鉄筋コンクリート短柱の耐震能力に関する基礎的研究

平成5年11月

蓼原真

				日次	
笛	1	音	1	字 章	1
笛	2	音	-	多段配筋短柱のせん断耐力の理論的考察	5
1.	1		序		6
	2		解	析的アプローチ	7
	2		1	解析モデル	7
	2	·	2	解析仮定	8
	2		4 M	其木式	9
	2	•	2	金年式 1 最外筋システム負担せん断力 Q_	9
	2		R	2 山段路システム負担せる断力()	11
	4 2	•	n C	3 アーチ機構負担せく断力へ ^m	13
	4 2		n c	A 最外路 山段路両システムを結び付ける軸路の軸方向変形量の質定	15
	4 2		1	・ 4 取 小 加 、 中 权 加 両 シ へ) ム と 相 じ 门 的 る 知 加 シ 和 刀 両 文 ル 重 シ 昇 足 会 せ く 断 力 〇 (= 〇 s + 〇 m + 〇 m) の 質 定	17
	A N		田田	上 こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	20
	1	•	力十 ⁷ 玄士 :		21
谷	4 2	· 苔	小口 :	四 冬島配路毎社のサノ断耐力実田証価式	25
77	1	4	序		26
	1		++	(断圧縮破壊時せく)新耐力実用評価式(軸筋の降伏したい場合)	27
	4	•	1	昭析エデルと解析仮空	27
	4 0	•	1	肝切てアルと肝切反足	20
	4 2	•	4 2	アーチ機構の基本式	30
	4 2	·	1	トラフ機構 レターチ機構の其大子	30
	4 2	•	4	中 2 人 成 博 1 1 1 成 博 の 金 平 ム	21
	4 2	•	2	1) 断丁烷亚博特片/新武力字田冠傳書(動物の際代表考慮)	22
	5	•	2.	ん別圧縮破壊時でんと前別ノ夫用評価式(軸肋の障仏を考慮)	27
	4	·	亚丁	古いてんと別補強肋派数Ψ b を β 應 し に 一	10
	5	•	用件	所結末	40
**	6	•	新社:	成刀破壊時でん断門刀 V DT	42
界	4	早	r#F	夕段 能 肋 起 性 の 水 ギ 加 ノ 夫 映 概 安	44
	1	•	序		40
	4		夫!	驶税 安	40

- i -

	2		1 試験体について		45
	2		2 加力および測定方法		52
第	55	章	多段配筋短柱の水平加力実験結果		54
	1		序		55
	2		実験結果		55
	2		1 破壞経過		55
	2		2 鉄筋のひずみなど		61
	3	•	最大荷重		63
	3		1 最大荷重とせん断スパン比の関係		63
	3		2 最大荷重と帯筋比の関係		65
	3		3 無帯筋の場合の中段筋比および引	張り鉄筋比のせん断耐力の関係	66
	4	•	結論		67
第	56	章	1 多段配筋短柱のせん断耐力実用評価	式の有効性	68
	1	•	序		69
	2		せん断圧縮破壊時(軸筋降伏を考慮す	る場合)	69
	3		せん断圧縮破壊時(軸筋降伏を考慮し	ない場合)	72
	4		斜張力破壞時		77
	5	•	結論		85
第	57	章	三重傾斜帯筋柱のせん断耐力評価式		86
	1		序		87
	2	•	解析的アプローチ		87
	2	•	1 下界モデル		87
	2	•	2 下界モデルの解析仮定		89
	2	•	3 基本式		89
	2	•	3. a 各機構の負担せん断力		89
	2	•	3. b X_a , $X_a + X_{b2}$, $X_a + X$	_{▶2} +X _{▶1} が極大となるときのθ	92
	2	•	3. c トラス機構のみの場合の各応	カ	94
	2	•	3.d アーチ機構とトラス機構が存	在する場合の各応力	97
第	\$8	章	こ重傾斜帯筋柱の実験と耐力評価式	の有効性	101
	1		宋		102

2. 二重傾斜帯筋柱の実験	102
2.1 実験概要	102
2.2 実験結果	104
3. 二重傾斜帯筋柱のせん断耐力計算値と実験値との比較	114
4. 結論	116
第9章 多段配筋短柱のせん断設計	117
1.序	118
2. 引張り軸筋,中段筋,帯筋の同時降伏時のψ _{wy} の算定	119
3. 結論	122
第10章 短柱の軸方向耐荷力	123
1.序	124
2. 実験概要	125
3. 実験結果と検討	126
4. 結論	131
第11章 まとめ	133
谢辞	135

第1章 序章

第1章 序章

はじめに、本研究の目的と方法、および論文の構成について述べる。

最近、建物の高層化への波には著しいものがある。特に鉄筋コンクリート造による高層 化、超高層化は、耐火性、経済性など、この構造のもつ多くの長所の故に、今後ますます 進められてゆくものと考えられる。一般に、高層建物では、地震時の応答水平加速度は低 層に比べて、相対的に小さくなることが明らかとなっているが、層数が多いだけに、建物 下層部に加わる水平力そのものは軸力と共に、低層建物に比べてきわめて大きなものにな る。耐震壁などが少なく、水平力のほとんどを柱に負担させる設計では、柱のせん断耐力 が主な問題となる。また、耐震壁などが多く、柱に軸力のみを負担させ、水平力をあまり 負担させない設計では、柱の軸耐荷力が問題となる。ところで、下層部の柱は大きなせん 断力や軸力に対処するために断面が大きくなる。一方、建物の階高は低層建物とあまり変 わらないので、結果として太短い柱(短柱)となる。また、柱はx, y両方向の地震力に 対処するために、一般に多段配筋される。また、短柱をらせん筋で補強すれば、耐震能力 が著しく向上するといわれる。しかし、このような短柱の耐震能力に関して、現在十分な 理解がえられていない。本研究はこのような多段配筋柱やらせん帯筋柱の耐震能力を明ら かにして、より合理的な耐震設計を行うための基礎資料を得ようとするものである。 本論文は序章をいれて11章からなるが、第9章までは短柱のせん断耐力について検討し、 第10章で軸方向耐力について検討している。前者は特にせん断抵抗機構について理論と

実験の両面から詳細な検討を行い、さらに短柱のせん断設計に必要な実用的なせん断耐力 評価式を提示している。本論文は具体的には次のような構成をとっている。

第1章 序章

- 第2章 多段配筋短柱のせん断耐力の理論的考察
- 第3章 多段配筋短柱のせん断耐力実用評価式
- 第4章 多段配筋短柱の水平加力実験概要
- 第5章 多段配筋短柱の水平加力実験結果
- 第6章 多段配筋短柱のせん断耐力実用評価式の有効性
- 第7章 二重傾斜帯筋柱のせん断耐力評価式
- 第8章 二重傾斜帯筋柱の実験と耐力評価式の有効性
- 第9章 多段配筋短柱のせん断設計
- 第10章 短柱の軸方向耐荷力

- 2 -

第11章 まとめ

これらのうち第2章~第10章の内容について概略を述べる。

第2章では、多段配筋短柱のせん断耐力を評価する上で重要なせん断圧縮破壊型につい て、極限解析の下界定理に基づき詳細な理論的考察を展開する。トラスとアーチからなる せん断伝達機構に中段筋の付着を考慮したモデルを提案する。トラス機構は軸筋の付着力 の存在で成り立つが、中段筋にも付着力が存在するので、中段筋がトラス機構を形成して、 せん断耐力に影響するのではないかと考えた。トラスとアーチの各機構は便宜上断面を別 々にとり、各斜材応力をコンクリート強度として、トラスの斜材角度は45度の一定とし ている。

第3章では、第2章の理論に基づいて、より現実的なせん断耐力評価式を導いている。 軸筋が降伏する場合とそうでない場合の両ケースについて実用式を提示すると共に、せん 断圧縮破壊型とは別の特殊な斜張力破壊型についても実用式の提案を行う。ただし、前者 の解析モデルは第2章のモデルと異なり、トラスとアーチの各機構のコンクリート斜材応 力を実際の断面と同じように同一断面で重ね合わせている。また、トラス機構の斜材の角 度を帯筋量で変化させている。

第4章では、第3章の理論を検証するために行った実験的研究の前半を内容とするもの で、計150体におよぶ短柱の水平加力実験について、試験体計画、使用した材料、およ び加力測定方法などの概要を述べる。柱の形状と寸法、作用軸力レベル、最外筋と中段筋 の各量、帯筋量、各使用材料の強度などが試験体変数とする。

第5章では、第4章の実験結果を示す。荷重-変位曲線,ひびわれ伸展具合,および軸筋のひずみ性状について、全般的傾向を述べると共に、各試験体の最大耐力および破壊モードのまとめを行う。

第6章では、第3章で提案した実用的せん断耐力評価式について、第5章の実験結果と の比較を行い、せん断圧縮破壊型で軸筋が降伏する場合とそうでない場合、または斜張力 破壊型の場合のそれぞれについて評価式の有効性を示す。

第7章では、二重に傾斜した帯筋を有する短柱のせん断耐力評価方法について理論的に 検討する。斜張力破壊を防止し、短柱の耐震能力を著しく高めるといわれる二重らせん帯 筋柱の耐力評価を目的としており、軸筋が降伏しない場合のせん断理論を展開する。

第8章は、二重に帯筋の傾斜したらせん帯筋柱,一重らせん帯筋柱,および比較のため に行った在来フープ柱の計41体の水平加力実験について概要と実験結果を述べ、せん断 耐力実験値と第7章の評価方法による計算値との比較を行い、理論の有効性を示す。

第9章では、第3章の耐力評価式を用いた多段短柱のせん断設計について検討する。柱 の保有水平耐力の算定前に、あらかじめ許容応力度設計によって帯筋量が定められていれ ば、この評価式を適用すればよい。しかし、帯筋量が定められていない場合、評価式をそ のまま断面設計の初めから用いることは難しい。そこで、軸力比には変動があるので、別 の方法として軸力比のほぼ全範囲で、軸筋の降伏を帯筋の降伏と同時か、帯筋の降伏に先 行させるように、せん断補強筋係数を第3章で示す釣合補強筋係数以上にしておく方法が 考えられる。ただし、この方法は非常に簡単であるが、あまり効率的とはいえない。効率 的な方法は、与えられた軸力比に対して軸筋降伏と同時に帯筋も降伏する場合である。さ らに、軸筋応力が弾性範囲である軸力領域との境界軸力比においてさらに帯筋量を少なく できる。すなわち与えられた軸力比を境界軸力比と等しくなるようにすれば効率的な帯筋 量を求めることが可能である。そこで、本章ではこの方法について検討する。

以上、第9章までは柱が主にせん断力を負担する場合を対象としている。

第10章では、高軸力を受ける短柱の軸耐荷力について実験的に検討する。多量の帯筋 を密に配した矩形と円形断面を持つ短柱の中心と偏心圧縮実験について述べる。また、同 一の帯筋量でもピッチの違い、軸筋の有無についても検討する。また、コンクリートを立 体トラスに置換したモデルを用いて、中心圧縮柱の挙動を解析的にも検討する。

第11章では、以上を総括する。

第2章 多段配筋短柱のせん断耐力の理論的考察

1. 序

本章は鉄筋コンクリート多段配筋短柱のせん断耐力を評価する上で重要なせん断圧縮破 壊型について、極限解析の下界定理を用いて理論的考察を試みる。

ここで軸筋のうち、中段筋を除く引張または圧縮の軸筋をここでは最外筋と呼ぶことに する。中段筋は軸筋であり、軸力や曲げ応力を負担するので、最外筋が降伏後の曲げ耐力 上昇には寄与するが、中段筋は直接にはせん断力をほとんど負担しないものと考えられて いる。ところで、軸力レベルが低い場合、中段筋のひずみ測定結果から、曲げひびわれ発 生後に中段筋の材端と材中央の間でひずみ勾配がみられる。すなわち、中段筋とコンクリ ートとの間には付着力が存在している。付着力の存在は後述のように中段筋,帯筋および コンクリートからなるせん断伝達機構(トラス機構)を形成するので、中段筋は軸筋では あるが、間接的にせん断に関与していると考えられる。

ところで、中段筋を含む柱のせん断耐力を解析的に求める方法として、極限解析の下界 定理を用いた称原・加藤モデル¹⁾²⁾³⁾が提案されている。このモデルは、最外筋,帯筋お よびコンクリートからなるせん断伝達機構(最外筋システムと呼ぶ。)と、最外筋,中段 筋およびアーチ斜材からなるアーチ機構から成り立っている。中段筋は軸筋としてのみ考 慮され、コンクリートとの付着力は考慮されていない。このモデルでせん断耐力を算定す ると、帯筋および中段筋が存在してせん断圧縮破壊したものの中で、下界定理にもかかわ らず実験値が計算値を下回るものが存在した。そこで、中段筋とコンクリートとの付着力 を考慮したより詳細なモデルを提案して検討してみた。このために、中段筋、帯筋および ウェブコンクリートストラットからなるせん断伝達機構(中段筋システムと呼ぶ。)を新 たに導入した。このシステムは、中段筋の引張弦材,帯筋の存在範囲外にある最外筋のか ぶりコンクリート部分(フランジと呼ぶ。)の圧縮弦,帯筋およびウェブコンクリートス トラットからなるものと仮定している。また、フランジ下で、ウェブ以外のコンクリート 部分も利用して、本来のアーチ斜材以外に2次アーチ斜材も考慮することにした。

本章は、中段筋とコンクリートとの付着を考慮した多段配筋短柱のモデルについて、一定軸力下で逆対称曲げモーメントを受ける場合を検討している。

2. 解析的アプローチ

2.1 解析モデル

解析の対象は図1(a)に示す逆対称曲げモーメントを受ける矩形断面柱とする。また、 中段筋は材軸に集中しているものと考える。

本解析モデルは、図1(b)の最外筋システムと(d)のアーチ機構の2つからなる称 原・加藤モデル(このモデルを用いたせん断耐力計算式については文献4)参照)をベー スに、中段筋の付着を考慮した(c)の中段筋システムと(e)の2次アーチ斜材を付け 加えたものからなっている。ここで、(d)の斜材を1次アーチ斜材と呼ぶことにする。

2.2 解析仮定

修正モデルの解析にあたり以下のことを仮定する。

- i) ピッチx,の1組の帯筋断面積a,について、最外筋,中段筋各システムの負担断面 積a,, a, を次の仮定によって定める。
 - a) 両システムは材端で一体で軸筋の抜け出しはなく、区間内では付着破壊せず、軸方 向の変形量は等しい。
 - b)軸筋がすべて弾性範囲の場合、軸筋の材端におけるひずみ分布は平面を保持する。
- ii) ウェブストラットの材軸とのなす角度 + 両システムとも45°とする。

各システムのウェブ幅b w, b w: 後述

iii)中段筋システムのフランジ

フランジ厚t::最外筋のかぶり厚さとする。

フランジ長1m1:このシステムが材中央で点対称であることと、最外筋システムとの 統一性から次のように定める。

(1)

 $l_{mf} = \{1 - (D/2 - t_f) / t_a n \phi\} / 2$

ただし、1:材長, D:全せい

フランジ幅 bmf:後述

- iv) 最外筋システムのフランジ
 - フランジ厚t・:最外筋のかぶり厚さとする。

フランジ長 1_{sf} : (1)式中のD/2をd(=D-t_f)に置換したものとする。

 $l_{sf} = \{1 - (d - t_f) / t_a n \phi\} / 2 = (1 - g / t_a n \phi) / 2$ (2)

ただし、g(=d-t:):圧縮引張最外筋間距離

フランジ幅bвя:ウェブ幅bвwと同一とする。

- v)アーチ機構の軸筋の応力:最外筋,中段筋各システムにおける軸筋応力の残余の応力 とする。
 - 1次アーチ斜材幅 b t1:幅 b から最外筋,中段筋の各システムのフランジ幅 b sf, b mf の和を差し引いたものとする。

 $1次ア-チ斜材のせいX_1 := (D-1 t a n \theta_1) (図(d) 参照)$

ただし、01:1次アーチ斜材の材軸とのなす角度

vi) 2次ア-チ斜材

斜材のせいX₂:材端において、中段筋システムのフランジの下端と1次アーチ斜材の 下端までとする(図(e)参照)。

2次アーチ斜材の材軸とのなす角度θ₂:

 $\tan \theta_2 = (D - X_1 - t_f) / l = \tan \theta_1 - t_f / l$

斜材の幅 b +2:中段筋システムのフランジ幅 b m + とウェブ幅 b m wの差とする。

2.3 基本式

2.3.1 最外筋システム負担せん断力Q =

解析では、最外筋システムの帯筋負担断面積aswが未知数であるが、取扱いを容易にす るために、最外筋とウェブストラット間の単位長さあたりの付着力C1を代わりに未知数 とする。C1とaswの関係は、帯筋の降伏状態を仮定すると、ウェブストラットの圧縮力、 帯筋の引張力および付着力からなる力の三角形から次のようになる。

 $C_{1} = \sigma_{wy} a_{sw} / (x_{p} \tan \phi)$ (4)

ただし、 σwy: 帯筋の降伏点, Xp: 帯筋ピッチ

以下では、C1以外の未知数をC1で表す。

○ウェブストラット幅bsw

同じく力の三角形から

 $C_1 = F_c b_{sw} s i n \phi c o s \phi$

ただし、F。:コンクリート圧縮強度

したがって、

 $b_{sw} = C_1 / (F_c \quad sin\phi \cos\phi)$ (6)

また、フランジおよび同区間の最外筋における軸方向力と付着力の釣合いから

 $(F_{c} - F_{sc}) b_{sf} t_{f} + (\sigma_{ssc} - \sigma_{sss}) a_{s} = C_{1} l_{sf}$ (7)

ただし、F。, F_s, σ_{ss}。およびσ_{ss}: フランジおよび同区間の最外筋の両端部応力 (圧縮を正、F。およびσ_{ss}。が部材端側), a_s: 最外筋の断面積

また、フランジにおけるモーメントの釣合いから

フランジの最外筋位置まわり

 $Q_{sf}l_{sf} = (F_c - F_{sc})b_{sf} t_f^2 / 2$

- 9 -

(8)

(5)

(3)

フランジの図心まわり	
$Q_{sf}l_{sf} = \{C_1 \ l_{sf} - (\sigma_{ssc} - \sigma_{sss}) \ a_s \} t_f / 2$	(9)
ただし、Qsf:フランジの負担せん断力	
フランジ区間外の最外筋における軸方向力と付着力の釣合いから	
$(\sigma_{sst} + \sigma_{sss}) a_s = C_1 (1 - 1_{sf})$	(10)
ただし、 σ вы t: 最外筋の引張端の応力(引張を正)	
ランジ端を結ぶコンクリート斜材のモーメントの釣合いから	
$Q_{sf}g / tan \phi = F_{sc}b_{sf}t_{f} (D - t_{f})$	(11)
◎ウェブ負担せん断力Q。w	
部材端からg/(2tanφ)の距離の材軸まわりにおけるQswと付着力による	モーメ
ントの釣合いから	
$Q_{sw}g/(2\tan\phi) = g^2 C_1/(2\tan\phi)$	
したがって	
$Q_{sw} = g C_1$	(12)
○システム負担軸力N。と各軸方向応力との釣合い	
$F_{c} b_{sf} t_{f} + \sigma_{ssc} a_{s} - \sigma_{sst} a_{s} + C_{1} g / tan \phi = N_{s}$	(13)
◎フランジの負担せん断力Qв f	
(6), (8), (11)からFscとbsf(=bsw)を消去し、(2)より、	
$1 - 21_{sf} = g / tan \phi$	
の関係式を代入すると	
$Q_{sf} = t_f K_s C_1 1 / (21_{sf})$	(14)
ただし、K _B = 2 (1 _{Bf} /1) t _f d/{2 (1 _{Bf} /1) g+t _f }/(1sin ϕ c	$(\circ \circ \phi)$
◎最外筋システム負担せん断力Q。	
(12), (14)から	
$Q_{\mathbf{b}} = Q_{\mathbf{b}\mathbf{f}} + Q_{\mathbf{b}\mathbf{w}}$	
$= \alpha C_1$	(15)
ただし、 $\alpha = t_f K_s / 2 / (1_{sf} / 1) + g$	

- 10 -

2.3.2 中段筋システム負担せん断力Qm

このシステムの未知の帯筋負担断面積 a mw(= a s - a sw)の代わりに、中段筋とウェ ブストラット間の単位長さあたりの付着力をC2を未知数とする。

OC2 とamwおよびC1 の関係

ウェブストラットの圧縮力、帯筋の引張力および付着力からなる力の三角形から

 $C_2 = \sigma_{wy} a_{mw} / (x_p t a n \phi)$

 $=\sigma_{wy}(a_w - a_{bw})/(x_p tan\phi)$

 $= C_0 - C_1$ (16)

(17)

(18)

 $til. C_0 : a_{sw} = a_w obsolution Obsolutico Obsolutico Obsolutico Obsolutico Obsolut$

○ウェブストラット幅bmw

 $C_2 = F_c b_{mw} s i n \phi c o s \phi$

(17)より

 $b_{mw} = C_2 / (F_c \sin \phi \cos \phi)$

フランジ区間のフランジと中段筋の各付着力の釣合いから

 $(F_{c} - F_{mc}) b_{mf} t_{f} = C_{2} l_{mf}$ (19)

ただし、Fc, Fmc:フランジの両端部応力(圧縮を正、Fc が部材端側)

◎フランジ負担せん断力Qェ

フランジにおけるモーメントの釣合いから フランジの最外筋位置まわり $Q_{mf}l_{mf} = (F_c - F_{mc}) b_{mf}t_f^2 / 2$ (20) フランジの図心まわり $Q_{mf}l_{mf} = C_2 l_{mf}t_f / 2$

したがって

 $Q_{mf} = C_2 t_f / 2$ (21)

○フランジ区間の中段筋における軸方向力の釣合い

 (σ_{nnt} - σ_{nns}) a_m = C₂ 1_{mf}
 (22)
 ただし、σ_{nnt}, σ_{nns}: フランジ区間の中段筋の両端部応力(引張を正、σ_{nnt} が部材 端側), a_m は中段筋の断面積 ○フランジ端を結ぶコンクリート斜材のモーメントの釣合い

 $Q_{mf}(D/2-t_f)/tan\phi = F_{mc}b_{mf}t_f(D-t_f)$ (23)

◎ウェブ負担せん断力Qw ウェブ材端でのQmwと付着力によるモーメントの釣合い 材端から($D/2-t_f$)/(2tan ϕ)の距離で、中段筋位置から($D/2-t_f$) /2ほど圧縮縁よりの位置まわり $Q_{mw}(D/2-t_f)/(2tan\phi) = (D/2-t_f)^2 C_2/(2tan\phi)$ したがって $Q_{mw} = (D/2 - t_f) C_2$ (24)○システム負担軸力 N m と各軸方向応力との釣合い F_c b_{mf}t_f $-\sigma_{mmt}$ a_m $+C_2$ (D/2-t_f)/tan $\phi = N_m$ (25) $\bigcirc Q_m$ (21), (24) および d = D - t m ら $Q_m = Q_{mf} + Q_{mw}$ $= \beta C_2$ (26)ただし、 $\beta = d/2$ Ob mf

(19), (21), (23)からQmfとFmcを消去し(1)より

 $1-2l_{mf} = (D/2-t_f)/tan\phi$

の関係式を代入すると

 $b_{mf} = K_m \ 1 \ C_2 \ / \ (F_c \ t_f)$ (27) $ttl_k K_m = \{ t_f \ / \ 2 + (1_m \ / \ 1) \ g \} \ / \ d_f \ g = D - 2 \ t_f$ 2.3.3 アーチ機構負担せん断力Qr

仮定 v)から、アーチ機構における最外筋および中段筋の応力σt mt (引張を 正)は、実応力から最外筋,中段筋各システムの軸筋応力を差し引いたものとなる。すな わち、

 $\sigma_{tst} = \sigma_{st} - \sigma_{sst} = \sigma_{ssc} - \sigma_{sc} = \sigma_{sss} - \sigma_{ss}$ (28) $\sigma_{tmt} = \sigma_{mt} - \sigma_{mmt} = \sigma_{ms} - \sigma_{mms}$ (29)

ただし、 σ_{st}: 最外筋引張端の実応力(引張を正)

σ_{sc}, σ_{ss}: 最外筋のフランジ区間端部の実応力(圧縮を正、σ_{sc}が部材端側)

σ_{mt}, σ_{ms}:中段筋のフランジ区間両端部の実応力(引張を正、σ_{mt}が部材端側)

◎アーチ機構の負担軸力N_Tと各軸方向の力の釣合

 $2\sigma_{tst} a_s + \sigma_{tmt} a_m + N_T = F_c b_{t1}X_1 cos^2 \theta_1$

 $+ F_{c} b_{t2}X_{2} \cos^{2} \theta_{2} \qquad (30)$

ただし、b+1, b+2:1次アーチ斜材, 2次アーチ斜材の幅

仮定v),vi)から

 $b_{t1} = b - b_{sf} - b_{mf}$, $b_{t2} = b_{mf} - b_{mw}$

以下では(30)の左辺をSNという記号で表し、SNをC₁, C₂で表すことにする。 まず、 σ_{sst} , σ_{mmt} をC₁, C₂で表す。(9), (14)からQ_{sf}を消去すると

 $(\sigma_{ssc} - \sigma_{sss}) a_s = (1_{sf} - K_s 1) C_1$ (31) (13) - (10) から2 σ_{sst} を求め、(6) から b_{sf} (= b_{sw}) を、(31) から ($\sigma_{ssc} - \sigma_{sss}$) a_s を消去し、(2) より

 $1 - 21_{st} = g / tan \phi の 関係式を代入すると$

 $2\sigma_{sst} a_{s} = \{t_{f} / (sin\phi cos\phi) + 2(1-1_{sf}) - K_{s} 1\} C_{1} - N_{s}$ (32)

また、(25), (27)から b_{mf} を消去し、(1)より

 $1 - 2 l_{mf} = (D/2 - t_f) / tan\phi$

の関係式を代入すると

 $\sigma_{mmt} a_m = (K_m 1 + 1 - 21_{mf}) C_2 - N_m$ (33) したがって、SN中の σ_{tst} , $\sigma_{tmt} k (28)$, (29)を代入し、さらk (32),

(33)を代入すると

左辺SN=2 $\sigma_{st}a_{s}+\sigma_{mt}a_{m}$

 $- \{ t_f / (sin\phi cos\phi) + 2(1-1_{sf}) - K_s 1 \} C_1$

 $-(K_m 1 + 1 - 2 1_{mf}) C_2 + N$

ただし、N:部材全体の軸力(= N_s + N_m + N_T)

次に、釣合式(30)の右辺を $tan\theta_1$ で表すことにする。 仮定のv),vi), (3)から X_1 , X_2 , $tan\theta_2$ を消去すると

右辺=F_c b_{t1} (D-1 tan θ_1) / (1+tan² θ_1)

 $+F_{c}b_{t2}(D-ltan\theta_{1}-t_{f})/\{1+(tan\theta_{1}-t_{f}/1)^{2}\}$

(35)

(36)

(34)

22°C, N₁ = F_c b_{t1}D, N₂ = F_c b_{t2}D, x = tan θ_1 , $\lambda = 1/D$,

 $\rho = t_f / |, t_f' = t_f / D,$

 $g_1 = (1 - \lambda x) / (1 + x^2)$,

 $g_2 = (1 - \lambda x - t_f') / \{1 + (x - \rho)^2\}$

と置くと、釣合式(30)は以下のような形になる。

 $SN = N_1 g_1 + N_2 g_2$

◎アーチ機構の負担せん断力Qェ

1次アーチ斜材および2次アーチ斜材の負担せん断力をそれぞれQ_{T1},Q_{T2}と置き、
 Q_Tをtan θ₁で表す。

$$Q_{T} = Q_{T1} + Q_{T2}$$

 $= F_{c} b_{t1}X_{1} cos\theta_{1} sin\theta_{1} + F_{c} b_{t2}X_{2} cos\theta_{2} sin\theta_{2}$

