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Abstract 

In this thesis, game theory has been applied for resolution of conflict in compet­

itive systems. We must recognize the existence of ambiguity in decision makers' 

judgements as well as the imprecision that exists in information in such systems; 

moreover, decision makers need to be able to accommodate multiple objectives 

in the solution of the conflict problems. It follows that new solution concepts 

which take the ambiguity and the multiplicity of the objectives into consideration 

should be introduced for implementation of game theoretic approach. We present 

several game representations for the resolution of conflict in competitive systems 

and demonstrate our computational methods for the proposed solutions. For 

noncooperative games , two-person games are dealt with and max-min solutions 

and equilibrium solutions are considered. For cooperative games, lexicographical 

solutions and a solution based on fuzzy decision rule are examined. The com­

putational methods are based mainly on linear programming techniques, and 

therefore they have useful practical applications for decision making problems 

regarding public conflict. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction and Historical Remarks 

When members of an organization consist of decision makers with conflicting 

interests , a competition or a partial cooperation among them should be con­

sidered as the essential problem. We consider such a situation and call it a 

competitive system. Game theory has been used as a powerful analytical tool 

for competitive systems (e.g. von Neumann and Morgenstern 1944, Harsanyi 

1977, Owen 1982, Harsanyi and Selten 1988, and Rasmusen 1989). When game 

theoretic approach is used as a resolution method, solution concepts of games and 

their computation methods are indispensable because of the choice of strategies 

they offer decision makers in the conflict problems. Ambiguity in the decision 

makers ' judgements as well as uncertainty and imprecision of information must 

also be taken into consideration in an analysis for a competitive system. The 

results of the analysis are not always effective for resolution of a conflict prob­

lem in the competitive system when the parameters of a mathematical model 

for the conflict problem are determined without considering the uncertainty and 

imprecision likely to occur in the competitive system. 

Sensitivity analysis , effective for analyzing problems which have variations of 

a few parameters, has been used as a conventional method for analysis of such 

problems. In fuzzy environments, however, it is difficult to analyze problems with 

sensitivity analysis because variations of many parameters must be considered 

simultaneously and the analysis becomes too complicated. An analytical device 

which can effectively cope with such ambiguity, uncertainty and imprecision is a 

method using fuzzy set theory (Inuiguchi 1991). 

With the development of fuzzy set theory (e.g. Zadeh 1965, Dubois and 

Parade 1980, and Zimmerman 1991) , ambiguous events which are not probability 

events can be represented as fuzzy sets so that, as a result, ambiguity in decision 

makers' judgements and uncertainty as well as imprecision of information in 
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competitive systems can be treated explicitly in optimization problems with a 

single decision maker. Studies on game theory which deal with such ambiguity, 

uncertainty and imprecision, however, are few. 

Research on game theory in fuzzy environments has been accumulating since 

the mid-'70s. In noncooperative fuzzy games, ambiguity for a player's choice of 

a strategy, vagueness of preference for a payoff and imprecision of payoff rep­

resentation have been represented as fuzzy sets. In cooperative fuzzy games, 

games with fuzzy coalitions, which means that players are admitted to partici­

pating partially in a coalition, and games with fuzzy payoffs have already been 

considered. 

First, we will review research on noncooperative fuzzy games. Butnariu 

(1978) was the first to study two-person noncooperative games in fuzzy envi­

ronments, claiming that all of one player's strategies are not equally possible 

and the grade of membership of a strategy to the set of his feasible strategies is 

dependent on the behavior of the opponent. He next considered the case where 

the set of strategies of one player could be seen as a fuzzy set. Subsequently, he 

examined n-person noncooperative games in fuzzy environments and presented a 

concept of equilibrium solutions for such games (1980). Buckley (1984) analyzed 

behavior of decision makers using two-person fuzzy games similar to Butnariu 's 

(1978). The fuzzy games which he considered involve uncertainty of strategies 

and multiple fuzzy goals for payoffs, but are essentially decision making prob­

lems with a single player because the other player's strategies are given as a 

prior possibility distribution. Billot (1992) defined the individual relations of 

preference by a procedure different from Butnariu's preference and has proposed 

equilibrium solutions of n-person noncooperative games in his recent book. 

Ponsard (1986, 1987) studied n-person noncooperative games from a different 

point of view that supposed imprecise preference for payoffs and occurrences of 

payoffs that are uncertain, and then generalized the Nash equilibrium concept 

to the matter of such fuzzy games. 

When two-person zero-sum matrix games are applied for analysis of conflict 

problems, it is difficult to assess matrix entries as a result of the imprecision 

of information from competitive systems. Campos (1989) examined min-max 

problems of two-person zero-sum fuzzy matrix games, matrix entries of which 
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were represented as fuzzy numbers, and employed the fuzzy linear programming 

methods in order to compute the min-max solutions, and recently, Nishizaki 

and Sakawa (1992b) examined two-person zero-sum matrix games with multiple 

payoffs represented as fuzzy numbers, i.e., two-person zero-sum multiobjective 

fuzzy matrix games. Moreover, they have presented a couple of related studies 

(Sakawa and Nishizaki 1992b, Sakawa and Nishizaki 1993, Nishizaki and Sakawa 

1993). 

Next, we will move on to research on cooperative fuzzy games. The essence of 

cooperative games is the formation of coalitions. Therefore, cooperative games 

are discussed in the n-person case and usually studied, not in the normal form. 

but in the characteristic function form. Research on cooperative fuzzy games 

began with considering fuzzy coalitions. Aubin and Butnariu have been study­

ing cooperative fuzzy games independently from about the same time. Aubin 

investigated the core and the Shapley value (Shapley 1953) for n-person cooper­

ative games with fuzzy coalitions in a book (1979) after he had published some 

articles in French (1974a, 1974b). Butnariu (1978) has also done some similar 

work in extending the concept of coalitions in n-person cooperative games and 

considering the core and the Shapley value (1980); and more recently, he has 

examined fuzzy games with an infinite number of players (1987). To treat the 

concepts of the core and the Shapley value in a unified way, Aubin (1984) defined 

the generalized gradient, which can be regarded as the marginal gains that the 

players receive when they join the coalition of all players. 

Lexicographical solutions such as the nucleolus are considered to be as im­

portant as the core and the Shapley value. Sakawa and Nishizaki (1984) first 

considered such a lexicographical solution in n-person cooperative games with 

fuzzy coalitions, in which they introduced the concept of a player's excess and 

proposed a new lexicographical solution for n-person cooperative games with 

fuzzy coalitions. 

In order to take into consideration ambiguity of decision makers' judgements 

along with uncertainty and imprecision of information of a competitive system 

in cooperative games as well as in noncooperative games, Nishizaki and Sakawa 

(1992a) introduced a fuzzy goal for a coalition payoff, which refers to the sum of 

payoffs of players participating in the coalition, instead of a coalition value, and 
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defined the solution concept based on fuzzy decision rule by Bellman and Zadeh 

(1970). 

The final important factor which should be taken into consideration when 

competitive systems are analyzed is multiplicity of objectives. Games with a 

multiplicity of objectives have thus far been studied as games with multiple 

payoffs and min-max solutions, and equilibrium solutions of the games have 

been defined through a vector optimization criterion such as Pareto optimality. 

Several methods for computing such solutions have been developed specifically 

for two-person multiobjective matrix games. 

Studies of games dealing with a multiplicity of objectives date back to the 

mid- '60s but the few publications examining such games have been mainly limited 

to games in normal form. Finally, this brings us to a review of the research on 

multiobjective games. 

The first researcher to give attention to multiobjective games wa Black­

well, who examined properties of the min-max problems for two-person zero-sum 

multiobjective matrix games (1956). Shapley (1959) presented the definition of 

equilibrium solutions using the concept of Pareto optimality and weak Pareto 

optimality in two-person zero-sum multiobjective matrix games and proved the 

existence of the solutions by finding the correspondence between the multiob­

jective game and a single-objective game aggregated by weighting coefficients. 

Contini, Olivetti and Milano (1966) studied two-person zero-sum multiobjective 

matrix games where one of the two players was Nature. They considered a single 

player's decision making problem in terms of the expected payoff maximization 

and the joint probability maximization whereby Nature would choose a strategy 

given as a prior probability density. Zeleny (1975) analyzed the min-max val­

ues of two-person zero-sum multiobjective matrix games by aggregating multiple 

payoffs to a single payoff by using parametrically varied weighting coefficients. 

Cook (1976) introduced a goal for each of the objectives in two-person zero-sum 

multiobjective matrix games and considered the min-max problems by using the 

goal programming method. 

So far, all of the above mentioned studies are on two-person zero-sum mul­

tiobjective matrix games. Bergstresser and Yu (1977) first considered n-person 

cooperative multiobjective games as a generalization of conventional n-person 
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cooperative games in characteristic function form when they introduced the con­

cept of the multiobjective core and explored its properties. It is regrettable that 

studies on n-person cooperative multiobjective games in characteristic function 

form are hardly carried out so far except in this study in spite of the importance 

of the topic. 

Since the early 1980's, n-person multiobjective games in normal form and 

two-person non-zero-sum multiobjective bimatrix games have also been devel­

oped. For the normal form, Nieuwenhuis (1983) presented a generalization of 

the concepts of min-max, max-min and saddle points for vector valued functions 

using the concept of Pareto optimality. Recently, the following three papers pre­

sented unique investigations in n-person multiobjective games in normal form. 

Wierzbicki (1990) defined equilibrium solutions based on several concepts of vec­

tor optimality such as Pareto optimality, which were defined by order relations in 

terms of preference cones, in n-person multiobjective games with vector-valued 

nonlinear payoff functions. Moreover, he analyzed the relation between equi­

librium solutions of multiobjective games and equilibrium solutions of the proxy 

single-objective game so that payoffs would correspond to the scalarizing function 

values. Charnes, Huang, Rousseau and Wei (1990) considered n-person multi­

objective games with cross-constrained strategy sets, which are for more general 

expressions of games, in normal form and examined equilibrium solutions based 

on nondominated efficiency. Zhao (1991) incorporated a partition of players in 

n-person multiobjective games in normal form and generalized equilibrium prob­

lems by considering them among coalitions derived from the partition. 

In contrast, studies on two-person non-zero-sum multiobjective bimatrix games 

have presented practical methods for computing solutions. Corley (1985) showed 

the method for computing equilibrium solutions for two-person non-zero-sum 

multiobjective matrix games, i.e., two-person multiobjective bimatrix games, by 

computing equilibrium solutions for single-objective games aggregated by weight­

ing coefficients. The approach adopted by Borm, Tiji and Aarssen (1988) was 

more or less the same as the one Corley adopted, but they have given the para­

metric analysis for numerical examples of multiobjective 2 x 2 bimatrix games. 

Ghose and Parsad (1989) introduced a new concept, which is called security lev­

els, in two-person zero-sum multiobjective games and proposed a solution concept 
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incorporating not only the concept of Pareto optimality but also the concept of 

security levels. The concept of security levels is inherent in the definition of min­

max points in two-person single-objective games and can also be understood to 

be one of the desirable properties of solutions for multiobjective games. 

As we mentioned in the review of fuzzy games, two-person zero-sum multi­

objective matrix games in fuzzy environments were examined by Nishizaki and 

Sakawa (1992b). They introduced fuzzy goals and considered the min-max prob­

lems from a viewpoint of maximization of the degree of minimal goal attainm nt. 

So far, we have reviewed both fuzzy games and multiobjective games and have 

found only a couple of studies on games in fuzzy and multiobjective environ­

ments, which are Buckley's and Nishizaki and Sakawa's studies. Buckley (1984) 

however, considered the game as a single player's decision making problern, so 

Nishizaki and Sakawa (1992b) is the only study on games in fuzzy and multiob­

jective environments in the strict sense of the word. 

1.2 Outline of the Thesis 

In the previous section, we have mentioned that analyses using fuzzy set 

theory and/or multiobjective optimization are effective when techniques of game 

theory are applied to a resolution method of conflict problems in competitive 

systems. Studies on fuzzy games, multiobjective games or fuzzy multiobjective 

games have never been fully researched. 

In this thesis, we intend to apply game theory to resolve a conflict problem in 

a competitive system. Since solution concepts of games and their computation 

methods are indispensable for resolution of a conflict problem, the main aim of 

this thesis is to propose solution concepts and their computation methods for 

games in fuzzy and/or multiobjective environments. Noncooperative games and 

cooperative games have been developed nearly independently, however , we are 

studying noncooperative games and cooperative games because both are effective 

resolution tools for conflict problems in a competitive system. 

Chapters 2, 3 and 4 are devoted to investigating the solution concepts and 

their computation methods for noncooperative games. Cooperation among some 

or all of the players is forbidden by the rules of the game in noncooperative 

games. Therefore, when interests of decision makers in a competitive systerTI 
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are in complete conflict, noncooperative games can be an appropriate analysis 

tool for such conflict problems. The principal question for noncooperative games 

is the existence of equilibrium solutions, and in particular, an equilibrium solu­

tion of a two-person zero-sum game is represented as a solution of the min-max 

problem. Since practical methods for computing solutions can be provided in 

two-person noncooperative matrix games, we deal with only two-person matrix 

games in this thesis. 

Chapter 2 is concerned with two- person zero-sum matrix games in fuzzy and 

multiobjective environments. We assume that a player has a fuzzy goal for each 

of the payoffs, which can also be interpreted as a degree of satisfaction for each 

payoff, and examine a max-min strategy with respect to a degree of attainment 

for a fuzzy goal, or in other words, a max-min strategy with respect to a satis­

faction degree for payoffs. First, we review the solution concept of conventional 

two-person zero-sum matrix games and the relation between the solution, i.e., 

a min-max solution, and a linear programming problem. Afterwards, a solution 

concept of two-person zero-sum matrix games in fuzzy environments is examined. 

The solution is called a max-min solution with respect to a degree of attainment 

for a fuzzy goal. Finally, the solution concept is extended to that of games with 

multiple payoffs. Especially when membership functions of fuzzy goals are linear 

functions, it is shown that the solution is equivalent to an optimal solution for a 

linear programming problem. 

In Chapter 3, we consider problems which involve not only ambiguity of de­

cision makers' judgements but also imprecision of payoff representation. When 

competitive systems are modeled as matrix games, entries of the matrix are as­

sessed by utilizing information for the competitive systems. Such information, 

however, is not always precise, but may involve some ambiguity and imprecision. 

We represent entries of the matrix as fuzzy numbers in order to express the ambi­

guity and imprecision of information. Especially when membership functions of 

fuzzy goals and the shape function of fuzzy numbers are given in linear functions, 

it is shown that the max-min solution is equivalent to an optimal solution for a 

mathematical programming problem and also that the solution can be obtained 

by using an algorithm based on the relaxation procedure, Sakawa's method: this 

is based on the bisection method and phase one of linear programming, and the 
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variable transformation. 

Chapter 4 deals with a two-person non-zero-sum multiobjective bimatrix 

game with fuzzy goals, which is a generalization of zero-sum games discussed in 

Chapter 2, and examines equilibrium solutions of the games. Two basic methods, 

which are an aggregation method by weighting coefficients and an aggregation 

method by a minimum component, are employed in order to aggregate multi­

ple fuzzy goals. When membership functions are linear functions, methods for 

computing equilibrium solutions are developed. It is shown that equilibrium so­

lutions are equivalent to optimal solutions for mathematical programming prob­

lems in both cases. This means that we can obtain such solutions by solving the 

mathematical programming problems. Finally, we consider the relation between 

equilibrium solutions with respect to a degree of attainment for the aggregated 

fuzzy goal and Pareto optimal equilibrium solutions defined in Corley (1985), 

Borrn, Tiji and Aarssen (1988) or Wierzbicki (1986, 1990). 

In Chapters 5 and 6, we intend to consider n-person cooperative games in 

fuzzy environments. Cooperative games can be applied to competitive systems 

so that decision makers are not opposed by others but cooperation is permitted. 

A decision problem in such competitive systems can be interpreted as a decision 

problem in which all decision makers cooperate but their interests more or less 

conflict. Cooperative games, as well as the noncooperative games considered in 

the preceding chapters, should be examined under fuzzy environment. 

In Chapter 5, we examine n-person cooperative games with fuzzy coalitions. 

We have to take coalitions into consideration in cooperative games. A player 

participates either wholly or not at all in a coalition in conventional cooperative 

games, but it is more common for a player to participate only partially in a 

coalition. Such a coalition is called a fuzzy coalition. In this chapter, we define 

lexicographical solutions with respect to an excess of a player for conventional n­

person cooperative games and n-person cooperative games with fuzzy coalitions, 

and develop methods for computing the solutions. 

Chapter 6 is devoted to investigating cooperative games in which the value 

representing the worth of a coalition cannot be defined clearly and accurately. We 

introduce fuzzy goals and describe games using fuzzy goals of coalitions instead 

of the value representing the worth of a coalition, and a coalition's fuzzy goal for 
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a payoff can be interpreted as ambiguity of a coalition's judge;nents. A solution 

concept is newly developed for games because the framework of the games differs 

from that of conventional n-person cooperative games and methods of computing 

solutions are shown. 

Finally, in Chapter 7, we discuss the topics on n-person cooperative multi­

objective games in fuzzy environment and mathematical programming problems 

with multiple decision makers incorporating game theoretic approach as further 

research directions. 
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CHAPTER 2 

TWO-PERSON ZERO-SUM MULTIOBJECTIVE 
MATRIX GAMES WITH FUZZY GOALS 

2.1 Introduction 

In this chapter, we examine two-person zero-sum matrix games in fuzzy and 

multiobjective environments. Two-person zero-sum games are essentially nonco­

operative games where the interests of the two players are in total conflict. 

The fuzzy environment considered in this chapter is the ambiguity of the 

players' judgments, which is expressed as the fuzzy goals. We assume that a 

player has a fuzzy goal for each of the objectives which can also be interpreted 

as a player's degree of satisfaction for a payoff. 

Moreover, we take a multiplicity of objectives into consideration. In general, 

a decision making problem under conflict involves multiple attributes such as 

cost, time and productivity. We can make a game theoretic model of a real 

problem with multiple objectives by making a one-to-one correspondence of each 

of the objectives for a payoff. In other words, we take an approach to let each of 

the objectives of the problem correspond to each of the payoffs of the game and 

they are dealt with in games with multiple payoffs. Therefore, the game with 

multiple payoffs can be regarded as the multiobjective game. 

Since each objective has a different unit of measure, vector optimization must 

be considered. However , we can reduce vector optimization problems to scalar 

optimization problems, because we are incorporating fuzzy goals for payoffs, and 

evaluate alternatives through a degree of attainment of a fuzzy goal. Fuzzy 

goals express not only ambiguity of the players' judgment but also provide the 

commensurable unit of measure. 

For two-person zero-sum multiobjective matrix non-fuzzy games, Zeleny (1975) 

introduced a parameter vector, a vector of weighting coefficients, which he varied 

parametrically to analyze such games. Cook (1976) also introduced a goal vector 

and formulated such games as goal programming problems. 
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In this chapter, to accommodate the imprecise nature of hu:nan judgments, 

we suppose that each player has a fuzzy goal for each objective. We introduce 

concepts of max-min solutions with respect to a degree of attainment of a fuzzy 

goal and present methods for computing the solutions (Nishizaki and Sakawa 

1992b, Sakawa and Nishizaki 1992b). 

In section 2.2, we review conventional two-person zero-sum matrix games and 

a min-max solution is determined by solving a linear programming problem. In 

section 2.3, we define a new solution concept maximizing a degree of attainment 

of a fuzzy goal, and it is shown that the problem for calculating the proposed 

solution can be reduced to a linear programming problem when each membership 

function is identified as a linear function or a piecewise linear function. Partic­

ularly when membership functions of both players are symmetric and linear in 

a game with a single payoff, it is proved that the equilibrium property of the 

solution holds. Moreover, the proposed solution is illustrated by the numerical 

example of Cook (1976). 

2.2 Conventional Two-Person Zero-Sum Matrix Games 

Let i E {I, 2, ... , m} be a pure strategy of Player I and j E {I, 2, ... , n} be 

a pure strategy of Player II. 

Definition 2.1 (Zero-sum game) Let 11 be a payoff function of Player 

I and 12 be a payoff of Player II. When Player I chooses a pure strategy i and 

Player II chooses a pure strategy j, let 11(i,j) be a payoff of Player I and f2(i,j) 

be a payoff of Player II. A game is said to be zero-sum if and only if the payoff 

functions satisfy 

(2.1) 

The normal form of a finite two-person zero-sum game can be reduced to a 

matrix 
all a12 aln 

A= 
a21 a22 a2n 

(2.2) 

amI a m 2 a mn 

with as many rows as Player I and as many columns as Player II have strategies. 

Matrix A is called the payoff matrix of the game, and games represented by such 
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payoff matrices are called matrix games. 

Definition 2.2 (Mixed strategy) A mixed strategy x = (Xl, X2,· .. ,xm ) 

for Player I is a probability distribution on the set of his pure strategies and the 

set of mixed strategies for Player I is represented by 

(2.3) 

Similarly, the set of mixed strategies for Player II is represented by 

(2.4) 

Definition 2.3 (Expected payoff) When Player I chooses a mixed strategy 

X and Player II chooses a mixed strategy y, an expected value of the payoff for 

Player I 
m n 

E(x, y) = L L XiaijYj = xAyT (2.5) 
i=l j=l 

is called an expected payoff of Player I, where yT is the transposition of y. (We 

will omit this notation unless a confusion occurs.) 

For a matrix game A, when Player I chooses a mixed strategy x, the worst 

possible expected payoff for Player I is 

V(x) = min xAy. 
yEY 

(2.6) 

Then Player I should choose X so as to maximize v(x) and obtain the payoff 

VI = maxminxAy. 
xEX yEY 

(2.7) 

Such a strategy X is called Player 1's max-min strategy and the payoff VI is called 

the value of the game to Player 1. 

Similarly, Player II's min-max strategy y satisfies 

VII = minmaxxAy, 
yEY xEX 

and the payoff VII is called the value of the game to Player II. 

Theorem 2.1 (The min-max theorem) 

12 
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For a matrix game A, it follows that 

maxminxAy = min max xAy. 
xEX yEY yEY xEX 

(2.9) 

Then a pair of strategies (x·, y*) satisfying the above equation is called an equi­

librium solution. 

Proof This theorem has been proved in many ways. Here we give the proof 

given by Dantzig (cited in Owen 1982 or Thie 1988) which not only demon­

strates the existence of the equilibrium solution but also provides a computa­

tional method for the value of the game. 

First let aij > O. Since the value of the game to Player I is attained by a pure 

strategy, 

m 

VI = max min xAy = max m~n xA,j = max min L aijXi, 
xEX yEY xEX J xEX J i=l 

where A ,j is the jth column of the matrix A. Let u be the minimum of EZ!:1 aijXi 

for some x. Then u is a maximum value satisfying the following n inequalities: 

Therefore V I is the optimal value of the linear programming problem: 

maximize u 

subject to allxl + a2lX2 + .. . + amlXm ~ u 
al2XI + a22X2 + ... + am2Xm ~ u 

alnxl + a2nX2 + ... + amnXm ~ u 
Xl + X2 + ... + Xm = 1 

i = 1,2, ... , m. 

Let x~ = Xi/U, i = 1,2, ... , m . Equivalently, the above linear programming 

problem can be rewritten as 

minimize x~ + x; + ... + x~ 
subject to allx~ + a2lx; + ... + amlX~ 2: 1 

al2x~ + a22 x ; + ... + am2X~ 2: 1 
(2.10) 

" , > 1 alnx I + a2n x 2 + ... + amnxm _ 

X~ ~ 0, i = 1, 2, ... , m. 
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For Player II, we have the following linear programming problem similarly: 

maximize y~ + y~ + ... + y~ 
subject to allY~ + a12Y~ + ... + alnY~ ::; 1 

a21 y~ + a22Y; + ... + a2nY~ ::; 1 

amlY~ + am2Y; + ... + amnY~ ::; 1 
y~ 2: 0, i = 1, 2, ... , n. 

(2.11) 

The problems (2.10) and (2.11) are dual linear programming problems. Therefore 

it follows from the duality theorem that both problems have solutions attaining 

the same optimal value. Let optimal solutions for (2.10) and (2.11) denote x'· 

and y'., respectively. From 

,.,. ,. 1/ 
Xl + x 2 + ... + xm = V I 

and 

I. I. I. 1/ Yl + Y2 + ... + Yn = V I I, 

we have VI = VII. 

Next, s~ppose some entries aij are nonpositive. Let r be any constant such 

that aij + r > 0, Vi, j and consider a game A + r E, where E is the m x n matrix 

whereby all of the entries are 1. For the game A + r E, when Player I chooses a 

mixed strategy X and Player II chooses a mixed strategy y, the expected payoff 

for Player I is xAy + r. Since these expected payoffs xAy and x(A + r E )y differ 

only by the constant r, it follows that the games A and A + r E will have the 

values of the games differing only by this constant and an equilibrium solution 

for the game A will be also an equilibrium solution for the game A + r E. The 

result of the previous case can be applied to the game A + r E because all the 

entries of the matrix A + r E are positive. o 

We find that Player I's minimum gain is equal to Player II's maximum loss and 

can compute the value of the game by solving the linear programming problem 

(2.10) or (2.11) if mixed strategies are dealt with. The equilibrium solution is 

also the max-min solution for Player I and the min-max solution for Player II. 

2.3 Problem Formulation and Solution Concept 
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Consider two-person zero-sum multiobjective matrix games, wpich are repre­

sented by the multiple payoff matrices: 

, (2.12) 

where we assume that each of the two players has r objectives. Pure strategies 

are the rows and the columns of each matrix Ak, k = 1,2, ... , r for Player 

I and Player II, respectively. Namely, when Player I chooses a pure strategy 

i and Player II chooses a pure strategy j, Player I receives the payoff vector 

( atj , a;j, ... , arj ) from Player II. 

We assume that a player has a fuzzy goal for each of the objectives, which 

expresses the player's degree of satisfaction for a payoff. 

