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1 Introduction 

In 1911, Kalneringh Onnes discovered the superconductive state in mercury at liquid heliu111 

temperature. After that, nUlnerous superconducting rnaterials were discovered. However, 

its microscopic 111echanis111 was not realized for a long time. In 1957 Bardeen, Cooper and 

Schrieffer proposed their theory of superconductivity as the first successful explanation for 

the microscopic origin of th is phel1Olnenon[l]. 

It has been known that when a nonnal Inetal is connected to a superconductor, the 

normal metal bears superconducting properties. This pheno111enon is called proxilnity 

effect because the Cooper pair in the superconductor is considered to leak into the normal 

metal even if the normal l1letal has no pairing interaction. The proximity contact has 

been one of the very important subjects in the study of superconductivity ( for a review, 

see Ref. [2]). Recent progress in technologies fabricating artificial materials has Inade it 

possible to study very clean and thin proximity-contact layers. In such a clean systen1, 

many interesting ph nomena which cannot be expected in an isolated normal 111etal can be 

observed. 

At the normal- superconducting ( N - S ) interfacial boundary, there occurs the so called 

Andreev reflection , that is, an incident electron from the N region is reflected back into a 

hole[5]. The N - S junction shows non- Ohmic current··voltage behavior[8][9], because the 

reflected hole carries away a positive charge and the current is nhanced. A theoretical 

attempt to explain the non-Ohnlic behavior in the language of the Andreev reflection was 

proposed by Blonder, Tinkham and Klapwijk[10]. They have taken into account the effect of 

non- ideal interface but assumed a step-like pair potential. In the proximity contact systeln, 

the pair potential is in general depressed near the interface. van Son et al. [6] considered the 
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effects by the depression on the Andreev reflection by assuI11ing a siluple analytical fonn for 

the spatial variation of the pair potcntia.\. Bruder(l2] studicd the Andreev scattering for a 

d- wave pairi ng su pcrcolld uctor, using a self-consistcntly sol vcd pair potential and taking 

account of the interfacial rcflcction coefficient R. Nagato et al.[15] studied thc Andreev 

rcflection in thc doublc infinite N - 5 systcm, and obtained the relation between thc Alldreev 

reflection coefficient and the dcnsity of states at the interface. Usually, point contact device 

is used in the attempt to observe the Andreev reflection through the J- V characteristics. In 

this system, it is expected that the voltage drop occurs at the interface between the electrode 

and the normal luetal. It 111eans that there is also finite reflection between the electrode 

and the normal metal. As a result, the multiple reflection process within the normal layer 

will be important and the J- V characteristics will show a geometrical resonance effect . 

Taking account of the geometrical resonance effect, we discuss the Andreev reflection and 

the differential conductance. 

In a finite width normal metal connected to a superconductor, the density of states has 

significant structure due to the finiteness of the layer, in the energy range around the 

magnitude of the pair potential[2S][29][30][31 ][32][33][34 ][35] . de Gennes and Saint-James 

first calculated the densi ty of states in the normal metal connected to a superconductor 

with a spatially constant pair potential. They found that there is a state with the energy 

below the energy gap of the superconductor, which occurs because of the finiteness of the 

normal layer and the Andreev reflection at the N -5 interface. This state is the so called 

"de Gennes- Saint-J ames bound state" . The existence of the de Gennes- Saint-J an1es bound 

state is the origin of the effective energy gap in the normal rnetal. 

The density of states can be detected by a tunneling experin1ent, by a scanning tunneling 

spectroscopy(STM) and so on. In particular, the STM experiment is able to study a spatial 
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dependence of the density of states. Recently, Inoue and Takayanagi[36] reported the STM 

measurement of Nb/InAs/Nb proximity contact system. Their data indicate that the local 

density of states in the InAs region has a.n effective energy gap and the gap varies spatia.lly. 

Tanaka et al.[34] studied the density of states of the S-N-S system with ideal interfaces. 

Hara et al.[35] studied the N - S finite system in which the N - S interface has finite reflection 

but the N region has no pairing interaction . We study the density of states of the nonnal 

region in the S- N - S system taking account of the effects by the finite interfacial reflection 

and by a pairing interaction in the normal region. The finite reflection will give rise to the 

geometrical resonance effect and the pairing interaction will lead to the spatial variation of 

the density of states. 

To study the effect of the geometrical resonance on the Andreev reflection and to study 

the density of states in the S-N- S system, we treat the semi- infinite triple layer systeln 

a is depicted in Fig.I. 

~(Z) 

L R 

--------------~--~-------------~> Z 
o L 

Figure 1: The semi-infinite triple layer system. 
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In the original BCS theory, an attractive interaction which leads to the Cooper instability 

is originated by the electron- phonon interaction and is an s- wave pairing interaction ( spin 

singlet pairing interaction ). The electron- phonon interaction lnay not be the only possible 

mechanism to obtain an attractive interaction . The possibility of unconventional pairing 

in superconducting nletals was first discussed by Anderson and Morel[37] and Balian and 

Werthalner[38]. The recent discovery of" heavy fermion superconductor" is the experilnen-

tal realization of a class of superconductors with unconventional pairing. Pals et a1.[39] 

investigated the Josephson contact between a singlet and a triplet superconductor within 

the tunneling Hamilton ian n10del. Poppe[40] observed a Josephson current between an s­

wave superconductor Al and a heavy fermion superconductor CeCu2Si2 ' Ashauer et a1.[41] 

studied a thin fihn of standard superconductor in proxirnity contact with a bulk unconven-

tional material It is an interesting problem to study the properties of proximity contact 

superconductors with diff rent kind of pairing symmetry. 

Theoretical treatments to study such proximity systerDs so far reported are mostly based 

on the ideal model. In the ideal model the pair potential in the superconductor region 

is assumed to be constant and the interfaces are assUJmed to have electron translnission 

coefficients of unity. The pair potential, however, cannot be constant, since it is depressed 

near the N -S interface due to the proxin1ity ffect. We have to treat the spatial variation 

on the scale of the coherence length. Moreover, the finite reflection that occurs in general 

at the interface of different kind metals should be tak1vn into account. Even if the wave 

function can be connected sn100thly at the interface, the difference of the F nni velocity 

yields a finite reflection coefficient 

(1) 
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The quasi- classi al Green's fUIlction lllethod[18][19] is able to treat the spatial vana­

tion of the pair potelltia.l and. other physical observables. Thc conventional quasi- classical 

fornlulation[25] consists of the Eilenberger equation for the quasi- classical Green's function 

g, the boundary condition for 9 and the nonnalization condition g2 = -1. When one studies 

the proxin1ity contact systcln by usc of the conventional rnethod, one has to solve the Eilen­

berger equation with the boundary condition and the normalization condition numerically. 

Since the Eilenberger equation includ.cs a solution exploding at infinities, the nun1erical 

calculation needs sophisticated techniques. Calculations by use of the conventional quasi­

classical Green's function have been reported[12][25][26][33][41]. Kieselmann[33] obtained 

the self-consistent pair potential and the tunneling density of states in a N - 5 contact of a 

normal metal film with a semi- infinite superconductor. Bruder[12] studied Andreev scat­

tering under the self- consistent pair potential in an unconventional superconductor. In the 

triplet superfluid 3He, Kurkijarvi and Rainer [26] also studied Andreev scattering by thc 

wall. In the finite double layer systerns, however, the conventional quasi- classical technique 

cannot be applied[20] because the nonnalization condition Inentioned above is valid only 

in bulk system. 

Ashida et al.[20] have proposed a new quasi- classical formulation which can be applied to 

finite double layer systems. They obtained an explicit forn1ula of the quasi- classical Green's 

function which already satisfies the boundary condition. The formulation is written in a 

form including the evolution operators together with reflection coefficient R at the interface. 

This new quasi- classical Green's function ( AAHN Green's function) has been applied to 

some systems. Ashida et al.[21] studied the transition ten1perature of the N- 5 bilayer. Hara 

et al.[35] studied the local density of states in the N - 5 bilayer. Nagato et al.[15] extended 

AAHN Green's function to the systeln including infinite layer and discussed the Andreev 
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reflection and the local density of states. IIigashita,ni et al.[42] discussed the Meissner 

effect in the norn1al rneta,} connected to the superconductor. The AAHN Green's function 

is a powerful tool to study the proximity contact systell1. In contrast to the conventional 

qua.si - c1assical formula.tioll , t.he AAlIN Grccn's function is explicitly cxpresscd. The explicit 

expression already satisfics thc boundary condition. To study the proxilnity contact system 

of present interest, we extend the AAIIN Green's function to the semi- infinite proxilnity 

contact systeIn. 

This thesis is organized as follows: 

In Sec.2 we ll1ainly discuss the fran1cwork of the quasi- classical Green's function for study­

ing the proximity contact systeIn. We first begin with the Bogoliubov-de Gennes equation 

and define the Gor'kov Green's function. Using the ,Andreev approximation, we derive 

the quasi - classical Green's function. Following AAHN, we first obtain the quasi- classical 

Green's function for the finite triple layer system. Taking the limit of the layer size to in­

finity, we obtain the Green's function for the sell1i- infinite triple layer systell1. The relation 

between the Green's function and the physical quantities is discussed. We also discuss on 

the calculation of the self- consistent pair potential. 

In Sec.31""'V5 we apply the obtained quasi- classical Green's function to S0111e proxinlity con­

tact systems. In Sec.3, we study the Andreev reflection for the point contact systenl. To 

explain the Andreev reflection, we first discuss it in the nornlal- superconducting infinite 

double layer. Secondly, we consider the normal- normal- superconducting Inodel for the 

point contact experiment. We calculate the Andreev reflection and the differential conduc­

tance by use of the BTK formula. 

In Sec.4, we study the local density of states in the normal- superconducting proximity con­

tact system. We first discuss the de Gennes- Saint-James bound state. We then obtain the 
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local density of states in the superconducting- norn1al- superconducting systen1. In Sec.5, 

we discuss the supercurrent across the interface between superconductors with different 

pairing symmetries. 

Throughout this thesis, we use the units h = kB = 1. 
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2 The quasi-classical Green's ft:Lnction 

In this chapter, wc dcscribe an outiille of the Inethods to study the superconducting prox-

imity contact SystClTI in thc clcan linlit. We start from the BCS model Hamiltonian and 

derive the Bogoliubov de Gellnes cquation which is useful to treat an inhomogcneous super-

conducting systenl. Within the quasi - classical approxirnation, the Bogoliubov de Gennes 

equation is reduced to the Andrccv cquation, and a formal solution of the Andreev equation 

is expressed by a spatial volution opcrator introduced by Ashida et a1.[20]. To obtain the 

superconducting pair potential, thc dcnsity of states and so on, we use the Grcen's fUllc-

tion nlethod. In accordance with tIl quasi- classical approximation in the Bogoliubov- de 

Gennes equation, the samc approximation to the Green's function leads to the quasi-

classical Green's function used in this thesis. We construct the quasi- classical Green's 

function for the finite triple layer system, following Ashida et a1.( AAHN )[20]. The quasi -

classical Green s function can be obtained in a form including the spatial evolution operator 

and the reflection coefficients at the interfaces. Starting from the Green's function of the 

finite width triple layer, we obtained the Green's function in the semi- infinite triple layer 

system of present interest. 