 $= F_{c} b_{t1}X_{1} \cos^{2} \theta_{1} \tan \theta_{1} + F_{c} b_{t2}X_{2} \cos^{2} \theta_{2} \tan \theta_{2}$

 $= F_{c} \quad b_{t1} \left(D - l \tan \theta_{1} \right) \tan \theta_{1} / \left(1 + \tan^{2} \theta_{1} \right)$

+ $F_c b_{t2} (D-1 tan \theta_1 - t_f) (tan \theta_1 - t_f / 1)$

 $/ \{1 + (tan \theta_1 - t_f / 1)^2 \}$

 $= N_{1} g_{1} x + N_{2} g_{2} (x - \rho)$ (37)

2.3.4 最外筋、中段筋両システムを結び付ける軸筋の軸方向変形量の算定

◎ 最外筋の軸方向の変形量△1。について

○σ₅t, σ₅cが弾性範囲の場合

 $\Delta \mathbf{1}_{\mathbf{s}} = \left\{ \left(\sigma_{\mathbf{s}\mathbf{t}} - \sigma_{\mathbf{s}\mathbf{s}} \right) \left(\mathbf{1} - \mathbf{1}_{\mathbf{s}\mathbf{f}} \right) - \left(\sigma_{\mathbf{s}\mathbf{s}} + \sigma_{\mathbf{s}\mathbf{c}} \right) \mathbf{1}_{\mathbf{s}\mathbf{f}} \right\} / \left(\mathbf{2}\mathbf{E}_{\mathbf{s}} \right)$

ただし、E : 最外筋の弾性係数

 $\Delta 1_{s} \delta \sigma_{st} b C_{1} で表すことにする。(38)の関係式を用いて<math>\sigma_{ss}, \sigma_{sc} \delta$ ると

 $\Delta 1_{\mathfrak{s}} = \left(2 \sigma_{\mathfrak{s}\mathfrak{t}} - \left(\sigma_{\mathfrak{s}\mathfrak{s}\mathfrak{t}} + \sigma_{\mathfrak{s}\mathfrak{s}\mathfrak{s}} \right) \right)$

 $- \{ (\sigma_{sst} + \sigma_{sss}) + (\sigma_{ssc} - \sigma_{sss}) \} 1_{sf} / 1 \} 1 / (2E_s)$ ところで、(10), (31)から各()内はすべてC₁ で表すことができるので、 $\Delta 1_s = \{ 2\sigma_{st}a_s - (1 - K_s | 1_{sf}) C_1 \} 1 / (2E_s | a_s)$ (38)

○ σ st, σ scが降伏点 σ syの場合

軸筋の付着破壊はないものと仮定しているので、区間内の軸筋応力は弾性範囲で応力勾 配が存在し、△1。は(38)となる。

◎中段筋の軸方向の変形量△1 m について

○ σ mt, σ msが弾性範囲の場合

 $\Delta l_{m} = \{ (\sigma_{mt} + \sigma_{ms}) \ l_{mf} + \sigma_{ms} (1 - 2 \ l_{mf}) \} / E_{m}$

ただし、E m は中段筋の弾性係数である。△1 m を σ m t と C 2 で表す。

(29)からσ …。を求め、上式に代入し、(22)を用いると

 $\Delta l_{m} = \{ (\sigma_{mt}a_{m} - l_{mf}(1 - l_{mf}/1) C_{2} \} 1 / (E_{m}a_{m})$ (39)

○ σ mt が降伏点 σ my, σ ms が弾性の場合

この場合(39)式が成立するが、 σ_{ms} が $-\sigma_{my}$ (圧縮降伏)の場合は材中央部で塑性 変形するので、(39)は成立しない。 ◎最外筋と中段筋の材端応力σ_{it}, σ_{mt}の関係 仮定i)a)から△1_i = △1_mと置くと
 と置き整理すると nσ_{mt}a_i = 2σ_{it}a_i - (1-K_i 1_{if})C₁ + nγ1_{mf}(1-1_{mf}/1)C₂ (40)
 ただし、n=2E_i /E_m, γ=a_i /a_m
 しかし、σ_{it}, σ_{ic}, σ_{mt}がすべて弾性範囲の場合は
 仮定i)b)から σ_{mt}/E_m = (σ_{it}-σ_{ic}) / (2E_i)
 上式の両辺を(2E_i a_i)倍して(28)の関係式を用いてσ_{ic}を消去し、(10)を
 用いると

 $n\sigma_{mt}a_{s} = 2\sigma_{st}a_{s} - (\sigma_{sst} + \sigma_{ssc})a_{s}$ $= 2\sigma_{st}a_{s} - (1 - K_{s}) 1C_{1}$

(41)

2.4 全せん断力Q(=Q_s+Q_m+Q_T)の算定

◎軸筋がすべて弾性範囲の場合

(40), (41)の2つの条件式から軸筋端部応力 σ_{st}, σ_{mt}を消去し、(16)か らC₂をC₁で表すと、C₁が軸力Nと無関係に次のように定まる。

 $C_{1} = C_{0} / \{K_{s} (1 - 1_{sf}) | 1 / (n \gamma 1_{mf}) / (1 - 1_{mf}) + 1\}$ (42)

この場合Q_{*}, Q_n は(15), (26)から一定値となるので、下界定理から残る Q_T がx(=tan θ_1)に関して極値となる条件

 $dQ_T / dX = 0$

(43)

を満足するxを求める。このxを(37)に代入しQrを求め、ついでQを求める。 ただし、(43)を満足するxは、ニュートン法により解析的に求める。

◎中段筋および最外筋の一方、あるいは両方とも降伏する場合

QはC₁の関数であるので、下界定理から与えられた軸力Nに対してQが極値となる条件

 $dQ/dC_1 = 0$

(44)

を満足するC₁を求めれば、Qが求められる。さらに軸筋の応力状態に応じて以下の場合 を考える。

○中段筋は弾性範囲で引張最外筋が材端で引張降伏する場合

(40)が成立するので、σ_{st}をσ_{sy}と置き、σ_{mt}を(36)のSNに代入すれば、釣
 合式(36)は、xとC₁の関係式となる。

○中段筋、最外筋とも材端で引張降伏する場合

(40)が成立するので、 $\sigma_{st} \epsilon \sigma_{sy}$ 、 $\sigma_{mt} \epsilon \sigma_{my}$ と置くと、帯筋は弾性範囲となり、 (40)はC。とC1の関係式となる。これよりC。について解き、(36)のSNに代 入すれば、釣合式(36)は、xとC1の関係式となる。

○中段筋は弾性範囲で圧縮最外筋が材端で圧縮降伏する場合

(38)の $\Delta 1_s$ と σ_{st} との関係の代わりに、 $\Delta 1_s$ と σ_{sc} との関係を求める。また、 (40)についても同様とする。そこで、 σ_{sc} を σ_{sy} と置き、 σ_{mt} を(36)のSNに代 入すれば、釣合式(36)は、xとC₁の関係式となる。

○中段筋、最外筋とも圧縮降伏する場合

これは、相当に高軸力の場合であるので、省くことにする。

(44)を満足するC₁を求めるためには、まず、釣合式(36)を満足するxに関す る4次方程式を解かなければならない。そこで、以下に述べるようにニュートン法を用い て解析的に求めることにした。

まず、(36)について

 $F(x) = SN - N_1 g_1 - N_2 g_2$

と置く。与えられた軸力Nに対して C_1 の初期値 C_{10} を仮定し、F(x) = 0を満足するxを求める。xを求めるために、xの初期値x。を仮定して

SN, N1, N2, g1, g2, dg1/dx, dg2/dx を求め、

F(x), dF(x)/dx(= $-N_1$ dg₁/dx $-N_2$ dg₂/dx) を求める。そして、F/(dF/dx)の絶対値が仮定した制限値以下になれば、 F(x)=0を満足したものとみなす。また、満足しないならば、

 $\mathbf{x}_{0} - \mathbf{F} / (\mathbf{d}\mathbf{F} / \mathbf{d}\mathbf{x})$

をあらためて x の初期値として計算し直す。仮定した初期値C₁₀に対して F = 0を満足する x が求まると、次に、解析的に(44)を満足する C₁をを求める。x は前述のように C₁の関数であるから、準備計算として(36)からd x / d C₁を求めておく。(36)の両辺を C₁で微分して d x / d C₁について解くと

 $dx/dC_{1} = (dSN/dx - dN_{1}/dC_{1}g_{1} - dN_{2}/dxg_{2})$

$$/ (N_1 dg_1 / dx + N_2 dg_2 / dx)$$
 (45)

また、

 $d^2 g_1 / dx^2 , d^2 g_2 / dx^2 , d^2 x / dC_1^2$

も求めておく。次に、(44)を満足するC1を求める。(37)より、

 dQ_T / dC_1 , d^2Q_T / dC_1^2

を求めておく。ついで、

 $dQ/dC_1 = dQ_s/dC_1 + dQ_m/dC_1 + dQ_T/dC_1$

 $= \alpha + \beta \left(dC_0 / dC_1 - 1 \right) + dQ_T / dC_1$ (46)

 $d^{2} Q/dC_{1}^{2} = \beta (d^{2} C_{0}/dC_{1}^{2}) + d^{2} Q_{T}/dC_{1}^{2}$ (47) を求め、 $(dQ/dC_1)/(d^2Q/dC_1^2)$

の絶対値が仮定した制限値以下になれば、仮定した初期値C10が(44)を満足したもの と考える。満足しない場合には、

 $C_{10} - (dQ/dC_1) / (d^2Q/dC_1^2)$

を新しいC₁の初期値として、初めにもどり、xから計算し直す。(44)を満足する C₁が求まれば、せん断力Qを計算することができる。

さて、与えられた軸力に対して軸筋がどの応力状態にあるかということを、前もって知っておかなければならない。このためには、各応力状態の境界の軸力を求めておく必要がある。ただし、境界の軸力は領域として存在し、この領域では軸力Nを与えるだけで、せん断力Qを算定できる。軸筋の各応力状態に相当する軸力領域の境界では、C1,N1, N2 および(34)のSNの軸力Nを除く項は等しいにかかわらず、QT が極値をとる x が各軸力領域で異なり、一定値をとるからである。 3. 解析結果

せん断圧縮破壊型のせん断耐力に対して、中段筋とコンクリート間の付着を考慮した場合と考慮しない場合(文献4)の解析結果を比較して、両評価方法に顕著な差がみられなかった。そこで、以下では本解析方法による場合について終局せん断耐力Qと軸力Nの関係、および p_m , p_t , p_w , λ (=1/D)の影響について検討する。解析例を図2~図7に示す。

○軸力Nの影響(図2)

同一のpm, pt, pw, Aにおいて、軸筋が弾性である軸力範囲ではNの大きさにか かわらずせん断耐力は一定である。軸筋が降伏するような軸力範囲ではNの影響が顕著で ある。

○中段筋比pmの影響(図2~図4)

同一のp・, p・, λにおいて、軸筋が弾性である軸力範囲ではp が大きくなるほど せん断耐力はやや低下するが、その傾向はp・が大きくなるほど顕著でなくなる。また、 この軸力範囲はpmが大きくなるほど拡大する。しかし、軸筋が降伏するような軸力範囲 では逆にpmが増すほど同一軸力で顕著にせん断耐力が高くなる。

○引張り鉄筋比ptの影響(図5)

同一のpm, pw, λにおいて、pt が大きくなるほど同一軸力でせん断耐力は大きく なるが、帯筋の降伏で頭打ちとなる。しかし、頭打ちの軸力範囲は拡大する。 ○帯筋比pwの影響(図6)

同一のpm, pt, 入において、pwが大きくなるほど同一軸力でせん断耐力は大きく なるが、軸筋の降伏により頭打ちとなる。

○スパンせい比入の影響(図7)

同一のpm, pt, pw において、入が大きくなるほど同一軸力でせん断耐力は小さく なる。また、せん断耐力が頭打ちとなる軸力範囲は縮小する。

- 22 -

- 23 -

4. 結論

以上の解析結果、次のようなことがわかった。

 1)中段筋とコンクリート間の付着を考慮した本解析結果と考慮しない場合(文献4)との比較からせん断圧縮破壊型のせん断耐力に対して、両評価方法に顕著な差はみられない。
 2)中段筋が存在しても、中段筋が降伏しない軸力範囲では、その軸力範囲は拡大するが、 せん断耐力はやや低下するだけで、引張り鉄筋比が大きくなるほど多段でないものと大きな差はみられない。

また、軸筋の引張りまたは圧縮降伏する軸力範囲では、中段筋が軸応力と曲げ応力を負 担して、同一軸力では、多段でないものよりせん断耐力は高くなる。

参考文献

1)加藤勉,称原良一:鉄骨鉄筋コンクリート部材の耐力,日本建築学会論文報告集
 第 266号,昭和53年 4月,pp.19-29

2)称原良一,加藤勉:鉄筋コンクリート耐震壁の終局耐力,日本コンクリート工学協会 RC構造のせん断問題に対する解析的研究に関するコロキウム論文集,1982.6,pp.41-48 3)称原良一,加藤勉:鉄筋コンクリート部材の耐力(圧力場理論の適用),日本建築学会 大会学術講演梗概集,昭和53年 9月,pp.1731-1732

4) 蓼原真一,原田哲夫:鉄筋コンクリート多段配筋柱のせん断挙動について,日本建築学 会中国・九州支部研究報告,第 7号・1,構造系,昭和62年 3月,pp.273-276 第3章 多段配筋短柱のせん断耐力実用評価式

1. 序

前章では、中段筋とコンクリート間の付着を考慮した解析モデルによって、柱のせん断 耐力評価を行った。その結果、中段筋が最外筋とともに降伏する場合、中段筋がない場合 より耐力が高まることがわかった。しかし、中段筋が降伏しない場合、中段筋がない場合 よりやや耐力が低くなる程度で、両者の耐力に大きな差はみられなかった。また、耐力評 価方法は複雑で実用に供しにくかった。

そこで、本章では中段筋とコンクリートとの付着を無視して中段筋は軸筋としての効果 のみ考えることにより、評価法を容易にして前章より実用的なせん断耐力評価式を導く。 まず、中段筋がない場合と耐力に大きな差がみられなかった中段筋が降伏しない場合の耐 力評価式を導き、次に中段筋が最外筋とともに降伏する場合を導く。ただし、本章の解析 モデルでは、アーチ斜材とトラス斜材を便宜的に別々の断面とした前章の場合と異なり、 両斜材応力が降伏条件を満足するように同一断面内で重ね合されるものとする。

また、上記の耐力評価はコンクリートの圧縮で決まるせん断圧縮破壊型が対象であるが、 その破壊は斜張力ひびわれの先行が前提である。しかし、斜張力ひびわれが先行しても、 既存建物で帯筋が少ない場合や軸力が非常に高い場合のように、斜張力ひびわれ耐力がせ ん断圧壊時耐力より高い場合は、斜張力破壊となる。そこで、斜張力破壊時の耐力評価法 についても提示する。 2. せん断圧縮破壊時せん断力実用評価式(軸筋の降伏しない場合)

はじめに軸筋の降伏か否かに関係なく共通事項として、2.1節に解析モデルと解析仮 定、2、2節から2.4節にトラス機構などの基本式を述べる.

2.1 解析モデルと解析仮定

解析の対象は図1(a)に示すように逆対称の曲げを受ける対称配筋矩形断面柱である。 また、中段筋は材軸に集中しているものと考える。

解析モデルは、図1(b)のトラス機構と図1(c)のアーチ機構の2つからなる。た だし、各機構が別々の断面をもつ第2章のモデルと異なり、両機構は同一断面に存在し、 各機構のコンクリート斜材応力が降伏条件を満足するように重ね合せられるものとする。 また、中段筋は簡単化のために軸筋の効果のみを考え、コンクリートとの付着力を考えな い。他に、以下のことを仮定する。

i)トラス機構におけるコンクリートの圧縮束材の材軸とのなす角度々はせん断補強筋係数 ψ_{wv} (=pw $\sigma_{wv}/(\nu \sigma_B)$, pw = aw /(bx))の大きさで決まるものとし、詳細は後述する。

ii) アーチ斜材のコンクリート応力σ。はコンクリート圧縮強度に仮定iii)の有効係数 ν を考慮したものからトラス機構の圧縮束材の応力。σ 、を差引いた残余の応力とする。た だし、両応力の材軸となす角度 θ と φ は異なるが、これは文献1)に示されるように安全 側の仮定である。

iii)コンクリート圧縮強度に有効係数レを導入し、場合に応じて下式の中間値または下限 値のいずれかを用いる¹⁾²⁾。

 $\nu = 0.8 - \sigma_B / 2000$ (主に実験値との比較に用いる。) または、 $\nu = 0.7 - \sigma_B / 2000$ (主に設計に用いる。) iv) 帯筋は降伏状態を仮定し、中段筋、最外筋は降伏しないものと仮定する。

(a) 解析対象モデル

(b) トラス機構 (----- 中段筋)

部材端部での力の釣合い

(c) アーチ機構

図1 解析モデル

2.2 トラス機構の基本式 ○ 部材軸と直交方向の力の釣合い $V_t = b j_t p_w \sigma_w cot \phi$ 両辺を(*ν* σ_B b D)で除して無次元化すると $v_t = j_{t1}\psi_w \operatorname{cot}\phi$ (1)' $\hbar \mathcal{L}$, $V_t = V_t / N_0$, $N_0 = \nu \sigma_B b D$, $\psi_w = p_w \sigma_w / \sigma_{Be}$, $j_{t1} = j_t / D$ ここで、 cotoはψwyに応じて次の値を用いる。 $\cot \phi = 2 \qquad (\qquad \psi_{\mathbf{w}\mathbf{y}} \leq 0.2)$ $= \sqrt{(1/\psi_{wy} - 1)(0.2 \le \psi_{wy} \le 0.5)}$ = 1 $(\psi_{wy} \ge 0.5, \psi_{wy} = 0.5 \xi z_{o})$ ○ コンクリート 束応力 。σ t と σ w の 関係 $c\sigma_t = (1 + cot^2 \phi) p_w \sigma_w$ これはコンクリート東応力、せん断補強筋応力、および最外筋の付着力からなる力の三角 形から求められる。無次元化すると $_{\rm c}\sigma_{\rm t}/(\nu\sigma_{\rm B})=k\psi_{\rm w}$ (2)ただし、 $k = 1 + cot^2 \phi$ ○ 部材軸方向の力の釣合い (3) $N_t + T + T_m = {}_{B}C_c + {}_{c}C_t$ ただし、 $T = a_t \sigma_t$ (引張りを正とする。), $T_m = a_m \sigma_m$ (引張りを正とする。), $_{B}C_{c} = a_{t} \sigma_{c}$ (圧縮を正とする。), $_{c}C_{t} = b j_{t} p_{w} \sigma_{w} Cot^{2} \phi$ ○ 最外筋における軸方向力と付着力 B。の釣合い (4) $T + {}_{s}C_{c} = B_{o} (= b L p_{w} \sigma_{w} \cot \phi)$ ただし、右辺のカッコ内は式(2)と同じ力の三角形から求められる。また、Lの部分は 厳密には、L-2d。 cot $\phi = L - (D-j_t)$ cot ϕ であるが、一般の柱では第2項は 第1項に比べて非常に小さいと考えられるので、実用化から第1項のみを考える。 式(3),(4)から。C。、またはTを消去すると、 (5) $\eta_t = -2 q_t - q_{me} + A_1 \psi_w$ $\eta_t = 2q_c - q_{me} + A_2 \psi_w$ (5') $ttl, \eta_t = N_t / N_0, q_t = a_t \sigma_t / N_0, q_c = a_t \sigma_c / N_0,$ $q_{me} = a_m \sigma_m / N_0$, $\lambda = L / D$,

- 29 -

 $A_1 = (j_{t1} \cot \phi + \lambda) \cot \phi, A_2 = (j_{t1} \cot \phi - \lambda) \cot \phi$ 2.3 アーチ機構の基本式 ○ 部材軸と直交方向の力の釣合い $V_a = c\sigma_a b (D - L tan\theta) cos\theta sin\theta$ 無次元化すると、 $V_a = c\sigma_a / (\nu\sigma_B) \cdot Bz$ (6)ただし、 $v_a = V_a / N_o$, $z = \tan\theta$, $B = (1 - \lambda z)/(1 + z^2)$ ○ 部材軸方向の力の釣合い $N_a = C_a$ $= c\sigma_a b (D-L \tan\theta) \cos^2 \theta$ 無次元化すると、 $\eta_{a} = c\sigma_{a} / (\nu\sigma_{B}) \cdot B$ (7)ただし、 $\eta_a = N_a / N_o$ 2.4 トラス機構+アーチ機構の基本式 解析仮定ii)より $c\sigma_a = \nu\sigma_B - c\sigma_t$ 式(2)より $c\sigma_{a}/(\nu\sigma_{B})=1-k\psi_{w}$ (8) ○ 部材軸と直交方向の力の釣合い $V = V_t + V_a$ 無次元化すると、式(1), (6), (8)から $V = V_t + V_a$ $= j_{t1}\psi_w \operatorname{cot}\phi + (1 - k\psi_w) \operatorname{Bz}$ (9) $ttil, v = V / N_o$ 部材軸方向の力の釣合い $N = N_t + N_a$ 無次元化すると、式(5),(7),(8)、または式(5),(7),(8)から $\eta = \eta_t + \eta_a$

$= -2 q_t - q_{me} + A_1 \psi_w + (1 - k \psi_w) B$	(10)
$= 2 q_{c} - q_{me} + A_{2} \psi_{w} + (1 - k \psi_{w}) B$	(10')
ただし、 $\eta = N / N_o$	
2.5 軸筋が降伏しない場合のせん断耐力評価式	
仮定iv)から、σ _y , σ _{my} , σ _{wy} を最外筋, 中段筋, 帯筋の降伏点応:	力とすれば、
$\sigma_t < \sigma_y$, $\sigma_m < \sigma_{my}$, $s\sigma_c < \sigma_y$, $\sigma_w = \sigma_{wy}$	
式(9),(10)はつぎのようになる。	
$v = j_{ti} \psi_{wy} \cot \phi + r B z$	(11)
$\eta = -2 q_t - q_{me} + A_1 \psi_{wy} + r B$	(12)
ただし、r=1-k ψ_{wy} , $\psi_{wy} = p_w \sigma_{wy} / (\nu \sigma_B)$	
式(12)において、特定のnを与えると(-2qt-qme)とz(た:	だし、Bはzの関
数)は従属関係にある。そこで、(-2gt-gme)をzの関数と考え、	る。同時に式(1
1)のvもzの関数となる。vをzで微分し、vのzに関する極値をと	3.
$v^{-} = r (-z^{2} - 2\lambda z + 1)/(1 + z^{2})^{2}$	
ここで、v ⁻ =0と置き、zについて解くと	
$z = \langle (\lambda^2 + 1) - \lambda (この時、B = 1 / 2)$	
これを式(11),(12)に代入して整理すると	
$v = j_{t1}\psi_{wy} \cot\phi + r\left(\sqrt{(\lambda^2 + 1) - \lambda}\right)/2$	(13)
$\eta = -2 q_t - q_{me} + A_1 \psi_{wy} + r / 2$	(14)
式(13)の適用できる軸力比カの下限値カ3は、式(14)において	,
$\sigma_t < \sigma_y$, $\sigma_m < \sigma_{my} m \beta$	
$\eta_{3} = \eta_{0} + A_{1} \psi_{wy} + r / 2$	
ただし、 $\eta_0 = -2q - q_m$, $q = p_t \sigma_y / (\nu \sigma_B)$, $q_m = p_m$	σ _{my} /(νσ _B)
つぎに、ηの上限値η₄の算定には式(10)を用いる。前述のσ _▼ =	$\sigma_{wy} \ge B = 1 / 2$
を与えると、式(10)はつぎのようになる。	
$\eta = 2 q_c - q_{me} + A_2 \psi_{wy} + r / 2$	(15)
$\mathbb{Z}\mathbb{Z}\mathbb{C}, \mathbf{s}\sigma_{\mathbf{c}} < \sigma_{\mathbf{y}}, \sigma_{\mathbf{m}} > -\sigma_{\mathbf{m}\mathbf{y}}\mathcal{D}\mathcal{B}$	
$\eta_4 = -\eta_0 + A_2 \psi_{wy} + r/2$	

以上をせん断設計で一般に用いられるせん断力の形で表すとつぎのようになる。この式 は軸力および中段筋量と無関係となり、文献1)の指針式と一致する。

 $V_{sc} = b j_t p_w \sigma_{wv} \cot \phi + \tan \theta (1 - \beta) b D \nu \sigma_B / 2$ ここに、 $\nu : コンクリート 圧縮強度の有効係数$

 $\nu = 0.8 - \sigma_{\rm B} / 2000$ (中間値)

または、 ν = 0.7 - σв /2000 (下限値)

 $\tan\theta = \sqrt{\left(\left(L/D\right)^2 + 1\right) - L/D}$

 $\cot \phi = M \text{ in } [2.0, j_{t} / (D \tan \theta), \{(\nu \sigma_{B} / (p_{w} \sigma_{wy}) - 1.0)]$

 $\beta = (1 + \cot^2 \phi) p_w \sigma_{wy} / (\nu \sigma_B)$

各記号の定義は次のとおりである。

σ_B:コンクリート圧縮強度, σ_{wy}: せん断補強筋の降伏点,

b:柱幅, j t: 中段筋以外の主筋間距離, D: 柱断面の全せい, L: 柱の内法,

θ:アーチ機構の部材軸に対する角度,

ゆ:トラス機構におけるコンクリート圧縮束の部材軸に対する角度、

β:コンクリート圧縮力のトラス機構の負担率,

pw: せん断補強筋比(=aw/(bs), aw:一組のせん断補強筋断面積, s: せん 断補強筋間隔)

ただし、p w σ wy が ν σ B / 2を越える場合は、p w σ wy = ν σ B / 2とする。

上式の適用軸力範囲は以下のようになり、中段筋量が多くなるほど適用範囲は拡大する。 N₃ <N<N₄

ただし、

 $N_{3} = -2 a_{t} \sigma_{y} - a_{m} \sigma_{my} + b (j_{t} \operatorname{cot} \phi + L) \operatorname{cot} \phi p_{w} \sigma_{wy}$

 $+(1-\beta)bD\nu\sigma_B/2$

 $N_4 = 2a_t \sigma_y + a_m \sigma_{my} + b (j_t \cot \phi - L) \cot \phi p_w \sigma_{wy}$

 $+(1-\beta)bD\nu\sigma_{B}/2$
3. せん断圧縮破壊時せん断力実用評価式(軸筋の降伏を考慮)

軸筋が降伏する場合の解析モデルおよび解析仮定,トラス機構,アーチ機構,トラス機 構+アーチ機構の基本式は2.1節から2.4節で述べている。ただし、2.1節の仮定 iv)の中で、「中段筋,最外筋は降伏しないものと仮定する。」項を外す。以下では、軸 力比の小さい順に、軸筋の応力状態に応じた軸力比領域を設けて、耐力評価式を導く。

○領域I($\eta_0 \leq \eta \leq \eta_1$, ただし、 η_0 , η_1 は後述する。)

この軸力比領域では、 $\sigma_t = \sigma_y$, $\sigma_m = \sigma_{my}$, $s\sigma_c = -\sigma_y$, $\sigma_w = 0$ で、アーチ機構のみとなり、式(9), (10)はつぎのようになる。