Definition 2.4 ( Fuzzy goal) Let a domain of the kth payoff for Player I 

be Dk E R. Then the fuzzy goal/-lk with respect to the kth payoff for Player I is 

a fuzzy set on the set Dk characterized by a membership function 

/-lk : Dk ~ [0,1]. (2.13) 

A membership function value for a fuzzy goal can be interpreted as the degree 

of attainment of the fuzzy goal for the payoff. Then when a player has two 

different payoffs, he prefers the payoff possessing the higher membership function 

value to the other. It means that he is eager to maximize the degree of attainment 

for the fuzzy goal. 

We assume that Player I supposes that Player II will choose a strategy y so 

as to minimize Player I's degree of attainment of the fuzzy goal /-lk(x, y); i.e., 

Player I's degree of attainment of the fuzzy goal, assuming he uses x, will be 

ek(x) = minYEY /-lk(x, y). Hence Player I chooses a strategy so as to maximize his 

degree of attainment of the fuzzy goal ek (x). In short, we assume that Player I 

behaves according to the max-min principle in terms of a degree of attainment 

of his fuzzy goal. 

We usually consider vector optimization for the multiple objectives. However, 

since each of the units of measure for objectives can be transformed to the unit 

of measure of the degree of attainment for the fuzzy goal as a commensurable 
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unit of measure, we can consider max-min problems in terms of maximization of 

the degree of attainment for the aggregated fuzzy goal. 

Definition 2.5 ( The max-min solution with respect to a degree of 

attainment for a fuzzy goal) Let the membership function of the aggre­

gated fuzzy goal for Player I be f.-L(x, y) when Player I and II choose strategies x 

and y, respectively. Then Player 1's max-min value with respect to a degree of 

attainment for the fuzzy goal is 

max min f.-L(x, y), 
xEX yEY 

(2.14) 

and such a strategy x is called the max-min solution with respect to a degree of 

attainment of the fuzzy goal. Similarly, Player II's min-max value with respect 

to a degree of attainment of the fuzzy goal is 

min max Jl (x, y), 
yEY xEX 

(2.15) 

and such a strategy y is called the min-max solution with respect to a degree of 

attainment of the fuzzy goal, where Jl is a membership function for Player II. 

The max-min solution can be considered to be the solution maximizing the 

function, which is the minimal value of the function with respect to the oppo­

nent's decision variables. We assume that a player has no information about his 

opponent or the information is not useful for the decision making if he has it. 

Then a player supposes that his opponent chooses the strategy which makes the 

player's degree of attainment of the fuzzy goal worst and maximizes his degree 

of attainment of the fuzzy goal with respect to his decision variables. 

2.4 Computational Methods 

This section is devoted to developing the methods for computing the max-min 

solution with respect to a degree of attainment of a fuzzy goal in single-objective 

games and multiobjective games. 

2.4.1 Single-Objective Matrix Games with Fuzzy Goals 

Let A = Al and f.-L = f.-LI because we deal with single-objective matrix games 

here. For any pair of strategies (x, y), a membership function f.-L( x, y) of a fuzzy 

goal, which is a function of an expected payoff xAy, is represented as f.-L(xAy). 
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If the membership function for the fuzzy goal /-l( xAy) is a linear function, it 

can be represented as 

I 
0 if xAy:::; Q 

/-l( xAy) = 11 - a; ~:y if Q ~ xAy ~ a 

if a:::; xAy, 

(2.16) 

where Q is the payoff giving the worst degree bf satisfaction to Player I and a is 
the payoff giving the best degree of satisfaction to Player I. 

For example, we can employ the following payoff indices. The index with 

respect to the worst degree of satisfaction of Player I is 

Q = XO Ayo = min min xAy = min min aiJ', 
x Y i j 

(2.17) 

and the index with respect to the best degree of satisfaction of Player I is 

- IA I A a = x y = max max x y = max max aiJ' . 
x Y i j 

(2.18) 

Using these indices, a linear membership function is expressed as follows: 

I 
0 if xAy:::; XO AyO 

Xl Ayl - xAy 
( A) 1 if xOAyo <_ xAy _< xlAyl /-l x Y = - IA I 0A ° x y - x Y 

1 if Xl Ayl :::; xAy. 

(2.19) 

Jl (xAy) 

1.0 

0.0 xAy 

Fig. 2.1 A linear membership function of Player I 

The function means that Player I is not satisfied with an expected payoff 

xAy smaller than XO Ayo, but his degree of satisfaction increases linearly as an 
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expected payoff xAy becomes larger than XO Ayo, and he is satisfied enough with 

an expected payoff xAy larger than Xl Ayl . 

Consider a method for computing a max-min solution with respect to a degree 

of attainment of a fuzzy goal in the case which a membership function of the 

fuzzy goal is a linear function such as (2.16). 

Theorem 2.2 

For two-person zero-sum single-objective matrix games, if a membership func­

tion of a fuzzy goal is a linear function, Player 1's max-min solution with respect 

to a degree of attainment of the fuzzy goal is equal to an optimal solution of the 

following linear programming problem: 

where 

Proof 

maximize A 
subject to 0'1lX1 + 0'21X2 + ... + o'm1Xm + C ~ A 

0'12X1 + 0'22X2 + ... + o'm2Xm + C ~ A 

0'1nX1 + 0'2nX2 + ... + o'mnxm + C ~ A 
Xl + X2 + ... + Xm = 1 

i = 1,2, ... , m, 

and 
a 

c= ----
a-~ 

The max-min problem (2.14) can be transformed into 

max min J.L(xAy) 
x y 

max min (1 _ _ a_~_xA_Y) 
x Y a - a 

m~mjn (ftaij~iYj + c) 
t=l J=l 

m~ mjn ( ~ ~ aijXiYj + ~ YjC) 

m~mjnt (faijXi + C)Yj 
J= l t=l 

mgx m~n (f o'ijXi + c). 
J i=l 

(2.20) 

(2.21) 

(2.22) 

Thus, we can find that the strategy x* satisfying (2.22) is obtained by solving 

the linear programming problem (2.20). 0 

Consider Player II's min-max solution with respect to a degree of attainment 

of a fuzzy goal. The same kind of the membership function can be used for Player 
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II. If the membership function for the fuzzy goal J-l(xAy) is a linear function, it 

can be represented as 

(2.23) 

For example, we can employ the following indices in a similar way. The index 

for the worst degree of satisfaction of Player II is 

a = max max xAy = max max aiJo = Xl Ayl , 
x Y i j 

(2.24) 

and the index for the best degree of satisfaction of Player II is 

{± = min min xAy = min min aiJo = xO Ayo . 
x Y i j 

(2.25) 

Using these indices, a linear membership function is expressed as follows: 

! 
1 if xAy::; XO Ayo 

xAy - Xl Ayl 
( A) 1 if xO Ayo <_ xAy _< Xl Ayl J-l X Y = - IA I 0A ° 

X Y - X Y 
o if Xl Ayl ::; xAy. 

(2.26) 

Il (xAy) 

1.0 

0.0 xAy 

Fig.2 A linear membership function of Player II 

We also assume that Player II behaves according to the min-max principle in 

terms of a degree of attainment for a fuzzy goal. 

Theorem 2.3 
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For two-person zero-sum single-objective matrix games, if a membership func­

tion of a fuzzy goal is a linear function, Player II's min-max solution with respect 

to a degree of attainment of the fuzzy goal is equal to an optimal solution of the 

following linear programming problem: 

Proof 

mInImIze A 
subject to allYl + aI2Y2 + ... + a1nYn + c :S A 

a21 Yl + a22Y2 + ... + a2nYn + c :S A 

amIYl + am2Y2 + ... + amnYn + c :S A 
Yl + Y2 + ... + Yn = 1 
Yj ~ 0, j = 1,2, ... , n. 

The min-max problem (2.15) can be transformed into 

( 
xAy - a) maxmin 1- _ -

Y x a - a 

maxmjn ( - f,.t~jXiYj + 1 - c) 
Y i=lj=l 

max min (- taijYj + 1- c) . 
Y t j=l 

(2.27) 

(2.28) 

The strategy y* satisfying (2.28) is obtained by solving the following linear pro­

gramming problem: 

maXImIze A 
subject to -allYl - a12 Y2 - ... - a1nYn + 1 - c ~ A 

-a21 Yl - a22Y2 - ... - a2nYn + 1 - c ~ A 

-am1Yl - am2Y2 - ... - amnYn + 1 - c ~ A 
Yl + Y2 + ... + Yn = 1 
Yi ~ 0, i = 1,2, ... , n, 

which is equivalent to the linear programming problem (2.27). 

Theorem 2.4 

(2.29) 

o 

For two-person zero-sum single-objective matrix games, let a membership 

function of a fuzzy goal for Player 1 be a linear function such as (2.16) and a 

membership function of a fuzzy goal for Player II be a linear function such as 

(2.23). Then if both of the players behave according to the max-min or min-max 

principle in terms of a degree of attainment of a fuzzy goal, Player 1's degree of 

attainment of the fuzzy goal is equal to Player II's degree of attainment of the 

fuzzy goal. 
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Proof Set 
I Xi . 2 
Xi=~' 1,=1, , ... ,m. 

Then the problem (2.20) can be transformed as f?llows: 

minimize x~ + x~ + ... + x~ 
subject to (0,11 + c)x~ + (0,21 + c)x; + ... + (amI + c)x~ ~ 1 

Similarly, set 

(0,12 + c)x~ + (0,22 + c)x; + ... + (am2 + c)x~ ~ 1 

(a 1n + c)x~ + (a2n + c)x; + ... + (amn + c)x~ ~ 1 
x~ ~ 0, i = 1,2, ... , m. 

I Yj . 1 2 Yj = ~' J = , , ... , n. 

Then the problem (2.27) can be transformed as follows: 

maximize Y~ + Y; + ... + Y~ 
subject to (0,11 + c)Y~ + (0,12 + c)Y; + ... + (a 1n + c)Y~ S; 1 

(0,21 + c)Y~ + (0,22 + c)Y; + ... + (a2n + c)Y~ S; 1 

(amI + c)Y~ + (am2 + c)Y; + ... + (amn + c)Y~ S; 1 
Y; ~ 0, j = 1, 2, ... , n. 

(2.30) 

(2.31 ) 

The problems (2.30) and (2.31) are dual linear programming problems. There­

fore, it follows from the duality theorem that both problems have the same op­

timal values. Thus the degree of attainments of the two players are equal. 0 

Theorem 2.4 means that if a membership function of a fuzzy goal of Player 

I is expressed by (2.16) and a membership function of a fuzzy goal of Player II 

is expressed by (2.23), it is proved that the equilibrium property in terms of a 

degree of attainment of a fuzzy goal holds. 

Next, consider another membership function. In the above mentioned con­

struction method of the linear membership function, only both the maximum 

value and the minimum value in a payoff matrix are employed. However, in a 

piecewise linear function, all entries of the payoff matrix can be used. 

Put all of the entries aij, i = 1,2, ... ,m, j = 1,2, ... ,n of the payoff matrix 

A in an ascending order and let this vector be h = (h1' h2' ... , hmn ). A piece­

wise linear membership function can be identified by assessing pairs {(hI, ml), 
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(h2' m2), ... , (hmn, mmn)}, where ml, I = 1,2, ... , mn are membership values. 

Then the membership function is expressed as follows: 

mn-l 

p,(xAy) = L allxAy - hll + ,BxAy +" 
l=2 

(2.32) 

where al = (tl+ l - tz)/2, l = 2,3, ... ,mn - 1, ,B = (tmn + t2)/2, , = (umn + U2), 

and when hv- l ~ xAy ~ hv, 

~ (xAy) 

1.0 

0 . 0 

(2.33) 

- -- --- ------ --- --- ------ --- ------ ---- -- --- --- --- - --- - - -.~------

xAy 

Fig. 2.3 A piecewise linear membership function of Player I 

From the properties of the membership function (2.32), the max-min strategy 

with respect to a degree of attainment of a fuzzy goal, having a piecewise linear 

function as the membership function, can be obtained by the method in the 

following theorem. 

Lemma 2.5 

Let x be an m-dimensional vector, y be an n-dimensional vector and A be an 

m x n matrix. We assume that p, is a strictly monotone increasing membership 

function. Let (0-*, x*) be an optimal solution of the following problem: 

maximize 0-
subject to p,(xAy) 2 0-, Vy E Y 

Xl + X2 + ... + Xm = 1. 
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Let the other strictly monotone increasing membership function be 

'(xA ) = {J-L(XAY) if Eo:::; xAy :::; El 
J-L y /1,' (xAy) if other. (2.35) 

Then, if an optimal solution of the problem (2.34) is 

the optimal solution fJ of the following problem is equal to a*. 

maximize a 
subject to ;i (xAy) ~ a, Vy E Y (2.36) 

Xl + X2 + ... + xm = 1. 

Proof First we will show that there does not exist an optimal solution for 

(2.36) when El < xAy. Since a* is the optimal solution of the problem (2.34), 

there is no pair of strategies (x, y) such that 

J-L(xAy) > a*. 

Thus J-L(xAy) :::; a* for any X E X and y E Y. 

On the other hand, since J-L'(xAy) is also a strictly monotone increasing mem­

bershi p function, if Eo :::; J-L -1 (a*) = x* Ay :::; El , there is no pair of strategies (x, 

y) such that 

J-L'(xAy) > a*. 

Therefore there does not exist an optimal solution for (2.36) when El < xAy. 

Second, we will show that there does not exist an optimal solution for (2.36) 

when xAy < Eo. Values of the objective function subject to xAy ~ Eo are larger 

than those subject to xAy < Eo. Thus, since the solution (a*, x*) is a feasible 

solution to (2.36), a* is larger than the values of the objective function subject 

to xAy < Eo. Therefore there does not exist an optimal solution for (2.36) when 

xAy < Eo. 

Because of the above facts, there exists an optimal solution for (2.36) when 

Eo :::; xAy :::; E l . Since the problems (2.34) are equivalent to (2.36) when Eo :::; 

xAy :::; E l , it follows that the optimal solution fJ of (2.36) is equal to a*, i.e., 

fJ = a*. 0 

Theorem 2.6 
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When a membership function of a fuzzy goal of Player I is a piecewise lin­

ear function such as (2.32), the max-min strategy is expressed as the following 

problem: 

(

mn-l ) 
maxminl-L(xAy) = max min L CllixAy - hli + /3xAy + r 

x y x y 
l=2 

(2.37) 

Then the max-min strategy satisfying (2.37) can be obtained by solving the 

following linear programming problem with an index v, v = 2,3, ... , mn 

maxImIze A 
subject to tv(aUxI + a2lx2 + ... + amlXm) + Uv ~ A 

tv(al2 x I + a22 x2 + ... + am2Xm) + Uv ~ A 

tv(alnxl + a2n X2 + ... + amnxm) + Uv ~ A 
Xl + X2 + ... + Xm = 1 

i=1,2, ... ,m 

(2.38) 

and testing whether the optimal solution satisfies the condition with an index v, 

v = 2,3, ... ,mn 

h < A* - U v h 
v-I - tv ::; v, (2.39) 

or not at most mn-l times. Namely, there exists the index v such that an optimal 

solution of the linear programming problem (2.38) with an index v satisfies the 

condition (2.39) with an index v, and the optimal solution of the problem (2.38) 

with the index v is equal to the max-min strategy satisfying (2.37). 

Proof When hv- l ::; xAy ::; hv, the problem (2.37) can be reduced to 

max min I-L( xAy) = max min (tvxAY + U v) . 
x y x y 

(2.40) 

If the condition hv- l ::; xAy ::; hv is taken off, the max-min strategy, i.e., the 

strategy x* satisfying (2.40), can be obtained by solving the linear programming 

problem (2.38). 

A membership function of a fuzzy goal of Player I such as (2.32) has mn - 1 

segments of straight lines. Since 0 ::; A ::; 1, we can find the linear programming 

problem (2.38) with the index f) such that the optimal solution (x*, A *) satisfies 

the condition (2.39). Set 
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and 
mn-l 

p/(xAy) = L lXvlxAy - hvl + ,8xAy + ,. 
l=2 

Then, from the Lemma 2.5, the optimal solution x* of the linear programming 

problem (2.38) satisfying the condition (2.39) is the max-min strategy satisfying 

(2.37). Therefore the max-min strategy satisfying (2.37) can be obtained by 

solving the linear programming problem (2.38) ~t most mn - 1 times. 0 

We can also obtain the min-max strategy for Player II by solving the following 

linear programming problem in a similar way: 

maximize A 
subject to tv(a llYl + a12Y2 + ... + a1nYn) + U v 2:: A 

tv(a21 Yl + a22Y2 + ... + a2nYn) + U v 2:: A 

tv(am1Yl + am2Y2 + ... + amnYn) + Uv 2:: A 
Yl + Y2 + ... + Yn = 1 
Yj 2:: 0, j = 1, 2, ... , n. 

2.4.2 Multiobjective Matrix Games with Fuzzy Goals 

(2.41 ) 

Consider a two-person zero-sum multiobjective matrix game, i.e., a two­

person zero-sum game with multiple payoff matrices Ak, k = 1,2, ... , r. We 

assume that a player has a fuzzy goal for each of the objectives which expresses 

the player's degree of satisfaction for a payoff. Let Player 1's membership func­

tion of the fuzzy goal for the kth objective be J-Lk(xAky) for any pair of mixed 

strategies (x, y). 

If the membership function J-Lk(xAk y ) for the fuzzy goal is a linear function, 

it can be represented as 

Il(xAky) = ( 

0 if xAky ::; g/ 

1-
(ik - xAky 

if gk ::; xAky ::; (ik (2.42) (j,k _ gk 

1 if (ik ::; xAky, 

where gk is the payoff · giving the worst degree of satisfaction for Player I with 

respect to the kth objective and (ik is the payoff giving the best degree of satis­

faction for Player I with respect to the kth objective. 

For example, in a manner similar to the single objective case, 

k OAk ° . . Ak .. k g = xk Yk = mIn mIn x Y = m.In m~n aij 
x Y 'J 

(2.43) 
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can be employed as a payoff index for the worst degree of satisfaction of Player 

I with respect to the kth objective and 

-k lAk 1 Ak k a = xk Yk = max max x Y = m?Xm?Xai ' 
x y t J J 

(2.44) 

can also be employed as a payoff index for the best degree of satisfaction of Player 

I with respect to the kth objective. Using these indices, the linear membership 

function is expressed as 

( 

0 lAk 1 Ak 
k( Ak ) Xk Yk - X Y 

J-L x Y = 1 - -X~l A-=----ky-l:-'-'---_-X----:o,--A-k-y-=-O 
k k k k 

1 

if xAky < xO AkyO - k k 

if xO AkyO < xAky < Xl Akyl k k- - k k 

if xlAky~::; xAky. 

(2.45 ) 

In multiple objective cases, the preferable expected payoffs for Player I such 

as maxy xAky, which are chosen by Player II and expected to be at a disadvantage 

for the kth objective for Player II, are more meaningful. In other words, it is 

more possible that Player II would choose the strategy by which his opponent , 

i.e., Player I, could receive a lot of payoff with respect to the kth objective 

because of a trade-off between the kth objective and the other objectives. 

We employ the fuzzy decision rule by Bellman and Zadeh (1970), which is of­

ten used in decision making problems under fuzzy environment, as an aggregation 

rule for multiple fuzzy goals. Then the membership function of the aggregated 

fuzzy goal is expressed as 

(2.46) 

If the membership function is a linear function such as (2.42), it is also expressed 

as 

(2.47) 

where 
k 

~k aij 
a ,, =-~-

tJ (ik _ gk 
and 

ak 
k -

C = - -k k' a -g 
(2.48) 

Consider a method for computing a max-min solution with respect to a degree 

of attainment of the aggregated fuzzy goal in two-person zero-sum multiobjective 

games. 
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Theorem 2.7 

For two-person zero-sum multiobjective matrix games, if membership func­

tions of fuzzy goals are linear functions such as (2.42) and fuzzy goals are aggre­

gated by the fuzzy decision rule, Player I's max-min solution with respect to a 

degree of attainment of the aggregated fuzzy goal is equal to an optimal solution 

of the following linear programming problem: 

maximize A 
subject to ail Xl + a~l X2 + ... + a:nl Xm + c l ~ A 

ai2xl + a~2x2 + ... + a:n2Xm + c l ~ A 

ahXl + a2lx2 + ... + a~lxm + cT ~ A 
a12xl + a22x2 + ... + a~2xm + cT ~ A 

alnxl + a2nX2 + ... + a~nxm + cT ~ A 
Xl + X2 + ... + Xm = 1 

i = 1,2, ... , m. 

(2.49) 

Proof When the fuzzy decision rule is used as an aggregation rule, a max-min 

problem (2.14) can be expressed as 

max min J-L(x, y) = max min min J-Lk(xAky). 
x y x y k 

(2.50) 

From (2.47), 

max min /-L(x, y) = max min min (f t a~xiYj + ck
) 

x y x Y k i=l j=l 
(2.51 ) 

By introducing a new variable Z = (Zl' Z2,"" ZT), L:k=l Zk = 1, the problem 

(2.51) can be expressed as 

max min J-L (x, y) = 
x Y 

m?,n;Jnm}n (f t t ii7j XiYj Zk + t CkZk ) 
i=lj=lk=l k=l 

m?, mJn mjn ( ~ ~ 1; ii~jXiYj Zk + ~ Yj 1; ck 
Zk ) 

m?,minmjn (f t t ii7j XiYj Zk + t t CkYjZk) 
Y i=l j=l k=l j=l k=l 

= m?,mJnmjntt (fa7jXiYjZk + CkYjZk) . 
j=l k=l i=l 
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Furthermore, if we make the transformation 

nT 

Qjk = YjZk, L Qjk = 1, 
jk= l 

then the problem (2.52) is reduced to the following formulation: 

max min J-L(x, y) = 
x. y 

(2.53) 

(2.54) 

Thus, we can find that the strategy X* satisfying (2.54) is obtained by solving 

the linear programming problem (2.49). 0 

We can also obtain the min-max strategy for Player II by solving the following 

linear programming problem in a similar way: 

minimize ). 
subject to O,tlYl + O,t2Y2 + ... + O,tnYn + cl ~ ). 

o'~lYl + o'~2Y2 + ... + o'~nYn + cl ~ ). 

o'~l Xl + o'~2Y2 + ... + o'~nYn + cT ~ ). 

0,21 Yl + o'22Y2 + ... + o'2nYn + cT ~ ). 

o'~lYl + o'~2Y2 + ... + o'~nYn + cT ~ ). 

Yl + Y2 + ... + Yn = 1 
Yj 2: 0, j = 1, 2, ... ,n. 

(2.55) 

Let us consider a piecewise linear function as we do in a single objective case. 

Put all the entries afj , i = 1,2, ... , m, j = 1,2, ... , n, k = 1,2, .. . , r of the r 

payoff matrices in an ascending order and let this vector be hk = (h7, h~, h':m..J , 
k = 1,2, ... , r. A piecewise linear membership function can be identified by 

assessing pairs {(h~, mt), (h~ , m~), ... , (h~n' m~n)}' k = 1,2, .. . , r , where m7, 

l = 1,2, ... ,mn, k = 1,2, ... ,r are membership values. Then the kth member­

ship function is expressed as 

mn-l 

J-Lk(xAky) = L Q~lxAky - h~1 + {3kxAky + ,k, (2.56) 
l=2 
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where ar = (t~l -tn/2, l = 2,3, ... , mn-l , (3k = (t~n +t~)/2, ryk = (u~n +u~) ; 

and when h~_l ~ xAky ~ h~, 

(2.57) 

When membership functions are piecewise linear functions, the max-min 

strategy with respect to a degree of attainment of the aggregated fuzzy goal 

can be obtained by the method in the follC)wing theorem. 

Theorem 2.8 

When membership functions of fuzzy goals of Player I are piecewise linear 

functions such as (2.56) and the fuzzy decision rule is employed as an aggregation 

method for multiple fuzzy goals, the max-min strategy with respect to a degree 

of attainment of the aggregated fuzzy goal is expressed as the following problem: 

max min f-L(xAy) 
x y 

max min min f-Lk (xAy) 
x y k 

mn-l 

max min min ( L a71xAky - h7 1 + (3kxAky + ryk) 
x y k 1=2 

(2.58) 

Then the max-min strategy satisfying (2.58) can be obtained by solving the 

following linear programming problem with an index v, v = 2,3, ... ,mn, 

maximize A 
subject to t~(ailXl + a~lX2 + ... + a:nlXm) + u~ ~ A 

t~(ai2Xl + a~2X2 + ... + a:n2Xm) + u~ ~ A 

(2.59) 

i = 1,2, ... , m, 

and testing whether the optimal solution satisfies the condition with a pair of 

indices v, v = 2,3, ... ,mn and k, k = 1,2, ... ,T, 

(2.60) 
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or not at most (mn - 1 Y times. Namely, there exists the pair of indices v and 

k such that an optimal solution of the linear programming problem (2.59) with 

an index v satisfies the condition (2.60) with a pair of indices v and k; and the 

optimal solution of the problem (2.59) with the index v satisfying the condition 

with the pair of indices v and k is equal to the max-min strategy satisfying (2.58). 

Proof The theorem can be proved by a procedure similar to Theorem 2.6. 0 

We can also obtain the min-max strategy for Player II by solving the following 

linear programming problem with a similar manner: 

maximize A 
subject to t;(o'llYI + 0'12Y2 + ... + o'lnYn) + u; ~ A 

Example 2.1 

t; (0'21YI + 0'22Y2 + ... + 0'2nYn) + u; ~ A 

t~(o'llYI + 0'12Y2 + ... + o'lnYn) + u~ ~ A 
t~(0'2IYl + 0'22Y2 + ... + 0'2nYn) + u~ ~ A 

t~(o'mIYI + o'm2Y2 + ... + o'mnYn) + u~ ~ A 
YI + Y2 + ... + Yn = 1 
Yj ~ 0, j = 1,2, ... ,n. 

(2.61) 

We cite the numerical example by Cook (1976). The multiobjective game 

has three kinds of payoffs and each player has three pure strategies. The three 

payoff matrices are 

~ ] ,and A3 = [~~ -~ ~]. 
-6 -3 1 6 [ 

2 5 1] 
Al = -1 -2 6 , 

o 3-1 
(2.62) 

We can interpret, for example, that Al means cost, A2 means time and A3 means 

productivity. 

