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Ab s Lr act 

In Ge neral Relativisti c c osmology, it is well known that 

quantum effects due to vacuum polarization make the Friedmann 

universe unstable4~ 

Here , in the Poincar~ Gauge Theory, solutions of the Friedmann 

universes stable against these quantum effects are obtained under 

linear approximation for the cases k=O , ±l of the radia-tion 

dominant universe(RDU) , the matter dominant universe (M DU ) and th e 

de Sitter universe ( dSU ) . These solutions are small oscillatjons 

around t ,he standard Big Bang solution of General Helativity and 

exist for each era of RDU , MDU and dSU, respectively , if we 

choose the parame ters of the Poincare Gauge Theory , the -total 

entropy of the universe and others properly. 
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§ 1. Introduction 

It is well known that quantum effects of matter fields play 

important roles in General Relativistic(GR) cosmologies of the 

early universe such as the inflationary universe 
. 5 ) scenarlOS 

(especially, the origirl of fluctuation 6 ) and the reheating 

7 ) problem ), 1 d . f' . 8) tie amplng o · anlso -troples , the matter generation 

~y particle productions 9 ) and so on. 

Among them, there js the problem of instability of the 

. 4 ) 
unlverse . That is, if we add quantum effects due to vacuum 

polarization of quantized matter fields 10 ) to the righL hand side 

(HJiS) of the Eins ·tein equaLion (semi-classical picture of GR) 

R 
J.lV 

= 8 T( G (T c 1 + < 0 I T I 0 » , 
J.lV J.lV 

( 1 . 1 ) 

Lhen the Friedmann universe 4 ) and the Minkowski spacetime ll ) 

become unstable. Here, G is the gravitational constant and the 

first and second terms in RHS are the classical and quantum 

parts of the energy-momentum tensor, respectively. This 

instability causes serious difficulties in cosmology as will be 

reviewed in §3. 

The exact theory of quantum gravity12) has possibility to 

avoid this instability. But at present such a theory has not 

yet been completed;moreover, it is not clear whether such a 

theory indeed solves the stability problem. In this paper an 

alternative way is investigated;that is, we treat the stability 

problem within the semi-classical picture of the Poincare Gauge 
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Th e orty (PGT). 

In this picture, it will be shown that under linear 

approximation there exist solutions of the Friedmann universe 

slable against quantum effecls for lhe cases k=O,±l of RDU, MDU 

and dSU, if we choose the parameters of PGT, the total entropy 

of the universe and otilers properly. (The radiation dominanl 

universe occupies almost all the era of the early universe 13 ) 

and Lhe de Silter universe is essential lo Lhe inflationary 

. . 5 ) 
unIverse scenarIos . See §2.) 

The Poincar~ Gauge Theory14) is a gauge lheory for extended 

gravily . Ils gauge group is T ~ L where T is the 
'<Y internal' 

lranslaLional gauge group and L. t I is lhe internal Lorentz In erna 

gauge group. It conlains GR an Lhe New General Relatjvity 

(NGR)15) as its special as s . The underlying spaceLime manifold 

of this gravitational theory is the Riemann-Cartan spacetim 

characterized by curvaLure and lorsion. The torsion couples 

\..Ji th the in Lrinsic spin of mat ter. Because spinor fields are 

represenLations of the Lorentz group, they can easily be 

inLroduced into this theory. 

Quantum effects due to vacuum poJarization in PGT are 

investigated in Ref.16):It is shown therein under the assllmption 

of asymplotic freedom and multiplicative renorrnalizabiliLy, that 

at high temperature -the theory is asymptotically cornforma 1] y 

invariant and that particles become massless. These results are 

then used to obLain the expression for <0 I T 10>. 
J.,l\} 

This paper is organized as follows. In §2 we survey the 

- 2 -



classical Friedmann universe solutions of GR wiLh k=O,±l for 

later convienience. In §3 we explain briefly how quanLum effects 

due to vacuum polariza-tion make -Lhe Friedmann universe unstable 

in GR and give some observational consequences caused by iL. 

In §4 a survey of classical PGT equations for the scale parameter 

A(t) and the torsion S(t) of -Lhe Friedmann universe with k=O,±l 

is given. In §5 it is shown under linear approximaLion for Lhe 

cases k=O, -1 and for tIl e case k=l excluding the era at whicl) 

A ~ 0, tllaL Lhere is a classical , stable soluLion of Rl)U for the 

era 0 f the un i v e rs e \v her e 

~ 10 19 
GeV) if we choos Lh 

T < III (m is the Planck mas s and 
'" p p 

parameters of IGT and -Lhe LoLal 

e ntropy of Lhe universe properly . This solution describes a 

small oscillaLion around Lhe sLandard Big Bang solution (SBBS) 

10-2 m p < In §6 the conditions for of GR with frequency being 

the parameters of PGT and the total entropy of -the univers e under 

which quanLum effects of matter fields due to vacuum polarization 

dose not break this classical stability are given. The cases of 

t--l D U and d S lJ a I' e con sid ere din the sam e man n e I' i n § 7 and § 8 , 

respectively . The las -t section is dedicated to summary and 

discussions. 
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§ 2. A survey of the standard Big Bang solution of GR 

We consider a homogeneous and isotropic space(i.e. the 

Friedmann universe) with the metric 

2 
A (t) 2 dy2 2 

( Ie 2) ( dx + + d z ) 
ll+ 4 r 

where A(l) is the scale parameter, 
2 2 2 2 

r =x +y +z and k=O,l,-l 

corresponding to the flaL, closed and open 1.1niverse, 

. -l 13) respectlv y . (We use Lhe llnit with c=h=l.) 

equation for AO(t) is 

k + A~ 

where we define 

= 8nG p A2 
~ cl 0 

2 
m 

a = p TIn . 

