systems, the total energy is converged at the 2nd cycle
in step 4 completely. The total SCF iteration cycles are more than crystal orbital
calculation, but the number of basis orbitals of the eigenvalue problem in much smaller.

TABLE 1.6. Convergence of total energies for supercell (C4Hy)5-(C4Hy)-(CyHy)s interacting
with the HX molecule.

d=5.0 A Basis MOs Iteration d=2.0 A Basis MOs Iteration

X=F
Step 22 -0.124409° 6 5 0.686310° 15 6
Step 3 -0.000159 46 2 -0.020006 69 3
Step 4 -0.000007 8 1 -0.000043 38 1
Step 4 -0.000002 4 I -0.000003 2 1
X=H

Step 2° -0.000008"° 3 1 -0.326096° 6 4
Step 3 -0.000001 4 1 -0.074093 33 4
Step 4 -0.000078 28 1
Step 4 -0.000004 9 |
X=Li

Step 22 -0.439005° 12 4 -18.889920° 15 5
Step 3 -0.040715 70 3 -0.704510 89 7
Step 4 -0.000057 + 1 -0.001301 97 3
Step 4 -0.000004 8 I -0.000031 28 1

4 Calctllﬂllnll stepin Fig. 1.1
® Energies in eV
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Thus, total computation time is faster in this calculation. That is, our method solves
the small eigenvalue problem iteratively instead of solving the large eigenvalue problem
of the whole system in the usual calculation.

Next, we show the interaction energies between polymer and a small molecule
obtained by this approach in Table 1.7. The interaction energy is obtained as the
encrgy difference between the interacting system and the isolated system. The interacting
system is stabilized when the size of the supercell is larger (from n=1 to n=2). The
reason for this stabilization may be considered that the repulsive interaction between a
small molecule in the central supercell and one in the nearest neighbor supercell
decreases in the large supercell because of the long distance between small molecules.
The interaction energies might appear at first glance to be almost converged at n=4 or
n=>5, but, the differences between successively larger n (for n>5) are often nondecreasing
and, thus, the convergence behavior is not obvious. This slow convergence of the
interaction is caused by the long range interaction of the pi electron system. The weak
interaction between polyacetylene and HF or HH is almost of the same order, while
there is a larger interaction energy of the polymer with HLi than those with HF and
HH.

The electron densities of each small molecule HX (X=F,H,Li) on the polyacetylene
supercell (C,H,),s are shown in Table 1.8. The top line in this table displays the atomic
population of the isolated molecule. There is no electron transfer from polyacetylene
to HF molecule at all distances between the polymer and the molecule. A small
amount of electron transfer is found from polymer to HH molecule only at the distance
d=2.0 A. In the case of the interaction with the HLi molecule, the amount of electron

TABLE 1.7. Interaction energies between supercell (C4H,),-(C ,H,)-(C4H,), and HX molecule?

d (A) n=1 n=2 =3 n=4 n=5 n=06 =T
X=F
5:0 -0.0048 -0.0060 -0.0068 -0.0074 -0.0078 -0.0082 -0.0085
4.0 -0.0054 -0.0066 -0.0074 -0.0080 -0.0084 -0.0088 -0.0092
3.0 -0.0112 -0.0126 -0.0134 -0.0140 -0.0144 -0.0148 -0.0151
2.0 -0.1136 -0.1152 -0.1160 -0.1166 -0.1170 -0.1174 -0.1177
X=F]
5.0 -0.0012 -0.0015 -0.0017 -0.0018 -0.0019 -0.0020 -0.0021
4.0 -0.0017 -0.0020 -0.0022 -0.0023 -0.0024 -0.0025 -0.0026
3.0 -0.0142 -0.0144 -0.0146 -0.0147 -0.0148 -0.0149 -0.0150
2.0 -0.1558 -0.1562 -0.1564 -0.1565 -0.1566 -0.1567 -0.1568
X=Li
5.0 -0.2753 -0.2761 -0.2765 -0.2767 -0.2768 -0.2769 -0.2770
4.0 -1.4268 -1.4296 -1.4304 -1.4306 -1.4308 -1.4309 -1.4310
3.0 -5.1892 -5.2001 -5.2024 -5.2031 -5.2034 -5.2036 -5.2037
2.0 -9.2078 -9.2332 -9.2383 -9.2396 -9.2401 -9.2403 -9.2404

?Energies in e¢V.

[S0]
(8]
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TABLE 1.8. Electron densities of small molecules HX (X=F'I1L.1) on
polyacetylene supercell (C4Hy)7-(CyHy)-(Cybly)y.

d (A) HI* HH I
o 8.0000 2.0000 2.0000
5.0 8.0000 2.0000 20114
4.0 8.0000 2.0000 2.0603
3.0 8.0002 2.0007 2.21351
2.0 8.0051 2.0189 2.4903

transfer is remarkable even apart from the polymer by d=5.0 A and the tendency of
clectron transfer increases by approaching the polymer. The larger interaction energies
in Table 1.7 between polyacetylene and HLi in comparison with the other molecules
(HF and HH) are caused by this clectron transfer effect.

The net charge on each carbon atom on supercell (C,H,),s interacting with
small molecules at the distance d=2.0 A is summarized in Fig. 1.5. For cach case, the
net charges at the edge of the supercell is consistent with the value -0.003 of the
isolated polyacetylene. In the case of the interaction with the HH molecule, the
convergence of net charge is rapid and the extension of charges is limited within
almost seven carbons from the central carbon. On the other hand, in polymer chains
interacting with HF or HLi molecule, charges are extended with oscillation around the
isolated value. The range of charge extension is C15 for HF and C21 for HLi in one
side of the chain. Particularly, by electron transfer from the polymer to the HLi
molecule, considerable deviation from the isolated case is found in the charge distribution
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FIG. 1.6. Freezing pattern of electron density on each carbon atom in the supercell (CyHy)s
interacting with a small molecule HX (X=F,H,L1) at the distance d=2.0 A. The Ist and the 30th atoms
correspond to the central and the end atoms in the supercell, respectively, as is shown in Fig. 1.3.

on the polymer in the latter case.

In our approach, total orbital space of the whole system can be divided into
active and frozen spaces as mentioned in Sec. 1.2. Orbitals in active space can be
considered as altered from original periodic crystal orbitals of the isolated polymer by
interaction with aperiodic moiety, while orbitals in frozen space as unaltered after
interaction keeping the bulky nature. Thus, it is expected that locality of aperiodicity
may be known from the features of these orbitals.

Figure 1.6 shows the freezing pattern of electron density in final frozen space,
which is the ratio of frozen electron density on cach atom. This means that the higher
the percentage of frozen density is, the less the change from the isolated state is. The
carbon number, on which the clectron density is frozen more than 90%, is as follows
for cach case: C14 (HF), C9 (HH), and C23 (HLi). These sizes nearly correspond to
the range of charge extension.

In Figs. 1.7 and 1.8, the net charge and freezing diagram on substituted chain
(C,H,),-(C,H,F,)-(C,H,), are shown, respectively. It is shown in Fig. 1.7 that the net
charge on the carbon bonding with fluorine atom varies very much from the isolated
value in particular. The oscillation of charges converges at the 15th carbon from the
central carbon in the chain. From Fig. 1.8, the electron density on carbons apart more

than the 17th carbon is frozen more than 90%.
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1.4. SUMMARY

In the present chapter, we proposed a method to study the electronic structure
of polymer systems with local aperiodicity and applied it to several models. We dealt
with all-trans polyacetylene interacting with hydrogen fluoride, hydrogen molecule
and lithium hydride and all- frans polyacetylene with substitution of hydrogen atoms
by fluorine atoms. The results obtained by using this method (total energies and
clectron density distributions) were in excellent agreement with those calculated by
using usual crystal orbital method in good accuracy. Thus, it was confirmed that the
method proposed here has enough reliability in practical calculation. Computational
times required in the two methods were compared with each other, and it was clear
that our method has much larger advantage for any cases.

We showed the usefulness of this method as mentioned above by using the
CNDO/2 approximation. Of course, the calculation has no satisfying level of
approximation. But, it is easy to develop this method in more advanced semiempirical
calculations since this method has no special limitation. Moreover, it can be applicable
to ab initio calculations if we select the orbital set which satisfy the orthonormal
condition in the same manner as described in the previous study of our group."”

As one property of our approach, the total orbital space can be specified by
active and frozen spaces. It may be expected that we can extract more information
from local electronic states in a large system, which are unable to be obtained in the
usual crystal orbital calculation, by developing the method to analyze the active or
frozen space.

At the next step, an application of this method to the two-dimensional problem
is possible. This approach may enable us to study the adsorption of molecules on the
crystal surface or local defect structure and then the mechanism of the inhomogeneous
catalytic reaction. In the near future, we will try the above subjects.
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Chapter 2

Electronic Structures of
Large, Extended, Nonperiodic Systems :
Cluster Series of Polymer and
Molecular Stacking on Surface

The clongation method based on the molecular orbital (MO) theory, which enables us
to extend a polymer with any molecular fragments theoretically, has recently been
developed by our group. As the next step, we introduced an approach based on the
crystal orbital (CO) theory into above treatment. In the present chapter, the elongation
method was developed at the Hartree-Fock level with CNDO/2 parameters, and was
applied to model systems composed of the cluster series of polymer and the molecular
stacking on surface. In the cluster-series calculations, hydrogen molecule [(H,),],
hydrogen fluoride [(HF), |, polyethylene (PE), and polyacetylene (PA) were created
successively to approximate their one-dimensional periodic polymers by using the
MO-based elongation method. In the molecular-stacking models, we described the
hypothetical surface of crystal as periodically arranged hydrogen molecules by the
COs, and several hydrogen molecules were stacked up on the surface one after another
with the elongation procedure. Furthermore, the lattice defect on surface in which a
part of stacked layer is lacking was dealt with by our approach. We also treated carbon
monoxide chemisorption on periodic magnesium chain as a more realistic model.
Results for these systems support the applicability of our method for nonperiodic
interactions in one- and two-dimensional large systems.
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2.1. INTRODUCTION

In the field of quantum chemistry, the methods to calculate the electronic structures
of small molecules or completely periodic polymers have already been established at
the present time. The MO method is available for small molecules, while the CO
method for periodic polymers. "* These methods are very useful in studying the electronic
property and therefore widely applied to various systems. However, we can not use
them to study large molecules or aperiodic polymers straightforward because of the
limit in the memory of computer as well as the computer time. In the case that it is
impossible to calculate the whole system as it is, we approximate a part of large
molecule as a cluster or a nonperiodic polymer as a periodic polymer with a supercell
including an aperiodic part. Then, the calculation for each cluster or supercell with
different size 1s carried out individually by using the MO method or the CO method
for their various sizes. We consider the converged physicochemical properties of the
cluster or supercell as those of the large molecule or aperiodic polymer itself, respectively.
As mentioned above, however, the conventional methods have the limitation of
application to large, extended, nonperiodic systems. For this reason, it will be inevitable
todevelopanew theoretical approach to treat those systems efficiently and systematically.
Several approaches with regard to this subject have been developed in recent years.”’

Our group has proposed the elongation method as a new approach which enables
us to calculate the electronic structures of large molecular systems with nonperiodicity.”
In this approach, we extend a cluster by the manner in which a small molecule or a
molecular fragment is connected with the end part of the starting cluster with appropriate
size one by one. In this way, what we called, a cluster is propagated by a unit. This
propagation is performed by taking into account only local interaction between the
cluster molecule and the adding fragment. In this propagation process, we can scparale
the MOs of the cluster into two spaces, one is the orbitals which are altered by the
interaction with fragment and another is those which are unaltered, and then, we solve
the eigenvalue problem based on the former only. That is, we incorporate only the
important interaction into the eigenvalue problem of the extended system and drop out
the unimportant part. Thus, the dimension of the matrix which should be diagonalized
in each step of the propagation calculation can be retained almost constant. When we
repeat this procedure any times, we can synthesize periodic or aperiodic polymers with
any length theoretically. Since the calculation procedure of this approach includes the
extension process of the system itsell systematically at the orbital level, we can calculate
the electronic structures of large, extended, nonperiodic systems efficiently. Moreover,
as already reported in the previous studies of our group such as local density of states
in aperiodic polymers,” stationary condition of the electronic structure against the
extension,'” and stationary space analysis by the cluster-series model,'"' information
on electronic states in local region of large polymers can be extracted.