By identifying the membership functions as (2.45) and (2.46), we have the 
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linear programming problem such that 

maximize A 
subject to 2/8x I -1/8x2 +1/4 > A 

5/8x I -2/8x2 +3/8x3 +1/4 > A 
1/8x I +6/8x2 -1/8x3 +1/4 > A 

-3/13x I +3/13x3 +6/13 > A 
7/13x I -2/13x2 -1/13x3 +6/13 > A (2.63) 
2/13x I .-6/13x3 +6/13 > A 
8/13x I -2/13x2 +3/13x3 +5/13 > A 

-2/13x I +6/13x2 + 1/13x3 +5/13 > A 
3/13x I +6/ 13x3 +5/13 > A 

Xl +X2 +X3 l. 

The optimal solution of the problem, which is the max-min strategy of Player I, 

is 

Xl = 0.59928, X2 = 0.15027, and X3 = 0.25045. (2.64) 

In this case , the worst degree of attainment of the fuzzy goal for Player I is 

0.38104. On the other hand, the min-max strategy of Player II is 

YI = 0.38462, Y2 = 0.38462, and Y3 = 0.23077, (2.65) 

and his/her worst degree of attainment of the fuzzy goal is 0.38462. 

Let us compare our solution with the solution of Cook who supposed that 

the goal for the matrix Al was 4, the goal for the matrix A 2 was 1, and the goal 

for the matrix A3 was 2; and the weights of objectives were 1, 2, and 2.5. Then 

the max-min strategy of Player I was 

Xl = 0.636024, X2 = 0.157764, and X3 = 0.206211, (2.66) 

and the min-max strategy of Player II was 

YI = 0.0, Y2 = 1.0, and Y3 = 0.0. (2.67) 

We calculated the degree of attainment of the fuzzy goal for Cook's solution. 

The worst degree of attainment of Player I was 0.36235 and of Player II, 0.0. We 

found that the degree of attainment of Cook's solution was smaller than ours by 

0.01869 for Player I, and there was at least one objective with which Player II 

was never satisfied. 
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2.5 Conel usion 

In this chapter, we have reviewed conventional two-person zero-sum matrix 

games, proposed a new solution concept for two-person zero-sum multiobjective 

matrix games incorporating fuzzy goals and developed the methods for comput­

ing the proposed solutions. 

The chapter can be summarized by the following conclusions. 

1) Fuzzy goals have been employed to consider the imprecise nature of human 

judgment in decision making problems under conflict and the problem has been 

expressed in two-person zero-sum multiobjective matrix games with fuzzy goals. 

2) The concepts of the max-min solution and the min-max solution with respect 

to a degree of attainment of a fuzzy goal have been introduced in two-person 

zero-sum multiobjective matrix games. 

3) When membership functions of fuzzy goals can be constructed as linear func­

tions or piecewise linear functions, the methods for computing their solutions, 

formulated as linear programming problems, have been developed. 

4) The identification methods of linear membership functions and piecewise linear 

functions have been proposed by using entries of multiple payoff matrices. 

5) Especially, if membership functions of both players are symmetric and linear 

in a game with a single payoff, it has been proved that the equilibrium property 

holds. 

In general, the max-min value with respect to a degree of attainment of 

a fuzzy goal is not equal to the min-max value with respect to a degree of 

attainment of a fuzzy goal in two-person zero-sum multiobjective matrix games. 

Namely, the max-min solution and the min-max solution are not equilibrium 

solutions. However, when a player has no information about his opponent or 

the information is not useful for the decision making when it is available, the 

behavior based on the min-max principle is one of the most important behavior 

criteria. For equilibrium solutions, we will examine such solutions for two-person 

multiobjective matrix games in more general cases in a later chapter. 
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CHAPTER 3 

TWO-PERSON ZERO-SUM MULTIOBJECTIVE 
FUZZY MATRIX GAMES WITH 'FUZZY GOALS 

3 .1 Introduction 

Chapter 3 is concerned with two-person zero-sum fuzzy matrix games with 

fuzzy goals. We will consider problems which involve not only ambiguity of 

decision makers' judgments but also imprecision of information in the decision 

problem. When a competitive system is modeled as a matrix game, entries of a 

payoff matrix are assessed by utilizing information available on the competitive 

system; however, since such information is not always accurate, we represent en­

tries of the payoff matrix as fuzzy numbers (Dubois and Parade 1980) in order to 

express the ambiguity and imprecision in the information (Sakawa and Nishizaki 

1993). 

Two-person zero-sum multiobjective fuzzy matrix games with fuzzy goals 

and conventional two-person zero-sum matrix games differ by the following three 

points. First, each player has a fuzzy goal for a payoff in order to incorporate 

ambiguity of human judgment. A typical goal is often set for an objective in the 

real world. When a goal for an objective is characterized by a one-point value, the 

difference between the goal value and an achievement value can be interpreted 

as an under-attainment or an over-attainment, which decision makers will try 

to minimize. On the other hand, a fuzzy goal is characterized by a membership 

function mapping a domain of payoffs into the range of the degree of attainment 

of the fuzzy goal, i.e., [0, 1], whereby a player tries to maximize his degree of 

attainment for the fuzzy goal. The fuzzy goal can also be interpreted as a degree 

of satisfaction for a payoff. 

Second, multiple payoffs are considered in games because a decision making 

problem under conflict involves multiple objectives or attributes such as cost, 

time and productivity. Moreover , we correspond each of the objectives of the 

problem to each of the payoffs of the game and deal with them as games with 

multiple payoffs. 
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These two points have already been examined in the games in the preceding 

chapter, but a point newly introduced in this chapter is where a payoff is rep­

resented as a fuzzy number. A payoff matrix with entries represented as fuzzy 

numbers is called a fuzzy payoff matrix. For any pair of strategies, a player 

receives a payoff represented as a fuzzy number, i.e., the strategy itself is not 

fuzzy but the payoffs are fuzzy. For example, when a payoff matrix of a game 

is constructed by information from a competitive system, entries of the payoff 

matrix must be ambiguous if imprecision or vagueness exists in the information. 

Recently, Campos (1989) has explored zero-sum fuzzy matrix games. The 

problem treated by Campos was a game with a single payoff, and the min-max 

problem was formulated using the fuzzy mathematical programming method. 

However, no studies have yet been attempted for zero-sum multiobjective fuzzy 

matrix games, which will be examined in this chapter. 

The problem with non-fuzzy multiple payoffs in the previous chapter is ex­

tended to a problem with fuzzy multiple payoffs, and the max-min problem will 

be examined in terms of a degree of attainment of a fuzzy goal. In section 3.2 

a fuzzy expected payoff is defined, and a degree of attainment of a fuzzy goal 

is considered in games with fuzzy payoff matrices. The max-min solution with 

respect to a degree of attainment of a fuzzy goal is also defined. In section 3.3, 

the methods for computing the solution of a single-objective game and of a mul­

tiobjective game are proposed when membership functions of fuzzy goals and a 

shape function of L-R fuzzy numbers for fuzzy payoffs are linear. An original 

problem for computing the max-min solution is formulated as a nonlinear pro­

gramming problem, but it can be transformed to a linear programming problem 

by making use of the bisection method and phase one of the simplex method 

(Sakawa 1983), the variable transformation (Charnes and Cooper 1962) and the 

relaxation procedure (Shimizu and Aiyoshi 1980). 

3.2 Problem Formulation and Solution Concepts 

Definition 3.1 ( Zero-sum fuzzy matrix game ) When Player I chooses 

a pure strategy i and Player II chooses a pure strategy j, let aij be a fuzzy 

payoff for Player I and -aij be a fuzzy payoff for Player II. The fuzzy payoffs are 
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represented by the L-R fuzzy numbers, i.e., 

(3.1 ) 

where aij is a mean value, elij is a right spread and {3ij is a left spread. The 

two-person zero-sum fuzzy matrix game can be represented as a fuzzy payoff 

matrix: 
al1 aI2 • ain 

A= a2I a22 a2n 
(3.2) 

amI am 2 a mn 

Games defined by (3.2) are called two-person zero-sum fuzzy matrix games. 

When each of the players chooses a strategy, a payoff for ea~h of them is 

represented as a fuzzy number, but their outcome has a zero-sum structure such 

that, when one player receives a gain, the other player suffers an equal loss. 

Two-person zero-sum multiobjective fuzzy matrix games can also be repre­

sented by multiple fuzzy payoff matrices 

(3.3) 

where we assume that each of the two players has r objectives. Then a fuzzy 

expected payoff can be represented by an L-R fuzzy number. A fuzzy payoff can 

be extended to a fuzzy expected payoff by using mixed strategies in a procedure 

similar to the extension from a payoff to an expected payoff. 

Definition 3.2 ( Fuzzy expected payoff ) For any pair of mixed strategies 

x E X and y E Y, the kth fuzzy expected payoff of Player I is defined as the 

fuzzy number 

characterized by the membership function 

(3.5) 

where Dk E R is the domain of the kth payoff for Player 1. 
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Addition and scalar multiplication on L-R fuzzy numbers are used in the 

definition of a fuzzy expected payoff (3.4). 

Definition 3.3 ( Fuzzy goal) Let the domain of the kth payoff for Player 

I be denoted Dk E R. Then the fuzzy goal Gk with respect to the kth payoff for 

Player 1 is defined as the fuzzy set on the set Dk characterized by the membership 

function 

(3.6) 

A membership function value of a fuzzy goal can be interpreted as a degree 

of attainment of the fuzzy goal. Then we assume that, for any pair of payoffs, 

a player prefers the payoff having the greater degree of attainment of the fuzzy 

goal to the other payoff. 

Definition 3.4 ( A degree of attainment of a fuzzy goal) For any 

pair of mixed strategies (x, y), let the kth fuzzy expected payoff for Player I be 

denoted iJk (x, y) and let the kth fuzzy goal for Player I be denoted Gk. Then a 

fuzzy set expressing an attainment state of the fuzzy goal is represented by the 

intersection of the fuzzy expected payoff iJk (x, y) and the fuzzy goal (;k. The 

membership function of the fuzzy set is represented as 

(3.7) 

where p E Dk is a payoff for Player 1. A degree of attainment of the kth fuzzy 

goal is defined as the maximum of the membership function (3.7), i.e., 

~ k (*) I-La(x,y) P = m;x I-L~(x,y) (p) 

m;x{min( I-LEk(X,y) (p), I-Lck(P) )}. 
(3.8) 

A degree of attainment of a fuzzy goal can be considered to be a concept 

similar to a degree of satisfaction of the fuzzy decision by Bellman and Zadeh 

(1970) when the fuzzy constraint can be replaced by the fuzzy expected payoff. 

When Players 1 and II choose strategies x and y, respectively, the degree of 

attainment of the fuzzy goal {t~(i;,iJ) (p*) is determined by (3.8). 

We assume that Player 1 supposes that Player II chooses a strategy y so as 

to minimize Player 1's degree of attainment of the fuzzy goal {t~(i;,iJ)(P*), i.e., 

Player 1's degree of attainment of the fuzzy goal, assuming he uses x, will be 
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Ila(x,y) 

1.0 

Jla (x, y) (p '" ) 

0.0 a 

Fuzzy Goal 

Fuzzy 
Expect;=d Payoff 

· · · · · · 

Fig. 3.1 A degree of attainment of a fuzzy goal 

p 

ek (x) = minYEY {L~(:i;,iJ) (p*). Hence, Player I chooses a strategy so as to maximize 

his degree of attainment of the fuzzy goal ek(x). In short, we assume that Player 

I behaves according to the max-min principle in terms of a degree of attainment 

of his fuzzy goal. 

We usually consider the vector optimization for the multiple objectives, but 

each of the measures for objectives can be transformed to the measure of the 

degree of attainment of the fuzzy goal as a commensurable measure. Thus, we 

can consider max-min problems in terms of maximization and minimization of 

the degree of attainment of the aggregated fuzzy goal. 

Definition 3.5 ( A max-min solution with respect to a degree of at­

tainment of a fuzzy goal) For any pair of mixed strategies (x, y), let 

the aggregated degree of attainment of the fuzzy goal for Player I be denoted 

{La(x,y) (p*). Then Player 1's max-min value with respect to a degree of attainment 

of the fuzzy goal is 

max min {La (x y) (p*), 
xEX yEY , 

(3.9) 

and such a strategy x is called the max-min solution with respect to the degree 

of attainment of the fuzzy goal. 

The max-min solution can be considered to be the solution maximizing the 

function, which is the minimal value of the function with respect to the oppo­

nent's decision variables. We assume that a player has no information about 
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his opponent or the information is not useful for the decision making if he has. 

Player I supposes that Player II chooses the strategy which makes Player l's 

degree of attainment of the fuzzy goal worst, and then Player I maximizes his 

degree of attainment of the fuzzy goal with respect to his decision variables. 

We can also consider Player II's min-max solution with respect to a degree 

of attainment of the fuzzy goal in a similar way. 

3.3 Computational Methods 

We consider the method for computing the max-min solution of a single 

objective game and then extend it to the computational method for the max­

min solution of a multiobjective game. 

3.3.1 Single-Objective FUzzy Matrix Games with FUzzy Goals 

Let A = AI, {; = {;1 and E(x, y) = El(X, y). We assume that membership 

functions of fuzzy goals and a shape function for fuzzy numbers representing fuzzy 

payoffs are linear. A membership function of Player l's fuzzy goal is represented 

as 

{
o if p~g 

/-La (p) = (p - g) / (a - g) if g ~ p ~ a 
1 if g ~ p, 

(3.10) 

where g is the payoff giving the worst degree of satisfaction to Player I and a is 
the payoff giving the best degree of satisfaction to Player 1. Namely, Player I is 

not satisfied by a payoff less than g but is fully satisfied by a payoff greater than 

a. Let a shape function for fuzzy numbers be 

L(p) = R(p) = max(O, 1 - Ipl). (3.11 ) 

When Players I and II choose pure strategies i and j, respectively, a payoff for 

Player I is represented as the fuzzy number aij = (aij, aij, (3ij) LR characterized 

by a membership function 
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aij - aij ~ P ~ aij 

a"<p<a ' +{3" tJ - - tJ tJ 

aij + {3ij ~ p. 

(3.12) 



Theorem 3.1 

Let a membership function of a fuzzy goal and a shape function of L-R fuzzy 

numbers for fuzzy payoffs be linear functions such as (3.10) and (3.12). A solution 

for the max-min problem with respect to the degree of attainment of the fuzzy 

goal 

maxminmaxmin( fLE(XY)(P), fLc(P) ) 
xEX yEY P , 

(3.13) 
. 

is equal to an optimal solution of the following nonlinear programming problem: 

maximize a 
(x ,a) 

subject to 

m n 

L L(aij + (3ij)XiYj - g 
i=l j=l 

m n 

L L(3ij XiYj + a - g 
i=l j=l 

m 

LXi = 1, 
i=l 

Vy E Y (3.14) 

when the optimal solution a* satisfies 0 :::; a* :::; 1. The problem (3.14) is a 

nonlinear programming problem which has decision variables Xi, i = 1,2, ... ,m 

and a, and has an infinite number of inequality constraints and one equality 

constraint. 

Proof For any pair of mixed strategies X and y, Player 1's degree of attainment 

of the fuzzy goal is represented as 

fLa(x,y) (p*) = m;xmin( fLE(x,y)(p), fLc(P) ) 
m n m n 

L L aijXiYj + L L (3ij XiYj - g 
i=l j=l i=l j=l 

m n 

a - g + L L (3ij XiYj 
i=l j=l 

(3.15) 

and the payoff corresponding to the degree of attainment becomes a function of 

X and y, i.e., 
m n 

L 2:: ((a - g)aij + a(3ij XiYj) 

p* (x, Y) = _i=_1_j_:_1_n --------

L L (3ij XiYj + a - g 
i=1 j=1 

(3.16) 

Therefore, the max-min problem with respect to the degree of attainment of the 
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fuzzy goal is represented as 

max min maxmin( J-lE(xy)(P),J-lc(p)) xEX yEY P , 
m n m n 

L L aijXiYj + L L {3ij X iYj - Q 
. i=1 j=l i=1 j=1 

max mIn ------m-n-----­
xEX yEY 

(3.17) 

i=l j=l 

Since the constraints of maximizing decision variable x and the minimizing 

decision variable Y in the problem (3.17) are separated each other, the max-min 

solution can be determined by solving the following mathematical programming 

problem by introducing an auxiliary variable a: 

maximize a 
(x,a) 

subject to 

Since the condition 

i=1 j=l 

in (3.18) is equivalent to the following condition 

m n 

L L(aij + {3ij)XiYj - Q 
i=l j=1 

m n 

LL{3ijXiYj +a - Q 
i=1 j=1 

~ a, Yy E Y, 

the problem (3.18) is equivalent to the problem (3.14). 

(3.18) 

(3.19) 

(3.20) 

o 

If a < 0, the max-min value becomes 0, and, if a > 1, it becomes 1. From 

the following inequalities 

m n 

L L (aij + (3ij )XiYj ~ ~in( aij + (3ij) ~ m 
i=l j=l (t,)) 

(3.21) 
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and 
m n 

L L aijXiYj :::; max aij ~ M, 
i=l j=l (t,)) 

(3.22) 

sufficient conditions such that the optimal solution a* of the problem (3.14) 

satisfies 0 :::; a* :::; 1 are 

(3.23) 

and 

M:::;a. (3.24) 

Since the constraints of maximizing decision variable x and the minimizing 

decision variable Y in the problem (3.17) are separated each other, we can calcu­

late the max-min solution defined in the previous section by applying the method 

based on the relaxation procedure by Shimizu and Aiyoshi (1980). 

Consider the following relaxed problem for the problem (3.14) by taking L 

points Y;, l = 1,2, ... , L satisfying Ej=l Y; = 1. 

maximize a 
(x,a) 

subject to 

m n 

L L(aij + !3ij)XiY; - Q 
i=lj=l 

m n 

L L !3ij XiY] + a - Q 
i=l j=l 

m 

LXi = 1. 
i=l 

l=1,2, ... ,L (3.25) 

Let an optimal solution of the relaxed problem (3.25) be denoted (XL, a L
). 

If (xL, a L ) is feasible for the original problem (3.14), it must be optimal for 

(3.14). The test for feasi bili ty (i. e., whether the optimal solution (xL, a L ) of the 

relaxed problem (3.25) is feasible for the original problem (3.14) or not) and the 

generation of the most violated constraint can be accomplished by solving the 

following minimization problem: 

minimize 
y 

m n 

L L(aij + !3ij)xfYj - Q 
i=l j=l 

m n 

L L !3ijxfYj + a - Q 
i=l j=l 

n 

subject to L Yj = 1. 
j=l 
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Let an optimal solution of the minimization problem (3.26) be denoted yL+1 

~ f)(x L
). If (XL, f)(x L

), (JL) satisfies the constraints of the original problem (3.14), 

it must be optimal for (3.14). If it does not satisfy them, add the constraint 
m n 

L L(aij + (Jij)Xiyf+ 1 
- fJ 

i=l j=l 
m n 

L L (Jij Xiyf+1 + a - Q, 
i=l j=l 

(3.27) 

to the relaxed problem (3.25) and solve it again. The constraint (3.27) violates 

the constraint of the original problem (3.14) to the greatest extent. The opti­

mal solution of the original problem (3.14) can be obtained by repeating this 

procedure in a finite number of iterations (Shimizu and Aiyoshi 1980), but it 

is supposed that solving the relaxed problem (3.25) is difficult because it has 

nonlinear constraints. 

However, we can reduce the relaxed problem (3.25), which is a linear frac­

tional programming problem, to a linear programming problem by using Sakawa's 

method (1983). His method is based on the bisection method, which searches for 

a solution by repeatedly dividing the range of the variable into two parts, and 

phase one of the simplex method, which tests feasibility of a linear programming 

problem and finds a feasible solution if it is feasible. 

The variable (J in the relaxed problem (3.25) satisfies the condition 0 :::; (J :::; 1 

because the variable (J corresponds to the max-min value with respect to a degree 

of attainment of a fuzzy goal. Let (J = fJ, where fJ is a constant value in [0, 1]. 

Then the constraints of the relaxed problem (3.25) become as follows: 

f I=r aij + !3ij )XiY] - Q ::0: iT ( f t !3ijXiY; + a - Q ) , I = 1, 2, ... , L 
i~/ j=l i=l j=l (3.28) 

LXi = 1. 
i=l 

The test for feasibility (i.e., whether the problem with the constraints (3.28) 

is feasible or not) can be accomplished by using phase one of the simplex method. 

If it is feasible, renew the constant value fJ as follows: 

~ ~ 1 ~ 
(J f- (J + -(J. 

2 

If it is not feasible, renew the constant value fJ as follows: 

~ ~ 1 ~ 
(J f- (J - -(J. 

2 
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Then the test for feasibility is executed again after renewing the constant value a. 
We can find the maximal constant value a by repeating this procedure in a finite 

number of iterations. Then the feasible solution x* and the maximal constant 

value a must be the optimal solution (x*, (j* = a) of the relaxed problem (3.25). 

For this method, when (j = 0 and t he problem (3.25) is not feasible, i.e., an 

optimal value of the problem (3.25) is less than 0, the max-min strategy cannot 

be determined. However, by resetting -the lower limit of the domain of (j to a 

value smaller than 0, the max-min strategy for which the degree of attainment 

of the fuzzy goal is 0 can be determined. 

The minimization problem (3.26), which generates the most violated con­

straint, can be reduced to a linear programming problem by using the variable 

transformation by Charnes and Cooper (1962). Set 

and 

The minimization problem (3.26) can be rewritten as follows: 

minimize 
(z ,t) 

m n 

~ ~(a .. + {3. ·)x~z · - a t 
~ ~ lJ lJ t J -
i=l j=l 

n 

subject to L Zj = t 
j=l 
m n 

I: I: J3ijxfzj + (0; - g) t = 1. 
i=l j=l 

(3.31) 

(3.32) 

(3.33) 

The problem (3.33) is a linear programming problem which has decision variables 

Zj, j = 1,2, ... ,n and t, and has two equality constraints. 

Thus we can obtain the max-min solution with respect to a degree of at­

tainment of a fuzzy goal by repeating the following procedure. i) Compute an 

optimal solution of the relaxed problem (3.25) by the combined use of the bi­

section method and phase one of the simplex method and ii) solve the linear 

programming problems to which the minimization problem (3.26) is reduced by 

the variable transformation. 

The algorithm for computing the max-min solution of fuzzy single-objective 

matrix games can be summarized in the following steps. 
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Algorithm 3.1 

[ Step 1 ] 

Identify the fuzzy goal for the payoff. Choose any initial point yl E Y and 

set l = 1. Then formulate a relaxed problem (3.25), which is a linear fractional 

programming problem. 

[ Step 2 ] 

Formulate the constraints (3.28) by setting a = a in the constraints of the 

relaxed problem (3.25) . Compute an optimal solution (x* , a*) by making use of 

the bisection method and phase one of the simplex method. Then set XL = x*. 

[ Step 3 ] 

Formulate the minimization linear programming problem (3.33) with XL . 

[ Step 4 ) 

Solve the problem (3.33) and obtain an optimal solution (z*, t* ). Let the 

objective function value be denoted ¢(z* , t*). 

[ Step 5 ] 

If ¢( z* , t*) ~ a* + c, terminate, where c is the predetermined constant. Then 

xL is a max-min solution with respect to a degree of attainment of a fuzzy goal. 

Otherwise, i.e., if ¢(z* , t*) < a* + c, set l = l + 1 and go back to [ Step 2 ]. 

Theorem ·3.2 

For any given c > 0, the above algorithm for the max-min problem (3.17) 

terminates in a finite number of iterations. 

Proof The theorem can be proved by a procedure similar to the theorem 

(Shimizu and Aiyoshi) in the Appendix. 0 

We can also obtain Player II's min-max solution with respect to a degree of 

attainment of a fuzzy goal in a similar way. 

The computational method for the max-min solution has been given by Al­

gorithm 3.1 , which utilizes Sakawa's method, Shimizu and Aiyoshi's relaxation 

procedure, and Charnes and Cooper's variable transformation. We now present 

the other method for computing the solution. We observe that the constraints 

of the linear programming problem (3.33) consist of two equalities. This means 

that two decision variables become basic variables and the rest of n - 1 decision 

variables are non-basic variables, i.e., n - 1 decision variables of an optimal solu-
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tion become 0. Moreover, from the constraints of the problem (3.33), it follows 

that t =1= 0. If t = 0, we have 

m n 

L L J3ijxfzj = 1,· (3.34) 
i=l j=l 

and at least one Zj becomes positive. This contradicts the first constraint. Thus, 

for a certain 3, Z3 =1= 0, and, for the re~t of j =1= 3, Zj = 0. Therefore, an optimal 

solution of the problem (3.33) is restricted by n possible cases, and it is found 

that the solution can be obtained by at most n iterations. This is another proof 

of Theorem 3.2. 

FUrthermore, from the variable transformation (3.32) and z] = t, we have 

{
I if j = 3 

Yj = ° other. 
(3.35) 

Therefore, since the first constraint of the original problem (3.14) can be replaced 

with n inequities, the problem (3.14) is equivalent to the following problem: 

maximize a 
(X,C7) 

m 

L(ail + J3idxi - Eo 
subject to ~i=-:::,:,~ ______ _ 

L J3i1 Xi + E1 - Eo 
i=l 
m 

L(ai2 + J3i2)Xi - Eo 
i=l 

m 

L J3i2 Xi + El - Eo 
i=l 

m 

L(ain + J3in)Xi - Eo 
i=l 

m 

L J3in x i + El - Eo 
i=l 

m 

LXi = 1. 
i=l 

(3.36) 

From the above examination, an optimal solution of the problem (3.36) can be 

obtained by utilizing only Sakawa's method. Since the number of constraints 

of the problem (3.36) is determined by the number n of Player II's strategies, 

the above method is more efficient than the computational method utilizing the 

relaxation procedure, Algorithm 3.1, when n is not large. 
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3.3.2 Multiobjective Fuzzy Matrix Games with Fuzzy Goals 

Consider two-person zero-sum multiobjective fuzzy matrix games, i.e., two­

person zero-sum games with multiple fuzzy payoff matrices }ik, k = 1,2, ... , r. 