The Einstein 

JJ ere the s u f fix 0 rn e an s the c I ass i cal sol uti 0 n 0 f G It . 

( 2 . 1 ) 

( 2 . 2 ) 

( 2 . 3 ) 

In lhe following we investigate three important types of the 

Friedmann universe;RDU, MDU and dSU. The radiation dominant 

universe occupies almost all the era of the early universe at 

h ' ~ , 'f' t h } th 1 th' 13) } d \V 1 C 11 S 1 g n l ' 1 can -- pen 0 In en a sue '1 as , e n u ceo s y n J e s 1 Sl a 

happened. After RDU the matter dominant universe occupies the 

very long era until the present 
, 13 ) 

tlme . Though there are many 

scenarios of the inflationary universe, all of them contain the 

era of the de Sitter expansion5~ 

The classical energy density of these universe Pcl is 

expressed by 
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D 
r 

( RDU) , ( 2 . 4 ) P r = 
~ 

0 

D 
m (MDU) ( 2 . 5 ) Pd = 
~ 

0 

and Pv = const. (dSU) , ( 2 . 6 ) 

where the values of constants D , D and pare estimaLed as r 11\ v 

follows. The value of D after the phase transition(PT)5) of 
r 

the Grand Unified Theory(GUT)17) can be estimated from the 

present vallIe of St (St is L}le total entropy of the universe lTI 

a volume specified by the radius A
O

)' -that is, D =S4/3>10 112 5! r t "-

It is considered thaL -Lhe value of D before PT is smaller than 
r 

this value by a factor ~10110 according to the inflaLionary 

. . 5 ) 
unlverse scenarlOS . The present value of D is estimated from 

m 

observations of the total energy density of present universe, 

the result is (According to this 

uncertainty, 
13 ) 

we can not determine the present value of Ie .) 

The value of pv depends on the energy scale at which PT happened. 

In the case of SU(5)-GUT phase transition, for example, 

p ~1060(GeV4)17! 
v 

Tn order -to make the following discussj ons 

as general as possible, we treat these constants as free 

parameters and give them special values when they are needed. 

The equation (2.2) can then be expressed as 

2 . 2 
AO( k + AO (RDU) , ( 2 . 7 ) 

AO( k + A~ (MDU) ( 2 .8) 
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and 

(dSU), ( 2 . 9 ) 

\vhe re "ve define 

D 
Uo 

r 
= ba , ( 2.10) 

D 
m 

vo = Era ( 2 . 11) 

and 
Pv 

Wo = ba ( 2 . 12) 

The soluLions of these equaLions are given in Ref.13). For the 

case k=1, tIle soluLion has a maximum AR =U 1 / 2 (RDU) a maximum max 0 ' 

Ad. =w- 1 / 2 (dSU) respectively. We can rnln 0 ' 
M A =vO(MOU) and a minimum max 

show that in the region 

AO « U1 / 2 
0 (k=±I,RDU), ( 2 . 13) 

AO « vo (k=±I,MDU) (2.14) 

and 
AO > > -1/2 

(k=±I,dSU), (2.15) Wo 

the effects of the curvature expressed by Lhe term of k in (2.7) 

~(2 .9) become negligible, so that the equations (2,7)~(2.9) 

result in those of the flat universe (k=O). 

In §6, 7 and 8 we will find stable solutions of RDU, MOU and 

dSU for the cases k=O,±1 with quantum effects due to vacuum 

polarization , resp ctively . We can show -that in the regions 

(2.13) and (2.14) these solutions result in those of the flat 

univelse obtained in Ref.2). 
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§ 3. The instabiJ i ty of the Friedmann uni verse in GR 

In Lhis section, we show the instability of the Friedmann 

univ e rse with quanLum effects in GR 4 ) for the case k=O of RDU 

and serious difficulties of cosmology which arise from it. 

1 n G R , qua n -t U III e f f e c t s due to va c u u m pol a r i z aLi 0 n 0 f III a t t e r 

fi e ld at one loop level in a background gravitational field are 

given
10

) for massless and conformal invariant theory by 

= 

1 2 .. 2 
2A A 

where A(i)(i=3,4, .. ) are i-th derivatives of A and 

1 
(natural uni t) .A = 2 2880n 

"-

N¢ 6NtJt 12NA ex = + + , 

6 = N¢ + 11NtJt + 62N A 

( 3 . 1 ) 

( 3 . 2 ) 

( 3 . 3 ) 

( 3 . 4 ) 

( 3 . 5 ) 

and N¢,NtJt and NA are the number of species of scalar, spinor 

and vecLor fields, respectively. In the following we set 
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ex = 7r = 0(10 2 ) . 

Adding (3.1) Lo RIlS of (2.7) and setting k=O, we obLain Lhe 

GIl eq uation of the scale parameter A( L) whi·h incJudes quanLulI1 

effecLs as 

( 3 .6) 

With r=AA, (3.6) js rewritten as 

( 3 . 7 ) 

I n L J \ f 0 1 1 0 \oJ i n g , vv 0 \-oJ e L 0 L II e pa per 0 fT. V . R u z U 11\ a j Ie ina and 

A .A.Ru z um aikin jn Ref.4) for some rnaLhematics. 

posiLlon":R and "Lirne":"l: defined as 

R _ (AA)3/2 = r 3/2 

"l: == 12- 3/4 A3 , 

Using "parLicle 

( 3 .8) 

( 3 . 9 ) 

respectively , (3.7) is rewriLten in a forlll without velocity LerlJl 

as fol10\...;s 

( 3 . 10 ) 

This is the equat,ion of a parLicle moving in a potentiaJ. Wh en 

IT\ t » 1 p 
3/4 

and R=O( Uo ), we can show that the second terln is much 

smalJer than the first term in (3.10) and that the potential has 

a maximum aL R=ug
I4

(This is due to the positive sign of A(3)-term 

in RHS of (3.6)). The ouLJine of the Iotential is drawn in 
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Fig. 1 . The resting solution at this maximum corresponds to Lhe 

classical GR solu -tion of RDU(AOAO=/DO)' However the particle is 

unstable and must roll down the hill of the potential sooner or 

later, so that evolution of the universe become much different 

from SBBS . 