 $\mathbf{v} = \mathbf{B} \mathbf{z}$

(16)

 $\eta = \eta_0 + B$

(17)

ただし、 $\eta_0 = -2q - q_m$, $q = p_t \sigma_y / (\nu \sigma_B)$, $q_m = p_m \sigma_{my} / (\nu \sigma_B)$ 式(17)において、特定の $\eta e = 2 \pi \sigma_y / (\nu \sigma_B)$, $q_m = p_m \sigma_{my} / (\nu \sigma_B)$ 式(17)において、特定の $\eta e = 2 \pi \sigma_y / (\nu \sigma_B)$, $q_m = p_m \sigma_{my} / (\nu \sigma_B)$ 式(17)において、特定の $\eta e = 2 \pi \sigma_y / (\nu \sigma_B)$, $q_m = p_m \sigma_{my} / (\nu \sigma_B)$

 $v = \{ \{ (\lambda^2 - 4(\eta - \eta_0)(\eta - \eta_0 - 1)) - \lambda \} / 2$ (18)

式(18)は、中心(v。, n。), 半径R。の円となる。

ただし、 $v_c = -\lambda/2$, $\eta_c = \eta_0 + 1/2$, $R_0 = (\sqrt{(\lambda^2 + 1)})/2$

式(18)の適用できる η の下限値は、 $v \ge 0$ より、 η 。となるので,適用できる η の範囲は

 $\eta_0 \leq \eta \leq \eta_1$ (ただし、 η_1 は領域IIで示す。)

○領域 II ($\eta_1 \leq \eta \leq \eta_2$, ただし、 η_1 , η_2 は後述する。)

この領域では、 $\sigma_t = \sigma_y$, $\sigma_m = \sigma_{my}$, $s\sigma_c$ | $\leq \sigma_y$, $0 \leq \sigma_w \leq \sigma_{wy}$ 式(9), (10)はつぎのようになる。

 $\mathbf{v} = \mathbf{j}_{\mathbf{t}1} \boldsymbol{\psi}_{\mathbf{w}} \quad \cot \phi + (1 - \mathbf{k} \boldsymbol{\psi}_{\mathbf{w}}) \quad \mathbf{B} \mathbf{z} \tag{19}$

 $\eta = \eta_0 + A_1 \psi_w + (1 - k \psi_w) B$

(20)

式(20)において、特定のnを与えるとψ × とzは従属関係となるので、zをψ × の関

数と考える。したがって式(19)において、vは ψ_{*} の関数となる。以下では、式(2 0)を満足し、式(19)のvが極値を持つ ψ_{*} を求める。式(19)を ψ_{*} で微分する。 v⁻=j_{t1} cot ϕ -kBz+(1-k ψ_{*})(B⁻z+z⁻B)

ただし、B「は式(6)のただし書きから求められる。 $B^{-} = (\lambda z^{2} - 2 z - \lambda) z^{-} / (1 + z^{2})^{2}$ また、z は式(20)をψ、で微分して求める。 $0 = A_1 - kB + (1 - k\psi_w)B^{-1}$ $z^{-} = -(A_1 - kB) \cdot (1 + z^2)^2 / \{(1 - k\psi_w)(\lambda z^2 - 2z - \lambda)\}$ これらをv「の式に代入し、整理すると $v = j_{t1} \cot \phi - A_1 z + \{k(1 - \lambda z) - A_1 (1 + z^2)\} \cdot (1 - \lambda z) /$ $(\lambda z^2 - 2 z - \lambda)$ ここで、 $v^{\dagger} = 0$ と置き、整理し、zについて解くと、解z₁はつぎのようになる。 $a_1 z^2 - 2b_1 z - c_1 = 0$ $z_1 = \{ \{ (b_1^2 + a_1 c_1) + b_1 \} / a_1 \}$ (21)ただし、 $a_1 = j_{t1} \cot \phi \lambda + A_1 + k \lambda^2$, $b_1 = j_{t1} \cot \phi - A_1 \lambda + k \lambda$, $c_1 = j_{t1} \cot \phi \lambda + A_1 - k$, ところで、式(21)はz1が軸力比nに無関係であることを示している。z1を式(2 ○)に代入すると、特定のヵに対してψ^{*}がつぎのように求められる。 $\psi_{\mathbf{w}} = (\eta - \eta_0 - B_1) / (A_1 - k B_1)$ (22)ただし, B₁ = $(1 - \lambda z_1)/(1 + z_1^2)$ 以上のZ1, ψ を式(19)に代入して、整理すると、 $v = \{ (j_{t1} \cot \phi - k B_1 Z_1) / (A_1 - k B_1) \} (\eta - \eta_H) + v_H$ (23) ただし、V_H = j_{t1} cot ϕ/k , $\eta_{\rm H} = \eta_0 + A_1/k$ 式(23)は、 ψ_{wv} に無関係な点(v_H , η_H)を通る直線となる。 (23)式の適用できる η の範囲は、 $0 \leq \sigma_w \leq \sigma_{wy}$ と式(22)から $\eta_{1} \leq \eta \leq \eta_{2}$ (ただし、 $\eta_{1} = \eta_{0} + B_{1}, \eta_{2} = \eta_{0} + A_{1} \psi_{wy} + r B_{1},$ $r = 1 - k \psi_{wy}$ ○領域 II ($\eta_2 \leq \eta \leq \eta_3$, ただし、 η_3 は2.5節に既述) この領域では、 $\sigma_t = \sigma_y$, $\sigma_m = \sigma_{my}$, $s\sigma_c \mid \leq \sigma_y$, $\sigma_w = \sigma_{wy}$ 式(9),(10)はつぎのようになる。 $v = j_{t1} \psi_{wy} \cot \phi + r B z$ (24)

 $\eta = \eta_0 + A_1 \psi_{wy} + r B$

(25)

式(25)において、特定の n を与えると z が定まる。 z について 解き、式(24)に代入すると

 $v = j_{t1}\psi_{wy} \cot\phi + \{\{((r\lambda)^2 - 4(\eta - \eta_0 - A_1 \psi_{wy})(\eta - \eta_0 - A_1 \psi_{wy})(\eta - \eta_0 - A_1 \psi_{wy} - r)\} - r\lambda\}/2$ (26)

式(26)は、中心(v。, n。),半径Rの円となる。

ただし、 $v_{\circ} = j_{t1}\psi_{wy} \cot \phi - r\lambda/2$, $\eta_{\circ} = \eta_{0} + A_{1}\psi_{wy} + r/2$, $R = rR_{0}$ 式(26)の適用できる η の範囲は、つぎのようになる。

*n*² ≦ *n* ≦ *n*³ (ただし、*n*³ は領域Ⅳで示す。)

○領域IV($\eta_3 \leq \eta \leq \eta_4$)

この領域については、すでに2.5節で述べたので、省略する。

○領域V($\eta_4 \leq \eta \leq \eta_5$, ただし、 η_5 については後述する。)

この領域では、 $s\sigma_c = \sigma_y$, $\sigma_m = -\sigma_{my}$, $\sigma_t \mid \leq \sigma_y$, $\sigma_w = \sigma_{wy}$

式(9),(10')はつぎのようになる。

 $v = j_{t1} \psi_{wy} \operatorname{cot} \phi + r \operatorname{B} z$

 $\eta = -\eta_0 + A_2 \psi_{wy} + r B$

式(28)において、特定のnを与えるとzが定まる。zについて解き、式(27)に代入すると

(27)

(28)

 $v = j_{t_1} \psi_{wy} \cot \phi + \{ \{ ((r \lambda)^2 - 4 (\eta + \eta_0 - A_2 \psi_{wy}) (\eta + \eta_0 - A_2 \psi_{wy} - r) \} - r \lambda \} / 2$ (29)

式(29)は、中心(v。, n。), 半径Rの円となる。

ただし、V_c = j_{t1} ψ _{wy} cot ϕ - r λ /2, η _c = - η ₀ + A₂ ψ _{wy}+r/2,

 $R = r R_o$

式(29)の適用できるヵの範囲は、次の条件である。

 $\eta_4 \leq \eta \leq \eta_5$ (ただし、上限値 η_5 は領域 II で示す。)

この領域では、 $s\sigma_c = \sigma_y$, $\sigma_m = -\sigma_{my}$, $\sigma_t \leq \sigma_y$, $0 \leq \sigma_w \leq \sigma_{wy}$ 式(9),(10)はつぎのようになる。 $v = j_{t1}\psi_w$ cot $\phi + (1 - k\psi_w)$ Bz (30) $\eta = -\eta_0 + A_2 \psi_w + (1 - k\psi_w) B$ (31)式(31)において、特定のnを与えるとψ とzは従属関係となるので、zをψ の関 数と考える。したがって式(30)のvはψ の関数となる。以下では、式(31)を満 足し、vが極値を持つψ を求める。式(30)をψ で微分する。 $\mathbf{v} = \mathbf{j}_{t1} \operatorname{cot} \phi - \mathbf{k} \mathbf{B} \mathbf{z} + (1 - \mathbf{k} \psi_{w}) (\mathbf{B} \mathbf{z} + \mathbf{z} \mathbf{B})$ (32)ただし, B⁻ = ($\lambda z^2 - 2z - \lambda$) z⁻/(1 + z²)² ここで、式(31)をψwで微分し、z を求める。 $0 = A_2 - kB + (1 - k\psi_w)B^{-1}$ $z^{-} = - (A_{2} - kB) \cdot (1 + z^{2})^{2} / \{ (1 - k\psi_{w}) (\lambda z^{2} - 2z - \lambda) \}$ これを式(32)に代入し、整理すると $v = j_{t1} \cot \phi - A_2 z + \{k(1 - \lambda z) - A_2(1 + z^2)\} \cdot (1 - \lambda z) /$ $(\lambda z^2 - 2 z - \lambda)$ ここで、 $v^{-} = 0$ と置き、整理し、zについて解くと、解z₂はつぎのようになる。 $a_2 z^2 - 2b_2 z - c_2 = 0$ $z_{2} = \{-\sqrt{(b_{2}^{2} + a_{2} c_{2}) + b_{2}} \} / a_{2}$ (33) ただし、 $a_2 = j_{t1} \cot \phi \lambda + A_2 + k \lambda^2$, $b_2 = j_{t1} \cot \phi - A_2 \lambda + k \lambda$, $c_2 = j_{t1} \cot \phi \lambda + A_2 - k,$ ところで、式(33)はz2が軸力比ηに無関係であることを示している。z2を式(3 1)に代入すると、特定のnに対してψwがつぎのように求められる。 $\psi_{\mathbf{w}} = (\eta + \eta_0 - B_2) / (A_2 - k B_2)$ (34)ただし, B₂ = $(1 - \lambda z_2)/(1 + z_2^2)$ 以上のz₂,ψ_∞を式(30)に代入して、整理すると、 $v = \{ (j_{t_1} \cot \phi - k B_2 Z_2) / (A_2 - k B_2) \} (\eta - \eta_L) + v_H$ (35) ただし、V_H = j_{t1} cot ϕ/k , $\eta_L = -\eta_0 + A_2/k$ 式(35)は、ψ_{wy}に無関係な点(V_H, η_L)を通る直線となる。式(35)の適用で きるnの範囲は、0≦σ_w≦σ_{wy}と式(34)から

 $\eta_{5} \leq \eta \leq \eta_{6}$ (ただし、 $\eta_{5} = -\eta_{0} + A_{2} \psi_{wy} + r B_{2}, \eta_{6} = -\eta_{0} + B_{2}$)

○領域 $\Pi(\eta_6 \leq \eta \leq \eta_7, ttick, \eta_7)$ は後述する。)

この領域では、 $s\sigma_{c} = \sigma_{y}$, $\sigma_{m} = -\sigma_{my}$, $\sigma_{t} = -\sigma_{y}$, $\sigma_{w} = 0$, $c\sigma_{t} = 0$ で、アーチ機構のみとなり、式(9), (10⁻) はつぎのようになる。

 $\mathbf{v} = \mathbf{B} \mathbf{z}$

(36)

 $\eta = -\eta_0 + B$

(37)

(37)式において、特定の n を 与 え れば、 z が 定 ま る 。 こ こ で 、 式 (37) を z に つ い て 解 き 、 式 (36) に 代 入 し て 整理 す る と

$$v = \{ \{ (\lambda^2 - 4(\eta + \eta_0)(\eta + \eta_0 - 1) \} - \lambda \} / 2$$
(38)
式(38)は 中小(v = \eta_0) 半径Bの円を表す

ただし、 $v_c = -\lambda/2$, $\eta_c = -\eta_0 + 1/2$, R=R₀

式(38)の適用できる η の上限値 η_{τ} は、 $v \ge 0$ より、 $\eta_{\tau} = -\eta_{0} + 1$ 、したがって $\eta_{6} \le \eta \le \eta_{\tau}$

4. 釣合いせん断補強筋係数ψ。を考慮した一般式

前節において、最大のせん断力を負担できるヵ領域IVを含む II~Vの各領域では、必ず せん断補強筋が降伏することを前提としていた。これは、せん断補強筋量に比して主筋量 が多いか、または、せん断スパン比が相対的に小さい場合に生じる。この条件は次のよう にしてえられる。

 $\eta_4 - \eta_3 \ge 2 q_m$

2.5節のカム,カ3を代入して整理すると

 $\psi_{wy} \leq \psi_{b}$ (=2 q/(λ cot ϕ), 釣合せん断補強筋係数と呼ぶ。)

しかし、せん断補強筋量に比して主筋量が少ないか、または、せん断スパン比が相対的に 大きい場合は、必ず主筋の降伏が先行し、せん断補強筋の降伏は有り得ない。この場合、 3節の境界軸力比 $\eta_2 \sim \eta_5$ と領域 $\square \sim V$ のせん断力 $\lor + \sigma \psi_{**} \epsilon \psi_{\circ}$ に置き換えればよ い。そこで、3節の式を一般化するためにすべての $\psi_{**} \epsilon \psi_{*}$ に置き換え、 $\psi_{*} \epsilon$ 以下の ように与える。

 $\psi_{wy} \leq \psi_{b}$ ならば、 $\psi_{w} = \psi_{wy}$ $\psi_{wy} \geq \psi_{b}$ ならば、 $\psi_{w} = \psi_{b}$ ただし、ψ_bを求めるためには、まず、ψ_{**}によって cot φを決めておく必要がある。 以下に、一般化した各ヵ領域と、各領域のせん断耐力の一覧を示す。

せん断耐力一覧	
領域I($\eta_0 \leq \eta \leq \eta_1$)	
$v = \{ \{ (\lambda^2 - 4 (\eta - \eta_0) (\eta - \eta_0 - \eta_0) \} \}$	$(1)) - \lambda \}/2$
領域Ⅱ(η 1 ≦ η ≦ η 2)	
$v = \{(j_{t_1} \cot \phi - k B_1 Z_1) / (A_1 - k B_1 Z_1) \}$	$k B_1) \} (\eta - \eta_0 - A_1 / k)$
$+ j_{t1} \cot \phi / k$	
領域Ⅲ(η 2 ≦ η ≦ η 3)	
$v = j_{t1} \psi_{w} \cot \phi + \{ i ((r \lambda)^2 - 4 ($	$\eta - \eta_0 - A_1 \psi_w) (\eta - \eta_0 - A_1 \psi_w)$
$-r))-r\lambda \}/2$	
領域Ⅳ(η 3 ≦ η ≦ η 4)	
$v = j_{t1}\psi_{w} \cot\phi + \{ \langle (\lambda^2 + 1) - \lambda \rangle \}$	}r/2
領域V($\eta_4 \leq \eta \leq \eta_5$)	
$v = j_{t1} \psi_w \cot \phi + \{ \{ ((r \lambda)^2 - 4 ($	$\eta + \eta_0 - A_2 \psi_w) (\eta + \eta_0 - A_2 \psi_w$
$-r))-r\lambda \}/2$	
領域 VI ($\eta_5 \leq \eta \leq \eta_6$)	
$v = \{(j_{t_1} \cot \phi - k B_2 Z_2) / (A_2 - k B_2 Z_2) \}$	$k B_2$)}($\eta + \eta_0 - A_2 / k$)
$+ j_{t1} \cot \phi / k$	
領域 $WI(\eta_6 \leq \eta \leq \eta_7)$	
$v = \{ \{ (\lambda^2 - 4 (\eta + \eta_0) (\eta + \eta_0 - \eta_0) \} $	$(1)) - \lambda / 2$
各記号の定義は次のとおりである。	
$\eta_0 = -2 q - q_m ,$	$\eta_{7} = -\eta_{0} + 1$,
$\eta_1 = \eta_0 + B_1$,	$\eta_6 = -\eta_0 + B_2$,
$\eta_2 = \eta_0 + A_1 \psi_w + r B_1$,	$\eta_5 = -\eta_0 + A_2 \psi_w + r B_2$,
$\eta_3 = \eta_0 + A_1 \psi_w + r / 2$,	$\eta_4 = -\eta_0 + A_2 \psi_w + r/2,$
$A_{1} = (j_{t1} \cot \phi + \lambda) \cot \phi,$	$A_2 = (j_{t_1} \cot \phi - \lambda) \cot \phi$,
$B_{1} = (1 - \lambda z_{1}) / (1 + z_{1}^{2}) ,$	$B_{2} = (1 - \lambda z_{2}) / (1 + z_{2}^{2})$

 $z_1 = \{ \{ (b_1^2 + a_1 c_1) + b_1 \} / a_1, z_2 = \{ - \{ (b_2^2 + a_2 c_2) + b_2 \} / a_2 \}$ $a_1 = j_{t1} \operatorname{cot} \phi \lambda + A_1 + k \lambda^2$, $a_2 = j_{t1} \operatorname{cot} \phi \lambda + A_2 + k \lambda^2$, $b_1 = j_{\pm 1} \cot \phi - A_1 \lambda + k\lambda, \qquad b_2 = j_{\pm 1} \cot \phi - A_2 \lambda + k\lambda,$ $c_1 = j_{t1} \cot \phi \lambda + A_1 - k,$ $c_2 = j_{t1} \cot \phi \lambda + A_2 - k$ $(\psi_{wy} \le 0.2)$ $\cot \phi = 2$ $= \langle (1/\psi_{wy} - 1) (0. 2 \le \psi_{wy} \le 0. 5) \rangle$ $= 1 \qquad (0.5 \le \psi_{wy}, \psi_{wy} = 0.5 \le 3 \le 3)$ $\psi_{w} = \psi_{wy} \left(\psi_{wy} \leq \psi_{b} \right)$ $=\psi_{b}(\psi_{wy}\geq\psi_{b})$ $\psi_{\rm b} = 2 \,\mathrm{q}/(\lambda \,\cot\phi), \,\mathrm{r} = 1 - \mathrm{k}\,\psi_{\rm w}, \,\mathrm{k} = 1 + \,\cot^2\,\phi,$ $\eta = N / N_{\circ}$ (N:軸力), $v = V / N_{\circ}$ (V:せん断力) $q = p_t \sigma_y / \sigma_{Be}, q_m = p_m \sigma_{my} / \sigma_{Be}, \psi_{wy} = p_w \sigma_{wy} / \sigma_{Be},$ $p_{t} = a_{t} / (bD)$, $p_{m} = a_{m} / (bD)$, $p_{w} = a_{w} / (bX)$ σ_y, σ_{my}, σ_{wy}: 中段筋以外の主筋, 中段筋, せん断補強筋の各降伏点, a_t, a_m, a_w: 中段筋以外の主筋, 中段筋, 一組のせん断補強筋の各断面積, $\sigma_{Be} = \nu \sigma_B$, $N_0 = \sigma_{Be} b D$ **σ**_B: コンクリート圧縮強度 ν:コンクリート圧縮強度の有効係数 $\nu = 0$. 8 - $\sigma_{\rm B}$ / 2000(主に実験値との比較に使用) =0.7-σ_в/2000(主に設計に使用) $j_{t1} = j_t / D, \lambda = L / D$ b, D, j, L, x:柱の幅, 全せい, 中段筋以外の主筋間距離, 柱の内法寸法, せん断補強筋間隔 φ, θ:トラス, アーチの各機構におけるコンクリート斜材の部材軸に対する角度, $z = tan\theta$

5. 解析結果

図2に解析結果を示す。縦軸に軸力を $\nu \sigma_B$ bDで無次元化した軸力比 ηe ,横軸にせん断力を $\nu \sigma_B$ bDで無次元化したせん断力係数 νe 理論的上限が0.5となるように j_{t1}で除したものをとっている。実線が $\lambda = 2$ の場合の,点線は終局曲げ耐力時($\lambda = \infty$) を示す。以下に諸元を示す。

 $p_{t} = 1.27\%, \qquad p_{m} = 0, 1.27\%, \qquad p_{w} = 0.7\%, 1.4\%,$ $\sigma_{y} = 3600 \, \text{kgf/cm}^{2}, \quad \sigma_{my} = 3600 \, \text{kgf/cm}^{2}, \quad \sigma_{wy} = 3000 \, \text{kgf/cm}^{2},$

 $\sigma_{\rm B} = 200 \, \text{kgf/cm}^2$, $j_{\rm t1} = 0.75$, $\cot \phi = 2$

軸筋が降伏しない軸力領域 η 3 ~ η 4 では、中段筋がなく軸筋が降伏しない場合の耐力 と同じ耐力を示している。しかし、その軸力領域は拡大している。また、その領域の耐力 は帯筋比を大きくすることで大きくできる。

軸筋が降伏する軸力領域例えば n1 ~ n3 では、同一軸力で、中段筋が存在すると耐力 も増大することがわかる。しかし、帯筋比の効果は、軸力領域 n3 ~ n4 での効果を上限 としている。

図2 軸力比-せん断力係数関係図

6. 斜張力破壊時せん断力 V DT

Vprの推定には、文献3)の主応力度式とほぼ同様の下式を用いる。ただし、中段筋が 斜張力ひびわれの発生位置と考えられる部材せいの1/2位置に存在する場合でも、文献 3)で採用した有効幅b。(柱幅bから中段筋部分を差引いたもの)を用いず、簡略化の ために柱幅bを用いた。

 $V_{DT} = \sqrt{(\sigma_t (\sigma_t + \sigma_o))bj_{DT}}$

ここに、

σ_t = 1.8√(σ_B):コンクリートの引張り強度

σ₀ = N / A_e : 平均軸応力度

j_{DT}=I。/S。 :コンクリートの全断面を有効とした場合の応力中心距離 各記号の定義は次のとおりである。

σ_B:コンクリートの圧縮強度,

b:柱幅,

N:軸力,

A。:部材断面の等価断面積(ただし、ヤング係数比を10とした。),

I.: コンクリート全断面を有効とした場合の部材軸に関する等価断面2次モーメント,

S. : 部材軸より片側の部材軸に関する等価断面1次モーメント。

ただし、後述(第6章)の図6(a),(b)では $V_{DT} \varepsilon_{\nu\sigma B}$ bj t で無次元化しているが、j t は中段筋以外の主筋間距離(図1参照)である。

参考文献

1)日本建築学会編:鉄筋コンクリート造建物の終局強度型耐震設計指針・同解説,日本 建築学会,pp106-112,1990.11

2) Nielsen, M. P., :LIMIT ANALYSIS AND CONCRETE PLASTICITY, Prentice-Hall, inc., pp. 226, 1984.

3) 蓼原真一, 嶋津孝之: 鉄筋コンクリート短柱のせん断耐力に及ぼす中段筋の影響, コンクリート工学年次論文報告集, 第13巻 第 2号.1991.6, pp. 357-362.