We assume that a player has a fuzzy goal for each of the objectives, which ex­

presses the player's degree of satisfaction for a payoff. Let Player I 's membership 

function of the fuzzy goal for the kth objective be denoted I-Lck (pk) for any payoff 

pk. 

When the membership function I-Lck (pk) of the fuzzy goal is a linear function, 

it can be represented as 

JLC.(pk) = 1 
0 if pk ::; gk 

1-
(lk _ pk 

if gk ::; pk ::; (lk (3.37) (lk _ gk 

1 if (lk ::; pk, 

where, for the kth objective, gk is the payoff giving the worst degree of satisfaction 

for Player I and (lk is the payoff giving the best degree of satisfaction for Player 1. 

Moreover, when the membership function I-La~ . (pk) of the entry afj , which is 
'1 

a fuzzy number, of the fuzzy payoff matrix }ik for the kth objective is a linear 

function, it can be represented as 

l'f k < k k 
P k - aik - ai~ k 

if a ·· - a ·· < p < a · 

l
'f }! }! - k fJV a ·· < p < a ·· + .. tJ - - ~ tJ 

if a~j + fJt ::; p . 

(3.38) 

In general, the degree of attainment of the fuzzy goal can be represented as 

the following vector expression: 

~~xmin( I-L£l(X>Y) (pl), I-Lcl(pl) ) 

~cpcmin( I-L£2(x>y)(p2), I-LC2(p2) ) 

~c;xmin( I-L£r(x>y) (pT), I-Lcr(pT) ) 

(3.39) 

For such a problem, we employ the fuzzy decision rule by Bellman and Zadeh 

(1970), which is often used in decision making problems in fuzzy environments, 

as an aggregation rule of multiple fuzzy goals. Then the membership function of 

the aggregated fuzzy goal is expressed as 

(3.40) 
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Theorem 3.3 

Let membership functions of fuzzy goals and a shape function of L-R fuzzy 

numbers for fuzzy payoffs be linear functions such as (3.37) and (3.38). A solution 

for the max-min problem with respect to the degree of attainment of the fuzzy 

goal 

max min min max mi~( I-l Ek (x y) (pk), 1-l6k (pk) ) (3.41) 
xEX yEY k pk ' 

is equal to an optimal solution of the following nonlinear programming problem: 

maximize a 
(x,a-) 

subject to 

m n 

L L (a~j + {Jt )XiYj - (Jk 

i=1 j=l 
m n 

L L f3tXiYj + ak 
- gk 

i=1 j=l 
m 

LXi = 1, 
i=l 

~ a, Vy E Y, k = 1, 2, ... , r (3.42) 

when the optimal solution a* satisfies a ~ a* ~ 1. The problem (3.42) is a 

nonlinear programming problem which has decision variables Xi, i = 1, 2, ... ,m 

and a, and has an infinite number of inequality constraints and one equality 

constraint. 

Proof For any pair of mixed strategies X and y, Player I's degree of attainment 

of the fuzzy goal is represented as 

I-la(x,y) (p*) = minmaxmin( I-lEk(Xy)(pk), 1-l6k(pk) ) 
k pk ' 

m n m n 

L L a~jXiYj + L L {JtXiYj - (Jk 
. i=lj=1 i=lj=1 

- mIn m n 

k -k k "" k a - (J + ~ ~ {JijXiYj 

(3.43) 

i=l j=1 

Therefore, the max-min problem with respect to the degree of attainment of the 

fuzzy goal is represented as 

max min min max min ( I-l E;k (x y) (pk) , 1-l6k (pk) ) 
xEX yEY k pk , 

m n m n 

L L a~jXiYj + L L {Ji~XiYj - gk 
. . i=1 j=l i=l j=1 

max mIn mIn m n 
xEX yEY k -k k " " {Jk 

a - (J + ~ ~ ijXiYj 

(3.44) 

i=I j=l 
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Since the constraints of maximizing decision variable x and the minimizing 

decision variable Y in the problem (3.44) are separated each other, the max-min 

solution can be determined by solving the following mathematical programming 

problem by introducing an auxiliary variable a: 

maximize a 
(x,O") 

subject to 

Since the condition 

in (3.45) is equivalent to the following conditions: 

m n 

L L(aij + f3ij)XiYj - g 
i=1 j=1 

m n 

L L f3ij XiYj + a; - g 
i=1 j=1 

Vy E Y, k = 1,2, ... , T, 

the problem (3.45) is equivalent to the problem (3.42). 

(3.45) 

(3.46) 

(3.47) 

o 

Determined by a method similar to a single-objective game, sufficient condi­

tions such that the optimal solution a* of the problem (3.42) satisfies 0 ::; a* ::; 1 

are 

min(ak
. + f3~. ) ~ m k > a\ k = 1,2, ... ,T (i,j) tJ tJ - -

(3.48) 

and 

max a7
J
· ~ Mk < a;k, k = 1,2, ... ,T. (i,j) - - (3.49) 

The constraints of maximizing decision variable x and the minimizing decision 

variable Y in the problem (3.44) are separated each other, so we can calculate 

the max-min solution with respect to a degree of attainment of a fuzzy goal by 

applying the method based on the relaxation procedure by Shimizu and Aiyoshi 
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(1980) in a process similar to a single-objective case. However, although the 

problem (3.44) is still a max-min problem, it has an extra min operator. Thus 

we have to revise the algorithm by the relaxation procedure. 

Consider the following relaxed problem for the original problem (3.42) by 

taking L points Y;, l = 1,2, ... , L, satisfying 'Lj=1 Y; = 1: 

maximize (7 
(x,O") 

m n 

L L(a:j + f3t)XiY; - gk 

subject to i=1 j=l l = 1,2, . .. , L, k = 1,2, ... , r m n 

L L f3t XiY; + (lk - fl 
i=l j=1 

m 

LXi = l. 
i=1 

(3.50) 

Let (7 = CJ, where CJ is a constant value in [0,1]. Then the constraints of the 

relaxed problem (3.50) become as follows: 

m n 

L L(at + f3t)XiY; - gk 
i=1 j=1 

> fJ (~~ {3~. x·yl. + (lk - ak ) - ~~ 1J t J -, 
i=1j=1 

l = 1,2, ... ,L, k = 1,2, ... ,r (3.51 ) 
m 

LXi = l. 
i=l 

We can find the maximal constant value fJ satisfying the constraints (3.51), so it 

follows that the pair of the feasible solution x* and the maximal constant value 

fJ must be an optimal solution (x*, (7* = fJ) of the relaxed problem (3.50). 

The r minimization problems for the test of feasibility and the generation of 

the most violated constraint are represented as follows: 

minimize 
y 

m n 

L L(a:j + f3t)xfYj - gk 
i=1 j=1 

m n 

'" '" f3~. x~y· + (lk - ak 
~ ~ 'J , J -
i=l j=1 
n 

subject to L Yj = 1 
j=l 

k = 1,2, ... , r. (3.52) 

The above minimization problems (3.52) can be reduced to linear programming 

problems by using the following variable transformations. Set 

l/(ft f3tx fYj+lik
- g,k) =tk, k=1,2, ... ,r, 

t=1 J=1 
(3.53) 
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and 

yjtk = Z;, k = 1,2, ... , r. (3.54) 

The minimization problem can be represented as the following r linear program­

ming problems: 

minimize 
(zk,tk) 

subject to 

m n 

""(a~. + f3~. )x~z~ - ak t k 
L L tJ tJ t J -
i=1 j=1 

n 

I:z; = t k 

j=1 
m n 

L L f3t x fz; + (a - g) t k = 1. 
i=1 j=1 

k = 1,2, ... , r. (3.55) 

The kth problem in (3.55) is a linear programming problem which has decision 

variables zj, j = 1, 2, ... ,n and tk, and has two equality constraints. Since 

there are r problems, the test for feasibility for the original problem and the 

generation of the most violated constraint can be accomplished by solving the 

r linear programming problems and finding the problem having the smallest 

optimal value. 

The algorithm for computing the max-min solution of fuzzy multiobjective 

matrix games can be summarized in the following steps. 

Algorithm 3 .2 

[ Step 1 ] 

Identify r fuzzy goals for payoffs. Choose any initial point yl E Y and set 

= 1. Then formulate a relaxed problem (3.50), which is a linear fractional 

programming problem. 

[ Step 2 ] 

Formulate the constraints (3.51) by setting a = ff in the constraints of the 

relaxed problem (3.50). Compute an optimal solution (x*, a*) by making use of 

the bisection method and phase one of the simplex method. Then set XL = x* . 

[ Step 3 ] 

Formulate r minimization linear programming problems (3.55) with XL. 

[ Step 4 ] 

Solve r problems (3.55) and obtain r optimal solutions (zk*, tk*), k = 1,2, ... ,r. 

Let each of the minimal objective function values be denoted ¢k(zk* , tk*), k = 

1 2 d h I Aok( k- k·) . Aok( k* k*) , , ... , r an t en et!.f' z ,t = m1nk!.f' z ,t . 
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[ Step 5 ] 

If q/c(zk*, t k*) ~ (J"* + c, terminate, where c is the predetermined constant. 

Then XL is a max-min solution with respect to a degree of attainment of a fuzzy 

goal. Otherwise, i.e., if q/c (zk* , tk*) < (J"* + c, set l = l + 1 and go back to [ Step 

2 ]. 

Theorem 3.4 . 
For any given c > 0, the above algorithm for the max-min problem (3.41) 

terminates in a finite number of iterations. 

Proof The theorem can be proved by a procedure similar to the theorem 

(Shimizu and Aiyoshi) in the Appendix. 0 

We can also obtain Player II's min-max solution with respect to a degree of 

attainment of a fuzzy goal in a similar way. 

Along the lines of the single-objective game, from the property of the con­

straints of the linear programming problem (3.55), the problem (3.42) is equiva­

lent to the following problem: 

maximize (J" 
(x,O" ) 

m 

L(a:1 + f3:1)Xi - [Jk 

subject to i=~ ~ (J", k = 1,2, ... , r 

L f3:1Xi + ak 
- g/ 

i=l 
m 

L(a:2 + f3~)Xi - [Jk 
i=l 

m 

~ f3~ X · + (ik - ak 
~ t2 t -

i=l 

m 

L(a:n + f3:n)Xi - gk 
i=l 

m 

~ (3~ X · + (ik - a k 
~ tn t -

i=l 
m 

LXi = 1. 
i=l 

~ (J", k = 1,2, ... ,r 

~ (J", k = 1,2, ... ,r 

(3.56) 

The number of the constraints of the problem (3.56) is nr + 1, which becomes 

larger as the numbers of Player II's strategies and objectives increase. Therefore, 

the method that includes the relaxation procedure, Algorithm 3.2, is considered 

to be efficient when the numbers of Player II's strategies and objectives are large. 
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Example 3.1 

Consider a numerical example based on Cook's example (1976). Let each 

player have three pure strategies and three objectives, and let a two-person zero­

sum multiobjective game be represented by 

-1 [ (2,0.2,0.2), (5,0.5,.0.5), (1,0.8,0.8) ] 
A = (-1,0.8,0.8), (-2,0.4,0.4), (6,0.1,0.1) , 

(0,0.1,0.1), (3,0.5,0.5), (-1,0.8,0.8) 

[ 

(-3,0.8,0.8), (7,0.3,0.3), (2,0.4,0.4) ] 
;P = (0,0.5,0.5), (-2,0.2,0.2), (0,0.7,0.7) , 

(3,0.4,0.4), (-1,0.8,0.8), (-6,0.5,0.5) 

and 

[ 

(8,0.1,0.1), (-2,0.5,0.5), (3,0.7,0.7)] 
A3 = (-5,0.5,0.5), (6,0.4,0.4), (0,0.6,0.6) . 

(-3,0.8,0.8), (1,0.6,0.6), (6,0.1,0.1) 

Let fuzzy goals C 1 , C2 and C3 of Player I for the three objectives be repre­

sented by the following linear membership functions: 

/LCI (pi) = { ?pl + 1)/7.5 
if pI ::; -1 
if -1 ::; pI ::; 6.5 
if 6.5::; pI, 

/LC2 (p2) = { ?p2 + 2) /7.5 
if p2 ::; -2 
if -2 ::; p2 ::; 5.5 
if 5.5 ::; p2, 

and 

/Lc3(p3) = { ?p3 + 1)/6.8 
if p3 ::; -1 
if -1 ::; p3 :::; 5.8 
if 5.8:::; p3. 

We computed the max-min solution by two methods, which were Algorithm 

3.2 and the method directly solving the problem (3.56) by Sakawa's method, and 

obtained the same solution: 

Xl = 0.51976, X2 = 0.23447, and X3 = 0.24577. 

The degree of attainment of the fuzzy goal for the max-min solution was 0.22252. 

In Algorithm 3.2, we set the initial value at Yl = 0, Y2 = 1, Y3 = 0, and the 

number of iterations was three times. 

3.4 Conclusion 
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In this chapter, we treated games with fuzzy payoffs in the framework exam­

ined in Chapter 2 and developed the computational methods for the solutions. 

To conclude, the results of this chapter are summarized as follows. 

1) In two-person zero-sum multiobjective matrix games, we have represented 

entries of payoff matrices as fuzzy numbers in order to express ambiguity and 

imprecision of information about decision making problems under conflict. 

2) To consider the imprecise natur·e of human judgment, we have employed fuzzy 

goals, as we did in the previous chapter, and have expressed competitive systems 

as two-person zero-sum multiobjective fuzzy matrix games wit h fuzzy goals. 

3) When membership functions of fuzzy goals and a shape function of fuzzy 

number entries in a fuzzy payoff matrix can be constructed as linear functions, 

a method that utilizes three techniques for computing the solutions has been 

developed. The first technique is Sakawa's method, which is based on the bisec­

tion method and phase one of the simplex method for solving nonlinear problems 

which have a variable with a closed admissible interval in nonlinear terms. The 

second technique is the variable transformation by Charnes and Cooper, which 

is used to transform linear fractional terms to linear ones. The third technique 

is the relaxation procedure for min-max problems by Shimizu and Aiyoshi. 

Chapters 2 and 3 have been devoted to examining two-person zero-sum games 

with single and multiple payoffs. We have considered max-min solutions of such 

games and have developed the computational methods for their solutions. The 

next chapter will deal with more general two-person games; i.e., two-person non­

zero-sum games with single and multiple payoffs for which equilibrium solutions 

of the games will be considered. 
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CHAPTER 4 

TWO-PERSON NON-ZERO-SUM MULTIOBJECTIVE 
BIMATRIX GAMES WITH FUZZY GOALS 

4.1 Introduction 

So far we have examined only zero-sum games. In this chapter, we consid r a 

two-person non-zero-sum bimatrix game with single and multiple payoffs, which 

is a generalization of the games discussed in the previous chapters. Such a game 

would be called a non-zero-sum or general-sum game which includes t he zero­

sum game as a special case, and is also referred to as a bimatrix game becaus it 

can be expressed as a pair of payoff matrices. Cooperation between the players 

can be seen in such situations, but in this chapter the noncooperative case will 

be treated. A max-min solution is also an equilibrium solution in a conventional 

two-person zero-sum game, but a max-min solution with respect to a degree of 

attainment of a fuzzy goal does not always possess the equilibrium property. 

The max-min solution is considered to be more conservative than equilibrium 

solutions (Nash 1951). 

For studies on equilibrium solutions of multiobjective games, Wierzbicki (1990) 

defined equilibrium solutions based on order relations, using several preference 

cones and optimality criteria such as Pareto optimality for noncooperative mul­

tiobjective n-person games with nonlinear payoff functions. Furthermore , he 

theoretically analyzed relations between equilibrium solutions for multiobjective 

games and equilibrium solutions for single-objective proxy games with payoffs 

equal to scalarizing functions. Corley (1985) defined equilibrium solutions for 

multiobjective bimatrix games by using R~ \ {O} as a preference cone and devel­

oped a method for computing the solutions. Borm, Tijs and van den Aarssen 

(1988) defined a proxy single-objective game with payoffs equal to a scalariz­

ing function with weighting coefficients in multiobjective bimatrix games and 

discussed the existence of equilibrium solutions for the original multiobjective 

bimatrix games through the existence of the equilibrium solutions for the single 

54 



objective proxy game. No studies, however, have ever been tried for performing 

multiobjective games in fuzzy environments. 

We will examine equilibrium solutions in terms of a degree of attainment of 

a fuzzy goal for games in fuzzy and multiobjective environments (Nishizaki and 

Sakawa 1993). First, we introduce a fuzzy goal for a payoff in order to incorporate 

ambiguity of human judgments and assume that a player tries to maximize his 

degree of attainment of the fuzzy· goal as we did in the previous chapters. 

In section 4.2, a fuzzy goal for a payoff and the equilibrium solution with 

respect to a degree of attainment of the fuzzy goal are defined. In section 4.3, 

two basic methods, one by weighting coefficients and the other by a minimum 

component, are employed to aggregate multiple fuzzy goals. When membership 

functions are linear functions, the computational methods for the equilibrium 

solutions are developed. It is shown that the equilibrium solutions are equal to 

optimal solutions of mathematical programming problems in both cases. This 

means that we can obtain the equilibrium solutions by solving the mathematical 

programming problems. In section 4.4, we consider the relation between equi­

librium solutions for multiobjective bimatrix games incorporating fuzzy goals 

and the Pareto optimal equilibrium solutions defined in Borm, Tijs and Aarssen 

(1988) or Wierzbicki (1990). The set of the Pareto optimal equilibrium solutions 

in such games often contains sets of continuum power; we can, however, select 

restricted and reasonable solutions on the assumption that a player has fuzzy 

goals and tries to maximize the degrees of attainment for the fuzzy goals. 

4.2 Problem Formulation and Solution Concepts 

Two-person non-zera-sum games can be expressed as a pair of m x n matrices, 

all al2 aln bll bl2 bln 

A= 
a21 a22 a2n 

and B= 
b21 b22 b2n 

( 4.1) 

am! a m 2 a mn bm1 bm2 bmn 

When Players I and II choose their ith and jth pure strategies, respectively, aij 

is the payoff for Player I and bij is the payoff for Player II. 

Definition 4.1 ( Equilibrium solution ) For a bimatrix game (A, B), 

an equilibrium solution is a pair of strategies m-dimensional vector x* and n-
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dimensional vector y* if, for any other mixed strategies x and y, 

x* Ay* 2:: xAy* 
x* By* 2:: x* By. 

(4.2) 

It has been proved that every bimatrix game (A, B) has at least one equilib­

rium solution (Nash 1951). 

Two-person non-zero-sum multiobjective games can be also expressed as mul­

tiple m x n matrices, 

where Player I has r objectives and Player II has s objectives. 

Equilibrium problems for single-objective games are considered in terms of 

expected payoffs such as (4.2). On the other hand, since each of the payoffs 

represents an objective or an attribute and has a different unit of measure in 

multiobjective games, vector optimization is usually considered; however, we 

will employ another approach. Namely, we incorporate fuzzy goals for objectives 

and consider the equilibrium problems in terms of maximization of the degree of 

attainment for the aggregated fuzzy goal. Each of the measures for objectives can 

be transformed to the degree of attainment of the fuzzy goal as a commensurable 

measure. 

Definition 4.2 ( Fuzzy goal ) Let Player I's payoff and Player II's payoff 

be denoted PI = (pi, ... , p~, ... ,pD E DI and P2 = (p~, ... , p~, ... , p~) E D2 , 

respectively, where DI = Di x ... x Dr ~ RT is the set of Player I's payoffs 

and D2 = D~ x ... x D2 ~ RS is the set of Player II's payoffs. Then Player 1's 

fuzzy goal G~ for the kth payoff is a fuzzy set on the set D~ characterized by the 

membership function 

J-L~ : D~ -+ [0, 1]. ( 4.4) 

Player II's fuzzy goal G~ for the lth payoff is also a fuzzy set characterized by 
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the membership function 

~~ : D~ ~ [0, 1]. (4.5) 

In bimatrix games, when Player I chooses a. mixed strat egy x and Player 

II chooses a mixed strategy y, the kth payoff of Player I is represented by an 

expected payoff, i.e., p~ = xAky, and the lth payoff of Player II is p~ = xBly . 

For Player I, the membership fllnction value ~~(xAky) of the fuzzy goals can be 

interpreted as a degree of attainment of the fuzzy goal for the payoff xA ky or a 

degree of satisfaction with respect to the payoff xAky. That of Player II can be 

interpreted similarly. 

Equilibrium conditions in multiobjective decision making must be examined 

under the partial order relation if each of the objectives has incommensurable 

measures. It is supposed that equilibrium solutions under such a formulation 

often exist infinitely. 

In this chapter we assume that a player has a fuzzy goal for each of the objec­

tives and employ the degree of attainment of the fuzzy goal as a commensurable 

measure. We do not treat multiple payoffs directly but treat the single value, 

which is the degree of attainment, by aggregating multiple fuzzy goals. Then we 

consider equilibrium problems with respect to the degree of attainment of the 

aggregated fuzzy goal. 

Definition 4.3 ( An equilibrium solution with respect to the degree of 

attainment of the aggregated fuzzy goal) When Player I chooses a mixed 

strategy x and Player II chooses a mixed strategy y in a multiobjective bimatrix 

game (Ak, Bl), k = 1,2, ... , r, l = 1,2, ... , s, let Player I's membership function 

for the aggregated fuzzy goal be ~l(X, y) and Player II's membership function be 

~2(X, y). Then a pair of strategies x* and y* is said to be an equilibrium solution 

with respect to the degree of attainment of the aggregated fuzzy goal if, for any 

other mixed strategies x and y, 

~l (x*, y*) ~ ~l (x, y*) 
~2(X*, y*) ~ ~2(X·, y). 

(4.6) 

If the membership function ~l in the above definition can be regarded as 

Player I's payoff function and the membership function ~2 can be regarded as 

Player II's payoff function, the game (Ak, Bl) can be reduced to an ordinary 
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two-person bimatrix game. If the function J-Ll and J-L2 are convex and continuous 

functions, it can be proved by the existence theorem of the equilibrium solutions 

(Rosen 1965) that there exists an equilibrium solution with respect to the degree 

of attainment of the aggregated fuzzy goal in the game (A k , Bl). 

4.3 Computational Methods 

This section is devoted to developing computational methods for equilibrium 

solutions with respect to a degree of attainment of the fuzzy goal in single ob­

jective games and multiobjective games. 

4.3.1 Single-Objective Bimatrix Games with Fuzzy Goals 

Let A = A l and B = Bl. When Player I chooses a strategy x and Player II 

chooses a strategy y, the membership functions J-Ll(X, y) and J-L2(X , y) of the fuzzy 

goals are functions of expected payoffs xAy and xBy, i.e. , they are represented 

as 
J-Ll(X,y) = J-Ll(xAy) 
J-L2 ( x, y) = J-L2 ( x By) . 

(4.7) 

Then a pair of strategies x* and y* is an equilibrium solution with respect to a 

degree of attainment of the fuzzy goal in a single-objective bimatrix game (A , B) 

if, for any other mixed strategies x and y, 

J-Ll(x*Ay*) 2:: J-Ll(xAy*) 
J-L2(X* By*) 2:: J-L2(X* By). 

(4.8) 

If the membership functions of the fuzzy goals J-Ll (xAy) and J-L2 (xBy) are 

linear functions, they can be represented as 

I 0 

if xAy ::; g 
a-xAy 

if g ::; xAy ::; a J-Ll(xAy) = 1 - _ 
a-g 

1 if a ::; xAy 

(4.9) 

and 

J.!2( xBy) = I 0 if xBy ::; Q 

1-
b- xBy 

if Q ::; xBy ::; b 
b-Q 

1 if b ::; xBy, 

( 4.10) 

respectively. 
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Let A and B denote the m x n matrices transformed by using the following 

equations (4.11) and (4.12), respectively. 

and 

a 
Cl=-~ 

a-Q 
(4.11 ) 

A bij b 
bij = ---, C2 = -=-=-. (4.12) 

b-b b-Q . -
Equivalently, the membership functions (4.9) and (4.10) are represented as 

/11{xAy) = { ~AY - Cl 

if xAy:::; Q 

if Q:::; xAy:::; a 
if a:::; xAy 

( 4.13) 

and 

/12{xBy) = { ~BY - C2 

if xBy:::; Q 
if Q:::; xBy:::; b 
if b:::; xBy, 

( 4.14) 

respecti vely. 

Then equilibrium solutions with respect to a degree of attainment of the fuzzy 

goal possess the properties described in the following theorem. 

Theorem 4.1 

Let A and B denote matrices transformed by using the equations (4.11) and 

(4.12). If a pair of strategies (x*, y*) satisfies the conditions 

x* Ay* ~ xAy* 
x*By* ~ x*By 

(4.15 ) 

for any other mixed strategies x and y, then (x*, y*) also satisfies the following 

condi tions: 
x*Ay* ~ xAy* 
x* By* ~ x* By. 

( 4.16) 

Furthermore, when the membership functions of the fuzzy goals are linear func­

tions such as (4.9) and (4.10), (x*, y*) satisfies the following conditions: 

ILl (x* Ay*) ~ ILl (xAy*) 
1L2(X* By*) ~ 1L2(X* By) 

for any other mixed strategies x and y. 

