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Abstract
In General Relativistic cosmology, it is well known that
quantum effects due to vacuum polarization make the Friedmann

universe unstable4?

Here, in the Poincaré Gauge Theory, solutions of the Friedmann
universes stable against these quantum effects are obtained under

linear approximation for the cases k=0,+x1 of the radiation

dominant universe(RDU), the matter dominant universe(MDU) and the
de Sitter universe(dSU). These solutions are small oscillations
around the standard Big Bang solution of General Relativity and
exist for each era of RDU, MDU and dSU, respectively, if we
choose the parameters of the Poincaré Gauge Theory, the total

entropy of the universe and others properly.
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L. JIntroduction

wn

It is well known that quantum effects of matter fields play

important roles in General Relativistic(GR) cosmologies of the

3 : " " : D
early universe such as the inflationary universe scenarios )
(especially, the origin of flucLuation6) and the reheating

s} - : ) : 8) ¥ .
problem ), the damping of anisotropies , the matter generation

9)

C
by particle productions and so on.

Among them, there is the problem of instability of the
1)

74
universe . That is, if we add quantum effects due to vacuum

polarization of quantized matter fieldslo) to the right hand side

(RHS) of the Einstein equation (semi-classical picture of GR)

o il el
o 3 an(,(Tw + <0|T“v|0>), (1.1)

then the Friedmann universe4) and the Minkowski spacetimell)
become unstable. Here, G is the gravitational constant and the
first and second terms in RHS are the classical and quantum
parts of the energy-momentum tensor, respectively. TH1S
instability causes serious difficulties in cosmology as will be
reviewed in §3.

The exact theory of quantum gravitylz) has possibility to
avoid this instability. But at present such a theory has not
yet been completed;moreover, it is not clear whether such a
theory indeed solves the stability problem. In this paper an
alternative way is investigated;that is, we treat the stability

problem within the semi-classical picture of the Poincaré Gauge



Theorty (PGT).

In this picture, it will be shown that under linear
approximation there exist solutions of the Friedmann universe
stable against quantum effects for the cases k=0,+1 of RDU, MDU
and dSU, if we choose the parameters of PGT, the total entropy
of the universe and others properly. (The radiation dominant
universe occupies almost all the era of the early universelB)
and the de Sitter universe is essential to the inflationary
universe scenariosS? See §2.)

The Poincaré Gauge Theoryl4) is a gauge theory for extended

gravity. Its gauge group is 7T ® L.

ARy where T is the

translational gauge group and L.

s nterinal is the internal Lorentz

gauge group. It contains GR and the New General Relativity

(NGR) 1%

as its special cases. The underlying spacetime manifold
of this gravitational theory is the Riemann-Cartan spacetime
characterized by curvature and torsion. The torsion couples

with the intrinsic spin of matter. Because spinor fields are
representations of the Lorentz group, they can easily be
introduced into this theory.

Quantum effects due to vacuum polarization in PGT are
investigated in Ref.16):It is shown therein under the assumption
of asymptotic freedom and multiplicative renormalizability, that
at high temperature the theory is asymptotically comformally
invariant and that particles become massless. These results are

then used to obtain the expression for <O|T“V|O>.

This paper is organized as follows. In §2 we survey the



classical Friedmann universe solutions of GR with k=0,+1 for
later convienience. In 8§83 we explain briefly how quantum effects
due to vacuum polarization make the Friedmann universe unstable
i GR and give some observational consequences caused by it.

In 8§84 a survey of classical PGT equations for the scale parameter
A(t) and the torsion S(t) of the Friedmann universe with k=0,zx1
is given. In §5 it is shown under linear approximation for the
cases k=0,-1 and for the case k=1 excluding the era at which

A ~ 0, that there is a classical, stable solution of RDU for the
era of the universe where T £ mp(mp is the Planck mass and

~ 1019

GeV) if we choose the parameters of PGT and the total
entropy of the universe properly. This solution describes a

small oscillation around the standard Big Bang solution (SBBS)

of GR with frequency being < lO_Zmp. In §86 the conditions for
the parameters of PGT and the total entropy of the universe under
which quantum effects of matter fields due to vacuum polarization
dose not break this elassical stability are given. The cases of
MDU and dSU are considered in the same manner in 87 and §8,

respectively. The last section is dedicated to summary and

discussions.



g8 2. A survey of the standard Big Bang solution of GR
We consider a homogeneous and isotropic space(i.e. the

Friedmann universe) with the metric

2

2r o
2 g 4 wodh b)) pasSier o€ o 14e?) (2.1)

1+ %r

; 2L S
where A(t) is the scale parameter, r2=x v+ opand k=00 11
corresponding to the flat, closed and open universe,

3)

respectivly1 (We use the unit with c=ﬁ=l.) The Einstein

equation for Ao(t) is

LTS i A . B il ] o
ORGSO, I e TR A R et A (2.2)
P
where we define
2
mP
a = {g (2.3)

Here the suffix 0 means the classical solution of GR.
In the following we investigate three important types of the
Friedmann universe;RDU, MDU and dSU. The radiation dominant

universe occupies almost all the era of the early universe at

which significant phenomena such as the nuc]eosynthesisls) had

happened. After RDU the matter dominant universe occupies the

very long era until the present timelB? Though there are many

scenarios of the inflationary universe, all of them contain the

5)

era of the de Sitter expansion

The classical energy density of these universe Pl is

expressed by



P, = g (RDU), (2.4)
A
0
D
pq = ——%— (MDU ) (2.5)
A
0
and p,, = const. (dSU), (12%6:)

where the values of constants Dr’ D and p, are estimated as

m

follows. The value of Dr after the phase transition(PT)S) of
the Grand Unified Theovy(GUT)17) can be estimated from the
present value of SL(St is the total entropy of the universe in

a volume specified by the radius AO), ibhat gl Dr=Si/3310112 5)