2.1 The Bogoliubov-de Gennes equation and the Andreev equa­
tion 

2.1.1 The Bogoliubov-de Gennes equation 

In the BCS theory, it is shown that a weak attractive interaction betwcen electrons, such 

as that caused in second order of the electron-phonon interaction, causes an instability of 

the ordinary Fermi-sea ground state of the electron gas. The BCS state is characterized by 
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an energy gap in the quasi-particle excitations of the systelu. The superconducting state 

is characterized by the energy gap ( the pair potential)" Since we treat the electrons near 

the Fermi surface, we choose the Fernli energy as the origin of energy. Using a creation 

and annihilation operator of FerrnioI1 (electron ) 'ljJl( r), 'ljJex( r) , the weak coupling BCS 

Hamiltonian is written as 

1-{ = L J dr'IjJ~(r)e(V)'ljJex(r) 
ex 

+ ~ :L J drdr' v( Ir - r'l) ,p ~ (r ),p1 (r'),piJ( r') ,p", ( r), 
ex,{3 

1 2 
e(V) = - 2m V - /1, 

(2) 

where cx, f3 are spin indices and /1 is the cheluical potential. One applies the Gor'kov 

approximation, i.e., mean field approximation, to Eq.(2) to obtain 

1-{Gor'kov = L J dr'IjJ~(r)e(V)'ljJex(r) 
ex 

+~:L J drdr'v(lr - r'I)[(,p~(r),p1(r')),piJ(r'),p",(r) 
ex,{3 

+ 'IjJ l ( r) 'IjJ 1 ( r') ( 'IjJ {3 ( r') 'IjJ ex ( r)) - ('IjJ l ( r) 'IjJ 1 ( r') ) ( 'IjJ {3 ( r') 'IjJ ex ( r) ) ] , (3) 

The last term ( ) ( ) is a correction for the overcounting of the interaction. We define 

and obtain 

~ex{3(r,r') = v(l r - r'I)( 'IjJ{3( r') 'ljJex( r)) , 

~~(3(r,r') = v(l r - r'I)('ljJ1(r') 'IjJ~( r)) 

1-{Gor'kov = L J dr'IjJl (r)e(V)'ljJex (r) 
ex 

+~:L J drdr'[6~iJ(r, r'),p", (r),piJ(r') + ,p~(r),p1(r')6"'iJ(r, r') 
ex,{3 

(4) 

(5) 

-v(r - r')('ljJl(r)'ljJ1(r')) ('IjJ{3 (r')'ljJex (r))). (6) 
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The Heisenberg operators 'l/Jcx( r, t) and 'l/J;( r, t) obey equations of 111otion : 

iOt'l/JQ(r, t) = [ 'l/JQ (r, t), 1-{Gor'kolJ ] 

= J dr'{~(\7)8(r- r') 'l/JQ( r',t) + 2:= ilQ,G( r,r') 'l/Jh( r', t)} , (7) 
tl 

iot'l/Jl( r , t) = [ 1jJl( r, t), 1-{Gor'kolJ ] 

= J dr'{-~(\7)8(r - r') 'l/Jl (r',t) + Lil~,G (r,r') 'l/J,G( r',t)}. (8) 
,G 

Thus we can write in a 111atrix form as 

iotW(r, t) = J dr'£(r, r')W(]l', t), (9) 

where 

£( ') = (~(\7)8(r - r') il(r , r') ) 
r , r ilt(r , r') -~(\7)8(r - r') , (10) 

W(r,t) = ( ~t1~::l l ' 
'l/JI( r , t) 

(11 ) 

A( ') = (ilTT(r,r') ilTl(r,r')) At( ') _ (iltT(r, r') ilL(r,r')) 
Ll r, r A ( ') A ( ') , Ll r, r - t t . 

Ll!l r , r Ll 11 r, r ill T (r, r') il 11 (r, r') 
( 12) 

In order to solve Eq.(9), we have only to consider the Bogoliubov de-Gennes equation 

J dr' £(r , r')W(r') = EW(r) . (13) 

where we have regarded W(r, t) in Eq.(9) as c-nulllber W(r, t) and have substituted W(r, t) = 

W(r) exp (-iEt) into Eq.(9) . 

When one studies layered proximity contact systems where the interface and the bound-

aries have translat ion al symmetry in the x, y plane, the IllomentUl11 component parallel to 

the boundary is a conserved quantity. For a given parallel momentulll p, Eq.(13) is reduced 
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to 

J dz' ([~" - f-a;]8(z - z') 
~~P' z, z') 

~(p, z, z') ) ,T,( ') E,T,() 
_[~" _ 2~ 8;]8(z - z') 'J:' Z = 'J:' Z , 

where ~II = p2/2771, - fJ, 

w(z) = W(p, z) = J dxe-ipoXw(r), 

~(p, z, z') = J d(x - x')e-ipo(x-x
/
) ~(r, r') 

and 

~(Pl Z, z') = L ~(Pfr, z )eiPz(z-z ') + L ~(PF' z)eipz(z-z') 
Pz>O Pz<O 

(14 ) 

(15 ) 

(16) 

( 17) 

with 6.(P~, z) the position dependent pair function at the Fermi momentum p~. In Eq.(17), 

we have defined two Fermi momenta Pfr and PF associated with the parallel mon1entulTI 

p, as depicted in Fig.2. 

(x-y) 

____ ~~ ______ ~ ____ ~o~ ____ ~> Z 

o PFz 

Figure 2: Fermi momenta PF( a = ±) associated with the momentulTI P parallel to the 
interface and to the walls. 
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2.1.2 The Andreev equation 

We first derive the Andreev equation from the Bogoliubov- de Gennes equation Eq.(14) us­

ing the quasi - classical (WKBJ) a.pproxirnation[5]. Also, we discuss the boundary condition 

for the Andrecv anlplitude, following Zaltsev[23], Shelankov[22] and Ashida et aJ[20]. 

When the characteristic size of the systen1 is n1uch longer than the Fenni wave length 

l/PF, the quasi- c1assica.l approxilnation introduced by Andreev [5] is useful. Following 

Andreev, we write the Nambu alTIpliiude as 

(18) 

where PFz = PF cos e is the z component of the Fermi mOlnentum pt. The slowly varying 

amplitude <I> o(z) obeys the Andreev equaiion[5] 

6(PF' z)) <I> = E <I> . a 01 1 0/' azvFz z 
(19) 

w here v Fz = v F cos () = P F cos () / m. The slowly varying ampli tudes are expected to fornl a 

complete set near the given Fermi momentum in a sense that 

(20) 

Since the Andreev equation is a first order differential equation, its formal solution can 

be written as 

where Vo(z, z', E) is a spatial evolution operator which obeys 

12 

(21) 

(22) 

(23) 



and 

(24) 

In the above, PI, P3 a.re the Pauli matrices in the particle-hole space. The properties of the 

evolution operator is discussed in detail in the appendix. 

6(Z) 

L c R 

o L 

Figure 3: The finite triple layer system. 

To discuss the semi- infinite triple layer system, we start frorn the finite width triple layer 

system as is depicted in Fig.3 . Let us discuss the boundary condition at the L - C, C - R 

interfaces and the layer ends at z = -LL' z = L + LR . We use superscripts or subscripts 

L, C and R to denote the quantity in the L, C and R layer, respectively. Since the parallel 

momentum p is conserved, 

L'() c ·() R'O ppsln -L = PF s1n C = PF s1n R· (25) 

The boundary conditions for <I> 0' 's at the interfaces[20][22][23] can be obtained by the fol-

lowing arguments. 
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For the L-C interface boundary located at z = 0, the proximity interface is assulned to 

be confined within a narrow range -8 < z < 8, where 8 is of order of l/p} .. It follows that 

the Na.mbu alnplitude \}J should be the aSYlnptotic solution of the interface probleln. Since 

the interface process is a high-energy ( I"J BF ) and short range ( I"J l/PF ) process, it is 

governed by the rapidly varying part eiPFZ of the Nalnbu amplitudes and is consequently 

common to both the superfluid and the normal phases. The interface process is, therefore, 

characterized by the two independent asyrnptotic solutions WI and \lI 2 for the electrons at 

the Fenni level : 

. L . L 
e 1 P F z Z + 1'0 e - 1 P F z Z 

doeip~zz 
for z < -8 
for z > 8, 

for z < -8 
for z > 8, 

(26) 

(27) 

where ro and do are the reflection a.nd the transmission anlplitude at the L-C interface, 

respectively, and do = dov~z /v~z , 7""0 = -r;do/ d; which are obtained by use of the con­

stantness of the Wronskian. Noting that the Nambu amplitudes wL and \lie are given by 

appropriate linear combinations of WI and W2, 

we obtain the boundary conditions. For the C- R interface boundary located at z = L, the 

boundary condition can be obtained in the same way. Thus, the boundary conditions for 

the Andreev amplitudes at z = 0 and z = L are written as 

(28) 

(29) 

(30) 
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<I>C(L) = 7'L <I>R(L) + ~<I>R(L) 
- d + d* - , 

L L 
(31) 

where 7" and d are the reflection and the translTlission anlplitude for the electronic state at 

the Fermi level and they can be expressed in tern1S of the reflection coefficients Ro, RL of 

the interfa.ce as 

(32) 

do = (33) 

(34) 

(35) 

where Or, Od are the phase of I, d, respectively. As we shall eventually show, the final results 

depend only on the reflection coefficients Ro = 1'012, RL = I'LI2 and not on the phases Or 

The boundary conditions at the ends of the layers are written as 

<P~( -LL)C-ip~zLL + <P~( _LL)CipIJ,zLL+iTIL = 0, 

<P~(L + LR)eiP%z(L+LR)+iTJR + <P:!(L + LR)e-ipljz(L+LR) = 0, 

(36) 

(37) 

where TIL, TJR are possible phase shift at the boundaries. When exp i77 = 1, one has a fixed 

end condition and when exp iTJ = -lone has a free end condition. As we shall see, the 

physical quantities does not depend on these phases. One can study an inhomogeneous 

superconducting system by use of the Bogoliubov de Gennes equation Eq.(14) or by use of 

the Andreev equation Eq.(19) derived here. In this thesis, to discuss the proximity system, 

we have mainly treat it by use of the quasi- classical Green's function discussed in later 

sections. 
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2.2 The quasi-classical Green's function for a finite triple layer 
system 

In this section we closely follow the prescription proposed by Ashida et al.[20]. 

We consider a geOlnetry as shown in Fig. 3 . The widths of the layers LL, Land LR 

a.re assulned to be still ITIuch longer than the Fermi wavelength l/PF, but not necessarily 

longer tha.n the coherence length ~. The interface and boundaries are assumed to have 

translational synllnetry in the x, y plane. The mOlnentum component parallel to be the 

boundary is, therefore, a conserved quantity. From now on, we use superscripts or subscripts 

L, C and R to denote the quantity in the L, C and R layer, respectively. 

The Green's function method [3][4] is a useful method to study the superconducting 

proximity contact system. The Gor'kov Green's function is written in terms of the Nambu 

anlpli tude 'l! (r) as 

G( , ) = ~ 'l!, (r) 'l! 1 (r') 
r ,r,c L.-J E· , c - -1, 

(38) 

Since the momentUl11 component p parallel to the interface is a conserved quantity in the 

present system, we have only to consider the spatial variation in z- direction. Hence 

G( , ) - _1_ J J d2 G( ') ip·(x-x') r,r ,c - (27r)2 P p , z,z ,c e . (39) 

Then, the Green's function, which depends on the z direction, is written as 

(40) 

which satisfies the Gor'kov equation 

J dZ" [c _ ([~II - f-8;]5( z - Zll) 
.6~p,Z,Z") 

.6(p, Z, Zll) )] G( II , ) _ r( ') ( ) 
_[~I I _ 2~a;]8(z _ Zll) Z ,Z ,c - u z - z . 41 

Substituting Eq.(18) into Eq.(40), one finds that Gor'kov function is decomposed as 

G( ') - G ( , ) ipFz(Z-Z') p, z, z ,c - ++ z, z ,c e 
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( 42) 

where 

( 43) 

which satisfies the equation 

6(PP'Z))] G ( , ) (' r( ') . a cx(3 z, Z ,c = ucx(3u Z - Z . 
azvFz z 

(44) 

It is useful for later use to introduce the notion of "directional space" which IS a two 

dimensional space spanned by a = ± . Fr0111 Eq.( 44), one finds that the diagonal ( in the 

directional space) elements G++ and G __ have a jump at z = z', i.e., 

(45) 

but off-diagonal elements have no jump. Here P3 is a Pauli Inatrix in particle- hole space. 

Noting the jump given by Eq.( 45), we define the quasi- classical Green's function 9cx(3 by 

(46) 

where {3 is a Pauli matrix in the directional space. Then, the position diagonal element of 

the Gor'kov Green's function is written in terms of the quasi- classical Green's function as 

1 
G(p, z, z,c) = --P3 [ 9++(Z) 

2VFz 

] . (47) 
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The quasi - classical Green's function 9+_ and 9_+ do not contribute to observed quantities 

because they are accOIllpaIlied by a rapidly changing phase factor e±2ipF z Z that vanishes 

under the p SUI11nlation. In the conventional quasi-classical Green's function theory,[25] 

therefore, only 9++ and .rJ-- arc considered. To solve the boundary problenl, however, it 

is more convenient to treat aJl the components of 9a!3(z) on equal footing, because the 

boundary problelTI tben can be solved witbin linear algebra. 

The generalized set of the quasi -classical Green's functions obeys the Eilenberger 

equation[lS] ,[19] 

(4S) 

Since the Eilenberger equation is a first order differential equation, a formal solution can 

be expressed in terms of the evolution operator given by Eq.(23) in the previous section as 

follows: 

( 49) 

In treating the Green's function, we use the evolution operator with cOlnplex c. 