( 4.17) 

Proof First we will prove that a pair of strategies (x*, y*) which satisfies 

the conditions (4.15) satisfies the conditions (4.16). We can transform the first 
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condition of (4.15) into the following: 

m n m n 

L LX; CLijyj 2: L L XiCLijyj, 
i=l j=l i=l j=l 

m n m n 

L L 
* aij * L L aij * x·-- . > x ·_- . 
t - YJ - t_ YJ' 

i=l j=l a - ~ i=l j=l a - ~ 

m n m n 

L L X;aijyj 2: L L Xiaijyj. 
i=l j=l i=l j=l 

Thus we have 

X* Ay* 2: xAy*, 

and, similarly, we have 

x* By* 2: x* By. 

i) If xAy* ~ x* Ay* ~ ~, 

ILl (x* Ay*) = ILl (xAy*) = O. 

ii) If xAy* ~ {I ~ x* Ay*, 

iii) If {I ~ xAy* ~ x* Ay* ~ a, 

and 

ILl (x* Ay*) = x* Ay* + Cl· 

From (4.15), since x* Ay* 2: xAy*, 

iv) If ~ ~ xAy* ~ a ~ x* Ay*, since 

ILl (xAy*) ~ 1 and ILl (x* Ay*) = 1, 

v) If a ~ xAy* ~ x* Ay*, 

ILl (x* Ay*) = ILl (xAy*) = 1. 
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We also have similar statements from i) to v) for the function J-L2. Thus, from 

the statements from i) to v) for the functions J-L1 and J-L2, the second part of the 

theorem has been proved. 0 

The theorem means that if a pair of strategies (x* , y* ) is a conventional equi­

librium solution for a single-objective bimatrix game (A , B) generated by using 

the transformations (4.11) and (4.12), (x*, y*) is also a convent ional equilibrium 

solution for a single-objective bimatrix game (A, B). Moreover , it is also an equi­

librium solution with respect to a degree of attainment of the fuzzy goal for a 

single-objective bimatrix game (A , B) when the fuzzy goals are represented by 

linear membership functions such as (4.9) and (4.10). 

The equilibrium conditions for the bimatrix game (A, B) can be expressed in 

the following form of mathematical programming problems: 

x*Ay* = maximize xAy* 
x 

m 

subject to LXi = 1, 
( 4.18) 

i=1 

and 
x*By* maximize x*By 

y 
n 

subject to LYj = l. 
( 4.19) 

j=1 

From Theorem 4.1, an optimal solution (x*, y*) to the above two linear program­

ming problems is an equilibrium solution with respect to a degree of attainment 

of the fuzzy goal with a linear membership function in a single-objective bimatrix 

game (A, B). 

Since the constraints of the problems (4.18) and (4.19) are separated each 

other on the decision variables X and y, the two problems (4.18) and (4.19) 

become the following single mathematical programming problem: 

x* Ay* + x· By* = 

Theorem 4.2 

maximize {xAy* + x* By} 
(x,y) 

m 

subject to LXi = 1 
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i=1 
n 

LYj = l. 
j=1 

( 4.20) 



If all of the membership functions of the fuzzy goals are linear functions such 

as (4.9) and (4.10), an optimal solution of the following quadratic programming 

problem is equal to the equilibrium solution with respect to a degree of attain­

ment of the fuzzy goal for the single-objective bimatrix game (A, B). 

maximize xAy + xBy - p - q 
(x,y,p,q) 

subject to Ay ~ pem 

Ex ::; qen 

m 

LXi = 1 
i = 1 

n 

LYj = 1, 
j=1 

(4.21 ) 

where em and en are m and n dimensional column vectors for which each of the 

entries is 1, respectively, i.e., 

em = (1,1, ... , l)T 
~ 

m 

and en = (1,1, ... , l)T. 
~ 

n 

Proof From Theorem 4.1, the theorem can be proved in a way similar 

to the theorem by Parthasarathy and Raghavan (1971), which is shown in the 

Appendix. 0 

From Theorem 4.2, we can obtain the equilibrium solution with respect to a 

degree of attainment of the fuzzy goal for the single-objective bimatrix game by 

solving the quadratic programming problem (4.21). Some algorithms for solving 

the quadratic programming problem have been developed. Especially, Lemke and 

Howson's method was developed as the computational method for equilibrium 

solutions of bimatrix games (1964) and, needless to say, it is also used for regular 

quadratic programming problems (Lemke 1965). 

4.3.2 Multiobjective Bimatrix Games with FUzzy Goals 

We develop the methods for computing the proposed equilibrium solution in 

multiobjective games. Two aggregation rules are employed for multiple fuzzy 

goals in multiobjective bimatrix games (Ak, El), k = 1,2, ... ,r , l = 1,2, ... ,s. 

The first is the aggregation rule by weighting coefficients and the other is the 

aggregation rule by a minimum component. Both aggregation rules are popular 

for scalarizing methods in multiobjective programming problems. 
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Let Player 1's fuzzy goals be denoted /-l7(xAky), k = 1,2, ... , r and Player 

II's fuzzy goals be denoted /-l&(xBly), l = 1,2, ... ,s. 

a) An equilibrium solution with respect to a degree of attainment of 

the fuzzy goal aggregated by weighting coefficients 

Let Player 1's weighting coefficients for fuzzy goals be v E {v I L:k=l Vk = 

1, Vk ~ 0, k = 1,2, ... ,r} and Player II's weighting coefficients for fuzzy goals be 

W E {w I L:l=l Wl = 1, Wl ~ 0, l = 1,2, ... ,s}. Then Player 1's aggregated fuzzy 

goals and Player II's aggregated fuzzy goals are represented by 

r 

/-l1 (x, y) = L vk/-l~(xAky) ( 4.22) 
k=l 

and 
8 

/-l2(X, y) = L Wl/-l~(xBly). ( 4.23) 
l=l 

A pair of strategies (x*, y*) is an equilibrium solution with respect to a de-

gree of attainment of the fuzzy goal aggregated by weighting coefficients in a 

multiobjective game (Ak, Bl) if, for any other mixed strategies x and y, 

r T 

L Vk/-l~(X* Aky*) ~ L vk/-l~(xAky*) 
k=l k=l 

8 8 ( 4.24) 
L Wl/-l~(X* Bly*) ~ L Wl/-l~(X* Bly). 
l=l l=l 

The equilibrium solution is equal to an optimal solution to the following two 

mathematical programming problems: 

T T 

L Vk/-l~(X* Aky*) - maximize L vk/-l~(xAky*) 
x 

k=l k=l 
m ( 4.25) 

subject to LXi = 1, 
i=l 

and 
8 8 

L Wl/-l~(X* Bly*) = maximize L Wl/-l~(X* Bly) 
l=l Y l=l 

n ( 4.26) 
subject to LYj = 1. 

j=l 

Since the constraints of the above two problems are separated each other, the 

above two problems become the following single mathematical programming 
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problem: 

r S 

L Vk/1~(X* Aky*) + L Wl/1~(X* Ely*) 
k=l [=1 

Theorem 4.3 

r S 

= maximize {l: vk/1~(xAky*) + l: Wl/1~(X* Ely)} 
(x,y) k=l l=l 

m 

subject to LXi = 1 
i=l 

n 

LYj = l. 
j=l 

( 4.27) 

If all of the membership functions of the fuzzy goals are linear functions such 

as (4.9) and (4.10), an equilibrium solution with respect to a degree of attainment 

of the fuzzy goal aggregated by weighting coefficients for a multiobjective game 

(Ak, El) is equal to an optimal solution of the quadratic programming problem 

where 

and 

maximize xA(v)y + xB(w)y - p - q 
(x,y,p,q) 

subject to A( v)y ~ pem 

B(w)x ~ qen 

m 

LXi = 1 
i=l 

n 

r 

A(v) = L vk Ak 
k=l 

S 

B(w) = LWIBl. 
[=1 

( 4.28) 

(4.29) 

( 4.30) 

Proof If all of the membership functions of the fuzzy goals are linear func­

tions such as (4.9) and (4.10), the membership functions (4.22) and (4.23) of 

the aggregated fuzzy goal can be transformed into the following by using the 

transformations (4.11) and (4.12): 

r 

/11 (X, y) = L Vk/1~(xAky) 
k=l 

xA(v)y + e1, 
(4.31 ) 
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and 
8 

L WlJ1&(xBky) 
l=l ( 4.32) 
xB(w)y + C2. 

Thus, from Theorem 4.1 and the theorem by Parthasarathy and Raghavan, the 

equilibrium solution is equal to an optimal solution of the quadratic programming 

problem (4.28). 0 

Since the problem (4.28) is a quadratic programming problem, the equilibrium 

solution with respect to a degree of attainment of the fuzzy goal aggregated by 

weighting coefficients for multiobjective games can be obtained by Lemke and 

Howson's method in a procedure similar to that for single-objective games. 

When we regard this problem as an optimization problem for Player 1's deci­

sion making, Player I must assess his and the opponent's weighting coefficients. 

It is especially difficult to assess the opponent's weighting coefficients. When par­

tial information about the opponent's preference for objectives can be derived 

from the opponent's previous behavior Barron and Schmidt's method (1988), 

which is an entropy-based procedure, is efficient and practical. 

In their method, if there is no information, all weighting coefficients are equal 

in the sense of maximizing entropy. If there is partial information, the informa­

tion is incorporated in the constraint of the maximizing entropy problem and 

weighting coefficients can be obtained by solving the maximizing entropy prob­

lem with the constraint. For example, if Player II prefers the first objective to 

the second one, the inequality Wl > W2 becomes a component of the constraint 

of the problem. 

b) An equilibrium solution with respect to a degree of attainment of 

the fuzzy goal aggregated by a minimum component 

Consider an equilibrium problem with respect to a degree of attainment of 

the fuzzy goal aggregated by a minimum component. The aggregation rule is 

often adopted in a multiple criteria decision making problem. Particularly in 

fuzzy decision making, the aggregation corresponds to the intersection of all of 

the fuzzy sets and a solution is determined by maximizing the membership degree 

of the intersection, and this decision rule is called Bellman and Zadeh's fuzzy 

decision rule. 

65 



Player 1's and II's fuzzy goals aggregated by a minimum component are rep­

resented as 

( 4.33) 

and 

( 4.34) 

respecti vely. 

Then a pair of strategies (x*, y*) is an equilibrium solution with respect to a 

degree of attainment of the fuzzy goal aggregated by a minimum component for 

a multiobjective game (Ak, Bl), k = 1,2, ... , s, l = 1,2, ... , r if, for any other 

mixed strategies x and y, 

m1n JL~ (x* A ky*) 2:: m1n JL~ (xA ky*) 

min JL~ (x* Bly*) 2:: min JL~ (x* Bly). 
(4.35) 

The equilibrium solution is equal to an optimal solution for the following two 

mathematical programming problems: 

and 

m 

subject to LXi = 1, 
i=1 

maximize min JL~(x* Bly) 
Y l 

n 

subject to L Yj = 1. 
j=1 

(4.36) 

( 4.37) 

Since the constraints of the above two problems are separated each other, the 

above two problems become the following single mathematical programming 

problem: 

min JL~ (x* A ky*) + min JL~ (x* Bly*) 
k l 

= maximize {mkinJL~(xAky*) + mlinJL~(x* Bly)} 
(x,y) 

m 

subject to LXi = 1 
i=1 

n 

( 4.38) 

If the membership functions JL~ and JL~ are linear functions such as (4.9) and 

(4.10), it can be proved by the following theorem that the above mathematical 
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programming problem (4.38) becomes a nonlinear programming problem with 

quadratic inequality constraints. 

Lemma 4.4 

Transform the m x n payoff matrices Ak, k = 1,2, ... , sand Bl, l = 1,2, ... , r 

into Ak, k = 1,2, ... , sand i3 l , l = 1, 2, ... , r by using the equalities (4.11) and 

(4.12). If a pair of strategies (x*, y*) satisfies the conditions 

rnJn(x* Aky* + e~) > mJn(xAky* + e~) 

mln(x* i3 l y* + c~) > mln(x* i3 l y + e~) 
( 4.39) 

for any other mixed strategies x and y, then (x*, y*) also satisfies the conditions 

(4.35), i.e., (x*, y*) is an equilibrium solution with respect to a degree of attain­

ment of the fuzzy goal aggregated by a minimum component for a multiobjective 

game (Ak , Bl). 

Proof First we prove that the first condition of (4.35) implies the first 

condition of (4.39). 

i) If mink(xAky* + en ~ mink(x* Aky* + e~) ~ 0, 

mJnM~(xAky*) ~ mJnM~(x*Aky*). 

iv) If 0 ~ mink(xAky* + e~) ~ 1 ~ mink(x* Aky* + e~), 

From i) to v), the first part of the Lemma 4.4 have been proved. Similarly, we 

can prove the second part of the Lemma 4.4. o 
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Theorem 4.5 

If all membership functions of fuzzy goals are linear functions, an equilibrium 

solution with respect to a degree of attainment of the fuzzy goal aggregated by 

a minimum component is equal to an optimal solution of the following nonlinear 

programming problem: 

maximize al + a2 - P - q 
(x,y,p,q, CTl, CT 2) 

subject to Aky + c~em ~ pem, k = 1,2, ... ,r 
A T 

Bl X + c~ en ::; q en, l = 1, 2, ... , S 

Ak k 
xA y + c l ~ aI, k = 1, 2, ... , r 
All 

X B y + c2 ~ a 2, l = 1, 2, ... , S 
m 

LXi = 1 
i=l 

n 

LYj = 1. 
j=l 

( 4.40) 

Proof From the inequalities Aky + c~em ~ pem, k = 1,2, ... , r in the con-

straints of the problem (4.40), 

xA ky + c~ ~ p, k = 1, 2, ... , r. 

Similarly, 
All 

X B y + C2 ~ q, l = 1, 2, ... , s. 

Ak k 
Furthermore, from xA y + Cl ~ aI, k = 1,2, ... ,s, 

Similarly, 

Thus, since 

the maximal objective function value is O. 

From Lemma 4.4, a pair of strategies (x*, y*) satisfying the following condi­

tions for any other X and y is an equilibrium solution with respect to a .degree of 
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attainment of the fuzzy goal aggregated by a minimum component: 

m1n(x* Aky* + c~) > m1n(xAky* + c~) 
mlin(x* Bly* + c&) > min(x* Bly + c&). 

l . 

Set 
p m1n (x* Aky* + c~) 
q min(x* Bly* + c&) , 

1 

then (x*, y*) becomes an optimal solution of the problem (4.40) . 

On the other hand, let an optimal solution of the problem (4.40) be (x*, y*, p, q). 

Then 

(4.41 ) 

From the inequalities Aky* + c~em ~ pem, k = 1,2, ... , r in the constraints of 

the problem (4.40), 

x A k y* + c~ ~ p, k = 1, 2, ... , r. 

Let x = x* and y = y*. Then we have 

x* A ky* + c~ ~ p, k = 1, 2, ... , r. 

Similarly, 

x* Bly* + c~ ~ q, l = 1,2, ... ,r. 

From (4.41), (4.43) and (4.44), 

From (4.42), 

and then 

Similarly, 

m1n (x* Aky* + c~) p 

mln(x* Bly* + c~) = q. 

mln(x* Bly + c~) ~ mln(x* Bly* + c~). 

( 4.42) 

( 4.43) 

( 4.44) 

Therefore, from Lemma 4.4, (x*, y*) is an equilibrium solution with respect to a 

degree of attainment of the fuzzy goal aggregated by a minimum component for 

a multiobjective bimatrix game (Ak, Bl), k = 1,2, ... ,r, l = 1,2, ... , s. 0 
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From Theorem 4.5, we can obtain an equilibrium solution with respect to 

a degree of attainment of the fuzzy goal aggregated by a minimum component 

by solving the special nonlinear programming problem which consists of a linear 

objective function and constraints with quadratic inequalities, linear equalities 

and linear inequalities. 

Example 4.1 

Consider equilibrium solutions with respect to a degree of attainment of the 

fuzzy goal aggregated by weighting coefficients. Let Player I have three pure 

strategies and three objectives, and let Player II have four pure strategies and 

three objectives. Then a two-person non-zero-sum multiobjective game can be 

represented by 

[ ~ 
6 5 

~ ] , A2 = [ ~ 
6 8 ! ] , and [ ~ 

4 7 

~ ] , Al = 5 5 2 2 A 3 = 6 1 
7 6 9 7 5 3 

and 

[ ~ 
6 7 

: ] , B2 = [ ~ 
2 2 

~ ] , and B3 = [ ~ 
1 2 

} ] Bl= 2 3 9 7 4 8 
9 3 2 8 8 1 

Let fuzzy goals Gi, Gi, and Gy of Player I for the three objectives be represented 

by the following linear membership functions: 

and 

{ 

0 if xT A 3y ~ 1 

f-ti(x
T A3y) = (lxT A3y - 1)/6 if 1 ~ xT A3y ~ 7 

if 7 ~ xT A3y. 

Let fuzzy goals G~, G~, and G~ of Player II for the three objectives be represented 

by the following linear membership functions: 
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and 

{
a if xT B3y ::; 1 

I-lg(xT 
B

3y) = (lxT B3y - 1)/7 if 1::; xT B3y ::; 8 
if 8::; xT B3y . 

Let weighting coefficients for the three objectives of Player I be 

VI = 0.05, V2 = 0.85, and V3 = 0.1 , 

and let weighting coefficients for the three objectives of Player II be 

WI = 0.8, W2 = 0.1 , and W3 = 0.1. 

The equilibrium solutions with respect to a degree of attainment of the fuzzy 

goal aggregated by the weighting coefficients were obtained by using Lemke and 

Howson 's method (1964). There exist three equilibrium solutions, and the results 

are shown in Table 4.1. 

Table 4.1 The equilibrium solutions 

Xl X2 X3 Yl Y2 Y3 Y4 
0.422 0.578 0.000 0.672 0.000 0.328 0.000 
0.000 1.000 0.000 1.000 0.000 0.000 0.000 
0.000 0.457 0.543 0.595 0.405 0.000 0.000 

4.4 Related Properties for Pareto Equilibrium Solutions 

Research on equilibrium solutions for multiobjective games was started from 

defining the best reply strategies in terms of vector optimality concepts such as 

Pareto optimality. So far we have discussed equilibrium solutions for multiob­

jective games without such concepts. Namely, we have introduced the degree of 

attainment of the fuzzy goal as a commensurable measure and have considered 

equilibrium solutions in terms of the degree of attainment of the fuzzy goal. In 

this section, we consider Pareto optimality of the proposed equilibrium solutions 

for multiobjective bimatrix games. 

Pareto optimality and related concepts have been discussed for multiple cri­

teria decision making (Geoffrion 1968; Chankong and Haimes 1983; Sawaragi, 
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Nakayama and Tanino 1985; Wierzbicki 1986; Seo and Sakawa 1988; Sakawa 

1993). An optimal point in single-objective decision making problems can be 

defined under the total order but an optimal point in multiobjective decision 

making problems cannot be defined in the same way because the order relation 

among vector alternatives is a partial order. Therefore, an optimal point under 

the partial order is defined as a point being not inferior to each of the other feasi­

ble solutions. In a mathematical description, the sets of such optimal points are 

often defined in terms of preference cones. The best reply strategies are defined 

as follows by using the concept of Pareto optimality in multiobjective games. 

Definition 4.4 ( A set of the Pareto best reply strategies ) Let a 

payoff of Player I be denoted Pi (x , y) E RT when Player I chooses a strategy x 

and Player II chooses a strategy y. Player 1's preference cone is defined by 

( 4.45) 

Then, given Player II's strategy i), the set of payoffs for the Pareto best reply 

strategies is defined by 

( 4.46) 

where Zi(i)) is a set of attainable payoffs, ¢ is the empty set and C\ = C i \{O}. 

Similarly, let Player II's payoff be denoted P2 (x, y) E RS and Player II 's preference 

cone be 

C2 = {P2 (x, y) E RS I p~ (x, y) ~ 0, l = 1, 2, ... , s} = R~. ( 4.47) 

Then, given Player 1's strategy x, the set of payoffs for Pareto best reply strategies 

is defined by 

( 4.48) 

Especially, for a multiobjective bimatrix game (Ak, Bl), k = 1,2, . .. , T, l = 

1,2, ... , s, Zl(Y) and Z2(X) become the following convex polyhedrons spanned 

by vertices {ui T 
AyT, ... ,u1T AyT} and {xBu~, ... ,xBu~}, respectively. 

( 4.49) 
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and 

CH2(x) = conv {xBu~, ... , xBu~}, ( 4.50) 

where ui is an m-dimensional column vector such. that the ith entry is 1 and the 

other entries are 0, and u~ is a similar n-dimensional column vector (Borm, Tijs 

and Aarssen 1988). 

Definition 4.5 ( Pareto optimal equilibrium solution) Let a payoff of 

Player I and a payoff of Player II be PI (x, y) = (pi(x, y), pi(x, y), ... ,p~ (x, y)) and 

P2(X, y) = (pHx, y),p~(x, y), .. . ,p2(x, y)), respectively. For any pair of strategies 

x and y, let Player I's set of payoffs for the Pareto best reply strategies and 

Player II's set of payoffs for the Pareto best reply strategies be denoted pI (y) 

and p2 (x), respectively. Then the set of the Pareto optimal equilibrium solutions 

is defined by 

PE = {(x*,y*) I p~(x*,y*) E PI(Y*)'P;(x*,y*) E P2(X*)}. (4.51) 

Wierzbicki (1990) explored the relation between scalarizing functions and 

Pareto optimal equilibrium solutions in detail. We briefly refer to his work and 

then examine the properties on Pareto optimality of the proposed solutions. 

Theorem ( Wierzbicki ) 

Suppose that scalarizing functions Si(Pi(X, y), Wi)' i = 1,2 such that 

( 4.52) 

and 

( 4.53) 

are used for an aggregation of all objectives in a noncooperative two-person 

multiobjective game in normal form. Then an equilibrium solution of the single­

objective game with payoffs Si(Pi(X, y), Wi)' i = 1,2 for any Wi is a Pareto optimal 

equilibrium solution of the multiobjective game, where Wi is a parameter of the 

scalarizing function and Wi is a set of the parameters. 

Wierzbicki proved the theorem in an n-person version and the proof of the 

theorem is shown in the Appendix. The theorem is interpreted to means that an 

73 



equilibrium solution of the proxy single-objective game whose payoffs correspond 

to the scalarizing function values is a Pareto optimal equilibrium solution of 

an original multiobjective game if scalarizing functions satisfy the conditions 

(4.52) and (4.53). The conditions (4.52) and (4.53) stipulate that scalarizing 

functions are strictly monotone, i.e., if p/'(x, y) -p/(x, y) E Gi , Si(P/'(X, y), wd > 

Si(P/(X, y), Wi). 

Consider relations between the equilibrium solutions with respect to a degree 

of attainment of the fuzzy goal and the Pareto optimal equilibrium solutions. 

Player 1's scalarizing function for the aggregation by weighting coefficients is 

represented by 

r 

S 1 (p 1 ( X, y), WI) = L v k J.L ~ ( x A k Y ) ; WI = (V, Q, (i), ( 4.54) 
k=l 

and it is not always strictly monotone. Similarly, Player II's scalarizing function 

can be represented as 

s 

S2(P2(X, y), W2) = L wlJ.L~(xBly); W2 = (w, 12., l)). ( 4.55) 
l=l 

However, the functions (4.54) and (4.55) are strictly monotone in the intervals 
k Ak -k l l -l f Q :::; x y:::; a , k = 1,2, ... ,r and 12. :::; xB y :::; b , l = 1,2, ... ,s. There ore, 

if a player assesses Qk or 1/ sufficiently small and assesses (ik or l)l sufficiently 

large, an equilibrium solution with respect to a degree of attainment of the fuzzy 

goal aggregated by weighting coefficients is also a Pareto optimal equilibrium 

solution. For example, Nishizaki and Sakawa (1992) suggest setting the minimal 

entry and the maximal entry of the kth payoff matrix for Player I to the values 

of Qk and (ik, respectively, and setting the minimal entry and the maximal entry 

of the lth payoff matrix for Player II to the values of Ql and l)l, respectively. If 

Qk :::; min at, k = 1,2, ... ,r 
t,J 

(4.56) 

and 

(ik>maxak k 12 _ . . tJ' =" ... , r, 
t,J 

( 4.57) 

the scalarizing function (4.54) becomes strictly monotone. Similarly, if 

Ql :::; mi.n b~j' l = 1, 2, ... , S 
t,J 

( 4.58) 
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and 
-l l 
b > max b· . , I = 1, 2, ... , s, 

- i,j tJ 
( 4.59) 

the scalarizing function (4.55) becomes strictly monotone. Thus, if fuzzy goals 

are identified so as to satisfy the conditions from (4.56) to (4.59), an equilibrium 

solution with respect to a degree of attainment of the fuzzy goal aggregated by 

weighting coefficients is also a Pareto optimal equilibrium solution. 

Player l's scalarizing function for the aggregation by a minimum component 

is represented by 

( 4.60) 

and it is not always strictly monotone. Similarly, Player II's scalarizing function 

can be represented as 

(4.61 ) 

If a player assesses rJ:.k or Ql sufficiently small and assesses ak or T/ sufficiently 

large such as from (4.56) to (4.59), an equilibrium solution with respect to a 

degree of attainment of the fuzzy goal aggregated by a minimum component is 

a weak Pareto optimal equilibrium solution which can be defined by exchanging 

C\ = C 1 \ {O} for C\ = int C1 in the definition of Pareto optimality. 

4.5 Conclusion 

In this chapter we have considered equilibrium solutions for multiobjective bi­

matrix games incorporating fuzzy goals and established the computational meth­

ods. 

To conclude, the results of this chapter are summarized as follows. 

1) To treat more general cases than in the previous chapters, we have examined 

two-person non-zero-sum multiobjective bimatrix games with fuzzy goals. 

2) We have defined the equilibrium solutions in terms of a degree of attainment 

of a fuzzy goal for games in fuzzy and multiobjective environments. 

3) The computational method for the equilibrium solution with respect to a de­

gree of attainment of the fuzzy goal for two-person non-zero-sum single-objective 

games has been developed and the solution can be obtained by solving a quadratic 

programming problem. 
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4) For multiobjective games, the lnethods by weighting coefficients and by a 

minimum component have been adopted to aggregate Iuultiple fuzzy goals. The 

methods for computing equilibrium solutions have been presented when Ineluber­

ship functions of fuzzy goals are linear functions. The solution can be obtained by 

solving the quadratic programming problem when weighting coefficients are used 

as an aggregation rule. The solution can also be obtained by solving the special 

nonlinear programming problem, which consists of a linear objective function and 

constraints with quadratic inequalities linear equalities and linear inequalities 

when a mininlum component is used as an aggregation rule. 

5) We have considered the relation between the proposed equilibriunl solutions for 

multiobjective bimatrix games incorporating fuzzy goals and the Pareto optimal 

equilibrium solutions and have shown the conditions that the propo ed solutions 

belong to the set of the Pareto optimal equilibrium solutions. 