It is considered that the value of Dr before PT is smaller than

this value by a factor 210110 according to the inflationary

: . B . :
universe scenarios ? The present value of Dm is estimated from

observations of the total energy density of present universe,

the result is 10585 Dm/mp §1059 13? (According to this

13?)

uncertainty, we can not determine the present value of k
The value of Py depends on the energy scale at which PT happened.
In the case of SU(5)-GUT phase transition, for example,

4 . 17}

pvleGO(GeV ) / In order to make the following discussions

as general as possible, we treat these constants as free
parameters and give them special values when they are needed.

The equation (2.2) can then be expressed as

ARk + AZ ) = U, (RDU), (2.7)
Ag( k + A5 ) = v,  (MDU) (2.8)



and

s =
Ag“( &+ AZ) = wy  (dsSU), (2.9)
where we define
Dr
UO = BE 5 (2.10)
Dm
VO = B-E (2.11)
and
pv «
WO = BE . (2.1&)
The solutions of these equations are given in Ret s 1'3 ), For the
case k=1, the solution has a maximum Aﬁax=Ué/2(RDU), a maximum
Aﬁaxzvo(MDU) and a minimum Agjnzwaljz(dSU), respectively. We can
show that in the region
AN < al (k=+1,RDU), (2,13)
AO << Vo (k=+1,MDU) (2:l4)
and Koo wal’z (k=+1,dSU), (2.15)

the effects of the curvature expressed by the term of k in (2.7)
~(2.9) become negligible, so that the equations (2.7)~(2.9)
result in those of the flat universe (k=0).

In 86, 7 and 8 we will find stable solutions of RDU, MDU and
dSU for the cases k=0,x1 with quantum effects due to vacuuim
polarization, respectively. We can show that in the regions
(2.13) and (2.14) these solutions reswlkt im thosesofiithe flat

universe obtained in Ref.2).



§ 3. The instability of the Friedmann universe in GR
In this section, we show the instability of the Friedmann
4)

universe with quantum effects in GR for the case k=0 of RDU

and serious difficulties of cosmology which arise from it.
In GR, quantum effects due to vacuum polarization of matter

field at one loop level in a background gravitational field are

given 0) for massless and conformal invariant theory by
pg = —2% (a22a(3) 4 ARZR - La%3% - 331 - kA?]
q A4 2 2
+ 628 (%A“ ¢ kA%) (3.1)
A
= K > = -
P = <0|T“ |0 P + 3pq
= ST (AZA(4)+ 3aha(3) - 542K + K2 - 2k2i)
A
- 1228 (i + A% (3.2)
A
where A(l)(i:3,4,..) are i-th derivatives of A and
A= ——l——§ (natural unit) (884
2880n
o = N¢ + 6N¢ - 12NA 5 (34 )
R = N¢ + lle + 62NA {3.5)

and N¢'NW and NA are the number of species of scalar, spinor

and vector fields, respectively. In the following we set



& = § = 0(10%).
Adding (3.1) to RHS of (2.7) and setting k=0, we obtain the
GR equation of the scale parameter A(t) which includes quantuin

effects as

212 _ oA Sk B) ;208 i 2% _,-4) B4 :
AT A = UO o ?E(ZA AA ATA +2AAA 3A + ?EA s (131.8.)
With r=AA, (3.6) is rewritten as
y ) 3702

a(r“-u ) 3 5t

0 ( i} )r rr r
P = — + = -1 e ey < ¢ {5857 )

AT 2o A A A

In the following, we owe to the paper of T.V.Ruzumaikina and
A.A.Ruzumaikin in Ref.4) for some mathematics. Using "particle

position":R and "tLime":t defined as

R = (ah)312 - 312 (3.8)

T = 12_3/4A3,

} 3.9

respectively, (3.7) is rewritten in a form without velocity term

as follows

g R . Ear—2/3(R~1/3 UOR—5/3) BNt—zR (3.10)
de®  dan 12a

This is the equation of a particle moving in a potential. When
mpt >> 1 and R=O(U8/4), we can show that the second term is much
smaller than the first term in (3.10) and that the potential has

a mazimum at R=U8/4(This is due to the positive sign of A(d)—term

in RHS of (3.6)). The outline of the potential is drawn in



Fig.1l. The resting solution at this maximum corresponds to the
classical GR solution of RDU(AOAonUO). However the particle is
unstable and must roll down the hill of the potential sooner or
later, so that evolution of the universe become much different

from SBBS.
When R << U8/4, we can show that A(x) << Ao(r), so that

the Hubble constant become much smaller than the value of SBBS

which is in agreement with the observationlg? Further, the

helium mass fraction which is very sensitive to the expansion

13)

rate when Lhe universe is a few minutes old becomes much

smaller than the value of SBBS. When R >> U8/4, we can getl
opposite results based on the relation A(x) >> Ao(t). The
other cosmological observables which are sensitive to A such as

6)

the fluctuations etc., will be much different from the
observations too. These are serious difficulties in cosmology

of GR with quantum effects.