The boundary conditions for the quasi-classical Green's [unction at the interfaces have 

been given by Zaltsev[23] Millis et al.[24], Shelankov[22] and Ashida et al.[20]. Using the 

boundary condition Eq.(31) for the amplitude of the Andreev equation and the definition 

of the quasi- classical Green's function, one can obtain the boundary condition of 9 at the 

interface boundaries as follows: 

(50) 

IS 



where Mo and ML are matrices 

~~ ) 1 ' 

d* o 

'L ) d* L 1 . 

d* L 

(51 ) 

( 52) 

In the same way, using Eq.(37), the boundary conditions at the ends of the layers are 

g~+( -L£) ± i = g~_( -LL) ± i = -e=fi~Lg~=f( -L£), 

g~+(L + LR ) ± i = g~_(L + LR) ± i = -e=fi~Rg~=f(L + LR ), 

( 53) 

(54) 

where ~L = 2p}zLL + T/L, 1JR = 2p~z(L + LR) + T/R and T/L, T/R are possible phase shift at the 

boundaries. 

U sing the boundary condi tions Eqs. (50 )- ( 54) and the spatial evolu tion operator of the 9 

given by Eq.(49), one can obtain the quasi- classical Green's function at arbitrary position. 

The explicit expression of the quasi - classical Green's function can be written as follows: 

g~o(z) = U~(z, -LL) hL u~( -L£, z), (55) 

g:o(z) = U:;(z, L + LR) hR U:;(L + LR, z), (56) 

g~o(z) = U~ (z, L) h~ U~ (L, z), (57) 

where 

hL = (-i) etch + AL , 
etch - AL 

(58) 

A $0 i<pc 
A = (UL)-l C - oe U£ (59) L + 0<p $0 , e1 c - RoAc -

A VJ[i i<PR 
Ac = U~ H - £e (U~)-l, (60) 

e1<PR - VJ[iAR 
AR = U:(U!:)-l (61) 
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a.nd 

a.nd 

where 

(62) 

(63) 

(64) 

(65) 

h~ = (1 - RL)-l [U:;hR( U~~)-l RLU:hR( U::)-l (66) 

-[ii:(ei¢RU!3(h R + i)(U:)-l + e-i¢RU!:(hR - i)(U!3)-l)] (67) 

u~ = U~(o, -LL), 

uf = Uf(O, L), 

U: = U:;(L, L + L R ), 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

The phase factors ei¢L, ei¢c and ei¢R are rapidly varying functions of layer sizes LL, Land 

LR and also of the polar angles of the Fermi momentum, because PFL » 1. We are not 

interested, however, in the size accuracy of order l/PF nor in the accuracy of polar angle of 

order 1/ P FL . Apart from the correction of order 1/ PF L, therefore, the physical quanti ties 

of interest are obtained from the quasi- classical Green's function averaged over the phases 
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~L, ~c and cPR. Moreover, in actual systems the phases Oro(rL)' Odo(dL ) and 7lL(R) will be 

random variables reflecting the lnicroscopic irregularities at the interfaces and at the walls. 

It follows that the averages over the pha.ses cPL, cPc and cPR can be per[ornled independently 

in spite of the fact. that the pola.r angles of the Fenni rnonlenta in the L, C and R layers 

are connected by Eq.(25). As a result, the averaged Green's [unction do not depend on 

the pha.se of the interface reflection amplitudes but are determined only by the reflection 

coefficients Ro and RL . 

Then, to calculate the physical quantities from the quasi- classical Green's function the 

finite triple layers system, one has to average it over the phases. AAHN analytically 

averaged the Green's function of the finite double layers over the two phases. In this thesis, 

however, we do not consider the finjte triple layers systen1, but are interested jn serni-

infinite triple layers systelTIS, such as one point contact system and so on. In the next 

section to treat the selTIi- infinite triple systems, therefore, we take the li111it of LL and 

LR to infinity in the Green s function obtained in this section. As a result, the Green's 

functions taken the limit do not depend on the phases cPL and cPR . We have only to average 

those over the phase cPc. 

From now on, we confine ourselves to the singlet superconducting proxin1ity syste111 

although the quasi- classical Green's function obtained in this section can also be used 

to investigate the triplet superconducting system. For a singlet superconductor, the pair 

potential is written in the spin space as 

.6Tl ) o ' (74) 

therefore, we can decouple the spin space. For a singlet superconductor, we have only to 

treat a 2 x 2 matrix in the particle-hole space. Properties of the evolution operator in the 
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2 x 2 Inatrix space are discussed in the appendix. 

In equilibriull1 states without supercurrent, we can take the pair potential real. Then, it 

can be shown that the evolu tion operator satisfies 

(75) 

( See appendix. ) Using this relation Eq.(75), we find 

A ]'.... 

9++ = P39--P3· (76) 

Therefore one has only to treat 9++. 

2.3 The quasi- classical Green's function of a semi-infinite triple 
layer system 

In this section we derive the quasi-classical Green's function for the semi- infinite geometry 

as shown in Fig. 1 [15]. As we have noted at the end of the previous section, we consider a 

singlet superconducting proximity contact systen1 in this thesis. We assume that the pair 

potential is real. The case when the pair potential is not real will be discussed in Sec.5. 

To obtain the quasi- classical Green's function of the semi- infinite triple layer system, we 

take the limit of LL, LR to infinity in the Green's function of the finite triple layer systelTI 

obtained in the previous section[15]. In this case, the pair potentia.! 6( z) will tend to the 

bulk value 6bulk at sufficiently large Izl. Hence, the evolution operator U can be divided 

into a growing part and a damping part: 

U ( ') - A ( ') -il'>(z-z') + A ( ') il'>(z-z') +Z,z,c - +z,z e _ z,z e , (77) 

(78) 

where K, = D/VFz == J c 2 
- 6;ulk/VFz and the square root is defined to have a positive 

imaginary part in the complex c plane. The operator A± has a projection operator like 
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properties as is shown ill detail in the appendix. 

When LR ---t (X) , since Im K, > 0, the evolution operator V+(L, L + Ln) beC0l11CS 

a divergent tenn. 

Retaining the most divcrgent tern1S when LL ---t 00 and LR ---t (X) , we can find the 

quasi - classical Green's function of the sen1i- infinite triple layer system. 

L side ( z < 0 ) 

AL () .2Ar(z) - trAr(z) 
g z = z 

++ trAr(z)' 

Ar(z) = [J.;-(z, O)(Ac + ROP2TAC P2 + 2J RoR£trAR cos cPc) 

XPli\~(O, -(0)P3Ti\~(z, -(0)P3Pl, 

Ac = U~(O, L)(A~ + RLP2TA~P2)P3TU~(0, L)P3, 

AR = J~(L)I¢~(L)p3' 

R side ( z > L ) 

(79) 

(SO) 

(Sl ) 

(S2) 

AR ( ) _ .2BJ!(z) - trBR(z) (S3) 
g++ z - Z trBJf(z) , 

Bc;(z) = i\~( z, 00 )P3TA~(L, 00 )P3 

x (Be + RLP2 TBe P2 + 2J RoRLtrBr cos cPc )P2TU:(Z, L )P2, (S4) 

Be = P3T(;~(0,L)p3(Br + RoP21J3rp2)(;~(0,L), (S5) 

an d C si de ( 0 < z < L ) 

AC () .2Cc(z) - trCc(z) + 2i~trARtrBL sin cPc 
g++ z = Z trCc(z) + 2JRoRLtrARtrBr cos cPc ' (S7) 

23 



where 

(88) 

(89) 

(90) 

(91) 

and ~+ and ~_ are deco111posed elernents of the evolution operator defined in the appendix . 

In the course of taking the limits, the phase factors, eitPL and eitPR , disappear. Since the 

C layer has finite width, the phase factor eitPc remains in the Green's function . 

(92) 

As we have noted in the previous section, this phase fa.ctor is a rapidly varying function of 

layer size Land a.lso of the polar angles of the Fenni m0111entU111 . We are not interested, 

however, in the size accuracy of order 1/ PF and in the accuracy of polar angle of order 

l/PFL. Apart from the correction of order l/PFL, therefore, the physical quantities of 

interest are obtained frorn the quasi- classical Green's function averaged over the phase 

~c. As a result, the averaged Green's function do not depend on the phase of the interface 

reflection amplitudes but are determined only by the reflection coefficients Ro and RL . The 

averaged Green's function is defined by 

(93) 
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For exalnple, the averaged Green's functioll of the C layer is written as 

(

A ()) _ • 2Cc(z) - trCc (z ) 
g++ z - z ---;=.============ 

v(trCc (z ))2 - 4RoRL(trARtrBf)2 

We study some proxilnity contact systenls by use of the averaged Green's function. 

2.4 The Green's function and physical quantities 

\Ve discuss how the physical quantities can be calculated frol11 the Green's function. We 

start from the Bogoliubov- de Gennes equation Eq.(13) , 

(95) 

Using positive energy solution of this equation, 

(96) 

we define a n1atrix VI , which diagonalize the Hamiltonian Eq.(6), 

(97) 

This matrix satisfies 

L' VI(r)V/(r') = 8(r - r'), 
I 

where the symbol 2:/ indicate the sum over positive energy states . Also, n1atrix E(r, r') 

can be reduced to 

E(r, r') = L' U/(r) (~/ _~/) U/(r'). 
I 

(98) 

Using Eq.(lO), we reduce Eq.(6) to 

1-{Gor 'k o1J = J dr J dr'~t(r)E(r, r')~(r') + const .. (99) 
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The Hamiltonian can be rewritten by Eq.(98), i.e., 

1{Gor'kov = 2:' J dr(U/(r)tl-(r))t (~I _~I) J dr'Ui(r')~(r') + const. 
I 

o )" -EI II, ( 100) 

" ('I) II = Il ' (101 ) 

where II and ,t are an annihilation and a creation operators of the Bogolon ( a quasi­

particle ), respectively. In tenDS of the operator ;0, the electron operator ~ is written 

as 

IDore explici tly 

'feAr) = L'(UI,a(r),1 + V/,a(r)*,1), 
I 

'fl(r) = L'(V/,a(r),1 + U/,a(r)*,t). 
I 

One calls these equations the Bogoliubov transforn1ation. 

(i) The gap equation The pair potential 6 aj3 (r, r') was defined by 

The gap equation can be rewritten in terms of the new operators It and 11, 

1,1' 
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= v(l r - r'l) I:' {UI, /3 (r')VI,cArr('"'fI,?) 
I 

+vl,cAr'rUI/3(r) ('?'l) } 

= v(lr - r'l) I:' {UI, {J (r')VI, cy (r)*(1- f(EI)) + VI,cy(r')*UI,/3(r)J(Ed} 
I 

= Tv(lr - r'l) 2:: 2::' {UI,~(r)VI '/3( r')* + vl,cy.(r)*UI,/3(r')} , 
Wn I 1,Wn - El 1,Wn + El 

(106) 

where T is the temperature, and we have used 

(107) 

Wn = 7fT(2n + 1) is the Matsubara frequency ( n = 0, ±1, ±2, ... ), and eiwn8 is a convergent 

factor omitted above. Rewriting the sum of the second term of Eq.(106) to the sum over 

the negative energy state, one can obtain 

(108) 

where I: means the sum over the all states. 
I 

Comparing Eq.(108) with the definition of the Gor'kov Green's function, 

G( , ) = '" WI(r)W;(r') 
r , r, c ~ E' 

I c - / 
(109) 

one can obtain the gap equation in terms of the Gor'kov Green's function G, i.e., 

~(r, r') = Tv(lr - r'l) I: G(r, r', iWn )h,2' (110) 
Wn 

where Gh,2 is an off- diagonal (1,2) elen1ent of G in the particle-hole space. 

When the system has the translational symmetry in the x - y plane, using Eqs.(16)(17), 

Eq.(39) and Eq.( 4 7), one can obtain the gap equation in tern1S of the quasi- classical Green's 
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function 

where 00' a.nd cPa a.re the polar angles of the Penni nlonlentum PF, vpF .P } is the pairing 

interaction, and N(O) is the density of states at the Fernli surface. 

(ii) The electric current We derive an expression of the electric current in ternlS of the 

Green's function. As is well known , the electric current J (r) is defined as 

(112) 

where A is a vector potential, 'ljJa and 'IjJ~ are operators of an electron with spin ex and the 

symbol ( ) denotes the thennal average. Fronl now on, we ignore the last ternl, which is 

proportional to a vector potential A, and discuss on 

(113) 

The ternl ('IjJ t (r') 'IjJ ( r)) is rewritten using the quasi- particle operators as follows: 

a a 1,1' 

= T L L L' [UI,a.(r')*UI,a(r) + VI,a.(r')VI,a(r)*] 
Wn a I ZWn - EI ZWn + E, 

= TLtrs G(r,r',iwn)h,l, (114 ) 
Wn 

where we have used Eq.(107), Gh,l is a diagonal (1,1) elenlent of G in the particle- hole 

space, and trs Gil,} denotes a trace of Gh,l in the spin- space. Then, one finally obtains 

the electric current in terms of the Gor'kov Green's function as 

(115) 
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In ternlS of the quasi- classical Green's function one can write the z-component of the 

electric current as 

( 116) 

2.5 The self-consistent pair potential 

In the superconducting proxinlity cOlltact system, the pair potential near the interface 

varies on the scale of the superconducting coherence length~. To study the proxin1ity 

effect, one has to take into account the self- consistency for the pair potential. 