On the other hand, the CO method can be applied to the systems with complete
periodicity (polymer, surface, and crystal)"” and has been used in the band structure
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calculations of periodic systems. In this approach, the eigenvalue problem is solved
under the Born-von-Karman periodic boundary condition in order to obtain the COs
which satisly the translational symmetry of the system. Thus, we can obtain the electronic
property of bulk systems by using the CO method. However, this method is so restricted
by the periodic boundary condition itself, which requires the completely periodic
structure of the system, and thus, can not be applied to the system with local aperiodicity.

Consequently, we have developed a method to calculate the clectronic state of
polymers with local aperiodic part, for instance, interaction with a small molecule,
defective structure or abnormal bonding, based on the supercell method using COs. "
That is, the COs of minimum translational unit (unit cell) are transformed into those of
large translational unit (supercell) in order to treat the local aperiodicity embedded in
the periodic polymer. In the previous work, we considered the interaction between the
supercell and the aperiodic part as a perturbation, and treated this by using the iterative
transfer perturbation theory. " This treatment has been applied to the interaction between
a periodic polymer and a small molecule or to the local aperiodicity within a polymer.'*"’

In the chapter 1," we proposed a new theoretical approach using the variational
treatment based on the SCF CO method to calculate efficiently the polymer system
with local aperiodic part. This can be regarded as the combination between the elongation
method and the supercell method. In practical calculations, this approach has proved to
be reliable enough and it has great advantage in the computational time compared to
the usual CO calculations. In this study, we have dealt with the system in which a
small molecule is interacting with a periodic polymer, thus, this approach should
correspond to the propagation of the system only by one unit. As the next step, we
developed this method to calculate the continuous propagation of the system by the
elongation procedure.

In the present chapter, we report the results of model calculations for both of
the cluster propagation and the molecular stacking on surface by using the elongation
method. As mentioned already, the former is based on the MO method and the latter 1s
based on the CO method. The main part of the calculation procedure for the two
systems is almost the same. That is, as the first step, we calculate the starting cluster
by using the MO method and the starting surface by the CO method. Then, as the next
step, the orbital separation of the cluster or the surface is carried out under the influence
of adding fragment or stacking layer, respectively, and then, the eigenvalue problem of
the extended system is solved. In this step, we use the same manner for the both
extensions of the cluster and the surface. By repeating this procedure, we extend the
cluster or the surface successively. For the molecular stacking on surface, we must
take into account both of the extension process in a local region and the bulky nature
in an extended surface. For this purpose, we employed the both of the elongation
method and the supercell method, that is, we transform the COs of the starting surface
for the unit cell into those for the supercell according to the procedure of the supercell
method at first. Next, the orbital separation of the system is carried out and the
cigenvalue problem is solved by a similar manner as in the case of the propagation of
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cluster. This procedure is repeated according to the elongation method in order to pile
up layers on the surface.

We formulated the procedures to treat the extension process of system mentioned
above and developed the program for these procedures at the CNDO/2 level.'”?' At
first, in order to confirm the generality of this method, the calculations for the propagation
of cluster based on the MO method were performed. In these calculations, the hypothetical
one-dimensional clusters which consist of hydrogen molecule or hydrogen fluoride,
and the realistic one-dimensional periodic polymers, polyethylene or polyacetylene,
are clongated. Next, we calculated three models which correspond to the growth of
crystal surface by using the elongation method based on the CO theory. In these
calculations, as the first step of our study toward this direction, we considered one-
dimensional chain constructed with hydrogen molecules as a "quasi" crystal surface.
Although the real surface is periodic in two dimension in fact, we approximate the
surface by one-dimensional periodical chain. Several layers of hydrogen molecules
were approached on the quasi surface one by one to simulate the growth of the surface.
Also, the model which may correspond to the defective structure on the surface was
calculated by this method. Finally, as a more realistic application, we treated the
chemisorption of carbon monoxide on a periodic atomic chain composed of magnesium
extending in one dimension. In the following sections, we describe the outline of this
methodology and show the reliability of this treatment by comparing the results with
those obtained by the usual MO or CO calculations for the cluster or surface.

Finally, it should be pointed out that the main purpose of this study is to
confirm the usefulness of our approach in the calculations of the electronic structures
of large, extended, nonperiodic systems. If the generality of this method is confirmed,
we will apply it to the more realistic systems like as aperiodic biopolymers or two-
dimensional crystal surfaces. Moreover, we expect that the three-dimensional extension
will be possible by using the elongation method based on the two-dimensional COs.
Attempt for this direction is now in progress and will be published in the near future.
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2.2. METHOD

When the size of system is too large to calculate the electronic structure of the
whole molecule by the quantum chemical method, we usually use the cluster model.
The electronic character of the system is determined as the stationary nature against
the size extension of clusters. But this model requires the calculations for each cluster
individually, and thus the approach is not necessarily more systematic and efficient.
For example, in the case of the calculation for the cluster A including appropriatc
units and the its extended cluster A+ B with one more unit, we must perform the
calculations on the both clusters individually and compare the energy per unit, the
clectron density distribution, and so on with each other in order to check the convergency
for electronic nature of the system. If the dimension of the clusters is comparatively
small, this approach will be useful. However for large extended systems, the effort for
the computations becomes enormous.

How can we obtain the electronic property of extended systems by a systematic
manner? Now, we consider the case that the electronic structure of the cluster A is
known, and then the fragment B is connected with the cluster A. Surely, we can
obtain the electronic states of the extended cluster A+ B by solving the eigenvalue
problem based on the MOs for A and the atomic orbitals (AOs) for B directly. If we
can select specific orbitals in the cluster A which are affected by the addition of the
fragment B, we may use them instead of the all orbitals in the cluster A. Those
selected orbitals thus obtained must be more effective basis orbitals in solving the
eigenvalue problem in the extended system A+ B. In extending the cluster, the above-
mentioned selection of orbitals should be advantageous.

However, the effects of the fragment B on the cluster A can be evaluated
exactly only if the interaction between the cluster A and the fragment B is exactly
evaluated. In other words, if the electronic structure of the extended cluster A+ B is
known, we can classify the orbitals in the system into two groups; one is altered
orbitals and another is unaltered ones by the interaction with the fragment B. The
method to extract and separate the orbital space in cluster-extending calculations has
already been published as the stationary conditions of the electronic structures against
the extension of molecular systems and has been applied to the elongation

. 10-12
calculations.

In order to develop the method to perform the elongation calculation, at the
starting point, the interaction between the cluster A and the fragment B through core
Hamiltonian is taken into account and the effective bases are selected based on the
interaction. At this stage, if we solve the eigenvalue problem represented with the
effective orbitals in the cluster A and the AOs in the fragment B, the Fock operator of
the extended cluster A+ B which includes a part of the interaction between the cluster
A and the fragment B can be determined. At the same time, the orbitals which are
obtained as the solution of the ecigenvalue problem also include the effect of the
fragment B partially. In contrast to the above-mentioned orbitals, the other orbitals
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which are removed from the basis orbitals are not affected by the interaction. Thus, in
order to introduce the perturbation by the fragment B completely, we treat the interaction
between the selected orbitals and the remaining orbitals successively. For this purpose,
we again select the basis orbitals based on the Fock operator obtained here and determine
new Fock operator by solving the eigenvalue problem within new basis orbital space.
In this way, by repcating the procedure, the influence of the fragment B on the cluster
A based on the interaction with each other can be included in the electronic structure
of extended system A+ B by degrees. Finally, we can determined the specific orbitals
in the system which are altered (active orbitals) and unaltered (frozen orbitals) by the
cluster extension. The [rozen orbitals can be regarded as also stationary orbitals against
the extension by one more unit as discussed in the previous works of our group.'”"

The situation mentioned above is also true in the case that the molecule B is
stacked up on the extended crystal surface A. Thus, the applicability of the method is
not limited to the cluster-extending calculation.

The clongation method is the method to perform the quantum chemical
calculations on the largely extended chemical systems such as one-dimensional polymers
connected by chemical bondings between units or molecular crystals without bonds
between them. Also, this approach includes the orbital mixing between the cluster A
and the fragment B as the results of the charge transfer and exchange interactions
together with the polarization effect as shown in Subsection 2.2.3 in detail.

In this study, we performed elongation calculations on the two systems, that is,
the propagation of cluster based on the MO method and the stacking of molecules on
surface based on the CO method. However, the main technique used in the both
calculations, which is the selection of effective basis orbitals for the eigenvalue problem
and the division of the system at the orbital level, is the same. In this section, at first,
we explain only the outline of the calculation procedure for the both systems in
Subsections 2.2.1 and 2.2.2. Next, the procedure of orbital separation in the system,
which is common technique for the two systems, is described in detail in Subsection

e . 8

2.2.1. Elongation Calculation Based on the MO Method

In Fig. 2.1, the calculation procedure for the propagation of cluster molecule 1s
summarized schematically. At first, we carry out the MO calculation for the cluster
including a small number of units. Next, we consider the system in which one adding
fragment, C in Fig. 2.1, connected with the end part of the starting cluster. When we
solve the cigenvalue problem of the propagated cluster, we can select the specific
orbitals from the orbital space of the starting cluster which give a large influence on
the eigenvalue problem. After that we use the selected MOs in the starting cluster and
the AOs in the adding fragment as the basis of the eigenvalue problem. In practice, we
must select the MOs and solve the eigenvalue problem iteratively in onc-unit propagation
so as to reach the self-consistent field as will be described in Subsection 2.2.3. In this
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I1G. 2.1. Schematic illustration of the calculation procedure in the molecular-orbital-based
clongation method for the propagation of cluster.

process, finally, we can determine the MOs in the propagated cluster which are altered
by the interaction with adding fragment (active MOs) and the MOs which are unchanged
by the interaction (frozen MOs). That is, total orbital space in a cluster molecule is
divided into active space ( B+ C in Fig. 2.1) and frozen space (A in Fig. 2.1). In the
next propagation of the cluster, we regard the finally obtained active MOs as the MOs
of the new starting cluster, and include only the interaction between the final active
MOs and the newly adding AOs of the next fragment, D in Fig. 2.1, into the cigenvalue
problem. On the other hand, final frozen MOs are fixed against the addition of the next
fragment as the stationary orbitals. By repeating these procedures mentioned above,
the total orbital space of extended systems is divided into a series of A, B,C,D,...,N
as shown in Fig. 2.1, the electronic structures of periodic or aperiodic polymers with
any length can be calculated without increasing the dimension of the matrix which
must be diagonalized in the successive elongation cycle. The method to select the
interaction orbitals used in this work is described in Subsection 2.2.3 in detail.

2.2.2. Elongation Calculation Based on the CO Method

We show the schematic illustration of the calculation procedure for the stacking

34




Chap. 2 : Electronic Structures of Large, Extended, Non-Periodic Systems

Transformation T T T T T T
T e L I
Unit cell Supercell
/ntcracli(m with adding layer
¥
Layer

U Orbital separation Eigenvalue problem

Starting surface

Stacked surface l

Elongation
[=]

on surface

@ Stacking of molecules

- Stacked layers

Surface on which any layers stacked

I1G. 2.2. Schematic illustration of the calculatioh procedure in the crystal-orbital-based
clongation method for the stacking of molecules on surface.

of molecules on surface in Fig. 2.2. Because we are interested in the extension within a
local region on surface, it is convenient to treat the system based on the supercell. For
that purpose, we transform the COs of the surface for a unit cell into the COs for a
supercell. Except using the COs of the starting surface instead of the MOs ol the
starting cluster, the similar procedures as those described in the previous subsection
are employed in the extension calculation of the system. In the following, we explain
the transformation method of the COs from the unit cell to those for the supercell.
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[t 1s known that COs of a one-dimensional crystal can be obtained by using the
tight-binding approximation under the periodic boundary condition in the following
form:

N-1' M

W (k)= /N2 S exp(ikl) C,(k,) x,(r-r, ~la), 2.1)

(=0 1=1

k. =2mp/ N (p=1,.,N), 2.2)

where [ specilies the /th unit cell in the crystal consisting of N cells, k, the wave
number vector, a the lattice vector, i an cnergy level, ¢ an atomic orbital, and r the
position vector of an electron, and the symbol i denotes the imaginary unit v-1.
Here, the periodic crystal is based on the minimum unit satisfying the translational
symmetry of the system. The COs for the unit cell can be transformed into those for
the supercell by using the method proposed already by us as the supercell method.
Here, the supercell is a large periodic unit consisting of m unit cells with lattice vector
ma. According to the supercell method, the wave number vector k, and the AO
coefficients C, are transformed as follows:

n

k,=mk,—2nxj (j:integer, Os k <2), (2.3)
Cuon (k)= Cy(k,) expli(n=Dk,], (24)

where n denotes the nth cell in the central supercell and ;j should be selected in order
that k, is in the range of the first Brillouin zone. It corresponds to the transformation
from reduced zone scheme to extended zone scheme, which means the extension of
periodic unit for translational symmetry, from viewpoint of band structure.