§ 4. The classical PGT equations for the Friedmann universe
It is shown 8) that under the condition of homogeneity,

isotropy and parity conservation only the following components

of the torsion tensor remain nonvanishing;

l. = 7%, = 73 S(t) = 0

i

30
(4.1)

other components = 0

Here, 0 and i(=1,2,3) are indices for time and space components,

respectively. The classical equation for A(t) of the Friedmann
universe in PGTlg) is
3 2 p.. + +eF% - 9pa"%(4% + k)
k + (A 4 LFA ) = &l 3 (4.2)
3B 6B 2 S

where F is the scalar curvature in the presense of torsion;

2

ool & ~ =g ; .
F = ?B( poy - 3poy -188AT%(k + A° 4 AA)) : (4.3)

Here Pul and p.] are the classical energy density and pressure,

respectively, and B is given by
2
B =b + §fF' (4.4)

Because F contains A, the classical equation (4.2) is a third

order differential equation for A. The constants f and b are



given by

o
= = 4( ag + 12a6 Yo : (4.5)
b=a- 38, (4.6)
. ] 14)
where ag , ag and B are three of nine parameters of PGT .

(See also Appendix B of Ref.2).)
The condition of the propagating torsion with

posilive-definite energy and positive mass restricts the

0)

: 2
parameters as

and

The torsion field is then given by

Sz‘—g—B-. (4.9)



§ 5. The classical stable PGT solution for RDU

In this section we show that under linear approximation the
classical stable PGT solution of the Friedmann universe for RDU

with k=0,+1 exists for the era T £ mp under proper conditions
g £ 3% @hnd Dr(in the following, we use Dr instead of the total
entropy St)'

We introduce new functions

3 = Az( k + Az) (8.1
and
X = x - kA2 = AZAZ, (5.2
where x becomes U0 when A is AO. The equation (4.2) then becomes
g . 205, L 3% g
378 G /X
:—23/" 2 1 - i
2b X( 2,18kER - vl -2)2( 3fBx )2 2
+ —=|D -98x-6kbA“+ x + X 1- (553 )
3/ * b/X  4b2X b2al/x /'
where we have used (2.4) as Pl We restrict ourselves to the

case in which the x-terms are much smaller than the remaining
terms, because it is difficult to solve (6.3) exactly:
Consistency of this assumption is justified later(see below

(6.29)). Then we get



q
g -
2b"/XM 9kfB - . 27fB8%x% _  3fBx
3/6 8 b/XM% 8b XM~ 2b“A%/X
where Mr = ( Dr = 98x - 6kbA ) . (5.5

It will be confirmed later that the argument of the square root
in (56.5) is positive for our solution(see below (5.12)). This
equation is interpreted as that for a particle moving in a

potential V(x) with additional z-dependent forces, where

NN ). (5.6)

(Strictly speaking, this picture is justified only under linear
approximation(see (5.11))). We choose the negative sign in RHS
of (56.6) so that an equilibrium point at which dV/dx=0 is 1=UO
which corresponds to SBBS of GR. Then whether this point is a
minimum or maximum point of the potential depends on the sign
of B(note that f>0(see (4.7))).

To stabilize the universe this point must be a minimum

point of the potential. We can show this is realized when



Let us seek a solution of x in the form of a small

oscillation around UO. Putting

x = A%( k + A% )
and assuming that BIUO << 1, or for definiteness of our

argument, that

O(e/Uy) £ 10 ¢ (5.9)

we get a linearized equation for 6A=A—A0, the deviation from AO

satisE Lyingee (2 T )i

U
2 0 o i
SA +T6A —TE . (5.10)
AOAO ZAOAO

Applying linear approximation to (5.4), we have the following

equation for &}

A
g = abe s —08 = 2‘_( B 0(82,82,88,86A,6A2,..). (e iy
318 Ag A A
00

For the cases k=0 and k=-1 Eq.(5.11) can be considered to be
valid for all eras of the universe, since AO#O.

For the case k=1, however, A0 vanishes at the maximum point

REth 179

ik , so in the following we shall restrict ourselves to

the era satisfying



0 < Ay < (1—9)Ué/2 . (5.12)

where 0 is a small but finite, positive constant. The smaller
0 becomes, the smaller value of 8/U0 is needed to show the
stability of RDU in the following discussions. For the case
(5.9), we safely can take 0~0.1. So, we fix 0 to this
value in the following. When (5.7) and (5.12) are satisfied,
we can show that the argument in the square root in (5.5) is
positive.

I't is proper to solve the equation (5.11) by the WKB method.
However, the WKB solution is too complicated to estimate quantum
effects such as (3.1) or (3.2). So, we adopt harmonic oscillater

approximation which is justified under the conditions

ab Bpr .
0
and
Tepe| > 'z‘f él (5.13b)
Ao

Under these conditions we obtain approximate solution

- ﬁocosxt (5 14 )

with

Olgpstl ¥ 2 16 (5.15)



and

o ab
K —m_—ﬂ—)— . (5.16)

The two conditions (5.13) are equivalent to

KAg >> 1 5 L 72
and

Dr S o S LB o T o)
respectively. The condition (5.17b) is needed only for the case

k=+x1. Because the value of k is found to be ~J/al2f(see (6.15))
1/4

r

and A0T=D for adiabatic expansion of the universe(T is the

temperature of the universe), the condition (6.17a) becomes

1 plidy | (5.18)
(32nf) /20 p

T %<
Ll URHS (o Wb B85S mp, we may expect that the era (5.18)
includes the era T % mp where the semi-classical picture is

deme) o2
)

available o we demand

D >> (32nf)? . (5.19)

T
Under this condition, the following discussions are justified
for T < m
g7 P

Putting (5.14) into (5.10), we obtain



dt”, kB 200

where we have chosen the integration constant so that 6A(t0)=0.