第4章 多段配筋短柱の水平加力実験概要

1、序

本章では、第3章の理論を検証するために行った計150体に及ぶ短柱に関する実験的 研究について、それの前半的内容としての試験体計画、使用した材料、および加力測定方 法などを説明している。150体に及ぶ試験体の変数としては、柱の形状と寸法、作用軸 力のレベル、最外軸筋と中段筋の各量、せん断補強筋量、各使用材料の強度などが取り上 げられる。

2、実験概要

2.1 試験体について

実験は以下で述べる各シリーズに分かれる。まず試験体の概要を述べる。試験体は逆対 称曲げモーメントを受ける連続ばり形式である。以下では無帯筋の場合と帯筋のある場合 にわけて述べる。

無帯筋の場合、加力点にはり型のないものが35体、はり型のあるものが42体で総数 は77体である。断面はすべて20cm×20cmの正方形である。せん断スパン比は6 2体が1.0であり、15体が1.5~3.0である。引張り圧縮両鉄筋にはD10,D 13またはD16を使用し、引張り鉄筋比は0.635%~2.99%(ただし多段のも のは1.99%が上限である。)である。中段筋にもD10,D13またはD16を使用 し、中段筋比は0%~2.49%である。コンクリート強度は201~272kg/cm ²である。軸力比は69体が0で、8体が約1/10~1/3である。

帯筋のある場合、加力点にはり型のないものが28体、はり型のあるものが47体で 総数は75体である。断面は69体が20cm×20cmの正方形であり、6体が28c m×28cmである。せん断スパン比は51体が1.0であり、24体が1.5~2.0 である。引張り圧縮両鉄筋にはD10,D13またはD16を使用し、鉄筋比は0.35 3%~1.27%である。中段筋にもD10,D13またはD16を使用し、中段筋比は 0%~1.91%である。帯筋には4.2¢、6¢または9¢を用い、帯筋比は0.22 4%~1.203%である。コンクリート強度は173~256kg/cm²である。軸 力比は72体が約1/10~1/3で、3体が0である。

各試験体の諸元およびコンクリート強度を表1に、また、鉄筋の機械的性質を表2に示 す。また代表的な配筋図(以下で述べるIシリーズ)を図1(a), (b)に示す。 表1 試験体リスト(a)

		1	2	3	4	5	7
series	Speci- mens	bxD(cm) ,d(cm) ,a/D	Outermost Rein.Ratio at/bD(%)	Intermediate Rein.Ratio am/bD(%)	Rein.Ratio of Hoops aw/bx(%)	Concrete Strength (kg/cm²)	Axial Force (Ratio) at Max.Load(ton)
A1	1122A 1122B 1133B 1113A 1113A 1113B 1114A 1115B 1131A 1131B 1141A 1141B 1151A 1151B	20 x20 ,17.5 ,1.5	0.535(3-D10) 0.535(3-D10) 0.713(4-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.713(4-D10) 0.713(4-D10) 0.891(5-D10) 0.891(5-D10) 1.070(6-D10)	0.713(4-D10) 0.713(4-D10) 1.070(6-D10) 1.070(6-D10) 1.430(8-D10) 1.430(8-D10) 1.78(10-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10)	0.248 (2-4.2¢€50mm)	215 226 206 190 195 173 185 207 177 228 218 186 176 237 226	$\begin{array}{c} 10.8(0.126)\\ 9.2(0.102)\\ 9.5(0.115)\\ 11.5(0.151)\\ 10.3(0.132)\\ 10.5(0.152)\\ 10.2(0.138)\\ 9.8(0.118)\\ 9.7(0.137)\\ 12.2(0.134)\\ 14.5(0.166)\\ 10.2(0.137)\\ 8.9(0.126)\\ 10.5(0.111)\\ 9.2(0.102)\\ \end{array}$
A2	S1 S3 S4 S5 S6 L1 L3 L4 L5 L6	20 x20 ,17.5 ,1.0 20 x20 ,17.5 ,2.0	0.713(4-D10) 1.070(6-D10) 0.357(2-D10) 0.357(2-D10) 0.713(4-D10) 1.070(6-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10) 0.357(2-D10)	0.357(2-D10) 0.357(2-D10) 1.070(6-D10) 1.430(8-D10) 1.78(10-D10) 0.357(2-D10) 1.070(6-D10) 1.430(8-D10) 1.78(10-D10)	0.248 (2-4.2¢050mm) 0.248 (2-4.2¢050mm)	199 199 201 199 199 192 192 201 192 201 192 192	9.5(0.119) 10.8(0.136) 10.3(0.128) 11.3(0.142) 10.3(0.129) 13.7(0.178) 10.9(0.142) 11.3(0.141) 13.2(0.172) 12.0(0.156)
B1	H1 H3 H4 H6 H8 H9 H10	20 ×20 ,17.5 ,1.0	0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10)	0. 178(1-D10) 0. 535(3-D10) 0. 713(4-D10) 1. 070(6-D10) 1. 78(10-D10) 0. 0 1. 430(8-D10)	0.0	201 201 201 201 201 201 201	0.0
B2	₩1 ₩2 ₩4	20 x20 ,17.5 ,1.0	0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10)	1. 430(8-D10) 1. 430(8-D10) 1. 430(8-D10)	0.248(2-4.2) 0.496(2-4.2) 0.490(2-6)	201 201 201	0.0
B3	N1 N2 N3 N4	20 x20 ,17.5 ,1.0	0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10) 0.713(4-D10)	1.430(8-D10) 1.430(8-D10) 1.430(8-D10) 1.430(8-D10)	0.0	201 201 201 201 201	7.43(0.092) 14.1(0.175) 20.4(0.254) 29.9(0.372)
	22 23 24 25 30 31 32 33 34 25	20 x20 ,17.5 ,1.0	0.995(2-D16) 1.49(3-D16)	0.995(2-D16) 1.49(3-D16) 1.99(4-D16) 2.49(5-D16) 0.0 0.498(1-D16) 0.995(2-D16) 1.49(3-D16) 1.99(4-D16) 2.49(6-D16)	0.0	232 232 232 232 232 234 234 234 234 234	0.0
С	40 41 42 42H 43 44 44H 44D 45 50		1.99(4-D16) 2.49(5-D16)	2.49(3-016) 0.0 0.995(2-016) 0.995(2-016) 1.49(3-016) 1.99(4-016) 1.99(4-016) 2.49(5-016) 0.0	0.0	234 234 234 234 234 234 235 235 235 235 235 235	0.0
D1	A-0 A-1 A-2 A-3 A-4	20 x20 ,17.5 ,1.0	2.99(6-016) 0.995(2-016)	0.0 0.498(1-D16) 0.995(2-D16) 1.49(3-D16) 1.99(4-D16)	0.0	235 272 272 272 272 272 272	0.0

表1 試験体リスト(b)

		1	2	3	4	5	7
series	Speci- mens	bxD(cm) ,d(cm) ,a/D	Outermost Rein.Ratio at/bD(%)	Intermediate Rein.Ratio am/bD(%)	Rein.Ratio of Hoops aw/bx(%)	Concrete Strength (kg/cm²)	Axial Force (Ratio) at Max.Load(ton)
D2	B-2 B-3 B-4	20 x20 ,17.5	0.995(2-D16)	0.995(2-D16) 1.49(3-D16) 1.99(4-D16)	0.0	272 272 272	0.0
D3	C-2 C-4	, 1.0	1.49(3-D16)	0.635(2-D13) 1.27(4-D13)	0.0	243 243	0.0
	0-25 0-50 0-75 2-25 2-50 2-75	20 x20 ,17.5 ,1.0	0.995(2-D16)	0.0 0.635(2-D13)	0.246(2-6¢) 0.492(2-6¢) 0.738(2-6¢) 0.246(2-6¢) 0.492(2-6¢) 0.738(2-6¢)	239 239 239 239 239 239 239 239	16.97(0.178) 16.53(0.173) 16.40(0.172) 16.45(0.172) 16.08(0.168) 16.56(0.173)
E	3-25 3-50 3-75 4-25 4-50 4-75 6-25 6-75			0.953(3-D13) 1.27(4-D13) 1.91(6-D13)	0.246(2-6¢) 0.492(2-6¢) 0.738(2-6¢) 0.246(2-6¢) 0.492(2-6¢) 0.738(2-6¢) 0.246(2-6¢) 0.738(2-6¢) 0.738(2-6¢)	239 239 239 239 239 239 239 239 239 239	16.85(0.176) 16.26(0.170) 16.03(0.168) 16.26(0.170) 16.46(0.172) 16.11(0.169) 16.55(0.173) 16.05(0.168)
F1	A-0-1 A-0-3 A-2-1 A-2-2 A-2-3 A-4-1 A-4-3	20 x20 ,17.5 ,1:0	1.27(4-D13)	0.0 0.635(2-D13) 0.635(2-D13) 0.635(2-D13) 0.635(2-D13) 1.27(4-D13) 1.27(4-D13)	0.390(2-6¢) 1.047(4-6¢) 0.390(2-6¢) 0.683(4-6¢) 1.047(4-6¢) 0.390(2-6¢) 1.047(4-6¢)	256 256 256 256 256 256 256	13. 05 (0. 127) 14. 63(0. 143) 14. 46 (0. 141) 13. 76 (0. 134) 13. 13 (0. 128) 13. 05 (0. 127) 13. 76 (0. 134)
F2	B-0-1 B-2-2 B-4-1 B-4-3	20 x20 ,17.5 ,2.0	1.27(4-D13)	0.0 0.635(2-D13) 1.27(4-D13) 1.27(4-D13)	0.390(2-64) 0.683(4-64) 0.390(2-64) 1.047(4-64)	256 256 256 256	15.08(0.147) 13.31(0.130) 14.50(0.142) 13.81(0.135)
F3	H-0-1 H-0-2 H-2-1 H-2-2 H-4-1 H-4-2	28 x28 ,23.3 ,1.0	1.02(4-D16)	0.0 0.508(2-D16) 0.508(2-D16) 1.02(4-D16) 1.02(4-D16)	0.602(2-9\$) 1.203(4-9\$) 0.602(2-9\$) 1.203(4-9\$) 0.602(2-9\$) 1.203(4-9\$) 1.203(4-9\$)	252 252 252 252 252 252 252 252	33.45(0.169) 35.42(0.179) 33.62(0.170) 34.24(0.173) 33.08(0.167) 33.03(0.167)
	1-1 1-2 1-3 1-4	20 x20 ,17.5 ,1.0	1.27(4-D13)	0.318(1-D13) 0.635(2-D13) 0.953(3-D13) 1.27(4-D13)	0.0	225 226 226 226 226	0.0
	2-0 2-2 2-4	20 x20 , 17.5	1.27(4-D13)	0.0 0.635(2-D13) 1.27(4-D13)	0.0	226 227 227	0.0
G	3-0 3-1 3-3 3-4	20 x20 ,17.5 ,2.0	1.27(4-D13)	0.0 0.318(1-D13) 0.953(3-D13) 1.27(4-D13)	0.0	228 228 229 229	0.0
	4-0 4-2 4-4	20 x20 , 17.5 , 2.5	1.27(4-D13)	0.0 0.635(2-D13) 1.27(4-D13)	0.0	229 229 230	0.0
	5-0 5-1 5-2 5-3 5-4	20 x20 ,17.5 ,3.0	1.27(4-D13)	0.0 0.318(1-D13) 0.635(2-D13) 0.953(3-D13) 1.27(4-D13)	0.0	230 230 230 231 231	0.0
	A-0 A-2 A-3 A-4	20 ×20 , 17.5	0.635(2-D13)	0.0 0.635(2-D13) 0.953(3-D13) 1.27(4-D13)	0.0	206 210 210 213	0.0
Н	B-0 B-2 B-3 B-4	, 1. 0	0.953(3-D13)	0.0 0.635(2-D13) 0.953(3-D13) 1.27(4-D13)	0.0	213 220 220 223	0.0
	C-1 C-2 C-3 C-4		1.27(4-D13)	0.318(1-D13) 0.635(2-D13) 0.953(3-D13) 1.27(4-D13)	0.0	223 223 223 223 223	0.0

		1	2	3	4	5	7
series	Speci- mens	bxD(cm) ,d(cm) ,a/D	Outermost Rein.Ratio at/bD(%)	Intermediate Rein.Ratio am/bD(%)	Rein.Ratio of Hoops aw/bx(%)	Concrete Strength (kg/cm²)	Axial Force (Ratio) at Max.Load(ton)
	A-0 A-2 A-4	20 ×20	1.27(4-D13)	0.0 0.635(2-D13) 1.27(4-D13) 1.91(6-D13)	0.0	251 251 251 251	28.2(0.281) 27.8(0.277) 27.5(0.274) 27.9(0.278)
	B-0 B-2 B-4 B-6	,1.0		0.0 0.635(2-D13) 1.27(4-D13) 1.91(6-D13)	0.224 (2-6¢@110mm)	246 246 246 251	27.6(0.280) 28.4(0.289) 28.3(0.288) 28.0(0.279)
I	C-0 C-2 C-4 C-6			0.0 0.635(2-D13) 1.27(4-D13) 1.91(6-D13)	0.447 (2-6¢@55mm)	240 240 240 240	27.1(0.282) 28.2(0.294) 28.1(0.293) 28.4(0.296)
	D-0 D-2 D-4 D-6			0.0 0.635(2-D13) 1.27(4-D13) 1.91(6-D13)	0.665 (2-6∳@37mm)	229 234 234 234	27.8(0.303) 28.4(0.303) 28.0(0.299) 27.9(0.298)
	E-0 E-2 E-4 E-6			0.0 0.635(2-D13) 1.27(4-D13) 1.91(6-D13)	0.895 (4-6¢@55mm)	222 222 229 229	28.0(0.315) 28.0(0.315) 28.2(0.308) 28.0(0.306)

表1 試験体リスト(c)

表2 鉄筋の機械的性質

Series		a (cm²)	øy (kg∕cm²)	E (kg/cm²)
A1	D10	0.713	3360	2.10×10°
A2	D10	0.713	2902	1.63×10°
A1, A2	4.26	0.124	1976	2.25×10°
B1~B3	D10	0.713	2840	1.96x10°
B2	64	0.246	2833	2.18×10°
B2	4.26	0.124	1976	2.25×10°
С	D16	1.99	3680	1.87×10°

Series		a (cm²)	dy (kg/cm²)	E (kg/cm²)
D1~D3 D3	D16 D13	1.99 1.27	3518 2510	1.79×10 ⁶ 1.68×10 ⁶
E	D16 D13 6¢	1.99 1.27 0.246	3395 2510 2512	1.98×10° 1.68×10° 2.06×10°
F1, F2	D13 6¢	1.27	3665 2512	1.87×10 ⁶ 2.06×10 ⁶

Series		a (cm²)	ơy (kg∕cm²)	E (kg/cm²)
F3	D16 9∳	1.99 0.640	3395 2633	1.98×10° 1.85×10°
G	D13	1.27	3600	1.91×10 ⁶
H	D13	1.27	3650	1.97×106
I	D13 6¢	1.27 0.246	3990 2512	1.88×10° 2.06×10°

		Pw 带筋比 (%)						
		0.0	0.224	0.447	0.665	0.895	1.230	1.330
	0.0	0 0 0 0						
P m	0.635							
断 筋 比 (%)	1.27							
	1.91							
	0.0							
Pm 中	0.635							
町 防 比 (%)	1.27							
	1.91							

図1(a)代表的断面および帯筋配筋状態(Iシリーズ)

図1(b)代表的配筋図(Iシリーズ, C-4)

以下に各シリーズの主なねらいについて無帯筋の場合と帯筋のある場合にわけて述べる。 無帯筋の場合

 $\bigcirc B1 \ge U - \chi (M1 \sim M10)$

軸方向鉄筋に普通丸鋼を用いた実験で中段筋がせん断耐力を著しく低下させる場合があ ることを文献(研究報告)で報告した。本シリーズは軸筋が異形の場合でもこの現象が起 こり得るのかを見ようとするものである。また、中段筋比pmを密に変えて耐力の違いを 連続的に見ようとするものである。

 $OB3 \ge U = \chi (N1 \sim N4)$

B1シリーズ中最もせん断耐力の低かったM8と同一の断面に、軸力を与え、そして軸 力を変化させるとせん耐力がどのように変わるかを見ようとするものである。

○Cシリーズ(22~60)

中段筋と同じ軸方向鉄筋である引張り圧縮両鉄筋の量がB1シリーズと異なっても同様 な結果となるかを見ようとするものである。

OD1シリーズ(A0~C4)

本シリーズは次のD2シリーズと同じ断面であるが、加力点にはり型を付けて、はり型 の有無による違いを見ようとするものである。

○D2シリーズ(B2~B4)

本シリーズはCシリーズのうちで特異な破壊をした試験体の再現実験である。

OD3シリーズ(C2~C4)

本シリーズはD1シリーズより細い中段筋を使用して中段筋の太さを問題にしている。 ○Gシリーズ(11~54)

本シリーズはせん断スパン比a/Dによる違いを見ようとするものである。 〇Hシリーズ(A0~C4)

本シリーズ引張り圧縮両鉄筋にCシリーズのD16より細いD13を用いて引張り圧縮 両鉄筋の少ない範囲での中段筋の効果を見ようとしている。

 $OI \ge U - X(AO \sim A6)$

本シリーズはHシリーズのC1~C4に一定軸力を与えたものである。また、様々に帯 筋比を変えた帯筋のある次のIシリーズの基本となるものである。

帯筋のある場合

OA1シリーズ(1122A~1151B)

本シリーズは軸筋の配置による違いを見ようとするものである。引張り圧縮両鉄筋比が 大きい場合に中段筋が少し存在する場合と、逆に引張り圧縮両鉄筋比が小さい場合でも中 段筋が多量にある場合、および両者の間に位置する場合について調べている。

OA2シリーズ(S1~L6)

A1シリーズと同じ断面でせん断スパン比を変えたシリーズである。

 $\bigcirc B2 \ge U - \varkappa (W1 - W4)$

前章のB1シリーズで最もせん断耐力の低かったM8と同一断面の試験体に対して、帯 筋の効果を見ようとするシリーズである。

○Eシリーズ(0-25~6-75)

軸力を与え、中段筋比および帯筋比の組合わせを様々に変えたシリーズである。 ○F1シリーズ(A01~A43)

Eシリーズよりさらに多い帯筋の効果を見ようとするシリーズである。

OF2シリーズ(B01~B43)

F1シリーズと同一断面でせん断スパン比を変えたシリーズである。

OF3シリーズ(H01~H42)

他のシリーズより断面寸法を大きくしたシリーズである。

 $OI \ge U - X(AO \sim E6)$

F1シリーズの軸力比をほぼ倍にした高軸力比に対して様々な中段筋と帯筋の効果を見ようとするシリーズである。

2.2 加力および測定方法

水平方向の加力形式はいずれも逆対称曲げを受ける大野式加力形式である。写真1,図 2のようにアムスラー型200ton万能試験機にH型鋼の反力ビームを取付け、ピンま たはローラーを介して載荷した。加力方法はいずれも一方向加力で相対部材角1/480, 1/240,1/120,および1/60で一度除荷し、1/48まで載荷した。軸力は 反力装置を介して50tonで与えロードセルによって検力した。

水平力による試験区間の相対変位を図3のようにゲージホルダーに取付けた電気式変位 計で測定した。また、鉄筋表面およびコンクリート表面のひずみは電気抵抗式ひずみゲー ジを貼付して測定した。一部の試験体には三方向ひずみゲージを埋め込み反曲点位置のコ ンクリート中のひずみを測定した。

写真1 加力装置

図2 加力装置

図3 相対変位測定装置

第5章 多段配筋短柱の水平加力実験結果

1. 序

本章は第4章の実験結果を述べる。荷重-変位曲線,ひびわれ状況,および内部鉄筋の ひずみ性状などについて全般的傾向を述べると共に、全試験体の最大耐力および破壊モー ドのまとめを行う。

2. 実験結果

2.1 破壞経過

以下では、無帯筋の場合と帯筋のある場合に分けて破壊経過をのべる。

a)帯筋の存在しない場合

代表としてせん断スパン比を1.0から3.0まで変化させたGシリーズについて述べ、 他のシリーズで補足する。このシリーズはp+が1.27%で軸力はない。図1、図2に 代表的な荷重-変位曲線とひびわれ図を示す。

○中段筋がない場合

まず a / D にかかわらず材端に曲げひびわれが生じた。ただし、Gシリーズ以外で引張 り鉄筋比がさらに大きい場合や高い軸力を与えた場合には曲げひびわれが生じなかったり、 曲げひびわれがせん断ひびわれ発生後に生じた場合もある。さらに高い荷重でスパンの中 央よりの位置に曲げひびわれが生じた。

次に、せん断スパンの中央よりに生じた曲げひびわれがやや加力点方向に傾き、曲げせん断ひびわれへと伸展した。a/Dが大きいものはやや反曲点よりに曲げせん断ひびわれが生じた。曲げせん断ひびわれの部材軸とのなす角度はほぼ45度である。軸力のある場合は45度より小さい。荷重の増加と共にしだいに加力点方向へ伸展した。

曲げせん断ひびわれの伸展途中で、引張り鉄筋近くに伸展方向と逆方向にダボ作用によ るとみられる二次的なひびわれが生じた。a/Dが小さい場合、この二次的なひびわれは 引張り鉄筋に沿って徐々に伸展すると同時に、耐力も少しずつ上昇する。鉄筋に沿うひび われが反曲点付近まで進むと反曲点を越えて急に伸展し、一旦耐力低下した後、再び耐力 上昇をはじめ、加圧端でせん断圧縮破壊した。すなわち、付着ひびわれを伴うせん断圧縮 破壊である。軸力のあるIシリーズのA-0(図3)は曲げひびわれの伸展は少なく、曲 げせん断ひびわれと引張り鉄筋に沿うひびわれは生じないで、いきなり斜張力破壊した。

横軸は相対変位(単位mm)
 図1 荷重-変位曲線
 図2 最終ひびわれ状況
 (a) 材軸と直交方向 (b) 材軸方向

(無帯筋Gシリーズ, a/D=1.0)

図2 最終ひびわれ状況

図2 最終ひびわれ状況

(無帯筋Gシリーズ, a/D=3.0)

a/Dの大きい場合には上記の二次的なひびわれが生ずると同時に、引張り鉄筋に沿って急伸展し、急激に耐力低下した(せん断引張り破壊と呼ぶ。)。

○中段筋がある場合

中段筋が存在すると、引張り鉄筋に沿うひびわれはわずかに伸展しただけで止まる。代わりに、曲げひびわれが曲げせん断ひびわれに変わり始めた辺りから斜張力による二次的なひびわれが発生し、反対の加圧端方向に対角線的に伸展する。同時に、曲げせん断ひびわれも加圧端方向に伸展して、急激な耐力低下を生じた(斜張力破壊)。

a/Dが1.0の場合、さらに中段筋が多いと上記の曲げせん断ひびわれや、引張り鉄筋に沿うひびわれは生ぜず、いきなり対角線的に斜張力ひびわれが生じて急激に耐力低下をした。軸力が存在するIシリーズのA-6(図3)は先のA-0と同様に斜張力破壊するが、やや耐力低下後、耐力をやや持ち直している。これは、ひびわれを横切る中段筋が軸力を負担し、急激な耐力低下を抑えているものと考えられる。

a / Dが大きい場合では、中段筋が多いと、曲げせん断ひびわれが加圧端方向へ伸展すると同時に、反対方向に生じた斜張力ひびわれも一気に伸展した(<math>a / D = 3.0, $p_m = 0.635\%$)。さらに中段筋が多いと、曲げひびわれが曲げせん断ひびわれに伸展せず突然斜張力ひびわれの生じた($p_m = 1.27\%$)。

b)帯筋が存在する場合

代表として I シリーズについて述べる。 I シリーズは a / D = 1. 0, $p_t = 1$. 27%, 軸力比 = 1 / 3 である。また図3、図4に代表的な荷重 – 変位曲線とひびわれ図を示す。比較のため、無帯筋のA – 0, A – 6 も示した。

帯筋量が少ない場合、中段筋がないB-0, C-0は、斜張力ひびわれが生じても、や や耐力低下するだけで、斜張力ひびわれが生じた荷重まではやや耐力が持ち直している。 多く中段筋が存在するC-6は斜張力ひびわれ直後やや耐力低下するがその荷重を越えて ふたたび荷重上昇し、せん断圧縮破壊している。

帯筋量が多い場合も斜張力ひびわれは生じるが、あまり伸展しない。斜張力ひびわれに よる耐力低下はほとんどなく、さらに荷重上昇してせん断圧縮破壊する。荷重上昇の途中 で曲げひびわれや曲げせん断ひびわれも生じている。

2.2 鉄筋のひずみなど

図5,図6,図7にIシリーズの最外筋,中段筋,帯筋の材軸方向のひずみ分布の例を 示す。また、図8には中央の帯筋の、図9は最外筋の荷重-ひずみ関係を示す。

帯筋のないA-0, A-6は共に斜張力破壊するまで最外筋とコンクリートとの付着が 健全である(図5)。また、A-6の中段筋のひずみ分布は斜張力破壊まで一定で、中段 筋は軸応力のみを負担している(図6)。しかし、帯筋が存在するが少ないC-6は最大 荷重になる手前から材中央での最外筋ひずみが大きくなり(図5)、中段筋のひずみは斜 張力ひびわれが生じたあたりから材中央で大きくなり(図6)、また、帯筋ひずみは、斜 張力ひびわれと同時に急激に増加している(図7)。帯筋の多いG-0は、最外筋が引張 り降伏している(図9)。

図10は材中央の内部コンクリートに埋めこんだ三軸のひずみゲージから求めた主ひず みの材軸とのなす角度を示している。せん断力が零の時は0°であるが荷重が高くなるほ ど大きくなり22°~23°で斜張力破壊している。これは斜張力ひびわれの角度とほぼ 対応している。

図5 最外筋の軸方向ひずみ分布(1シリース)

図6 中段筋の軸方向ひずみ分布(Iシリーズ)

材軸とのなす角度(Iシリーズ)

- 62 -

3. 最大荷重

表1に最大荷重時せん断力Qと破壊モードを示す。

3.1 最大荷重とせん断スパン比の関係

図11は帯筋・軸力のないGシリーズのせん断強度-せん断スパン比関係を示す。同一 の中段筋量で、a/Dが大きくなるほどせん断強度は低くなる傾向を示している。しかし、 その度合は中段筋量が増すほど小さくなる傾向を示す。a/Dがほぼ2.0より小さい場 合は中段筋が存在するほどせん断強度は低くなる傾向を示すが、2.0より大きい場合は 高くなる傾向を示す。

図12は同シリーズのせん断強度-中段筋比pm 関係を示す。a/Dが1.0と1.5 の場合とそれらよりa/Dが大きい場合とで傾向が異なる。a/Dが小さく中段筋量が少 ない場合は中段筋量が増すほどせん断強度も増す。しかし、ある中段筋量から中段筋量を 増すほどせん断強度は低下する傾向を示す。a/Dが2.0以上に大きくなると中段筋量 の全範囲で中段筋量を増すほどせん断強度は増す傾向を示す。そして、a/Dの大小にか かわらず中段筋量が多くなれば、せん断強度はある値に近づく傾向を示している。

図11 せん断強度とせん断スパン比 の関係(Gシリーズ)

図12 せん断強度と中段筋比の関係(Gシリーズ)

表1 最大せん断力と破壊型一覧

		6	13
series	Spec I mens	Maximum Shear Force(ton)	Failure Mode
A1	1122/ 1122E 1133E 1113/ 1113/ 1113E 1114/ 1115E 1131/ 1131E 1141A 1141E 1151A 1151E	8.57 7.87 9.00 8.83 7.43 7.87 8.00 8.43 9.07 9.57 9.93 9.10 8.63 9.77 9.63	$ \begin{array}{c} D. T. \rightarrow S. C. \\ (D. T.) S. C. \\ (D. T.) S. C. \\ D. T. + S. C. \\ D. T. \\ D. T. + S. C. \\ D. T. \\ D. T. + S. C. \\ D. T. \\ S. C. \\ C. \\ T. \\ S. C. \\ T. \\ S. C. \\ T. \\ S. C. \\ T. $
A2	S1 S3 S4 S5 S6 L1 L3 L4 L5 L6	$\begin{array}{c} 10.\ 67\\ 11.\ 00\\ 9.\ 67\\ 10.\ 00\\ 10.\ 67\\ \hline 6.\ 78\\ 6.\ 05\\ 6.\ 19\\ 6.\ 43\\ 6.\ 36\\ \end{array}$	$ \begin{array}{c} D. T. + S. C. \\ D. T. \\ D. T. \\ D. T. \\ D. T. + S. C. \\ D. T. \\ S. C. \\ D. T. \\ F. T. \rightarrow S. C. \\ \end{array} $
B1	H1 H3 H4 H6 H8 H9 H10	9.50 8.12 8.43 7.51 7.82 8.30 5.65	$ \begin{array}{c} D. T. + S. C. \\ D. T. \\ D. T. \\ D. T. \\ D. T. \\ F. T. \rightarrow S. C. \\ D. T. \\ \end{array} $
B2	W1 W2 W4	10.20 10.42 11.04	$\begin{array}{c} D. T. \\ F. T. \rightarrow S. C. \\ S. C. \end{array}$
B3	N1 N2 N3 N4	8.26 9.41 9.95 11.89	D. T. D. T. D. T. D. T. D. T.
с	22 23 24 25 30 31 32 33 34 35 40 41 42 42H 43 44 44H 44D	9.01 6.99 8.53 9.64 11.53 7.40 8.42 9.66 9.87 9.09 11.44 7.98 9.40 9.62 9.54 9.72 9.89 9.50 0.00	$\begin{array}{c} D. T.\\ D. T.\\ D. T. \rightarrow S. C.\\ D. T. \rightarrow S. C.\\ S. C.\\ D. T.\\ D. T.\\ D. T.\\ D. T.\\ D. T.\\ D. T.\\ D. T. \rightarrow S. C.\\ S. C.\\ D. T. \rightarrow S. C.\\ D. T. \rightarrow S. C.\\ D. T. \rightarrow S. C.\\ D. T.\\ D. T. \rightarrow S. C.\\ D. T.\\ name of the set of the s$
	45 50 60 A-0 A-1	9.09 12.41 11.75 11.23 12.48	$\begin{array}{c} D. T. \rightarrow S. C. \\ \hline S. C. \\ \end{array}$
D1	A-2 A-3 A-4	11.82 7.66 8.34	D. T. D. T. D. T.