To obtain the self- consistent pair potential, we have to solve the gap equation . Fron1 

Eq.(111), the gap equation can be written as 

L'>.(PF' z) = T N(O) L L l' d¢o t sin OOdOO(21 + 1 )g/P/(PF . PF )9aa(iwn' z) 11 ,2, (117) 
4 Wn a=± a a 

where N (0) is the densi ty of states at the Fermi surface, and gl denotes the strength of the 

pairing interaction for the [- th partial wave. We have defined g[ such that is posibve when 

the interaction is attractive. Here, I determines the syITIInetry type of the order parameter 

of the superconductor, i.e., l = 0 for s-wave, [ = 2 for d-wave superconductivity. PI are 

Legendre polynomials and are expanded in terms of spherical har1110nic functions l~m 1 i.e., 

P/(PF . PF) = 214: 1 ~/ Ylm(/J, ¢)lJ:(O°, r), 
m=-/ 

(118) 

where e and rp are the polar angles of the Ferrni mornentU111. We confine ourselves to treat 

the singlet superconductors. 

For the Matsubara frequency c = iWn1 if only 6(p}) = 6(PF), the evolution operator 

satisfies 

U+(Wn) = p2U-(Wn)*P2 

U + (wn ) = PI U + ( - W n )* PI, 

29 

and (119) 

(120) 



even when the pair potential is not real FrOI11 these relations, we can easily find 

and (121 ) 

( 122) 

To eliminate the coupling constant g, fronl the gap equation in favor of the transition 

telTIpera.ture Te , we introu lice Te by letting ~ ~ 0 in the gap equation: 

Then , we obtain 

n=O 

1 

1 

n + 1/2 
1 

T we 121fT 1 

Wn c = 7rTe(2n + 1) 

log-+ L 
Te n =O n+l/2 

(123) 

(124) 

We obtain the self- consistent paIr potential by solving this equation iteratively. The 

right hand side of this equation depends on the cutoff energy We but converges for large 

We. So far the We used in the conventional quasi- classical theory, was at lTIOSt We rv 10Te . 

In this thesis, we chose it 30Te except for section 5 in which we used 10Te . In contrast to 

the conventional quasi- classical method in which one should solve the Eilenberger equation 

Eq.( 48) numerically under the boundary condition and nornlalization condition, we have 

only to solve the equation for the evolution operator in the present fornlulation since this 
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formulation already satisfies the boundary condition. Numerical work have been consid-

erably reduced in the present fornlula,tion. The iteration procedure is repeated until the 

difference of ~( z )/ ~bulk at subsequent iteraUons becornes smaller than 10-5 at every point. 

Appendix A. Properties of the evolution operator 

In this appendix, we consider the properties of the evolution operator, which is a 2 x 2 

matrix in the particle- hole space. Here, we aSSU111e the pair potential to be real. The case 

of complex pair potential will be discussed in the appendix of Sec.5. 

The evolution operator obeys an equation 

(a = ±1) 

L'>~:) ) 

and the boundary condition, 

From the structure of the equations, it can be proved that 

det UO'(z, z') = 1. 

Since P1Apl = -A, therefore 

we have only to consider U+(z, z'). The matrix A also has an important property 

- _ T 
A = P2 AP2 = -A, 

where T A is the transpose of A and A is just the cofactor matrix of A. 
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Let us consider a differential equation 

(131 ) 

It has two independent sol u tions 

( 132) 

with the nonvanishing Wronskian 

The evolution operator U + (z , z') can be written in a linear con1bination of the above 

linearly independent solutions as 

It follows that 

and also that 

U+(z, z') = Q+(z, z') + Q_(z, z'), 

Q+( z, z') = ~<P+( z ) '¢-(Z')P2' 

Q_( z,z') = ~ <p_( z )T<p+( Z')P2 

det Q±(z, z') = o. 

(134) 

(135) 

( 136) 

( 137) 

(138) 

(139) 

(140) 

From the above results together with Eq.(127), it can be readily shown that Q + (z, z) and 

Q_(z, z) are the projection operators that project out 1;+ and 1;_, respectively. 
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Moreover, we can show that 

from which the inverse operator of U+( z , z') is given by 

U+. 1 (z, z') = U+( z', z ) = Q+( z', z) + Q_(z', z) 

= Q_(z,z')+Q+( z , z') 

This is a nat ural res ult when we recall the fact that det U + (z, z') = l. 

(141 ) 

( 142) 

(143) 

(144 ) 

Now we consider a system in which the superconductor has semi-infinite width. The pair 

potential ~(z) tends to the bulk value ~bulk at z -t 00. In that case, we can choose the 

independent solutions so that 

(145 ) 

( U±) ( c =t= n ) ~ --+ const. x A . 
V± -Ubulk 

(146) 

In the above, we have defined the square root n = Jc 2 - ~~ulk such that has positive 

imaginary part in the complex c-plane. Thus, ¢+ and ¢_ are growing and damping solutions 

of Eq. (131), respectively. In this case, 

U+(z, z') = A+(z, z' )e-iK(z-z') + A_(z, z')eiK(z- z'), 

-1 ~ T~ 
A+(z,z' ) = W¢+(z) ¢-(Z' )P2, 

1 - T-
A_(z, z') = W¢-(z) ¢+(Z')P2 ' 
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All the properties of Q± shown above are preserved by A±. 

Froin Eqs. (125) and (145), it can be shown that 

a (U±) = _i (c ± n 
z v± VFz -~ ( z ) 

~(z) ) (~±). 
-c ± n v± 

(150) 

Since in the theory of the Green's function in the sen1i-infinite geometry only the ratio 

v±/u± is important, we define 

which satisfies 

and at Z ---+ CXJ 

V ( ) 
__ . v± ( z ) 

±z - z~ ()' 11± Z 
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3 Andreev reflection in the normal-normal-super­
conducting triple layer system 

The current- voltage I - V characteristics of a nornlal rnetal- superconducting contact show 

a non- Ohmic behavior. The non- Ohmic properties of the N - S contact are considered to 

be due to the Andreev reflection in which an incident electron ( hole) from the N region 

is retroreflected into a hole ( electron ). ( See Fig.4. ) Most of non-Ohrnic properties have 

\/ 
Figure 4: The Andreev reflection ( right- hand side) and the normal reflection ( left- hand 
side). The arrows give the directions of the group velocity of incolning and outgoing 
particle. 

been analyzed using the theory by Blonder, Tinkham and Klapwijk ( BTK )[10]. We briefly 

review the BTK formula for a differential conductance of the nonnal- superconducting 

junction. 

On the basis of the semiconductor 1110del, the electrical current Inn through the nonnal 

metal- normal metal ( N - N ) junction applied the potential difference eV between the two 

metal is written as 

rm = AN(O)evF J dE{ f(E - eV) - RN f(E - eV) - (1 - Rt,?)f(E)} (154) 

in the left side, 

where f(E) IS the Fenni function, Rr; is the (normal) reflection coefficient and A IS a 
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constant to be detern1ined by the ge01uetry of the junction. Here, it is assulued that the 

distribution functions of all the incOInillg particles are given by equilibriurn Ferrni function 

detern1ined by the reservoirs. In Sq.(154), three contributions to the electric current Illean 

the distribution of right going electrons, of reflected left going electrons, and of electrons 

injected into the left side fron1 the right side, respectively. The current is rewritten as 

Inn = AN(O)evF J dE(1 - R7,?){f(E - eV) - f(E)} . (155 ) 

An intrinsic difference between the nonual- superconducting junction and the N - N junc-

tion is the existence of the Andreev reflection in which an incident electron is reflected 

into a hole at the N - S interface. Since the reflected hole has positive charge, the elec-

tric current is enhanced by the existence of the Andreev reflection. Taking account of 

the Andreev reflection, Blonder et al. [10] obtained the electrical current Ins through the 

normal- su percond ucting junction 

Ins = A1V(0) evF J dE(l- RN(E) + RA(E))(f(E - eV) - J(E)) , (J 56) 

where RA(E) and RN(E) are the Andreev reflection and the normal reflection coefficient, 

respectively. It is noted that the existence of the Andreev reflection increases the electric 

current. This expression was also obtained by Furusaki[II]. 

From the above equation, the differential conductance can be written as 

dI 
dV 

( 157) 

where R(O) is the nonnal state resistance. For instance, in a cornpletely transmissive con-

tact, since RA = 1 and RN = 0 below the gap voltage (6. bu1k /e), the differentia.l conductance 

becomes twice the normal conductance. 
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We first discuss the Andreev rcflection in the double infinite proxinlity contact systenl 

in Sec.3.1. And, taking a.ccount of a geoDlctrica.l resonance effect in point contact devicc, 

we discuss the Andreev reflection coefficient and the differential conductance in Sec.3 .2. 

3.1 Andreev reflection in the normal-superconducting double 
infinite system 

6(Z) 

N 5 

o Z 

Figure 5: The normal- superconducting infinite double layer system. 

First we discuss the Andreev reflection in the normal- superconducting ( N - 5 ) double 

infinite layer system[14][15]. The left ( right) side region is assumed to be a normal-

metal ( a superconductor) as depicted in Fig.5. We consider a scattering problelTI for an 

incident electron with an incident energy E from the N region toward the N - 5 interface. 

Solving the Andreev equation(19) with appropriate boundary conditions, we can discuss 

the Andreev scattering. In the N region ( z < 0 ), since the pair potential will tend to zero 

at sufficiently large Izl even if the pairing interaction is non-zero, the asymptotic behavior 

of the N region wave function can easily be solved. ( If the pairing interaction 9 is zero, 

the pair potential 6 is also zero, since 6 = gF , where F is pair amplitude. If the pair 

potential is zero, the Andreev equation can easi ly be solved. ) The asymptotic behavior of 
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the wave function <P;: with the energy E are written as 

<P~ (z) 

<P~ (z) 
z-+ oo 
~ (

1'N) -i",Nz o e , ( 158) 

where ",N = E / v~z' 1'A a.nd 1'N are the Andrccv and the normal reflection arnplitude, 

respectively. In the S- side ( z > 0 ) , the pair potential will tend to be the bulk value at 

sufficiently large distance. The asymptotic solutions of the wave function are written as 

z-+ oo 
~ 

Z---+OO 
~ ( 159) 

where ",5 = n/v~z == J E2 - 6S~ulk/V~z , PI is the Pauli matrix and we have defined the 

square root to have positive imaginary part. 

Since the Andreev equation is a first order differential equation, its formal solution can 

be written as 

( 160) 

where U is the spatial evolution operator which we have defined in the previous chapter. 

Since the pair potential have been assumed to be real in this section, the evolution operator 

satisfies 

(161 ) 

U sing the asymptotic solutions Eqs. (158)( 159), the interfacial boundary condition Eqs. (31) 

and the evolution operator, we can find the formal solution of the wave functions. One has 

only to solve a following equation: 

( <P~(-oo)) _ A (<P~(O)) 
U(O, -00) <P~ (-00) - Mo <P~ (0) 
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_ ~ (<l?~(oo)) - MoU(O, 00) <l?~(oo) , (162) 

where 

(163) 

where we have used Eq.(161). Solving this equation, it can be found that ea,ch amplitude 

coefficients of the wave function are generally 

( 164) 

(165) 

( 166) 

(167) 

where 

u:(O,-oo) = (} ~:), (168) 

(;) = u~(O, 00) (;:) . ( 169) 

Using the time dependent Andreev equation, 

~(Z) ) . a <I>o(Z), 
aZVFz z 

(170) 

the flux of the quasi- particles are given by 

I: avFzlm (<I>~P3az<I>O)' (171 ) 
o=± 

Using this expression for the flux and noting that lal 2 
- 1,812 is a conserved quantity in the 

Andreev equation, we obtain the reflection and transmission coefficients 
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= 1 (a,* + (38*)(a8 + (3,) - Ro(a, + (38)(a8* + (3,*) 12 RA 
(a,* + (38*)2 - Ro( a8* + (3,*)2 

Andreev reflection coefficient, 

Nonnal reflection coefficient, 

transmission coefficient for a quasi- electron, 

(l a l2 - 1(312)la8* + (3,*1 2 

TH = Ro(1 - Ro) l(a8* + (3,*)2 _ Ro(a8* + (3,*)212 

transmission coefficient for a quasi- hole, 

These coefficients satisfy the flux conservation law, i.e., 

(1 72) 

( 173) 

(174 ) 

( 175) 

(176) 

Using this expression, the Andreev reflection coefficients can be calculated numerically. 

