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Chapter 1 

Introduction 

1.1 Problem on Scaling in the Lattice Gauge 

Theories 

In 1974, Wilson[l] has proposed a lattice regularization for Quantum Chromo 

Dynamics (QCD). The lattice regularization seems the most natural way for an­

alyzing a continuum field theory. This formulation allow us not only a strong 

coupling expansion but also a Monte Carlo simulation. In particular, the later 

fascinates people who want to know non-perturbative aspects of QCD. The Monte 

Carlo simulation for SD (2) lattice gauge theory, first, has been proposed and im­

plemented by Creutz[2] in 1980. Since then, much efforts, improvelnents of sim­

ulation technique and computer developments, have been poured into the Monte 

Carlo simulation of the lattice gauge theory. Especially it might be worthwhile 

to remind that physicist's demand on COlTIputer went over the supply from the 

commerce. Some people who are not satisfied with the performance of commer­

cial computers have been starting to construct much faster computers, such as 

parallel computers[3] and the efforts in this direction are still going on. Recently a 

typical lattice size for a silTIulation of pure SD (3) gauge sector (without fern1ions) 

has become 244 rv 324 or more[4] owing to developments of computer. 

3 
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Why do we need to go to such a large lattice? The answer is that we Inust 

obtain values of physical quantities in the continuum lilnit. Mainly observables 

from the lattice calculations are suffered from two systematic errors!, the finite 

lattice spacing and the finite volume effects. Naively we expect that as the lattice 

size becomes large and the lattice spacing become small we approach to the con­

tinuum limit. As for the finite volume effect, it is said that we are already in the 

region where the finite volume effect is under control by such as an extrapolation 

to the infinite volun1e limit[4], and the finite volume effect itself is already small 

on a lattice currently used in Monte Carlo simulation. On the other hand, the 

finite lattice spacing effect is still a serious problem. 

Now we discuss the finite lattice spacing effect and the scaling violation prob­

lem. Let us consider an SU(3) lattice gauge theory. An expectation value of 

gauge invariant physical quantity Q is defined by Euclidean path integral with 

respect to gauge field U J.L (n): 

< Q >= ~ J D[U]Q[U] exp( -S[U]) (l.1 ) 

where S[U] is an action, Z is a normalization factor and D[U] is a Baal' measure 

of SU(3). The standard choice of the action for the SU(3) gauge theory is a simple 

plaquette Wilson action: 

S(U) = {3 L ReTr(l - W11)/3 (l.2) 
Wll 

where {3 = 6/g2 and WII is a plaquette. This action is very popular in the Monte 

Carlo simulations since it is easy to implement the Monte Carlo simulation on 

cOlnputers. We call this action the standard Wilson action from now on and refer 

to this action if we do not say anything about the form of the action. 

In the Monte Carlo simulation, < Q > is evaluated as an average in sequential 

configuration {U = UI , U2 , U3 , ..• , UN} generated in Markov chain with a proba-

1 Here we consider a pure gauge theory . In the dynamical case ( with fermion ), there are 

two more systemat ice error, the quenching effect and the finite quark mass effect. 
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bility distribution: 

P[U] ex exp( -S[U]), (1.3) 

that is, the important sampled average[5] and a value of < Q > is obtained by: 

1 N 
<Q>~<Q>= N~Q[Ui]' 

t 

(1.4) 

Statistical error of < Q > is propotional to k. This error can be reduced by 

sampling a number of Q[Ui]. In the limit of N ---t 00, < Q > coincides with 

< Q >. Let us take a physical quantity M with mass dimension as an exam­

ple. Corresponding to M, Q is constructed of some lattice operators. Q has no 

dimension and it may be written as: 

<Q>=m(g) (1.5 ) 

where we indicate the coupling 9 explicitly in order to show the m can be de­

pendent on it. Therefore the m is also given as a non-dimensional quantity and 

related to the physical observable M wi th mass dimension by: 

M(g, a) = m(g) 
a 

(1.6) 

or alternatively, 

M(g, a)a = m(g). (1. 7) 

In the lattice gauge theory, scaling means that dimensional physical quantities 

are independent on the lattice spacing a. This requires that the coupling 9 should 

be a function of a and for infinitesimal a it is written as: 

a dM(g(a), a) = 0 
da 

(1.8) 

for all the quantities lVJ(g(a), a) with mass dimension. At finite lattice spacing, 

however, there is a 0 ( a 2 ) correct ion: 

(1.9) 
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Assuming e.q.(l.8), we obtain: 

8g8m 
1?l-a-- = O. 

8a 8g 
(1.10) 

This equation means that scaling behavior is controlled by the ;3-function2 which 

is defined by: 
8g 

;3j(g) = -a 8a' 

Using e.q.(l.II), e.q.(l.10) is rewritten as: 

(1.11) 

(l.12) 

In the perturbative region, the ;3-function can be expressed by an expansion: 

(l.13) 

The first two coefficients, bo and b1 are universal( regularization independent ) 

and well known by the two loop calculation[6]: 

b
o 

= lIN - 2nj 
3 x 167r2 

b
1 

= 34N2 
- 10Nnj - 3nj(N2 

- I)/N 
3 x (167r2)2 

(l.14) 

(l.15) 

where N is the number of colors and n j is the number of quark flavors. The ;3-

function with the first two terms is called the 2 loop ;3-function. As we recognize 

from the definition of the ;3-function (e.q.(l.II)) the ;3-function can give us a 

relation between the coupling 9 and the lattice spacing a. The important property 

on the ;3 function is that the coupling 9 goes to 0 as the lattice spacing a goes to 

o since the coefficient bo is positive provided that 11 N > 2n j. Therefore there is 

a ultraviolet fixed point at 9 = 0 where the continuum limit of the lattice gauge 

theory is defined. Taking only the universal first two coefficients, the ;3 function 

2Do not confuse the coupling {3 and the {3-fundion. In order to avoid the confusion, we 

denote {3 J for the fJ-function. 
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can be easily integrated and the lattice AL parameter with mass dimension is 

defined as: 

(1.16) 

This tells us the relation between the lattice spacing a and the coupling g. Taking 

a ratio of e.q.(1.7) and e.q.(1.16), we obtain: 

m(g(a)) 
aA L 

M(g(a),a) 
AL 

(1.1 7) 

In the continuum limit, physical quantities should be constant. Hence e.q.(1.17) 

should also be constant in the continuum limit: 

M(g(a), a) M 
AL = AL = constant. (LIS) 

If e.q.(1.1S) holds for all physical quantities, we call it asymptotic scaling. 

In order to obtain physical quantities in the continuum limit, it is important 

to establish e.q.(1.1S), that is, the asymptotic scaling for all quantities from the 

lattice Monte Carlo simulation. How can we check the asymptotic scaling? This 

can be done by analyzing non-perturbatively the IJ-function on the lattice since 

the asymptotic scaling is based on the two loop IJ-function with the first two 

coefficients in e.q.(1.13) and the IJ-function calculated non-perturbatively on the 

lattice can show whether or not the two loop IJ-function is valid for the region of 

the coupling IJ where we are employing the Monte Carlo simulation. Although 

it is difficult to get the IJ-function itself directly, it is possible to obtain the IJ­

function in terms of ~(3 ( this (3 Ineans the coupling (3 = 3N / g2, for SU (N) gauge 

theory) which is a coupling shift when the lattice spacing a is changed by some 

factor. ~IJ can give us inforn1ation of the original IJ-function. Here we give a 

relation between 6IJ and the two loop IJ function. Using the definition of the 

IJ-function, e.q.(1.13), we integrate: 

j,(3(a)-6(3 dg lba 
-- = dIna 

{3(a) IJj(g) a 

(1.19) 
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where (3(a) = 6/g 2 (a) for SU(3) gauge theory and we take a scale factor b, that 

is, a ~ ba. Using the 2 loop (3-function, we obtain: 

(1.20) 

where we use values of the two loop coefficients for SU (3) gauge theory without 

ferrrUons, N = 3 and nj = O. E.q.(l.20) is our starting point for analyzing 

the asymptotic scaling of the SU(3) lattice gauge theory. Comparisons between 

!:::,.{32Loop of e.q.(l.20) and !:::"{3 from the lattice study tell us whether or not we are 

in the asymptotic scaling region. 

There are two popular methods to analyze !:::,.{3, the ratio method[7] and the 

operator n1atching rnethod by the Monte Carlo Renormalization Group ( MCRG 

) technique[24]. The ratio method is based on the fact that the ratio of Wilson 

loops: 

R(· . k I) = W(i,j) 
l,]" W(k, I) (l.21) 

satisfies an approximate homogeneous renormalization group equation: 

R(2i, 2j, 2k, 21,g(a), 2L) = R(i,j, k, l,g(2a), L) (l.22) 

where i + j = k + t. Using values of Wilson loops frOlTI the Monte Carlo sinlttla­

tion on 2 lattices of size 2L and L, the couplings g(2a) and g( a) which satisfies 

e.q.(1.22) is searched out. This gives us !:::"{3 we want as: 

!:::"{3 = _6_ _ 6 
g2(a) g2(2a) 

(l.23) 

Due to the lattice artifacts, however, e.q.(l.22) is exact for Wilson loops of infinite 

size, that is, i,j, k, I ----+ 00 . Therefore in order to obtain reliable results of !:::,.{3, 

one has to prove the convergence of the value of !:::"{3 as a function of loop size. 

However measurements of large Wilson loops are practically difficult since we 

need a large lattice and much statistics. ~10reover it is known that from SU(2) 

Monte Carlo simulations, the convergence with respect to loop size is very slow. 
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On the other hand, the operator matching method by the MCRG technique 

seems to be more efficient. There are two main groups who have analyzed ~{3 us­

ing the MCRG technique. Bowler et al.[8] have obtained ~{3 up to {3 = 6.6 on 164 

lattices using the MCRG with a scale factor 2 blocking. They have reconfirmed 

that there is a pronounced dip around {3 = 6.0 which has already observed in the 

study by the ratio method[7] and showed that ~{3 approaches to the prediction 

of the 2 loop {3-function as {3 increases and reaches it at {3 = 6.6. In their further 

research[9]' however, they have observed the difference from the prediction of the 

2 loop {3-function at higher {3, 6.9 and 7.2. On the other hand, Gupta et al.[10, 11] 

analyzed ~{3 on 94 lattices up to {3 = 7.5 and they have claimed that ~{3 reaches 

the prediction of the 2 loop {3-function already at {3 = 6.75, and concluded that 

there is the asymptotic scaling above (3 = 6.75. Those results are plotted in Fig.l. 