When R « U3 / 4 , we can show that o 
the Hubble constant become much smaller than the value of SBBS 

which is in agreement with the observation 13 ! Further, the 

helium mass fraction which is very sensitive to the expansion 

rate when the universe is a few minutes old 13 ) becomes much 

smaller than the value of STIBS. When 3/4 R »UO ,we can get 

oppos i te results based on the rela-tion A (1:) > > AO (1:). The 

other cosmological observables which are sensitive to A such as 

the fluctuations
6

) etc. will be much different from the 

observations too . These are serious difficulties in cosmology 

of GR with quantum effects. 
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§ 4. The cJ assical PGT equations for the Friedmann universe 

• L 18 ) It 1S SIlown that under the condition of homogeneity, 

isotropy and parity conservation only the following components 

of the Lorsion tensor remain nonvanishing; 

[ 

1 
T· 10 = 

other 

= '1,3 
·30 - S(t) ~ 0 

( 4 . 1 ) 

cOHlponenLs = 0 

Here, 0 and i ( =1 ,2, 3) are indices for time and space co mponents , 

respecLiv ly. The la sical quaLion for A(t) of Lhe Friedmann 

. . p r19) un1verse 1n G' 

k + 

i s 

fG'A 
3B 6B 

where F js the scalar curvature in the presense of torsjon; 

F = zt ( Pc 1 - 3 Pc 1 - 1 8 (3 A - 2 (k + A 2 + AA)) 

( 4 .2) 

( 4 . 3 ) 

IIere Pel and Pcl are the classical energy densi Ly and pressure, 

respectively, and B is given by 

2 
B = b + 3fF. ( 4 . 4 ) 

Becaus e F contains A, the classical equation (4.2) is a third 

order differential equation for A. The constants f and bare 
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given by 

where a 5 and (3 are 

b = a - ~{3 
2 

Lhree of nine 

(See also Appendix B of Ref.2).) 

14 ) parameters of PGT . 

The condition of the propagating torsion with 

posiLive-definite energy and positive mass restricLs the 

20) parameLers as 

f > 0 

and 

{3 ~ 0 . 

The torsion field is then given by 

S = fF 
"TI3 . 
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§ 5. The classical sLable PGT solution for RDU 

J"n this section we show thaL under linear approximaLiol} the 

classical stable PGT solution of the Friedmann universe for RDU 

with k=O,,±l exists for the era T < m 
'" p under proper conditions 

for f, Band Dr(in the following, we use Dr instead of the total 

en tropy S t ) . 

We introduce new functions 

x == A2( k + A2) ( 5 . 1) 

and 

x _ x - kA2 = A2A2 , ( 5 . 2 ) 

where x becomes Uo when A js AO' The equation (4.2) then becomes 

3 

( 5 . 3 ) 

wher we have used (2.4) as Pel' We restrict ourselves to the 

case in whi c h the x-terms are much smaller than Lhe remaining 

terms , because it is difficult to solve (5. 3) exactly: 

Consiste ncy of this assumption is justified later(see below 

(5.29)). Then we get 
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.. 
x = 

± 

where 

2b 2 . 2 
x 

31I3X + 2X -

3 

2b
2

/XM ( r 1 
3/6[(3 

M r 

+ 

lei: 

rx 

9lef(3 . 27f(32x 2 3f{3x 

brxM~.x + 
8b 2 XM2 

r 2b 2A2rx 

D r 
2 ) 1/2 

- 9{3x - 6lebA 

) ( 5 .4) 

( 5 . 5 ) 

It wi]l ue confirIlled later thaL the argument- of the square root 

in (5.5) is positive [or our solution{see below (5.12)). This 

equation is in -terpret d as thaL for a partic]e moving in a 

poLenLiaJ V(x) wiLh addiLionaJ x-dependenL forces, where 

2 
= 2 b (x ± jf7f ( 5 . 6 ) 

(Strictly speaking, this picture is jus -Lified only under linear 

alproximation(see (5.11))). We choose the negative sign in HIlS 

of (5.6) so that an equilibrium point aL which dV;dx=O is x=U O 

which corresponds to SBBS of GR. Then whether this point is a 

minimum or maximum point of Lhe potential depends on Lhe sign 

of (3(note Lhat f>O(see (4.7))). 

To stabilize the universe Lhis poinL must be a minimum 

point of the poLential. We can show this is realized when 

(3 < O. ( 5 . 7 ) 
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Let us seek a solution of ::r in the form of a small 

os c illation around UO' Putting 

and assumj.ng that S/U O « 1, or for definiteness of our 

argument, that 

( 5 .8) 

( 5 . 9 ) 

we get a linearized e quaLion for 6A=A-A O ' the deviation from AO 

satisfiying (2.7); 

(5.10) 

Applying linear approximation to (5.4), we have the following 

equation for S; 

.. ab 
S = 3fl3s 

2k· ( 2·2· 2 ---S + 0 S ,S ,ss,s6A,6A , 
AOA. O 

.. ) . ( 5 . 11) 

For the cases k=O and k=-1 Eq.(5.11) can be considered to be 

valid for all eras of the universe, since AO~o. 

For the case k=l, however, AO vanishes at -the maximum point 

so in the following we shall restrict ourselves to 

the era satisfying 

- 14 -



(5.12) 

~vhere 0 is a small buL finite, positive consLant. The smaller 

e becomes, Lhe smaller value of 8 J Uo is needed Lo show the 

stabiljLy of RDU in the following discussions. For the case 

(5.9), we safely can take e~0.1. So, we fix e to this 

value in the following. When (5.7) and (5.12) are satisfied, 

we can show Lhat the argumenL in the square root in (5.5) is 

positive. 