So far we have examined noncooperative games in fuzzy and multiobjective 

environments and have developed the computational methods for the max-min 

solutions and the equilibrium solutions. The following two chapters will deal 

with a fuzzy game in which cooperation is permitted. 
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CHAPTER 5 

N-PERSON COOPERATIVE GAMES WITH FUZZY 
COALITIONS 

5.1 Introduction 

We intend to examine n-person cooperative games in fuzzy environments in 

this chapter. In noncooperative garnes, there is not much difference between two­

person games and n-person games; however, in cooperative garnes, coalitions are 

organized by group agreement among some or all of the players. There is only 

one possible coalition in the two-person case, but in the n-person case, many 

coalitions are possible. For conventional n-person cooperative garnes, a coalition 

is defined as any nonempty subset of the set of all players, making the number 

of possible coalitions at most 2n - 1, which includes one-person coalitions. Any 

player participating in a coalition must accept completely the decisions of the 

coalition; that is, a coalition behaves like an individual decision maker. 

To ease this binding regulation, the concept of a fuzzy coalition was intro­

duced, whereby players participating in a fuzzy coalition do not transfer all of 

their decisional rights to the fuzzy coalition. For n-person cooperative games 

with fuzzy coalitions, a fuzzy coalition is defined as any nonempty fuzzy sub­

set of the set of the all players. By incorporating fuzzy coalitions, we can take 

ambiguity in the formation of an organization into consideration. 

In a nonfuzzy game, the lexicographical framework (devised by Davis and 

Maschler 1965; Schmeidler 1969; Spinetto 1974; Littelchild and Vaidya 1976; 

Machler, Peleg and Shapley 1979; Michener, Yuen and Sakuari 1981; Shubik 

1982; Sakawa, Tada and Nishizaki 1983; Sakawa 1985; and Sakawa and Nakao 

1985; Nishizaki and Sakawa 1992c) can accommodate a wide variety of properties 

to be minimized, and it has given rise to an entire class of solution concepts. 

Aubin (1979,1981) and Butnariu (1978,1980) proposed the solution concepts in 

games with fuzzy coalitions, such as the core, the Shapley value and others. In 

such a game, however, lexicographical solution concepts have not been proposed. 
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In this chapter, new lexicographical solution concepts for conventional n­

person cooperative games and n-person cooperative games with fuzzy coalitions 

are proposed by making use of an excess of a player with respect to a payoff 

vector (Sakawa and Nishizaki 1984, 1991). 

In section 5.2, we review some popular solution concepts such as the core and 

the nucleolus in n-person cooperative games. Next, to express conflict among 

players directly, we newly introduce the concept of an excess of a player 1 which 

is defined by summing up all the excesses of coalitions to which he belongs, 

and propose the lexicographical solution concepts based on these excesses in a 

conventional n-person cooperative game. Moreover, we consider other solutions 

related to the proposed solution concept and examine relationships among them. 

For each solution concept, we present a computational method. 

In section 5.3, we define an excess of a player in games with fuzzy coalitions 

and consider the solution concepts and their computational methods in these 

games as well as in a game without fuzzy coalitions. The extensions from a game 

without fuzzy coalitions to a game with fuzzy coalitions are considered. Usually, 

such extensions are represented as mappings by extension operators. We provide 

some extension operators such as Owen's extension (Owen 1972, 1982), Cornet's 

extension (cited in Aubin 1979) and so forth. A numerical example for games 

extended by the extension operators is shown and the solutions are computed. 

5.2 n-Person Cooperative Games 

This section deals with the lexicographical solutions in conventional n-person 

cooperative games. We review basic concepts of n-person cooperative games and 

propose the solution concepts based on the lexicographical framework. 

5.2.1 Problem Formulation and Solution Concepts 

Let us define some basic concepts of n-person cooperative games. 

Definition 5.1 ( Coalition) For an n-person game, let the set of all players 

be denoted N = {I, 2, ... , n}. Any nonempty subset of N (including N itself 

and all one-element subsets) is called a coalition. 

Definition 5.2 ( Characteristic function ) The function v) called a 

78 



characteristic function of a game, is a real-valued function which associates any 

coalition S with its real value v(S). 

With side-payments, the cooperative possibilities of the game can be de­

scribed by the characteristic function v. v(S) is called the value of coalition S 

and it represents the total amount of a side-payment (transferable utility) that 

a member of S could earn without any help from the players outside of S. In 

any characteristic function, we always let 

v(¢) = 0, (5.1) 

where ¢ denotes the empty set. Therefore, the game is described by the pair 

(N,v). 

Once a representation of the game has been specified, we can try to predict 

the outcome of bargaining among the players. Such an analysis is usually based 

on the assumption that the players will form the grand coalition and divide the 

value v(N) among themselves. It is clear that no player will accept less than the 

minimum which he can attain for himself. 

Definition 5.3 ( Imputation) For a game (N, v), an imputation is a payoff 

vector x = (Xl, X2, ... ,xn ) satisfying 

(5.2) 

and 

Xi 2:: v( {i}), i = 1,2, ... , n. (5.3) 

Let all imputations of the game (N, v) be denoted X (N, v). 

We introduce the preference relation between two imputations. 

Definition 5.4 ( Domination relation ) For a game (N, v) , let X and y 

be two imputations and let S be a coalition. We say x dominates y through the 

coalition S (notation: x doms y) if 

Vi E S (5.4) 

and 

LXi :s; v(S). (5.5) 
iES 
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We also say x dominates y if there is any coalition such that x doms y. 

The condition (5.4) means that all of the members of S prefer x to y; the 

condition (5.5) means that they can obtain what x gives them. 

Consider a solution concept in terms of the domination relation. 

Definition 5.5 ( Core) The set of all undominated imputations for a game 

(N, v) is called the core C(N, v). Equivalently, C(N, v) is defined as the set of 

all payoff vectors x satisfying the following conditions: 

2: Xi ~ v(S), "ijS~ N, (5.6) 
iES 

and 

2: Xi = v(N). (5.7) 
iEN 

Next, we present the concept of the nucleolus defined by Schmeidler (1969). 

A kind of lexicographical solution, the nucleolus is related to the bargaining set, 

which is obtained by considering the discussion that may take place during a 

play of the game. The nucleolus is based on the idea of the excess and, in its 

definition, the order relation which is named the lexicographical order is used. 

Definition 5.6 ( Excess) For the game (N, v), let S be a coalition and let 

x be a payoff vector. Then the excess of the coalition S with respect to x is 

e(S, x) = v(S) - 2: Xi· (5.8) 
iES 

Definition 5.7 ( Lexicographical order) Let r(x) be a vector arranged 

in order of decreasing magnitude, i.e., if i < j, ri(x) ~ rj(x). Then, for any pair 

of payoff vectors x and y, if x = y or, for the first entry h in which they differ, 

(5.9) 

x is smaller than y in the lexicographical order. Let the lexicographical order be 

denoted ::; L. 

Definition 5.8 ( Nucleolus ) Let H2n : R2n 
-t R2n be a mapping which 

arranges entries of a 2n-dimensional vector in order of decreasing magnitude. 
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Then, for a game (N, v), the solution minimizing the vector of the excesses 

H2n(e(S, x)) in the lexicographical order is defined as 

N(N, v) = {x I H2n(e(Sl' x),",, e(S2n, x)) 
~L H2n(e(Sl' y), ... , e(S2n, y,)), Vy E X(N, v)}. 

(5.10) 

The set N(N, v) is called the nucleolus. 

By considering the discussion that may take place during a play of the game, 

the concept of the nucleolus was defined. It is supposed that the rule of the 

minimization of the maximum excess of the coalition is adopted as a decision 

criterion by the players. In this case, excesses of coalitions are thought of as an 

evaluation of payoff vectors in terms of coalitions. To evaluate payoff vectors in 

terms of players, we now define an excess of a player. 

Definition 5.9 ( Excess of a player ) For a game (N, v) , let e(S, x) be 

an excess of a coalition with respect to a payoff vector x. Then, an excess of a 

player i with respect to a payoff vector x is defined as 

w(i,x) = ~ e(S,x) = ~ (V(S) - ~Xi) 
Soh S3i 

L v(S) - (2 . 2n
- 1xi + L 2n

-
2

X j ). 
S<';;N i-:f.j 
S3i 

(5.11 ) 

Consider a new solution concept using the excess of a player and the lexico­

graphical order. 

Definition 5.10 ( Lexicographical solution using an excess of a player) 

Let Hn : Rn ~ Rn be a mapping which arranges entries of an n-dimensional 

vector in order of decreasing magnitude. Then, for a game (N, v), the solution 

minimizing the vector of the excesses of a player Hn (w( i, x)) in the lexicographical 

order is defined as 

LS(N, v) = {x I Hn(w(l, x),",, w(n, x)) 
~L Hn(w(l, y),"', w(n, y)), Vy E X(N, v)}. 

(5.12) 

5.2.2 Computational Method 

We present the computational methods for the nucleolus and the lexicograph­

ical solution proposed in the previous subsection and examine the relation be­

tween the proposed solution and related solutions which will be defined in this 

subsection. 
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The algorithm for computing the nucleolus of a garne (N, v) can be summa­

rized in the following steps (Kopelowitz 1967). We assume the game (N, v) is 

zero-normalizedt . 

Algorithm 5.1 

[ Step 1 ] 

Formulate the following linear programming problem: 

minimize E 

subject to e(S,x) = v(S) - LXi ~ E, 

iES 

VS =I cp, N 

LXi = v(N) 
(5.13) 

i = 1,2, ... , n, 

and solve the problem (5.13). Let the optimal solution of (5.13) be El and the 

set of coalitions for the active inequality constraints be denoted 7i. 

[ Step 2 ] 

By fixing the active inequality constraints in Step 1 as E 

programming problem 

minimize E 

subject to v(S) - L Xi = El, 

iES 

v(S) - L Xi ~ E, 

iES 

L Xi = v(N) 

VS E 7i 

VS tf. 7i, S =I cp, N 

i = 1,2, ... , n, 

El, the linear 

(5.14) 

can be obtained. Let the optimal solution of (5.14) be E2 and the set of coalitions 

for the new active inequality constraints be denoted 72. 
[ Step 3 ] 

In a procedure similar to [Step 2], the linear programming problem can be 

obtained by fixing the active inequality constraints in the previous step. Then 

let the optimal solution of the problem be E3 and the set of coalitions for the new 

active inequality constraints be denoted 73. 

[ Step t ] 

tGiven a game (N,v), let v'(S) = v(S) - LiESv({i}), "IS ~ N. Then the game (N,v') is 
said to be zero-normalized. 
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Let the optimal solution at Step t - 1 be Ct-l' By fixing C = Ct-l, the active 

inequality constraints containing C are converted into equality constraints. The 

obtained linear programming problem 

minimize C 

subject to v(S) - LXi = Cl, 

iES 

v(S) - LXi = C2, 

iES 

VS E 7i 

VS E T2 

V(S)-LXi=Ct-l, VSE7;-l (5.15) 
iES 

v(S) - LXi::; c, VS ¢ 7i u T2 u ... U 7;-1, S =I cp, N 
iES 

LXi=v(N) 
iEN 

Xi ~ 0, i = 1,2, ... ,n, 

is solved. Let the optimal solution of (5.15) be Ct. 

The following lemma on the convergence of Algorithm 5.1 is important. 

Lemma 5.1 

The unique payoff vector x* minimizing C can always be determined by at 

most t = n steps in Algorithm 5.1. 

Proof It is obvious that the linear programming problem (5.13) is feasible. 

Since the objective function is lower bounded, there exists an optimal solution. 

Let the minimum value be C and let the optimal extreme point solutions be 

(Xl, Cl), ... , (xm1
, Cl). Let 11. be defined as follows: 

Then 7i =I cp. This is proved as follows: 

If 7i = cp, for any S, 

k = 1,2, ... , ml 

and 

for a certain l. Let 

83 



z is an imputation and, for any 5, 

e(5, z) < C1' 

This contradicts the minimal property of C1· Thus 7i =I- cp. 

Then consider Step 2. As in Step 1, the linear programming problem (5.14) 

is feasible and has an optimal solution. Let the optimal solution be C2 and let 

the optimal extreme point solutions be (il, C2), ... , (yml, C2). Let T2 be defined 

as follows: 

T2 = {S I S =I- cp, N, e(S, yk) = C2, k = 1,2, ... ,m2}' 

As in Step 1, it is concluded that T2 =I- cp. It is obvious that by repeating the 

steps, C1 2 C2 2 .. '. 

At each step, at least one inequality constraint becomes active. And at least 

t - 1 inequality constraints become active at Step t. Since n equality constraints 

including v(N) = LiEN Xi determine the optimal solution uniquely, by Algorithm 

5.1, the payoff vector x* can be uniquely determined by at most t = n steps. 0 

This lemma allows us to prove the following theorem. 

Theorem 5.2 

The solution obtained by Algorithm 5.1 is the nucleolus for the game (N, v) . 

Proof Let the solution obtained by Algorithm 5.1 be denoted x*. Assume 

that x* is not the nucleolus for the game (N, v). For the payoff vector x*, let 

r(x*) be the vector of all excesses, entries of which are arranged in a descending 

order. Then, there exists a certain imputation y such that, for a certain h, 

i = 1,2, ... ,h - 1 

and 

However, since rh(x*) = Ct for a certain Step t 2 1, y gives an objective function 

value which is less than the minimum value Ct. This is a contradiction. Thus, 

from Lemma 5.1, x* is the nucleolus for the game (N, v). 0 

We present the algorithm for computing the lexicographical solution using an 

excess of a player L5 (N, v) for a game (N, v) in a way similar to the algorithm 
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for the nucleolus. The algorithm for computing the solution LS(N, v) can be 

summarized in the following steps. 

Algorithm 5.2 

[ Step 1 ] 

Formulate the following linear programming problem: 

minimize C 

subject to w(i, x) :::; c, i = 1,2, ... , n 
LXi=V(N) 

i=1,2, ... ,n, 

(5.16) 

and solve the problem (5.16). Let the optimal solution of (5.16) be c 1 and the 

set of players for the active inequality constraints be denoted Ti. 
[ Step 2 ] 

By fixing the active inequality constraints of Step 1 as C = Cl, the linear 

programming problem 

minimize C 

subject to w(i, x) = Cl, 

w(i, x) :::; c, 
LXi=V(N) 

Vi E Ti 
Vi E N, i tf. Ti 

i = 1,2, ... , n, 

(5.17) 

can be obtained. Let the optimal solution of (5.17) be C2 and the set of players 

for the new active inequality constraints be denoted 72. 
[ Step 3 ] 

In a procedure similar to [Step 2], the linear programming problem can be 

obtained by fixing the active inequality constraints in the previous step. Then 

let the optimal solution of the problem be C3 and the set of coalitions for the new 

active inequality constraints be denoted 73. 

[ Step t ] 

Let the optimal solution at Step t - 1 be Ct-l' By fixing C = Ct-ll the active 

inequality constraints containing C are converted into equality constraints. The 
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obtained linear programming problem 

minimize C 

subject to w( i, x) = C1, 

w(i, x) = C2, 

w(i, x) = Ct-I, 

w(i, x) ::; c, 
LXi = v(N) 

Vi E 7i 
Vi E T2 

Vi E It-I 
Vi E N, i tf. 7i u T2 u ... U It- I 

i=1,2, ... ,n, 

is solved. Let the optimal solution of (5.18) be Ct. 

Theorem 5.3 

(5.18) 

The solution obtained by Algorithm 5.2 is the lexicographical solution using 

an excess of a player LS(N,v) for the game (N,v) and the solution LS(N,v) is 

always unique. 

Proof We can prove the theorem by a procedure similar to the proof of 

Theorem 5.2. o 

We now define solution concepts related to the lexicographical solution LS(N, v) 

using an excess of a player. To note the equity on excesses of players, we define 

the difference in the excesses between two players. 

Definition 5.11 ( Excess difference between two players) For a game 

(N, v), let w( i, x) be an excess of a player with respect to a payoff vector x. 

Then, an excess difference between two players i and j with respect to a payoff 

vector x is defined as 

dw(i,j,x) = w(i,x) - w(j,x), (5.19) 

Definition 5.12 ( Lexicographical solution using an excess difference 

between two players ) Let Hn(n-I) : Rn(n-I) ~ Rn(n-I) be a mapping 

which arranges entries of an n( n - 1 )-dimensional vector in order of decreasing 

magnitude. Then, for a game (N, v), the solution minimizing the vector of the 

excess differences between two players Hn(n-I)(w(i,j,x)) in the lexicographical 

order is defined as follows: 

LSD(N, v) = {x I Hn(n-I)(w(l, 2, x),",, w(n - 1, n, x)) 
::;L Hn(n-I)(w(l, 2, y), ... , w(n - 1, n, y)), Vy E X(N, v)}. 

(5.20) 
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For the lexicographical solution LS(N, v) using an excess of a player, all 

excesses of players are compared simultaneously in the sense of the minimization 

of the maximum excess of the player. On the other hand, the lexicographical 

solution LSD(N, v) using an excess difference between two players is defined in 

order to reduce the difference between excesses of two arbitrary players. 

We can present the algorithm for computing the solution LSD(N, v) for a 

game (N, v) in a method similar to devising the algorithm for the nucleolus or 

the solution LS(N, v). It can also be proved that there always exists uniquely a 

solution LSD(N, v). 

To examine the relation between the two solutions LS(N, v) and LSD(N, v), 

consider a solution concept which equates excesses of all the players. 

Definition 5.13 ( Solution equating excesses of all the players) For a 

game (N, v), the solution which equates excesses of all the players can be defined 

as follows: 

ES(N, v) {x I w(l, x) = w(2, x) = ... = w(n, x) "'Ix E X(N, v)}. 

(5.21) 

When players receive the payoffs given by the solution ES(N, v), all of the 

players are in equilibrium in terms of an excess of each player. Especially, when 

the solution LS(N, v) can be obtained by solving the linear programming problem 

only one time, the imputation is such that the excesses of all players become the 

same value. Therefore the solution ES(N, v) can be interpreted as the solution 

LS(N, v), which has been redefined restrictively from this point of view. 

The solution ES(N, v) can be obtained by solving the following simultaneous 

linear equations: 
w(l,x)=c 
w(2, x) = c 

w(n,x)=c 
Xl + X2 + ... + Xn = v(N). 
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From (5.11), the above simultaneous equations are rewritten as follows: 

2 . 2n-2xl + 2n-2x2 + ... + 2 n - 2x n + E = 2: v(S) 
S3l 

2n-2xl + 2 . 2n-2x2 + ... + 2 n - 2x n + E = 2: v(S) 
S32 

2n-2Xl + 2n-2x2 + ... + 2 . 2 n - 2x n + E = 2: v(S) 
S:;m 

Xl + X2 + ... + Xn = v(N). 

The solution of (5.23) is 

X~ 
t n-2 -v(N) + 2: v(S) - - 2: (2: v(S)) , 1 {2n

-
2 

1 } 
2 n iES n jEN jES 

Vi E N 

~{2: 2: v (S) - (n+ 1)2n
-

2V(N)}. 
n jEN jES 

E* = 

(5.23) 

(5.24) 

If x* belongs to the set of imputation X(N, v), it is the solution ES(N, v). 

The condition such that x* E X (N, v) can be expressed as the following n 

inequalities: 

2n-
2v(N) + n 2: v(S) - 2: 2: v(S) ~ 0, i = 1,2, ... ,n. 

S3i jEN S3j 
j,ei j,ei 

(5.25) 

The following theorem shows the relation among the three solutions LS(N, v), 

LSD(N, v) and ES(N, v). 

Theorem 5.4 

For a game (N, v), if the solution ES(N, v) exists, it is equal to both the 

solution LS(N, v) and the solution LSD(N, v) . 

Proof First, we will prove the first part of the theorem. Let (x* , E*) be the 

solution of the simultaneous linear equations (5.22). Then if the game (N, v) 

satisfies the condition (5.25), x* is the solution ES(N, v). Let (Xl, EI) be the 

solution obtained by Algorithm 5.2, i.e., the solution LS(N, v). 

If (x*, E*) is not equal to (Xl, EI), E* > EI; and for a certain j, there exists 

Pj > 0 such that 

( . I) I 
W 1"X + Pj = E. 

We have 

2: w(i, Xl) + 2: Pj = nEI, 
iEN j 
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and 

Since, for any x , 

L w(i, x*) = nE*. 
iEN 

L w(i, x) = L L v(S) - (n + 1)2n- 2v(N) = a constant value, 
iEN iEN Sc;N 

S3i 

we have 

L w(i, x') = L w(i, x*). 
iEN iEN 

Thus, 

L Pj = nE' - nE* > 0 
j 

leads to the contradiction E' > E*. Therefore, the solution ES(N, v) is equal to 

the solution LS(N, v). 

Next, we will prove the second part of the theorem. Let x* be the solution 

ES(N, v). From the definition of the solution ES(N, v), 

w( i, x*) = w(j, x*), i =I j 

and subsequently, 

dW(i, j, x*) = w(i, x*) - w(j, x*) = O. 

Let (x', E') be the solution LSD(N, v) and assume that the solution ES(N, v) 

is not equal to the solution LS(N, v), i.e., x* =I x'. From the property of the 

inequality constraints in the following mathematical programming problems in 

the algorithm for computing the solution LSD(N, v), 

minimize E 

subject to dW(i, j, x) = E1, 
dw(i,j,x) = E2, 

dw(i,j, x) = Et-1, 
dW(i, j, x) ::; E, 
LXi = v(N) 

Vi(=I j) E Ti 
Vi(=I j) E 72 

Vi( =I j) E 7;-1 
Vi( =I j) E N, i ¢ Ti u 72 u ... U'1;-l 

i = 1,2, ... , n, 

(5.26) 

we have E' > O. However, (x*, E*) is feasible for the problem (5.26) and E* = O. 

This contradicts the optimal property of (x', E'). Therefore, the solution ES(N, v) 

is equal to the solution LSD(N, v). 0 

89 



From Theorem 5.4, we can easily obtain the solutions LS(N, v) and LSD(N, v), 

which coincide, by solving the simultaneous linear equations (5.22) if the solution 

of (5.22) belongs to the set of imputation X(N, v). Moreover, from the proof of 

Theorem 5.4, we can say that there exists the solution ES(N, v) if and only if 

the optimal solution to the problem minxEx(N,v) maxiEN w( i, x) is unique. 

Example 5.1 

Consider the three-person cooperative game defined by the following charac­

teristic function: 

v(¢)=o, v({l})=O, v({2}) =0, v({3}) =0, 
v( {l, 2}) = 80, v( {I, 3}) = 20, v( {2, 3}) = 60, v( {l, 2, 3}) = 200. 

In this example, there exists the solution ES(N, v) which is equal to both 

the solutions LS(N, v) and LSD(N v). The proposed solution and the nucleolus 

were computed. 

Table 5.1 Imputations of the proposed solution and the nucleolus 

Player 1 Player 2 Player 3 
Proposed solution 66.7 86.7 46.7 

Nucleolus 70.0 70.0 60.0 

It is seen from Table 5.1 that the nucleolus gives both Player 1 and Player 2 

the same payoffs, but the proposed solution gives all the players different values. 

Even in such a simple game, the proposed solution can be considered to derive 

the property of the characteristic function. 

5.3 n-Person Cooperative Games with Fuzzy Coalitions 

In this section we consider the lexicographical solution and the related so­

lutions in n-person cooperative games with fuzzy coalitions and present their 

computational methods. 

5.3.1 Problem Formulation and Solution Concepts 

For conventional n-person cooperative games, the coalition S can be specified 

by the function T S as follows: 

(5.27) 
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A rate of participation of a player i is defined by TS(i), i.e., TS(i) = 1 if a player 

i participates in a coalition S, and T S (i) = ° if a player i does not participate in 

S. Consequently, a coalition S is represented by T S = (T S (1), ... , T S (n)). 

A fuzzy coalition T is defined as a coalition in which a player i can participate 

with a rate of participation Ti E [0, 1] instead of {O, I}. Thus we can define a 

fuzzy coalition as follows: 

Definition 5.14 ( Fuzzy coalition) For an n-person game, let the set of 

all players be denoted N = {I , 2, ... , n}. Any nonempty fuzzy subset of N is 

called a fuzzy coalition. 

Definition 5.15 ( Characteristic function for games with fuzzy coali­

tions) The function f, called a characteristic function of a game with fuzzy 

coalitions, is a real-valued function which associates any fuzzy coalition 7 E [O,l]n 

with its real value f (T). 

From the above two definitions, a game with fuzzy coalitions is denoted by 

(N, f). 

An n-person cooperative game with fuzzy coalitions includes a conventional 

n-person cooperative game as a special case. Therefore, for a game (N, v), the 

excess of S with respect to x can be represented as follows: 

e(S, x) = v(S) - X· T
S

, (5.28) 

where 7
S E {O, l}n, i.e., for any player i E N, TP = 1 if i E S, TiS = 0 if i rt S 

and, for the sake of simplicity, T S (i) is written as TiS. 

Similar to a game (N, v), an excess in a game with fuzzy coalitions (N, f) 

can be defined as follows: 

Definition 5.16 ( Excess of a fuzzy coalition) For a game with fuzzy 

coalitions (N, f), let x be a payoff vector and let T be a fuzzy coalition. Then 

an excess of the fuzzy coalition T E [O,l]n with respect to a payoff vector x is 

defined by 

e(7, x) = f(7) - X· T, (5.29) 

where f (T) is a value of a characteristic function representing the total amount of 

transferable utility that the cooperation of players, based on rates of participating 

in the fuzzy coalition 7, can make by itself. 
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We now consider an excess of a player in a game with fuzzy coalitions (N, f) 

as well as in a game without fuzzy coalitions (N, v). For a game (N, v), an excess 

of a player i with respect to x can be rewritten as follows: 

w(i, x) = L Tt e(S, x) = L TiS (v(S) - X . T
S

). (5.30) 
S~N S~N 

For a game with fuzzy coalitions (N, f), we first consider a game with a finite 

number of fuzzy coalitions. A fuzzy coalition T is represented by an n-dimensional 

vector of which an entry satisfies Ti E [0,1]. Let a set of fuzzy coalitions be T, 

then an excess w( i, x) of a player i with respect to a payoff vector x is 

w(i, x) = L Ti e(T, x). (5.31) 
rET 

Consequently, an excess w( i, x) of player i in a game without fuzzy coalitions 

(N, v) can be regarded as a special case of an excess w(i, x) of player i in a game 

with fuzzy coalitions (N, f). 