The results from b = J3 blocking are rescaled to b = 2 blocking according to 

e.q.(1.20) although this rescale procedure is not accurate if the results are not in 

the asymptotic scaling region. Hoek[12] have also analyzed ~{3 using the MCRG 

technique and he has found the slow approach to the asymptotic scaling region 

using phenomenological fit to the {3-function[13]. This is a controversy and we can 

not conclude from these results of ~{3 where the asymptotic scaling is. Chapter 2 

is devoted to solve this controversy. We carry out the MCRG study with a scale 

factor 2 blocking on both 164 and 324 lattices. A feature of our study is that 

we use a large lattice, a 324 one and do high statistics Monte Carlo simulations. 

Typically we update gauge configurations 20,000-100,000 sweeps and measure ob­

servables every 10th sweep. Therefore We have 2,000-10,000 configurations. This 

statistics is much higher than others (They have used about 100 configurations.). 

We consider that the controversy comes from 2 effects, the finite temperature 

phase transition and the poor matching condition. On a small lattice the lattice 

system goes through the finite temperature phase transition as {3 increases, for ex­

ample at {3 ~ 6.4 on a 164 lattice. The finite temperature phase transition causes 

the difficulty of determination of ~{3. If we employ the work on a 324 lattice, we 
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remain in the confinement region up to {3 ~ 7.0. This is one of advantages of 

using a 324 lattice. The second advantage is that on a large lattice we can make 

the matching condition better since for instance on a 324 lattice we can do the 

scale factor 2 blocking one more time than on a 164 lattice and this ensures that 

the blocked trajectory approaches to the renormalized trajectory more. 

The analysis of 6.{3 using the MCRG technique is a main theme in Chapter 

2 and we solve the controversy and discuss the scaling behavior[14, 15,16,17,18, 

19,20,21,22]. 

1.2 Perfect Action 

As we will see later in Chapter 2, the standard Wilson action has a poor scaling 

property. This can not be completely compensated with some remedies such as 

improved couplings. Do we need to go to higher (3 and a larger lattice in order 

to confirm the scaling? The answer is not necessarily YES. We have another 

way, improvements of actions. The standard Wilson action is widely used in 

the current Mont Carlo simulations because of its simplicity. We can choose 

other actions in such a way that the the cut-off dependence near the continuum 

limit decreases. Such a systematic procedure to improve the action has been 

proposed by Symanzik[23]. Let us see Symanzik's improvement program briefly. 

The standard Wilson action has O( a 2 ) correction to the con tinuurn action in the 

vicinity of the continuum limit. E.q.(1.2) has a form in the limit of the lattice 

spacing a goes to 0: 

(1.24) 

O( a6 ) terms and other higher power of a terms disappear in the continuum limit. 

However O( a 6
) tenns can be renloved out of the continuum lilni t by adding 6 

link loop terms. lIence it is considered that such an action for which O( a6
) tenTIS 

are removed approaches to the continuum limit fast. The action including 6 link 
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loop terms is written as: 

S(U)6 = L coTr(l - Wll) + L cI(l - W12) (1.25 ) 
Wll WI2 

+ L c2(1 - W chair) + L c3(1 - Wtwist) 
Wchair Wtwist 

where shapes of 6 link loops are displayed in Fig.2. After some calculations, we 

have the following: 

a4 

-2(cO + SCI + 16c2 + SC3) L Tr(F~v(n)) 
n,J.i.,v 

6 C3 ~ 
+a (C2 + 3) .G Tr(DJ.i.FJ.i.A(n)DvFv>Jn)) 

n,J.i.,V,A 
a6 

+~(co + 20CI + 4C2 - 4C3) L Tr(DJ.i.FJ.i.v(n))2 
1~ n"v ,,..., 

+a6~ L Tr((DJ.i.FvA (n))2) + O(aB
) 

n,J-.L,V,A 

The conditions to remove O( a6
) terms are: 

(1.26) 

( 1.27) 

(1.2S) 

(1.29) 

From these conditions, we have coefficients for the so-called Symanzik improved 

action: 
5 

Co =-
3 

(1.30 ) 

1 
CI =--

12 
(l.31) 

an d C2 = C3 = o. 
Other improved actions have been proposed by Wilson[24] and Iwasaki[25]. 

They have detennined coefficients of 6 link loop action using the blocking trans­

formation. The coefficients they have obtained are: 

Co = 4.376 (1.32) 
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Cl = -0.252 (1.33) 

C2 = 0 (1.34) 

C3 = -0.17 (1.35) 

for Wilson's improved action for the SU(2) gauge theory and 

Cl = -0.331 (1.36) 

(1.37) 

(l.38) 

for Iwasaki's improved action for the SU(3) gauge theory. Using these improved 

actions some Monte Carlo simulations have been performed but drastic improve­

ments have not been fulfilled yet[26, 27, 28]. 

Recently other program to improve the action has been advocated by P.Hasenfratz 

and Neidermayer[29]. They have determined the classical perfect action3 
( or fixed 

point action) by solving the saddle point equation for 0(3) non-linear a model. 

The con tinu urn limi t is defined on the critical surface ( the correlation length is 

infinity). The continuum limit means that there is no lattice artifact and the 

continuum physics is obtained there . There is a fixed point on the critical surface. 

At the fixed point, the fonn of the action S* is unchanged by the Renormalization 

Group transformation : 

S* = RS* (1.39) 

where R indicates the operation of the Renormalization Group transformation. 

There is a one dimensional flow, the Renonnalized trajectory, which flows from 

the fixed point according to the Renorn1alization Group transformation . On the 

Renormalized trajectory, there is also no lattice artifact. They approximated the 

Renormalization trajectory with the fixed point action 131S*( See Fig.3 ). 

This program successfully works for 0(3) non-linear a model and restoration 

of the rotational invariance is shown. The program on SU(3) gauge theory is also 

3The perfect action means that its action is completely free from lattice artifacts. 
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going on[30]. However the action obtained by such a program is not a complete 

perfect action. Even if we get a classical perfect action, it is not insured that 

the action works at moderate finite coupling since the renormalization effects are 

non-trivially dependent on the blocking scheme at finite j3( See Fig.3 ). Namely 

at moderate finite coupling, the approximation of the fixed point action is not 

enough. 

The MCRG technique can be used for the perfect action search since the 

blocked trajectory goes to the renormalized trajectory and flows along the renor­

malized trajectory lastly. In principle, if we can obtain an effective action after 

enough blocking steps, it will be one of perfect actions. However it was very dif­

ficult to obtain such an effective action since we did not have a practical method 

to obtain it. Recently, however, quite an efficient method, the canonical demon 

method, has been proposed and applied for 0(3) non-linear (J' model[51]. It has 

been shown that the method works well for 0(3) non-linear (J'model. In Chapter 

3, we report an application for physically interesting case, SU(3) gauge theory 

and try to obtain an effective action on blocked configurations[52]. 
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Chapter 2 

MCRG Analysis of the lattice (3-

function 

2.1 Monte Carlo Renormalization Group 

The idea of the Monte Carlo Renormalization Group (MCRG), which combines 

the Renormalization Group with the Monte Carlo simulation, first, was given 

by Ma[31] and developed by Swendsen[32] in spin systems and by Wilson[24] in 

lattice gauge theories. In the vicinity of the critical point, the correlation length 

diverges and all the length of scales contribute the dynamics of the system. In 

other words, infinitely many degrees of freedom arise in the system. The standard 

Monte Carlo simulations face with hard problelTIs at or near critical point. The 

physical size of the system, in Monte Carlo simulations, should be larger than 

the correlation length, at least a few times, in order to obtain meaningful results. 

As we approach to the critical point, computer time used for the Monte Carlo 

simulation increases inevi tablely since a large lat tice is needed to keep size of the 

system larger than the correlation length . There also exits the critical slowing 

down problem which makes the Monte Carlo silTIulation much difficult. 

The Renormalization Group method sheds light for us to handle the problems 

In the vicinity of the critical point. General concepts of the Renormalization 

15 
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Group is an integration over the irrelevant degrees of freedoll1 keeping those which 

are relevant for physical quantities of the system. In the MCRG technique, the 

Renormalization Group transformation is performed for configurations generated 

by the Monte Carlo silTIulation[31]. To illustrate what the MCRG is like, let us 

consider the 2-dimensional Ising system which described by a Hamiltonian: 

H = -1(1 2: SiSj 

<i,j> 

(2.1 ) 

where spin Si takes ±1 and < i, j > means that the summation is taken for the 

nearest neighbor pairs. The partition function of the system is written as: 

Z = 2: e-H = 2: eK1S1 

S1 

(2.2) 

where we use the brief expression, 51 = L<i,j> SiSj, and configurations are gen­

erated with the probability distribution: 

(2.3) 

The Renormalization Group transformation acts on spIn configuration Si and 

transforms them to new transformed spin configuration s~. The transformation 

procedure is often called blocking . Let us take a scale factor 2 blocking. Spins 

in a block a are mapped onto ± 1 according to a transformation rule, such as 

majority rule(See Fig.4). This procedure is symbolically written as: 

(2.4) 

where i E block a. The probability of observing a new configuration [s~] is 

proportional to exp( -H'[s~]) which is written as: 

e-II'[s~] = 2: II 8(s~ - !(si)liEcJe-H[sd. (2.5) 
lSi] C\' 

After the blocking, the Renormalization Group transformation may produces 

many couplings. Hence the form of 11' can be complicated. For instance, we can 
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generalize the Hamiltonian H' by writing: 

-H' 
<i,j> «i,j» 

31 = L:= SiSj 

<i,j> 

32 = L:= SiSj 

«i,j» 

53 = L SiSjSkSt 
i,j,k,l 

i,j,k,l 

17 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

and« i,j » the next-to-nearest neighbor pair and i,j,k,l is the plaquette 

interaction pair. 