IL is proler to solve Lhe equation (5.11) by the WKB meLhod. 

However, the WKB solution is Loo complicaLed Lo estimate quantum 

effecLs sllch as (3.1) or (3.2). So, we adopL harmonic oscillater 

approximation which is jusLifi e d under Lhe conditions 

1~81 » 1 :~ £1 (5.13a) 

and 

1~81 » I~£I AOAO 
(5.13b) 

Under these conditions we obtain approximate solution 

(5.14) 

with 

( 5 . 15) 
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and 

and 

2 
K 

ab 
= 3f(-t3) 

The two conditions (5.13) are equivalent to 

.L 

D » 72f, 
r 

( 5 . 16) 

(5.17a) 

(5.17b) 

respec Li vely. The condiLion (5.17b) is needed on]y for Lhe case 

k=±] . Because the value of K is found to be ",.Ja/2f (se e (E5.15)) 

and AOT=D~/4 for adiabatic expansion of the universe(T is the 

teJll[erat,ure of the universe), Lhe condition (5.17a) becomes 

If [{IlS of (5.18) 

T « 1 Dl/4 
-----:;r-:--A TTl 
(32nf)1/2 r p 

» m , we may expect that the era (5.18) p 

( 5 . 1 8 ) 

includes -the era T < m where the semi-classical picture j s 
'" p 

avai]ablel0) ,12~ so we demand 

D »(32nf)2 . 
r (5.19) 

Under thjs condition , the following discussions are justified 

for T < m . 
'" p 

Putting (5.1 4 ) into (5.10), we obtain 
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oA ( t) (5.20) 

where we have chosen the integration constant so that oA(tO)=O. 

The numeraLor in the jnLegrand has -Lime scale ""f 1J2 t , whiLe the p 

denominaLor has cosrrd c Lime scale, so we expect that the laLter 

can be regarded as cons Lan L in co mparison wi th -Lhe former, Lhen 

we obtain 

( 5 . 21) 

We can show that the second term in the parenthesis of (5.21) is 

much smaller Lhan the firsL term using (5.12),(5.15) and (5.17a). 

I-or the cases k=O and k=-l, this is a sLable solution of the 

universe throughout its history;it is called the tremblin~ 

universe" (Ref.2)), because it describes a small oscillation 

around SOBS of GR . In particular, for the case k=O 

(Ao(t}=J2U6J4t1J2), (5.21) coincides with the result of Ref.2}. 

(Note that t;OJU O is equal to 2110JU O of Ref.2).) For the case 

k=l, however, this solution can be justified only [or the era 

satisfying (5.12). 

Tn Lhe rest of Lhis section we make some preparaLions for §6. 

IL is difficult to esLimate complicated quantum effects such as 

(3.1) and (3.2) throughout all the era of the universe, so we 

need restrict the era of the universe to 
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( 5 . 22) 

Then we can show the following relations which will be needed in 

§6. 

2, .. Kt;o , 

AA(A 2+ 8 k) , A AA ~ - -z-sinKt = "2" - ( 5 . 23) 

2 
A2AA(3) K t;o 8 

~ - Z-COSK "L = "2" , (5.24) 

3 
A2AA(4) K t;o 

~ Z-sinKt (5.25) 

and 

4 
A2;"A(5) K t;o 

~ Z-coSKt ( 5 • 26) 

, , ,2 
In RIlS of (5.23), the inequaliLy 8/2.( AA(A + k) holds \vhen 

(5.22) is satisfied
21 1 Then F and F can be expressed as 

F 9~ (k + ;..2+ AA ) 9[3 8 
( 5 . 27) = -

A2 
~ -

2b'A 3;.. 

and 
;..2+ A(3) F ~(k + AA )' 9(3 9(3 8 (5.28) = -
A2 

~ - b'--X- ~ -
2b'A 3 ;.. 

The use of (5.28) in (4.9) gives Lhe following expression for Lhe 

torsion: 

- ]8 -



s ( t ) a i;0 cosKt 
- 37f'U

O
' t (5.29) 

Using (5.15),(5.22) and (5.23) (in the case k=l we need (5.12) 

in addition), we can confirm that the ~-terms (namely, the 

i-term) in (5.3) are much smaller than the remaining terms. 

We can show as before (se e (5.18)) that the era (5.22) is 

equivalent to 

( 5 • 30) 

FurLher we demand 

( 5 . 31) 

in order that the era (5.30) includes T < m . 
p 
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§ 6. The PGT solution of RDU stable against quanLum effects 

Quantum effects due to vaCUllm polarization of matter fields 

at one loop level in a background gravitational field in PGT are 

investigated by Buchbinder, Odintsov and Shapiro16~ They have 

shown under the assumption of multiplicative renormaljzability 

and asymptotic freedoln that the theory is asymptotically 

comforrnally invariant and that TIlatter fields become massless at 

high te mperature. Then, they obtain the expression for <O IT 10> 
/J.V 

at one loop approxj lll ation. Jt consists of two parts;the one is 

the same as GR and Lhe oLher is made of the axial-vector parL 

1 jmn 
oft he Lor s ion ten s 0 r a. = 6- 8 · · l' . Howe v e r, i n h 0 III 0 g e n e 0 U S 

1 lJrnn 

and isotropic spac a. vanishes 18 ) (s ee (4.1)), hence quantum 
1 

effecLs in IGT have Lhe same forrn in GR given by (3.1) ----(3 .5). 

In Lhe following, we LreaL Lhe cases where masses of matter 

fields can be ignored;rn.=O, T » TIl. 
l. 1 

and 1'« m., where III. are 
1 1 

the masses of ' particles concerned. Before PT, all masses are 

exactly zer05~ In the case T« rn., we may expect that the 
1 

masses dos not contribute to ]uanturn effects because of the 

decoupling theorem
22

) and we shall discuss this case in §7 as 

the case HDU. If T ~ In., the masses of particles cannot be 
1 

ignored and different proper treatments are needed. 