		6	13
series	Speci- mens	Maximum Shear Force(ton)	Failure Mode
02	8-2 8-3	7.17	D. T. D. T.
D3	C-2 C-4	7.56	D. T. D. T.
E	0-25 0-50 0-75 2-25 2-50 2-75 3-25 3-50 3-75 4-25	14. 60 14. 13 13. 65 11. 51 12. 82 13. 61 11. 62 12. 72 14. 08 10. 82	S. C. S. C. S. C. D. T. D. T. D. T. \rightarrow S. C. D. T. \rightarrow S. C. D. T. S. C. D. T.
	4-50 4-75 6-25 6-75	12.58 12.96 11.46 13.94	$\begin{array}{c} D. T. \rightarrow S. C.\\ \hline D. T. \rightarrow S. C.\\ \hline D. T.\\ S. C.\\ \end{array}$
F1	A-0-1 A-0-3 A-2-1 A-2-2 A-2-3 A-4-1 A-4-3	14. 32 17. 34 14. 80 16. 54 18. 88 14. 09 17. 79	S. C. S. C. S. C. S. C. S. C. S. C. S. C.
F2	B-0-1 B-2-2 B-4-1 B-4-3	10. 12 11. 58 11. 36 12. 77	S. C. F. C. S. C. F. C.
F3	H-0-1 H-0-2 H-2-1 H-2-2 H-4-1 H-4-2	26.70 31.43 25.14 30.38 26.06 28.58	S. C. S. C. S. C. S. C. S. C. S. C. S. C.
G	$ \begin{array}{c} 1-1\\ 1-2\\ 1-3\\ 1-4\\ 2-0\\ 2-2\\ 2-4\\ 3-0\\ 3-1\\ 3-3\\ 3-4\\ 4-0\\ 4-2\\ 4-4\\ 5-0\\ 5-1\\ 5-2\\ 5-3\\ 5-4\\ \end{array} $	$\begin{array}{c} 10.\ 07\\ 10.\ 42\\ 9.\ 67\\ 7.\ 75\\ 7.\ 44\\ 8.\ 50\\ 6.\ 99\\ 5.\ 10\\ 5.\ 67\\ 6.\ 23\\ 5.\ 50\\ 4.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 29\\ 5.\ 25\\ 3.\ 79\\ 4.\ 02\\ 5.\ 31\\ 5.\ 58\end{array}$	S. T. D. T. D. T. S. T. S. T. S. T. S. T. S. T. D. T.
Η	A-0 A-2 A-3 A-4 B-0 B-2 B-3 B-4 C-1 C-2 C-3 C-4	8.90 9.77 7.47 7.33 9.73 8.27 8.40 6.87 9.90 9.83 9.77 7.97	F. T. D. T. D. T. D. T. D. T. D. T. D. T. D. T. S. T. S. T. S. T. + D. T. D. T.

		6	13
series	Speci- mens	Haximum Shear Force(ton)	'Failure Mode
I	$\begin{array}{c} A-0\\ A-2\\ A-4\\ A-6\\ B-0\\ B-2\\ B-4\\ B-6\\ C-0\\ C-2\\ C-4\\ C-6\\ D-0\\ D-2\\ D-4\\ D-6\\ E-0\\ E-2\\ E-4\\ E-6\\ \end{array}$	13.87 11.89 12.37 13.83 13.19 12.96 14.23 13.90 15.05 14.80 14.63 14.69 14.46 18.03 17.12 16.68 16.78	$ \begin{array}{c} D, T, \\ \hline \end{array} \\ \hline \\ D, T, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \hline \\ S, C, \\ \hline \\ D, T, \\ \\ S, C, \\ \hline \\ D, T, \\ \\ S, C, \\ \hline \\ D, T, \\ \\ S, C, \\ \hline \\ D, T, \\ \\ S, C, \\ \hline \\ D, T, \\ \\ \\ S, C, \\ \hline \\ D, T, \\ \\ \\ S, C, \\ \hline \\ D, T, \\ \\ \\ S, C, \\ \hline \\ D, T, \\ \\ \\ S, C, \\ \hline \\ D, T, \\ \\ \\ \\ S, C, \\ \\ D, T, \\ \\ \\ \\ S, C, \\ \\ D, T, \\ \\ \\ \\ S, C, \\ \\ D, T, \\ \\ \\ \\ \\ S, C, \\ \\ \\ D, T, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Note) Failure Hode-S.C.:Shear Compression , S.T.: Shear Tension, D.T.: Diagonal Tension,

F.T.: Flexural Tension, F.C.: Flexural Compression

3.2 最大荷重と帯筋比の関係

図13は帯筋・軸力の存在するIシリーズのせん断強度-帯筋比関係を示す。同一の中 段筋比で、帯筋比が大きくなるほどせん断圧縮破壊型のせん断強度も大きくなることがわ かる。a/Dが大きいF2シリーズは引張り鉄筋降伏以前のせん断圧縮破壊型(B41)が、 帯筋比を増すこと(B43)で、引張り鉄筋降伏後の曲げ圧縮破壊型に変わっている。 また、図14はIシリーズのせん断強度-中段筋比関係を示す。同一の帯筋比で中段筋比 が大きくなるほどせん断強度はやや低下する傾向を示すが、帯筋比に比べるとあまり影響 はみられない。ただし、軸筋が降伏しない場合である。しかし、軸筋が降伏する場合は、 無帯筋で述べたように中段筋量を増せば高くなる。

3.3 無帯筋の場合のせん断強度とpt, pmの関係

帯筋・軸力ともない特殊な場合は p_t , p_m の大小関係で複雑にせん断強度が変化する。 a) a / D = 1.0で軸力のない場合

Pt, Pm とも小さい場合、引張り鉄筋が降伏し、Pm が大きくなるほどせん断強度も 増す。しかし、さらにPm が増すと、引張り鉄筋が降伏する前にせん断引張り破壊して、 中段筋を増してもせん断強度はあまり変わらなくなる(Gシリーズ11)。さらにPm が増 すと斜張力破壊を生じ、Pm が増すほど、せん断強度は低下する(Gシリーズ12~13)。

p t が大きい場合、p m が小さくても引張り鉄筋が降伏する前に斜張力破壊し、せん断 強度は大幅に低下する(Cシリーズ31)。

b) a / Dが1.0より大きく軸力のない場合

Pt, Pm とも大きい場合、a/D=1.5ではa/D=1と同様、中段筋がせん断強 度にマイナスに働く(Gシリーズ24)が、a/D=2.0では中段筋がせん断強度にほぼ 同等かややマイナスに働き(Gシリーズ34)、a/Dが2.5以上では常に中段筋がせん 断強度にプラスに働く(Gシリーズ42,44,51~54)。

c)軸力がある場合

a/D=1.0, p+小, pm大で、軸力がない場合、中段筋のないものよりはるかに 低い耐力で斜張力破壊したもの(B1シリーズM10)と同じ断面で、軸力比を高くすると 斜張力破壊時せん断強度も高くなる(B3シリーズN1~N4)。

p t が大きく軸力比約1/3で斜張力破壊した I シリーズのA0~A6は、p m が異なるが、 これらの耐力はp m が増すとやや低下する傾向を示すが、大きく変わらない。 4. 結論

中段筋が存在すると、引張り鉄筋に沿う付着ひびわれは抑制されるが、軸力がないにも かかわらず、斜張力ひびわれが生じやすくなる。帯筋が少ない場合は斜張力破壊を引起こ しやすい。帯筋が存在すれば、斜張力ひびわれは生じるが、斜張力破壊は防止され、軸筋 が降伏以前のせん断圧縮破壊、または、軸筋が降伏後のせん断圧縮破壊または曲げ圧縮破 壊に変りうる。

軸力が低い場合、斜張力破壊時の耐力はせん断スパン比が小さいと、中段筋ない場合 (付着破壊を伴うせん断圧縮破壊)の耐力より低くなる場合がある。逆に、せん断スパン 比が大きいと、中段筋がない場合の耐力(せん断引張り破壊)より高くなる。また、軸力 が高くなるほど斜張力破壊時の耐力も高くなる。

せん断圧縮破壊時の耐力は、軸筋が降伏しない場合は帯筋が多く存在するほど大きくな るが、中段筋量にあまり影響されない。しかし、軸筋が降伏する場合は、中段筋量を増せ ば高くなる。 第6章 多段配筋短柱のせん断耐力実用評価式の有効性
1. 序

本章では、第3章の多段配筋短柱の実用的せん断耐力評価式を第5章の実験結果と比較 して、評価式の有効性を示す。

2. せん断圧縮破壊時(軸筋降伏を考慮する場合)

計算値と実験値の比較は、第3章~第4章の試験体のうち、帯筋を有するシリーズ、す なわちA1, A2, E, F1~F3, Iシリーズ計84体と文献1)の高強度材料を用い た10体の計94体に対して行っている。筆者の行った前者のシリーズの試験体はb×D が20cm×20cm(F3のみ, 28cm×28cm), L/D=2, 3, 4, p+ は0.35 7%~1.27%, pm は0~1.91%, pw は0~1.33%である。コンクリート 圧縮強度は173~306kgf/cm², 主筋の降伏点は2902~3990kgf/cm², 帯筋 の降伏点は1976~2633kgf/cm² である。レを考えた軸力比が0.148~0.5 25(レを考えなければ0.102~0.340)である。

文献1)の試験体はb×Dが20cm×20cm, L/D=2, pt, pm はともに1.2 7%(4-D13), pw は0.604%(D6)を標準に0.302%~1.778% である。コンクリート圧縮強度は582kgf/cm², D13, D6の降伏点は7350kgf/ cm²,8630kgf/cm² である。レを考えた軸力比が0.766を標準にして0~1.5 3(レを考えなければ0.390を標準にして0~0.779)である。

計算値 $V_{cal.} & \varepsilon \nu \sigma_B b D \sigma m$ (次元化し横軸に、または実験値 $V_{exp.} & \varepsilon \nu \sigma_B b D \sigma m$) 次元化し縦軸にとりプロットしたものが、図1である。計算値はせん断圧縮破壊時のせん 断力を計算しているが、必ずしも実験結果はせん断圧縮破壊型とは限らないので、実験値 には破壊形式にかかわらず、最大値を採用し、破壊型を以下のように記号で区別した。計 算対象の曲げ降伏以前のせん断圧縮破壊は〇印、曲げ降伏以後のせん断圧縮破壊は〇印で ある。また、計算の対象外の斜張力破壊は〇印、曲げ降伏以後のせん断圧縮破壊は〇印で ある。また、計算の対象外の斜張力破壊は〇印である。また、有効係数 ν については実験 値との比較のために下限値(0.7 - σ_B / 2000)でなく中間値(0.8 - σ_B / 2 000)を採用した。中間値を用いても実験値はほとんど計算値を上回って安全側となっ ている。 ν として下限値を用いれば、さらに実験値が計算値を上回ることになる。

ところで、高強度材料を用いた場合(黒抜き▲●■)、10体中8体は実験値/計算値が0.983~1.18の間にある。2体ほど安全側ではあるが、実験値が計算値をはる

図1 実験値と計算値の比較

かに上回るものがある。1体(▲)は実験値/計算値が2.29、レを考えた軸力比は1. 53(レを考えなければ0.779)と高軸力である。計算上は圧縮鉄筋降伏後のせん断 破壊であるが、実験値と主応力度式による計算値との比が1.02であること、また、荷 重-変位曲線が最大耐力以降、急激に耐力低下していることから、高軸力で斜張力破壊し たものと考えられる。

また、実験値/計算値が1.47で場合(■)、レを考えた軸力比は0.766で標準 試験体と同じであるが、p * が約1.8%と大きい。しかし、計算上レを考えたせん断補 強筋係数 ψ * * * は0.5で制限されている。さらに、釣合い強筋係数 ψ * * は0.315であ るから、計算に用いる ψ * は圧縮鉄筋の降伏で決まる ψ * となる。すなわち、計算上は圧 縮鉄筋と帯筋が降伏するせん断破壊になる。実験値と主応力度式との比較では1.97で あり、斜張力破壊ではない。それでも、実験値が計算値より大幅に高いのは、高帯筋比に よるコンクリートの拘束効果が考えられる。拘束効果があれば、コンクリート強度の有効 係数を大きくすることができるものと考えられる。そうすれば、高帯筋比に対して計算値 は実験値に近づけることができる。 3. せん断圧縮破壊時(軸筋降伏を考慮しない場合)

第3,4章の実験結果(152体)と、文献2)で追加した試験体(8体)の中で、せん断圧縮破壊が観察された112体について、せん断圧縮破壊時荷重の実験値と計算値の 比較を行った。ただし、曲げ降伏や付着破壊を伴うものも含まれている。

図2(a),(b)はそれぞれa/Dが1.0の場合と1.0より大きい場合について、 実験値 $V_{sc.exp.}$ と計算値 $V_{sc.cal}$ 、を $\nu \sigma_B$ bjt で無次元化して比較したものである。 図より、実験値が計算値を上回るものが多い。すなわち全体的には計算値は実験値を安全 側に評価している。

(a) a/D=1.0の場合

図2 Vsc実験値と計算値の比較

図3(a),(b)は中段筋比pmを横軸に、Vscの実験値と計算値の比を縦軸とした ものである。Vsc実験値と計算値の比が1.0以上の場合、軸力あり(\Box , \triangle)は軸力な し(\diamondsuit , ∇)にくらべてばらつきが小さく、軸力ありでは、第5章でも示したようにVsc はpmにあまり影響されないといえる。軸力なし(\diamondsuit , ∇)では、中段筋がなく、引張り 鉄筋が降伏しないに実験値が計算値を大きく上回っているが、中段筋が存在すると、図 (a)の実線が示すように複雑な挙動をする。すなわち、軸力がない場合、Vscは中段筋 の影響を大きく受けるといえる。

図3(a) Vsc実験値/計算値とpmの関係(a/D=1.0)

図3(b) Vsc実験値/計算値とpmの関係(a/D>1.0)

図4はa/Dを横軸にとり、Vscの実験値と計算値の比を縦軸としたものである。ただ し、a/Dが2.0より大きい場合にプロットがないのは、帯筋および軸力がない場合で 斜張力破壊しているからである。a/Dが1.0~2.0の範囲で多くの実験値が計算値 を上回っている。a/Dが1.0~2.0の範囲で多くの実験値が計算値 を上回っている。a/Dが1.0~2.00%囲で多くの実験値が計算値 を計算値の比はa/Dに無関係と思われる。a/Dが1.0で、計算値を極端に上回るも のは前述したように中段筋や軸力がなく、後述するように帯筋の少ない場合である。逆に a/Dが1.0で、実験値が計算値を下回るものは、中段筋、帯筋とも多い場合(\triangle)に もみられ、この中にはb×Dが28cm×28cmの準実大の試験体(他は20cm×2 0cm)が含まれることは問題である。a/Dが1.0より大きい場合、ほとんどが軸力 ありであるが、計算値を下回るせん断圧壊の実験値はほとんどない。しかし、以下のせん 断圧壊以外の場合に最大耐力時せん断力がせん断圧壊の計算値を下回っている。例えば、 a/Dが2.0で帯筋の多い場合は曲げ圧壊している。また、以下の場合はせん断圧壊が 観察されないのでプロットされていない。帯筋が少なく中段筋のある場合で斜張力破壊し た場合、また、a/Dが2.5以上で中段筋、帯筋、軸力ともない場合にせん断引張り破 壊した場合である。

ところで、a/Dが1.0より大きい場合、中段筋が存在しても、帯筋と軸力が存在す れば、ほとんどのVsc実験値はレの定数項を0.8とした計算値を上回っており、有効係 数レの定数項を0.8としてよいと思われる。a/Dが1.0の場合のレの定数項につい ては以下に述べる。

図4 Vsc実験値/計算値とa/Dの関係

a/D=1.0について、帯筋比pwを横軸とし、実験値と計算値の比を縦軸としたの が図5である。帯筋が多い場合(ここではpwが約0.4%以上)は、比較的よい対応を 示している。しかし、帯筋が少ない場合(ここではpwが約0.25%以下)はばらつき が大きい。中でも軸力,中段筋がなく, pt が大きく引張り降伏しない場合(×)は、実 験値と計算値の比が1.52~1.55および1.64でとくに大きい。帯筋の少ない場 合のせん断伝達機構は、ほとんど、加圧端を直接結ぶアーチ機構によるものであるが、実 験からも曲げせん断ひびわれ後に引張り鉄筋に沿うひびわれが生じておりアーチ機構にな っているものと考えられる。ここでアーチ斜材の応力がすべてコンクリート強度のBに達 していれば、すなわちコンクリートの有効強度係数レが1.0であれば、実験値と計算値 の比は1.04~1.12となる。また、安全性を考えて、レの定数項を1.0としてコ ンクリートによる強度の低減を考慮すれば、実験値と計算値の比は1.18~1.27と なる。ただし、中段筋・帯筋はないが軸力がある場合は斜張力破壊で、せん断圧壊は観察 されなかった。したがって、帯筋は少ないがせん断圧壊する中段筋のない場合は、レの定 数項を0.8でなく1.0としてもよいと考えられる。ただし、帯筋の多い場合は、引張 り鉄筋に沿うひびわれが少なく、アーチ機構よりトラス機構が支配的となり、実験値と計 算値の比較からも、定数項を0.8にして置く必要があるものと思われる。

図5 Vsc実験値/計算値とpwの関係(a/D=1.0)

次にa/Dが1.0で、帯筋・軸力はないが中段筋がある場合、前述のように斜張力破 壊で最大耐力が決まることが多い。ここでは、レの定数項を0.8としても、いくつか (中段筋のあるものの中の約1割)は危険側となる。前述のように、中段筋があって帯筋 と軸力がない場合は破壊機構が複雑で、レの定数項は、p+,pmの組合せによってほぼ 0.8~1.0の間で複雑に変わるものと考えられるが、定数項の定量化は難しい。

一方、中段筋は存在し帯筋はない場合で、軸力があれば、すべて斜張力破壊で最大耐力 が決まっているが、σ。が最も大きい約1/3σBの試験体を除き、σ。がそれより小さ い場合は、耐力低下途中でせん断圧壊への移行がみられた。この時の実験値とレの定数項 を0.8とした計算値との比は1.21~1.39と高くなっている。しかし、これらは せん断圧壊移行後も急激な耐力低下をするので、安全性を考えれば、実験値と計算値の比 は大きくてもよいと思われる。また、軸力の有無にかかわらず中段筋あり帯筋なしは特殊 な場合であり、現時点でレの定数項を0.8としてほぼ安全側と思われる。 4. 斜張力破壞時

第3,4章の152体の実験結果と、文献2)で追加した8体の中で、斜張力ひびわれ および斜張力破壊の生じた156体について、実験値と計算値を比較する。

図6(a),(b)は、V_{DT}の計算値V_{DT.cal}.と実験値V_{DT.exp}.を、それぞれ $\nu \sigma_B$ bjt で無次元化して横軸、縦軸としたものである。図(a)はa/Dが1.0の 場合、図(b)はa/Dが1.0より大きい場合である。図(a)のa/Dが1.0では、 中段筋や帯筋の有無にかかわらず、ほぼ、45度の線を中心に分布している。その中でも 中段筋なし(+)の実験値は中段筋あり(\Box , \triangle)より高くなっている。しかし、図(b) のa/Dが1.0より大では、45度の線を下回るものが多く、中段筋なし(+)の実験 値が中段筋あり(\Box , \triangle)より低くなる傾向がみられる。

(b) a/D>1.0の場合

図6 V_{DT}/(*v* σ_B b j t) 実験値と計算値との比較

そこで、a/Dを横軸とし、実験値と計算値の比を縦軸としたのが図7である。そして 中段筋なし(+)を直線で結んでいる。a/Dが1.0では、ばらつきが大きいが、実験 値は計算値を上回る傾向がみられる。しかし、a/Dが1.0より大きくなるほど、実験 値と計算値の比は小さくなり、a/Dが2.0より大では、実験値が計算値を下回る傾向 がみられる。以下では、まずa/Dおよび中段筋量と主応力度式の前提条件との関係につ いて検討してみる。

◎a/Dが1.0の場合

本来、式(1)の主応力度式は断面が一体であることが前提である。図8(a)に示す ように、斜張力ひびわれCが生じる前に、Aの曲げせん断ひびわれやBの引張り鉄筋に沿 うひびわれが生じれば、その前提は崩れることになる。

図8(a)a/D=1.0の場合

A, Bのひびわれは、軸力や中段筋がない場合、逆対称曲げモーメントを受けると生じ やすい。この場合、せん断力の一部はアーチ機構によって伝達される。したがって、斜張 力ひびわれCひびわれの生ずる前のコンクリート部分には、たとえ軸力がなくてもアーチ 反力としてアーチ軸応力が生じていることになる。仮に主応力度式の中でこの軸応力をσ 。として与えることができれば、計算値は高まり、実験値に近くなる。ここで、中段筋が 存在すると、Aひびわれの伸展は抑制され、ひびわれ間の骨材のかみ合わせによるせん断 伝達も確保されるとともに、Bひびわれも抑制されることになる。これらの効果は中段筋 が増すほど高まるので、Cひびわれの生じる前の断面は前提条件のように一体的になり、 計算値は実験値と近くなる。 ◎a/Dが1.0より大きい場合

まず、中段筋のない場合、図8(b)のようにAの曲げせん断ひびわれが生じる。その 後、a/Dが3.0で帯筋のない試験体の例では、Bの引張り鉄筋に沿うひびわれが生じ ると同時に、Aのひびわれも伸展して急激な耐力低下をしている。ここではせん断引張り 破壊と呼ぶ。しかし、この時の実験値は主応力度式で求めた値より非常に低い。

図8(b) a/Dが1.0より大きい場合

ここで、中段筋が存在すると、中段筋がない場合より耐力が高くなっている。これは、 中段筋が図8(b)Aのひびわれの伸展を抑制して、ひびわれ間の骨材のかみ合わせによ るせん断伝達を確保し、同時に、Bのひびわれの伸展も抑制するからと考えられる。代わ りにA,Bのひびわれの間位置にはCのひびわれが生じて急激な耐力低下をしている。こ の破壊はせん断引張り破壊から真の斜張力破壊(図8(b)Dのひびわれ)の間に位置す るものと考えられ、Aのひびわれを抑制することで、CまたはDのひびわれが生じる前の 断面は一体的になるものと考えられる。

次に、a / Dが1.0,および2.0における V_{pr} 実験値と計算値の比のばらつき原因 をみるために、図9(a),(b)は、それぞれのa / Dについて p_w を横軸とし、実験 値と計算値の比を縦軸としたものである。

図(a)のa/Dが1.0では、帯筋の少ない場合にばらつきは大きくなっている。た だし、中段筋、帯筋、軸力ともない場合(×)は斜張力ひびわれがみられなかったのでプ ロットされていない。また、帯筋量の全体にわたってばらつきが大きいの は軸力がない場合(▽)であり、軸力のある場合(□)はばらつきが少なく、実験値と計 算値もよく対応している。軸力のある場合にばらつきが少ないのは、軸力が図8(a)A,

Bのひびわれの発生や伸展を抑制するるために、断面が一体的であるという条件が、ほぼ 満足されるからであると考えられる。

図9(a) V_{DT}実験値/計算値とpwの関係(a/D=1.0)

ところが、図9(b)のa/Dが2.0の1.0より大きい場合、軸力があっても(□) 、帯筋が少ないと、実験値は計算値を大幅に下回っている。しかし、帯筋を増せば計算値 は実験値に近づいている。a/Dが大きい場合には、軸力が存在しても図8(b)Aのひ びわれができやすく、帯筋が少ないと続いて同図Bのひびわれを伴うせん断引張り破壊が 生じやすい。しかし、帯筋が多く存在すれば、せん断力の一部が帯筋によって伝達され、 Aのひびわれの伸展は抑制され、主応力度式の前提条件に近づくので、実験値が計算値に 近づくと考えられる。

図9(b) V_{DT}実験値/計算値とpwの関係(a/D=2.0)

図9(a)において大きなばらつきを示した、軸力,帯筋とも存在せず、a/Dが1. 0の場合について、中段筋比pmの影響をみるために図10を示した。図はpmの全軸筋 比ps(=2p++pm)に対する比率を横軸としている。そして、Vpr実験値と計算値 の比を縦軸としている。また、p+の違いで実験値と計算値の比の違いがみられたので、 p+が1.25%以下とそうでない場合で記号を変えてみた。そして、それぞれの代表例 として同一p+のものを直線で結んでいる。ところで、中段筋がない普通配筋の場合、引 張り鉄筋が少ない場合は曲げ破壊、多い場合は付着破壊を伴うせん断圧壊となり、斜張力 ひびわれや斜張力破壊が認められなかったので、プロットしていない。中段筋の割合を因 子とみた場合、全範囲で、多くの実験値は計算値を上回っている。下回っている中にはp m/psが0.5で、実験値が計算値より2割程度低い場合があるが、多くは5%程度で ある。したがって、主応力度式はa/Dが1.0に対しては、ほぼ実験値を安全側に評価 しているといえる

図10 V_{DT}実験値/計算値とpm/pgの関係 (a/D=1.0, pw=0, σ₀=0)

また、p+の小さい場合(□)、中段筋の割合が増すとVpr実験値と計算値の比は最初 引張り鉄筋が降伏して右上がりとなり(ただし、代表例にはない。)、さらに中段筋の割 合が増すと引張り鉄筋の降伏前に右下がりとなっている。p+の大きいもの(◇)は、中 段筋が少なくてもいきなり引張り鉄筋降伏前の斜張力破壊となり、Vpr実験値と計算値の 比はほぼ1.0であり、さらに中段筋の割合が増すと右上がりとなっている。以上のうち で右下がりの部分については、前述のように中段筋が増すほど、図8(a)A, Bのひび われが抑制されることで、主応力度式の前提条件に近づき、実験値と計算値の比が1.0 がに近づくものと考えられる。以下ではそれぞれんの右上り部分について、p+の大小に わけて考える。

◎ p t が小さく中段筋がない場合には引張り鉄筋が降伏する場合

中段筋がないと、まず、図8(a) Aの曲げせん断ひびわれや材軸方向にほぼ45°方 向のせん断ひびわれが生じる。そして引張り鉄筋降伏後、ほぼ同時に図8(a) Bの付着 ひびわれが生じる。ただし、斜張力破壊とならないので、図10(a),(b)にはプロ ットされていない。ここで、中段筋が少しでもあると、引張り鉄筋降伏後も耐力が上昇中 し、上昇中に図8(a) Cの斜張力ひびわれが生じてくる。これは中段筋の存在でA, B のひびわれが抑制され、せん断力の一部が骨材のかみあわせなどでAのひびわれを横切っ て伝達されるためと考えられる。すなわち、引張り鉄筋降伏後の斜張力ひびわれまたは斜 張力破壊である。この耐力は中段筋の割合が増すほど高くなり、最初の右上がりを示す。 これは、a/Dが1.0より大きい場合に述べたせん断伝達機構と同様のものと考えられ る。ところが、さらに中段筋の割合が増すと引張り鉄筋が降伏する直前で斜張力ひびわれ が生じる。これは前述したような右下がりの始まりとなる。

◎ p t が大きく中段筋がなくても降伏しない場合

中段筋のない場合は、図8(a) Aの曲げせん断ひびわれや材軸方向にほぼ45°方向 のせん断ひびわれに続いて図8(a) Bの引張り鉄筋に沿った付着ひびわれが生じた後、 せん断圧壊している。この場合も斜張力破壊でないので図10(a),(b)にはプロッ トされていない。ここで、中段筋が少しでも存在すると、いきなり、図8(a) Cのよう な斜張力破壊となっている。図8(a) A, Bのひびわれ伸展が中段筋により抑制されて、 計算の前提条件に近くなるために、実験値と計算値がほぼ一致するものと考えられる。

次に、これらA, Bのひびわれ伸展が抑制された段階で、さらに中段筋の割合が増すと、 実験値と計算値の比は直線的に高くなる傾向を示している。ただし、図8(a)Cの斜張 力ひびわれが生じるとほぼ同時に中段筋に沿うひびわれがみられるが、この中段筋に沿う ひびわれが発見される前に付着破壊が先行していると考えれば、これが実験値と計算値の 比を高くすることに関係するものと思われる。

以上のようなa/Dが1.0で帯筋、軸力とも存在しない特殊な場合は、斜張力ひびわれ時に、引張り鉄筋または中段筋の付着破壊を考慮した破壊機構を考えれば、計算値は実験値に近づくものと思われる。しかし、複雑な破壊機構を考えなくても付着破壊を考慮し

ない主応力度式による評価は前述のようにほぼ安全側であるといえる。

一方、a/Dが1.0を越える場合、帯筋や中段筋の少ない場合には真の斜張力破壊よ りせん断引張り破壊の方が卓越して図7や図9(b)に示したように主応力度式の適用は 危険側となる。しかし、帯筋や中段筋を多く存在すれば、せん断引張り破壊形式から斜張 力破壊形式へ移行し、主応力度式の前提条件に近づき、主応力度式適用の危険性は少なく なる。 5. 結論