Note that the partition function of the transformed system equals that of the 

initial system provided that the Kadanoif constraint is satisfied: 

L:= IT 8(s~ - f(si)liEex) = 1. (2.11) 
[s~] ex 

Using this condition, it is easily checked that: 

z = L:= e-H[siJ = L:= e-H[s~] = Z' (2.12) 
[siJ [s~] 

It is also considered that the Renormalization Group transformation acts on 

coupling space. 

(2.13) 

where Rex(3 is a transfonnation nlatrix of the couplings. Let us denote the coupling 

at the fixed point I(~. At the fixed point, I(~ is not changed as: 

(2.14) 

In the vicinity of the fixed point, the coupling I( ex is expressed by: 

(2.15) 
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Therefore we obtain: 

1(' 
Cl' 

1(* + 81(' 
Cl' Cl' 

where the transformation matrix is: 

Generalizing e.q.(2.18) to n-th blocking, we obtain: 

81( n 

81(i-1IK• 
81( n 8 < sn > 

Cl' Cl' ----
8 < s~ > 81({3n-l . 

This can be calculated using the following identities[32]: 

8 < s~ > snsn-l sn sn-l 
81(n-l =< Cl' {3 > - < Cl' >< {3 > 

Cl' 

8 < s~ > sn sn sn sn 
8I(n =< Cl' {3 > - < Cl' >< (3 > 

Cl' 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

where < s~ > are the expectation values on the n-th blocked lattice. The critical 

exponent v is obtained by the leading eigenvalue ,\ of RCl'{3: 

In b 
v=-

In ,\ 
(2.23) 

where b is the scale factor of the blocking. 

In the lattice gauge theory, blocking is son1ehow complicated since the variable 

is defined on the link. The blocked link is constructed from a sum of paths: 

(2.24) 

In general, this sum is not an SU(N) matrix and the new blocked link is selected 

with the probability distribution: 

(2.25) 
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where p is a parameter to optimize the blocking. 

Several ways to construct the paths of e.q.(2.24) have been proposed since 

there is no unique blocking. Wilson[24] has proposed a scale facto b = 2 blocking 

whose geometry of the blocking is shown in Fig.5. 8 links are summed up( in 

Fig.5 only 4 of 8 links are shown in 3-dimension.). This blocking requires the 

gauge fixing since the end of links are not connected. The gauge fixing procedure 

is very costly in the Monte Carlo simulations. Hence this blocking transformation 

has not been pursued since Wilson proposed and tried to obtain values of 6.{3. 

Swendsen[33] has proposed the gauge invariant scale factor b = 2 blocking, which 

does not require the gauge fixing. In this blocking step, paths which connects 2 

sites are summed up(Fig.6). Therefore all the paths are connected at the blocked 

sites. Other blockings with a different scale factor, based on Swendsen blocking, 

have also been proposed, scale factor b = -13"[34] and b = V2[35]. These are 

specific to the gauge theories in 4-dimension. 

2.2 Blocking Transformation 

We follow Swendsen's scale factor 2 blocking[33]. The blocking procedure we take 

is as follows: Path ordered links connecting two lattice sites separated with two 

lattice spacings are sumn1ed up( Fig.6 ): 

Qt-t(n) = aUt-t(n)Ut-t(n+ll)+b L Uv(n)Ut-t(n+l/)Ut-t(n+Il+l/)U~(n+21l) (2.26) 
vf.t-t 

where we take a = 1 and b = 1/2. The matrix Qt-t(n) is not an SU(3) matrix. So 

we have to extract an SU(3) matrix from it. In the case of SU(2) gauge theory, 

such a sum is in proportion to an SU(2) matrix because of the speciality of SU(2) 

matrix. Therefore it can be easily normalized to an SU (2) matrix. On the other 

hand, the SU(3) matrix does not have such property. We have to employ other 

procedure to project a non-SU(3) matrix onto one of SU(3) group . We define 

such a projection by a ITlaxilTlization of a function ReTr(Qt-t(n)PZ(n)), where an 
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SU(3) matrix PJ-£(n) is taken so that ReTr(QJ-£(n)P1(n)) takes a maximum: 

(2.27) 

This definition preserves local gauge invariance. The maximization can be done 

by the polar decon1position[36, 10, 11]. In the polar decomposition step, QJL(n) 

is decomposed as: 

(2.28) 

where D is a positive definite diagonal matrix and H and V are SU(3) matrixes. 

Using this decomposition, we can maximize: 

ReTr(De- i¢ X) (2.29) 

where X is given by: 

X = VtHtpV. (2.30) 

In the polar decomposition, 11 is given by: 

(2.31) 

where a = arg(det(Q{L(n))). It is known that for {3 > 6.0 the phase ¢ is ap­

proximately 0 and Hand P are approximately same. At {3 = 6.0 the difference 

between Hand P by comparing average values of Wilson loops is already small 

( about 1 ~ 2%) and the difference decreases as (3 increases. Therefore we use II 

as an SU(3) matrix mapped from QJ-£(n), that is, PJ-£(n) = II. 

We introduce a paralneter q in order to optimize the blocking. The meaning 

of the optimization will be clarified later. A blocked link U~b) (n) is given as a 

product of PJ-£(n) and a random gaussian SU(3) matrix: 

H Urandom-lJauss. 

The random gaussian SU(3) matrix is given by: 

( 

8 co,\o) 
Urandom_gauss = exp i?= T 

1=1 

(2.32) 

(2.33) 

(2.34 ) 
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where Ai, i = 1, ... ,8 are SU(3) generators and the Ci are real numbers generated 

with the distribution: 

(2.35) 

In our Monte Carlo simulations, the blocking is repeatedly performed until the 

size of the lattice becomes 22. 

Our blocking scheme is also written in the form of e.q.(2.5) (See Appendix 

A): 

exp( -S'[U']) ![dU]exp(-S[U] + N(Q) 

+p L ReTr(U~b)(Qt(n)QJ-L(n)) -;1 e- iex
/

3Qt(n)) (2.36) 
n 

where 
2 1 

p=---
q 2 

det[QJ-L(n)] = rexp(ia) 

and the normalization factor N (Q) is: 

2 1 
N( Q) = L -In[exp(3( - - "2 )(2q7r )4]. 

n,J-L q 

2.3 Matching Method 

2.3.1 Definition of 6.(3 

(2.37) 

(2.38) 

(2.39) 

Here we give a definition of 6.f3. 6.f3 is defined as a coupling shift when the lattice 

spacing a is changed to 2 x a: 

6.f3 = 6.f3(f3(a)) = f3(a) - f3(2a) (2.40) 

where a is a lattice spacing and f3(a) = 1/g2(a). 

Inversely we can consider the lattice spacing as a function of the coupling f3. 

Starting from a coupling f3, we search a coupling f3' which satisfies: 

2a(f3) = a(f3'). (2.41) 
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6(3 is obtained by: 

~(3((3) = (3 - (3'. (2.42) 

2.3.2 6.f3 from Matching Method 

How can we obtain a value of ~(3 in the blocking? We can utilize the operator 

matching ( or two lattice matching) method in order to obtain ~(3. This method 

has been originally advocated by Wilson[24] and he tried to obtain ~(3 on rather 

srnalllattices, 88 ones. 

To see what the operator matching method is, let us do the blocking n times. 

After n-th blocking step, the lattice spacing becomes 2n times bigger than the 

one on the initial lattice. The lattice spacing can be written as: 

(2.43 ) 

where (3 indicates that the blocking is done on the configuration generated at 

(3 = g~' We would like to find (3' which satisfies e.q. (2.41). In order to obtain a 

recipe to find (3', first let us assume that e.q.(2,41) is satisfied and do the blocking 

(n - 1) times at (3'. We obtain a relation: 

(2.44) 

Using e.q.(2.41) and e.q.(2.43) we find the following relation: 

(2.45) 

This equation is telling us that (3' can be determined by searching a value of 

the coupling at which the lattice spacing after (n - 1 )-th blocking step coincide 

wi th the one after n- th blocking step at (3. Here we can ask ourselves "How 

can we recognize such a coincidence of the lattice spacing in e.q.(2,45)?". It 

is not so easy to find the coincidence by directly measuring the lattice spacing 

a. Fortunately the operator matching method can give us a criterion of the 

coincidence. Therefore we follow the operator matching method and hereafter we 

call it simply the matching method . 
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Let us assume that after n-th blocking step, the blocked trajectory reaches the 

renormalized trajectory c0111pletely(See also Fig.7). We define a value of Wilson 

loop operator Ok there as: 

(2.46 ) 

In terms of the operator, e.q.(2.45) means: 

(2.4 7) 

In e.q.(2.4 7) we put the suffix k on {3' in order to indicate that we are searching {3' 

for each Wilson loop operator. However if both of the blocked trajectories from 

{3 and {3~ are already on the renormalized trajectory, a value of each {3~ should be 

the same value. Namely for all the Wilson loops the next equation holds: 

(2.48) 

Therefore {3' can be obtained by comparing values of Wilson loops on n-th blocked 

lattice and on (n -1)-th blocked one, and searching (3' which matches e.q.(2.48). 

This is the reason that the method is called operator matching method. The 

measurements of Wilson loop should be done on a lattice with the same physical 

volume to avoid the finite volume effect since we are employing on the finite 

lattice. This means that when Ok(a(n)({3)) is measured on a blocked lattice fro111 

a N 4 lattice, Oi(a(n-l)({3:)) should be measured on a blocked lattice fron1 a (N/2)4 

lattice in order to keep the physical volume same. 

So far we have assumed that the blocked trajectory after n-th blocking step 

already reaches the renormalized trajectory. If not the case, e.q.(2.48) does not 

hold for all the Wilson loops. Hence 6.{3 which we obtain from each Wilson 

loop does not give us the same value. How can we make SLIre that the blocked 

trajectory are on the renol'111alized trajectory? It is not obvious that how many 

blocking step we should do in order to reach the renormalized trajectory. It 

completely depends on what blocking scheme we take. However even if we take a 

slow blocking scheme(bad blocking scheme), enough many blocking steps can lead 
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the blocking flow to the renormalized trajectory since it is fated that the blocked 

trajectory becomes to flow along the renormalized trajectory lastly. Therefore to 

do many blocking steps is an advantage in a sense of reaching the renormalized 

trajectory and making sure that we are on the renormalized trajectory. This is 

one of reasons why we use a 324 lattice twice bigger than a 164 lattice as mentioned 

briefly in Sec. 1. 1. We can do the blocking one more time. 