Due Lo these quantum effects, Pcl and Pcl are modified like 

( 6 . 1 ) 

p 1 --) P 1 + P . c c q ( 6 . 2 ) 
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Accordingly, the scalar curvature F and its time derivaLive fr 

are changed like 

F ---) F 6F ~(k +A2+AA ) l + - -
A2 

-
2ETr ( 6 . 3 ) 

and 

F F 6F ~(k +A2+AA ) 1 . 
---) + - -

A2 
- 21)Tr ( 6 . 4 ) 

resp ctively. The equaLjon [or A with quanLum effects are then 

obLa"ined from (4.2) and (4.3) by making the above replacemenL of 

Pel' Pel' F and F. Since Tr contains A(5~ the equaLion for A 

wiLh quantum effects is a 5th-order differenLial equaLion. From 

this equation, we can obtain an equation for 8 of (5.8) with 

quantum corrections. It has a form of (5.11) wiLh the following 

replacemenL of 8, sand 8, 

8 ~ 8 (1 _ Uo.~), ( 6 . 5 ) 
8 Pel 

AO' 
-8 
AO 

~ 
AO ( -s 1 
AO 

_ 6~ ) ( 6 . 6 ) 

2k ~S(1 6F ) ( 6 . 7 ) --8 ~ + l? 
AOAO AOAO 

and 

8 ~ 8 (1 + 6~ ) ( 6 . 8 ) 
F 
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In the following we show that "the second terms on Lhe RHS of 

(6.5)-(6.8) which represent quantum corrections contribute only 

to the negligible Lerms in RIlS of (5.11), so that the classical 

stable solution expressed by (5.14) and (5.20) is still valid. 

FirsL we demand 

< 
( 6 . 9 ) 

so that the effect of P q in (6.5) is absorbed into the negligible 

term 0(8
2

) in RHS of (5.11). Secondly we demand 

< 
'" 

1 ( 6 . 1 0 ) 

so that the effects of 6F in (6.6) and (6.7) are Lhe same order 

with the second and third term in RJIS of (5.11), respectively. 

(They are negligible because of (5.17).) Lastly we demand 

< ( 6 . 11) 

so that the effect of ~F in (6.8) is 0(8 2 ). 

Using the expressions for p and Tr given by (3.1) and (3.2) q 

respectively, and employing the relations (5.23),,-(5.26), it can 

be shown that the inequalities (6.9),,-(6.11) are satisfied, if the 

following conditions are satisfied in addition to (5.22); 
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f 
'"V Uo 

( 6 . 12) > 2ACt·-
i;0 

-(3 > a (6.13) 

and 
. _ (0) 2 D > OACt ~ . (6.14) r 

Here, \.ve have used 

2 
2 /TI p 

(6.15) K 32TlT 

which is obtained when (6.13) is satisfied. 

As an example , let us briefly outline the argumenLs leading 

to (6.12). Taking the firsL term of RHS of (3.1) as P
g

, Lhe 

inequality (6.9) becomes 

(6.16) 

where we have used (3.1) and (5.24). From this relation we 

obtain (6.12). Repeating similar analyses for each term in 

we obtain (6.12), (6.14) and (5.22) as the sufficient conditions 

for (6.9). 

To summarize, the conditions under which linearized sLable 

solution of RDU with quantum correction exists for T < fIl 
P 

are 

(5.9),(5.17b),(5.19),(5.31),(6.12),(6.13) and (6.14), in addition 

to these we need (5.12) for the case k=l. 
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The parameter region restricted by (5,9),(5.17b),(5.19), 

(5.31),(G.12) and (6.14) is shown in Fig.2, where f, l;O/U O and 

D are parametrized as 
r 

and 

f 

l;0 
Uo 

D 
r 

= 10
m , 

= iOn 

= lOP, 

and set p to, for example, PO=112. 

( 6 . 17) 

(6.18) 

(6.19) 

From Fig.2 we notice that 

the slnaller the value of D becomes, the narrower the stable 
r 

region becomes. In conclusion, for RDU with k=O,±l we need 

D > 10 23 . 2 
I' 

(6.20) 

( 6 . 21) 

and (6.13) to stabilize the universe for T < 11\ • 
p 

In RDU Pr » Pd' so we have set Pd=O up to this point. 

However, stricrly speaking, Pd can not been perfectly neglected; 

in RIIS of (4.3) we obtain Pcl-3Pcl=Pr-3Pr+Pd-3Pd=Pd because of 

p =3p r r In this case , we have additonal D -terms to RHS 
m 

of (5.3),(5.4),(5.6) and (5.11). Bor the value D 1m =10 58 and 
m P 

D = 10
112 

we can show that these terms can be neglected and give 
r ' 

no influences to the above discussions if we demand 

f < 34 (6.22) 

We need not this condition for the case of pure radiation, for 

exampJ.e, for RDU before PT where all particles have no nlass. 
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§ 7. The case of -the matLer dominant universe(MDU) 

The temperature of MDU( T < 10- 12 . 6 GeV
13

)) is sufficiently 

Jaw in comparison with masses of leptons, quarks, Higgs, massive 

gauge hosons and so on. So, it is plausible to assume that the 

ef fects of these massj ve partic1 es disappear from VaCU\lm 

polarization because of the decoupling theorem22~ Therefore, -the 

case of MDU can be treated by repeating almost same analysis of 

ROU. So in the following we only point out main differences 

between MDU and RDU. 