The numerator in the integrand has time scale ~f1/2tp, while the
denominator has cosmic time scale, so we expect that the latter
can be regarded as constant in comparison with the former, then

we obtain

Uy
o A i 0 R 0 R
AO + 8A = AO( 1 + 5 AZA ‘U—O KAObanL ). (5.21)
070

We can show that the second term in the parenthesis of (5.21) is

much smaller than the first term using (5.12),(5.15) and (5.17a).
For the cases k=0 and k=-1, this is a stable solution of the

universe throughouf ite histery;it is called the trembliny

universe" (Ref.2)), because it describes a small oscillation

around SBBS of.GR. Imd particnler ) for the case k=0
(Ao(t):/gUé/4L112), (8.21) conncides with the result of Refi.2).
(Note that gO/U0 is equal to ZnO/uo of Ref.2).) For the case
k=1, however, this solution can be justified only for the era
sabistyanel (512 ).

In the rest of this section we make some preparations for §6.
FE s i@ £ ficult té estimate complicated quantum effects such as
(3.1) and (3.2) throughout all the era of the universe, so we

need restrict the era of the universe to



Yo
KA > — . kD)
(1 o 255 &0

Then we can show the following relations which will be needed in

86 .
Kg h 3 & 0
AzAA ~ - ——sinkt = % - AA(A2+ 1o (B 23
2
3 K E .
AZAA(B) ~ - —Z~QCOSKL = % 3 (5.24 )
3
. K g
a2ha) o T 0g5n¢ (5.25)
and
4
: K g
AZAA(S) ~ —g—gcosxt ; (5. 2'67)

I RHS of (5,28, the inequality g/2 2 AA(A2+ k) holds when

(fom2g s satisfied21) Then F and F can be expressed as

5 . -
E Qﬁ(k + A%+ AA ) 98 g
F_ - - - = (5.27)
b A2 A3A
and
Foa o QB(k + A%+ AR j - gy 96.&13) e o e B (5.28)
ot - o AN D S i e el '

The use of (5.28) in (4.9) gives the following expression for the

torsion:



13
: a ~0 coskt

(5.29)

Using (56.15),(5.22) and (5.28) (din the cadd %=1 we nead ("5 1821y

in addition), we can confirm that the g€¢-terms (namely, the

z-term) in (5.3) are much smaller than the remaining terms.

We can show as before (see (5.18)) that the era (8. 22 ) s

equivalent to

£
1 0.1/4
T < iyl L E i
4 -
(32nr) 172 Uyr Up

Further we demand

D, > (32nf)2( ;% )4

in order that the era (6.30) includes T < m

~ l)'

(H.30)

(bHy31)



8 6. The PGT solution of RDU stable against quantum effects

Quantum effects due to vacuum polarization of matter fields

at one loop level in a background gravitational field in PGT are

6)

investigated by Buchbinder, Odintsov and Shapirol % They have
shown under the assumption of multiplicative renormalizability
and asymptotic freedom that the theory is asymptotically
comformally invariant and that matter fields become massless at
high temperature. Then, they obtain the expression for <0|Tuv|0>
at one loop approximation. It consists of two parts;the one is
the same as GR and the other is made of the axial-vector part

jmn

of the torsion tensor a.=zg8. .
167 3mn

However, in homogeneous
: [ 1 18) )
and isotropic space a, vanishes (see (4.1)), hence quantum
effects in PGT have the same form in GR given by (3.1)~(3.5).
In the following, we treat the cases where masses of matter
fields can be ignored;miZO, IR m, atd P << m. where m, are
the masses of « particles concerned. Before PT, all masses are
5)

exactly zero In the pase T X< m,, we may expect that the

masses dose not contribute to quantum effects because of the

2)

decoupling theorem2 and we shall discuss this case in 87 as
the case MDU. I o4 = m the masses of particles cannét be

ignored and different proper treatments are needed.

Due to these quantum effects, Pl and P, are modified like

p
fsq ¥ Bap & Pq (i.e., U0 - Uo(l + —Biz—) ), (G, )

pCl o pcl o Pq . (6.2)



Accordingly, the scalar curvature F and its time derivative I

are changed like

2w
F o F + AF = -3%(1‘—”%&) - ppTr (£:3)
A

and

B foeoak = - 2K +A2+AA) - oplr (6.4)
——3 - ——2_ ) .
b A 2b
respectively. The equation for A with quantum effects are then

obtained from (4.2) and (4.3) by making the above replacement of
Hagr Fars F and . Since Tr contains A(52 the equation for A
with quantum effects is a 5th-order differential equation. From
this equation, we can obtain an equation for € of (5.8) with
quantum corrections. It has a form of (5.11) with the following

replacement of g, € and g,

Uy p
G - ek 8(1 ——0-—‘1), (6.5)
B pCl
i X
0- 0~( AF)
it -S> —el|l - = (606)
A0 AO F ?
2k - 2{{ 8(1 + ——Ag) (G AT)
AOAO AOAO
and
E o é(l + Q—) . (8.2
F



In the following we show that the second terms on the RHS of
(6.5)~(6.8) which represent quantum corrections contribute only
to the negligible terms in RHS of (5.11), so that the classical
stable solution expressed by (5.14) and (5.20) is still valid.