Typical results are shown in Figs.6 and 7. In Fig.6, we show the results when the N region 

has no pairing interaction. The self- consistent pair potential is plotted in Fig.6(a). The 

energy dependence of the Andreev reflection shows no qualitative difference from the BTK 

results, except for a small shift of the peak energy. The origin of the peak shift has been 

discussed in detail by Nagato et al.[15]. In Fig.7, the results when the N region has finite 

pairing interaction ( attractive and repulsive). Due to the proximity effect, the nor111al 

region has a pair potential when the N region has a pairing interaction. The pair potential 
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of the nonnal region increases as the interfacial reflection Ro decreases and as the critical 

temperature of the N increases. When the pairing interaction of the N is repulsive, the 

N metal has the pair potential of opposite sign to that of the 5. In the case Ito = 0, 

the Andreev reflection coefficient RA at the lower energies than ~bulk, is unity. The RA 

decreases as Ro increases at lower energies. When the pair interaction is repulsive, the 

Andreev reflection at low energy is enhanced. When the pair interaction is attractive, 

it is suppressed inversely. In particular, at the zero energy limit, the Andreev reflection 

coefficient RA can be estimated to be 

1

1 - Ro - (1 + Ro) tanh 28 1

2 

1 + Ro - (1 - Ro) tanh 28 ' 

1 r- oo 

IT Jo dz~N(z). 
vFz 0 

(177) 

(178) 

The Andreev reflection RA at lower energies is given in terms of Ro and of the integral of 

the pair potential over the entire region of the N side. By use of Eq.(157), the differential 

conductances corresponding to the cases in Figs.6 and 7 are shown in Fig.8. We have 

plotted the normalized differential conductance K such that tends to unity at the high 

energy limit, i.e., 

dI/dV 
K(eV) == dI/dVlev-+oo 

1 - RN(eV) + RA(eV) 
1- Ro 

for the N - 5 case. (179) 

Before concluding this subsection, we make some comlnents on the wave packet picture of 

the Andreev reflection proposed in Refs. [11], [13] and [7] to explain the stair-like structure 

observed in the differential conductance. According to this picture, an electron wave packet 

with energy E changes the sign of its group velocity at the position that satisfies E = ~(z)) 

thus is converted to a hole wave packet. It follows that, if some structure in the energy 

dependence of the Andreev reflection is found, the structure can be assigned to singular 
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points in 6.( z), say 6. (0). The peak around 6. (0) may be interpreted in this way. They 

suggested that the conductance enhancelnent at lower energies is due to the wave packet 

reflection by the induced pair potential in the N region. Such a picture, however, cannot 

be applied to the N-S contact systeIll, in particular at low temperatures. In order to forill a 

wave packet of the Bogoliubov quasi -particle which has a group velocity with definite sign, 

the range of the momenta involved should be sufficiently slnall, i.e., less than TC/VF. As a 

result, the width of the wave packet becoilles longer than the coherence length ~ = VF /,rrTc . 

On the other hand, the depression range of the pair potential 6.( z) is of order ~ as can be 

seen from Fig. 7. It is difficult, therefore, to say at which point the wave packet is reflected. 

In fact, the present analysis shows that the induced pair potential in the N region does not 

lead to a significant enhancement of the Andreev reflection at lower energies . 
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3.2 Normal-normal-superconducting proximity contact system 

The experiments to observe the Andreev reflection are usually performed using a point 

contact system. A Bccdlc-like elcctrodc is attached to the norll1al layer dcposited on an 

semi-infinite supcrconductor. A typical gcoHlCtry of the systern is shown in Fig.9. Son1e 

of the experin1cntal results of the differential conductance shows a stair-likc structure In 

the volta.ge depcndencc, which can not be explained by the BTK fran1ework discussed In 

the last section. There are SOIne attempts to explain the stair-like structure by taking into 

account the possible finite pair potential in the N -side. But we have shown in the last 

section that the effects by the fini te pair potential is not so significant as to change the 

structure in the voltage dependence. 

We instead are interested in the effect by the finite reflection of electrons at the point 

contact. Since the voltage drop is expected to occur at the point contact, electrons and 

holes which traverse the normal layer will be reflected not only by the N -S interface but 

also by the point contact. The multiple reflection within the normal layer is expected to 

lead to some geoll1etrical resonance effects in the differential conductance. 

We consider a 1110del norIl1al-norI11al-superconducting triple layer systen1 as shown in 

Fig.lO, to study the geometrical resonance effects. For simplicity, we aSSUlTIe the electrode 

to be a normal metal. The pairing interaction 9 in the norll1al metal is not necessarily 

9 = 0 but can be 9 # O. 

Let us consider the Andreev scattering in the normal- normal- superconducting triple 

layer ( N - N'- S ). Using the same methods as in the N - S case discussed in Sec.3.1, we can 

find the formal solution of the wave functions. We have only to solve a following equation, 
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Figure 10: The normal- normal- superconducting ( N - N'- S ) proxin1ity contact system. 
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instead of Eq.(162), 

( <I>~( -oo)) _ A (<I>~/(O)) 
U(O , -00) <I>~ (- 00) - Alo <I>~' (0) 

A (<I>NI(L)) 
= MoU(O,L) <I>~/(L) 

_ A A (<I>!(L)) 
- MoU(O, L )ML <I>~ (L) 

_ A A (<I>!(oo)) - AloU(O , L )MLU(L, 00) <I>~ (00) , ( 180) 

where <I>~ (-00) and <I>~ (00) are deft ned by Eqs.(158) and (159). From this equation, we 

can obtain the anlplituci es of the wave [unction. 

where 

7'A = {(l/" jJ + f-La)(f-L*jJ + I/a) - RO(T*jJ + a-a)(a-*jJ + Ta) 

-RL(I/*a + f-LjJ)(f-L*a + I/jJ) + RoRL(T*a + (J"jJ)((J"*a + TjJ) 

+2/ RoRL( r( ( - "1(*)( a2 - jJ2) cos cPc} / D, 

r N = eiBro { ~(ei<fc + R ; i4>C ) 

+~[a2(,2 _ 82) _ jJ2(,*2 _ 8*2) + 2ajJ(,8* -,*8)] 

(181 ) 

+~RL[a2(,*2 - 8*2) - jJ2(,2 - 82) + 2ajJ(,*8 -,8*)]} / D, (182) 

c+ = do d L ( 1/ a + f-L * jJ + / Ro R L e - i<f c ( (J" jJ + T * a ) ) / D , ( 183 ) 

c = -rLdodL(v'a + J1(3 + J ~ e-;¢C(TQ + 7'(3))/ D, (184) 

D = {(I/*jJ+f-La)2 -Ro(T*jJ+a-a? 

-RL(I/*a + f-LjJ)2 + RoRL(T*a + a-jJ)2 

(185) 

1/ = (8 - "1" 
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(186) 

(187) 

(188) 

The above equations cOlltain now the phase factor eirPc . This describes the multiple re-

flection processes in the finite layer. Apart from a correction of order 1/ ppL the Andreev 

scattering coefficients are obtained by averaging over ~c. All the coefficients of the Andrcev 

scattering are obtained in the fonns 

( 189) 

(190) 

(191 ) 

(192) 

(193) 

where we note that 100z 12 -1.BzI2 is a quasi - particle flux conserved in the Andreev equation. 

These coefficients satisfy the flux conservation law, i.e., 

(194) 

Typical results are shown in Figs.11. The differential conductance K normalized by its 

high energy limit 

(195 ) 
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is plotted. The Andreev reflection coefficients and the differential conductance in the energy 

range below 6.bu1k has double peak structure when both the interfaces have finite reflection. 

When either reflection coefficient ( Ro or RL ) vanishes, the system is equivalent to that of 

the infinite fl-S system discussed in the last section . 

The double peak structure can be interpreted as follows. In the N' region, a right going 

electron ( hole) is partially reflected into a hole ( electron) at the N'-S interface by the 

Andreev process . The reflected hole ( electron) is reflected into a hole ( electron) at the 

N -N' interface by the normal reflection process. The hole ( electron) is again converted 

into an electron ( hole) at the N'-S interface and so on. This sequence leads to the de 

Gennes- Saint-J ames bound state which will be discussed in detail in the next section. The 

bound state is broadened by the finiteness of the reflection at both the interfaces. The 

double structure found in the Andreev reflection can be interpreted as resonance states 

formed in a valley between the partially reflecting interfaces. 

Kieselmann[33] has calculated the density of states of the finite width norn1a.l layer on 
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the serni- infinite supercollductor by use of the conventional quasi- classical Green's fUllction 

method. lIe showed that tlle density of states also has double peak structure at the lower 

energies than 6 bu1k ' This double peak is also rclated to the broadened de Gennes- Saint 

James bound statc. Ashida et al.[20] have shown the existence of the silnilar bound sta.tes 

in the finite N - S double layer. van Son ct al.[13] have studied the case when Ro i- 0 and 

RL = 0 using a n10del pair potential. 

The peak structure shifts to the lowcr cnergy as the N' layer size L increases as is shown 

in Fig.12. When the layer size L is sufficiently large, there appear several double peaks. 

We consider a role by the pairing interaction in the norn1al region for the probability of 

Andreev reflection. Figure 13 is for the case that t~ = 0 and t~' i- O. Energy level of the 

virtual bound state in the N' is lifted by the pair potential in the N' . The two peaks of 

RA are shifted to higher energy as t~' increases. Figure 14 is for the case that t~ i- 0 and 

t~' = O. In a similar manner to the N - S infinite double layer system, the probability of 

the Andreev reflection in low energy region is slightly enhanced as t~ increases. But the 

effect by finite t~ or t~' is not so large as to change the structures. 

In the one point contact experiment, the differential conductance has a stair-like struc­

ture with respect to an incident energy[6][7] . In the N - N'- S system with finite reflection 

coefficients, we obtained the probability of Andreev reflection having two peak as a function 

of an incident energy. However, the enhancement of the differential conductivity at zero 

bias in the above experiments can not be explained . We can not reproduce the stair-like 

structure found in the point contact system. Nevertheless, we expect that the double peak 

structure will be observed in the coplanar geometry. We have also shown that the finite 

pairing interaction in the N ' layer does not explain the stair-like structure in contrast to 

the claim by Ref. [11], [13] and [7]. 
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Figure 12: The N ' layer size L dependence of (a) the Andrcev reflection, and of (b) the 
differential conductance. T = 0.2Tg, Ro = RL = 0.5 and t~ = t~' = 0.0l. 
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We did not consider a possible supercurrent flowing across the N '-S interface. When the 

normal metal has a pairing interaction, there exists a pair potential in the normal region 

a.s was shown above. It is possible that Josephson like supercurrent 111ay flow across the 

N-S interface in addition to the excess current carried by the Andreev reflected hole. The 

excess low voltage conductance observed in some experiments[16] may be interpreted as 

being due to the supercurrent. In order to discuss this possibility in a unified way, it is 

necessary to develop a non-equilibriulTI quasi-classical formulation. This is an interesting 

problen1 to be further studied. 
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reflection, and (c) the differential conductance. T = 0.2Tc, t~' = 0.0, I = 1.0 and Ro = 
RL = 0.5. 
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4 The local density of states of the superconducting­
normal-supercol1.ducting triple layer system 

Recently, in the supcrcond llcting- nonna.lll1ctal- supcrconducting ( 5- N - 5 ) proxilllity COll-

tact system the local density of states was studicd using a scanning tunneling ITlicroscopc 

by Inoue and TakayaIla.gi[36]. Their data indicates that the local density of states in the 

normal region has an cffccti ve cIlcrgy gap an d dcpcnds on a distance f1'On1 the S - N inter-

face. 

Tanaka et a1.[34] studied the density of states of the S- N - 5 semi- infinitc systeln with the 

self- consistently solved pair potential but with ideal interfaces by nurnerically solving the 

Bogoliubov- de Gennes equation. They showed that the density of states spatially varies 

when there exists the pairing interaction in the N region. Also, Hara et al. [35] investigated 

the density of states in the N - 5 finite double layer system in which the N - 5 interface 

has finite reflection but thc N region has no pairing interaction. They showed that the 

density of states has an energy gap- like structure, although their model does not have a 

pair potential because having no pairing interaction in the N region. We study the density 

of states of the 5-N-5 system having realistic boundaries based on the self- consistent pair 

potential. 