\ve introduce a function 

y A( it + A2 ) ( 7 . 1 ) 

which becomes Vo wh n A is AO' We obtain the classical equation 

for y from (2.5) and (4.2) as 

± 

where 

and 

. 2 

h 

M 
m 

y _ y - leA 

1 

(Dm - 9{3y - 6kbA)2 
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( 7 . 4 ) 



Th e n, as in RDU we choos Lhe negatjve sjgn in RIfS of (7.2) and 

we demand (3<0, so thaL the poLential has a minimum at y=v
O 

and 

Lh e universe is sLable. In this argumenL, we have assumed the 

j n e cl\lU LiLy 

f
' }) 

In 

(m A)3"m p 
p 

« 1 

so that the potentjal has only one equiljbriurn poinL. 

( 7 . 5 ) 

Applying l .in e ar approxil1luLion, we have the equations for 

small deviatjons 8 and oA as 

.. ab 
8 = 3f{38 -( ) 

" 2 
8 + 0(8 ) ( 7 . 6 ) 

and 

oA + ( 7 . 7 ) 

We obLain a solution of harmonic oscillateI' approximaLjon as 

~ COSKt o ( vo » ~O ), ( 7 . 8 ) 

\.Jhere K is given by (5.16), if the followi ng condj tions ace 

satisfied: 

> > 

» 1 

and 

and 
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(k=l) 

(7.9a) 

( 7 . 9 b) 



fli2 U6J[)3/2( Dill ) 3/2 
« 1 3f72. ( A)5J2 ill rn p 

p 

f 1J2 (16n)3J2 Dm 
« 1 ( 2·ill rn A) p 

p 

Using AT=D
1J4 

the condition (7.9a) becomes r ' 

T « ___ 1 __ ~D1 J4
11l 

(32nf)lJ2 r p 

(k=O) (7.10a) 

(k=±I). (7.10b) 

(7.11) 

Ilere we define T1 at which Pd=P r , and below which Pd>P
r

, that~ 

is, the uni verse is MDU. We demand tha t the RES 0 f (7.11) > > T 1 ' 

then we may expect that the era (7.11) includes the matter 

dominant era T ~ T
1

; so we obLain 

Dr » 

For Ollr universe, 1'1 is estimaLed to be O(10 4 . 5 x 2.701\)= 

0(10- 12 . 6 GeV 13 )). 

(7.12) 

Finally, 5A is given from (7.7) and E=~OcosKt for MDU as 

5A ( t) 
(7.13) 

Using the same approximation as that for the RDU (see below 

( 5 . 2 0 ) ), \.,1 e 0 b t a i n 
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Vo ~o ]. ) 
--------------slnKL 

2A A Vo KAO o 0 
( 7 . l 4 ) 

(
9 ) 1 3 2 J 3 I" 0 (' L h e cas e k = 0 ( A 0 = 4 v 0 J L ), (7. 1 4) co inc ide s \..; i t h the 

res 1I 1 L 0 f Ref. 2 ) . ~v hen L he con d i t ion (7. 9) iss a tis fie d, wee an 

show LhaL the second terlll in the parenLhesis of (7.14) is much 

smaller than the first term. 

T nor d e r toe s t i rn ate qua n L u Jll e f fee t s, wen e e d Lor est [' j c t 

Lhe era of tIle universe Lo 

(7.]5) 

equivalenLly, 

T < 1 _~DIJ4m. 
(32nf)lJ2 Vo r p ( 7 . 1 G ) 

Ilere hie demand 

(7.l7) 

so that the era (7.16) includes T ~ T
I

. 

It can be sho .... ..;n that LIle condi tions under wIlich quallLuflI 

effects do noL break the classical stability of tile universe for 

T ~ '1'1' are (6.13), 

f > 
"- Vo 

2A cx ---
~O ( 7 . 18 ) 

and 

D 
III 

> 1 . m 
p 

( 7 . 19) 
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To summarize, the condiLions under which linearj zed sLable 

soluLion of MDU with quanLum correction exists are (7.5),(7.10), 

( 7 . 12 ) , ( 7 . 17) , ( 7 . 18 ) , ( 7 . 19) , ( 6 . 13) and 

(7.20) 

In addition to these we need the condition AO < 0.9v
O 

for the 

case 1\=1. 

In Fig . 3, we show the region restricted by (7. 5),(7.10) , 

(7.12),(7.17),(7.18) and (7.20). There we parametrize as (6.17), 

(6.19) , sO/vO=lOn, D 1m = 10<1 and m A=10r, and set, for example , 
III P P 

P=ll =20, 1=58 and r=58. (From observation mpA is estimaLed to be 

~ 10
58 

for MDU13~) From Fig.3, we conclude that Lo sLabilize 

MDU with k=O,±l the conditions (6.13),(6.20) and 

are needed. 

D > 10- 103 . 2 
I' 

The scalar curvature and the torsion are given by 

F 
9l3KS O 

~ . 2sinKt 
2bAOAO 

2 

F 
9l3K ~O 

~ COSKt . 2 
2bAOAO 

and 

S ( t ) 2a ~O COSKt 
~ -

"J73'~' t 
0 
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§ 8 The case of the de Sitter universe(dSU) 

Let us treat the de Sitter universe with k=O,±l, introducing 

a function 

z ( 8 . 1 ) 

which becomes Wo when A is A
O

' We obtain the classical equation 

for z from (4.2) and p l=P as 
c v 

where 

and 

7/Zz 
- --A- Azz + --

Ji 

2 
'l - zA - k , 

1 

( 6 leb )"2 - P v - 96z - ~ 

P - 96z + 96Az 
v 4ft 

2·2 
+ A z 
2r 

( 8 . 2 ) 

( 8 . 3 ) 

( 8 . 4 ) 

( 8 . 5 ) 

Then, as in RDU we choose the negative sign in RES of (8.2) and 

we demand 6<0, so that the potential has a min im uIIl at z=wO and 

the universe is s-Lable. 