1. 軸筋の降伏を考慮したせん断圧縮破壊時のせん断力評価法

高軸力,低帯筋比,高帯筋比の場合を除けば、有効係数に中間値を用いても実験値をよ く評価している。ただし、高軸力で斜張力破壊と考えられるものや,高帯筋比で拘束効果 が考えられる場合は最大耐力を安全側ではあるが、過小評価している。

2. 軸筋の降伏を考慮しないせん断圧縮破壊時のせん断力評価法

有効係数に中間値を用いても、全体的に計算値は実験値を安全側に評価している。特に 軸力のある場合、中段筋量によるばらつきは少ない。軸力のない場合、中段筋量によるば らつきが大きいが、計算値は実験値のほぼ下限を表す。a/Dが1.0で、中段筋,軸力 がなく帯筋の少ない特殊な場合、有効係数の定数項を1.0と置いても安全側となる。た だし、帯筋の多い準実大でも、約1割ほど実験値が計算値を下回ることは問題である。ま た、a/Dが1.0を越える場合で、実験値が計算値を下回るものがある。この中、帯筋 の多い場合は曲げ圧壊であるが、帯筋,軸力のない特殊な場合は斜張力破壊やせん断引張 り破壊となり、注意を要する。

3. 斜張力ひびわれ時および斜張力破壊時せん断力評価法

a/Dなどの違いを無視すれば全体的に実験値と計算値は対応している。しかし、a/ Dやσ。などにより、計算値の0.8~1.2倍の範囲をはずれる実験値もある。a/D が1.0では、軸力,帯筋がある場合に実験値と計算値はよく対応し、pmによる実験値 と計算値の比のばらつきも小さい。帯筋が少なく軸力もない特殊な場合はpmによる実験 値と計算値の比のばらつきは大きいが、計算値は実験値の下限値を与えている。a/Dが 1.0より大きくなるほど、軸力や中段筋の有無にかかわらず、実験値は計算値を下回る が、帯筋や中段筋を増せば、実験値は計算値に近づく。

参考文献

1) 瀬尾正幸他5名:高強度材料を用いたRC柱のせん断性状に関する研究(その1~ その2),日本建築学会大会学術講演梗概集,1992.8,pp.627~630

2) 蓼原真一,嶋津孝之:鉄筋コンクリート短柱のせん断耐力に及ぼす中段筋の影響, コンクリート工学年次論文報告集,第13巻第2号,1991.6,pp.357-362 第7章 二重傾斜帯筋柱のせん断耐力評価式

1. 序

鉄筋コンクリート柱でせん断補強筋をダブルに傾斜した場合、在来型のフープ柱より耐 カと靭性が著しく向上することが、第8章の文献1)~4)で報告されている。本章では、 このダブル傾斜せん断補強筋柱のせん断耐力について、下界の解を求めようとするもので ある。在来型フープ柱では、アーチ機構とはり機構(トラス機構)を組み合わせた下界の モデルがいくつか提案されている。称原¹¹および南²¹のモデルの場合、はり機構のコンク リート圧縮束の角度は部材軸に対して45°と固定されている。また、アーチとはりの各 機構は断面内で便宜的に二つに分離されている。また、文献3)で使用されているモデル では、はり機構のコンクリート圧縮束角度がせん断補強筋量により変化する。また、アー チとはり各機構は一つの断面内に存在し、各機構のコンクリート束応力が限界圧縮応力を 越えないように組合わされる。ただし、簡単化のために各機構の圧縮束角度の違いは無視 されている。

本章では、アーチとはり各機構の圧縮束応力の重複を防ぐとともに、二つの傾斜を持つ せん断補強筋の取扱いを容易にするために、各機構の圧縮束角度を等しくした解析モデル を提案する。このモデルでは、アーチとはり各機構の圧縮束角度はせん断補強筋量によっ て変化する。ただし、アーチ機構は、せん断スパン比が比較的小さい場合のみ生じる。ま た、曲げ主筋は無限に強く、決して降伏しないものと仮定するので、軸力や曲げ主筋の効 果は考慮していない。曲げ主筋における付着破壊およびだぼ作用、骨材のかみ合せによる せん断伝達についても考慮していない。

以下では、上記の解析モデルを紹介し、本評価法を第8章のダブルスパイラルフープ柱 の実験結果に適用してみる。

2 解析的アプローチ

2.1 下界モデル

解析の対象は、図1(a) に示すように、逆対称曲げモーメントを受ける矩形断面柱であ り、この柱は材軸とα, -αの角度をなすせん断補強筋を有する。それぞれ、α, -α補 強筋と呼ぶことにする。下界モデルは、図1(c)のように、荷重端を直接結びせん断力を 伝達するアーチ機構とせん断補強筋を介してせん断力を伝達するはり機構からなる。そし て、両機構のコンクリート圧縮束の材軸とのなす角度は等しいと仮定する。せん断補強筋 量が多いか、またはせん断スパン比が比較的大きい場合には、図1(b)のように、はり機

(c) アーチ機構が混在する場合

構のみとなる。

2.2 下界モデルの解析仮定

下界モデルの解析にあたり、以下のことを仮定する。

- i) アーチ機構のアーチ斜材とはり機構のコンクリート圧縮束の材軸とのなす角度は等 しく、θとする。
- ii) はり機構のコンクリート圧縮束の圧縮主応力をσ。(圧縮を正)、アーチ機構のア ーチ斜材の圧縮主応力をσ。(圧縮を正)とする。
- iii) コンクリートの一軸の圧縮強度を σ B とし、引張り強度を無視する。
- iv) 解析モデルでは一様なコンクリート圧縮応力場を仮定するが、破壊面として有効なのは一部に過ぎないので、一軸の圧縮強度に有効強度係数レを導入する。レについては、Nielsen 4)提案による次式を用いる。

 $\nu = 0.7 - \sigma_{\rm B} / 2000 (\sigma_{\rm B} \, \text{の単位はkgf/cm}^2)$

- v) 軸筋は無限に強く、決して降伏しないものとする。したがって、軸力や曲げ主筋の 効果は考慮しない。
- vi) せん断補強筋は一様に分布しているものとする。せん断補強筋応力は引張りを正とし、圧縮応力を無視する。せん断補強筋の降伏点をσwyとする。引張りおよび圧縮鉄筋間距離をgとする。
- vii) 軸筋における付着破壊およびダボ作用,骨材のかみ合せによるせん断伝達は考慮し ないものとする。
- 2.3 基本式
- 2.3.a 各機構の負担せん断力

アーチ機構が存在する場合(図1(c))の各機構の負担せん断力を示す。

i) アーチ機構の負担せん断力V。

アーチ斜材応力を σ 。(ただし、 σ 。= $\nu \sigma$ ^B)、アーチ斜材と部材軸とのなす角度 を θ とすれば、V。は次のようになる。

 $V_a = \sigma_a b (D - 1 \tan \theta) \cos \theta \sin \theta$

ここで、 $X_a = (D-1 \tan \theta) \cos \theta \sin \theta$ と置けば、図1(c) に示すように、 X_a は等

分布荷重 σ 。の分布範囲を示す。 $\lambda = 1 / D$ と置き、次のような関数 f (ϕ)を導入すれば、X。は以下のようになる。

(1)

 $f(\phi) = (1 + \cot\phi \tan\theta)\cos^2\theta \tan\theta$

 $X_{a} = D (1 - \lambda \tan \theta) \cos^{2} \theta \tan \theta = D f (-\theta_{2})$

ただし、 $\theta_2 = \cot^{-1}\lambda$ である。ここで、 $v_a = V_a / (\nu \sigma_B bg), a = \sigma_a / (\nu \sigma_B)$ = 1, $x_a = X_a / g, g_1 = g / D$ と置けば、

$$\mathbf{v}_{\mathbf{a}} = \mathbf{a} \mathbf{x}_{\mathbf{a}} \tag{2}$$

 $x_{a} = f (-\theta_{2})/g_{1}$ (3)

アーチ機構が存在する条件は、 $x_* \ge 0$ より、 $1 - \lambda$ tan $\theta \ge 0$ 、すなわち、 cot $\theta \ge \lambda$ = cot θ_2 ($\theta \le \theta_2$)である。

ii) α, -α補強筋が重複する部分のはり機構の負担せん断力 V_{b2}

ここでは、アーチ機構が存在する場合を考える(図1(c))。V_{b2}に関するコンクリート 圧縮束応力をσ_{b2}とし、V_{b2}に関わる圧縮束の主筋位置での範囲を考えれば、

 $V_{b2} = \sigma_{b2}b (1 - 2 \cdot (D - g)/2 \cdot \cot\theta - g \cot\alpha) \sin\theta \sin\theta$

ここで、 α , $-\alpha$ 補強筋の応力を σ_{w1} , σ_{w2} (ただし、 $\sigma_{w2} \leq \sigma_{w1}$)、各補強筋の平行間 隔(図1(a)参照)をc、各補強筋の各一組の断面積をawとすれば、コンクリート圧縮 束と補強筋は、区間 c/sin a において部材軸と直交する方向に以下の釣合い式を満足しな ければならない。

 $\sigma_{b_2}b(c/\sin\alpha)\sin^2 \theta = a_w(\sigma_{w1} + \sigma_{w2})\sin\alpha$ また、関数の式(1)を用いて、 V_{b_2} は以下のように表わすことができる。

 $V_{b2} = \sigma_{b2} b ((g - g \cot \alpha \tan \theta) - (D - 1 \tan \theta)) \cos^2 \theta \tan \theta$

 $=\sigma_{b2}b(gf(-\alpha)-X_a)$

ここで、 $X_{b2} = g f(-\alpha) - X_{a}$ と置けば、図1(c)に示すように、 X_{b2} は等分布荷重 σ_{b2} の分布範囲を示す。

ここで、 $v_{b2} = V_{b2}/(\nu \sigma_B bg), b_2 = \sigma_{b2}/(\nu \sigma_B), w_1 = \sigma_{w1}/\sigma_{wy}, w_2 = \sigma_{w2}$ / $\sigma_{wy}, \psi_w = a_w \sigma_{wy}/(\nu \sigma_B bc), x_{b2} = X_{b2}/g と置けば、$

 $v_{b2} = b_{2} x_{b2}$ (4) $b_{2} = (w_{1} + w_{2}) \psi_{w} \sin^{2} \alpha / \sin^{2} \theta$ (5) $x_{b2} = f(-\alpha) - x_{a}$ (6) ただし、アーチ機構とともに、Vb2が存在する条件は、Xb2≧Oより、

 $(1 - \cot \alpha \ \tan \theta) - (1 - \lambda \ \tan \theta)/g_1 \ge 0$

 $(\lambda - g_1 \quad \cot \alpha) \tan \theta \ge 1 - g_1$

ここで、1-g1>0より、Vb2の存在条件は以下のようになる。

 $\lambda - g_1 \quad \cot \alpha > 0 \quad \mathcal{C} \quad \tan \theta \ge (1 - g_1) / (\lambda - g_1 \quad \cot \alpha) \tag{7}$

しかし、式(7)が満足されない場合、または、 $\lambda - g_1$ cot $\alpha \leq 0$ の場合、 $x_{b_2} < 0$ となり、 v_{b_2} は存在しない。

iii) α補強筋のみが負担するはり機構の負担せん断力V_{b1}

図1(c)において、V_{b1}に関するコンクリート圧縮束応力をσ_{b1}とし、圧縮束の主筋位 置での範囲を考えると、

 $V_{b1} = \sigma_{b1}b (2g \cot \alpha) \sin \theta \sin \theta$

ここで、コンクリート圧縮束と補強筋は、区間 c /sinα において部材軸と直交する方向に 以下の釣合い式を満足しなければならない。

 $\sigma_{b1}b (c/\sin\alpha)\sin^2 \theta = a_w \sigma_{w1} \sin\alpha$

また、関数の式(1)を用いて、V_{b1}は以下のように表わすことができる。

 $V_{b1} = \sigma_{b1} b \left((g + g \cot \alpha \tan \theta) - (g - g \cot \alpha \tan \theta) \right) \cos^2 \theta \tan \theta$

 $=\sigma_{b1}b (gf(\alpha) - (X_{b2}+X_a))$

ここで、 $X_{b1} = g f(\alpha) - (X_{b2} + X_{a})$ と置けば、図 1(c)に示すように、 X_{b1} は等 分布荷重 σ_{b1} の分布範囲を示す。

ここで、 $V_{b1} = V_{b1} / (\nu \sigma_B bg), b_1 = \sigma_{b1} / (\nu \sigma_B), X_{b1} = X_{b1} / g と 置けば、$

 $V_{b1} = b_1 X_{b1}$

 $b_1 = w_1 \psi_w \sin^2 \alpha / \sin^2 \theta \tag{9}$

(8)

 $x_{b1} = f(\alpha) - (x_{b2} + x_a) = f(\alpha) - f(-\alpha)$ (10)

ただし、 V b 2 とともに V b 1 が存在する条件は、 X b 1 ≧ 0 より、

 $\cot \alpha \ \tan \theta \ \cos^2 \theta \ \tan \theta \ge 0$

 $\tan\theta > 0$ L b, $\cot \alpha \ge 0$, $d \ge 0^{\circ}$, $\alpha \le 90^{\circ}$, $c = 30^{\circ}$, c

また、 v_{b_2} は存在しないが、アーチ機構とともに v_{b_1} が存在する条件は、 $x_{b_1} \ge 0$ であるから、式(10)において、 $x_{b_2} = 0$ とすれば、つぎのようになる。

 $\mathbf{X}_{b1} = \mathbf{f} (\alpha) - \mathbf{X}_{a} \ge 0$

 $g_1 (1 + \cot \alpha \tan \theta) - (1 - \lambda \tan \theta) \ge 0$

 $\tan\theta \ge (1 - g_1) / (\lambda + g_1 \cot \alpha)$

(11)

しかし、式(11)が満足されない場合、 $x_{b1} < 0 \ge c_{0}$ 、アーチ機構のみとなる。 ところで、式(5),(9)から、 $0 \le b_1 \le b_2 \le 1$ であり、また、 $0 \le \sigma_{w_2} \le \sigma_{w_1} \le \sigma_{w_2}$ から、 $0 \le w_2 \le w_1 \le 1$ である。

iv)全せん断力V

 $V = V_a + V_{b2} + V_{b1}$

 $v = V / (\nu \sigma_B b g) として、無次元化すれば、$

 $v = v_{a} + v_{b2} + v_{b1} = a x_{a} + b_{2} x_{b2} + b_{1} x_{b1}$

(12)

2.3.b X_a , $X_a + X_{b2}$, $X_a + X_{b2} + X_{b1}$ が極大となるときの θ

X_a, X_a + X_{b2}, X_a + X_{b2}+ X_{b1}が極大となるときの θ は、後で示すように、せん 断力算定に必要な各応力を求める際の応力状態の境界に関係する。ここで、図1(c) に示 すように、点Oを原点、部材軸方向をX軸、部材軸と直交する方向をY軸とするX, Y座 標を考える。コンクリート圧縮束応力が σ_a , σ_{b2} , σ_{b1} である各機構の部材端に働く力 は、X, Y方向成分とも σ_a , σ_{b2} , σ_{b1} と同じ等分布荷重に置き換えられる。2.3. aで示したように、部材端に働く力のY方向成分の分布範囲はX_a, X_{b2}, X_{b1}であるが、 X方向成分の分布範囲Y_a, Y_{b2}, Y_{b1}は、X_a cot θ , X_{b2} cot θ , X_{b1} cot θ で表わ される。ここで、座標(X_a, Y_a), (X_a + X_{b2}, Y_a + Y_{b2}), (X_a + X_{b2}+ X_{b1}, Y_a + Y_{b2}+ Y_{b1})の θ に関する軌跡を考えれば、X_a, X_a + X_{b2}, X_a + X_{b2}+ X_{b1} の θ に関する極値とそのときの θ が容易に得られる。

i) 座標(Xa, Ya)について

式(3)より、X_a = Df($-\theta_2$)、また、Y_a = X_a cot θ である。両式から θ を 消去すれば、この座標の軌跡は、座標(-1/2, D/2)を中心とし, R_a = $1/2\sqrt{(1^2 + D^2)}$ を半径とする円となる。したがって、点A_o(R_a - 1/2, D/2)に おいて、X_aは θ に関して極大となる。このときの θ を θ 。とすれば、

 $\tan \theta_{o} = (R_{a} - 1/2)/(D/2) = \sqrt{(\lambda^{2} + 1) - \lambda}$ (13) また、アーチ機構はせん断補強筋が存在しない場合のせん断抵抗機構であるから、せん断 補強筋が存在する場合の θ としては、 $\theta \ge \theta$ 。を考えればよいことになる。ただし、曲げ 主筋の降伏や軸力を考慮する場合は、せん断補強筋の有無に関係なく、 $\theta < \theta$ 。の場合も 考える必要が出てくる。ところで、2.3. a節i)から、 $\cot \theta_2 = \lambda$ であるから、以下 に示すように、 $\theta_0 = \theta_2 / 2$ となる。

 $\tan\theta_{0} = \sqrt{(\lambda^{2} + 1)} - \lambda = \tan(\theta_{2} / 2)$ $\pm c, \lambda \ge 0 \pm 0, \theta_{2} \le 90^{\circ}, \theta_{0} \le 45^{\circ} \pm c_{0}^{\circ}$

ii) 座標 (X_a + X_{b2}, Y_a + Y_{b2}) について

式(6)より、X_a + X_{b2}=gf(- α)、また、Y_a + Y_{b2}=(X_a + X_{b2})cot θ で ある。両式から θ を消去すれば、この座標の軌跡は、座標(-g cot α /2,g/2)を 中心とし,R_{b2}=g/2√(cot² α + 1)を半径とする円となる。したがって、点A₂ (R_{b2}-g cot α /2,g/2)において、X_a + X_{b2}は θ に関して極大となる。このと きの θ を θ ₁とすれば、以下に示すように、 θ ₁ = α /2となる。

 $\tan\theta_1 = (\operatorname{R}_{b2} - \operatorname{g} \operatorname{cot}\alpha/2)/(\operatorname{g}/2) = \sqrt{(\operatorname{cot}^2 \alpha + 1) - \operatorname{cot}\alpha}$

 $= \tan(\alpha / 2)$

ところで、X_a + X_{b2}=0となるときの $\theta \in \theta_3$ とすれば、以下に示すように、 $\theta_3 = \alpha$ (=2 θ_1)となるので、X_a + X_{b2}は、 $\theta \leq \theta_3$ で存在する。

 $\tan\theta_3 = (g/2)/(g \cot\alpha/2) = \tan\alpha = \tan(2\theta_1)$

iii) 座標 $(X_a + X_{b2} + X_{b1}, Y_a + Y_{b2} + Y_{b1})$ について

式(10)より、X_a + X_{b2}+ X_{b1}=gf(α)、また、Y_a + Y_{b2}+ Y_{b1}=(X_a + X_{b2}+ X_{b1})cot θ である。両式から θ を消去すれば、この座標の軌跡は、座標(g cot α / 2, g/2)を中心とし、R_{b1}(=R_{b2})を半径とする円となる。したがって、点A₁(R_{b1}+ g cot α / 2, g/2)において、X_a + X_{b2}+ X_{b1}は θ に関して極大となる。 このときの θ を θ _m とすれば、以下に示すように、 θ _m = 90° - α / 2となる。

 $\tan\theta_{m} = (R_{b1} + g \cot\alpha/2) / (g/2) = \sqrt{(\cot^{2} \alpha + 1) + \cot\alpha}$

 $= \cot(\alpha/2) = \tan(90^{\circ} - \alpha/2)$

ところで、 $\alpha \leq 90^{\circ}$ より、常に、 $\theta_{m} \geq 45^{\circ}$ となる。また、i)で示したように、 $\theta_{o} \leq 45^{\circ}$ であるから、常に、 $\theta_{o} \leq \theta_{m}$ である。したがって、はり機構とアーチ機構が存在する場合、 $\theta_{o} \leq \theta \leq \theta_{m}$ で考えればよい。

図2は、 $\alpha \ge \theta_1$, θ_3 , θ_m の関 係を示したものである。図中のI₁~ I₄, $\psi_1 \sim \psi_3$ については、次節で 示す。常に、 $\theta_1 \le \theta_m$ であり、また、 θ は、 $\theta_0 \le \theta \le \theta_m$ の範囲において のみ動きうる。また、アーチ機構は、 $\theta_0 \le \theta \le \theta_2$ (= 2 θ_0)において 存在する。各機構の応力状態は、与え られた $\alpha \ge \psi_*$ によって決まる θ が、 図中のどの位置に来るかにより決まる。

まず、2.3.cで、はり機構のみ の応力状態を示し、2.3.dで、ア ーチ機構を含む場合を示す。

2.3.c トラス機構のみの場合の各応力

 $\theta > \theta_2$ (cot $\theta < \lambda$)の場合には、アーチ機構は存在せず、トラス機構のみとなる。式 (12)において、 $v_a = 0$ と置けば、せん断力 v はつぎのようになる。

 $v = v_{b2} + v_{b1} = b_2 x_{b2} + b_1 x_{b1}$

ただし、 $x_{b2} = f(-\alpha)$ (式(6)で $x_{a} = 0$ としたもの) $x_{b1} = f(\alpha) - f(-\alpha)$ (式(10))

ここで、 α , ψ_{w} , w_{1} , w_{2} を与えると、 b_{2} , b_{1} , x_{b2} , x_{b1} は θ の関数となる。 $v \sigma \theta$ による偏微分を v^{-} をとすれば、 $v' = -b_{2}$ となる。 $b_{2} > 0$ より、v' < 0、 すなわち、 $v \iota \theta$ が小さいほど大きくなる。しかし、 θ は次式を満足する必要がある。

 $b_1 \leq b_2 = (w_1 + w_2) \psi_w \sin^2 \alpha / \sin^2 \theta \leq 1$

したがって、下式を満足する
のがvを最大にする。

 $b_2 = (w_1 + w_2) \psi_{\pi} \sin^2 \alpha / \sin^2 \theta = 1$ (14)

つぎに、せん断補強筋の応力w1,w2を以下のような応力状態に分類して、b1とv を求める。

i) $W_1 = W_2 = 1$ の場合	
式(14), (9)より	
$b_2 = 2 \psi_w \sin^2 \alpha / \sin^2 \theta = 1$	(15)
$b_1 = \psi_w \sin^2 \alpha / \sin^2 \theta = 1 / 2$	(16)
したがって、θはψ、に応じて次式のように変化しなければならない。	
$\sin^2 \theta = 2 \psi_w \sin^2 \alpha$	(17)
以上の応力状態を I1と呼べば、 v はつぎのようになる。	
$v = f(-\alpha) + (1/2)(f(\alpha) - f(-\alpha)) = (f(\alpha) + f(-\alpha))$)/2
$= \cos\theta \sin\theta = \sqrt{\left(\left(1 - \sin^2 \theta \right) \sin^2 \theta \right)}$	
$= \sqrt{\left(\left(1 - 2\psi_{w} \sin^{2}\alpha \right) 2\psi_{w} \sin^{2}\alpha \right)}$	(18)
式(18)の適用範囲は ii)で述べる。ここで、 $\psi_{w1} = 2 \psi_{w} \sin^{2} \alpha$ と置けに	ぼ、以下の
ように、vはψ*1に関して円の式となる。	
$\mathbf{v} = \sqrt{\left(\left(1 - \psi_{\mathbf{w}1}\right) \ \psi_{\mathbf{w}1}\right)}$	(19)
ii) $w_1 = 1$, $0 \le w_2 < 1$ の場合	
式(14), (9)より	
$b_2 = (1 + w_2) \psi_w \sin^2 \alpha / \sin^2 \theta = 1$	(20)
$b_1 = \psi_w \sin^2 \alpha / \sin^2 \theta$	(21)
式(20)より、	
$w_2 = \sin^2 \theta / (\psi_w \sin^2 \alpha) - 1$	
このとき、vはつぎのようになる。	
$v = f(-\alpha) + \psi_w \sin^2 \alpha / \sin^2 \theta (f(\alpha) - f(-\alpha))$	
$= (1 - \cot \alpha \ \tan \theta) \cos^2 \theta \ \tan \theta$	
$+\psi_{\mathbf{x}} \sin^2 \alpha / \sin^2 \theta$ (2 cot α tan θ cos ² θ tan θ)	
$= (\sin 2 \theta - (1 - \cos 2 \theta) \cot \alpha)/2 + \psi_{\pi} \sin 2 \alpha$	
ここで、 $v \sigma \theta$ に関する極値を考える。 $v \epsilon \theta$ について偏微分し、 $v' = 0$ と置	見くと、
$v' = \cos 2 \theta - \sin 2 \theta \cot \alpha = 0$	
したがって、	
$\theta = \alpha / 2 = \theta_1$	(22)
すなわち vはか」に関係なく $\theta = \theta$ 、で極大となる θ 、は 2 3 b))) で示

したように、 $x_{b2} = f(-\alpha)$ が極大となるときの θ である。また、 θ_1 は応力状態 I_1	
で v b 2 が極大となるときの θ でもある。そこで、式(21)の θ を θ 1 に置き換えれば、	
$b_1 = \psi_w \sin^2 \alpha / \sin^2 \theta_1 $ (23))
ψwを大きくすれば、b1が応力状態 I1の1/2より大になるとともに、vも大になる。	S
ここで、b ₁ = 1 / 2となるときの ψ_w を ψ_1 とすれば、	
$\psi_1 = \sin^2 \theta_1 / (2 \sin^2 \alpha) \tag{24}$)
これは、式(18)の適用範囲(ψ _w ≦ψ ₁)を与える。	
また、b1の上限は1であるから、このときのψ*をψ2とすれば、	
$\psi_2 = \sin^2 \theta_1 / \sin^2 \alpha = 2 \psi_1$ (25))
また、式(20),(21)より、b ₂ = (1+w ₂)b ₁ = 1であるから、	
$w_2 = 1 / b_1 - 1$ (26))
すなわち、ψwに応じて、b1が1/2から1に変化すると、w2は1から0に変化する。	D
以上の応力状態をI2と呼べば、vは以下のようにψ、に関する直線式になる。	
$\mathbf{v} = (\sin 2\theta_1 - (1 - \cos 2\theta_1) \cot \alpha)/2 + \psi_{\mathbf{w}} \sin 2\alpha$	
$= (\sin \alpha - (1 - \cos \alpha) \cot \alpha)/2 + \psi_{\pi} \sin 2\alpha$	
$= (1/2) \tan (\alpha/2) + \psi_{w} \sin 2\alpha \qquad (27)$)
式 (27) の適用範囲は、 $\psi_1 < \psi_w \leq \psi_2$ である。	
iii) $W_1 = 1$, $W_2 = 0$ の場合	
式 (14), (9) より	
$b_2 = b_1 = \psi_w \sin^2 \alpha / \sin^2 \theta = 1 \tag{28}$)
したがって、θはψwに応じて次式のように変化する。	
$\sin^2 \theta = \psi_{w} \sin^2 \alpha \tag{29}$)
以上の応力状態をⅠ₃と呼べば、∨はつぎのようになる。	
$v = f(-\alpha) + (f(\alpha) - f(-\alpha)) = f(\alpha)$	
$= (1 + \cot \alpha \ \tan \theta) \ \cos^2 \theta \ \tan \theta$	
式(29)を用いて、θを消去すれば、以下のようになる。	
$v = \cos\theta \sin\theta + \cot\alpha \sin^2\theta$	
$= \sqrt{\left(\left(1 - \psi_{w} \sin^{2} \alpha\right) \psi_{w} \sin^{2} \alpha\right) + \psi_{w} \sin^{2} \alpha \cot \alpha} $ (30))
ここで、2.3.bのiii)で示したように、f(α)は $\theta = \theta_m$ (=90°- α /2)で	