The calculation procedure of the stacking of molecules on surface is the same
as that for the propagation calculation of cluster. That is, as the starting point, we
obtain supercell's COs of surface by using the CO calculation and the supercell method.
Next, active COs and frozen COs are determined by evaluating the influence of the
interaction between a newly stacking molecule and the starting surface. Then, the
system is extended by fixing the frozen COs successively. Finally, we can obtain the
electronic structure of surface on which several layers of molecules are piled up.

2.2.3. Orbital Separation (Determination of Active and Frozen Orbitals)

In the case of dealing with local interaction in a large system, we need not
consider the interactions among all orbitals in the large system. For example, in extending
the chemical system by connecting molecules successively with each other, it is
conceivable that the influence of the newly connected species on the electronic structure
of the extended system is limited within the local region around the connecting region
between the two systems when total system becomes larger. In other words, when the
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selection ol interaction orbitals which are influenced by an adding fragment can be
done elfectively from the total orbital space of the whole system, all that we have to
do is to solve the eigenvalue problem only within the interaction space instead of
solving the eigenvalue problem in the total space.

By using the elongation method based on the idea described in the above
paragraph, in the present case, the MOs of the starting cluster or the COs of the
starting surface can be divided into active and frozen MOs or COs after one-unit
extension as mentioned in Subsections 2.2.1 and 2.2.2.

The problem is that how can we select the interaction orbitals which can be
used as the clffective bases of the eigenvalue problem? In this work, we apply the
variational condition in order to perform the selection of orbitals as has been used to
extract the stationary orbitals.'""?

That is, when a given cluster or surface i1s elongated by one unit by connection
with an adding fragment, the variational condition is that the matrix elements of MO-
or CO-based Fock matrix between occupied and vacant orbitals in the extended system
should be zero. Thus, we define the orbitals which do not satisfy the variational
condition in the cluster or surface as effective interaction orbitals.

To show the procedure for the orbital selection in the system, it is considered
that the orbitals {‘Pj} (j=1,..., M) are known at first, and then, those are perturbed by
the interaction with {®,} (i=1,...,N) which are combined to {W}. Here, to find the
interaction orbitals and perform the division of orbital space mentioned above, the
following rectangular blocks of MO- or CO-based Fock matrix should be obtained,

Foc = <(I) \-ucl ﬁw’ lpncc> . (25(1)
Fvac s <(I) OCC’ i;‘i [I} vac> ' (2 .Sb)

where F is the Fock operator for the perturbed system, and occ or vac indicates
occupied or vacant orbital, respectively. The matrix elements in Eq. (2.5) correspond
to the terms between occupied and vacant spaces of Fock matrix based on the orbitals
{P} and {W}. To satisly the variational condition, the matrix clements should be zero.
Our purpose is to extract specific orbitals from {¥'} which have nonzero values of the
matrix elements in Eq. (2.5). In order to find the orbitals in {'¥} which interact with
{®} effectively, the following technique is applied to F“ and F™, respectively. That
is, if the number of the occupied orbitals is N and that of the vacant orbitals is N” in
{®} and those in {W} arc M’ and M" orbitals, respectively, we multiply the above
N"'xM? and N” x M" matrices by those adjoint M’ x N* and M" x N’ matrices from
the left side. The M’ x M” and M" x M" matrices are thus obtained, that is the matrix
F'F, are diagonalized. This means that,

U'F'FU=E, (2.6)
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where U is the matrix whose columns are eigenvectors and E is the diagonal matrix
composed of the eigenvalues. The eigenvalues obtained here reflect the magnitude of
the Fock matrix elements between occupied and vacant spaces of the orbitals {®} and
{W}. Therefore, the eigenvalues should be measures to indicate whether the variation
condition is satisfied or not. Thus, we perform unitary transformation on {¥} by using
U and sclect the orbitals which have greater eigenvalue than an appropriate threshold
value (107 in this work) in occupied and vacant spaces of the transformed {\}. These
orbitals can be regarded as the interaction orbitals which do not satisfy the variational
condition against the extension by the addition of orbitals {®}. This procedure is
analogous to that for the corresponding orbital** or the interaction frontier orbital.”***
A similar manner is also applied in the elongation calculation to extract the stationary
space of electronic states against the extension of molecular systems.'""* We refer to
the selected orbitals with greater eigenvalues as "interaction orbitals" (MOs or COs)
and to the rest orbitals with smaller cigenvalues as "noninteraction orbitals" hereafter.
In other words, we define "interaction orbitals" as the orbitals which do not satisfy the
variational condition and "noninteraction orbitals" as the orbitals which satisfy the
condition in the total orbital space of system. Then, we solve the eigenvalue problem
based on "interaction orbitals" only by the self-consistent-field (SCF) procedure, and
the "noninteraction orbitals" are removed from the basis orbitals in the eigenvalue
problem. In this way, we modify the orbital space of the extended system so as to
satisfy approximately the variational condition in which Fock matrix elements between
occupied and vacant orbitals are nearly equal to zero. Now, in practice, it is noted that
this selection must be done iteratively in order to satisfy the condition as explained
below.

In the following, we describe in detail the method to solve the eigenvalue
problem for extended system by using the technique mentioned in the previous paragraph.
The schematic illustration of the calculation procedure at the viewpoint of orbital
separation is given in Fig. 2.3 and the matrix representations which correspond to each
step in Fig. 2.3 arc summarized in Figs. 2.4(a)-2.4(c). The interaction blocks of the
Fock matrix in Eq. (2.5) are also shown as the shaded parts in Fig. 2.4. We explain the
procedures along with these figures. Here, we note in stacking calculation based on the
CO method that the Steps 2-4 must be carried out for each wave number vector & for
supercell, because Fock operator and COs depend on the wave number vector under
the periodic boundary condition. But, the procedures for MO and CO treatments are
the same except for the & -dependence.

In Step 1, COs for unit cell {W } are transformed into those for supercell {V'}
as mentioned in the subsection B [Eqs. (2.1)-(2.4)]. This step is needed only for
stacking calculation based on the CO method.

In Step 2, we take into account the interaction between starting orbitals (MOs in
starting cluster or COs in starting surface) and adding AOs (in fragment or layer)
through core Hamiltonian at the first because Fock operator of the extended system is
unknown at the starting point. As shown in Fig. 2.4(a), the Fock matrix based on MOs
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FIG. 2.3. The process of orbital separation of the system to determine the active and frozen orbitals
in the elongation method.

or COs is diagonal within starting cluster or surface, and the interaction blocks arc
shown as shaded parts and taken as follows:

<X | I_A{| lI;OC'~‘> . (27(1)
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F\'ilc s <XIH’111\‘HL‘> g (2.7b)

where {x} represents adding AOs, {W} corresponds to starting orbitals and H is the
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I1G. 2. 4. The matrix representation of each calculation step in the elongation method which
corresponds to Fig. 2.3, (a) step 2, (b) step 3, and (c) step 4.

core term in Fock operator. By diagonalizing the matrix F'F, {W} is classified into
interaction orbitals {W¥'(0)} and noninteraction orbitals {'¥(0)}. Then, we solve the
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cigenvalue problem based on {}@® {'¥''(0)} by the SCF procedure to obtain the resulting
orbitals {X(0)} and Fock operator ﬁ‘(()). In this step, total orbitals are separated into
active orbitals {X(0)} and frozen orbitals {W(0)}. At each step, active orbitals are
defined as the orbitals perturbed by the adding AOs through the eigenvaluc problem
including the interactions among themselves, while [rozen orbitals are those only
unitary transformed and dropped [rom the basis orbitals of the cigenvalue problem.

In Step 3, the interaction between the active orbitals {X(0)} and frozen orbitals
{W(0)} in Step 2 must be again taken into account, since the variational condition
among them may be destroyed by the change of Fock operator in SCF iteration at Step
2. Thus, as shown in Fig. 2.4(b), we define the interaction blocks as follows:

Focc i <X(())\m® ‘I’(O )\'EIC| FA‘(())I lp(())occ> ) (283)
F™ = (X(0)™®W(0)™ 13(())] W(0)"). (2.8b)

We diagonalize the matrix F'F and select the interaction orbitals {W'(1)} which do
not satisfy the variational condition with {X(0)} and within {W'(1)}, and the
noninteraction orbitals {W(1)} which satisfy the condition with {X(0)} and within
{W(1)}. After this selection of interaction and noninteraction orbitals, the eigenvalue
problem represented with {X(0)}@{W'(1)} is solved by the SCF procedure. Then, we
obtain the orbitals {X(1)} as the solution of the eigenvalue problem and the Fock
operator F (1). Here, new active orbitals correspond to the solution {X(1)} and new
frozen orbitals to {W(1)}. In this way, the variational condition is destroyed by the
SCF calculation. Thus, the procedure in this step must be repeated until the condition
is satisfied in the whole system. That is, we iterate this step as long as the interaction
orbitals exist.

When we consider the interaction between active and frozen orbitals, if the
active space {X} is large and the deviation of the variational condition in this space
becomes a little, it is expected that there may be the noninteraction orbitals in the
active space. Thus, we check the varnational condition not only for frozen space but
also for active space. If there are noninteracting orbitals in active space, they can be
separated from the interaction space of system. This separation is carried out in the
next step. .

In Step 4, the following procedure is repeated until the local interaction converges,
that is, the number of interaction orbitals becomes zero, as pointed out in the last part
of Step 3. Now, we consider the n+ 1th cycle of this step (the 1st cycle corresponds to
Step 3). In this step, we choose the interaction orbitals from a part of active space {X}
and frozen space {W} by the following two-step procedure (see Fig. 2.3). First, we
confirm the variational condition of active space by using the interaction blocks as

follows:

F™ = (W(n )"“°|13(/1)!X(n)““>, (2.9a)
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F" = (W)™ F(m)| X(n)*™), R

where {W(n)} represents the nth frozen orbitals, {X(n)} corresponds to the solution
of the nthcigenvalue problem. By diagonalizing the matrix F'F, we select the interaction
orbitals {®@'(n + 1)} and noninteraction orbitals {®(n + 1)} from {X(n)} in active space.
Here, {®'(n+1)} does not satisfy the variational condition and {®(n+ 1)} does. Next,
we test the condition also for the frozen orbitals by taking the interaction blocks as

follows:
o = (@' (n+ D™ @ W)™ | F ()] P(n)*), hettag
FY = (0'(n+ 1) @ W(n)* [3(,1)| W(n)"y. (2.10b)

Diagonalization of the matrix F'F is carried out to determine the interaction orbitals
{W'(n+ 1)} which does not satisfy the variational condition and the noninteraction
orbitals {'¥(n+1)} which satisfy the condition. After selecting the interaction orbitals
{®@'(n+1)} and {W'(n+ 1)} from active and frozen spaces, respectively, the eigenvalue
problem is solved within the orbital space {®'(n + 1)} ®{W'(n+ 1)} by the SCF procedure
to obtain the resulting orbitals {X(n+1)} and Fock operator I?“(n+ 1). This step is
summarized in Fig. 2.4(c). In this step, we can separate total orbital space into the
active space {®}@®{X} and the frozen space {V}.

Next, we take {X(n+1)} and {W(n +1)} as the interaction space for the n+ 2th
cycle, and repeat the procedure in this step as mentioned above. Thus, at cach cycle of
this step, if there is, {®} is removed from the interaction space and each {P} remains
invariant through all cycles, because the interaction between {®P(n+ 1)} and {W(n)} is
considered to be small enough. That is, we assume that the variational condition of
{P(n+ 1)} is not destroyed by the interaction with {*V(n+1)} through the change in
Fock operator. Finally, when the interaction converges, the interaction orbitals vanish
and the variational condition is satisfied approximately in the total orbital space of the
system. That is, at the mth cycle, the active orbitals can be determined as {D(2)},...,
{®P(m)} and the frozen orbitals as {W(m)}. At this point, we obtain the electronic
structure of the system with one-unit extension, ultimately, the cluster is elongated by
one unit or the surface is stacked by one layer. -

Now, it is noteworthy that the important effects of charge transfer and exchange
between starting orbitals and adding AOs are included in the blocks of (X[ﬁl‘l’) and
(D] I:“l ), and also, the polarization effect within starting orbitals is included in the
block (V| ﬁl W) at Steps 3 and 4.