First we demand

p Ez
. 0
Pat = _Gg‘ (6.9)

so that the effect of pq in (6.5) is absorbed into the negligible

term 0(82) ihe RHS of (6. 11), Secondly we demand

,t>

ol

N
ga

(6.10)

so that the effects of AF in (6.6) and (6.7) are the same order
with the second and third term in RHS (o S I respectively.

(They are negligible because of (6.17).) Lastly we demand

: g
at ¢ 2 (6.11)
i 0

so that the effect of Af in (6.8) is 0(g2).

Using the expressions for Pq and Tr given by (3.1) and (3.2)
respectively, and employing the relations (6.23)~(5.26), it can
be shown that the inequalities (6.9)~(6.11) are satisfied, if the

following conditions are satisfied in addition to (5.22);



=

£ 2 g (6.12)
0
~f ¥ ¥ & (6% 1487)
and ) Uo 9
[ A ﬁxa(——) ¥ (6.14)
r <~ EO
Here, we have used
m
2 P
- 2o ~r (6:15)

which is obtained when (6.13) is satisfied.

As an example, let us briefly outline the arguments leading

to (6.12). Taking the first term of RHS of {8 1) as pq, the

inequality (6.9) becomes

6ra . 2:,(3)
-ATAA
P Al ~50 1 5%
Pel D /A 0 U
r 0
where we have used (3.1) and (5.24). From this relation we
ebtadn (B.12)3 Repeating similar analyses for each term in o b

we obtain (6.12),(6,14) and (5.22) as the sufficient conditions

Lary 699 ) ;
To summarize, the conditions under which linearized stable
solution of RDU with quantum correction exists a1 < m are

(5.9),(5.17b),(5.19),(5.31),(6.12),(6.13) and (6.14), in addition

to these we need (5.12) for the case k=1.



The parameter region restricted by (5,9),(5.17b),(5.19),

(18 QARG SN Natid SUeR AN s Shown: Ln, Rig . Z2ys where £, &OIU() and

D are parametrized as
r

P& 10% ., (6.17)
K
UQ = 10" (6.18)
0

and
D = 10P, (6.19)

and set p to, for example, p0=112. From Fig.2 we notice that

the smaller the value of Dr becomes, the narrower the stable

region becomes. In conclusion, for RDU with k=0,x1 we need
" (6.20)
Dr 2 1023'2 (B2l )

and (6:183) to stabilize the universe for T < om

In RDU e, 2 Pqr SO we have set pd=0 uh teo this point:
However, stricrly speaking, Py can not been perfectly neglected;

in RHS jokekd . 8) weobrEain pC1—3pcl:pr—3pr+pd—3pd=pd because of

pr=3pr and pd=0. In this case, we have additonal Dm—terms to RHS
oB® (5 ,.8),(5:4);(6.6) and (6§.11). For the wvalusa Dm/mp=1058 and
Dr: 10112, we can show that these terms can be neglected and give

no influences to the above discussions if we demand

£, & oad ., (6.22)

We need not this condition for the case of pure radiation, for

example, for RDU before PT where all particles have no mass.



§ 7. The case of the matter dominant universe(MDU)

The temperature of MDU( T < 10_12'6 GeVlB)) is sufficiently
low in comparison with masses of leptons, quarks, Higgs, massive
gauge bosons and so on. Soy. 1t 13 plausible to assume that the

effects of these massive particles disappear from vacuum
polarization because of the decoupling theoremzz? Therefore, the
case of MDU can be treated by repeating almost same analysis of
RDU. So in the following we only point out main differences

between MDU and RDU.

We introduce a function

2

y = -A{ k'+ A® ) (7.1)

which becomes Vo when A is AO.

for vy Trom {2.5) and® (4. 2)was

We obtain the classical equation

( 2 1/2 ‘2
o mipd. . aplid, .
Vo= 3857 - e " 4y
5
= 1 1
2b%/YM D . Bl o s
a m[l_ 9fB( m —2k) y + Sf8 ¥ ]2(1_ 3fp )2 (7.2)
3/6 6 b \BbA JAYME  abiyMZ b2A§ ;
where
Y =y - kA (s}
and 1
- 2,
Mm = [Dm = 98y - Gl(bA) (T )



Then, as in RDU we choose the negative sign in RHS of (7.2) and
we demand B<0, so that Lhe potential has a minimum at Y=vy and

the universe is stable. In this argument, we have assumed CLhe

inequality

D
f mn
ey 3l A (STeiby)
( ﬂl[)[\ ) "]1)

so that the potential has only one equilibrium point.
Applying linear approximation, we have Lhe equations for

small deviations g and SA as

D

. ab 5/Y Y k m - 2 y
R + + v E + O(e") { 7589
378 [ 2Ag’2 Xg YAy 12b/7A372 J
and
hg 1
SA + —5— 34 = — 5 | (7.7)
2AOAO ZAOAO

We obtain a solution of harmonic oscillater approximation as

<
1]

Mgt §OCOSKL ( Vo 22 go ) T80

where k is given by (5. 06), if the following conditions are

satisfied:

KAO For (k=0,-1) {7 9a)

KAO PP EY and Ay < 0‘9v0 Ele=1 ) (7.9b)

and



el/2 (167)372, D, 312
A (ﬁm(a“) << 1 (k=0) (7.10a)
mpA) p
v 3018 D
el/2(16n) _EE 2e 3 (k=x1). (7.10b)
L (mpA) P -
1/4

Using AT=Dr » the condition (7.9a) becomes

T << 1 pl/4

. L
(A e ke g

Here we define Tl at which P50 o and below which pd>pr’ that
is, the universe is MDU. We demand that the RHS of (Tl )y S

1 )

then we may expect that the era (7.11) includes the matter

dominant era T < T]; so we obtain

Y b\ e
D, > (32n£)?(ZL) . (7.12)
I mp

For our universe, Tl is estimated to be 0(104'5x 2.7OK)=

=l 6

0(10 GeV13)).