極大となる。このときのψ * をψ3とすると、

 $\psi_3 = \sin^2 \theta_m / \sin^2 \alpha = \cos^2 (\alpha / 2) / \sin^2 \alpha \qquad (31)$

式(30)の適用範囲は、 $\psi_2 < \psi_w \leq \psi_3$ である。ここで、 $\psi_{w3} = \psi_w$ sin² α と置く と、以下のように、vは ψ_{w3} に関して円と直線の式を組み合わせた式になる。

(32)

 $\mathbf{v} = \sqrt{\left(\left(1 - \psi_{w3}\right) \ \psi_{w3}\right) + \psi_{w3} \ \text{cot} \alpha}$

iv) w₁ < 1, w₂ = 0 の場合

式(30)のvは、 $\psi_{w} = \psi_{3}$ において極大となるが、 $\psi_{w} > \psi_{3}$ においても、 $\theta = \theta_{m}$, $w_{1} < 1$ とすれば、この極大値を確保できる。このときの応力状態を I₄ と呼べば、 各応力とvは以下のようになる。

 $b_2 = b_1 = w_1 \psi_w \sin^2 \alpha / \sin^2 \theta_m = 1$ (33)

 $w_1 = \sin^2 \theta_m / (\psi_w \sin^2 \alpha)$ (34)

 $v = (1/2) \cot(\alpha/2)$ (35)

 ところで、式(35)は、傾斜型フープ($\alpha < 90^\circ$)を用いれば、vの最大値が在来型

フープ ($\alpha = 90^{\circ}$)の0.5を越えうることを示している。

以上のように、 $\alpha \ge \psi_{*}$ が与えられると、まず、 α から応力状態 $I_{1} \sim I_{4}$ の境界に関 する θ_{1} , $\theta_{m} \ge \psi_{1} \sim \psi_{3}$ が得られ、そして、 ψ_{*} から対応する応力が得られる。

2.3.d アーチ機構とトラス機構が存在する場合の各応力

2.3. cにおいて、 $\alpha \ge \psi_{w}$ に対する $\theta \ge w_{1}$, w_{2} , b_{2} , b_{1} が得られるが、 $\theta \le \theta_{2}$ (cot $\theta \ge \lambda$) であれば、はり機構 v_{b2} の一部がアーチ機構 v_{a} になる。さらに、 $\theta \ge \theta_{0}$ であれば、得られた b_{2} , b_{1} を、式(12)に代入すれば、vが得られる。

しかし、 $\theta < \theta_0$ であれば、2.3.bのi)で述べたように $\theta \ge \theta_0$ に置き換えた b_2 , b₁, x_{b2}, x_{b1}からvを求める。ただし、厳密には以下のように、vは、 $\theta = \theta_0$ で極 大とならない。式(5),(9),(6),(10)において、 α , $\psi_{\mathbf{x}}$, w₁, w₂ を与える と、b₂, b₁, x_{b2}, x_{b1}, およびvは θ の関数となる。 θ によるvの偏微分をv⁻を とすれば、 $\theta = \theta_0$ において、v_a'=0, v_{b2}'=b₂ (1/g₁-1)>0, v_{b1}' = 0であるから、v'>0となる。したがって、 $\theta = \theta_0$ でvは極大とならず、vが極値 をもつときの θ は θ_0 を上回る。しかし、極値をもつ条件、v'=0は tan θ に関して4 次方程式となり、 v が極値をもつときの θ を簡単に求められない。そこで、 θ を θ 。に置き換えれば、 vを控え目に評価することになるが、設計にとっては安全側となる。したがって、 $\theta < \theta$ 。の場合の θ を θ 。に置き換えれば、 b_2 , b_1 は、つぎのようになり、置き換え前の値より小さくなる。

 $b_2 = (w_1 + w_2) \psi_w \sin^2 \alpha / \sin^2 \theta_0$ (36)

 $b_1 = w_1 \psi_w \sin^2 \alpha / \sin^2 \theta_0$

以下では、 $\theta < \theta$ 。で、 $\theta \in \theta$ 。に置き換えたときの b_2 , b_1 と、 v_{b2} , v_{b1} の存在条件を、 θ 。が属する応力状態別に示す。

i) $\theta_{0} < \theta_{1}$ の場合(応力状態 I₁, $\lambda > \cot \alpha$)

 $\theta < \theta_0 < \theta_1$ より、 $\theta \delta I_1$ ($w_1 = w_2 = 1$)に属するので、式(36),(37) から、

 $b_2 = 2 \psi_w \sin^2 \alpha / \sin^2 \theta_0$

 $b_1 = \psi_w \sin^2 \alpha / \sin^2 \theta_0$

ここで、 v_{b2} の存在条件を求める。 $g_1 < 1$, $\lambda > \cot \alpha > g_1$ cot α より、 $\lambda - g_1$ cot $\alpha > 0$ であるから、 v_{b2} の存在条件式(7)において、 $\theta \in \theta_0$ に置き換えれば、

 $\tan\theta_{0} \ge (1 - g_{1}) / (\lambda - g_{1} \cot \alpha)$

ここで、式(13)の tan 0。を代入して、整理すれば、

 $(2g_1 - 1)\lambda^2 - 2(g_1^2 \cot \alpha)\lambda + g_1^2 \cot^2 \alpha - (1 - g_1)^2 \ge 0$ 通常は、2g_1 - 1 > 0 であり、また、 $\lambda - g_1 \cot \alpha > 0$ であるから

 $\lambda \ge ((1 - g_1)) [(g_1^2 \operatorname{cot}^2 \alpha + 2g_1 - 1) + g_1^2 \operatorname{cot} \alpha) / (2g_1 - 1)$

(40)

ただし、 λ > cot α であるが、式(40)の右辺 > cot α であることは容易に証明される。 つぎに、式(40)が満足されないと、 v_{b2} は存在しない。この場合、 v_{b1} が存在する

条件を求める。これは、式(11)において、 0を0。に置き換えれば、

 $\tan\theta_{0} \ge (1 - g_{1}) / (\lambda + g_{1} \cot \alpha)$

ここで、式(13)の tan θ 。を代入して整理すれば、

 $\lambda \ge ((1 - g_1)) \left\{ (g_1^2 \operatorname{cot}^2 \alpha + 2g_1 - 1) - g_1^2 \operatorname{cot} \alpha \right\} / (2g_1 - 1)$

(41)

式(41)が満足されなければ、アーチ機構のみとなる。

(38)

(37)

(39)

ii) $\theta_0 = \theta_1$ の場合(応力状態 I₂、 $\lambda = \cot \alpha$)

 $\lambda \tan \theta_0 \ge (1 - g_1) / (1 + g_1)$

のようになる。

 $\theta < \theta_0 = \theta_1 \, \text{よ} \, \text{り}, \, \theta \, \text{tl} \, \text{I}_1 \, \text{tl}_{\text{s}} \, \text{tl}_{\text{s}} \, \text{corr}, \, \text{b}_1 \, \text{tl}, \, \text{tl}$

 $x_{b2} = f(-\alpha) - f(-\theta_2)/g_1 = f(-\alpha)(1-1/g_1) < 0$ すなわち、常に、 $x_{b2} < 0$ で、 v_{b2} は存在しない。そこで、 v_{b1} が存在する条件を求める。 これは、式(11)において、 $\theta \in \theta_0$ (= θ_1)に置き換え, $\cot \alpha = \lambda$ と置けば、

ここで、式(13)の tanθ。を代入し、λについて整理すれば、V b1の存在条件はつぎ

 $\lambda \ge (1 - g_1) / \sqrt{((3 g_1 - 1)(1 + g_1))}$ (42)

式(42)が満足されなければ、アーチ機構のみとなる。

iii) $\theta_1 < \theta_0 < \theta_m$ の場合(応力状態 I₃, $\lambda < \cot \alpha$)

 $\theta < \theta_0$ より、 θ はI₁, I₂, I₃のいずれかに属するが、いずれも、w₁ = 1であ るから、b₁は、式(39)と同じになる。ただし、以下の理由で v_{b2}, b₂ が存在しな い。 $\theta_2 = 2\theta_0 > 2\theta_1 = \alpha$ より、式(6)において、

 $x_{b2} = f(-\alpha) - f(-\theta_2)/g_1 < f(-\alpha)(1-1/g_1) < 0$

すなわち、常に、 $x_{b2} < 0$ となり、 v_{b2} は存在しない。そこで、 v_{b1} が存在する条件を求める。これは、i)の,式(41)と同じになる。ただし、 $\theta_1 < \theta_0$ ($\lambda < \cot \alpha$)であるので、式(41)の右辺と $\cot \alpha$ の大小関係を考える必要がある。右辺はつぎのように変形できる。

右辺 = $(1 - g_1 + g_1 \operatorname{cot}\alpha)$ $(1 - g_1 - g_1 \operatorname{cot}\alpha)$

 $/((1-g_1))(g_1^2 \cot^2 \alpha + 2g_1 - 1) + g_1^2 \cot \alpha)$

ここで、 $1 - g_1 + g_1 \operatorname{cot} \alpha > 0$, 分母>0であるから、 $1 - g_1 - g_1 \operatorname{cot} \alpha \ge 0$ の 場合、右辺 ≥ 0 となり、 λ が、式(41)を満足すれば、 $v_{\mathfrak{b}1}$ が存在する。ただし、 $\lambda < \operatorname{cot} \alpha$ の条件があるから、式(41)が成立するためには、式(41)の右辺< cot \alpha も 満足されなければならない。この条件を cot α について整理すると、

 $\cot \alpha > (1 - g_1) / \sqrt{((3 g_1 - 1)(1 + g_1))}$ (43)

これを満足すれば、 v_{b1} が存在する。ところで、 $1 - g_1 - g_1$ cot $\alpha < 0$ の場合は、式 (41)の右辺<0となるので、常に、 $\lambda \ge 0$ において、 v_{b1} は存在する。

式(41),(43)が満足されなければ、アーチ機構のみとなる。

iv) $\theta_{o} = \theta_{m}$ の場合(応力状態 I₄)

この場合、以下の理由で V_{b2}, b₂、および V_{b1}, b₁ は存在せず、アーチ機構のみと なる。 $\theta_0 \leq 45^\circ$, かつ、 θ_m (=90° - $\alpha/2$) $\geq 45^\circ$ で、 $\theta_0 = \theta_m$ であるか ら、 $\theta_0 = \theta_m = 45^\circ$, $\alpha = 90^\circ$ でなければならい。また、 tan $\theta_0 = 1$ となるから, $\lambda = 0$ でなければならない。したがって、 $\theta_2 = 2\theta_0 = 90^\circ$ となるから、以下のよう に、X_{b2}<0になり、V_{b2}は存在しない。

 $x_{b_2} = f(-\alpha) - f(-\theta_2)/g_1 = (1 - 1/g_1)/2 < 0$ また、式(10)において、 $x_{b_2} = 0$ と置き、 $\theta_0 = 45^\circ$, $\lambda = 0$, $\alpha = 90^\circ$ とすれば、以下のように、 $x_{b_1} < 0$ となり、 v_{b_1} も存在しない。

 $x_{b1} = f(\alpha) - f(-\theta_2)/g_1 = (1 - 1/g_1)/2 < 0$ したがって、 $\lambda = 0$ のアーチ機構のみとなる。

本章の評価方法に関する実験結果との比較は第8章で行う。

参考文献

1)称原良一ほか:鉄筋コンクリート部材の耐力(圧力場理論),日本建築学会大会学術 講演梗概集,昭和53年 9月,pp.1731-1732

3)日本建築学会編:鉄筋コンクリート造建物の終局強度型耐震設計指針(案)・同解説,1988年 p.115

4) M.P.Nielsen : LIMIT ANALYSIS AND CONCRETE PLASTICITY, Prentice Hall, Inc., 1984 , p. 227

5) W.F.Chen: PLASTICITY IN REINFORCED CONCRETE McGraw-Hill Book Company, 1982, pp .301-303 第8章 二重傾斜帯筋柱の実験と耐力評価式の有効性

1. 序

本章は二重傾斜帯筋の一つである二重らせん帯筋を用いた鉄筋コンクリート短柱の水平 耐力を検討した実験的研究を内容としたものである。試験体計画、材料製作、および加力 測定方法の説明の後、実験結果として計41体の試験体の最大耐力をリストアップすると 共に、水平荷重-変位曲線を例示した。最後に本章の二重らせん帯筋柱に第7章の二重傾 斜帯筋柱のせん断耐力評価方法を適用して計算値と実験値の比較を行い、第7章の理論の 有効性を示す。

2. 二重傾斜帯筋柱の実験

2.1 実験概要

せん断耐力計算値との比較に用いた既往の筆者らの実験^{1)~3)} と文献4)の実験につい て概要を述べる。試験体はすべて逆対称曲げモーメントを受ける連続ばり型式である。前 者はb×D(g)がすべて200×300(220)(単位mm)で41体、うち二重ら せん筋柱が23体、一重らせん筋柱が5体、在来型が13体(ただし、無補強2体を含む。)である。ほとんどの二重らせん筋は図1に示す装置によって主筋と点溶接されている。 図2に配筋例を示す。試験区間の距離と材せい比入は2が19体、3が22体である。帯 筋の材軸とのなす角度αは90°が11体、82~87°(一重らせん)が5体、63~ 65°が21体、45°が2体である。帯筋の降伏点σ_{wy}は2707~5630kgf/cm²、 コンクリートシリンダー強度σ^Bは173~231kgf/cm²、せん断補強筋係数ψ^wは0 ~0.463である。図3に帯筋の応力度-ひずみ度曲線を示す。表1に試験体の仕様の 一例を示す。

また、文献4)はb×D(g)が350×350(220)(単位mm)で8体、うち 二重らせんが4体、在来型が4体(ただし、無補強1体を含む。)である。 λ は3である。 α は90°が3体、76°(二重らせん)が4体である。 σ_{wy} は3870~4300kgf/ Cm^2 、 σ_B は258~304kgf/ Cm^2 、 ψ_w は0~0.193である。試験体は合わせて 49体でほとんどはせん断破壊型である。

図4に加力装置を示す。加力は一定軸力と正負定振幅多数回繰返しによる水平力である。 軸力比は0~2/3である。

図4 加力装置

2.2 実験結果

表2に最大荷重などの試験結果の一例を示す。図5から図13に荷重-変形曲線の例を 示す。

図14に各種類のひびわれ位置(b)とそれぞれの発生荷重(a)との関係,およびひ びわれの例(c)を示す。

そのうち、図15と図16は曲げせん断ひびわれ荷重(図14②)時とせん断ひびわれ 荷重(図14②⁻)時のせん断応力度τ。と、平均軸応力度σ。および補強筋比p * との 関係を示す。図中の実線は大野・荒川式min.によるせん断ひびわれ時せん断応力度に 主応力度式でσ。を考慮したものを表している。曲げせん断ひびわれ荷重もせん断ひびわ れ荷重もσ。による影響が大きいが、p * や補強筋形式(●:二重らせん,○:在来)に よる差は少ない。

図17は終局せん断強度とせん断補強筋量の関係を示す。せん断破壊したものの最大耐力は、補強筋量 P*** σ , や補強筋形式による差が著しく、二重らせん帯筋柱は在来型より大きい耐力とねばりを示した。ほとんどはせん断圧縮破壊であるが、最大耐力までに主筋に沿った付着ひびわれが生じており、付着破壊とみられるものもあった。最大耐力以降付着ひびわれはさらに顕著となった。また、 ψ* の小さいものほど顕著である。また、最大耐力がせん断で決まったものはたとえ二重らせん帯筋柱でも最大耐力以降逆S字ループを描いている。また、最大耐力以降では補強筋係数ψ* が大きくても繰返しによる耐力低下はかなり大きい。しかし、大変形時でもらせん帯筋柱の低下率は、在来帯筋に比べて小さい。二重らせん帯筋で主筋との溶接を施していないものは、せん断ひびわれ後、変形が著しく増大し(図5,図6)、溶接を施したものの8割程度の耐力(図17の●,▲)であった。また、同一の補強筋係数でも、細いものを密に巻いたものはひびわれ後の変形が小さかった。しかし、最大耐力やそれ以降の耐力低下はほとんど同一の傾向を示した。また、補強筋の角度を45°としたものは、角度を65°としたものとほぼ同一耐力であるが、軸力比が1/3の場合、最大耐力以降の耐力低下が著しかった。

図18は軸力の有無による最大強度比とせん断補強筋量の関係を示す。せん断補強筋量 が増すほど軸力の有無による違いが小さくなっている。

図19はせん断補強筋の効果を抽出したものである。補強筋量が増すほど補強筋の効果 が減少して一定値になる傾向を示している。

図20(a)は最大荷重時の部材角とせん断補強筋量の関係を示す。補強筋量が増すほ
ど変形能力が増していることを示している。また、図20(b)はトラスアナロジーによ る変形量の算定法を示す。δ。はコンクリート斜材による変形量を表わす。ここで、斜材 のひずみ度はコンクリートの平均ひずみ度で補強筋量と関係した式を実験から求めている。 δ。は引張り弦材による変形量を表わす。弦材のひずみは軸方向鉄筋の平均ひずみから求 めている。

図21はせん断補強筋の荷重-ひずみ関係の一例を示す。

図22はせん断補強筋のひずみ測定位置を示す。

図23はせん断補強筋の軸方向のひずみ分布の例を示す。

表1 試験体の性質一例

Symbol of	h/2 D.	Main Bar		8)	9)				
Specimens No.		2) Pt (%)	3) Pw (%)	4) Ø (mm)	5) O (deg.)	6) Weld.	7) \$ 0 y (kg/cm ²)	$c\sigma_{\rm B}$ (kg/cm ²)	$\sigma_{\rm u}$ (kg/cm ²)
1	1.0	1.69	0.				- Automation	203	0.
2	1.0	1.69	0.					203	73.3
3	1.0	1.69	0.6	9	65	Weld	5630	220	0.
4	1.0	1.69	0.6	9	65	Weld	5630	218	73.3
5	1.0	1.69	0.6	6	63	Weld	5504	203	0.
6	1.0	1.69	0.6	6	63	Weld	5504	203	36.7
7	1.0	1.69	0.6	6	63	Weld	5504	203	73.3
8	1.0	-1.69	0.55	9	45	Weld	4490	173	0.
9	1.0	1.69	0.55	9	45	Weld	4490	173	73.3
10	1.0	1.69	0.6	9	90	No Weld	3057	203	73.3
11	1.0	1.69	1.2	9	65	Wèld	5630	220	0.
12	1.0	1.69	1.2	9	65	Weld	4490	173	36.7
13	1.0	1.69	1.2	9	65	Weld	5630 ¹	218	73.3
14	1.0	1.69	1.2	9	65	No Weld	4490	173	0.
15	1.0	1.69	1.2	9	65	No Weld	4490	173	73.3
16	1.0	1.69	1.2	9	90	No Weld	2943	220	0.
17	1.0	1.69	1.2	9	90	No Weld	2943	218	73.3
18	1.0	2.14	1.8	9	65	Weld	4490	173	0.
19	1.0	2.14	1.8	9	65	Weld	4490	173	73.3
20	1.5	1.69	0.6	9	65	Weld	5630	203	0.
21	1.5	1.69	0.6	9	65	Weld	5630	211	73.3
22	1.5	1.69	0.6	9	90	No Weld	3057	231	73.3
23	1.5	1.69	1.2	9	65	Weld	5630	203	0.
24	1.5	1.69	1.2	9	65	Wold	5630	211	73.3
25	1.5	1.69	1.2	9	90	No Weld	2943	203	0.
26	1.5	1.69	1.2	9	90	No Weld	2943	211	73.3

Note -- 1) Shear Span Ratio, h: Clear Length of Column, D: Depth of Column.

2) Tension Reinforcement Ratio, Pt = at/bD, at : Tension Reinforcement Area,
 b: Width of Column.

3) Web Reinforcement Ratio, $Pw = \frac{\sum aw}{bx} \sin \theta$, aw: Web Reinforcement Area,

x : Pitch, U: Angle of Web Reinforcement against Main Bar. 4) Diameter.

5) + 3). 6) Spot Welding between Web Reinforcements and Main Bars

7) Yield Point or Effective Yield Point (0.85 sons)

8) Cylinder Strength. 9) Average Stress of Axial Load Applied.

表2 試験結果の一例

Specimen No.	1) Рв.с. (ton)	2) P.H.S.C. (ton)	3) T B.S.C. (kg/cm ²)	4) P M.I.C. (ton)	5) T M.J.C. (kg/cm ²)	6) P max. (ton)	7) T _{max.} (kg/cm ²)	8) <u>Pmax.</u> C.11. Pmax.	9) <u>Pmax.</u> ca.P.B.Y.	10) δ _{P.max.} (cm)	11) Failure Mode
1	17.8	17.8	13.0	17.8	13.0	39.1	28.6	-	0.46	0.50	S.C.
2		44.9	32.9	35.0	25.6	44.9	32.9	-	0.32	0.25	S.C.
3	20.0	30.0	22.0	41.8	30.6	70.8	51.9	1.30	0.82	1.06	S.C.
4	40.0	46.5	34.1	50.0	36.6	67.3	49.3	1.12	0.57	0.50	S.L.B.
5	17.2	20.0	14.7	30.0	22.0	70.8	51.9	1.30	0.83	0.50	S.C.
6	29.5	40.0	29.3	56.0	41.0	70.0	51.4	1.22	0.62	0.50	S.C.
7	30.0	50.0	36.6	30.0	22.0	70.0	51.4	1.16	0.50	0.20	S.C.
8	14.0	18.0	13.2	20.0	14.7	65.7	48.1	1.32	0.77	0.52	S.C.
9	28.5	65.0	50.0	47.6	36.6	69.5	50.9	1.27	0.56	0.25	S.C.
10	45.0	45.0	33.0	28.5	20.9	60.0	44.0	1.00	0.43	0.25	S.C.
11	20.0	20.0	14.7	15.3	11.2	89.5	65.6	1.28	1.03	0.97	S.C.
12	28.0	50.0	36.6	57.0	41.8	92.7	67.9	1.26	0.89	1.03	S.C.
13	74.0	74.0	54.2	63.5	46.5	91.5	67.0	1.14	0.70	0.50	S.C.
14	20.0	30.0	22.0	42.0	30.8	77.8	57.0	1.12	0.91	2.04	S.C.
15	40.0	48.3	35.4	48.3	35.4	75.0	55.0	0.97	0.61	1.14	S.C.
16	25.0	18.0	13.2	30.0	22.0	70.0	51.3	1.00	0.82	0.50	S.C.
17	62.8	49.0	35.9	60.0	44.0	77.2	56.6	1.00	0.59	0.50	S.IB.
18	20.0	30.0	22.0	40.0	29.3	92.4	67.7	-	0.87	0.85	S.C.
19	30.0	50.0	36.6	58.0	42.5	91.3	66.9	-	0.64	1.00	S.C.
20	15.0	15.0	11.0	30.0	22.0	55.0	40.3	1.32	0.95	1.50	S.C.
21	36.0	42.0	30.8	42.0	30.8	57.0	41.8	1.08	0.66	1.50	S.L.B.
22	27.5	50.0	36.6	40.0	29.7	53.0	38.8	1.00	0.61	0.75	S.C.
23	15.0	30.0	22.0	30.0	22.0	68.8	50.4	1.30	1.19	3.08	B.
24	46.0	50.0	36.6	50.0	36.6	76.8	56.3	1.14	0.89	1.50	S.C.L.B.
25	14.0	22.5	16.5	37.5	27.5	53.0	38.8	1.00	0.91	1.50	S.C.
26	26.6	48.8	35.8	56.0	41.0	68.0	49.8	1.00	0.79	1.50	S.L.B.

Note --- 1) Bending Crack Load (Initially Observed).

2) Bending Shear Crack Load. 3) Average Shear Stress at 2).

4) Middle Inclined Crack Load. 5) Average Shear Strees at 4).

6) Maximum Load. 7) Average Shear Stress at 6).

8) Ratio to Max. Load of Conventional Houp's Specimen with the Same Web Reinforcement Ratio.

9) Ratio to Bending Yield Load Calculated.

 10) Deflection at Max. Load.
 11) S: Shear Failure Type, S.C.: Shear Compression Failure Type, B: Bending Failure Type, L.B.: Lateral Buckling.