There is a freedom to optimaize the blocking in such a way that the blocked 

trajectory reaches the renorrnalized trajectory fast. Actually, it is very important 

to take such an optimal blocking scheme since the number of blocking step we 

can do is limited within a few blocking steps. In Sec.2.2 we have introduced the q 

parameter in the blocking transformation. This parameter can be tuned so that 

the blocked trajectory reaches the renormalized trajectory fast. In principle, we 

can find a value of the optimal parameter changing a value of q continuously in a 

Monte Carlo run. However such a process to find the optilnal parameter is very 

costly. In practice we can employ at most at several q points. 

Fortunately dependence of 6.(3k on q is moderate and we can approximate it 

by a linear function in terms of q: 

(2.49 ) 

In the Monte Carlo run, as mentioned above, we run at several q points ( ql = qo, 

ql, q3, ... ). Hence we obtain 6.(3k(qL) ± 86.(3k(qL) for ql, where 86.(3k(QI) is an 

error of /:}.(3k(ql ). Using this set, e.q.(2.49) is obtained by a fitting. Note that 

the cri terion that we are on the renormalized trajectory is that for all the Wilson 

loops we obtain the same value of 6.(3. Therefore we can define the optimal q 

parameter where all Jk (q) ill tersect each other. OUf proced ure to fi nd the optimal 

q parameter is as follows: 

An error of the fitted line is defined as: 

(2.50) 
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The optimal value of q (= qopt) is defined at the best intersection poin t where the 

function S( q) takes a minimum: 

S(qopt) = min S(q), (2.51) 

(2.52) 

where f(q) is an average of all the fk(q) at q, which is defined by: 

(2.53) 

Using qopt, we obtain ~{3 as: 

(2.54) 

In order to know accuracy of obtained ~{3, we define the error of ~{3 as follows: 

First we define an error of qopt as: 

(2.55) 

Here the derivative in e.q.(2.55) can be evaluated by a numerical calculation. 

Using e.q.(2.55), the error of ~{3 is defined by: 

(2.56) 

Alternatively ~{3 can be considered as a function of the ~{3k(qd. Therefore the 

error of ~{3 is also defined as: 

(2.57) 

The derivatives in e.q.(2.57) is also calculated nUlnerically. We have checked the 

two definitions of 8~{3 and it turned out that the two definitions give the almost 

same result. This indicates the validity of our procedures. 
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2.4 Numerical Simulation 

2.4.1 Update Program 

Our update program consists of two algorithms, the pseudo-heat bath[37] and the 

over-relaxed[3S] algorithm. The pseudo-heat bath algorithm is a standard method 

widely used for generation of SU(3) gauge configurations and it is more efficient 

than the Metropolis algorithm[39]. The over-relaxed algorithm is combined with 

the pseudo-heat bath algorithm so that decorrelation between configurations is 

accelerated. The decorrelation rate in terms of the autocorrelation time has been 

studied using blocked Wilson 100ps[14, IS, 19]. Due to the difficulty of measuring 

the autocorrelation till1e, however, a drastic ilnprovelnent of decorrelation has not 

been seen yet. Even if so, there is a n1erit in using the over-relaxed algorithm. 

It is faster to update a lattice system than pure pseudo-heat bath algorithm[22]. 

Our update speed for the pseudo-heat bath algorithm is 2.6 flsec/link. On the 

other hand, one for the over-relaxed algorithm is 2.0 flsec/link. In updating, we 

use the pseudo-heat bath and the over-relaxed algorithm stochastically in a ratio 

of 1:9. 

Our programs are developed on the parallel computer AP1000 in Fujitsu 

laboratory[21, 22]. This machine has 512 floating processors and can be extended 

to a 1024 processors version at maximum. The total speed of AP 1000 with 512 

processors is 4.3Gflops. The sustained speed for our program is about 60% of 

the total speed. Each processor has l6Mbytes n1en10ry. I-Ience APlOOO with 521 

processors has SGbytes memory. The huge memory became a great advantage to 

develop flexibly a program for the blocking[22]. 

2.4.2 Configurations 

We generate three sizes of a lattice, 32\ 164 and s4, for our purpose. All the 

configurations are made at cold start, that is, all links are initially set to the unit 

matrix U = I. We update configurations typically up to 20,000-100,000th sweep. 
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Fist 2,000-10,000 sweeps are used for therl11alization. The independence between 

configurations can be monitored by a measurement of the autocorrelation time. 

The blocked Wilson loops are also used for operators for the autocorrelation 

measurement since it contains a long range property of the lattice systeI11[14]. It 

turned out that the blocked Wilson loop is useful to see a occurrence of a finite 

temperature phase transition of the system. This study has been done[18, 19, 20] 

and it has been showed that the autocorrelation time has a pronounced peak at 

finite cross over or finite temperature phase transition point. This means that 

at the finite cross over point it is very hard to obtain statistically independent 

configurations. Actually, we generated configurations of 30,000 sweeps on a 324 

lattice at {3 = 7.0, where the systel11 is considered to be at or near the deconfine­

ment phase transition point. However no lneaningful results could obtain due to 

the large autocorrelation. Then we decided not to use there configurations for 

the analysis. 

2.5 Measurement of Wilson loop 

As mentioned in Sec.2.3.2, 6.{3 can be determined by the matching method. At 

first a value of 6.{3 is determined for each Wilson loop and each q parameter. And 

then 6.{3 is extrapolated as a linear function of q. We have chosen three points, 

q = {O.O, 0.002,0.004}. We measure 6 Wilson loops for purpose of the matching 

method. The shape of those Wilson loops are displayed in Fig.l and we call them 

Wll, W12, W22, Wchair, Wtwist and Wsofa respectively. 

What we have to do in the matching method is evaluate (3' which satisfies 

e.q.(2.47) by comparing values of Wilson loops. For this purpose, We have done 

Monte Carlo run at a nUl11ber of {3 points. We have simulated at 96 points, from 

{3 = 5.3 to {3 = 9.5 on a 84 lattice and at 33 points, from {3 = 5.75 to {3 = 7.7 

on a 164 lattice. Values of Wl1 operator for each level are plotted in Fig.8 as an 

example. 
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2.6 Results of 6(3 

2.6.1 Optimal value of q parameter 

~(3 is determined for each Wilson loop operator, each q parameter and each 

blocking level. So we can write 6.{3 as: 

(2.58) 

where i indicates the Wilson loop operator and I means the number of the blocking 

steps and we call it Level. As mentioned in Sec.2.3.2., we express 6.{3?\qm) as 

a linear function of q and determine ~(3 at an optimal q point where those lines 

intersect each other maximally. 

Fig.9( a)-( d) shows how the optinlal q's are detennined or how values of 6.{3 

are obtained. Those data are from matching of the 324 lattice at {3 = 6.8 and 

the 164 ones. It is seen that a functional dependence of 6.{3 is nicely expressed 

by a linear function of q. We can see some features of q dependence of ~(3. At 

levell, the q dependence of 6.{3 is strong, that is, the slope of the line is very 

steep. And we can see no good intersection for those lines. This indicates that the 

blocking scheme we took can not be optimized by only the q parameter such that 

the blocked trajectory can reach the renormalized trajectory after one blocking 

step . On the other hand, it is seen that the intersection is getting good as we go 

to high blocking level. It is noted that the data are presented in finer scale in 

Fig.9( d) . So matching at Level 4 is not worse in comparison with those at Level 

3. The q dependence of ~{3 becomes weak as blocking goes on. This trend seems 

natural due to the following reason. As mentioned in Sec.2.3 .2, this means that 

the blocking flow comes close to the renormalized trajectory after enough many 

blocking steps even if we start with a bad blocking schelne, that is, a blocking 

scheme with a non-optimal q parameter. Hence if we employ further blocking 

step at the level 4, we will see an approximate non-q-dependence of ~{3. 

We plot values of optimal q for each level in Fig .10. The values of qopt at Level 

2 and 3 are almost same. This indicates that after 2nd blocking step, the blocked 
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trajectory is already close to the renormalized trajectory. On the other hand, 

that of qopt at Levell is very different, almost constant. This also means that we 

can not optimize the blocked trajectory tuning only the q parameter so that the 

blocked trajectory reaches to the renormalized trajectory by one blocking step. 

Even if the optimal value for Levell in Fig.IO is used, the blocked trajectory is 

still not close to the renormalized trajectory. Therefore values of !:1(3 at Level 1 

can not be accurate. 

2.6.2 6(3 

In Fig.II we plot !:1(3 obtained at each level on 324 lattices as a function of Level. 

For all (3, we can see the same functional dependence, that is, !:1(3 decreases as 

Level increases and seems to converge to a constant value after Level 3, that is, 

3rd blocking step. Although at Level 1 the value of !:1(3 is very different from 

others, at level 2 the value of !:1(3 is close to the stable value at Level 3 and 4. 

This behavior supports the interpretation for the approach to the renormalized 

trajectory as mentioned in Sec.2.6.1. Namely we can not optimize the blocking 

scheme by one blocking step. Therefore again we conclude that at Levell the 

value of !:1(3 is not accurate. At Level 2 the blocked trajectory is already close to 

the renormalized trajectory but not sufficient to obtain a reliable value. Therefore 

we can see a slight but clear difference between Level 2 and Level 3, 4. 

Here note that situation on the approach to the renormalized trajectory is 

dependent on the blocking scheme we have taken. In this sense, good blocking 

scheme is the one which come close to the renormalized trajectory within first a 

few steps. Although we have taken the q paralneter as an optimization paralneter, 

there is another choice of an optimization parameter. For instance, it is possible 

to use the parameter a and b in e.q.(2.26) as an optirnization parameter and 

there exists a work in which the parameter a and b are used as optilnization 

parameters [12] . 