Finally, 8A is given from (N1 Cant 8=§Ocosxt for MDU as

. L g coskt”
GRLLY = %Ao(t)ft 2 5

at.” (13}

Using the same approximation as that for the RDU (see below

(5.20)), we obtain



A0 + §A = AO( 1 + - s— ST ) ; (0 3 14

For the case k=O(AO:(§vO)l/3L2/3), (7.14) coincides with the
result of Ref.2). When the condition (7.9) is satisfied, we can
show that the second term in Lhe parenthesis of (7.14) is much
smaller than the first term.

In order to estimate quantum effects, we need to restrict

the era of the universe to

KAy 2 e (7.15)
equivalently,
1 50..1/4
T £ -—D m_ . T 0760

llere we demand

(ﬁij (7.17)

so that the era (7.16) includes T < T
It can be shown that the conditions under which quantum

effects do not break the classical stability of the universe for

T < Tl, are (6.13),
- 1}
[ R (7. 18
Z Ed
and
m
- i | (7, 19



To summarize, tLhe conditions under which linearized stable
solution of MDU with quantum correction exists are 7.8, 1T 10),

(7.12),(7.17),(7.18),(7.19),(6.13) and

€0/vy < [ (7.20)

In addition to these we need the condition AO < 0.9v0 far the

case k=1.

In Fig.3, we show the region restricted by L ELE) EV L 1B ),
(7.12),(7.17),(7.18) and (7.20). There we parametrize as (6.17),
(6.19), §0/v0=10n, Dm/mpzl()(1 and mpAZIOr, and set, for example,
p=p1=20, q=58 and r=58. (From observation mpA is estimated to be

130

2 1058 for MDU 7 From Fig.3, we conclude that to stabilize

MDU with k=0,+1 the conditions (6.13),(6.20) and

o s 1O~103.2
»r =

are needed.

The scalar curvature and the torsion are given by

QBKgo

F =~ ——T——ysinxt ; {TRes2 )
2bA0A0

ZbAOAg

Pj_ju
4

coskh (230

and



8§ 8 The case of the de Sitter universe(dSU)
Let us treat the de Sitter universe with k=0,%1, introducing

a function

z = AT%( k + A2 ) (8.1)
which becomes W when A is AO. We obtain the classical equalion
for z from (4.2) and B 1o, a8

i 2b? 7 —(z ol ?X )82 _ 1%z ” Azz ¥ a2;2
3fBA2 98 X? A JZ 2%
3
2 , 1 . 1
, 2bTV/EMg, &g “Mdz(l . _9BA% ]JZ(H ‘“%2)2 o8)4)
3/6fBA [ 3b2 zmgl/i 3b2 />
where 9
& 8 2A" - k , (8.3)
1
i 3 A b6kbh N2 F
Mgy = (py - 982 TZ) (8.4)
and
9BAZ
M Bt S O8ie gt SRaa (g ((8°.°5")
d2 v 4‘/§

Then, as in RDU we choose the negative sign in RIS of (CBUSZ N il
we demand 8<0, so that the potential has a minimum at Z=w and
the universe is stable.

Applying linear approximation, we have the equations for

small deviations g and §A as



Tw A
2 o (g%% - 12w, + §%)g " [ /. PR O]é + 0(g2) (8.6)
Ao Aoho Ag
and
2
w. A A
$k wlalsy 1228 (8.7)
AO ZAO
We obtain a solution of harmonic oscillater approximation as
G & Wy + 6Ocosx't ( wg >> 8 ) (48 . 87)
with
i Bl 112
K = (m—;—+ 12w0) ) (8.9)

if the following conditions are satisfied,

p
\ 3 1
e Sy b (8.10)
;z 12544n f
and
KAO Pl (=1 A=) e e )

KAy >> 1 and Ay 2 §%§ = J/2-A (k=1) , (8.11b)

where 1//W,. is the minimum scale parameter of the de Sitter

0
mdverse(:Aiin) with k=1(A0=7%Ecosthot). The first term in the

Parenthesis of RHS of (8.9) is much larger than the second term,

S0 k">~ k. The second condition of (8.11b) is needed, because

d

the equations for g and SA become singular at AO:Amin'

Using



1/4

A the condition (8.11a) becomes

AT=D

| A —11-1—2-1)3‘/4["1) . (8.12)
(32nf)

e demand here that the RHS of (8.12) >> p$l4, then we may

expect that the era (8.12) includes the de Sitter universe era

with T < p$/4;so we obtain
o £ 2'pv ’
Dr > (3&7’{[) F‘ . (8.1\3)
P
In order that the second condition of (8.11b)(AO > JEAﬁin) is
satisfied for the era T < pb/4, we demand
12
DI‘ 2 (m) ‘pv ) (8.14)
which becomes
2T R BT SR T LAY P (8.15a)
VI S5 T it G L L PR (8.15b)

We obtain the solution of 8A from (8.7) and g=gycoskt as

t gocosxt'

—————dt". (8.16)
b ApltAStET]

With the same approximation as used for the RDU (see below

(6.20)), we have



Aw, 8
Ay + 8A = AO( e 200 L it ) , (8.17)
2o Th %ag

For the case k=O(A0=7%Eexp(JwOL)), (8.17) becomes

sinKt) A (8.18)

When (8.11) is satisfied, we can show that the second term in the
parenthesis of (8.17) is much smaller than the first term.