Secondly, we consider a fuzzy game with an infinite number of fuzzy coalitions. 

The excess w(i, x) in a game (N, f), which permits all of the fuzzy coalitions 

T E [0, l]n, is defined by multiplying an excess e( T, x) by a rate of participation 

Ti of player i and integrating it from ° to 1, i.e., 

w(i,x) = t ri e(r,x)dr, 

where 

10
1 

dr = 10
1 

0 0 010
1 

drldr2 000 drno 

When a permissible domain of T is limited to 

instead of [O,l]n, the excess w( i, x) can also be considered as follows: 

w(i, x) = Iv Ti e(T, X)dT. 

(5.32) 

(5.33) 

(5.34) 

Therefore, in general, when both D and T are considered as permissible 

domains of T, an excess W ( i, x) is defined as follows. 

Definition 5.17 ( Excess of a player in a game with fuzzy coalitions) 

For a game with fuzzy coalitions (N, f), let e( T, x) be an excess of a fuzzy coalition 
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T with respect to a payoff vector x. Also let D be a subset of [0, l]n, consisting of 

a finite number of elements; and T be a subset of [0, l]n, consisting of an infinite 

number of elements. Then an excess of a player i is defined as: 

(5.35) 

Especially, when the permissible domain of fuzzy coalitions is [O,l]n, the 

excess of a player i is expressed as 

(5.36) 

Using the concept of the lexicographical order, we consider a solution mini­

mizing an excess of a player w(i, x) in a game (N, f) with fuzzy coalitions. 

Definition 5.18 ( Lexicographical solution using an excess of a player 

for games with fuzzy coalitions) Let Hn : J{'t ---+ Rn be a mapping which 

arranges entries of an n-dimensional vector in order of decreasing magnitude. 

Then, for a game (N, f) with fuzzy coalitions, the lexicographical solutions using 

an excess of a player w( i, x) can be defined as follows: 

FLS(N,f) = {x I H(w(l,x), .. ·,w(n,x)) 
~L H(w(l, y),"', w(n, y)), Vy E X(N, f)}, 

(5.37) 

where X (N, f) is the set of all imputations, i.e., 

X(N, f) = {x I Xi ~ f(T{i}), Vi E N, LXi = f(T N)}. (5.38) 
iEN 

5.3.2 Computational Method and Extension of Games 

We present the computational methods for the lexicographical solution using 

an excess of a player in games with fuzzy coalitions, and we try to extend a 

characteristic function v of a game (N, v) to a characteristic function f ( v) of a 

game (N, f (v)) and propose the computational methods for the lexicographical 

solution in the extended game (N, f(v)). 

In this section we assume that the permissible domain of fuzzy coalitions is 

[O,l]n. The algorithm for computing the solution F LS(N, f) in the game (N, f) 

can be summarized in the following steps. 
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Algorithm 5.3 

[ Step 1 ] 

Formulate the following linear programming problem: 

minimize C 

subject to w(i, x) ~ c, i = 1,2, ... ,n 
LXi = f(T N) 
iEN 

Xi 2:: 0, i = 1,2, ... , n, 

(5.39) 

and solve the problem (5.39). Let the optimal solution of (5.39) be Cl and the 

set of players for the active inequality constraints be denoted Tl. 

[ Step 2 ] 

By fixing the active inequality constraints of Step 1 as E 

programming problem 

minimize C 

subject to w(i x) = Cl, 

w(i, x) ~ E, 

LXi = f(T N) 

Vi E Tl 
Vi E N, i t/. Tl 

i = 1,2, ... , n, 

E 1, the linear 

(5.40) 

can be obtained. Let the optimal solution of (5.40) be C2 and the set of players 

for the new active inequality constraints be denoted 72. 
[ Step 3 ] 

In a procedure similar to [Step 2], the linear programming problem can be 

obtained by fixing the active inequality constraints in the previous step. Then 

let the optimal solution of the problem be C3 and the set of coalitions for the new 

active inequality constraints be denoted T3. 

[ Step t ] 

Let the optimal solution at Step t - 1 be Ct-l' By fixing C = Ct-l' the active 

inequality constraints containing C are converted into equality constraints. The 
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obtained linear programming problem 

mlnlmlze C 

subject to w( i, x) = c1, 
w(i, x) = C2, 

w(i, x) = Ct-1, 

w(i, x) ::; c, 
LXi = f(T N) 

Vi E 7i 
Vi E 72 

Vi E 7;-1 
Vi E N, i tf. 7i u 72 u ... U 7;-1 

i = 1,2, ... , n, 

is solved. Let the optimal solution of (5.41) be Ct. 

Theorem 5.5 

(5.41) 

For the game (N, f), Algorithm 5.3 can always determine the unique solution 

by at most t = n steps, which is the lexicographical solution using an excess of 

a player F LS(N, f), when the permissible domain of fuzzy coalitions is [0, l]n. 

Proof Since an excess w( i, x) of any player i with respect to x is linear when 

the permissible domain of fuzzy coalitions is [0, l]n, we can prove the theorem 

by a procedure similar to the proof of Theorem 5.2. 0 

Consider a solution concept related to the solution F LS(N, f). Especially, 

when the solution F LS(N, f) can be obtained by solving the linear programming 

problem only one time, the imputation is such that excesses of all players have 

the same value. From this point of view, a part of the solution F LS(N, f) can be 

redefined as follows. The solution is more restrictive than the solution F LS(N, f) 

and can be defined as the solution in which the excesses of all players take same 

values. 

Definition 5.19 ( Solution equating excesses of all players in a game 

with fuzzy coalitions) For a game (N, f), let w(i, x) be an excess of a player 

2. Then the solution equating excesses of all the players is defined as follows: 

FES(N,f) = {x I w(l,x) = ... = w(n,x),Vx E X(N,f)}· (5.42) 

The solution F ES(N, f) can be obtained by solving the following simultane-
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ous linear equations: 

w(l,x)=c 
w(2,x)=c 

w(n,x)=c 
Xl +X2+'" +xn = f(T N). 

(5.43) 

Let the solution be denoted (x*, c*). If x* belongs to the set of imputations 

X(N, f), it is the solution F ES(N, f). 

Theorem 5.6 

For a game (N, f), if the permissible domain of fuzzy coalitions is [0, 1 rand 

there exists the solution F ES(N, f), it is equal to the solution F LS(N, v). 

Proof Since 

L w(i, x) = L rl 
Tif(T)dT - (~ + !2 f(T N)) = a constant value, 

iEN iEN Jo 12 4 

we can prove the theorem in a way similar to Theorem 5.4. o 

From Theorem 5.6, we can easily obtain the solution F LS(N, f) by solving 

the simultaneous linear equations (5.43) if the solution of the simultaneous linear 

equations (5.43) belongs to the set of imputations X(N, f). Moreover, we can 

state that the solution F ES(N, f) exists if and only if the optimal solution to 

the problem minxEx(N,J) maxiEN w( i, x) is unique. 

In general, it is difficult to identify a characteristic function of a game with 

fuzzy coalitions in practice. Also, when people introduce fuzzy coalitions in a con­

ventional game, a new characteristic function of the game with fuzzy coalitions 

must be constructed on the basis of the characteristic function of the conven­

tional game. The extension of a game without fuzzy coalitions to a game with 

fuzzy coalitions can be considered as a mapping from a characteristic function of 

a game without fuzzy coalitions to a characteristic function of a game with fuzzy 

coalitions. There exist two mappings, Owen's extension (1972) and Cornet's 

extension (cited in Aubin 1979). 

Let 0 be Owen's extension operator, with the extension represented by 

(5.44) 
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where lSI is a number of members of a nonfuzzy coalition S, and 

QS(V) = L (-I)lsl- ITlv (T) . (5.45) 
Tc;,S 

Similarly, let c be Cornet's extension operator, with the extension represented 

by 

cv(,) = L Qs(v) (II It) l/ISI 
Sc;,N iES 

(5.46) 

U sing a new extension operator a, another extension can be represented by 

( )

ISI 

av(,) = L QS(v) II 't 
Sc;,N tES 

(5.47) 

Owen's extension is expressed by sumining up the influence of each nonfuzzy 

coalition S on a fuzzy coalition " according to a rate of participation Ii, in a 

fuzzy coalition ,. TIiES'i is the degree of influence a coalition S has on a fuzzy 

coalition " which is represented by a real number between 0 and 1, and QS(v) is 

a normalization for the mapping. Cornet's extension overestimates the influence 

of the coalition S by proportioning the number of players belonging to S when 

Qs(v) is positive, because cv(,) is represented by taking the one over ISlth power 

of TIiES 'i in ov. Notably, cv is positively homogeneous, and Aubin (1979, 1981) 

has shown interesting results when a characteristic function has this property in 

a game with fuzzy coalitions. Conversely, av underestimates the influence of a 

coalition S. 

Moreover, we present the following extension operator m by combining these 

extensions, 

mv(,) = L as(v) (II 'i)P, 
Sc;,N iES 

( 5.48) 

where p is any of 1, 1/ISI or lSI for each S ~ N. 

In general, a value v(S) of a coalition S in the original game must be equal 

to a value f( IS) of a nonfuzzy coalition ,s, which is the same as S, in the 

extended game, i.e., v(S) = f('S). The following proposition demonstrates that 

the extension operators 0, c, a and m satisfy this property. 

P roposition 5. 7 

The extension operators 0, c, a and f are interpolation operators; that is, 

(5.49) 
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for any nonfuzzy coalition S. 

Proof We first prove that cv( T S ) = v( S). Since 

we have 

Since 

( 
s) 111s1 {I if S ~ T iU, Ti = /-LT(S) = 0 if S 1J T, 

( ) 
1/1TI ( ) ITI ( ) p n Tt = IT TiS =;II Tt =;II Tt = /-LT(S), 

tET tET tET tET 

the rest of the proof can be shown in a similar way. o 

Consider an excess iiJ( i, x) of a player i in an n-person game extended by each 

extension operator. Let a permissible domain for fuzzy coalitions be [0, 1 In. 
(i) Let f(T) = OV(T) . In this case, 

where 

iiJ( i, x) l T;(OV(T) - X . T)dT 
011 

°i - -3 Xi - L -4 Xj , 
ji-i 

aki = {SliES,ISI=k} 
akI = {S I i fj. S, I S I = k}. 

(ii) Let f ( T) = CV ( T) . In this case, 

w(i, x) - l T;(CV( T) - X . T)dT 
011 

Ci - -3 Xi - L -4 Xj , 

ji-i 
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(5.51) 

(5.52) 

(5.53) 



Ci = 10
1 

ricv(r)dr 

n { k ( k ) k-l 1 ( k ) k } 
= ~ 2k + 1 k + 1 sE, as (v) + 2 k + 1 sE, as (v) . 

(iii) Let J(T) = aV(T) . In this case, 

w(i, x) = f ri(av(r) - x . r)dr 
o 1 1 

ai - -3 Xi - L -4 Xj , 

ji=i 

ai - 10
1 

riav(r)dr 

n { 1 ( 1 ) k-l 1 ( 1 ) k } 
~ k+2 k+l sE,as(v)+2 k+l sE,as(v). 

(iv) Let f(T) = JV(T) . In this case, 

where 

w(i, x) = f r;(fv(r) - x . r)dr 
0
11 

fi - -3 Xi - L -4 Xj , 

ji=i 

Ji l rdv(r)dr 

= ~ {sE, G~as(v) + sE, Hfas(v)}, 

(~) (~tl if 8: p = 1 

G~ = k ( k ) k-l if 8: p = 1/181 
2k + 1 k + 1 

1 ( 1 ) k-l if 8 :p= 181, 
k+2 k+l 

G)k+1 if 8 :p= 1 

Hf= 1 ( k ) k if 8: p = 1/181 
2 k t 1 

~(k+/ if 8 :p= 181. 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

We are ready to apply the proposed solutions to the extended game. Using 

Owen's extension, the excess of a player is represented by (5.50) and (5.51). 

Therefore, the solution F E8(N, ov) can be obtained by solving the following 
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simultaneous equations: 

111 
~Xl + iX2 + ... + iXn + c = 01 

- X 1 + - X2 + ... + - x + c = 02 
4 3 4 n 

(5.61) 

111 
-Xl + -X2 + ... + -X + c = 0 4 4 3 n n 

Xl + X2 + ... + Xn = v(N). 

Then the solution of (5.61) is 

X* 
t 2nl_2 {2:\(N) + ~v(S) - ~ ~ (~V(S))}, i = 1,2 ... ,n 

j"fci j"fct 

c* ~{ I
n

_
l 
(L L v(S) + 2 L L v(S)) - 3n + 1 V(N)}. 

n 3· 2 iEN iES iEN iftS 12 
(5.62) 

The following proposition can be directly obtained from the equations (5 .24) 

and (5.62). 

Proposition 5.8 

If there exists a solution ES(N, v) in a game (N, v), the solution ES(N, v) 

is equal to the solution FES(N,ov) in the game (N,ov) with fuzzy coalitions 

extended by Owen's extension operator o. 

Similarly, for the other extensions, the solution F ES can be obtained as: 

12 { 1 } - -v(N) + nBi - L B j , 
n 12 jEN 

jii 

~{L Bi - 3n+ I V (N)}, 
n iEN 12 

i = 1,2, ... ,n 

(5.63) 

c* = 

where, for the extension operator c, 

i = 1,2, ... , n, (5.64) 

for the extension operator a, 

i=I,2, ... ,n (5.65) 

and, for the extension operator m, 

i = 1,2, ... , n. (5.66) 
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Therefore, for the games extended by the extension operators 0, c, a and m, if 

the conditions 

1 
-v(N) + nB· - ""' B · > 0 
12 t L- J - , 

JEN 

·i=I,2, ... ,n (5.67) 

j#i 

are satisfied, there exist the solutions FES(N,ov), FES(N,cv), FES(N,av) 

and F ES(N, mv) for the extended games, respectively. In the original game 

(N, v), if the value v(S) of coalitions S :3 i to which any player i belongs is not 

so small, compared with others, these conditions can be satisfied. 

Even if the solutions FES(N, ov), FES(N, cv), FES(N, av) and FES(N, mv) 

do not exist, we can always obtain the solutions FLS(N,ov), FLS(N,cv), 

F LS(N, av) and F LS(N, mv) uniquely by Algorithm 5.3. 

Example 5.2 

Consider a four-person game defined by the following characteristic function 

v: 

v(¢) =0, v({I})=I, v({2}) =2, v({3}) =2, 
v({4}) =3, v({1,2}) =50, v({l,3}) =55, v({I,4}) =70, 

v( {2, 3}) = 60, v( {2, 4}) = 80, v( {3, 4}) = 90, v( {I, 2, 3}) = 120, 
v( {I, 2, 4}) = 130, v( {I, 3, 4}) = 150, v( {2, 3, 4}) = 200, v( {I, 2,3, 4}) = 300. 

Let the permissible domain of a coalition be [O,I]n and let us extend the four­

person game by the extension operators 0, c and a. The solutions ES(N, v), 

F ES(N, ov), F ES(N, cv) and F ES(N, av) exist for the four-person games (N, v), 

(N, ov), (N, cv) and (N, av), and the solutions can be computed easily. 

Table 5.2 Solutions ES and F ES 

Player 1 Player 2 Player 3 Player 4 
ES(N, v) 55.37501 71.87498 80.62500 92.12501 
FES(N,ov) 55.37501 71.87498 80.62500 92.12501 
FES(N,cv) 51.90225 72.85343 82.66145 92.58291 
FES(N,av) 64.17812 71.53647 76.81771 87.46770 

It can be seen from Table 5.2 that the imputations differ from one another 

according to extension operators. In the solution by Cornet's extension, the 

differences in the payoffs are relatively large. In contrast, they are relatively 

small in the solution by the extension operator a. Owen's extension is between 

the other two extensions. To be more specific, the discrepancy between the 
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payoff of Player 1 and that of Player 4, which is largest among all of the players, 

is 40.22276 for Cornet's extension 36.76000 for Owen's extension and 23.28958 

for the extension operator a. 

5.4 Conclusion 

We have introduced the concept of the excess of a player in a game with fuzzy 

coalitions as well as in a conventional game and examined the lexicographical 

solution concepts in both of the games. 

In a game with fuzzy coalitions, we have mainly considered the proposed 

solutions but not the nucleolus. Since fuzzy coalitions exist infinitely, excess s of 

fuzzy coalitions also exist infinitely. Therefore, to consider the nucleolus of gaInes 

with fuzzy coalitions, we have to extend the lexicographical order defined in thi 

chapter to the lexicographical order for infinite sequences. iv10reover, it would 

seem that computing the nucleolus in the game with fuzzy coalitions is difficult, 

and even if we could present the method, many assumptions would be required . 

As we mentioned, the main aim of this thesis is to present resolution methods for 

competitive systems. Therefore, although the studies on the nucleolus in games 

with fuzzy coalitions are important, such analyses are outside the scope of thi 

thesis and will be addressed in another paper. 

To conclude, the results of this chapter are summarized as follows: 

1) To evaluate payoff vectors in terms of players, we have introduced the concept 

of the excess of a player for games with fuzzy coalitions as well for conventional 

games. 

2) The lexicographical framework has given rise to an important class of solution 

concepts, but for games with fuzzy coalitions, solution concepts incorporating 

such a framework have not been examined. The lexicographical solution using 

the excess of a player has been considered and the computational methods were 

presented. 

3) We also proposed the solution concepts related to the lexicographical solution 

using an excess of a player, which include the solution equating excesses of all the 

players as a special case; and the relationship between the two solution concepts 

was analyzed. 

4) When fuzzy coalitions are introduced in a conventional game, the characteristic 
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function of the game with fuzzy coalitions must be formulated on the basis of 

the original characteristic function. We have provided some extension methods 

and presented the computational methods to facilitate the proposed solutions in 

the extended games. 

In this chapter, games with fuzzy coalitions were examined to consider am­

biguity in the forming of an organization. In the following chapter, we will deal 

with other n-person cooperative games, which are described by a fuzzy goal ex­

pressing a degree of the coalition's satisfaction for the payoffs instead of the value 

v(S). 
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CHAPTER 6 

N-PERSON COOPERATIVE GAMES WITH FUZZY 
GOALS 

6.1 Introduction 

In this chapter, we consider n-person cooperative games in a fuzzy environ­

ment different from a fuzzy coalition. A characteristic function v describe an 

n-person cooperative game and associates a coalition S with the worth v(S) of 

the coalition, represented by a real number which is considered to be th max­

min value of the two-person game played between the coalition S and the other 

coalition N - S which consists of the rest of the players, as von Neumann and 

Morgenstern (1944) have suggested. As we mentioned in Chapters 2 3 and 4, 

there is a two-person game in which payoffs cannot be accurately determined 

because of some imprecision in the information, so the value v(S) of a coalition 

S, derived by the two-person game, becomes ambiguous. Therefore, it is mean­

ingful to consider games with fuzzy values of coalitions where the characteristic 

function of such games, which should be a characteristic mapping, associates 

a value of a coalition with a fuzzy set (Sakawa and Nishizaki 1992a; Nishizaki 

and Sakawa 1992a; Seo and Nishizaki 1991, 1992, 1993; and Seo, Sakawa and 

Nishizaki 1992, 1993). 

A value v(S) of a coalition S refers to the gain which the coalition S can ac­

quire only through the action of S; hence, the game (N, v) can be interpreted as 

a game described by the value v(S) with which the coalition S is minimally sat­

isfied. By utilizing a coalition's satisfaction with a payoff vector, we can present 

another representation of a game to accommodate the imprecision of informa­

tion. Namely, the game is described by the fuzzy goal G 5, which expresses the 

degree of the coalition's satisfaction with a payoff vector, instead of the value 

v(S). Membership functions of fuzzy goals assign degrees of satisfaction con­

tinuously from the coalition's minimal satisfying value to its maximal satisfying 

value. This game is defined by a 3-tuple (N, /-Lcs' P), where N is the set of all 
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players, /Lcs is a membership function of a fuzzy goal of a coalition Sand P is 

the payoff amount, which is divided among all players on the assumption that 

the players will form the grand coalition N. 

In Section 6.2, we review some definitions for the game (N, /Las' P) and pro­

pose a new solution concept based on the fuzzy decision rule by Bellman and 

Zadeh (1970). Several methods for identifying a membership function are pre­

sented. We can also construct a membership function /Las using the characteristic 

function v in a conventional game (N, v), which facilitates the transformation of 

the game (N, v) to the fuzzy game (N, /Lcs(v) , P). 

In Section 6.3, when all of the membership functions are linear functions or 

hyperbolic functions, the proposed solutions can be obtained by solving linear 

programming problems (Zimmermann 1976 and Leberling 1981). We also adopt 

for each coalition one of five types of membership functions, which include linear, 

hyperbolic, exponential, hyperbolic inverse and piecewise linear functions. In this 

case, the proposed solution corresponds to the optimum solution of a nonlinear 

programming problem. However, it can be obtained by a combined use of the 

bisection method and phase one of the simplex method (Sakawa 1983). Finally, 

an illustrative numerical example, where all of the membership functions are 

linear, is presented. 

6.2 Problem Formulation and Solution Concepts 

For an n-person cooperative game (N, v) in characteristic function form, v(S) 

denotes the joint payoff which the members of any given coalition S S;;;;; N achieve 

if they cooperate among themselves but not with the remaining players. In this 

chapter, we employ a representation of an n-person cooperative game instead of 

the usual characteristic function v. We introduce the concept of a fuzzy goal 

and its corresponding membership function to represent a degree of satisfaction 

of a coalition S with respect to a payoff vector x. Given the payoff vector, the 

membership function of the fuzzy goal provides a value in [0,1] which represents 

the coalition S's degree of satisfaction. 

Definition 6.1 ( A fuzzy goal) Let N be the set of all players and let S, 

which is a subset of N, be a coalition. Let X denote a set of payoff vector x 

and let xs denote coalition S's payoff where Xs = L:iES Xi. Then a membership 

105 



function of a fuzzy goal for coalition S is represented by /-Lc s (x s ), where the fuzzy 

goal G s is a fuzzy set which represents the degree of satisfaction of the coalition 

S. The fuzzy goal Gs is expressed by a pair Xs and /-Ls(xs), i.e., 

(6.1) 

Then the fuzzy goal 6 s, which represents the degree of satisfaction, is char­

acterized by a membership function /-Lcs(xs). By assuming collective rationality, 

the following is considered as a set of payoff vectors: 

x = {x I Xl + X2 + ... + Xn = P, Xi ~ 0, i EN}, (6.2) 

where P is the payoff amount, which is divided among all players on th assump­

tion that the players will form the grand coalition N. 

We present the five types of fuzzy goals which are comprised of linear , hyper­

bolic, exponential, hyperbolic inverse and piecewise linear functions. 

1) Linear membership function 

Consider a membership function /-Lcs(xs) which increases linearly from 0 to 1. 

J-tcs (xs) = 0 is interpreted as the minimum degree of satisfaction for a coalition 

.8 and /-Lcs (xs) = 1 is interpreted as the maximum degree of satisfaction. Let 

fJ.s be the maximal value Xs satisfying /-Lcs (xs) = 0 and let as be the minimal 

value Xs satisfying /-Lcs(xs) = l. Then the linear membership function can be 

expressed as 

2) Hyperbolic membership function 

if xs::; ~s 

if ~s < x s ::; as 

if as < Xs· 

(6.3) 

When smooth changes in the degree of satisfaction are required everywhere, 

nonlinear membership functions should be considered. A typical nonlinear func­

tion is a hyperbolic function. This function can be expressed as 

(6.4) 

where as is the parameter of distortion, and as and ~s are assessed values. as 

can be determined by assessing the values of as such that /-Lcs(as) = 0.9; and 
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0.0 ~s Xs 

Figure 6.1 Linear membership function 

Qs such that Mas (Qs) = 0.1. Then as can be interpreted as the value having the 

degree of satisfaction 0.9 and Qs as the value having the degree of satisfaction 

0.1. 

0.0 Xs 

Figure 6.2 Hyperbolic membership function 

3) Exponential membership function 

An exponential membership function is expressed as follows: 

( (
bs(xS - as)) ) Ma (xs) = as exp _ - - 1 , 

S as - Qs 
(6.5) 

where as and bs are parameters, and as and Qs are assessed values. This func­

tion can be identified by assessing the value of as such that Mas (as) = 1 where 

the membership function value is 1; by assessing the value of Qs such that 
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J.Lcs (fJ.s) = 0 where the membership function value is 0; and by assessing the 

value subjectively where the membership function value is 0.5. 

--- ---- -- ---- -- ---- -- --- --- --- --- --- --- --- ---~--.,:.A-......-----

0.5 

0.0 

Figure 6.3 Exponential membership function 

4) Hyperbolic inverse membership function 

A hyperbolic inverse membership function can be expressed as follows: 

(6.6) 

where as and O:s are parameters, and as and fJ.s are assessed values. This func­

tion can be identified by assessing the value of as such that J.Lcs (as) = 1 where 

the membership function value is 1; by assessing the value of fJ.s such that 

J.Lcs (fJ.s) = 0 where the membership function value is 0; and by assessing the 

value subjectively where the membership function value is 0.25. 