Applying linear approximaLion , we have the eguaLj.ons for 

small deviations 8 and ~A as 
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7w A 
E = ( a b - 1 2 w +~) E + (~- 0 0) E + 0 ( E 2 ) 

3fB 0 A2 A A A 
000 0 

( 8 . 6 ) 

and 

oA ( 8 . 7 ) 

We obLain a solution of harmonic oscillater approximaLion as 

z = ( 8 . 8 ) 

with 

K = (
ab )1/2 

3f(-13) + 12wO ( 8 . 9 ) 

if the following conditions ar saLisfied , 

P y « 3 1 
4" 2 "r m 1254471 p 

(8.10) 

and 

[ KAO 
» 1 (k=0,-1) 

KA » 1 and AO > /2 = j2·Ad . (k=l) 0 7WQ mln 

(8.lla) 

(8.l1b) 

where 11 rwo is the rni nimum scale parame Le r 0 f the de Sit te r 

uni verse (=A d. ) 'vi th lc= 1 (AO=-kcosh~Ot) . The first term in the mln vwO 

parenthesis of RHS of (8.9) is much larger than the second term, 

So K ~ K. The second condi tion of (8.11 b) is needed, because 

d Lhe equaLions for E and oA become singular at AO=A. Using 
mln 
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T-D 1 J 4 
A - r ' the condition (8.11a) becomes 

T « 1 D1J4 
(32n:f)lJ2 r lOp 

(8.12) 

We demand here thaL the RHS of 1 J 4 (8.12) »Pv ' then we may 

expect that the era (8.12) includes the de Sitter universe era 

with T < p1J4· so we obtain 
v ' 

Dr » (32n:f)2.~ . 
rn 

p 

(8.13) 

In order that the second condition of (8.11b)(A O > J2Ad ) is 
min 

satisfied for the era T < 

which becomes 

we demand 

1/4 = 10 15 GeV Pv 

1/4 = 10 Pv 10 GeV). 

(8.14) 

(8.15a) 

(8.15b) 

We obtain the solution of ~A from (8.7) and E=~OCOSKt as 

~ A ( t) 1 · It ~ocoSKt~ 
= A (t) dt~. 

~ 0 t A (t')A 2(t') 
000 

(8.16) 

With the same approximation as used for the RDU (see below 

(5 .20 ) ), we have 
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( 8 . 17) 

1 
For the case k=O (AO =JWQexp (JW()t) ), (8. 17) becomes 

(8.18) 

When (8.11) is satisfied, we can show that the second term in the 

parenthesis of (8.17) is mu c h smaller than the first term. 

In order to estimate quantum effects, we needs two 

condi tions 

KAO > 
wo 
~ 

and 
(8.19) 

1 J 2 
°0 ~v 0 

< ----;r-
K wo (8.20) 

The condition (8.19) is equivalent to 

( 8 . 21) 

]?urther we demand 

(8.22) 

So that the era (8.21) incldes T ~ p~J4. 

- 33 -



When the inequality (8.19) is satisfied, we can show thal -Lhe 

condition under which quantum effects do not break the classical 

stability of the universe is (6.13), 

f ) 
'" Wo 

2;ux ,-
<So (8.23) 

and 

Pv > 
12 ~7t 2 f ( 

°0 / if Wo m 
p 

(8.24) 

To sUlllmarize, the condi tions under which linearized stable 

soluLjon of dSU exist are (8.]0),(8.13),(8.14),(8.20),(8.22), 

(8.23),(8.24),(6.13) and 

( 8 . 25) 

In Fig.4, we show the region restricted by (8.10),(8.13),(8.20), 

(8.22),(8.23),(8.24) and (8.25). Here we parametrize as (6.17), 

n 4 -4s 
(6.19), <S0/WO=10 and Pv/rnp=10 , and set, for example, P=P2=60 

and s=4(region 1 correspondlng Lo vacuum energies of ['1' of 

SU (5)-GUT;p1/4=10J5 GeV) and s=9(region n v corresponding Lo 1/4 
Pv 

=10
10 

GeV). \ve notice thaL the lower Lhe vacuum energy becomes, 

the wider the stable region becomes. For SU(5)-GUT case, it is 

concl uded from Fig. 4 and (8 .15a) that to stabilize dSU wi Lh 

k = 0 , ± 1 \ve nee d (6. 1 3 ) , 

f ) 10 1 . 8 
(8.26) 

and 
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Dr> 10
8

.
4 (~10 13 . 6 for k=l) 

For the case p1/4= 10 10 GeV, on the other hand , we obtain v 

(8.27) 

f > 10
6

.
8 

(8.28) 
and 

and 

Dr > 10
18

.
4 (~10 33 . 6 for lc=l) 

Lastly, we obLain 

F 

S ( t ) 

9(3Ko OA O . 
----sl.nKL 

2bAO 

2 
9l3K 00AO 
-----cOSKt 

2bAO 
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(8.32) 



§ 9. Summary and discussions 

We h a v e s h 0 \01 nth a L a t c 1 ass i calle vel 0 f P G T L h e t hI' e e t y pes 

of the Friedmann universe(RDU, MDU and dSU) with k=O,±l are 

sLable under linear and harmonic oscillateI' approxjmaLion if the 

parallleters of PGT are chosen properly. Then, we have shown that 

guanLurn effects due to vacuum polarization at one loop level do 

noL break this classical sLability of the universe if we choose 

the parameters of PGT, the the Lo-Lal entropy of the universe and 

oLhers I ['or erly. 

Tn Lhis section, we ullllllarj:6e the conditions which are needed 

for sLaule RDU, MDU and dSU in common, using simple no -LaLion 

b. = i; 0 J U 0 = ~ ° J v 0 = (5 0 / w 0' w he C' 6. « under linear approxirnaLlon 

(for definiteness we require The conditions 

.individual Lo each three univers s are listed in Table J. 