In Fig.12 we plot !:1(3 horrl 164 lattices for each level. As n1entioned above, 
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~{3 at Levell are not accurate and very different fron1 6.{3 at Level 2 and 3. For 

level 2 and 3, 6.{3 are very similar each other but for {3 ~ 6.4, values of 6.{3 at 

Level 3 are systematically small. One of the possibilities of interpretation for this 

behavior is that 6.{3 is affected by the finite temperature phase transition since 

the transition point is about {3 ~ 6.4 on a 164 lattice and for {3 ~ 6.4 the system 

of a 164 lattice is in the deconfinement region. As already mentioned in Sec.l.1 

one of the reasons we use a 324 lattice is we can remain in the confinement region 

till about (3 ~ 7.0 and we can avoid the systematic error coming from the phase 

transition. We plot 6.{3 at the deepest level from 164 and 324 lattice together in 

Fig.13. These values are summarized in Table 2.6.2. 

Table 2.6.2(a) 164 lattice 

{3 6.{3 e1Tor {3 ~{3 error {3 ~{3 error 

5.85 0.323 0.007 6.25 0.430 0.009 6.60 0.545 0.045 

5.90 0.317 0.013 6.28 0.422 0.011 6.65 0.507 0.013 

5.95 0.325 0.010 6.30 0.432 0.010 6.70 0.527 0.030 

5.98 0.334 0.004 6.35 0.448 0.012 6.75 0.500 0.010 

6.00 0.338 0.007 6.38 0.457 0.012 6.80 0.535 0.027 

6.03 0.343 0.007 6.40 0.451 0.013 6.85 0.511 0.025 

6.05 0.351 0.005 6.43 0.460 0.011 6.90 0.531 0.028 

6.10 0.366 0.006 6.45 0.485 0.006 7.00 0.539 0.017 

6.12 0.372 0.013 6.47 0.468 0.011 7.20 0.546 0.041 

6.15 0.390 0.003 6.50 0.461 0.005 7.35 0.568 0.048 

6.17 0.387 0.015 6.53 0.478 0.016 7.50 0.557 0.019 

6.20 0.387 0.007 6.55 0.521 0.020 7.60 0.579 0.078 

6.23 0.418 0.009 
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Table 2.6.2(b) 324 lattice 

{3 ~{3 error 

6.35 0.433 0.004 

6.55 0.481 0.014 

6.65 0.500 0.015 

6.80 0.536 0.010 

All the ~{3 frorn 324 lattice are results in the confinement region. We can not 

see significant difference between ~{3 from 164 and one from 324 lattices even if 

~{3 from 164 lattices are from the deconfinement region. However ~{3 from the 

deconfinement region have large error and fluctuate very lTIuch. In Fig.13, we also 

line the prediction of 6.{3 from the 2 loop (3 function, e.q.(1.20), which is indicated 

as bare g2. There is a clear discrepancy between 6.{3 from MCRG and one from 

the 2 loop prediction till about {3 ~ 7.5 Although the discrepancy decreases as 

{3 increases, there is still a 10 % discrepancy at {3 = 7.0. From this, we may say 

that there is no asymptotic scaling below {3 = 7.0. This result is very serious for 

Monte Carlo sin1ulation since the current simulation has been typically carried 

out at about {3 = 6.5 on the largest lattice such as 324 lattice and at {3 = 6.5 

there is a 20 % discrepancy. As we will see in the next section, the asymptotic 

scaling violation can be reduced by some remedies. 

2.7 Improved couplings 

As we have seen above, the large deviation from the prediction with the 2-loop 

{3-function still remains above {3 ~ 7.0. However this situation can be improved 

by changing the schen1e of the coupling to a mean field scheme[40] or an effective 

coupling scheme[41, 42] in stead of using 'poor' bare coupling. 

Lepage and Mackenzie[40] have showed that the choice of the lattice bar cou­

pling g2 is not practical. For instance, let us take a look at the plaquette. In the 
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perturbative expansion, the plaquette value is expressed by[44, 43]: 

U 1 246 < plaq >pt= - c}g - C2g - C3g + ... (2.59) 

where the coefficients c}, C2 and C3 are 

(2.60) 

2 1 1 
C2 = (N -1)(0.0204277 - 32N2)4 (2.61 ) 

C3 = (N 2 _ 1)N (0.0066599 _ 0.020411 + 0.0343399) ~ 
N2 N4 6 

(2.62) 

where N is the number of colors. At (3 = 6.0, e.q.(2.59) with only the first two 

terms gives us: 

< Uplnq >pt~ 0.667. (2.63) 

On the other hand, from the Monte Carlo silTIulation, we obtain: 

< Uplnq > MC~ 0.597. (2.64) 

There is still 11 % discrepancy between the perturbative calculation and the Monte 

Carlo calculation although the coupling in tern1S of ex = g2 /47r is already small ( 

ex ~ 0.08 ). Therefore we may conclude that the bare lattice coupling g2 fails to 

reproduce values of the plaquette correctly. In Ref.[40], the more continuum like 

coupling scheme or the mean field scheme has been proposed: 

1 ( /) < Uplnq > -2- 7r a = 2( / ) + 0.008204N 
9 MS 9 7r a 

(2.65) 

where the new coupling is denoted as g~s since this coupling exactly corresponds 

to the modified minimal subtraction (M S) scheme in the continuum limit (a --+ 

0). The relation between g~s and g2 coupling is known by the perturbative 

calculation[45]: 

N 2 -1 
8N + 0.008204N. (2.66) 
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Using e.q.(2.59) it is easily verified that e.q.(2.65) goes to e.q.(2.66) in the con­

tinuum limit. Therefore the scale parameter of the scheme defined by e.q.(2.65) 

takes the same value of AMS ' Assuming the 2 loop ,B-function (e.q.(1.13)) for this 

coupling, and following the definition of Ref. [46] we obtain AMS as: 

MS x lOX - ( + b /b ) bl/
2b

5 , 
a(x)AMS == 12 (x) = 7r b

o 
exp ( - 2bJ (2.67) 

where x = -}- for the later convenience. Note that this definition is a little 
gMS 

different from the definition of e .q.(1.16). Here we write it again for the later 

convenIence: 

a(x)AL == h(x) = (~r/2b6 exp ( - 2:J . (2.68) 

Using e.q.(2.67) and e.q.(2.68) the relation between AMS and AL in the continuum 

limit is easily obtained: 

AMS = I' /fS(l/ gk) = (_ A/?b ) "'" 28 81 1m ( / 2) 7rexp Ll "-' 0 - . 
AL a-+O 12 1 9 

(2.69) 

where 
N 2 -1 

~ = - 8N + 0.008204N. (2.70) 

The ratio of AMS and AL is very large. 

The other in1proved coupling, the effective coupling, is proposed by Karsch 

and Petronzio[42] motivated by Parisi[41]. They have proposed the g; coupling 

as follows: 
2 1- < Up1aq > 

ge = (2.71 ) 

where Cl is the value of (2.60). Using the perturbative expansion of e.q.(2.59), 

we obtain: 

(2.72) 

or 

(2.73) 
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Assuming the 2 loop (3-function for this coupling and using e.q.(2.68) as a defini ­

tion of the scale parameter Ae for this coupling: 

(2.74 ) 

where x = ~, the relation between Ae and AL is obtained by: 
ge 

Ae . 12(1/ gn ( C2 ) 
-A = hm f ( / 2) = exp -b- ~ 2.0756 

L a-+O 2 1 9 2Cl 0 
(2.75) 

and we also obtain the ratio of AMS and Ae: 

AMS 
2.0756AL = 13.88 (2.76) 

Bali and Schilling[43] have used the similar coupling, g;2' defined by: 

(2.77) 

where Cl and C2 are taken frOITI (2.60) and (2.61). Using the perturbative expan­

sion e.q.(2.59), we obtain the inverse of g;2: 

1 1 2 
-2 = 2" + O(g ). 
ge2 9 

(2.78) 

Therefore the scale parameter for the coupling g;2 is unchanged : 

(2.79) 

The qualitative behavior of the coupling g;2 is similar with that of the coupling 

g;[43] . 

Using these ilTIproved couplings, we compare ~(3 from the MeRG study with 

one from the 2 loop (3-function with the improved couplings. The curve M in 

Fig .14 shows the coupling shift 6.(3 from the g~s coupling. This scheme partially 

explains our results of 6.(3. However the large deviation is still seen at low (3( 

f3 :::; 6.6 ). Similar analysis is also implemented for the effective coupling scheme, 

g;. The curve E in Fig.14 is 6.(3 from the effective coupling scheme. This scheme 

also partially accounts for our results of 6.(3. 
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Now we consider the possibility to obtain further improvements. Let us intro­

duce a next order correction in the ,B-function and define a new effective coupling 

g2. 
u' 

dxu b1 b' 
2d in a = bo + - + x2 

Xu u 

(2.80) 

where 
1 1 

Xu = 2 = -2- - Xo· 
gu 9MS 

(2.81) 

Here b' and Xo are not known and these values are determined so that this coupling 

scheme accounts for 6.,B fonn the r..1CRG study. Assun1ing the correction tern1 b' 

is small, the integration of e.q.(2.80) leads to (See Appendix B): 

-b' 
a(xu)i\u == f(x u) = f2(xu) exp( -b2 ). 

2 OXu 

where the function f2(Xu) comes from e.q.(2.68). 

(2.82) 

Using Xo and b' as free parameters, we attempted two fits for the data of ~,B 

above ,B = 6.0: 

(A) introduces only b'. 

(B) introduces both Xo and b'. 

The case of (A) allows to add tbe correction ternl O(9~). The results are 

shown in Fig.14 as curve A. Unfortunately this case gives only a poor fit and 

the coefficient b' is relatively large against bo: b' /bo = -0.085(0.0013) (Note that 

b1 / bo = 0.0587). 

The case of (B) allows xo and b' as free paralneters. This case has a quit well 

fit for all the data of 6.,B( curve B in Fig.14). The values of parameters obtained 

by the fit are: 

Xo = 0.442(0.004) 

b' /bo = -0.0119(0.0008) 

(2.83) 

(2.84) 

The coefficient h' is srnall bowever the shift Xo is non-negligible. In this scheme 

with the shift Xo, the relation to the (},;{ S) scheme in the continUUlTI limit IS 

obtained by: 

Au = exp (;:J AMS = 23.95A MS (2.85 ) 
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Therefore, Au is O(GeV) and much larger than A_. Although we have better 
MS 

scaling in this scheme, this fact needs a explanation. At present, however , we 

have no reasonable explanation yet. 