4.1 The de Gennes-Saint-James bound state 

We first consider the bound state, which was discussed by de Gennes and Saint-J ames [28], 

in a finite width normal layer connected to a bulk superconductor as depicted in Fig.15. It 

was assumed that the pair potential is spatially constant and the N - 5 interface is perfectly 

transmissive. They considered the states below the superconducting pair potential energy 

6. 
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Figure 15: A nonnal ll1etal connected to a bulk superconductor with a constant pair po­
tential. The width of the nonnal metal is L. The nonnal- superconducting interface is 
assumed to be perfectly transmissive. 

Within the Andreev approximation, general solutions \If of the Bogoliubov de Gennes 

equation Eq.(13) with the energy E can be easily solved as 

(197) 

(198) 

(199) 

(200) 

where a, b, c, d, e and f are constants and <I>~ and <I>~ have been chosen to tend to zero at 

sufficiently large z . On the other hand, the boundary conditions at the nonnal layer end 
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z = 0 and at the N - S iuterface z = L are written as 

<I> ~ (0) + e i Tlo <I> ~ (0) = 0, 

<I>~(L) = <I>~(L), 

(201 ) 

(202) 

where 770 is a pha.se shift at the N layer end. Fronl the general solutions and the boundary 

conditions, one can get a.n equation to determine the bound states. 

2L 
( n 71" + rp) cos 0 = - cos rp 

~o 
n : integer 

E 
cos rp = ~' (203) 

where ~o = VF /~. Consider first the case 0 = 0 (propagation along z). For fixed L, 

equation (203) has a finite number of solutions rpn(En(O)) below the energy gap ~. The 

number of solutions increases with L / ~o. There is always at least one solution below ~ ( 

even when L/~o « 1 ). 

The total density of states including all the polar angles 0 of the Fermi mornenta is 

defined as 

(204) 

where A is the area of the interfacial surface. Performing integration of kx ) ky ) one can 

obtain 

2L 1 ( cot rp ) 
n(w) = 2N(0)71"T L cos rp ( )2 1 + , 

~o n=nc n71" + rp n71" + rp 
w 

cos rp = ~' 

(205) 

where nc is a lower limit of n- sulnmation, i.e., nc is the s111allest integer which satisfies 

2L 
n71" + rp ~ ~ cos rp . 
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de Gennes and Saint-James obtained the density of states with discontinuities at E = En(O) 

( Fig.16 ). 
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Figure 16: The total density of states below the gap energy 6 in the normal region of the 
system shown in Fig. 15 . 

w wL 
When ~ ~ 1 and ~ Z 0 ~ 1, the density of states n( w) is 

Lw 
n(w) I"'V 2N(0)7r ~o ~. 

The density of states is linear with respect to the energy and to the nonnal layer size 

around the low energy. Similar results was obtained by Hara et al. [35] in the finite normal-

superconducting double layer solved self- consistently with a finite interfacial renection. 

When the layer size L is large, there occur several discontinuities in the density of states 

w wL h d . f . as is shown in Fig.16. When - ~ 1 and -- ~ I, t e enslty 0 states IS 
~ ~ ~ 0 

n(w) I"'V 2N(0) . 
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In this ca.se, the densi ty of states becomes the normal state density of states for both 

projections. 

It is found tha.t the density of states in the normal regIOn with a superconductor ha.s 

energy spectrum below the gap energy 6. because of the finiteness of the nonnal layer. 

4.2 The superconducting- normal- superconducting semi-infinite 
triple layer system 

In this section, using a self- consistently solved pair potential, we discuss the density of 

states in the S- N - S system with finite interfacial reflection as depicted in Fig.17. We 

assume R == flo = RL . We also take account of the pairing interaction in the N region . In 

terms of the diagonal elements of the Green's function for the real frequency c = w, the 

local density of states associated with the Fermi momentuD1 PF are defined by 

n(w, p~, z ) == L 8(w - EI)<I> o,[(Z)<I>~I(Z) 
I 

~ P3 [9cw(W + iO, z) - 9cw(w - iO, z)] . 
47rZVFz 

(206) 

From the expression for the quasi- classical Green's function Eqs .(79) - (88), the Green's 

function can be in general written in such a form as 

where X is a matrix . For the real frequency c = w, the evolution operator satisfies 

(207) 

From this equation, it can be found that the real frequency Green's function satisfies 

(208) 
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Then, g(w + iO) - g(w - iO) is written in a [orn1 

gcw (w + iO) - goo (w - iO) = i (~ ~a) - iPl (: 

_ . (a + a* b - c* ) 
- Z b* * c - -a - a 

b ) * 
PI -a 

(209) 

To obtain the density o[ sta.tcs, thcrcfore , wc havc only to trcat the Grcen 's fun ctioll [or 

the real frequency c = w + iO and we obtain 

n(w, Pp, z ) = _1-P3Imgaa(w + iO). 
27fVFz 

(210) 

Using the self- consistently solved pair potential, wc nUlTlerically calculated the density of 

states when the polar angle 0 = O. When the interfacial reflection coefficients are finite, 

the density of states has double peak as a function of the energy w as is shown in Fig.18. 

In SOlne systems this double peak structure of the density of states has been reported 

theoretically. Kieselmann[33] obtained the density of states in a N - S contact of a finite 

normal layer with a semi - infinite superconductor. Ashida et al.[20] and Hara et al.[35] 

obtained the density of states in the finite N - S contact system. 

The density of states at the lower energies than 6.bu lk are related to the de Gennes- Saint-

James bound states[28] discussed in the previous section. The de Gennes- Saint Jan1es 

bound states for the polar angle 0 = 0 becomes considerably broad when the interfacial 

reflection coefficients are finite as is shown in Fig .18. The width of the broadened bound 

states increases with the reflection coefficients R . 

When the pairing interaction of the normal region is zero, it can be easily shown that 

the density of states of the N region is spatially constant as follows : the spatial variation 

of the density of states is expressed by the evolution operator U, i .c., 
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The V± of the nonnal region without pair potenLial is written as 

(211 ) 

Then, in the nonna.l region the density of states does not spatially change. 

On the other hand, if the pa.iring interaction is finite in the nonnal region, the density 

of states spatially changes, buL its peak position does not change spatially. Figure 19 

shows the density of states at the cenLer of the N region when the N Inetal has a pairing 

interaction. When the pairing interaction is attractive (repulsive), the peak level of the 

density of states shifts to higher (lower) energy side. 

The bound state level shifts down as increasing the normal layer size L in Fig.20. It 

corresponds to the usual bound state problem of an electron in a potential well. When the 

layer size is sufficiently large, several broad bound states appear, in a sin1ilar n1anner to 

the de Gennes- Saint-James' result shown in the previous subsection. 

It has been predicted that the density of states of the normal region have energy gap at 

the lower energy than llbu lk . This state can be detected by use of a tunneling experiment, 

a scanning tunneling microscope ( STM ) measurement and so on. 

In the above, we calculated the densi ty of states for the polar angle 0 = 0 of th Fern1i 

momentum, so called' the tunneling density of states" which is detected by the tunneling 

experiment[17]. The STM experiment, however, can detect rather" the total density of 

states" which is averaged over all direction of the Fenru mornentun1, than the tunneling 

density of states. Next, we calculate the total density of states in the normal region. 

The total density of states is defined by 

( -rr /2 
ntotal(Z) == N(O) Jo dO sin 0 Img(z,w + iO). (212) 

The total density of states was first obtained by de Gennes and Saint-J ames in the ideal 

66 



(a) 

CJJC) 
h 

t=:: 

----....--.., 

~ 
'-...-/ 

<] 

(b) 

0.6~--~--~--~--~--~--~--~ 

0.4 

0.2 

0 

tIJ = 0.01 ,.-----
NI S 0 r:: t eN = 0.0 

9 9 =- .0 ---­
_____________ f - -- \ 

-2 

II 

I \ 

o 
Z/~ 

2 

5 gN I gS = -0.5[: 
~:, 

o 

4 

1.5 

Figure 19: (a) The pair potential and (b) the N region tunneling density of states when 
the N metal has a pairing interaction. T = 0.2Tg, I = L I ~ = 1.0 and R = 0.2. 
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Figure 20: N layer size dependence of the density of states. I = L/~, T = 0.2Tg, tlJ = 0.0 
and R = 0.2. 

N - 5 contact system ( see the previous section. ) Recently, the total density of states was 

calculated by Hara et al.[35] in the finite N - 5 contact with finite interfacial reflection coef-

ficient and by Tanaka et al.[34] in the semi- infinite S- N - S contact without the interfacial 

reflection coefficients. 

Typical result is shown in Fig.21. In the norn1al region the particle with the polar angle 

() -=I- 0 moves effectively the more long distance than the normal layer width L. Since 

the total density of states includes contributions from all the polar angles of the Fermi 

momentum, it includes the states with lower energy than the lowest energy level of the 

tunneling density of states. The total density of states has a cusp and a shoulder. The 

cusp and the shoulder are located at the two peak positions in the tunneling density of 

states. 

The finite density of states 1n the energy range below LJ.bulk is originated f1'on1 the de 

Gennes- Saint-J ames bound state in the N - 5 system discussed in the previous subsection . 
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In the N regIon, a particle is reflected into a hole at the N - S interface by the Andreev 

reflection. The backward hole is reflecteJ iJlto all electron at the S- N interface. The de 

Gennes- Saint Jarncs bound state is nothing but this closed sequence of particles a.nd holes. 

When the interfacial reflection coefficient is zero, the phase of the wave function earned 

a.long the closed path is rather sn1a11 because of a cancellation between the particle path 

and the hole path. When the interfacial reflection coefficient is not zero, however, a closed 

path including only particle andj or only hole is 111ixed. The latter path earns a phase 

an amount of 2pF L cos O. When R is finite, therefore, the de Gennes- Saint Jarnes bound 

state energy becomes very sensitive to the polar angle of the Fenni momentum. It forms 

a band with width of order VF7r j L when contributions from very small polar angle range 

Icose -11::; 7rjPF L are taken into account. 

When the normal region has the attractive pairing interaction, the density of states in 

the normal region has an energy gap as is shown in Fig.22. When the normal region has 

the repulsive pairing interaction, the energy level shifts to the lower energy side. 

For any pairing interaction, it can be analytically shown that the density of states at w = ° 
IS zero. When w = 0, the evolution operator can be written as 

U ( ') = ( cosh 8z ,z ' -i sinh 8z ,z ' ) 
+ z , z . . h r h r , 

1, SIn Uz,z' cos uz, z ' 
(213) 

8z ,z' = - _1_ ( Z dz" f1( z"). 
VFz } z' 

(214) 

Using this expression, we can obtain the quasi- classical Green's function in the C layer 

g~+(z,w = 0) = i 2C(z) - trC(z) , (215) 
v(trC(z))2 - 4RoR£ 

C(z) = ((1 + RoR£) cosh 280,£ + (1 - RoR£) sinh 280 ,£) po 

+ ((1 - RoR£) cosh 280,£ + (1 + RoR£) sinh 280,£) P2· (216) 
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The Green's function with w = 0, therefore, does not depend on the position. It is also 

shown that the density of states, which is obtained from the above Green's function, at 

w = 0 is zero for any pair potential. This result is different frorn nUll1crical results obtained 

by Tanaka et a.l. [3 /1]. They calculated t he total dellsi ty of states in the 5- N - 5 systcln wit h 

ideal interfaces by nUll1crica.lly solving thc Bogoliubov- de Gennes equation. Their results 

show that when the N ll1ctal has a repulsive interaction, the density of states at w = 0 is 

not zero and depends 011 the position. In contrast to their nUll1erical calculation, we can 

explicitly show that the density of states at w = 0 is zero and does not depend on the 

position. 

As we have noted, when the pairing interaction of the normal metal is zero, the density 

of states of the normal metal is spatially constant. When the pairing interaction is not 

zero, however, the density of states spatially varies as is shown in Fig.23. The density of 

states is larger at the point of which the pair potential is smaller. Also, when the layer size 

L of the central normal ll1etal is large, the density of states has several peaks at the lower 

energy than 6. bu 1k as is shown in Fig.24. 

Recently, Inoue and Takayanagi studied the local density of states of Nb/InAs/Nb systen1 

by use of STM . It was reported that the local density of states in the InAs rcgion has an 

energy gap. Also, It was reported that the local density of states depends on a posi tion in 

the InAs region. In the present model, when the normal metal has a pairing interaction, 

the density of states depends on the position in the normal region. The InAs, therefore, 

may have a finite pairing interaction. Since a realistic systern is not in the clean lill1it, 

however, it seems necessary to take account of the ill1purity effect for 1110re quantitative 

comparison with the experill1ents . 
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shows the total density of states and a dashed line shows the tunneling density of states. 

Z = 5e, T = 0.2Tg, t{j = 0.1 and R = 0.2. 
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5 The infinite double layer system with s-wave and 
d-wave superconductor 

So far we discussed s- wave superconducting proximity contact systems. In this last section, 

we study the proximity contact system which consists of superconductors with different 

symmetry. 