In the continuous extension of the system, the Steps 2-4 are repeated any times
with the following treatment. We diagonalize the Fock matrix within the active space
and within the frozen space to determine final active orbitals {V/,} and [rozen orbitals
{W,}. As the starting orbitals of next clongation cycle, the active orbitals {W } are
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used, which correspond to {¥W} in Step 2, and the [rozen orbitals {W  } arc [ixed in the
next elongation. That is, the frozen orbitals are separated from the (otal orbital space of
the system and arc kept without any changes through all calculation cycles. In other
words, the Steps 2-4 arc carried out within the orbital space which includes the active
orbitals and the adding orbitals of the fragment or layer. We show a schematic illustration
of orbital separation by this procedure in Fig. 2.5.
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Finally, we summarize bricfly the concept and the outline of this clongation
method. We take the isolated system (cluster or surface) as the starting point, and
combine it with the adding molecule (fragment or layer). At the starting point, the
Fock matrix is diagonalized within the starting orbital space, and the matrix elements
between the starting orbitals and adding AOs have nonzero values. If the eigenvalue
problem of the whole system is solved completely, the matrix elements between occupied
and vacant orbitals must vanish (the variational condition). Therefore, we developed
the method by which the total orbital space of the system satisfies the condition
without solving the eigenvaluec problem for the total orbital space. For this purpose,
the specific orbitals that have nonzero matrix elements between occupied and vacant
orbitals are selected as "interaction orbitals". Then, the eigenvalue problem is solved
within the selected space by using the "interaction orbitals" as effective basis orbitals
of the eigenvalue problem. After this step, the variational condition may be destroyed
by the SCF procedure because of the change in Fock matrix. Thus, this selection must
be done iteratively. The procedure of this method is very simple in practical calculation
in the meaning that we have only to perform the diagonalization of the matrix F'F to
find the interaction orbitals. The characteristic feature of our approach is that the
determination of the subspace in which the SCF problem is solved is included in the
calculation process. Thus, we can control the accuracy of calculation by a threshold
value to find the interaction orbitals without specifying the interaction space. Moreover,
the orbital division in this method gives us the information on the magnitude of
interaction in large, extended, nonperiodic systems.

2.2.4. Further Development of the Elongation Method
toward Ab Initio Calculations

Ab initio calculations require the time-consuming steps of one- and two-electron
integrals. However, we expect that the elongation method may have an advantage for
this point. That is, because the extension is carried out as a successive serics, we can
reusc the alrcady-evaluated integrals fully. For example, when a starting system A is
extended by adding B, we have only to compute the integrals within B and between
A and B since thosc within A have alrcady been calculated in the starting point. This
is similar in any step of the extension series, thus, the integrals which should be
estimated at a step are only those including newly adding AOs. The development of
the elongation method in this direction is now in progress.
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2.3. RESULTS AND DISCUSSION

We performed several model calculations by using the method described in the
section 2.2. At first, we demonstrate the results for the propagation of cluster in order
to check the reliability. Next, this elongation method is applied to three models for the
stacking of molecules on surface. Finally, we report briefly the results for local
chemisorption of carbon monoxide on magnesium chain.

In this scction, we do not analyze the clectronic structures obtained by the
calculations in detail, because the purpose of this study is to test the applicability of
our approach for various extended systems.

In this work, we assumed 107 as the threshold value of orbital selection and all
results were obtained at the SCF level by using the CNDO/2 approximation. We
specify "usual" calculation as the MO calculation for each cluster molecule with
different size in Subsection 2.3.1 and as the CO calculation under nearest neighbor
approximation of cach surface with different number of stacked layers in Subsection
2.3.2. These calculations were also carried out for the comparison with the results by

the elongation method.
2.3.1. Propagation of Various Clusters

We applied the MO-based clongation method to several extended systems of
hydrogen molecule, hydrogen fluoride, polyethylene, and polyacetylene. Since the
purpose of these test calculations is to confirm the validity of our method, we show
only the total energies of the systems together with computational times in comparison
with usual cluster calculations.

The models and their geometrical parameters used in the propagation calculations
are shown in Figs. 2.6(a)-2.6(d). Each of them corresponds to model polymer of
hydrogen molecule, hydrogen fluoride, polyethylene, and polyacetylene, respectively.
In performing these calculations, the clusters were propagated by arranging periodically
in one dimension. We carried out two-directional elongations, that is, the molecular
fragments were added to the both ends of the cluster by one unit. The polymers with
chemical bondings in Figs. 2.6(c) and 2.6(d) were extended by substituting the end
hydrogen atom by the adding fragment, that is, we substitute the 1s coefficient of the
hydrogen atom by the 2s coefficient of carbon atom of the adding fragment.

(a) Hydrogen molecule

H B HH HH Hie— H
Fragment Starting cluster Fragment
(b) Hydrogen fluonde
F H i H F H
T i el il R RN,
H F H F H F
Fragment Starting cluster Fragment
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Polyethylen
(¢) cthylene H H,
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/\/\/ e
H2 H2

Starting cluster

CSH H
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(d) Polyacetylene

2

Fragment Starting cluster Fragment

FIG. 2.6. The clusters calculated by the elongation process. We assumed and fixed the following
geometrical parameters; (a) bond length of ll)drogen molecule = 0.742 A and mlcnnolccular
dlslancc = 1.0 A, (b) bond length of llydmgcn fluoride = 0.917 A and intermolecular distance =

5A, (c)r(C-C) =145 A, H(C-) = 1.09 A, and all bond angles = 109.5°, and (d) 7(C-C) = 1.476 A,
r(L C)=1326 A, (C-H)= 1.084 A, CCC = 124.0°, and ZC=CH = 120.0".

The results of the calculations are listed in Tables 2.1-2.4. In these tables, n
denotes the number of elongated units and the starting cluster corresponds to n=0.
From these tables, it is obvious that our approach has enough reliability and great
advantage in the computational time in comparison with the usual cluster calculations.

TABLE 2.1. Total energies and cpu times of extension calculation for hydrogen
molecular cluster (Hy),,-(H;)3-(Hy),.

Total energy (eV) cpu time (min:s)?

n Cluster Elongation Cluster Elongation®
1 -197.628026 -197.628026 0:01 0:01 (-----)
2 -276.383418 -276.383418 0:02 0:02 (0:03)
3 -355.138332 -355.138327 0:04 0:02 (0:05)
4 -433.893127 -433.893122 0:08 0:03 (0:08)
5 -512.647897 -512.647890 0:14 0:04 (0:12)
6 -591.402673 -591.402661 0:22 0:06 (0:18)
7 -670.157461 -670.157443 0:34 0:07 (0:25)
8 -748.912265 -748.912241 0:50 0:08 (0:33)
9 -827.667083 -827.667056 1:11 0:10 (0:43)
10 -906.421915 -906.421883 1:39 0:11 (0:54)
11 -985.176761 -985.176723 2:15 0:13 (1:07)
12 -1063.931619  -1063.931575 2:59 0:16 (1:23)
13 -1142.686489  -1142.686437 344 0:18 (1:41)
14 -1221.441369  -1221.441311 4:33 0:21 (2:02)
15 -1300.196260  -1300.196194 5:59 0:24 (2:26)
16 -1378.951161  -1378.951087 7:37 0:27 (2:53)
17 -1457.706070  -1457.705989 8:53 0:31 (3:24)
18 -1536.460988  -1536.460899 10:42 0:32 (3:56)
19 -1615.215914  -1615.215817 13:32 0:37 (4:33)
20 -1693.970848  -1693.970743 16:02 0:41 (5:14)

2 ¢pu time on IBM RISC System/6000 530H.
® The value in parentheses indicates the sum of cpu time up to the nth extension.
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TABLE 2.2. Total energies and cpu umes of extension calculation for hydrogen
fluoride molecular cluster (HF),,-(HF) 4-(HIY),,.

Total energy (eV)

cpu time (min:s)?

n Cluster Elongation Cluster Flongation®
1 ~4636.959158 -4636.959169 0:11 0:07 (-----)
2 -6182.449012 -6182.449020 0:32 0:14 (0:21)
& -7727.939661 -7727.939674 114 0:21 (0:42)
4 -9273.430921 -9273.430936 2:29 031 (1:18)
3 -10818.922682  -10818.922698 4.29 0:37 (1:50)
6 -12364.414871 -12364.414889 7:06 0:47 (2:37)
d -13909.907432  -13909.907452 11:16 1:00 (3:37)
8 -15455.400322  -15455.400327 17:02 1:09 (4:46)
9 -17000.893509  -17000.893516 24:24 1:27% (6: 13)
10 -18546.386966  -18546.386976 33:58 1:48 (8:01)
11 -20091.880670  -20091.880682 46:04 2:06 (10:07)
12 -21637.374601  -21637.374616 61:10 2:38 (12:45)
13 -23182.868744  -23182.868762 7951 3:02 (15:47)
14 -24728.363084  -24728.363105 102:06 B30 (LG T
15 -26273.857609  -26273.857633 128:48 4:22 (23:39)
16 -27819.352308  -27819.352335 160:05 5:06 (28:45)
17 -29364.847171  -29364.847183 197:27 5:37 34:22)
18 -30910.342190  -30910.342204 242:25 6:19 (40:41)
19 -32455.837357  -32455.837374 288:44 6:44 (47:25)
20 -34001.332665  -34001.332685 327:49 8:02 (55:27)

? cpu ime on IBM RISC System/6000 530H.
® The value in parentheses indicates the sum of cpu time up to the nth extension.

Morcover, since the increment of the errors in the continuous elongation is very small,
the validity of the calculated results should be maintained in the more extensions. The
diagrams of computational times for polyethylene and polyacetylene systems are given

TABLE 23. Total energies and cpu times of extension calculation for
polyethylene molecular cluster H-(CH,),-(CH,)4-(CH,),,-H.

Total energy (e¢V) cpu time (min:s)?

n Cluster Elongation Cluster Elongation®
1 -1457.451870 -1457.451871 0:26 0:17 (-----)
2 -1930.278904 -1930.278905 1:09 0:30 (0:47)
3 -2403.106253 -2403.106240 2:46 0:55 (1:42)
4 -2875.934106 -2875.934093 5:24 1:16 (2:58)
5 -3348.762143 -3348.762129 9:12 1:49  (4:47)
6 -3821.590439 -3821.590422 15:17 2:15 (7:02)
7 -4294.418996 -4294 418974 23:48 2:41 (9:43)
8 -4767.247724 -4767.247702 35:26 2:55 (12:38)
9 -5240.076677 -5240.076643 50:19 3:31 (16:09)
10 -5712.905766 -5712.905730 70:25 3:49 (19:58)
11 -6185.735020 -6185.734971 94:53 4:52 (24:50)
12 -6658.56443 1 -6658.564380 126:37 4:57 (29:47)
13 -7131.393984 -7131.393920 164:49 6:19 (26:006)
14 -7604.223839 -7604.223772 209:28 6:53 (32:59)
15 -8077.053677 -8077.053596 256:15 8:50 (41:49)

 ¢pu time on IBM RISC System/6000 530H.
® The value in parentheses indicates the sum of cpu time up to the nth extension.
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TABLE

2.4

. Total

energies and cpu times of extension

polyacetylene molecular cluster H-(CyH;),-(CoH,)4-(CoHy),-H.

calculation for

Total energy (eV)

cpu time (min:s)®

n Cluster Elongation Cluster Flongation®
1 -2596.502795 -2796.502795 2:22 1:36 (—— )
2 -3449.362937 -3449.362937 6:44 241 (BAT)
2 -4302.223779 -4302.223773 1528 SH08 (7217
4 -5155.085125 -5515.085116 30:25 430 (11:47)
5 -6007.946920 -6007.946897 54:06 5:04 (16:51)
6 -6860.809139 -6860.809106 89:37 6:09 (23:00)
7 -7713.671683 -7713.671639 140:23 7:33 (30:33)
8 -8566.534563 -8566.534506 207:03 9:37 (40:10)
9 -9419.397820 -9419.397750 309:25 11:19 (51:29)
10 -10272.261231  -10272.261148 415:59 13:24 (64:53)

 cpu time on IBM RISC System/6000 530H.
® The value in parentheses indicates the sum of cpu time up to the nth extension.

in Figs. 2.7(a) and 2.7(b) to compare our approach with the usual cluster approach. In
the extension of the system, the elongation method can calculate the system as cluster
series successively by connecting each cluster, that is, we need not to calculate the
whole molecules with different sizes individually as the usual cluster model. In the
elongation calculation, noninteraction orbitals which are removed from the basis of the
cigenvalue problem can be determined. Therefore, eigenvalue problem with small
dimension having only the interaction orbitals is solved iteratively instead of large
cigenvalue problem of the whole system. Thus, the cpu time consumed in one-unit
extension by our calculation 1s much shorter than the usual calculation. Moreover,
total cpu time up to nth extension of the elongation method is also shorter than the

~ 80
E
E 70 & Cluster
& % Elongation
é) SO B Elongation (Sum)
S
NG
£ 50 |
=
[7)»
s 40
£
= 30k
i
aa]
g 20
L
5
& 10 |
2
)
0

Elongation cycle : n

(a) Polyethylene
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N
s

Cluster

Elongation
Elongation (Sum)

Elongation cycle : n

(b) Polyacetylene

FIG. 277. The computational times for the propagation of clusters which approximate one-
dimensional periodic polymers by using usual cluster model or the MO-based elongation method,

(a) polyethylene and (b) polyacetylene.

time required for the one cluster with size n. From the comparison of the both methods,
it is expected that the advantage of our method increases more and more when the

system becomes much larger as aperiodic biopolymers.