2.8 Scaling Test 

Based on various improved couplings introduced above, we exam the scaling of 

the physical quantities in the unit of A ~s where (0) means we are employing the 

quenched case, n f = O. First we exam the string tension, one of popular physical 

observables in the Monte Carlo simulation. The data of string tensions come 

from Ref. [43]. Using various couplings, we plot the ratio of the string tension 

and the A~s parameter in Fig.I5. As shown in e.q.(l.I8), those values should 

be constant in the asymptotic scaling region. The rightest value corresponds 

to one from (3 = 5.7 and the leftest value is from (3 = 6.8. We can see the 

large asymptotic scaling violation for the lattice bare coupling g2. The improved 

couplings givts and g; can reduce the asymptotic scaling violation as we see in 

Fig .I5. However the visible deviation still remains. This situation needs the 

further interpolation to the continuUln limit in order to obtain the continuum 

physics. On the other hand, the g~ coupling based on our MCRG results gives us 

a good improved scaling behavior. The values of va/A ~s are a nearly constant 

in the whole region (5 .7 < (3 < 6.8) . The estimated value is: 

va 
(0) = 2.2(1). 
A

MS 

(2.86) 

Assuming va = 440A1 e V as a input value, we can obtain the value of A~s: 

A~s = 200MeV. (2.87) 

This value is smaller than that obtained by the extrapolation to the continuum 

limit using the coupling g; in Ref.[43] where A~s = 233MeV. 

Further test for other quantities are attempted . Fig.I6 shows the test for the 

charmoniun1 1p-1s splitting[47]. We can see the silnilar scaling behavior. The 
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values from the coupling g; are almost constant and we obtain: 

(2.88) 

Substituting Me = 450NJ e V into e.q.(2.88), we obtain: 

A~s = 210MeV. (2.89) 

Fig.17 shows the test for glueball 0++ mass. In this case, it seems that the ratio 

of glueball mass and A ~s from the improved couplings increases as f3 increases 

even if g~ coupling is used . Hence for glueball 0++ mass, a good scaling behavior 

is not seen. 

From above scaling tests, we can learn the followings: 

(1) The improvements of the improved couplings (including g~) are only partial 

since in the asymptotic scaling region, all the physical quantities should show the 

asymptotic scaling behavior. 

(2) It is difficult to obtain reliable values in the continuum limit . Careful 

extrapolations to the continuum limit should be needed at this stage. 
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Chapter 3 

Perfect Action Search 

3.1 Effective Action on the blocked trajectory 

As we have seen in Chapter 2, the standard Wilson action has a poor scaling 

property and even if we use the improved couplings the complete asymptotic 

scaling is not seen. As mentioned in Chapter 1, there is a possibility to use an 

improved action, such as perfect action. The perfect action, which defined on the 

renormalized trajectory, contains only a relevant interaction with respect to scale 

transformation. Therefore it is expected that the perfect action has a almost 

complete scaling behavior. 

Our motivation to find an effective action for blocked gauge configuration is 

as follows. If we can offer an effective action or renormalized couplings on the 

blocked trajectory after enough blocking steps, we can obtain a perfect action 

since the blocked trajectory flows along the renormalized trajectory lastly . 

There exists, however, a difficulty that it is very hard to directly determine 

the effective action or renormalized couplings since the effective action can be 

complicated enough with ITlany couplings. And if we truncate some couplings it 

is also hard to know the effect of the truncation. 

There are several ways to find an effective action for a given set of gauge con­

figurations. Swendsen[48] has proposed a minimization procedure to find renor-
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malized couplings, however, this n1ethod requires a good starting point and it 

becomes more difficult to give the good starting point as we deal with a compli­

cated action. Creutz[49] has invented the microcanonical demon method and it 

has been applied to deter111ine renormalized couplings on an SU(2) configuration 

with fundamental and adjoint couplings[50]. In actual applications, however, the 

method works poorly and the couplings obtained by the method have large sys­

tematic errors due to fini te size effect. These errors are caused by extra degrees 

of freedom of the demons which carry a considerable part of the energy in a small 

system. Recently an idea, the canonical demon method, which does not cause sys­

tematic errors has been advocated and applied for 0(3) non-linear cr-model[51]. 

Although the idea is rather simple, the results coming from it are highly reliable. 

In this chapter we in1plen1ent this 111ethod for a physically interesting case, SU(3) 

gauge theory and obtain the effective action on blocked configurations[52]. 

3.2 The Demon Method 

Let us consider a configuration which is produced with a probability distribution: 

P(U) ex exp( -/3S[U]). (3.1 ) 

Now we introduce a demon into the lattice and consider a joint system of the 

lattice and the demon. On the joint system, the microcanonical partition function 

is written as: 

ZMic = L I:>5(S[U] + Ed - Einitiad (3.2) 
Ed U 

where Einitial is a total energy of the joint system which is initially determined 

and kept constant, and Ed is the demon energy. Notice that we need not a priori 

know information of the coupling to do the microcanonical step. After enough 

microcanonical sweeps, the delTIon energy is distributed with the Boltzmann's 

distribution: 

(3.3) 
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In the thermodynan1ic lilnit, the average of the demon energy is given by: 

(3.4) 

where Z is a partition function given by integrating out e.q.(3.3) with respect to 

the demon energy. The range of integration is taken suitably . We restrict the 

energy to -Emax < Ed < Emax. In this case, e.q.(3.4) becOInes( See AppendixC 

) : 
1 

< Ed >= 73 - Emax/ tanh(/3Emax). (3.5 ) 

This equation gives a relation between < Ed > and /3. The coupling /3 can be 

obtained through the average demon energy by solving the above equation. 

The extension to lnany couplings is straightforward. In this case, for each 

coupling we must introduce a corresponding demon. Therefore the corresponding 

microcanonical partition function is given by: 

ZMic = L L II 8(Si[U] + E~ - E;nitial), 
Ed U i 

and the coupling /3i corresponding to E~ is obtained by: 

· 1· 
< E~ >= /3i - Emax/ tanh(/3t Emax). 

(3.6) 

(3.7) 

In the microcanonical step, the demon visits one of links on a lattice and tries 

to change the link, that is, a new SU(3) matrix is taken fron1 SU(3) group and the 

link is replaced with it. This trial change causes a shift of energy on the lattice, 

6E, which must be compensated with the demon energy since the Lotal energy 

on the system is kept constant during the lnicrocanonical update. After this trial 

change, new demon energy is given by: 

(3.8) 

If the new demon energy ren1ains in the allowed region, in the above case -Emax < 

E;;ew < Emax , this trial change is accepted. If not the case, the demon moves to 
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a next link keeping its old energy. In order to raise an acceptance ratio of the 

n1icrocanonical update, it is possible to do some trial changes before the demon 

moves to a next link. If a number of demons are introduced in the system, the trial 

change is accepted only when all the demons remain in the allowed region. After 

adequate microcanonical sweeps, the demon moves into another configuration 

keeping its energy to make itself canonical[51]. 

3.3 Testing the demon method 

In order to exalnine effectiveness of the Inethod, first, we test the method for 

SU(3) gauge configurations generated on a 44 lattice with an action with 7 cou­

plings(For those values see Table 3.1.) corresponding to the Wilson loop operators 

in Fig.1. We choose rather small lattice, 44 lattice, to test how the method works 

since it is getting worse to obtain the effective action as the lattice size becomes 

small. The action S is written as: 

7 

S = L (Ji L ReTr(Wi )/3 (3.9) 
i=l Wi 

where vVi is a Wilson loop corresponding to one in Fig.l. Our numerical descrip­

tion is as follows. 

Table 3.1: Coupling values used for update of a 44 lattice( the first row" A") and 

coupling values obtained by the demon method( the second row "B") . 

11 {312 {322 {3chair {3$oj a {3twi$t (34Dtwi3t 

A .5 1.0 -0.1 -0.1 -0.1 -0.1 -0.1 

B .5029(84) 1.0004(32) -0.1027(37) -0.0988(18) -0.10032(94) -0 .0988(34) -0.1028(12) 

We need to introduce 7 demons, one for each of the 7 Wilson loop opera­

tors. Let us call the 7 demons "one demon system" . We prepare 100 indepen­

dent demon systems and 100 configurations and each demon system visits one 

of these configurations and the microcanonical update is carried out. Initially, 
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we set all the demons energy to zero. All the demons energy are restricted to 

-10 < Ed < 10 during the lnicrocanonical step. After 100 microcanonical sweeps, 

each demon system, keeping its demon energy, moves into a second configuration 

taken from a next set of 100 configurations such that this second configuration is 

statistically independent to the first one. This procedure eliminates the system­

atic error due to the finite volume of the system. After another 100 microcanonical 

sweeps on the second configuration, each demon system again moves into a third 

configuration, and so on. 

Fig.18 shows the demon energy averaged over the 100 deinon systems for every 

sweep. On each configuration used by a demon system, after some microcanonjcal 

sweeps, the demon energy seeins to be thermalized. However a clear difference 

of the demon energy between the first configuration and the second one can be 

seen. Although there also remains a difference between the second one and the 

third one, the difference is much smaller and seems to go to zero within thermal 

fluctuation. This behavior can be seen more clearly in Fig.19. 

Fig.19 shows the average of the demon energy which correspond to the 5 cou­

plings: f322, f3chaiTl f3sofa, f3twist and f34Dtwist, on the first, second, etc configuration 

used by a demon system. We averaged over the last 20 lnicrocanonical sweeps( 

We are doing 100 microcanonical sweeps on one configuration.) and furthermore 

over the 100 den10n systems. Note that the configurations are generated with the 

same value( -0.1) for these couplings, hence the average values should be san1e for 

these demons. On the first 3 configurations, however, a clear difference is seen, 

which might be considered due to the finite volume effect of the micro canonical 

update. After enough movements of the demon system, in this case 3 movements, 

the average value seems to converge to one value. 