At the classical level of PGT, the three Lypes of Lhe 

Friedmann universe with k=O,±l are sLable under the condiLions 

f>O and R<O;then there exisL the small oscillative solutions 

around SDBS o[ GR wi-Lh -Lhe com mon frequency K=;;~f_(3)(for dSU 

the frequency is K'~ K). 

In the presence of quanLum effects due to vacuum polarizaLion 

we can sho\o1 thaL the three types of the Friedmann unj verse are 

still stable for each era under the condiLions f' > 2 "- -1 
"- .ACU~ , 

-n 2. a and 
-1 

KA Z 6 . The lasL condition result in jndivjdual 

conditions for D (see Table 1). 
I' 

From these and the individual condiLions listed in Table 1, 

We ab tai n the s Lable parame LeI' reg ions of RDU, MDU and dSU) 

- 36-



respectively(seeFi gs.2, 3 and 4). 

For RDU and MDU the stable regions are basically triangle 

regions surrounded by three lines , as for RDU ( Fig . 2),(1),(3) and 

(4). These lines ( 1 ) ,(3) and ( 4) express the inequaliLies 

(5.15),(5.31) and ( 6 . 12), respect.ively. The condiLion ( 5.15) 

justifies linear approximaLion. Under Lhe condition (5.31) 

quan Lum effecLs can be estimated and suppressed for T < m We 
p 

no lice that the larger Lhe value of D becomes , the upper Lhe 
r 

line ( 3 ) is located and the wider the stable region becomes. 

This means thaL the more radiaLion(entropy) beco mes, Lhe more 

stable the universe has a Lenden c y to be. The condition ( 6 . 12 ) 

also suppresses quantum e ffe c Ls . We conclude the necessary 

condition for f and D in T a 1 .2. 
I' 

Be c ause Lhe coupling beLween 

Lorsion and fermion fields is g iven by "- 1J/f in PGT
14 ~ the 

condi ti ons f > 10 1 . 6 

perLurbation method. 

mean that this coupling can be treated by 

After PT we know D > 10
112 

fro m 

observation13~ so conditions for D 
r 

in 

r 

Table 2 are satisfjed . 

Before PT , we may consider these conditions of Table . 2 restrict 

the value of D . 
r 

For dSU we notice that the lower p beco mes , the wider the v 

stable region becomes , and thaL f is restricted by 101 . 8~ f < 10 6 

necessary conditions 

for the region I and II , respectively . 

for f and Dare ]isLed in Table . 2 and 
r 

The 

above discussions for f and D are also applicable for dSU case . 
r 

In Table 3 , we show co mparison between GR and PGT in the 

cJassical and the semi-classical theory . Why the u niverse can 
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be stable in PGT? To see this, let us compare the equation of GR 

which contains quantum effects(see (3.6) and (3.10)) with 

classical equation of PGT(see (5.4)). In GR with quantum 

effec~s, the potential has a maximum and the universe becomes 

1 ( .) b " . f (3) unstab e see FIg.l ecause of the posItIve sIgn 0 A -terlIl in 

RIfS of (3.6). However, in PGT, we can choose the parameters f 

and 6 freely under the restriction of (4.7) and (4.8) so that 

the potential has a minimum point which corresponds to SBBS of 

GR. 

There still remain unsolved problems. First, for the case 

k=l we have shown the stability for the era except nejghbourhood 

of the singular point A=O(see (5.12)). We can say that the 

smaller e becomes, the narrower the stable region becomes. 

Secondly, for the cas e T ~ m· wed 0 no L k now the for III 0 f <.1 \ 1 ant u m 
.1 

effecLs due to vaCUlllIl polarization in PGT, so Lhat we have not 

shown stability of the universe. 

So far in this paper we investigate the stability problem 

with the semi-classical picture, that is, at the level of 

one-loop quantum correction. With the full quantum theory in 

which the gravitational field is quantized as well as the matter 

field, there is a possibility that we can treat the stability 

problem more completely and solve above remaining problelo. Now 

this is being investigated. 
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Table 2 

TIle necessary condiLjons for f and D under which HDU, 
r 

MDU and dSU are stable at individual temperature reglons. 

f D 
r 

HDU 

( In ) 
,G 10 1 . 6 

> 10 23 . 2 
T < '" P 

tvlDU 

58 
pA) 

> 10 1 . 6 
> 10- 103 . 2 

(T<T1,D 1m =10 =[\1 ~ '" 
"- III P 

dSU 
> 108 . £1 

J0 1 . 8 < 10 6 '" 
(T<pl/4=10'5 GeV ;SU5-GUT) f < 

10 13 . 6 '" ( .2 for' ." v 

dSU 
> 10 l8 . 4 

(T<pl/'l=10 10 GeV) 
10 6 . 8 < f < 10

26 
'" 

'" '" 10 33 . 6 '" v (.2 for 

Table 3 

'rile cO Illl:>ar ison be tween GIl and PGT 

k= I ) 

k=1) 

abou L the order of Lhe differenLial equation and stability. 

classical -Lheory sellli-classical Lheory 

GR 
1st-order 3rd-order 

unstable 

3rd-order 5 Lh-o ['der 
PGT 

stable (effectively 3rd-order) 

stabLe at, .least in certain 
l:>arallleLer region 
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potential 

U
3/4 

o 0 
----~----~------------~R 

20 -2J3U1/2 
- Q(A L 0 

Fig.l 

The poLential of Lhe mOLi on equation (3.10) for Lhe case 

3/4 
1fI L > > 1 and R=O ( Uo ) . It takes the form 

p 

poL. = =a--c- 2 / 3 (R2/3 + U
O

R- 2/3) 
co .. 

(
in leg r aLi 0 nco n s tan L) 
is set to zero 

and has a maximulll aL R=U~/4. 1'he resting solution aL thls 

point corresponds to the classical RDU soliLioll of GR. 
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