TABLEZ2S:

clusters of hydrogen molecule or hydrogen fluoride.

The divided orbital space in elongation calculation for

(I Iz),,‘(l I2)3_(1 I2)n

(HE),-(HF) (1),

Active IF'rozen Active I'rozen
Total Total
n A@s» Oee. Vac. Oce. Vac. AQOs. "Oec. Vac: Occ:Vac,
1 1 gl A L LA v Al S Ll |
2 14 7 7 0 0 40 26 8 6 0
3 18 9 8 0 1 50 30 8 10 2
4 22 10 10 1 1 60 30 10 18 23
5 26 104~ 10 3 3 70 30 08 26 4
6 30 2. 412 5 3 80 30 10 34 6
o 34 [ 2212 5, 5 90 30" 1O 22 8
8 38 | {758 0 % i 100 304 .10 50210
9 42 2t 9 9 110 30 10 S8 12
10 46 | 62 ¥ 11 11 120 S0= 10 66 14

2 The total number of atomic orbirals (AOs) in the cluster as well as that

of molecular orbitals (MOs).
P The number of occupied MOs in the orbital space.
¢ The number of vacant MOs 1n the orbital space.
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TABLE 26. The divided orbital space in elongation calculation for
clusters of polyethylene or polyacetylene.

H-(CH,),-(CH,),(CH,),-H  H«(C,H,),-(C,H,),-(C,H,),-H

Aclive I'rozen Active I'rozen
Total Total
n AOs Oce Vac. Oce: Vac. AOs Occ. Vac. Oce. Vac
| e [ | L | i 1 31> 31 o oF
2 50 2y 25 0 0 82 38 38 3 3
3 62 3 | 0 0 102 42 40 o 11
4 74 34 32 3 & 122 42 42 19 19
S 86 34 32 ORI 142 42 42 29 29
6 98 34 32 154 LT 162 42 42 39 39
7 110 Bas 39 24 23 182 42 42 49 49
8 122 84 32 27 29 202 42 42 59 359
9 134 S e S 2 222 42 42 69 69
10 146 34 32 39 41 242 42 42 79 79

4The total number of atomic orbirals (AOs) in the cluster as well as that

of molecular orbitals (MOs).
®The number of occupied MOs in the orbital space.
¢ The number of vacant MOs in the orbital space.

The divided orbital spaces which are final active and frozen orbitals in these
calculations are summarized in Tables 2.5 and 2.6. The first freezing of occupied
orbitals appears at n=4 for hydrogen molecule, at n=1 for hydrogen fluoride, at n=4
for polyethylene, and at n=2 for polyacetylene. This means that the orbitals begin to
be frozen against the following propagation of clusters; from (H,), to (H,),, for hydrogen
molecule, from (HF), to (HF), for hydrogen fluoride, from H-(CH,),,-H to H-(CH,),,-H
for polyethylene, and from H-(CH),,-H to H-(CH),,-H for polyacetylene. In repeating
the extension, the active space becomes constant, and constant number of orbitals is
newly frozen against each extension. This situation has been discussed in our previous
study on stationary orbitals'’ and it has been pointed out that the analysis of the
stationary spacc gives us the information on the electronic state from cluster to polymer."'
As described in these works, it 1s expected that the band structure can be reconstructed
from our cluster-series calculation.'

Next, energy increments AE(n) = E(n) - E(n-1) which corresponds to the
cnergy per two units of polymer are shown in Figs. 2.8(a)-2.8(d). For comparison, the
energies of periodic polymers obtained by the CO calculations including up to the 15th
neighbor interaction are also shown together. For all cases, the energies per two units
are converged into those of the periodic polymers at n=10. In the case of hydrogen
molecule, the convergence is very fast in comparison with other cases because of the
weak interaction between molecules. The converged values are listed below together

with the values of the CO calculations.

AE(10) E(Crystal)
Hydrogen molecule - -78.7548 eV -78.7548 eV
Hydrogen (luoride ; -1545.4935 ¢V -1545.4941 eV
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-78.745
i —e— Energy increment (eV)
-78.750F
Crystal orbital calculation
-78.759
-78.760f
_78.765 i 1 1 1 1 1 1 1 1 1

(R NSRS PR N T RSO O

Elongation cycle : n

(a) Hydrogen molecule

Polyethylene : -472.8291 eV -472.8296 eV
Polyacetylene - -852.8634 ¢V -852.8640 ¢V

The energy increment AE corresponds to the energy of periodic polymer exactly.
Thus, the clongation method can reproduce the property of periodic polymer in the
case of the periodical propagation.

-1545.480

—@— Lnergy increment (eV)

-1545.485 |

-1545.490

-
-1545.495

Crystal orbital calculation

_1545.500—lllllllll
g D ppriger e gl e g, 19

Elongation cycle : n
(b) Hydrogen fluonde
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-472.820

—e— Energy increment (eV)

-472.825 |

-472.830§

I Crystal orbital calculation

-472.835

T

| -] ) R |

-472.840 ] 1 1 1 1 1 1 L 1
N S S LR 1 (S e B e O R 1)

Elongation cycle : n

(¢) Polyethylene

-852.855

- —— [inergy increment (eV)

-852.860

q

-852.865

Crystal orbital calculation

-852.870 |-

-852.875 ! 1 1 bl 1 1 1 1
T [ S I S e

Elongation cycle : n

(d) Polyacetylene
FIG. 2.8. The energy increment in each elongation cycle corresponding to the energy per two units
of clusters shown in Fig. 2.6. The solid line indicates the energy increment by elongation calculation

and the dashed line the energy of periodic polymer by crystal orbital calculation, (a) hydrogen
molecule, (b) hydrogen fluoride, (¢) polyethylene, and (d) polyacetylene.
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(a) Model 1 H—H 1
n

% & HnseHiE— H e flie H—H Wt H) ot &4

(b) Model 2 H—H H e — |
}H
H—H H—H H—H
o & i [Ha=HOH—H = =R - H) v
(¢) Model 3 H—H =1k
. IH
H—H H—H H—H

A 1. " A ot i s Rt R : S | I8 O AT

FIG. 2.9. The models used 1n the calculation for stacking of molecules on surface. The following
geometrical parameters were assumed; bond length of hydrogen molecule = 0.742 A and
intermolecular distance = 1.0 A. The layers of hydrogen molecules are approached on surface at
equal interval d.

2.3.2. Molecular Stacking on Surface

The stacking calculations of three models for the growth on crystal surface
illustrated in Figs. 2.9(a)-2.9(c) were carried out by using the CO-based elongation
method. We used (H,); as a unit cell and [(H,)s], = (H,);5s as a supercell, and the
supercell is the model of "quasi" crystal surface. In model 1, one hydrogen molecule is
added on the supercell one by one. Three hydrogen molecules approach to the supercell
one after another in model 2, and in model 3, two hydrogen molecules are put upon the
top of the layers in model 2. The latter case may correspond to a lattice defect on
surface. In these models, we stacked up n layers successively on the surface at an
cqual interval.

The total energies and cpu times of model 1 are listed in Table 2.7 at three
distances d=2.0, 1.6, and 1.2 A between layers . The agreements between the usual
CO calculation by using the nearest neighbor approximation and the elongation
calculation are excellent. The computational time by our approach is much faster than
the usual CO method. In our calculation, when we need to obtain the result at n=m,
we have to calculate from n=1 to n=m. However, the cpu time required for the
clongation calculation from n=1to n=m is shorter than that in the usual CO calculation
only at n=m. In other words, our approach can calculate up to mth cycle in shorter
time than the usual CO calculation for the only one value for n.

54




Chap. 2 : Electronic Structures of Large, Extended, Non-Periodic Systems

TABLE 2.7. Total energies and cpu times of stacking calculation for model 1.

Total energy (eV)

cpu time (min:s)?

Flongation®

d(A) n Crystal orbital Elongation Crystal orbital
1 -1418.227053 -1418.227049 95:16 13:5241312)
2. -1458.252508 -1458.252508 104:27 2:40(15:52)
2.0 3 -1498.277917 -1498.277917 114:23 1:48 (17:40)
4 -1538.303308 -1538.303308 124:35 1:55(19:35)
5 -1578.328685 -1578.328686 135:58 2:03 (21:38)
| -1417.827242 -1417.827240 94:58 B SONCTS: 1.0)
2 -1457.490382 -1457.490382 104:37 3:45 (16:55)
1.6 3 -1497.153286 -1497.153286 115:06 1:50 (18:45)
4 -1536.816176 -1536.816176 125:56 1:57 (20:42)
5 -1576.479056 -1576.479056 137:41 2:04 (22:46)
1 -1416.093566 -1416.093533 94:36 12:18 (13:38)
2 -1454.152076 -1454.152068 104:11 4:38 (18:16)
1.2 3 -1492.209366 -1492.209360 114:38 2:54 (21:10)
4 -1530.266521 -1530.266515 126:18 1:57(28:07)
5 -1568.323670 -1568.323664 138:27 2:05 (25:12)

? ¢cpu time on IBM RISC System/6000 340.
® The value in parentheses indicates the sum of cpu time up to the nth extension.

(a) Model 1

=I5t

—H4

— H3 > Stacked five layers

1z

T

= HitH—=H" H—H "TH—H"" e a8 [Hi—H" S — ==Y
s 2 3.9 5 Surface 332 B3 3435

(b) Models 2 and 3

= Hil SiH ——TH{ 5

=102

—H7 H—H9 > Stacked five layers

=4 H =G

—H1 H—H3 7
H H—H ~—~~— H—H oo ¢ H—H H—H H—H
flnciant2 3 9:. 10 Surface S1832: 3884 135

FIG. 2.10. The numbering of atoms in the following models, (a) model 1 in Table 2.8 and (b) models
2 and 3 in Table 2.10. The model is symmetrical and only half side of the system is shown.
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TABLE 2.8. The electron density distributions on surface on which stacked five layers and on
atoms in five layers for model 1.