This elimination of the finite volume effect works in the following way. In the 

infinite volume limit, initial values of the demons energy are not so important 

since the demons carry only a vanishingly small percent of the energy of a system. 

On the other hand, in our case the system is so small that the initial values of 



44 Cl-IAPTER 3. PERFECT ACTION SEARCH 

the demons energy becolne important. Since we have set all the demons energy 

to zero, on the first configuration the demons energy becomes distributed with a 

Boltzmann's distribution exp( -(3' E~) which is away from the true Boltzmann's 

distribution exp( -(3E~) due to the finite volume effect. The demons move into 

a second configuration keeping their energy with the wrong Boltzmann's distr'i­

bution which have ever has a larger overlap with the true one than the initial 

distribution(E~ = 0). On the second configuration, the demon energy becomes 

distributed with a Boltzmann's distribution which is ever closer to the true one. 

By doing further movements, the distribution of the demon energy converges to 

the true one. To check this scenario, we set initial values of the demons energy 

to values distributed with the true Boltzmann's distributions and did the nucro­

canonical update. In this case, we obtained the desired demons energy on the 

first configuration. 

The coupling values, which correspond to the demons energy in Fig.19, con­

verted through e.q.(3.4) are shown in Fig.20. Each coupling nicely converges 

to the value of -0.1. We proceeded the method to the 22nd configuration and 

obtained coupling value corresponding to each demon averaging over the config­

urations except the first 3 configurations as thermalization. The couplings are 

well reproduced within a few percent error bar.(See Table 3.1.) 

So far, we have restricted the demon energy to -10 < Ed < 10, however, there 

is no reason to do so. If the constraint is set to a wide region, the demon carries 

a large part of energy of the system. This enhances a systematic error. To see 

this, setting all the deIllons to -50 < Ed < 50, we perfonned the ll1icrocanonical 

update as above. Fig.21 shows the coupling value converted from average energy 

of the demon corresponding to (311 in the both regions, that is, -10 < Ed < 10 

and -50 < Ed < 50. Although for the both cases, each denl0n energy seems to 

converge, the convergence of the demon energy in the wide region is very poor. 

From this point of view) it lnight be better to restrict the demons in a narrow 

region as possible as we can. As a matter of fact we can not take a very narrow 
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region, since the acceptance ratio of the microcanonical update goes to zero. 

Therefore the constraint to the demons energy should be optimized suitably. 

3.4 The Demon Method on Blocked Configu-

rations 

As we have seen in the previous section, the demon method works very well. In 

this section, we implement the demon method for blocked SU(3) gauge configu­

rations. Now the effective action is not known. The blocked configurations whose 

size is 44 are produced after twice blockings from 164 lattices with the Wilson 

action at f3 = 6.2 by QCD_TARO Collaboration[53]. The blocking scheme we 

take here is a double sn1eared blocking of a scale factor 2. With certain op­

timal parameters[30, 53] it does not induce complicated extended interactions 

corresponding to large Wilson loops in the classical level. The double smeared 

blocking is as follows. 

A link UJJ.(n) is smeared twice: 

VJJ.(n) = (1 - 6c)UJJ.(n) + C L Uv(n)UJJ.(n + v)U}(n + J-l) (3.10) 
v:pJJ. 

TJJ.(n) = (1 - 6c)~L(n) + C L VV(n)~L(n + v)V}(n + J-l) (3.11) 
v:pJJ. 

where TJJ.(n) and VJJ.(n) are once and twice smeared link respectively. The two 

adjacent smeared links are connected as: 

(3.12) 

and a blocked link U~b)(n) is obtained according to a probability distribution: 

(3.13) 

The parameters, c and K, are tuned so that the effective action becomes local. 

Here we take c = 0.077 and K = 10.5[30, 53]. 
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Assuming that the effective action has only 7 nterctions as in Fig.2, we do 

the same procedure as above. Fig.22 shows the coupling value of 1311 converted 

through the demon energy at each configuration. In this case, the demon energy 

seems to be already thermalized on the second configuration. The coupling values 

obtained by the demon lnethod are summarized in Table 3.2. We can observe 

a coupling decay for those couplings, namely, the values of 8 links Wilson loop 

couplings is smaller than the values of 6 links ones. It might be conjectured that 

contributions from 1110re than 8 links Wilson loops are smaller. 

Table 3.2: Coupling va.lues obtained by the demon method for the double smeared 

blocking(D) and Swendsen's blocking(S). The double s111eared blocking is done 

at 13 = 6 2 and Swendsen's blocking IS at 13 = 6 0 

lBu f312 f322 f3chair 

D l.1402(25) 0.1169(16) 0 .0204(22) 0.20023(94) 

S ~ .236( 45) -0.7033(59) 0.0653(74) -0.1042(34) 

0.03494(80) 

0 .0300(30) 

0.1935(13) 

0.2151(66) 

0.07032(89) 

0.1023(13) 

To verify the validity of the effective action obtained in this way we compare 

the values of a nurnber of Wilson loop operators. The second row of Table 3.3 

shows the values of these Wilson loop operators on the blocked configurations. 

The third row shows the ones measured on generated configurations with the 

effective action with the couplings of Table 3.2. They agree well within error bars. 

However this is not a severe check of the truncation effect since we measured only 

Wilson loops which the demons couple to. Unfortunately we did not measured 

such Wilson loops which the demons do not couple to. 

Table 3.3: Values of the Wilson loop operators on the double smeared blocked 

configurations(BL) and on the configurations genera.ted with the couplings ob­

tained by the demon method(GE). 

BL p.10119(34) 0.01814(21) 0.00177( 11) 0.02585( 16) 0.003253(59) 0.02137(15) 

GE p.10121(15) 0.018167(57) 0.001722(64) 0.025789(53) 0.003251(37) 0.021528( 43) 
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We also measure susceptibilities between Wilson loop operators as another 

check. We define the susceptibilities a;j as: 

(3.14) 

where < ... > indicates taking an average. The susceptibilities obtained by this 

definition are summarized in Table 3.4. All the non-diagonal susceptibilities are 

correctly reproduced in sign. As for magnitude of the susceptibilities, most of 

them are correctly reproduced within 2 sigma error bar. There are small but def­

inite deviations for those of W11-W11, Wchair-Wsofa, W12-Wtwist, and Wsofa­

Wtwist. Therefore the obtained action is still an approximate one. Complete 

reproduction will be obtained by enlarging coupling constant space. However, 

such fine tuning is too pren1ature for the first trial and we do not come into 

further detailed reproduction. 

Table 3.4: Susceptibility aij (x 1000). In each row, upper figures from the dou­

ble smeared blocked configurations and lower figures are from the configurations 

t d . tl tl r b th d genera e WI 1 le coup Ing y e emon me th d o . 
Wi 1, Wj -+ W ll W 12 W 22 Wchair W"oja Wtwi"t 

W ll 7.55(13) 3.67( 14) l.57(27) 3.955(85 ) l.55( 11) 3.15( 14) 

8.212(69) 3.833(57) l.20(24) 4.084(39) l.156(95 ) 3.172(52) 

W 12 4.73( 10) l.36(23) 2.17(11) l.257(68) 1.936(95) 

4.727(25) l.37(11) 2.088(29) 1.007(82) l.601( 44) 

W 22 5.98(11) 0.99(21) 0.78(20) l.01(21) 

6.046(38) 0.59(16) 0.609(98) 0.74(17) 

Wchair 3.l83( 40) l.193( 48) 2.522(55 ) 

3.130(19) 0.879(45) 2.387(29) 

W"oja 2.259(28) l.412(82) 

2.192(19) l.020(28) 

Wtwi"t 4.125(68) 

4.136(36) 

We also implen1ent the demon 11lethod for blocked configurations generated by 
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a different blocking, Swendsen's scale factor 2 blocking[32, 14,18J. The blocking 

procedure we take is saIne as in Sec.2.1 

Blocked configurations are also produced by QCD_TARO Collaboration[14, 

22], after twice blockings with q = 0 from 323 x 64 lattices with the Wilson action 

at f3 = 6.0. These configurations have a size of 83 x 16. Therefore it can be 

expected that the finite volume effect is much smaller comparing to the case of a 

44 lattice. As seen in Fig.10, the optimal q is about 0 at f3 = 6.0. Therefore we 

have blocked configurations with q = O. In general, however, this optimal value 

does not necessarily mean that the effective action is local. 

We introduced only one demon system and used 4 configurations, so far. Al­

though in this case statistics lnight not be enough to obtain a definite result, at 

least we could obtain a interesting preliminary result and further investigation 

should be needed to improve statistics and verify the result. The result is given 

in Table 3.2 together with the double sn1eared blocking case. The interesting 

behavior is that although for the double smeared blocking all the couplings take 

positive values while for Swendsen's blocking some couplings take negative values 

and the f311 coupling is rather increasing. This is an example that the renor­

malized trajectory is dependent on what blocking scheme we take. Although for 

Swendsen's blocking we can also observe a coupling decay for those couplings, 

it is rather slow, namely, the f3chair coupling of a 6 links loop and the f34Dtwist 

coupling of a 8 links loop are nearly equal. So it might be probable that some 

truncation effects are still contained in the effective action which we obtained and 

they may be large. A careful analysis should be needed in further investigation 

in order to see the truncation effect. 



Chapter 4 

Conclusion 

In Chapter 2 we have analyzed scaling property of the standard Wilson action in 

tern1S of the coupling shift 6.{3 using the MCRG technique. There was discrepancy 

in the previous results of 6.{3 and they were very controversial. 

This is partly due to smallness of lattice size which limits blocking step and 

causes unwanted finite temperature phase transition at high {3. Another point is 

lack of insufficient statistics. 

To solve this, we have worked on 324 lattices and done high statistics Monte 

Carlo simulations. Our results have showed that there is a large deviation from the 

prediction of the 2 loop {3-function up to {3 ~ 7.5. From this analysis, we conclude 

that the standard Wilson action has not the perturbative scaling property at 

presently accessible {3. Therefore in order to obtain values in the continuum limit 

using the standard Wilson action, some careful extrapolations to the continuum 

limit should be needed or we have to go to higher {3, provided that the performance 

of computers is powerful enough . 