It is believed that "heavy fermion superconductor" and "high Tc superconductor", which 

were recently discovered, are classified as superconductors with unconventional pairing. 

Pals et al. [39] investigated the Josephson contact between a singlet and a triplet supercon­

ductor using the tunneling IIalniltonian. Poppe[40] observed a Josephson current between 

an s- wave superconductor Al and a heavy fermion superconductor CeCu2Si2. Ashauer et 

al.[41] studied theoretically a thin film of standard superconductor in proxin1ity contact 

with a bulk unconventional material by use of the conventional quasi- classical method. 

s-wave d-wave 

o z 

Figure 25 : The s- wave superconducting and the d- wave superconducting double infinite 
proximity contact systern. 
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We study the double infinite proxin1ity contact systen1 between superconductors with 

different pairing interactions, that is, with s- wave pairing and d-wave pairing interaction 

as depicted in l~ ig.25. Since both the superconductors are singlet superconductor, we have 

only to treat 2 x 2 rnatrices. The d- wave pairing interaction is expanded in tenns of the 

spherical harmonic functions Y2m, 

m=2 
= -47rg2 L Y2m (0, ¢;)Y2*m(O', ¢;'), (217) 

m=-2 

where 0, ¢; are the polar angles of the Fermi rnomentum. Therefore, the pair potential of 

the d-wave superconductor can be written in the fOrIn 

m=2 
~(pF' z) = L ~m(Z)Y2m(e, ¢;). (218) 

m=-2 

The d-wave superconducting pair potential in general can not be chosen real. The evolution 

operator Uex , therefore does not satisfy the relation Uex = PIU-exPI . Instead, it can be found 

that it satisfies for the Matsubara frequency c = iWn 

Uo:(Wn) = P2 U-ex(Wn)* P2, 

Uex(wn) = PI Uex ( -Wnr Pl· 

Therefore, the quasi-classical Matsubara Green's function satisfies 

even when the pair potential is not real. 

(219) 

(220) 

(221 ) 

(222) 

Setting RL = 0 in the quasi-class ical Green's function of the finite triple layer systen1 and 

taking the limits of LL, LR to infinity, the quasi-classical Green's function for the double 
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infinite system can be obtained. Here, we rewrite Ro to R. Noting the above relations valid 

for a complex pair potential, one can obtain the quasi- classical Green's functions, i.e., 

where 

"L ( ) _ .2AL( Z) - trAL(z) 
g++ z - 1, trAL( z ) , 

"n () .2BR( Z) - trBR(z) 9 z =1,------------

++ trBn( z ) ' 
,VL [n T R ] T L A£( z ) = U+( z ,O) V_ (0) + RP2 V_ (0)P2 P2 V+ (Z)P2' 

Bn( z ) = V_R(z) [P2TV!(0)P2 + RV;(O)] P2 T(;:(Z, 0)P2, 

V;( z ) = ¢~(z)¢~(O)t, 

V_R( z ) = ¢~(z)¢~(O)t, 

(; L(z 0) = U L(z 0) eE !; z/vfrz +, +, , 

and ¢± (z) is a solution of the equation 

i6(z) ) ¢ (z) 
Wn =f En ± , 

with the boundary condition 

(223) 

(224) 

(225) 

(226) 

(227) 

(228) 

(229) 

(230) 

(231 ) 

We consider a simple case where the superconducting critical temperature in both the 

sides are same. Anderson and Morel[37] showed that in an isotropic systen1 the most stable 

d- wave superconductor pair potential is 

(232) 
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without the pairing interaction. T = 0.5Tc and R = 0.0. 
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Figure 27: The s- wave superconductor vs the d- wave superconductor defined by Eq.(233). 
The dashed line is 6. 5 and 6. xy in the case when the other side Inetal is a norn1al metal 
without the pairing interaction. T = 0.5Tc and R = 0.0. 
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We consider the d- wave superconductor with the pair potential defined by Eq.(232). 

Figure.26 shows a profile of the pair potential ncar the interface. The solid line is 6 s (z) 

and 6 AM (z) in the left side and the right side, respectively. The dashed line is 6 5 and 6 AM 

in the case when the other side metal is a normal Inetal without the pairing interaction. 

The pair potentia.l is suppressed around the interface when R < 1 due to the proxi111ity 

effect. When the other side is rather a superconducting rnetal than a nonnal 11letaJ, the 

suppression of the pair potential is s111all. On the other hand, we considered another d- wave 

superconductor defined by 

6(PF, z) = 6 xy sin 2 0 cos 2¢ 

V967r 
= 6 xy 6v5 (Y2,2 + Y2,-2)' 

(233) 

In Fig.27, the pair potential is suppressed near the interface, but the suppression in the 

case where the both side 111etals are superconductor is aln10st equal to that in the case 

where the other side metal is a norn1al m tal. The d- wave superconductor defined by 

Eq.(232) and defined by Eq.(233) are different in that the pair potential of Eq.232 conta.ins 

s-wave component. The s- wave pair amplitude in these d- wave superconductor, F S , can 

be obtained by 

F s TN (0) '" '" {21r d)..cx {7r /2 . OCXd()CX D ( cx ) ~ ( . A d)J = ~ ~ In If' In sIn FO PF . PF 9cxcx 'lWn , D 1 ,2, 
4 Wn cx=± 0 0 

(234) 

where Po = 1. In the d- wave superconductor defined by Eq.(233) the s- wave pair a111pli­

tude, F S vanishes after the polar angle integral. On the other hand, the superconductor 

defined by Eq.(232) has finite s- wave amplitudes. If the d-wave superconductor has the 

s-wave pair amplitude, the d- wave pair potential ncar the interface is l1l0re enhanced than 

in the case where the neighbor metal is a normal metal. Due to this enhance111ent of 
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the d- wave supercollductor, the neighbor s- wave superconductor ncar the illterface is also 

enhanced. 

We nex t cOllsider the case when a s tl perctl rrent flows in this proxil11i ty contact system. 

For simplicity, we only treat. the d- wave supercollductor defined by 

(235) 

which is obtained by a linear c0l11bination of Eq.(232) with its c0l11plex conjugate. When 

the supercurrent flows, the pair potential has a spatially varying phase factor. 

d . d 2 
6 (z) = 1620(z)le1I;?z(3cos 0 - 1). 

6 5 (z) = 165 (z)le i l;?;. 

(236) 

(237) 

As is well known, when the supercurrent flows, a spatial derivative of the phase is a finite 

constant value in the bulk region. 

in the bulk region . (238) 

From Eq .(116), the electric current along the z direction is written in terms of the quasi-

classical Matsubara Green's function a.s 

(239) 

Noting the conservation of the electric current and setting the spatial derivative q of the 

phase at sufficiently large z to an appropriate value, we nUl11erically calculated a self-

consistent pair potential containing a spatially varying pha.se factor. 

When the supercurrent flows, the quasi - classical Green's [unctions can be written as 

(240) 
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R [T L L ] TV R BR(Z) = V_ (Z) P2 V_ (0)P2 + RV+ (0) P2 V+ (Z, 0)P2, 

Vf(Z) = 0~J~(z)(0~J~(0))t, 

V_R(Z) = 0~J~(z)(0~J~(0))t, 

~ (e- i <.{Jz/2 0) 
c.p = 0 Ci<.{J z/2' 

where 

and J± (z) is a solubon of the equation 

with the boundary condition 

The gap equatjon can be written in terms of the off- diagonal tenns of g++. 

we ( 1f /2 
7rT L Jo sinO'dO'V5(d) [g++(iw n , Z)Jl,2 - g++(iwn , Z)*J2,1] 

6(PF'Z) = ___ w~n>_O __________________________________ __ 

T we/21fT 1 

log Tc + ~ n + 1/2 

Vs = 1 for s- wave, 

(241 ) 

(242) 

(243) 

(244) 

(245) 

(246) 

(247) 

(248) 

(249) 

(250) 

Vd = ~(3COS2B -1)(3cos2 0'-1) for d- wave defined by Eq.(235). (251) 
4 
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son junction. T = 0.8Tc, R = 0.5 and qS~ = 0.3. 
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Figure 30: The position dependence of the supercurrent numerically obtained by use of the 
self- consist.ent pair potential. T = 0.2Tc, R = 0.0 and qS~ = O.l. 

We obtained the self- consistent pair potential numerically by use of the Green's [unction. 

Typical result is shown in Fig .28 . We have expressed the magnitude of the supercurrent J 

by the spatial derivative of the phase qfulk~ at the bulk region of the s- wave superconductor. 

The obtained self- consistellt solution shows an unexpected behavior. The phase gradient 

changes its sign near the illterface. This result is quite different frol11 the usual s- wave vs 

s- wave Josephson junction . In the s- wave vs s- wave superconductor, the spatial derivative 

of the phase qz was larger than the bulk qbulk . This can be understood from the usual G- L 

equation. The electric current is written as 

Since I~( z) I near the interface are suppressed, qz near the interface is larger than the bulk 

qbulk as a result of current conservation . N ulnerical calculations using the quasi - classical 

Green's function shown in Fig.29 for the s- wave vs s- wave junction show the sanle results 

as the G- L arguments . 
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To check the conservation of the electric current in the s- wave vs d- wave junction, we 

calculated the current by use of the self- consistently solved pair potential. In Fig.30, the 

electric current is found to be conserved everywhere. The junction between the different 

pairing superconductors cannot be expressed in a form of the usual Josephson junction. 

This phase anomaly near the interface is rcrnarkable at lower telnperatures.( Fig.31. ) Also, 

under a fixed current, the phase difference at the interface does not n10notonically varies 

as is shown in Fig.32, when the interfacial reflection coefficient R increases. 

The physical origin of the above results arc as yet not clarified. We try to discuss whether 

the pair potential profile obtained above can be obtained fron1 the Ginzburg- Landau ( G- L 

) equation . By expanding the gap equation with respect to the pair potentia.l , we discuss 

the systen1 in the G- L region. Higashitani[42] studied the Josephson junction of s- wave 

vs s- wave superconducting junction in the G- L expansion of the quasi- classical Green's 

function. We follow the prescription proposed by Higashitani. As is well known, in the G- L 

region 1 - T/Tc « 1, the zeroth, the first and the second derivatives of the pair potential 

are of the order of 

(252) 

1 

where t == (1 - T / T c ) "2 

where a prime of fl' means the spatial derivative of fl. Since t ~ 1, we retain the tenns 

up to the order of O( t 3
) in the G- L expansion of the gap equation. 
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Figure 31: The pair potential in the presence of the supercurrent at various temperatures 
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We rewrite the Green's function in tern1S of ¢± given in the appendix. Since g~+ can 

be shown to have the saIne form as g~_ except for the superscripts Rand L and for the 

sign of VFZl we only treat g~+ . Before expallding the Green's function g~+, we write it in 

terms of ¢± 

where we have used the properties of ~ discussed in the appendix . It is useful to define ~± 

as follows: 

~_(z) = F_(z) CV~(z))' 
~+(z) = F+(z)" CV\(z)") , 

where V± and F± satisfy 

OzV- = _1 (2wnV_ -\.6.(z)\(l - V~)), 
VFz 

1 -
8zF- = --(wn - En + \.6.(z)\D_)F_, 

VFz 

azD~ = __ 1 (2wnD~ _ \.6.(z)\(l _ D~2)), 
VFz 

8zF~ = _1 (wn - En + \.6.(z) \ D~)F~ 
VFz 

with the boundary condition 

D \ -D*\ - \.6.bu1k \ 
- bulk - + bulk - wbu1k + E 

n n 

-bulk_ +,VFzq 
wn - W 1,-2-' 
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(259) 
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Using the equation(257), one can write An(z) in tenns of V and F , 

AR(Z) = (0:)1 lAk( z ) + Ah(z) (~~~;D 2 c-
2Enzj 0:, (262) 

( 
1 -iV~(z)*) 

iV~(z) V~(z)V~(z)* 
Ak(z) = R 

1 + V_(z)V~(z)* (263) 

( 
V!:(z) i) 
iV~(z)2 -V~(z) L 

A~( z) = 1 + V~(O)V~(O)* Ko, (264) 

Kt = [(V~(O)* - V~(O)*eitpLR)(1 + V~(O)*V~(O)e-itpLR) 

-R(V'}:(O)* - V~(O)*eitpLR)(1 + V~(O)*V~(O)e-itpLR)] 

/ [11 + V'}:(O)*V~(O)e-itpLRI2 + Rll + V~(O)*V~(O)e-itpLRI2], (265) 

where CPLR = CPL - CPR . Following Higashitani, from the differential equation(258) one can 

expand V as follows : 

V+ can be obtained by changing the sign of VFz in the expansion of V_ . 