[ayer
d=2.0 A My -2~ - My He - H5
Crystal orbital  1.0005 1.0000 1.0000 1.0000 1.0000
I:longation 1.0005 1.0000 1.0000 1.0000 1.0000
Surface
d=2.0 A 1 H2 H3 H4 HS H31 “SH32F H33* s34 LH3S
Crystal orbital  1.0002 0.9995 0.9998 1.0001 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
Elongation 1.0002 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
[ayer
d=1.6 A Hi "HZ ‘H3 ®4 HS
Crystal orbital  1.0018 1.0000 1.0000 1.0000 1.0000
Elongation 1.0018 1.0000 1.0000 1.0000 1.0000
Surface
d=1.6 A 1 H2 H3 14 HS5 H31 =H32» H33" .H34. H35

Crystal orbital  1.0008 0.9984 0.9992 1.0004 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000
Elongation 1.0008 0.9984 0.9992 1.0003 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

Layer

d=12 A H1 H2 H3 H4 H5

Crystal orbital  1.0055 1.0002 1.0000 1.0000 1.0000
Elongation 1.0055 1.0002 1.0000 1.0000 1.0000

Surface

d=12 A HI H2 H3 H4 Ho:  Hsd "H3Z ' HBS  H34 « HB5

Crystal orbital  1.0025 0.9953 0.9973 1.0012 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000
Elongation 1.0025 0.9951 0.9974 1.0010 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000

4 The numbering of atoms is shown in Fig. 2.10(a).

The electron density distributions of model 1 are summarized in Table 2.8 in

which the numbering of atoms is given in Fig. 2.10(a). This table indicates that the
atomic populations of additional layers and the central and end parts of the supercell

are in good agreement between the both methods for various distances.
In Table 2.9 the total energies and cpu times of models 2 and 3 are summarized,

and in Table 2.10 the clectron density distributions by the both methods are shown,
where the numbering of atoms is written in Fig. 2.10(b). Also in the cases of models 2
and 3, the results obtained by using our method agree with those obtained by using the
usual CO method in good accuracy and our calculation has much advantage in

computational time.
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TABLE 2.9. Total energies and cpu times of stacking calculation for models 2 and 3.

d=1.6 A Total energy (eV) cpu time (min:s)®
Model 7 Crystal orbital Elongation Crystal orbital ~ Elongation -

1 -1495.426436 -1495.426433 116:02 13:17 (14:37)

2 -1612.684387 -1612.684386 152:55 9:05 (23:42)

3 -1729.941864 -1729.941863 198:37 1042 (34:24)

- -1847.199353 -1847.199350 254:12 12:35 (46:59)

" 5 -1964.456913 -1964.456909 318:32 1441 (61:40)
- 6 -2081.714558 -2081.714553 394:28 17:09 (78:49)
7 -2198.972288 -2198.972282 488:04 19:42 (98:31)

8 -2316.230099 -2316.230092 590:34 22:26 (120:57)

9 -2433.487988 -2433.487981 709:46 25:31 (146:28)

10 -2550.745952 -2550.745943 847:27 28:42 (175:10)

1 -1457. 444361 -1457.444350 106:10 11:08 (12:28)

2 -1574.709550 -1574.709545 140:21 8:39 (23:16)

3 -1691.967362 -1691.967359 180:06 9:40 (33:22)

-+ -1809.224873 -1809.224869 23414 12:34 (46:58)

3 5 -1926.482423 -1926.482417 296:36 1442 (61:41)
i 6 -2043.740045 -2043.740038 368:16 17:20 (79:00)
7 -2160.997749 -2160.997741 454:08 20:27 (99:16)

8 -2278.255534 -2278.255525 551:25 22:50 (121:21)

9 -2395.513397 -2395.513388 668:22 26:05 (147:02)

10 -2512.771336 -2512.771326 800:28 2093171951

2 cpu time on IBM RISC System/6000 340.
® The value in parentheses indicates the sum of cpu time up to the nth extension.

TABLE 2.10. The clectron density distributions on surface on which stacked five layers at d=1.6
A and on atoms 1n five layers for models 2 and 3.2

Model 2

[ayer HI H2

H3

H4 H5

H6 H7 H8 H9 H10

Crystal orbital

Elongation

Layer

0.9981 0.9651 1.0387 0.9981 0.9670

HIT Hi2 Hi3* k4 THilS

Crystal orbital
Elongation

Surface

0.9676 1.0342 0.9977 0.9615 1.0407
0.9676 1.0342 0.9977 0.9615 1.0407

HI H2 H3 H4 H5

0.9981 0.9651 1.0387 0.9981 0.9670 1.0349 0.9982 0.9674 1.0344 0.9982

1.0349 0.9982 0.9674 1.0344 0.9982

Ho6 H7 H8 H9 H10

Crystal orbital
Elongation

Surface

1.0008 1.0052 0.9957 0.9991 0.9975
1.0008 1.0050 0.9959 0.9988 0.9978

H31.0:H32 H33 H34 H3$

Crystal orbital
Elongation

1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000

1.0005 0.9992 1.0002 0.9997 1.0000
1.0002 0.9995 1.0000 0.9999 1.0000
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TABILE 2.10. (Continued.)

Model 3
Layer HI H2 H3 H4 H5 H6 H7 HE H9 HI10

Crystal orbital  0.9981 0.9651 1.0387 0.9981 0.9670 1.0349 0.9982 0.9675 1.0343 0.9950
Flongation 0.9981 0.9651 1.0387 0.9981 0.9670 1.0349 0.9982 0.9675 1.0343 0.9950

Layer Hil Hi2. H13 Hi4 HIS5
Crystal orbital  0.9641 1.0389 - 1.0036 0.9984
Llongation 0.9641 1.0389 —-—---—- 1.0036 0.998+4
Surface H1 H2 I3 H4 HS Ho6 H7 H8 H9 10
Crystal orbital  1.0008 1.0052 0.9957 0.9991 0.9975 1.0005 0.9992 1.0002 0.9997 1.0000
Elongation 1.0008 1.0050 0.9959 0.9988 0.9978 1.0002 0.9995 1.0000 0.9999 1.0000
Surface H31 H32 H33 H34 H35

Crystal orbital  1.0000 1.0000 1.0000 1.0000 1.0000
Flongation 1.0000 1.0000 1.0000 1.0000 1.0000

? The numbering of atoms 1s shown in Fig. 2.10(b).

Next, the sum of electron density on ecach hydrogen atom in the surface is listed
in Table 2.11 for the three models. In models 1 and 2, no electron transfers are found
between the surface and the layers at the two distances of d=2.0 and 1.6 A. Small
amounts of electron transfer from the surface to the layers are found only at d=1.2 A.
In model 3 for lattice defect, electron transfer from the surface to the layers appears in
the case of n=1, in which the defect site i1s created on the surface directly. For the
systems having more than n=2, the perfect layers between the surface and the defective
layer may screen electron transfer, and thus the tendency of the electron transfer is the
same as that of model 2.

The net charges on cach site of the surface for model 1, in which five layers are
piled up on at the equal interval d, are shown in Figs. 2.11(a)-2.11(c). In the case of d
=2.0 A, the deviation of the charge density from the value for bulky chain is little
recognized, and of d=1.6 A, it is observed a little around the central molecule. For d
=1.2 A, the effect of the stacking layers is extended within nearly five molecules at the
center of the surface. For the all cases, the central site on which layers are stacked has
minus charge and its neighboring sites have plus.

TABLE 2.11. The sum of electron density on surface of models 1,2, and 3.2

Model 1 Model 2 Model 3

d= Z0A 16A 1ZA 20A 16A 12A 20A 16A 12A

~

69.999 69.996 69989 69999 6999 69988 69998 69.993 69979
69.999 69.996 69989 69999 69.996 69987 69.999 69.996 69987
69.999 69.996 69989 69999 69996 69.987 69.999 69.996 69987
69.999 69.996 69989 69999 69996 69987 69.999 69.996 69.987
69.999 69.996 69989 69999 69.996 69987 69.999 69996 69987

N W~

4 The sum of electron density on i1solated surface -(1;)35- = 70.
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FIG. 2.11. The distribution of net charge on surface in model 1 on which five layers are piled up at

the distance d, (a) d=2.0 A, (b) d=1.6 A, and (c) d=1.2 A.

The charge distributions on [ive-layers-stacked-up surface of model 2 are given
for three distances between layers in Figs. 2.12(a)-2.12(c). In each case, by comparing
with the surrounding sites, the central site is not heavily affected by the stacking. The
charges of the ncarest site are minus, while that for second nearest plus. The diffusion
of the charge distribution is found in wide range on the surface when layers place upon
at the interval of d=1.2 A.
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The distribution of net charge on surface in model 2 on which five layers are piled up at

the distance d, (a) d=2.0 A, (b) d=1.6 A, and (c) d=1.2 A.
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The effect of continuous addition of layers on the charge distributions of models
2 and 3 at the distance of d=1.2 A arc shown in Figs. 2.13(a)-2.13(c) and Figs.
2.14(a)-2.14(c), respectively. In model 2, from a little difference between Figs. 2.13(a)
and 2.13(b), the second layer appears to interact with the surface weakly through the
first layer, that is, the newly placed layer may effect on the nearest and second nearest
layers. While, the third layer has no influence on the surface since the charge distributions
in Figs. 2.13(b) and 2.13(c¢) are quite similar with each other. (At the distance d=2.0
A, the distribution on surface remains unchanged against the addition of layers, and
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FIG. 2.13. The change of charge distribution on surface in model 2 on which n layers are stacked
up at the interval d=1.2 A, (a) n=1, (b) n=2, and (c) n=3.

the newly adding layer may interacts only with the nearest layer since the charge
distributions on the layers apart from the top layer by more than two layers are not
affected by the addition of top layer. This situation is the same as that at the distance d
=1.6 A.) In model 3, on the central molecule of the surface on which defect is created
and on the second nearest molecule from the defect, atomic populations decrease,
while on the nearest molecule, the populations increase in the case of first stacking as
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is shown in Fig. 2.14(a). In the case with more than two layers, there are several
perfect layers between the top defect and the surface, and charge distributions on
surface 1s shown in Figs. 2.14(b) and 2.14(c) and its tendency is almost similar with
that of model 2 by comparison of Fig. 2.13 with Fig. 2.14. (From comparison like this,
it finds that the charge distributions on the surface apart from the top defective layer

Net charge

0.010
0.008
0.006
0.004
0.002
0.000 ¢
0002
-0.004
-0.006
-0.008

T

SO0

l —@— Charge distribution on surface I

T (R PR T A (5, VO T N I Rl o) O VT D Y VR G SR N e et T D TSR e 10 Y O R e 1

Surface site

(¢)

IFIG. 2.14. The change of charge distribution on surface in model 3 on which n layers are stacked
up at the interval d=1.2 A, (a) n=1, (b) n=2, and (¢) n=3. In this model, the nth layer corresponds to
defective structure.
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TABLE 2.12. The divided orbital space in elongation calculation for the stacking on
surface of model 2.

d=2.0 A d=1.6 A =l 2

Active F'rozen Active I'rozen Active F'rozen

Total
A@s Qce Vac. QOce: Vac. Occ. Vac. Occ. Vac. Oce. Vac. Oce. Vac.

~

I 76& 12% 10° 26Y% 298¢ 13B [0S 25° 298¢ 40 12% 249 26°
2 8 12 8 29 33 14 10 27 31 16 11 25 30
3 88 9 7 35 37 13 8 31 36 16 10 28 34
4 o4 g 7 B% 40 1I- '8 36 39 16 10 31 37
5 100 e 7 4 48 11 8 39 42 15 10 35 A&
6 106 9 7 4 46 11 8 42 45 14 10 39 43
7 112 g gz igon s ER s Ag A igr A2 46
8 118 g 7 I8 11 8§ 48 351 14 4D, A5 49
9 124 9 . 5p s8 YR, 81,54 W 10 48 8
10 130 9 7. %, 58 11 8 5 5T 14 10 51 85

4 The total number of orbitals in the system.
® The number of occupied orbitals in the space.
¢ The number of vacant orbitals in the space.

by m layers in model 3 are consistent with those in model 2, that is, m=2 at d=2.0 A,
m=2 at d=1.6 A, and m=4 at d=1.2 A.) It is suggested that the effect of defect may
reach to the m-1th layers from the defect.

The orbital space in stacking cycle of model 2 is listed in Table 2.12. The active
spaces at three distances become larger in the following order; d=2.0 A < d=1.6 A <
d=1.2 A and become constant as follows; 16(total), 9(occ), 7(vac) at d =2.0 A, 19(total),
11(occ), 8(vac) at d=1.6 A, and 24(total), 14(occ), 10(vac) at d=1.2 A. Because of the
weak interaction between layers constructed with hydrogen molecules, the active space
in stacking on surface is smaller than that in the propagation of cluster listed in Table
2.6.

2.3.3. Local Chemisorption on Surface

In this subsection, we report briefly the results by the application of this method
to the local chemisorption on surface as the model for more realistic system. We
approached one carbon monoxide to atomic chain of magnesium with one-dimensional
periodicity as shown in Fig. 2.15. For this system, we performed only elongation
calculations and usual CO calculations were not carried out since it consumes much
computational time. Thus, results shown in this subsection are obtained by using
CO-based clongation method. However, we assume that the accuracy of results is
sufficient because it is shown in subsection 2.3.1 that our approach is reliable to the
system with chemical bonding in good accuracy.

The potential energy curve and the change of net charge on each atom (carbon
and oxygen atoms in carbon monoxide, magnesium atom at chemisorption site on
surface) versus the distance between the surface and a molecule are summarized in
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FIG. 2.15. The model system for local chemisorption of carbon monoxide on atomic chain of
magnesium.

Figs. 2.16(a) and 2.16(b), respectively. The minimum point of the energy potential is
almost at d=1.9 A. The net charge on the oxygen atom has little change compared
with the other atoms. The plus charge on carbon atom increases with approaching to
magnesium chain, and magnesium atom has minus charge, because the charge transfer
from carbon to magnesium occurs.