In order to estimate quantum effects, we needs two

conditions

Yo
and
wélz 60
> < Wa (8.20)
The condition (8.19) is equivalent to
)
i Ol
] -—D me (8 20)
™ 3
(32rnf) 172 Wg r Up
Further we demand
4 p
2 0 \
D. > (32nf) ( 50 ) - (8.22)
mP

S0 that the era (8.21) incldes T .3 p$/4.



When the inequality (8.19) is satisfied, we can show that the
condition under which quantum effects do not break the classical

stability of the universe is (e

s
£ .2 Zxa-g— (8.23)
0
and
Io) ) 3
v 1 ( 0 ) i
> =L " {8 24 )
;g ~ 12snrle\ W

To summarize, the conditions under which linearized stable
solution of dSU exist are (8.10),(8.13),(8.14),(8.20),(8.22),

(8.23),(8.24),(6.13) and

-4
5o/wy < 1077, (8.25)
In Fig.4, we show the region restricted by (8.10),(8.13),(8.20),

(8.22),(8.23),(8.24) and (8.25). Here we parametrize 2 (S TRy 2

(6.19), 601w0=10n and pvlmg:10_4s, and set, for example, P=p,=60

and s=4(region 1 corresponding to vacuum energies of PT of
SU(5)—GUT;pl/4=1()]5 GeV) and s=9(region I corresponding to p$/4

A%

=10 GeV) . We notice that the lower the vacuum energy becomes,
the wider the stable region becomes. For SU(5)-GUT case, it is
concluded from Fig.4 and (8.15a) that to stabilize dSU with
k=0,+1 we need {6 S

T Tl 1 ) Jal (8. 286)
and



Dr 2 10 (z 10 flont o= B 2T
) it 10 S oy s
For the case P, =1.0 GeV, on the other hand, we obtain
¢ 5 gt oS (8.28)
and
Be seqpdBede pojofdeliipg opany (8.29)
Lastly, we obtain
QBxaoA
F o« ———ginkt , (8. 30)
2bA0
1 93K250A0
Fox —— —coskt (Rl
2bA0
and
3aBéOA
Sal it Yuaw B2 = T CPEE Lo (8 32.)
2b A0



§ 9. Summary and discussions

We have shown that at classical level of PGT the three types
of the Friedmann universe(RDU, MDU and dSU) with k=0,+1 are
stable under linear and harmonic oscillater approximation if the
parameters of PGT are chosen properly. Then, we have shown that
quantum effects due to vacuum polarization at one loop level do
not break this classical stability of the universe if we choose
the parameters of PGT, the the total entropy of the universe and
others properly.

In this section, we summarize the conditions which are needed
for stable RDU, MDU and dSU in common, using simple notation

A:501U0:§O/v0:60/w0, where A << 1 under linear approximalion
(for definiteness we require 0(a) < 10_4). The conditions
individual to each three universes are listed in Table 1.

At the classical level of PGT, the three Lypes of the
Friedmann universe with k=0,x1 are stable under the conditions

f>0 and B<0;then there exist the small oscillative solutions

around SBBS of GR with the common frequency K=y§%%:37(for dsu

the frequency is k™ =~ k).
In the presence of quantum effects due to vacuum polarization

we can show that the three types of the Friedmann universe are

still stable for each era under the conditions f > ZA&A_I

B > a and kA 2 A—l. The last condition result in individual

b

conditions for Dr(see Pabile 1)

From these and the individual conditions listed in Table 1,

We obtain the stable parameter regions of RDU, MDU and dSU,



respectively(see Figs.2, 3 and 4).

For RDU and MDU the stable regions are basically triangle
regions surrounded by three lines, as for RDU(Fig.2),(1),(3) and
(4). These lines (1),(3) and (4) express the inequalities
(5.16),(5.31) and (6.12), respectively. The condition (5.15)
justifies linear approximation. Under the*condition' (5.31)
quantum effects can be estimated and suppressed for T < mp. We
notice that the larger the value of Dr becomes, the upper the
line (3) is located and the wider the stable region becomes.

This means that the more radiation(entropy) becomes, the more
stable the universe has a tendency to be. That condirtion (65 12Y
also suppresses quantum effects. We conclude the necessary
condition for f and Dr in Table.?2. Because the coupling between
torsion and fermion fields is given by ~1//F in PGT14? the
conditions L » 101'6 mean that this coupling can be treated by

perturbation method. After PT we know Dr 2 10112 from

observationlB? so conditions for Dr 11" Table® 2fdre® st edn

Before PT, we may consider these conditions of Table.2 restrict

the value of Dr

For dSU we notice that the lower Py becomes, the wider the

stable region becomes, and that f is restricted by 101°8§ f < 106

and 10°8¢ 28

g ded for the region I and I1, respectively. The

necessary conditions for f and Dr are listed in Table.2 and

above discussions for f and Dr are also applicable for dSU case.
In Table 3, we show comparison between GR and PGT in the

classical and the semi-classical theory. Why the universe can



he stable in PEGT? To. see this, let us compare the equation of GR
which contains quantum effects(see (3.6) and (3.10)) with
classical equation of PGT(see (5.4)). In GR with quantum

effects, the potential has a maximum and the universe becomes
unstable(see Fig.1l) because of the positive sign of A(s)—Lerm in
BRSSO (586 However, in PGT, we can choose the parameters f
and 8 freely under the restriction of (4.7) and (4.8) so that

the potential has a minimum point which corresponds to SBBS of
GR.