図5 荷重-変位曲線(No.11)

図6 荷重-変位曲線(No.14)

図10 荷重-変位曲線(No.19)

図12 荷重-変位曲線(No.24)

図13 荷重-変位曲線(No.26)

図21 せん断補強筋の荷重-ひずみ曲線 図22 ひずみゲージ貼付位置

図23 せん断補強筋の軸方向ひずみ分布

3. 二重傾斜帯筋柱のせん断耐力計算値と実験値との比較

計算にあたって、補強筋係数 ψ_{*} については一重らせんと在来帯筋も二重らせん帯筋と 同様に扱った。一重らせんの場合でも材軸方向と傾斜しているので、部材の片方を+ α 補 強筋とすれば、一方を- α 補強筋と考えられる。また、在来帯筋は α を90°とすればよ い。この場合+ α 補強筋と- α 補強筋は同じものとなるので補強筋係数 ψ_{*} は通常の1/ 2と考えればよい。

計算結果、ほとんどの場合アーチ機構は形成されなかった。アーチ機構は補強筋係数 ψ * が0か小さい場合と、補強筋の角度 α が45°の場合に形成された。また、コンクリー ト圧縮束の角度 θ の最小値は約9°で ψ * が0の場合であった。 ψ * が大きくなるほど θ は大きくなる。 θ の最大値は約38°で、30°前後が最も多かった。コンクリート圧縮 束と補強筋の応力状態としては状態I₁が最も多く、ついで、I₂、I₃が続き、I₄の 状態はなかった。I₄の状態は最もせん断耐力が高いが、相当 ψ * を大きくしなければな らないので、高強度の補強筋を用い密に補強する必要がある。

図24にせん断耐力計算値と実験値の比較を示す。横軸が計算値で縦軸が実験値を表わ す。それぞれせん断力Vを(レσ B b g)で除して無次元化したvである。一部曲げ破壊 したものや、付着破壊または付着ひびわれの顕著なものは実験値が計算値をかなり下回っ ている。これらを除けば、補強筋の形式や軸力の有無にかかわらず、計算値と実験値はよ い対応を示している。補強筋のないものでは、実験値が計算値をかなり上回っている。補 強筋がない場合、計算値はアーチ機構のみしか考慮されない。しかし、実際には主筋とコ ンクリートの間には付着力が存在しており、補強筋を介さないトラス機構の存在が考えら れる。

図25は横軸に補強筋係数ψ * をとり、実験値と計算値の比を縦軸としたものである。 前述の曲げ降伏型または付着破壊型のものおよびψ * が0の場合を除けば、ほぼψ * の全 範囲にわたってよい対応を示している。二重らせん帯筋の多くは実験値が計算値を上回っ ている。在来型と一重らせん帯筋に実験値が計算値を下回っているものが多い。また、計 算値は付着破壊しないと仮定しているので、二重らせん帯筋でも付着破壊したものは実験 値が大幅に低い。ψ * が0でアーチ斜材のみの場合には、斜材応力が圧縮強度に達すれば、 アーチは最大耐力を示すので、前述のはり機構の代わりに有効強度係数 ν をψ * が0の場 合に限り便宜的に圧縮強度と無関係な1とすれば、実験値と計算値の比は1.51,1. 73,2.07が0.91,1.04,1.17と大幅に改善される。

図 2 5 実験値と計算値の比と補強筋係数 # の関係

4. 結論

二重らせん帯筋柱の水平加力実験で、耐震能力が在来帯筋柱に比べて優れていることを 示した。また、この様な柱のせん断耐力評価にせん断圧縮破壊形に対して、第7章の評価 方法が有効であることを示した。ただし、せん断スパン比の大きなものや計算の対象外の 付着破壊のものや曲げ破壊のものでは計算値は実験値を過大評価している。

参考文献

1)嶋津孝之ほか:ダブルスパイラルフープ柱の実験的研究(その1)-(その3),日本建築学会大 会学術講演梗概集,昭和49年10月,pp.1343-1348

2) 嶋津孝之ほか: ダブルスパイラルフープ柱の実験的研究(その4)-(その7),日本建築学会大会学術講演梗概集,昭和50年10月,pp.1097-1104

3)嶋津孝之ほか:シングルスパイラルフープ,ダブルスパイラルフープ及び在来フープ を使用した各柱の耐震性に関する比較実験(その1)-(その3),日本建築学会大会学術講演梗概集, 昭和52年10月,pp.1565-1570

4) 井阪敏文ほか:ダブルスパイラルフープを用いた組立鉄筋コンクリート構造に関する 実験的研究(その2),日本建築学会大会学術講演梗概集,昭和52年10月,pp.1575-1576

第9章 多段配筋短柱のせん断設計

1. 序

柱がせん断力を受ける限り、地震時、柱頭・柱脚は真の曲げ耐力に到達することはでき ない。そこで、第3章で曲げを考慮したせん断耐力、または、せん断を考慮した曲げ耐力 時せん断力の評価式を提案した。

必要保有水平耐力に対して柱の保有水平耐力をチェックする時は、あらかじめ許容応力 度設計によってせん断補強筋量が定められているので、この評価式を適用してチェックす ればよい。しかし、断面設計の初めから評価式を用いることは以下の理由で難しいと考え られる。すなわち、与えられた軸力比ヵが、どの軸力比の領域にあるかを判断しなければ ならないが、領域の境界軸力比自体も未知のせん断補強筋係数ψ_{wy}の大きさによって決ま るからである。

しかし、別の方法として軸力比っには変動があるので、軸力比の全範囲で、曲げ降伏を せん断補強筋の降伏と同時か、補強筋の降伏に先行させるように、サ**を第3章で述べた 釣合補強筋係数サ。以上にしておく方法が考えられる。この方法は非常に簡単であるが、 あまり経済的とはいえない。また、サ。を用いて求めた柱の保有水平耐力が必要保有水平 耐力以上であればよいが、仮に、保有水平耐力が必要保有水平耐力を満足しない場合は、 逆に必要保有水平耐力以上となるようにサ。を求め、サ。となるように断面変更をする必 要がある。このためには、サ。の定義から引張り鉄筋係数 q を高めたり、断面せいDを大 きくして入を小さくすればよい。しかし、軸筋の降伏で決まる軸力比領域 II, VIではサ。 を高めても、せん断補強筋が弾性範囲で有効に働かないので、同一の軸力比でせん断補強 筋を効果的に働くかせるために、中段筋係数 q m を大きくする方法も考えられる。

もっとも効率的なせん断補強方法は、軸筋降伏と同時に帯筋も降伏する場合である。これに相当する軸力領域は第3章で述べたⅡとVである。さらに、この領域の中でも軸筋が弾性範囲である軸力領域Ⅳとの境界軸力比73と74においてさらにせん断補強量を少なくできる。そこで、本章ではこのケースについて具体的に検討してみる。

2. 引張り軸筋,中段筋,帯筋の同時降伏時のψ_wの算定

ここでは、引張り軸筋の降伏する軸力比の範囲で考え、圧縮軸筋の降伏するほどの高軸 力比は考えない。すなわち、第6章の軸力領域 II と IVの境界軸力比 n 3 から ψwyを算定す る。 n 3 を再掲載すると

(1)

 $\eta_3 = \eta_0 + A_1 \psi_w + r / 2$ ttt:

 $\begin{aligned} \eta_0 &= -2 q - q_m \\ A_1 &= (j_{\pm 1} \cot \phi + \lambda) \cot \phi \\ \cot \phi &= 2 \qquad (\psi_{wy} \leq 0.2) \\ &= \sqrt{(1 / \psi_{wy} - 1)} (0.2 \leq \psi_{wy} \leq 0.5) \\ &= 1 \qquad (0.5 \leq \psi_{wy}, \psi_{wy} = 0.5 \geq 3 <) \end{aligned} \\ \psi_w &= \psi_{wy} (\psi_{wy} \leq \psi_b) \\ &= \psi_b (\psi_b \leq \psi_{wy}) \\ \psi_b &= 2 q / (\lambda \cot \phi) \\ r &= 1 - k \psi_w \\ k &= 1 + \cot^2 \phi \end{aligned}$

以上の式を用いて軸力比ヵ,引張り鉄筋係数 q,中段筋係数 qm,スパンせい比入が与 えられ時、引張り軸筋の降伏と同時に帯筋も降伏する場合のせん断補強筋係数 ψ_{wy} を求め る。ただし、 ψ_{wy} が0.2を越える高補強は、一般的といえないことと、 $\cot\phi$ が ψ_{wy} の 関数となり、 ψ_{wy} の算定が複雑になるので、ここでは、 ψ_{wy} が0.2以下の場合について 検討する。この場合 $\cot\phi = 2$ となる。次に、 $\psi_{wy} \leq \psi_{b}$ と仮定して、 $\psi_{w} = \psi_{wy}$ とおき、 ψ_{wy} について解くと次のようになる。

A₁ - k/2 $(j_{t1} \cot \phi + \lambda) \cot \phi - (1 + \cot^2 \phi)/2$ (2) 以上について、グラフ化したものが、図1である。軸力比ヵを縦軸に、せん断力係数 v を j_{1} で除したものを横軸にとり、次の条件で q ≤ 0.45 まで描いている。

 $\lambda = 2$, $j_{t_1} = 0$. 8, $\psi_{wy} \le 0$. 2 ($p \supset \psi_{wy} \le \psi_b$),

図は、qが一定の斜めの直線(0.01ピッチ)と、 ψ_{ws} が一定の縦軸に平行な直線(0.01ピッチ)を描いている。また、中段筋がある場合は、中段筋係数 q m を各 q で 与 える と図が複雑となるので描いていない。しかし、 q m がある場合、境界軸力比 η_3 ではせん 断耐力は q m = 0 の場合と変わらないから、(2)式において

 $2q_0 = 2q + q_m$

となる q。を求め、あらためて q。を q として グラフを 用いればよい。すなわち、 q。 = $q + q_m / 2 \delta x$ め、あらためて q。を q とおき、与えられた 軸力比 η との 交点 における

ψ_{wy}と v / j_{t1}を求めれば、引張り軸筋の降伏と同時に帯筋も降伏する場合のψ_{wy}が求まり、同時に、その時のせん断力係数 v を求めることができる。

仮に与えられた軸力比ηに対して(2)式を用いて計算したψ_{**}が、ψ_bを越える時、 図1では、ηがψ_bで決まるグラフの上限を越える時、もし、ηがψ_bで決まるη₃とη 4 の間にあれば、ψ_{**}をψ_bとおく。ただし、引張り軸筋の降伏と同時に帯筋も降伏する が、中段筋は弾性範囲である。ここで仮にq_mを小さく断面変更すれば、中段筋の降伏も 可能になる。さらに、ηがψ_bで決まるη₄を越えるような場合は、帯筋が降伏する前に、 圧縮軸筋が先に降伏することになるので、この節の設定と異なるが、η₄がηになるまで q_mを大きくするか、さらに、qを大きくしたり、λを小さくしてψ_bを大きくすれば、 帯筋の降伏と圧縮筋の降伏を同時にすることは可能である。しかし、断面変更を伴う。

スパンせい比λが異なる場合については、(2)式を用いて直接計算することができる。 また、いくつかのλの異なる図を用意しておき、直線補間する方法も考えられる。

次に、求められたψ_{**}と v から帯筋比p_{*} とせん断力 V を求めるためには以下のように すればよい。

 $\mathbf{p}_{\mathbf{w}} = \psi_{\mathbf{w}\mathbf{y}} \cdot \boldsymbol{\nu} \boldsymbol{\sigma}_{\mathbf{B}} / \boldsymbol{\sigma}_{\mathbf{w}\mathbf{y}}$

 $V = v \cdot \nu \sigma_B b D$

ただし、レはヵ, q, qmの算定に用いたものと同一のものを用いる。第6章で示したように、下式を用いても安全側であったが、

 $\nu = 0.8 - \sigma_{\rm B} / 2000$

さらに、下式を用いれば、さらに十分なせん断補強となる。

 $\nu = 0.7 - \sigma_{\rm B} / 2000$

ここで、σ_B, σ_{wy}:コンクリート圧縮強度, 帯筋降伏点(kgf/cm²)

3. 結論

第3章の多段のせん断耐力評価式から、任意の軸力比とせん断力を両方満足する帯筋比 を算定することは容易ではない。しかし、任意の軸力比が与えられた時に、軸筋と帯筋が 効率よく同時に降伏するような最小の帯筋とその時のせん断力をを求めることは容易であ る。軸筋が引張り降伏する一般的な軸力比で、 ψ_{**} が0.2以下の一般的な条件であれば、 ψ_{**} は(2)式で求まる。また、(2)式をグラフ化すれば、図上で ψ_{**} が容易に求まる。 同時にその時のせん断力も算定できる。グラフ化の一例を図1に示した。その際、有効係 数 ν に(0.7- σ_B /2000)を用いれば十分安全側の補強となる。 第10章 短柱の軸方向耐荷力

1. 序

前章までは短柱のせん断耐荷力について述べてきた。本章では軸方向耐荷力について検 討する。わが国の中低層建物では、通常、柱の設計は地震荷重に支配され、せん断耐荷力 が問題となるが、軸圧縮力は支配的でない。しかし、固有周期が長くなる高層建物では、 地震入力が小さくなる代わりに、下層部の柱は軸圧縮力が支配的となる。そして、高軸力 に抵抗するために、一般に長さに比べて断面せい大きくなり、短柱となる。

特に、外側の柱には内部柱と異なり、大地震時、柱の設計軸耐力を越えるような不確定 な高軸力に対しても耐力を保持してエネルギーを吸収する変形能力(粘り)が要求される。 変形能力を高めるためには多量の横補強筋でコアコンクリートを十分に拘束しなければな らない。特に、横補強として円形のらせん筋を多量に用いた場合、コアコンクリートに均 一な多軸状態を期待できる。また横拘束すれば無拘束のものより軸耐力も高めうる。比較 的低軸圧でせん断の支配的な柱を対象としてきた第9章までと異なり、本章では、せん断 が支配的でなく軸力が支配的な柱に対して実験的に検討している。コアコンクリートをで きるだけ均一な多軸状態として高軸力に対する変形能力を高めるため、間隔を密に配した らせん筋を配した円形および矩形断面の短柱について、中心または偏心圧縮試験を行って いる。また、らせん筋の直径または軸方向鉄筋の有無についても調べている。さらに、圧 縮域での繰返しによる耐力低下についても調べている。

2. 実験概要

試験体の寸法は矩形断面では15cm×15cm×30cm、円形断面では15cm ϕ ×30cm である。両タイプの柱の変数はらせん筋の直径、軸方向鉄筋の有無、および荷重状態が中 心圧縮の場合と偏心圧縮の場合である。らせん筋は3 ϕ と6 ϕ の2種類で、補強筋比を4 %と一定とするために各々間隔は0.5cmと2.14cmでコイル状に巻いている。軸筋と して6 ϕ を用いた。これら補強筋の降伏点、引張り強度および伸びは、それぞれ3 ϕ が2. 09t/cm²,3.22t/cm²,30%で、6 ϕ が2.88t/cm²、3.88t/cm²、28 %である。コンクリートのシリンダー強度は各々の試験体に対して表1に示す。加力状態 を写真1に示す。試験体の上部と下部はピン支持とした。各試験体とも断面の主軸線上で 図心から等距離離れた位置で材軸方向の変形と、試験体の高さの中央部における前主軸と 直交する横方向の変形をいずれも電気式変位計で測定した。また、6 ϕ のらせん筋につい てはワイヤストレインゲージによりひずみを測定した。

試験体記号			コンクリート競	獻補重	Pmax	P 5% **	P 5%
佩率 e	腼േ	都経 主統社 (mm)(mm)	_с б _в (kg/cm²)	Pmax (ton)	с ₫ вАС*	c Ø BAC	Pmax
0		3-0 3-6 6-0 6-6	196.1 202.2 205.2 205.2	62.0 67.6 51.8 61.8	1. 41 1. 49 1. 12 1. 34	1.00 1.07 0.80 0.91	0.71 0.72 0.71 0.68
	0	3-0 3-6 6-0 6-6	172.3 172.3 188.1 188.1	66.4 76.0 48.8 58.0	2.18 2.49 1.47 1.74	2.07 2.46 1.41 1.46	0.95 0.99 0.96 0.84
1/6		3-0 3-6 6-0 6-6	196.1 196.1 205.2 205.2	53.0 51.3 48.2 51.5	1.22 1.16 1.04 1.12	0.86 0.91 0.80 0.76	0.71 0.78 0.77 0.68
1/8	0	3-0 3-6 6-0 6-6	172.3 188.1 188.1 206.2	62.5 63.8 42.0 55.5	2.05 1.92 1.26 1.52	1.61 1.47 1.01 1.07	0.78 0.77 0.80 0.70

表1 最大荷重等一覧

 $*Ac = 225cm^2$ (\Box), 177cm² (\bigcirc)

** P_{5%}: 縮み量が5%のときの荷重 主筋は 8-6 ゆでいずれの試験体も被りをほとんど 付けなかった。

写真1 加力方法

3. 実験結果と検討

表1、写真2、3および図1、2に最大荷重などの一覧、各試験体の最終破壊状況と終 局までの荷重-変位曲線を示す。以下では、主に集中軸荷重を受ける試験体について実験 結果を述べる。円形断面柱は断面積が小さいにもかかわらず、矩形断面柱より大きな最大 荷重を示している。円形断面柱の最大荷重を断面積で除した平均応力は30筋の場合コン クリートのシリンダー強度の約2倍であり、60筋では約1.5倍である。図3は、最大 荷重時の平均応力とコンクリートのシリンダー強度との比を、横軸にらせん筋が引張り降 伏する時に一様に生ずると仮定して求めた横拘束圧とコンクリートのシリンダー強度との 比をとり、プロットしたものである。図3の実線は参考文献1)から引用したもので、三 軸応力下のコンクリート強度の増加量を示す。3 φ 筋の場合はすべて実線近くか実線より 上方にプロットされているが、6 & 筋の場合は実線より下方にプロットされている。円形 断面柱の荷重は軸方向のひずみが約1%を越えると荷重の伸びが少なくなり、約5%辺り まで荷重を保持しているが、その後らせん筋の一部が破断して徐々に荷重低下している。 3 φ筋の試験体は6 φ筋のものより高い荷重を示すばかりでなく、かなり大きな靭性を示 す。特に、縦筋を持たない30筋の試験体の荷重はは17%のひずみまで減少しなかった。 縦筋は最大荷重を増加させるが、局部的な座屈現象をともない靭性を低下させることは注 目すべきことである。一方、矩形断面柱の場合、最大荷重時を断面積で除した平均応力は 3

3

ゆ筋の場合コンクリートのシリンダー強度の約1.5倍であり、6

ゆ筋では約1.1~ 1.3倍である。これらの試験体の荷重はひずみ約1%で最大荷重に達するや否や約5% のひずみで最大荷重の約70%まで低下する。しかし荷重低下しても平均軸応力度はコン クリートのシリンダー強度の6 6 節で8割、3 6 筋で10割を保持している。このひずみ の後、耐力を保持しつつむしろ徐々に荷重が増加することは注目すべきである。このうち 3

の筋の柱の荷重は20%のひずみを越えた範囲においても増加しつづけ、一方、6

の筋 の柱は約15%ひずみでらせん筋とらせん筋の間から内部コンクリートが崩れ出し縦筋も 座屈することにより、荷重増加が止まったり、荷重が減少したりする。柱は軸荷重を受け ると内部コンクリートはポアソン効果により横方向に拡がろうとする。矩形断面柱の場合 らせん筋による辺部の拘束は弱く主に隅角部で拘束される。逆にらせん筋には隅角部拘束 による引張り応力と辺部の拡がりによる曲げ応力を受ける。らせん筋が降伏すれば、これ 以上の拘束力は働かなくなるとともに、曲げ変形により、コンクリートの辺部が急にはら みだし、荷重は急に低下する。しかし、コンクリート断面が準円形に変形すると、荷重低

下はとまる。その後準円形断面に対してらせん筋の拘束効果が再び生じてきて荷重は徐々 に増加を始めることになる。図4は測定した縦横の変形から求めたポアソン数と荷重の関 係を示したものである。最大荷重以降、荷重の減少とともにポアソン数も減少するが、矩 形断面柱の場合、荷重減少がとまり、荷重が再び増加を始めるとポアソン数も増加を始め ることは興味深い。

偏心荷重の最大耐力は中心荷重より1割から2割低下するが全体として中心荷重の結果 とほぼ同様の傾向を示す。しかし、偏心荷重を受けた円形断面柱の靭性は中心荷重の場合

図3 最大強度と横拘束圧の関係

よりかなり小さくなっていることは注意すべきである。

図5は縦ひずみ1.5%,4%,8%で荷重を0にもどし再加力すると耐力がどのよう に低下するかを示したものである。縦ひずみ1.5%では円形断面柱の多くが最大荷重に 達していないものが多く耐力低下は小さいが、一方矩形断面柱の多くは最大荷重に達して おり耐力低下も大きい。最大荷重付近や最大荷重以降では円形断面柱でも耐力低下が大き くなっているが、全体的に矩形断面柱のほうが大変形時に円形断面柱に比べて耐力低下が 大きくなる傾向を示す。

1.00

0.8

1.0

(a)中心圧縮

= 4.0% 0.8 1.5% 15.% 3-6 1.0 38.0% 8.0% 0.8 6-0 1.5% 1.0 18.0% 15.% 0.8 1.5% (□) 1.5%, 8.0% 15.% 4.0%(0) 6-6

3-0

10

= 8.0%

0%

(b) 偏心圧縮

Roweの砂粒子のパッキング理論を1969年Gardner は多軸下のコンクリートに適用して抵 抗機構を論じている。すなわち、コンクリートを巨視的な連続体として捉えるのではなく 微視的に捉え、コンクリートの構造は骨材と骨材同志を立体的に結び付けるセメントペー

ストによって構成されているものと考えている。そこで、筆者はコンクリートを図6中に 示す立体トラスユニットにモデル化し、中心荷重を受ける円形および矩形断面柱の多軸下 の挙動を解析している。多軸応力状態はポアソン効果によって生じた横方向の変形が拘束 されることにより生じる。そこで一軸応力下のトラスユニットのポアソン効果を図4中の 一点鎖線が示す無補強コンクリートの軸荷重ーポアソン数の関係を単純化したもので与え ている。そして、この軸荷重-ポアソン数の関係を満足するように、トラスユニットを構 成しているトラス部材の部材端において各部材端力と部材端変形の関係を求めて置く。こ のトラスユニットを組合わせてコアコンクリート部分を構成する。また、コアコンクリー トの横の拡がりを外周で拘束する横補強筋は隅角部で接合部を持つラーメン材と考え、ト ラスユニットとはピン接合とする。解析は一様な軸方向の変位を与えて、それに応ずる荷 重を繰返し計算によって求めている。以上の詳細は筆者の文献2)を参照されたい。ただ し、円形断面に関しては1ユニットの立体トラスが隅角部のみで拘束されているものと考 えている。解析結果の一例を図6に示す。矩形断面柱の解析ではラーメン材が隅角部で曲 げ降伏して急激な荷重の低下が生じて1%ひずみまで低下している。軸ひずみの大きさは 異なるが、実験と同様の挙動を示していることがわかる。しかし、1%を越えるひずみに 関してさらなる解析が必要である。

図6 立方体トラスユニットを用いた解析による応力度-ひずみ度曲線

4. 結論

鉄筋コンクリート短柱の軸方向耐荷力に関する研究で以下のことが言える。

1. 補強筋比4%と細いらせん筋を密に巻いた円形断面柱が中心または偏心軸荷重を受ける場合、最大強度は、らせん筋が降伏点に達するものと仮定することによって決定される横拘束圧の値を、三軸応力下のコンクリート強度に関する既往の実験式に適用することによって評価しうる。一方、同一の補強筋比でも太径のらせん筋の場合や矩形断面柱の場合は上記式で予測される値より下回る。

2. 矩形断面柱は、円形断面柱に比べると靭性が乏しく、最大荷重に達すると最大荷重 の約7割まで急に荷重が低下する。しかし、断面形状が準円形になり、縦ひずみが大きく なっても約7割の耐力を保持している。

3. 縦筋は軸方向耐荷力を高めるが、局部的な座屈現象をともない靭性を低下させる。

4. 立体トラスユニットを用いた矩形断面柱の解析ではラーメン材に置き換えた横補強 筋が、隅角部で曲げ降伏することで、実験と同様の急激な荷重低下が得られた。

関連発表論文

1) T.Shimazu and S.Tadehara:Fundamental Study on the Ductility of Short Reinforsed Concrete Columns, The 17th Japan Congress on Materials Reserch—Non-Metallic Materials, March 1974, pp. 181-183.

参考文献

1) Considère, A.: Compressive Resistance of Reinforced Concrete and Circumferentially Wound Concrete, Le Génie Civil(Paris), 1903.

2) F.E.Richart, A.Brandtzaeg, and R.L.Brown: A Study of the Failure Mechanism of Concrete under Combined Stresses, Bulletin No. 185, Engineering Experiment Staion, University of Illinois, 1928.

3) Balmer, G.G.: Shearing Stress of Concrete under High Triaxial Stress; Computation of Compressive Stresses, Report No.S.P.23, U.S. Bureau of Reclamatin, Denver, 19 49, p. 13. 4) Jones, R.: Method of Studying the Formation of Cracks in a Material Subjected to Stresses, British Journal of Applied Physics(London), V.3, No.7, July 1952, pp. 229 -232.

5) Berg, Q. I.: Strength Investigations of Reinforced Concrete Structures under Cyclic Variable Loads, Transzeldorizdat vipusk 19(Moscow), 1956, pp. 38-39.

6) Baker, A.L.L.: An Analysis of Deformation and Failure Characteristics of Concrete, Magazine of Concrete Research(London), V. 11, No. 33, Nov. 1959, pp. 119-128.

7) Kloeppel, K., and Godier: Traglastversuche mit Ausbetonierten Stahlrohren und Aufstellung einer Bemessungsformel, (in German), Der Stahlbau, Jan.-Feb. 1957.

8) Bresler, B., and Pister, K.S.: Failure of Plain Concrete under Combined Stersses, Transactions, ASCE, V. 122, 1957, pp. 1049-1059.

9) Bresler, B., and Pister, K.S.: Strength of Concrete under Combined Stresses, ACI Journal, Proceedings V. 122, No. 3, Sept. 1958, pp. 321-345.

1 O) Beaufait, F. W. : Hoop Stresses in Spiral Reinforcement, Thesis submitted for MS degree to University of Kentucky, 1960, directed by H. Gesund.

1 1) Gambarov, G. A. : Centrally Compressed Prestressed Elements, Betoni Zhelezobeton(Moscow), Apr. 1961, pp. 164-169.

1 2) Ben-Zvi, E. : Fracture of Solids under Combined Stress, Bulletin, Research Council of Israel, Section C Technology, V. 10C, No. 1-2, June 1961, pp. 96-97.

1 3) Bellamy, C.J.: Strength of Concrete under Combined Stress, ACI Journal, Proceedings V. 58, No. 4, Oct. 1961, pp. 367-382. Also discussion by E.Ben-Zvi, ACI Journal, Proceedings V. 58, No. 6, June. 1962, pp. 865-866.

1 4) Gardner, N.J.: Triaxial of Concrete, ACI Journal, Proceedings V.66, No. 15, Feb. 1 969, pp. 136-146.

1 5) Rowe, P.W.: The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact, Proceedings, Royal Society of London, 1962, pp. 500-5 27.

16) 蓼原真一:置換トラス法による横歪を拘束された矩形断面のコンクリート柱の破壊 機構についての理論,広島大学工学部建築学科卒業論文,1973.3 第11章 まとめ - 133 -

第11章 まとめ

本論文は建物の高層化,超高層化のために必要な鉄筋コンクリート短柱の耐震能力を理論と実験の両面から詳細に検討した。その結果、以下のことが明らかになった。

1. 多段配筋短柱のせん断耐力を評価する上で重要なせん断圧縮破壊型について、極限解 析の下界定理に基づき詳細な理論的考察を展開した。トラスとアーチからなるせん断伝達 機構に中段筋の付着を考慮したモデルを提案し、一定軸力下で逆対称曲げを受ける柱を解 析して、中段筋が降伏しない軸力範囲で多段配筋柱の耐力は多段配筋でないものとあまり 変わらないこと、しかし、最外筋とともに中段筋が降伏する場合は同一の軸力で中段筋が 軸力と曲げを負担して、多段配筋柱の耐力が高くなることを示した。

2. 上記のより実用的なせん断耐力評価式を導いた。軸筋が降伏する場合とそうでない場 合の両ケースについて実用式を提示すると共に、せん断圧縮破壊型とは別の特殊な斜張力 破壊型についても実用式の提案を行った。

3. 上記の実用的耐力評価式の検証のために行った計150体におよぶ短柱の水平加力実 験結果から、作用軸力比と帯筋比がともに小さく軸筋が降伏しない特殊な場合は斜張力破 壊して多段配筋でないものより低い耐力を示す場合のあることがわかった。

4. 高強度材料を含む帯筋柱の実験結果に、上記多段配筋短柱の実用的せん断耐力評価式 を適用し、評価式の有効性を示した。また、斜張力破壊型についても実用式の有効性を示 した。

5. 二重に傾斜したらせん帯筋を有する短柱のせん断耐力について、理論的考察と実験的 考察を行い、この種の柱は在来フープ柱に比べて耐震能力が優れていることと、理論の有 効性を示した。

6. 上記多段配筋短柱の実用的せん断耐力評価式によるせん断設計を試み、与えられた軸 力比に対して軸筋降伏と同時に帯筋も降伏する効率的なせん断補強量の算定方法を提示し た。

7. 高軸力を受ける短柱の軸耐荷力について実験的に検討し、矩形と円形断面を持つ試験 体の中心と偏心圧縮実験を行い、細く密に巻いたらせん筋が柱の軸耐荷力と変形能を著し く高めうること、また、解析的にも荷重-変位関係をほぼ追跡できることを示した。 謝 辞

本論文の作製にあたり、終始懇切なご指導とご援助をいただきました広島大学教授嶋津孝之博士に、ここに心よりお礼申しあげます。

殊に、大学以来、公私ともに多大のご迷惑をおかけしたにもかかわらず、常に適切な助 言と激励のお言葉をいただき、ここに研究成果をまとめることができましたことを、深く 感謝します。

また、長崎大学構造工学科の教授小森清司博士、同じく教授末岡禎佑博士、同じく教授 築地恒夫博士、同じく助教授原田哲夫博士、同じく助手青木孝義博士には多くの有意義な 助言と援助をいただき、心から深くお礼申し上げます。

さらに、多くの実験に協力していただいた長崎大学と広島工業大学の研究室の多くの卒 業生達に心より感謝の意を表します。