Of course, these calculations in this work can not reproduce the real system
extended in three dimensions. But, we may expect that our approach to treat local
chemisorption on periodic surface can mimic the real system efficiently. That is,
usually, the periodic surface is approximated by the cluster of several layers, and a
molecule is placed on the cluster. In this approach, however, the size of the cluster
required for the estimation of bulk limit is not necessarily clear. With regard to this
point, our CO-based elongation method is satisfactory and able to describe the electronic
structure of the surface.
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FIG. 2.16. The results of calculation for chemisorption, (a) potential energy curve and (b) net charge
on magnesium atom at chemisorption site and each atom of carbon monoxide.
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2.4. SUMMARY

In this work, we developed the elongation method at the Hartree-Fock level by
using the CNDO/2 approximation and applied it to the models for the propagation of
clusters to describe periodic polymer systems. The clusters of hydrogen molecule,
hydrogen fluoride, polyethylene, and polyacetylene were clongated in one dimension.
The results obtained by using the elongation calculation and by using the usual cluster
calculation were in excellent agreement. The energy increment in the continuous
clongation was in complete agreement with the energy of periodic polymer calculated
by the CO method. It suggests that the elongation method can reproduce the property
of periodic polymer efficiently, for instance, the band structure as discussed in the
previous studies.'*"

Also, the method based on the CO theory to treat the extension within local
region on surface was developed by using the combination of the elongation method
with the supercell method. We performed the calculations of three models for the
growth of crystal surface and good results were obtained. Although only the hypothetical
models constructed with hydrogen molecules arranged in one dimension were dealt
with, it should be emphasized that the obtained results suggest the applicability of our
method to more realistic systems and it will be carried out in practice if this method is
extended to two-dimensional systems.

We indicated the usefulness of our method within the CNDO/2 approximation
in this chapter. However, since our method has necessarily no special limitations and
conditions, it can be used in more advanced semiempirical calculations. Several
calculations are now carrying out in our group and we will report the results in near
future. Moreover, it can be applicable to ab initio calculations if we select the active
and the frozen orbitals from both of the variational and the orthonormality conditions
in the extended system.

As a next step, we will attempt to apply our method to two-dimensional problems
and various realistic systems like as adsorptions on crystal surface or local defective
structures, and moreover, catalytic effects. In studying in this direction, usually, the
periodic surface is approximated by the cluster of several layers, and a molecule is
placed on the cluster. In this approach, however, the size of the cluster which is
required to estimate sufficiently the bulk limit of surface is not necessarily evident.
With regard to this point, our CO-based elongation method would be satisfactory and
able to describe the electronic states of bulk surface.
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Chapter 3

Interface and Local Defect States in a Polymer:
Periodicity in Electronic States of a Nonperiodic Polymer

We have developed an approach at the Hartree-Fock level by which it is possible to
calculate the clectronic structures of large polymers with or without periodic sequences
systematically. This elongation method is based on the concept of a cluster-series
calculation which means the successive connection of cluster molecules at the molecular
orbital level in approximating a large polymer as a cluster molecule. It has already
been reported that we can extract the periodic condition of the electronic states within
the series of extended clusters by using the cluster-series model. Recently, we tried to
introduce the elongation method into the program package of semiempirical molecular
orbital methods MOPAC. In the present chapter, we report results of applications to
the calculations of three polymer systems by using AM1 parameters, that is, the first
system is the periodic polymer, the second is the interface between two blocks in a
polymer chain, and the third is the local defect within a periodic polymer. In calculations
of periodic polymers, clusters of polyethylene, polytetrafluoroethylene, polyacetylene,
or polydifluoroacetylene were elongated in one direction, and the interfaces between
the above polymer blocks with ethylene- or acetylene-type chain were dealt with by
the two-directional elongation method. Also, the solitonic structures with one plus or
minus charge within polyacetylene chain were created in elongation calculations of the
bidirectional extension as models for the local defect in a periodic polymer. Moreover,
we discussed periodic states of electronic structures in these systems from cluster-series

calculations.
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3.1. INTRODUCTION

In studying the electronic structures of polymer systems based on the quantum
chemical calculation, the most different point in comparison with the calculation of
small molecules is that it is impossible to calculate whole molecules of polymer with
large size. For that reason, we need a model system for the large polymer by any way
in practical calculations.

One approach to deal with polymer systems is the cluster model in which a
polymer is approximated by a cluster molecule with several units of the polymer. In
applying this model to extract the electronic property of the polymer, the molecular
orbital calculation of each cluster molecule with different size is performed individually,
and in those calculations, we monitor the phycochemical property, e.g., the energy per
unit or the electron density distribution, in which we take the cluster size larger, and
regard the converged value as that for the bulk limit of the polymer. The merit of this
cluster approach is the applicability to any nonperiodic polymers because the units
which form the cluster molecule are not limited to be the same with each other, while,
the demerit is that the size dependence of application and that the detection of the bulk
limit is not necessary clear. Also, how can we extract the periodicity ol electronic
structures such as the band structure in the case of periodic polymers?

Another is the crystal orbital calculation in which the perfect periodicity of a
polymer chain is assumed; that is, the polymer is approximated as the one-dimensional
crystal with periodic sequence of its constituent unit. In this calculation, the eigenvalue
problem of the system is solved under the periodic boundary condition to obtain the
crystal orbitals which satisfy the translational symmetry of the system. By this crystal
approach, we can know the electronic property of the bulk state without the end effect
and obtain the band structure or the density of states based on the periodic nature. But,
this method is so restricted by the periodic boundary condition itself, that is, it requires
the periodic condition of molecules by which it is difficult to treat the effect of local
aperiodicity in periodic polymers.

Surely, the methods based on the molecular orbital theory or the crystal orbital
theory are well established and developed at present as very useful tools for the study
of small molecules or one-, two-, and three-dimensional periodic systems, respectively,
and those have been widely applied to various systems.'” However, some problems
still remain in the application of the methods to large, extended, nonperiodic polymer
systems as is pointed out above briefly. Those are the treatment of the size effect in the
cluster model and the aperiodic effect in the crystal model. In particular, for polymers
with aperiodicity within a local region, the most difficulty in dealing with the systems
is caused by the fact that we must take into account the following two states connecting
with each other in a polymer chain simultaneously; that is, the periodic-extended state
which can be represented appropriately by the crystal orbital as a polymer with periodicity
and the aperiodic-localized state which is suitable to be described by the molecular

orbital as a cluster molecule in periodic surroundings.
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In order to investigate the electronic structures of large, extended, nonperiodic
molecules, scveral approaches have been developed by various groups in recent years.
For instance, local space approximation to combine fragments connected by a localized
bonding interaction,™ Green matrix method for a local perturbation in the periodic
polymer,®” localized electron pair theory for the calculation of ground state energies of
large molecules,”"NDDO fragment self-consistent field approximation for large electronic
systems,” a divide-and-conquer approach to the ab initio computation of large
molecules, "’ an ab initio method for approximation of the frozen molecular fragment, '
and so on. Morcover, the treatments of local defects in a solid based on embedded-cluster
approach are also in progress.'"”

On the other hand, our group has recently developed the elongation method for
the study of any polymer systems with or without periodicity.'® In this method, by
extending a cluster molecule continuously, we can synthesize periodic or aperiodic
polymers theoretically. Also, application of this method to the calculation of local
density of states in aperiodic polymer has been reported.'” Moreover, it has been
shown that we can extract the periodic nature in a polymer chain by an analysis of
stationary space in the cluster-series calculation based on the elongation method."
And, it has been confirmed to be able to reconstruct the band structure of periodic
chains from the analysis.'”*’ Furthermore, the trials to develop the elongation method
based on the crystal orbital theory were carried out’** and now in progress.

The elongation method is a natural extension of cluster model, that is, a polymer
chain is approximated as a cluster molecule. But, the calculations of clusters with
different sizes can be carried out as a cluster series in our model instead of treating the
clusters as one molecule individually in the usual cluster model by the following
manner. In the elongation method, we extend a cluster molecule by connecting a
molecular fragment with the end part of the cluster one after another as is shown in
Fig. 3.1. This figure represents the outline of the cluster-series calculation by the
clongation method schematically. A starting cluster with a suitable number of its
constituent units is extended by connecting with any fragment molecules continuously.
In order to carry out the successive size extension of the system efficiently and
systematically, under the influence of newly combined fragments, the separation of
orbital space in a cluster can be performed at the molecular orbital (MO) level. That is,
we can determine the MOs which are affected (active MOs) and which are unaltered
(frozen MOs) by the connection of a new fragment in one-unit extension. This situation
is described in Fig. 3.1 in the following way; the orbital space in a starting cluster can
be divided into frozen space A and active space B under the interaction with atomic
orbitals C in the first fragment. The electronic structure of the extended cluster can be
determined by solving only the eigenvalue problem within B+ C. At this stage, all
MOs in the one-unit-elongated cluster are separated into active MOs as B+ C and
frozen MOs as A. Then, in extending one more unit, only the interaction between the
active MOs and a next adding fragment is taken into account fully. In other words, the
frozen MOs are fixed and kept unchanged in the following extension. The illustration

72



Chap. 3 : Periodicity of Electronic Structure in a Polymer
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FIG. 3.1. Schematic illustration of the outline for the process of elongation calculation by which the
cluster molecule 1s extended in one direction successively, that is, the cluster-series model for the
theoretical synthesis of the electronic structure for periodic or aperiodic polymers with any lengths.

in Fig. 3.1 shows this stage as follows; the previous active space B+ C can be specified
as the new frozen and active spaces B and C by the connection with new atomic
orbitals D in the second fragment. The eigenvalue problem of the extended system
can be solved by removing the frozen spaces A and B. That is, the electronic structure
ol a two-unit-extended cluster is determined by the old and new frozen MOs of A and
B and the new active MOs of C+ D. These procedures ol separation and extension
can be repeated until we can obtain the polymer with desired length. Furthermore, at
the same time, we can obtain the series with separated orbital spaces of MOs in an any
periodic or aperiodic polymer as A, B,C, D,...,N in Fig. 3.1. In practical elongation,
in solving the eigenvalue problem of the extended cluster series only within the active
space, the self-consistent-field (SCF) calculation for the active MOs in an original
cluster plus the atomic orbitals in an added fragment can be replaced by a series of
SCF steps with a largely reduced number of basis orbitals. The detail of explanation
concerning the treatment of SCF procedure is described in the next section. Also, the
active space of extended cluster series is retained as almost constant in successive
connection with fragments, and thus, we can treat the large system without increasing
the dimension of SCF step by the orbital division.
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As is mentioned above briefly, the elongation method includes the extension
process itself to be able to perform the efficient extension of polymer systems by the
cluster-series model and the systematic analysis of electronic structures at the MO
level by the orbital separation. Also, it can be considered that a series of frozen
orbitals represents the electronic states of the polymer since those orbitals are separated
as the MOs which are independent of the extension of the system, and it may be
expected that we can extract the periodicity of the electronic structure within a cluster
series by analyzing the frozen space in elongation calculations at the molecular orbital
level. That is, the periodic or the nonperiodic nature of the electronic structure in a
polymer including both periodic and aperiodic parts should appear in the freezing
pattern of electron density which can be obtained from the elongation method.

In this work, we tried to combine the elongation method with the program
package of MOPAC™ by which semiempirical molecular orbital calculations for the
wide range of molecules can be performed at various levels of the approximation. The
main purpose of this work is to confirm and demonstrate the usefulness and generality
of our approach in studying large, extended, nonperiodic polymer systems. For that
purpose, we applied the method to following periodic polymers, that is, polyethylene,
polytetrafluoroethylene, polyacetylene, and polydifluoroacetylene. Also, as some
samples of applications to aperiodic polymer systems, calculations of polyethylene-
polytetrafluoroethylene and polyacetylene-polydifluoroacetylene interfaces and of
positive- and negative-charged solitons in polyacetylene were carried out.

In the following sections, we describe the calculation procedure of the elongation
method and show results obtained by using this method in comparison with those
obtained by using original MOPAC. Also, we discuss the characteristic of electronic
states with periodicity in a periodic or nonperiodic polymer chain.
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3.2. METHOD

[t has been pointed out in the previous works of our group that after the extension
of cluster by one unit is finished, if we select the MOs in an original cluster which
satisfy both the orthonormality condition and the variational condition between adding
fragment and within the cluster in extended system, those orbitals are also good MOs
in the extended cluster, that is, the MOs are stationary against the size cxtension and
stationary orbitals arc unaltered under the effect of additional fragments.'™*" In this
study, an analogous method by which we can extract the stationary orbitals mentioned
above was employed in order to determine the active and the frozen orbitals for the
onc-unit extension. That is, we choose and distinguish the MOs which satisfy and do
not satisfy the variational condition, which means that the matrix elements of the
MO-based Fock matrix between occupied and vacant orbitals must be zero in the
system. (Here, it must be noted that because we employ the semiempirical MO methods
in this work, the orthonormality condition is self-satisfied in the system automatically.)