5) Piecewise linear membership function 

A piecewise linear membership function can be expressed as follows: 

(6.7) 

where tir and Sir are parameters corresponding to the rth straight line, and 

J.Lc s (as) = 1 and J.Lc s (fJ.s) = 0 . This function can also be identified by assessing 

each break-point. 
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-------------- ------ ------ --- --------------------,...------

-
0.0 -.as as 

Xs 

Figure 6.4 Hyperbolic inverse membership function 

We can transform a conventional game (N, v) to a fuzzy game (N, J.Lcs(v) , P) 

by constructing membership functions of fuzzy goals from a characteristic func­

tion v(S), VS ~ N and setting P = v(N). Let v(S) be the minimum value 

which a coalition S obtains through the cooperation of its members. Then 

v(N) - v(N - S) represents the value at which the coalition S is fully satisfied 

because v(N) is the payoff amount and v(N - S) is the minimum value obtained 

by the coalition N - S (which consists of all members not in S). Consequently, 

we can construct membership functions of fuzzy goals by setting f1s = v(S) and 

as = v(N) - v(N - S) in (6.3), (6.4), (6.5), (6.6) and (6.7), i.e., 

1) Linear membership function: 

1 
0 if xs::; v(S) 

v(N) - v(N - S) - xs 
J.Lcs(xs) = 11 - v(N) _ v(N _ S) _ v(S) if v(S) < xs ::; v(N) - v(N - S) 

if v(N) - v(N - S) < xs. 
(6.8) 

2) Hyperbolic membership function: 

( ) 1 h (( v(N) - v(N - S) - v(S)) ) 1 
I/. - X S = - tan x s - CiS + -. 
t"'Cs 2 2 2 (6.9) 
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Figure 6.5 Piecewise linear membership function 

3) Exponential membership function: 

( ( 
bs(xs - v(S)) ) ) 

Ilcs(xs) = as exp v(N) _ v(N _ S) _ v(S) - 1 . 

4) Hyperbolic inverse membership function: 

Xs 

1(( V(N)-V(N-S)-V(S))) 1 
Ilcs(xs) = as tanh- xs- 2 CiS +2' 

5) Piecewise linear inverse membership function: 

where Ilcs(v(N) - v(N - S)) = 1 and Ils(v(S)) = O. 

(6.10) 

(6.11 ) 

(6.12) 

We now consider a new solution concept for an n-person cooperative fuzzy 

game (N, Ilcs' P), defined by maximizing the minimum value of fuzzy goals 

Ilcs(xs), This problem is formulated using the fuzzy decision rule by Bellman 

and Zadeh (1970). 

Definition 6.2 ( Solution maximizing the minimal fuzzy goal) Let N 

be the set of all players, let Ilcs be a membership function of a fuzzy goal of a 

coalition S and let P be the payoff amount. In an n-person cooperative fuzzy 

game (N, Ilcs ' P), the solution maximizing the minimal fuzzy goal is defined by 

a payoff vector x*, where 

IlD(X*) = max min Ilc (xs). 
xEX SeN 5 

(6.13) 
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Consider the relation between the solution and the nucleolus. The nucleolus 

is defined by minimizing the excess e(S, x) = v(S) - Xs of a coalition S with 

respect to x in the lexicographical order. Therefore the set of payoff vectors 

maximizing the minimal excess of the coalition includes the nucleolus, and if 

the set consists of a single component, the payoff vector maximizing the minimal 

excess of the coalition is equal to the nucleolus. Then the nucleolus is represented 

by the payoff vector x* such that 

min max e(S, x). 
xEX S~N 

(6.14 ) 

By comparing (6.13) and (6.14), it is easy to understand the similarities between 

the two solution concepts. 

6.3 Computational Method 

We present the computational methods for the proposed solution 1) when 

all of the membership functions of fuzzy goals consist only of linear functions, 

2) when they consist only of hyperbolic functions and 3) when, as a general 

case, they consist of five kinds of membership functions, which include linear, 

hyperbolic, exponential, hyperbolic inverse and piecewise linear functions. 

1) Linear membership function 

When all of the membership functions of fuzzy goals are linear functions, the 

proposed solution is x*, which is obtained from 

!-lD(X*) = max min 1 _ _ tE t . (
as - E· sx .) 

xEX SeN as - !J.s 
(6.15 ) 

By introducing an auxiliary variable A, x* can be determined by solving the 

following linear programming problem (Zimmermann 1976): 

maximize A 

subject to A ~ 1- as _- EiESXi, VS c N 
as - !J.s 

Xl + X2 + ... + Xn = P 
Xi 2:: 0, Vi E N. 

( 6.16) 

A remarkable relation can be found between the core, which is defined as the 

set of all undominated imputations, in a game (N, v) and the proposed solution 

in the transformed game (N, !-lcs' P). 
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Proposition 6.1 

Let (N, J-L6 s' P) be a game transformed from a game (N, v) in which the core 

is empty, and let J-Lcs be defined by the linear membership function (6.8) . Then 

the max-min value of the membership function of the proposed solution based 

on the fuzzy decision rule is 0, i.e. , J-LD(X*) = 0. 

Proof The core is defined by the set of payoff vectors for which the following 

condi tions hold: 

v(S) - L Xi ~ 0, VS c N 
iES (6.17) 

v(N) = LiEN Xi' 

If, in the game (N, v), the set of the core is empty, then there exists a coalition 

S holding the following condition: 

v(S) - LXi> 0. (6.18) 
iES 

From (6.8) and (6.18), there always exists at least one coalition such that , for 

any payoff vector x , J-Lcs(xs) = ° holds. Then, J-LD(X*) = 0. 0 

Proposition 6.1 states that if the set of the core is empty in the game (N, v) 

and the game (N, v) is transformed to the game (N, J-Lcs(v ) , P) of which the mem­

bership functions J-Lcs(v) are defined by (6.8), there exists at least one coalition 

which cannot be satisfied with any payoff vector in the sense of a degree of 

attainment of a fuzzy goal in the transformed game (N, J-Lcs (v) , P). 

2) Hyperbolic membership function 

When all of the membership functions of fuzzy goals are hyperbolic functions, 

the proposed solution is x*, which is obtained from 

J-LD(X*) = max min {~tanh (( L Xi - as - fJ.S)o:s) + ~}. 
xEX SeN 2 . S 2 2 

tE 

(6.19) 

By introducing an auxiliary variable A, X* can be determined by solving the 

following nonlinear programming problem (Leberling 1981): 

maximize A 

subject to ,\:s ~ tanh (( LXi - as; !!S)as) +~, VS c N 
tES (6.20) 

Xl + X2 + ... + Xn = p 
Xi ~ 0, Vi E N. 
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By the strictly monotonicity oftanh- l
(.), the problem (6.20) can be transformed 

to the following equivalent linear programming problem: 

maximize e 
subject to as L Xi - e ~ asbs , VS c N 

iES (6.21) 
Xl + X2 + ... + Xn = p 
Xi ~ 0, Vi E N, 

where ' 

e = tanh- I (2A - 1). (6.22) 

3) Five kinds of membership functions 

We have shown the methods for computing the solutions when all of member­

ship functions are only linear or only hyperbolic functions. We now adopt five 

different types of membership functions: linear, hyperbolic, exponential, hyper­

bolic inverse and piecewise linear. First, we should explain the necessity of the 

selection of membership functions. In a problem where the joint development of 

water resources is considered, the set of players consists of agricultural associa­

tions and city services (Suzuki and Nakayama 1976). Three types of coalitions 

are given: coalitions consisting of only agricultural associations, only city services 

and a mixture of the two. It is important to adopt a different type of membership 

function for each coalition type. Therefore, we should consider several types of 

membership functions when a set of players, as will often be the case, consists of 

different types of players. Conversely, when a set of players consists of only one 

type of player, we should adopt a single type of membership function. 

The proposed solution can be obtained by solving the following nonlinear 

programming problem: 

maximize A 

subject to A ~ /--lCS(?=Xi) , VS eN 
tES (6.23) 

Xl + X2 + ... + Xn = p 
Xi ~ 0, Vi E N, 

where if a coalition S has a fuzzy goal with a linear membership function, the 

membership function /--lcs is expressed as (6.3); if a coalition S has a fuzzy 

goal with a hyperbolic membership function, the membership function /--lcs is 
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expressed as (6.4); if a coalition S has a fuzzy goal with an exponential member­

shi p function, the membership function /-lc s is expressed as (6.5); if a coalition S 

has a fuzzy goal with a hyperbolic inverse membership function, the membership 

function /-lcs is expressed as (6.6); and if a coalition S has a fuzzy goal with a 

piecewise linear membership function, the membership function /-lcs is expressed 

as (6.7). 

The solution to problem (6.23) cannot be calculated as easily as the linear 

function or the hyperbolic function. However, an approxilnate solution can be 

derived using the method of Sakawa (1983). A method based on linear program­

ming problems is selected, because this problem would be difficult to solve as a 

nonlinear programming problem. First, we transform the constraints by using 

the strictly monotone increasing properties of logarithmic, hyperbolic inverse and 

hyperbolic functions, i.e., 

when membership functions are linear functions, the inequality constraints in 

(6.23) are transformed to 

LXi ~ a- (1- -\)(a-Q); (6.24) 
iES 

when membership functions are exponential functions, the inequality constraints 

in (6.23) are transformed to 

L Xi ~ a - Q log ( ~ + 1) - Q; 
iES bs as 

(6.25) 

when membership functions are hyperbolic functions, the inequality constraints 

in (6.23) are transformed to 

" 1 1 LXi ~ - tanh- (2-\ - 1) + bs ; 
iES CiS 

(6.26) 

when membership functions are hyperbolic inverse functions, the inequality con­

straints in (6.23) are transformed to 

1 2-\ - 1 
LXi~-tanh( )+bs ; 
iES CiS 2as 

(6.27) 

and when membership functions are piecewise linear functions, the inequality 

constraints in (6.23) are transformed to 

(6.28) 
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Using these constraints, the following problem is equivalent to the original non­

linear programming problem (6.23). 

maximize A 
subject to L Xi ~ a - (1 - A)(a - g), VS E Tl 

iES 

LXi~a-glog(~+l)-g, VSET2 
iES bs as 

L Xi ~ ~ tanh- 1(2A - 1) + bs , VS E T3 
iES as 

1 2A - 1 
LXi~-tanh( 2 )+bs , VSET4 
iES as as 

A - s · L Xi ~ tr , V SETs 
iES tir 

Xl + X2 + ... + Xn = p 
Xi ~ 0, Vi E N, 

(6.29) 

whereby TI denotes a set of coalitions with linear membership functions; T2 de­

notes a set of coalitions with exponential functions; T3 denotes a set of coalitions 

with hyperbolic functions; T4 denotes a set of coalitions with hyperbolic inverse 

functions; and Ts denotes a set of coalitions with piecewise linear functions. 

The above problem could be reduced to a linear programming problem if the 

values of A in the constraints were fixed. Since the value of A satisfies 0 ~ A ~ 1, 

we can solve this problem by combining the bisection method and phase one of 

the simplex method. 

When A in the constraints is fixed, the test for feasibility (Le., whether the 

problem of which A is fixed is feasible or not) can be accomplished by using phase 

one of the simplex method. If it is feasible, renew the constant value A as follows: 

If it is not feasible, renew the constant value A as follows: 

1 
A ~ A --A 2 . 

(6.30) 

(6.31) 

Then the test for feasibility is executed again after renewing the constant value 

A. We can get the feasible problem with the maximal value of A by repeating 

this procedure in a finite number of iterations and then the feasible solution X* 

and the maximal constant value A* must be the optimal solution (x*, A*) of the 

problem (6.29). 
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Example 6.1 

We can transform a game (N, v) to the fuzzy game (N, J-lcs(v) , P) by con­

structing the membership functions expressed by the linear membership function 

(6.8). Then the proposed solution is calculated and compared with the nucleolus, 

which is a related solution. Let N = {I, 2, 3, 4} and let the coalition values be 

v(¢) =0, v({l})=l, v({2}) =2, v({3}) = 2, 
v({4}) = 3, v({1,2}) = 50, v({1,3}) = 55, v({1,4}) = 70, 

v( {2, 3}) = 60, v( {2, 4}) = 80, v( {3, 4}) = 90, v( {I, 2, 3}) = 120, 
v( {I, 2, 4}) = 130, v( {I, 3, 4}) = 150, v( {2, 3, 4}) = 200, v( {I , 2, 3, 4}) = 300. 

The payoff vectors were calculated both for the proposed solution and for the 

nucleolus. The proposed solution can be obtained by solving the following linear 

programming problem: 

maximize A 
subject to Xl -99A > 1 

X2 -148A > 2 
X3 -168A > 2 

X4 -177A > 3 
Xl +X2 -160A > 50 
Xl +X3 -165A > 55 
Xl +X4 -170A > 70 

X2 +X3 -170A > 60 
X2 +X4 -165A > 80 

X3 +X4 -160A > 90 
Xl +X2 +X3 -177A > 120 
Xl +X2 +X4 -168A > 130 
Xl +X3 +X4 -148A > 150 

X2 +X3 +X4 -99A > 200 
Xl +X2 +X3 +X4 300 
Xi 2:0, i=l,2,3,4. 

The results are shown in Table 6.1 . The degree of attainment of the fuzzy 

goal for the proposed solution was 0.465, with all of the coalitions being satisfied 

more than 0.465. In contrast, the degree of attainment of the fuzzy goal for the 

nucleolus was 0.451. The proposed solution shows a better outcome than the 

nucleolus in terms of the degree of attainment of the fuzzy goal. 

Table 6.1 Payoff vectors 

Player 1 Player 2 Player 3 Player 4 
Proposed solution 53.580 70.823 80.123 95.473 

Nucleolus 55.375 71.875 80.625 92.125 
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It is seen from Table 6.1 that the payoffs in the proposed solution are similar, 

but slightly larger than the payoffs in the nucleolus except for Player 4. 

6.4 Conclusion 

This chapter has considered n-person cooperative games for coalitions with 
\ 

fuzzy goals, and we have proposed a new solution concept using the fuzzy decision 

rule. 

To conclude, the results of this chapter are summarized as follows: 

1) To consider the imprecise nature of human judgment, we have employed fuzzy 

goals for coalitions in n-person cooperative games and have described the fuzzy 

games (N, /-Los' P) by the fuzzy goals which express degrees of the coalitions' 

satisfaction with payoffs, instead of the values v(S). 

2) Several methods for identifying membership functions have been presented, 

and we have shown how to construct a membership function /-Los using the char­

acteristic function v in the conventional game (N, v). Consequently, the game 

(N, v) can be transformed to the fuzzy game (N, /-Lcs(v) , P). 

3) When all of the membership functions are either only linear or hyperbolic 

functions, the methods for computing the proposed solutions have been devel­

oped, using Zimmermann's and Leberling's methods. We have also presented 

the computational methods for the proposed solution to games with coalitions 

which have five types of membership functions of fuzzy goals, including linear, 

hyperbolic, exponential, hyperbolic inverse and piecewise linear functions. 
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CHAPTER 7 

CONCLUSION 

In this thesis, game theory has been applied for resolution of conflict in com­

petitive systems. We must recognize the existence of ambiguity in decision mak­

ers' judgements as well as imprecision that occurs in information in such systems; 

moreover, decision makers need to be able to accommodate multiple obj ctive 

in the solution of the conflict problems. Consequently, new solution concepts 

which take the ambiguity and the multiplicity of objectives into con ideration 

should be introduced for the application of game theoretic approach. W have 

shown several game representations for the resolution of conflict in COlnp titive 

systems and have developed computational methods for the proposed solutions. 

Chapters 2, 3 and 4 dealt with noncooperative games and Chapter 5 and 6 

1were devoted to investigating cooperative n-person games. These chapters are 

summarized as follows. 

1) Chapter 2 was concerned with two-person zero-sum matrix games with fuzzy 

goals. The max-min solution with respect to the degree of attainment of the 

fuzzy goal was defined , and the computational methods were presented when 

lnembership functions of fuzzy goals were linear functions or piecewise linear 

functions. Particularly when the membership function was linear , the equilib­

rium property of the max-min solution was found with respect to the degree of 

attainment of the fuzzy goal in single-objective games. 

2) In Chapter 3, to incorporate not only ambiguity of decision makers ' judge­

lnents but also imprecision of information in the competitive system, two-person 

zero-sum games with fuzzy payoff matrices having entries represented as fuzzy 

numbers were examined. The max-min solution with respect to a degree of at­

tainment of a fuzzy goal was defined, and it was shown that the solution was 

equal to an optimal solution for the nonlinear programming problem. In cases 

where the membership functions of the fuzzy goals were linear functions , we have 

developed computational methods based on the simplex method using Sakawa's 
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method, Shimizu and Aiyoshi's relaxation procedure, and Charnes and Cooper's 

variable transformations. 

3) Chapter 4 dealt with two-person non-zero-sum bimatrix games with single and 

multiple payoffs, which were more general than the games discussed in Chapters 

2 and 3. We introduced the fuzzy goal for a payoff in a procedure similar to 

Chapter 2 and 3 and defined equilibrium solutions with respect to the degree of 

attainment of the fuzzy goal. Methods by weighting coefficients and by a mini­

mum component were employed to aggregate multiple goals, and computational 

methods for the equilibrium solutions were also proposed. 

4) In Chapter 5, n-person cooperative games with fuzzy coalitions were examined. 

Fuzzy coalitions were introduced to ease the strict regulation in which any player 

participating in a coalition must completely accept the decisions of the coalition. 

We newly defined an excess of a player and proposed lexicographical solutions 

based on this excess. The relationship between the lexicographical solutions and 

other solutions was considered, and the methods for computing the proposed 

solutions were developed. 

5) In Chapter 6, n-person cooperative games in fuzzy environments other than 

for a fuzzy coalition were considered. A value of a coalition referred to the gain 

acquired only through the actions of the coalition, and n-person cooperative 

games were described by the values of coalitions. However, since ambiguity of 

information in competitive systems could not be fully expressed by such a game 

representation, we proposed a new game representation based on fuzzy goals of 

coalitions- instead of the value of the coalition-which represent the coalition's 

degree of satisfaction for a payoff. For the new game representation, we defined a 

solution concept based on the fuzzy decision rule and presented its computational 

methods. 

As we mentioned, we have dealt with five kinds of games to resolve conflicts 

in the competitive systems and presented the solution concepts and their com­

putational methods for the games. It does not necessarily mean that all conflict 

situations in competitive systems can be expressed by these five models of games. 

We are now considering the possibility of other useful game representations in 

several future research directions. 

In this thesis, the multiplicity of objectives was considered in two-person 
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games but not in n-person cooperative games. As we mentioned in the Introduc­

tion, only a few attempts have been made at n-person cooperative multiobjective 

games and no studies have ever tried to examine n-person cooperative multiob­

jective games with fuzzy environments. However, such attempts are interesting 

research topics, and as they relate to our research, the multiobjective version 

of n-person cooperative games with fuzzy coalitions discussed in Chapter 5 will 

be considered in the future; that is, solution concepts and their computational 

methods will be examined in n-person cooperative multiobjective games with 

fuzzy coalitions. 

In multiobjective mathematical programming, the idea for regarding each 

objective as a player in a game can be found in Belenson and Kaupur (1973), 

but we think it more effective that game theory be incorporated in multiobjec­

tive mathematical programming with multiple decision makers. In a case where 

decision makers construct multiobjective mathematical programming problems 

jointly, it is rare for interests of decision makers to actually be in complete con­

flict. Therefore, in a single-objective mathematical programming problem, all of 

the decision makers maximize or minimize an objective function, and the result 

will be the same as the problem with a single decision maker. However, when 

there is a multiplicity of objectives in the problem, differences between decision 

makers' preferences must be considered and the problem cannot be managed as 

an ordinary multiobjective decision problem with a single decision maker. Game 

theoretical approach is expected to be effective in such multiobjective mathe­

matical programming problems. 

So far we have discussed the theoretical aspect of the conflict analysis, but for 

public decision makers, practical applications for the conflict resolution methods, 

including our own methods, are still open to question; we are concerned as to how 

well they can manage to utilize these methods. To use these methods, they must 

analyze the conflict problem and learn methodologies for optimization theories, 

and further develop the software for computing the solutions. This suggests the 

necessity of decision support systems using computers. We feel that the develop­

ment of decision support systems implementing methodologies for optimization 

theories is one of the most important future research directions. Several attempts 

have been made for implementing restricted fields of the methodology in decision 
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support systems (Ruszczynski, Rogowski and Wierzbicki (Eds. ) 1990; Korhonen , 

Lewandowski and Wallenius (Eds.) 1991; Nishizaki and Seo 1992; and Seo and 

Nishizaki 1993a), and more comprehensive decision support systems based on 

game theoretic approaches are also expected to be developed. 
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Appendix 

In this Appendix, three theorems are presented. The first theorem, which con­

cerns a convergence of the relaxation procedure for a min-max problem, is proved 

by Shimuzu and Aiyoshi (1980). The second theorem by Parthasarathy and 

Raghavan (1971) shows how the problem of finding an equilibrium solution 

is closely related to nonlinear programming problems. The third theorem by 

Wierzbicki (1990) concerns the relationship between equilibrium solutions and 

scalarizing functions in n-person noncooperative multiobjective games. 

Algorithm (Shimuzu and Aiyoshi) 

[ Step 1 ] 

Choose any initial point yl E Y. Set k = 1. 

[ Step 2 ] 

Solve the current relaxed problem 

minimize (7 
(X,u) 

subject to x E X 
/(X,yi) ~ (7 , i = 1,2, ... ,k, 

and obtain an optimal solution (Xk, (7k) for the relaxed problem. 

[ Step 3 ] 

Solve a maximization problem 

(AI) 

(A2) 

and obtain an optimal solution yk+l = iJ(xk) and the maximal value ¢(xk) = 

f(xk, iJ(xk)). 

[ Step 4 ] 

If ¢(xk) ~ (7k + c, terminate, where c is a predetermined constant. Then, Xk 

is a min-max solution for the problem 

minimize/ex, iJ(x)) x 
subject to x E X = {xlg(x) ~ O} 

/ ( x , iJ (x)) = maximize / ( x, y ) y 
subject to y E Y. 
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Otherwise, i.e., if ¢( Xk) > a k + E, set k f- k + 1 and go back to Step 2. 

Theorem A.I (Shimuzu and Aiyoshi) 

Let the set }/ be nonempty and compact. Let f and 9 be differentiable with 

respect to x and their partial derivatives 8f(x, y)/8Xi) 8g(x)/8xi, i = 1,2, ... ,n 

be continuous in x. Let f be continuous in y and X be a compact set. Then, 

for any given E > 0, the relaxation procedure for the min-max probleln (A3) 

terminates in a finite number of iterations. 

Proof Let (Xk) ak) be an optimal solution to the relaxed problem (AI). 

By taking a subsequence, if necessary, the sequence {( xk, ak )} converges to a 

point (x,o-), since {Xk} is in the compact set X and {ak} is a nondecr asing 

sequence bounded above. Similarly, by the compactness of Y the s quence 

{ykt+l}, generated from the problem (A2) corresponding to some sub equence 

{ (X k1 , a ki )}, converges to a point fI E Y. Consider the relaxed problem in the 

ki+1th iteration, then the constant 

exists because ki+1 ::; ki + 1. Therefore, for the solution (Xkt+l, a k1+
1
), it holds 

that 

Thus, taking limits of k -+ 00, by x p
+

1 
-+ x, a ki+

1 
-+ 0- ykt+l -+ fJ and the 

continuity of f, we have 

f(x, y) ::; 0-. (A4) 

Incidentally, since the point-to-set mapping Y (x) is upper semicontinuous at 

x:, which was proved by Meyer (1970), we have fJ E Y(x). Thus, 

¢(x) = max f(x, y) = f(x, fJ). (A5) 
YEY 

By (A4) and (A5), ¢(x) ::; 0-. Furthermore, from upper semicontinuity of ¢(x) 

at x by Meyer (1970), 

¢(Xk) ::; ak + E, for some k sufficiently large, 

which implies that the termination criterion at Step 4 is satisfied in a finite 

number of iterations. o 
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Theorem A.2 (Parthasarathy and Raghavan) 

(XO, yO) is an equilibrium solution to a bimatrix game with payoff matrices 

A, B, if and only if (XO, yO,p, q) is an optimal solution to the problem 

maximize xAy + xBy - p - q 
(x,y,p,q) 

subject to Ay::; pem 

Bx ::; qen 

m 

LXi = 1 
i=1 

n 

LYj = 1, 
j=1 

(A6) 

where em and en are m- and n-dimensional column vectors for which each of the 

entries is 1, respectively, i. e., 

Proof 

em =(l,l, .. . ,l)T 
"-..-'" 

m 

and en = (1,1, ... , l)T. 
"-..-'" 

n 

The constraints obviously imply that 

xAy + xBy - p - q ~ O. 

Thus the optimal value of the objective function is nonpositive. 

Let (XO, yO) be an equilibrium solution. Clearly 

is feasible, and at (XO, yO,p, q), the value of the objective function is zero. Thus 

it is an optimal solution to the nonlinear problem. Conversely, let (xO, yO, p, q) 

be an optimal solution to the problem. Since by Nash's theorem we always have 

an equilibrium solution, and since at such a solution the optimal value is zero, 

't' t (0 ° ) Th so 1 IS a x, y ,p, q . us 

An elementary argument shows that (XO, yO) is actually an equilibrium 

solution. o 

131 



1~heorem A.3 (Wierzbicki) 

Suppose that scalarizing functions Si(Pi(X, y), wd, i = 1,2 such that 

and 

Arg max S2(P2(X, y), W2) c P2(x), '\IW2 E W2, '\Ix E X (AS) 
P2(X,y)E Z2(X) 

are used for an aggregation of all objectives in a noncooperative two-person 

rnultiobjective game in normal form. Then an equilibrium solution of the single­

objective game with payoffs Si(Pi(X, y), Wi)' i = 1,2 for any Wi is a Pareto optimal 

equilibrium solution of the multiobjective game, where Wi is a parameter of the 

scalarizing function and Wi is a set of the parameters. 

Proof If (x*, y*) is an equilibrium solution of the single-objective game with 

payoffs Si(Pi(X, y), Wi) ' i = 1,2 for any Wi, then SI(PI(X, y*) , WI) :s; SI(PI(X*, y*), WI) 

for all x E X and S2(P2(X*, y), W2) :s; S2(P2(X*, y*), W2) for all y E Y. Since ZI(X*) 

and Z2(Y*) are sets of attainable payoffs, taking into account (A 7) and (AS) we 

obtain 

PI(X*, y*) E Arg max SI(PI(X, y), WI) c PI(y*), 
PIEZl(Y) 

P2(X*, y*) E Arg max S2(P2(X, y), W2) c P2(X*), 
P2E Z2(X) 

VVe observe that the definition of a Pareto optimal equilibrium solution is satis-

fied. o 
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