There still remain unsolved problems. First, for the case
k=1 we have shown the stability for the era except neighbourhood
of the singular point A=0(see (5.12)). We can say that the
smaller O becomes, the narrower the stable region becomes.
Secondly, for the case T =~ m, we do not know the form of gquantum
effects due to vacuum poJariZaLion in PGT, so that we have not
shown stability of the universe.

So far in this paper we investigate the stability problem
with the semi-classical picture, that is, at the level of
one-loop quantum correction. With the full quantum theory in
which the gravitational field is quantized as well as the matter
field, there is a possibility that we can treat the stability
problem more completely and solve above remaining problem. Now

this is being investigated.



Addition to above

conditions.

39

Table 1
The various conditions for classical and semi-classical
stability of RDU, MDU and dSU with k=0,+1,
b i
RDU™ ! MDU : dsu
H |
(1) classical £ >0 B € 4D
glgbi iy #5850 §ee = isia i e =l =N e A SRR RS S I SN S e =
| fl)m |
: . £ L] |
! m_A :
| p |
1 |
i g
‘z)c:lassjcal smal | :x:UOH;O(:()SKL l y:vo+gocosn<l‘ : z=w0+ 6()(:05»( L
oscillative } | ¢
solution (B /U< ‘); FBalvg<e Ly L, s@3piRges L)
_________ =S IR S SRS T Ry 5 RS ...l
% ab -2 % 2
= | = +12 ~
K 3T(-0) | K K 1 Wox K
|
1
" ‘ |
(3)avoidance of oo b ‘ ' :
singularitly al RS ERG S M | A2,
A~0 (only k=1) : |
i 1
({)harmonic osci.
approximation KAO > |
is available
(e sondd tionse(dy | — = — & 7 T 2— PO L R E A E R T O z—p:
for individual l)l‘>>(327(f) { I)r>>(32nf) o : l)r>>(321(l’) . |
era | p ' Illp
(T < m) ! (T <T,) b (1 < plidy
~ P : < | | ~ Py
(f)harmonic osci. b, g gL /2 !
approximalion D >> 72f : (l(Sn)—f £ Dy e 1 ;pv << J i
is available r | 3a D g g AR
mn )A lm 12544n
(only k=zx1) ; 1 (k=+1) : I
3
| PR B |
| C 16} 4 Dm 5 3 |
|,31/2 4 b4 |
1| mpA |
|L (k=0) !
{ |
(f)the conditions UO | Vo : W
under which K/\() 2 E | KAO > = | KAO 2 5
quantum effecls 0 : 0 | 0
are esltimated | | 12
i -y 50
| |  —
: PR W T
7 )ondTtTonsT(T) |~ — — ~ —,7 R e T it s T o W R WO 5 LB
: : ; ‘ 4 p
fue individud) |D ~3(3znr)2(gﬁ) I >(3znr)3(—‘—’) (—1) ' _3(32;:(')‘( 0) 5
era a 0 |I o T '| - %1 m,
) | - m ) 174
('lgmp ' ( lgll) : ('lgpv )
t ¥
‘ - Yy 'I ~ Vo | ¥
Tstability with f o3 2xa , yll f > 2xa +— Hodf 3 2ic g
quanbtum 0 | 0 : 0
torrections ! '
________ i sl o St aRl e Sl -lsa gt Sy et Nl ion
=8 2 ™
B W I P o ] - B Y o e O T e
D > 6,\&(U0)2: P > 1 ' Py < 1 (60)3
! = | = BT oo R
$ g() | G :m) 12811 \Wo
(only k=zx1) ' (only k=#1) .
il Py is not neglected in RDU, we need the condilion f < 34 in



Table 2

The necessary conditions for f and Dr under which RDU,

MDU and dSU are stable at individual temperature regions.

f D
h
RDU
> 101‘6 > 1023'2
(s /B £ mp) i ~
MDU
1.8 -103.2
58 > 10 2 D
(TET Dm/nlp: 10 =mpA) e ~
dsu 8.4
\ >
widocd £ 1546v: SUS-GUT) 1018 ¢ < 10° 1312
(T<p, ' "=10 "GeV;8U5-G T e bt 12 for k=1)
dsu 18.4
- . 26 > 10
wzol /414 V0, 307 5¢ .8 10 33.6
(T<p,” "=10""GeV) {F* 10~ for k=1)

Table 3
The comparison between GR and PGT

aboul the order of the differential equation and stability.

classical theory semi-classical tLheory

3 lst-order 3rd-order
GR

unstable

3rd-order 5th-order

oG stEnie (effectively 3rd-order)

stable at least in certain
parameter region




potential

/
34

0 Uo

2Q 23 (/2
8(A~-t LJO

Fig.l

The potential of the motion equation (3.10) for the case

mpL >> 1 and R:O(U8/4). It takes the form

- e e B S =203 integration constanLJ
Pty & (R + Ugh ) (is sel to zero

(S PN

and has a maximum at R:U8/4. The resting solution at Lhis

points correspofids to the clasgsical RDU solition of GR.
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