Using the improved couplings, g~s and g;, however, the deviation can be 

reduced but it is only a partial improvement. For {3 :::; 6.5 the large deviation still 

remaIns. 

We have proposed a new coupling scheme g~ which is determined so that it 

accounts for our 6.{3 results. And we have tested the scaling for the string tension, 
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the charmonium Ip-ls splitting and the glueball mass using g~ and also bare g2 , 

g~s and g;. From this scaling test, we have found that the improved coupling 

g~s and g; recover the scaling property partially but not completely. On the 

other hand, We have better scaling for the string tension and the charmonium 

Ip-ls splitting by the use of g~ coupling in a region 5.7 < f3 < 6.8. Using the 

g~ coupling, AMS of the continuum QCD is estimated to be 200M eV from the 

string tension and 210MeV from the charmonium Ip=ls splitting. These values 

are smaller than that given by g;, AMS = 233MeV. 

A point to be clarified in that scale paran1eter in the g~ coupling scheIue, Au, 

is fairly large, a few GeV. At present, we have no reasonable explanation for this 

point and it is left for future investigations. 

For the glueball 0++ mass, we could not see a good scaling even if the coupling 

g~ is used for them. 

We are able to take another approach to the scaling problelu. That is to find 

an action of lattice QCD which is sitting on the renormalized trajectory and is 

named perfect action. If the perfect action is known and it is a very local action, 

it will be a useful and reliable action in the Monte Carlo sin1ulations. As the first 

step of the investigation, we study a possibility to find effective action for blocked 

gauge configurations. 

In Chapter 3 we have developed a tool, the demon method, to find the perfect 

action. First the luethod was tested for the known gauge configurations generated 

with the 7 couplings. VVe have successfully reproduced the 7 couplings within 

a few percent error bar. Based on this study, the method was then used on 

the double smeared blocked SU (3) gauge configurations and an effecti ve action 

was obtained. To check the validi ty of the effective action we have generated 

configurations by this action and measured values of some Wilson loop operators. 

Their values turn out to be the san1e as those measured directly on the blocked 

configurations within error bars. Susceptibilities were also measured as another 

check . They showed the salue sign in non-diagonal parts and the san1e magnitude 
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except small deviations on a few susceptibilities. Therefore we conclude that the 

demon method works very well to determine effective actions in multi-dimensional 

coupling constant space. It is considered that the demon method is a strong tool 

to find the perfect action which gives physical prediction in continuum space­

time with good precision. [29] In principle, enough blocking transformations get 

the system close to renormalized trajectory even if we start with Wilson action. 

If an effective action is determined there, it becomes the perfect action. From 

this point of view, searching for the perfect action utilizing the demon method is 

very promising and an investigation in this direction is going on [53]. 
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Appendix A 

Blocking Scheme 

Here we give the proof that our blocking scheme is given by e.q.(2.36). Let us 

consider a simple case, one variable, and assume e.q.(2.36). A new blocked link 

Ub is given according to the probability distribution: 

Since Ub is an SU(3) matrix, it can be parametrized as: 

where 

v = Q( Qt Q) -;1 e- i o:/3 

U' = exp(i t CI AI ) 
1=1 2 

(A.2) 

(A.3) 

(A.4) 

and A, are SU(3) generators and c, are parameters. Using the property of the 

invariant measure, we obtain: 

dUb = d(VU') = dU' (A.5) 

Therefore e.q.( A.l) is rewritten as: 

dU'P(U') = dU' J dU exp [-S[U) + N(Q) + pReTr(U')). (A.6) 
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This means that U' is taken according to the probability distribution: 

dU'P(U') ex dU' exp(pReT1'(U')) 

The ReTT( U') is expanded as: 

Assulning C/ are small, e.q.( A. 7) is given by: 

dU' P( U') ex dU' exp(p(3 - ~ L cn) 
4 I 

If Cl are small, the integration measure dU' is given as: 

Therefore we obtain: 

dU' P( U') ex exp(3p) II exp( - (E + ~ )CndCI. 
I 4 8 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

This means that the parameter C/ are obtained according to the probability dis­

tribution: 
p 1 2 

P(CI) ex exp(-(4 + g)c/). (A.14) 

Replacing (p/4 + 1/8) with 1/2q, we finally obtain: 

(A.15) 

Hence U' is a gaussian n1atrix and Ub given by e.q.(A.2) corresponds to the blocked 

matrix of e.q.(2.33). 
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N( Q) is a normalization factor and in the Monte Carlo simulation we do not 

need to care about it. N(Q) is calculated as follows: 

J 
2 1 c2 

exp(3( - - -)) IT dCI exp( __ I ) 
q 2 I 2q 

2 1 r;;:: 
exp(3( - - -))( V 2q7r)8 

q 2 
exp( -N(Q)). 

Hence we obtain: 

(A.16) 

(A.17) 

(A.18) 
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Appendix B 

Correction factor to the 2 loop 

formula 

We want to integrate the following: 

J 2d In a = J ~x b' 
b1 + ~ +-x x 2 

(B.l) 

where x = 1/ g~. 

The right hand side is expanded as: 

dx dx 2 3 4 5 
b b' = -b (1 - A + A - A + A - A + .... ) (B. 2) 

bo + ~ + 3" 0 x x 

where 

A=~+~. 
box box2 

(B.3) 

Arranging the terms in e.q.(B.2), we obtain: 

dx dx b1 b1 2 b1 3 
b b' - -b { (1 - -b + (-b ) - (-b J + .... ) (B.4 ) 

bo + 7 + x2 0 OX oX oX 

b' 2b1 b' b,2 3bi b' 1 
--b .2 + b2 .3 + (-b2 - -b3 )-:4 + .... } (B.5) 

oX OX 0 0 X 

We can recognize that e.q. (B.4) is an expansion of the contribution of the 2 loop 

,B-function. Therefore the correction factor to the 2 loop formula is given by 
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e.q.(B.5) and this is easily integrated. We obtain the following formula as the 

correction factor up to O( 1 / x 5
). 

(B.6) 

where 
b1 

Cl = - (B.7) 
bo 

b' 
C2 = - (B.8) 

bo 

and !2( x) is the 2 loop formula. If we assume that the coupling g~ = 1/ x is small 

enough, the correction factor is approximately given by the first term, exp( - 2~;x). 



Appendix C 

Relation bet-ween the coupling 

and the demon energy 

The partition function of the demon is given by: 

z = lEma, exp( -f3Ed) dEd 
E m • n 

1 
= [- ~ exp( -(3Ed)]~:~: 

1 
= -~[exp( -(3Emax) - exp( -(3Emin)] 

(C .l) 

(C .2) 

(C.3) 

where the integration rage is Emin < Ed < Emax. The expectation value of the 

demon energy is given by: 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

The value of the coupling can be obtained by e.q. (C. 7). Here we show the relations 

for several cases . 
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(1 )Emin = 0, Emax = 00 

(2)Emin = -E, Emax = 00 

(3)Emin = 0, Emax = E 

1 
< Ed >= -E +­

{3 

1 ( (3E) 
< Ed >= -g 1 - exp({3E) _ 1 

(4)Emin = -E, Emax = E 

1 
< Ed >= -g - E / tanh({3E) 

(C.S) 

(C.g) 

(C.lO) 

(C.l1) 
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Figure Captions 

Figure 1: 6{3 vs (3, from previous results. The line baTe g is froln 

the 2 loop prediction. 

Figure 2: Shape of Wilson loop operators. These \Vilson loops 

except for W4dtwist are used for the matching method( Chapter 2 

). In the delllOll method( Chapter 3 ), all the Wilson loops are 

considered. 

Figure 3: Fixed point action and RenorInalized trajectory. 

Figure 4: Blocking in spin system. 

Figure 5: Wilson's scale factor b == 2 blocking. 8 links are 

summed up in 4 dilllension. Here, 4 of theIll are drawn in 3 di­

mension. A new blocked link is put between 2 block sites. 

Figure 6: Swendsen's scale factor b == 2 blocking. 

Figure 7: Blocked trajectory and Renorlnalized trajectory. 2 

blocked trajectories Inatch on the Renormalized trajectory. 

Figure 8:1 x 1 loop( plaquette ) at each blocking level with 

q == O. "Level 0" Illeans no blocking procedure. "Level 1", Level 

2" and "Level 3" mean blocking level. 

Figure 9(a)-(d): Matching on a 324 lattce at {3 == 6.8. These 
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figures shows the interpolation at each blocking level. It is seen 

that the dependence of q becomes weaker at high blocking level. 

(N ote that scale of Y axis are different at each blocking level.) 

Figure 10: qopt vs (3, on 164 lattices. 

Figure 11: 6.(3 vs blocking level, on 324 lattices. 

Figure 12(a)-(b): 6.(3 at each blocking level on the 164 lattice 

vs (3. Filled triangle, squares and filled circles indicate levell, level 

2 and level 3 respectively. Fig .12 ( a) is zoomed to Fig .12 (b) . 

Figure 13: 6.(3 vs (3 for all data from this study. The solid line 

indicated as bare g2 is the prediction from the 2-loop (3 function. 

Figure 14: 6.(3 and fitted curves from various coupling schemes. 

The curve M is the result of 6.(3 from g~s and the curve E is ones 

from g;. The curve A and B means fitted curves vvith b' only and 

one with both b' and Xo respectively. 

Figure 15: Scaling test for string tension. 

Figure 16: Scaling test for charmonium 1p-1s splitting. 

Figure 1 7: Scaling test for 0++ glueball mass. 

Figure 18: (a) Delnon energy associating with (311 coupling at 

each microcanonical sweep. First, the demon visits a 1st config­

uration and then moves into a 2nd configuration and so on. (b) 

Same for (3chair' coupling. 

Figure 19: Average demon energy for (322, (3chair, (3sofa, (3lwisl 

and (34Dtwist on each configuration(lst, 2nd, ... , n-th configuration). 

Figure 20: Coupling value converted from the demon energy 
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in Fig.19. 

71 

Figure 21: Coupling value of (311 from the demon method in 

both regions of -10 < Ed < 10 and -50 < Ed < 50. 

Figure 22: Coupling value of (311 from the demon method on 

the double smeared blocked configuration. 
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