In the situation that the effect of a newly connected fragment is almost localized
within the region at the cluster end (this situation is expected in the case that the size
of the cluster is much larger than that of the fragment), it is not necessary to take into
account the interaction between all orbitals in the cluster and atomic orbitals in the
fragment. Thus, the selection of interaction and noninteraction orbitals in the total
orbital space of the system can be done, and then, it is reasonable that we have only to
solve the eigenvalue problem of the extended cluster within the interaction space.
Several methods which can define the interaction and noninteraction orbitals of the
system may be applicable. In this work, we determined the "interaction" orbital as the
molecular orbital which does not satisfy the variational condition and the "noninteraction"
orbital as the orbital which does the condition. That is, the SCF calculation can be
replaced by the SCF series of eigenvalue problem with interaction orbitals as more
effective basis orbitals. As described in the latter part in detail, under the influence of a
newly connected fragment, by repeating the orbital selection of interaction and
noninteraction orbitals and solving the eigenvalue problem within interaction space of
the system, we can extract the following MOs in the extended cluster which are
perturbed by the interaction of the adding fragment (active MOs) and which are not
done (frozen MOs) finally in each extension process by using the elongation method.

In order to divide the total orbital space of the extended cluster into the interaction
and the noninteraction orbital spaces at the MO level as described above, here, we
consider the situation that given orbitals {®;} (i=1,...,N)and {lI’j} (j=1,..., M) interact
with each other. How can we determine and select the specific orbitals in {¥} which
are affected by the interaction with {®} or which are unaltered? For that propose, the
following technique can be applicable based on the variational condition, that is, the
rectangular parts of MO-based Fock matrix is defined as follows:

FOCC o <(I) @ ‘IJ"‘CI i:v| ll[(l‘t) , (3 ]a)
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F\'uc ey <(D® lIl"CC’ ﬁw{ lIJ\'ac>, (3lb)

where F denotes Fock operator, occ and vac indicate occupied and vacant molecular
orbitals, respectively. In the above expression of Egs. (3.1a) and (3.1b), the blocks of
(<I)|l?‘|‘l‘) include the effects of charge transfer and exchange interaction between {P}
and {W}, and the blocks of (V| ﬁ| W) describe the polarization effect within {'V'}. The
selection of MOs in {¥'} which interact with {d} effectively can be done by the
following procedure on the matrices F™ and F'™, respectively. That is, if the orbital
space {V'} includes M’ occupied MOs and M" vacant MOs, we multiply the above
N'xM", N°x M matrices (N'=N+M", N°=N+M") by its adjoint M’ xN",
M" x N° matrices from the left-hand side, respectively, and then, we diagonalize the
obtained M° x M’, M* x M" matrices F*'F* (a = occ or vac) individually. Next, we
perform the unitary transformation on {''} by using obtained eigenvectors and choose
orbitals with greater or smaller cigenvalue of the diagonalized matrix than an appropriate
threshold value from both occupied and vacant orbital spaces of the unitary-transformed
{W}, respectively, because the square root of the eigenvalues of F'F represent the
strength of the interaction between {W} and {®}. Also, as is described above, the
clements in Eq. (3.1) include all terms of polarization, charge transfer, and exchange
interactions of the interacting system which cause orbital mixing. In other words, if we
can create the orbital pairs with zero values of their matrix elements, they do not mix
with each other without interacting. This procedure is analogous to that for the
corresponding orbital* or the interaction frontier orbitals.”** Also, the same manner
was applied in the elongation calculation in order to extract stationary orbitals against
the extension of the system as mentioned above."™ We refer to selected molecular
orbitals with greater or smaller eigenvalues than the appropriate threshold value to as
"interaction” MOs or "noninteraction" MOs, respectively, through this text. In other
words, we define "interaction" MOs as orbitals which are not satisfied with the variational
condition and "noninteraction” MOs as orbitals which are satisfying the condition in
the total orbital space of the system. We solve the cigenvalue problem within the
interaction orbital space only by the self-consistent-ficld (SCF) procedure, and at the
same time, the noninteraction orbital space is removed from basis orbitals of the
cigenvalue problem to be retained unchanging in SCF iterations. In this way, we can
specify the interactive and noninteractive orbital spaces in the total orbital space of the
system.

As we explained the outline of the elongation calculation by Fig. 3.1 in the
previous scction, the size of cluster is extended continuously by adding molecular
fragments one after another. In the elongation calculation by one unit, the SCF iteration
of the extended cluster is required. But, by selecting (non)interaction orbitals in each
step by the procedure mentioned above, we can replace the extended SCF calculation
by a series of SCF steps with small dimension. This is one of the characteristic
features of the elongation method. As another characteristic, after one-unit extension
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of the system, the orbital space can be separated into active and frozen orbitals. We
show the practical steps of calculation in detail in the following.

We show the formulation to solve the eigenvalue problem of the extended
system by using the technique which we mentioned in the previous paragraphs. The
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FIG. 3.2. The procedure for the orbital separation in the system to determine the active and the
frozen orbitals in one-unit extension by the elongation method.
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schematic illustration of the calculation procedure at a viewpoint of orbital separation
is given in Fig. 3.2 and the MO-based matrix in each step is summarized in Figs.
3.3(a)-3.3(c). The interaction blocks in Eq. (3.1) are also shown as the shaded parts in
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As the starting point of the elongation calculation, we carry out the molecular
orbital calculation of the starting cluster with an appropriate size. Then, any molecular
fragments which are or are not the same with cach other can be connected with the
cluster molecule one by one successively. In other words, at the starting point, we
know only molecular orbitals and Fock operator of the starting cluster, and the effect
of connection of fragments is dealt with in following steps shown in Figs. 3.2 and 3.3.

In step 1, because the Fock operator of the extended system including the
influence of fragment is unknown at the starting point, it is considered that the starting
cluster interacts with the adding fragment through core Hamiltonian at first. That 1s, as
is shown in Fig. 3.3(a), the Fock matrix which is based on MOs in the system is
diagonal within the starting cluster, and thus, interaction blocks are taken as follows:

Fo = (| H| W™, (3.2a)
F'™ = (x| H|W"™), (3.2b)

where {x} represents adding AOs in the fragment, {¥'} corresponds to starting orbitals
of the cluster calculated before the elongation procedure, and H is the core term in
Fock operator. By diagonalizing the matrix F'F and comparing the obtained eigenvalues
with the threshold, starting MOs are divided into interaction orbitals {W'(0)} and
noninteraction orbitals {¥/(0)}. Then, we solve the eigenvalue problem based on
{0 @ {W'(0)} by the SCF procedure in order to obtain both resulting orbitals {X(0)}
and Fock operator 1:"(()) including the effect of the fragment partially. In this step,
total orbitals are separated into two orbital spaces of active orbitals {X(0)} and frozen
orbitals {W(0)}. Hereafter, "active" orbitals mean the gathering of all orbitals which
arc perturbed by the connecting AOs through the eigenvalue problem including the
clfect of the fragment, and "frozen" orbitals are the orbitals which are only unitary
transformed and dropped from the eigenvalue problem.

In step 2, the interaction between above active orbitals {X(0)} and frozen
orbitals {W(0)} in step 1 must be taken into account since the variational condition
among these orbitals is destroyed by the change in Fock operator in the SCF iteration
at step 1. In this step, as is shown in Fig. 3.3(b), we deline the interaction blocks as

follows:
F = (X(0)®W(0)"™] F(0)W(0)*°), (3.3a)
F'* = (X(0)® W(0)™ F(0)[W(0)™). (3.3b)

According to the procedure in Eq. (3.1), we diagonalize the matrix F'F which consists
of the blocks in Eq. (3.3) to specily interaction orbitals {W'(1)} which are not satisfied
by the variational condition between {X(0)} and within {¥'(1)} and also noninteraction
orbitals {W¥(1)} which are satisfying the condition between {X(0)} and within {'F(1)}.
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After this selection of orbitals, the eigenvalue problem represented with
{X(0)y@{W'(1)} 1s solved by the SCF procedure. Then, the orbitals {X (1)} arc obtained
as the solution of the eigenvalue problem. Also, we obtain the Fock operator F (). In
this process, new active orbitals correspond to the solution {X(1)} and new frozen
orbitals to {W(1)}. In this way, the variational condition is not necessary satisfied after
the SCF calculation. Thus, the procedure in this step must be repeated until the condition
is satisfied in the whole system. In this approach, the checkpoint for the satisfaction of
the variational condition is the number of interaction orbitals in the system and we
iterate this step by checking whether the number of interaction orbitals becomes zero
or not as long as the number of interaction orbitals is not equal to zero.

In repeating step 2, when the active space becomes larger and the deviation
from the variational condition becomes smaller, it is expected that noninteraction MOs
may appear in this space. To confirm the situation, we check the variational condition
not only in the frozen space but also in the active space in the next step. If there are
any orbitals in the active space, we permit that those orbitals can be separated from the
interaction space of the system. By this treatment, the dimension of the SCF problem
can be largely reduced in the next step.

In step 3, we repeat the following treatment until the local interaction converges
which can be confirmed by checking whether the number of interaction orbitals becomes
zero or not. Now, the 7 + 1 th cycle of this step is described and the first cycle corresponds
to step 2. In this step, as is mentioned above, we choose the interaction orbitals from
the active space {X} and the frozen space {W}, respectively, by the following two-step
procedure. In the first step, we test the variational condition of the active space by

using the interaction blocks as follows:

F& = (W(n)"™|F(n)| X(n)™), (3.4a)

FY = (W(n)™|F(n)| X(n)"™), (3.4b)
where {W(n)} is the set of frozen orbitals alter the nth iteration, {X(#n)} corresponds
to the solution of the eigenvalue problem in the nth cycle and Fock operator F(n) is
determined by the nth procedure. At first, we find the sets of interaction and
noninteraction MOs {®'(n+1)} and {P(n+ 1)} from {X(n)} in the active space by

diagonalizing the matrix F'F. In the second step, we check also the condition of
frozen space by taking the interaction blocks as follows:

Fo = (D' (n+ H@W(n)™| F(n)|W(n)™), (3.5a)
F™ = (@ '(n+ D@W(n) | F(m)|¥(n)"™). (3.5b)

Diagonalization of the matrix F'F cnables us to determine interaction orbitals
{¥'(n+1)} and noninteraction orbitals {¥(n+1)} in the frozen space. After these

81



Chap. 3 : Periodicity of Electronic Structure in a Polymer

two-step selections of interaction orbitals {®'(n+1)} and {W'(n+ 1)}, the eigenvalue
problem is solved within {®'(n+1)}@{W'(n+ 1)} by the SCF procedure to obtain
resulting orbitals {X(n+1)} and Fock operator ﬁ(n+ 1). This step is summarized in
Fig. 3.3(c). In this step, we can separate the total orbital space into the active space
{P}®{X} and the frozen space {'V}.

In the next cycle of this procedure, we assume {X(n+ 1)} and {W(n+1)} as the
interaction space [or the n+ 2th cycle and repeat the procedure in this step as is stated
above within the space. By this manner, at cach cycle of step 3, if there is, {P} in the
active space is removed from the interaction space and we regard each {®} as invariant
through all cycles. This treatment of {d} is based on the fact that the interaction
between {®P(n+ 1)} and {W(n)} is weak enough as eigenvalues of interaction block
between them are smaller than the threshold, that is, we assume that the variational
condition of {P(n + 1)} will not be destroyed by the interaction with {W(n + 1)}. Finally,
if the interaction converges at the mth cycle in this step, the active MOs can be
extracted as {P(2)},...,{P(m)} and the frozen MOs as {W(m)}, thus, we can obtain
the electronic structure of the system in which one-unit extension is finished. That is,
the procedure in Fig. 3.1 that a starting cluster is elongated by the connection with the
first fragment is completed, and the active and frozen MOs as {®P(2)},...,{P(m)} and
{W(m)} correspond to B+C and A in Fig. 3.1, respectively. In the next addition of
fragment D in Fig. 3.1, the active MOs of B+ C can be regarded as new startin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>