The Green's function consists of two terms . (See Eqs .(253)rv(255). ) One of them 

spatially varies on the scale of the order of the coherence length ~T( t) rv O(t-l) since it 

consists of ¢± only. The other term varies on the scale of the order of ~o = v F / 7rTc , since it 

has an exponential damping factor. In the G- L region in which ~T is sufficiently larger than 

~o, the second term is finite only in a narrow region near the interface. The gap equation 

can be written in such a form as 

(267) 

where 91 and 92 are functions varying on the scale of the order ~T which are related to 

Ak and Ah, respect ively. The short range behavior is described by the exponential factor 
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eO z damping within the range of ~o. In the above , (( ... )) Ineans the average over the polar 

angles and the SUl11 over Wn- In Eq.(267), the first tenn gl describes the long range profile 

of the pair potential and the second tcnn g2eOz is considered to give an inforrnation on the 

boundary condition. Following Higashitani's method, we consider the equations: 

6( z ) = ((gl( Z))), 

o = fo CXJ dz ((g2( z )eoz
)) . 

(268) 

(269) 

Equation(268) gives the ga.p equation and Eq.(269) gives the boundary condition. Hi-

gashitani obtained the saIne boundary condition from Eq.(269) as that which de Gennes 

obtained in the 5- 5' contact systelll by different approach. 

Substituting Eq.(266) into the Green's function, we obtain the G~L equation after SOllle 

manipulation : 

-6T(z ) = ~f [(8R coS 2 8)R(6T(z)qT(Z)2 - 6 T(z )") + (8~)R(6T( Z ))3/V}] , (270) 

- 6 1 
( z) = ~ f [( 8 L co S 

2 8) L ( 6 1 
( Z ) ql ( Z ) 2 - 6 1 

( Z )") + (8 iJ L ( 6 1 
( Z ) ? / v}] , ( 2 71 ) 

o = 26T(z)'qT( Z) + 6 T(z)qT(Z)' , (272) 

o = 261(z ),ql(z) + 6 1(z )ql( z )', (273) 

where we have defined 

8 R(L) = { 3 cos2 0 - ~: 
~2 _ 7((3) ( VF ) 2 

T - 16 10gT/Tc 7fT ' 

for S region 
for d region 

{1r /2 
( ... ) == io dO sin 0 x VS(d ) ·· ·· , 

Vs = 1 and 
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(274) 

(275) 

(276) 

(277) 

(278) 



The boundary condition are 

and 

o = R(8R cos O)R~r(o) - aR(~r(o)' + i~r(0)qr(O))(8R cos2 O)R 

_e i CP LR [R(8 L cos O)R~I(O) - aL R(~I(O)' + i~I(O)ql(0))(8L cos2 O)R], (279) 

o = R(8R cos O)L~r(o) + aR R(~r(o)' + i~r(O)qr(O))(8R cos 2 O)L 

_eiCPLR [R(8 L cos B)L~I(O) + aL(~I(O)' + i~I(0)ql(0))(8L cos2 O)L], (280) 

R(L) _ 7((3) v:(L) 
a - 27f2 7fT (281) 

- 1- R 
R=--. 

1 + R 

We have taken account of tenns up to order of O(t3
) for the G- L equation. On the other 

hand, the boundary condition includes terms up to order of O(t2), in accordance with the 

boundary condition obtained by de Gennes or by Higashitani. The obtained boundary 

conditions is linear. They can be rewritten as 

( 1Dr,) = (Nll N12) ( 1DI,) , (282) 
a Dr N21 N22 a DI 

1 

Dr = O'rAr = [(8RcosB)L(8RCOS2B)R+R(8RcosB)R(8RCOS20)L]2 A r ,(283) 
1 

DI = O',A, = [(8 L COS B)R(8L COS
2 B)L + R(8L COS 0)L(8L COS

2 B)R] 2 AI, (284) 

(285) 

Nll = _1_ [(8 L cos B)L(8 R cos2 B)R + R(8L cos O)R(8R cos 2 O)L] , (286) 
O'rO'I 

N12 = _1_ [(8 L cos2 B)L(8R cos2 O)R - R2(8L cos2 B)R(8R cos2 O)L] , (287) 
O'rO'I 

1 
N21 = - [(8 L cos B)L(8R cos B)R - (8 L cos 0)R(8R cos B)L], (288) 

O'rO'I 

N22 = _1_ [(8 L cos 2 B)L(8 R cos O)R + R(8L cos 2 B)R(8R cos O)L] , (289) 
O'rO'I 

88 



where N satisfies det N = 1 and 

~T= 

fi/= 

fit = 
T -

At _ 
D/= 

(290) 

(291 ) 

(292) 

(293) 

We obtained the linear boundary condition sinlilar to de Gennes' oue. It is, however, found 

that when the superconductors have different pairing symmetries, this discussion is not 

consistent. Froln Eq.(239), the current in the G- L telnperature range in the bulk region 

can be written as 

(294) 

where 
{7f /2 

( ... ) j = J 0 dO sin B co sO .. , . 

From the requirement that the current should be the saIne in both the bulk region, we 

obtain 

(295) 

On the other hand, using the linear boundary condition Eq.(282), we obtain the condition 

(296) 

When the pairing symmetry of the both side superconductors is different, the current 

conservation condition Eq.(295) is not equivalent to the condition Eq.(296) derived frol11 

the linear boundary condition . When the pairing of both the sides is of the saIne type, 
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as the 5- 5' system discussed by Higashitani, there occurs no such problem. When the 

supercurrent flows across the junction between different symmetry superconductors, the 

above discussed G- L argU111ent seenlS not to be consistent. We point out SOlne problerns 

at issue. 

1. We have derived the boundary condition Eq.(269) by dividing Eq.(267) into two parts . 

It is not clear whether the way ernployed to obtain the boundary condition Eq.(269) 

is unique in the G- L region, although we never find out a 1110re reasonable way than 

that used above which was successful to obtain the boundary condition in the s-wave 

vs s-wave syste111. 

2. The source of the anomaly should be the exponential damping tenn 92eoz in Eq.(267). 

The spatial derivative of this term is of order of ~Ol O(t) although a range of the 

anomaly is negligible in the G- L region ( ~o ~ ~T ) . The spatial derivative of the 

damping term may not be negligible in the present case and we 111ay have to take 

into account the higher order terms in the G- L expansion of the damping tenn. 

These problems are to be examined in the future study. 

Appendix B. The properties of the evolution operator ( In t he 
presence of the supercurrent flows. ) 

In this appendix, we consider the properties of the evolution operator when the pair po-

tential is not real. When the supercurrent flows, t he phase of the pair potential spatially 

vanes 

~(z) (297) 
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at the bulk region (298) 

where qbulk = 8z <pzJ blllk and a is a constant . We introduce a modified evolution operator 

defined as 

Then, the evolution operator satisfies the differential equation 

OzUex(Z, z') = aAexUex(z, z') (a = ±1) 

A __ 1-_ ( Eex 
ex - VFz -16(z)1 I~~ll) 

_ VFzOz<Pz 
Cex = C - a 2 

The matrix A has also an in1portant property 

(299) 

(300) 

(301 ) 

(302) 

(303) 

(304) 

(305) 

It is to be noted that when the supercurrent flows, the evolution operator U does not satisfy 

Except for this, the above defined evolution operator U has the same properties as U 

discussed in the appendix of Sec.2 . Thus, [; can be decolTIposed as follows: 

A~(z,z') = ;1 ;;'~(z)'1>~(Z')P2' 
ex 

A~ (z, z' ) = ~. ;;,~ (z) '1>~(Z ' ) P2' 
ex 
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(306) 

(307) 

(308) 

(309) 



and <P± are the solution of the equation 

a )...0 ai (co ± no 1~(z)l) jo 
zlf/± = -:;;;;: -1~(z)1 -co ± no If/±, 

",0 = Jc; - 1~(z)12 = no/VFz 

with the boundary condition 

at sufficient large z, 

that is, 

<P± -t const. x 

(310) 

(311 ) 

(312) 

In general, one can not obtain the relation between U+ and U_ if the pair potential is not 

real. In the case of the Matsubara frequency c = iwn , however, one can obtain the relation 

Evolution operator for the Matsubara frequency c = iWn 

For the Matsubara frequency c = iwn , the evolution operator satisfies 

(313) 

and 

(314) 

when ~(pt) = ~(PF) is satisfied. Therefore, we have only to treat U+ for the Matsub-

ara frequency. We write down some useful properties of the evolution operator for the 

Matsubara frequency E = iWn : 

(315) 
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U ( ') "t u~ ( ')* " - Z,Z = ipzP2 + Z,Z P2ipz', 

AWn( ') =t=1 ;'wn( ) Tjwn( ') 
± z, Z = W If/± Z If/=f Z P2, 

W = 1J;~n p2J~n = _1J;~n p2J~n = const. # 0, 

and ¢,±n satisfies an equation 

8 Jwn = _1 ( -wn =t= En 
z ± VFz -ilL\(z)1 

.vFz 8z ipz 
Wn = Wn + 1, 2 

En = vw~ + l.0.bulkI2, 

with the boundary condition 

;'w ( Wn =t= En ) 
If/±n ~ const. X '1 AI' 

-1, L.1bulk 
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(31G) 

(317) 

(318) 

(319) 

(320) 

(321 ) 

(322) 

(323) 



6 Summary 

We have derived the qua.si- classical Green's function in the triple layer system including 

semi- infinite superconductor by extending the AAIIN forn1ulation [or double layer systen1 

in the clean limit and have studied some superconducting proximity contact systelns. 

Following AAHN, we first constructed a solution of the Green's function for the supercon­

ducting finite triple layer system in a forn1 including the spatial evolution operator within 

the quasi-classical approxin1ation. Taking the limit of both the layer sizes LL and LR to 

infinity ( keeping the center layer size L finite ), we have obtained the solution of the quasi­

classical Green's function for the selTli- infinite triple layer systen1. The present formulatioll 

has a great advantage in computing the self- consistent pair potential. In the conventional 

quasi-classical Green's function method, one has to solve the Eilenberger equation under 

the restriction of the nonnalization condition as well a.s of the boundary condition[23]. In 

numerical calculations according to that program, one needs sophisticated techniques to 

find converging solutions at infinities. In the present formulation, we have obtained an 

explicit form of the Green's function which already satisfies the boundary condition and 

is written by quantities converging at infinities. This reduces the nun1erical efforts very 

much. 

One of the applications of the present formulation is a study of the point contact ex­

periment. Taking account of the reflection coefficients at the point contact and at the 

normal-superconducting interface, we have calculated the Andreev reflection. It is found 

that the Andreev reflection, which is closely related to the differential conductance, can 

have double peak structure as a function of the incident energy below the bulk energy 

gap f}.~ulk. This happens because of a finiteness of the normal layer and finite interfacial 
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reflection coefficients. It was found that the differential conductance also can has double 

peak structure as a function of the bias voltage. 

Next, we have obtained the density of states of the N region for the superconducting­

normal- superconducting proximity contact system. It is found that the density of states 

has a structure below the bulk energy gap ~~ulk' in a sin1ilar nlanncr to the Andreev 

reflection in the N - N'- 8 systenl. This structure comes fronl the de Gennes- Saint-Janles 

bound state which is originated by the Andreev reflection at the N - 8 interface. Also we 

have calculated the total density of states. This total density of states can be detected 

by scanning tunneling spectroscopy. The spatial variation of the density of states, which 

was detected in a STM experinlent, has been realized by taking account of the pairing 

interaction of the IV region. 

We have also studied the s-wave superconductor and the d- wave superconductor junc­

tion. The self-consistent calculation of the pair potential can be achieved by use of the 

present quasi-classical forrnulation. The pair potential near the interface are suppressed 

due to the proximity effect. When the supercurrent flows through the junction, it ha.s been 

found from the numerical results, that the spatial variation of the pha.se c.pz of the pair 

potential in the s-wave vs d- wave junction is different from that in the s- wave vs s- wave 

junction near the interface. A sign of the spatial derivative of the phase near the interface 

is opposite to that of the bulk region. Also, even if the reflection coefficient is zero, the 

phase shows a jump at the interface. 

To interpret these unordinary behavior, we have tried to analyze this junction by use of 

the G- L expansion devised for the 8 - 8 junction. It was, however, found that an obtained 

boundary condition is not consistent. The anomalous behavior of the pair potential is 

remarkable at lower temperature . It indicates that such behaviors may not be reproduced 
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by the G-L expansion. This problen1 is still to be examined in future study. 

We have studied sorne systen1s in the clean lin1it and in equilibrium. All actual systems, 

however, are not in the clean limit and not in equilibrium. It is important to take account 

of the impurity effect and extend the formulation to the non- equilibrium systen1. 
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