## 一方向FRMの強度とそのばらつきに及ぼす 母材の強度の影響

Effect of Matrix Strength on the Strength and Its Scatter of Unidirectional Fiber Reinforced Metals

-



(Yun LU)

# 一方向 F R M の強度とそのばらつきに及ぼす 母材の強度の影響

Effect of Matrix Strength on the Strength and Its Scatter of Unidirectional Fiber Reinforced Metals

1993年

魯 云 (Yun LU)

目 次

| 第1章    | 緒 論                         |        | 1  |
|--------|-----------------------------|--------|----|
| 第1.1節  | はじめに                        |        | 1  |
| 第1.2節  | 従来の研究                       |        | 2  |
| 1.2.1  | FRMの強度に関する従来の研究             |        |    |
| 1.2.2  | FRMの強度のばらつきに関する従来の研究        |        |    |
| 第1.3節  | 本研究の目的                      |        | 6  |
| 第1.4節  | 本研究の内容                      |        | 6  |
| 第1章参   | 考文献                         |        | 7  |
|        |                             |        |    |
| 第2章    | 一方向FRMの引張強度とそのばらつきに及ぼす母材の   | う強度の影響 |    |
|        | (熱処理により母材の強度を変化させた場合)       |        | 10 |
| 第2.1節  | はじめに                        |        | 10 |
| 第2.2節  | 試料および実験方法                   |        | 10 |
| 2.2.1  | 試料                          |        |    |
| 2.2.2  | 熱処理条件                       |        |    |
| 2.2.3  | FRMおよび抽出繊維の引張試験方法           |        |    |
| 2.2.4  | 強度とばらつきの評価方法                |        |    |
| 2.2.5  | 母材の組織観察および硬度測定              |        |    |
| 第2.3節  | 実験結果                        |        | 19 |
| 2.3.1  | FRMの強度とそのばらつき               |        |    |
| 2.3.2  | 抽出繊維の強度とそのばらつき              |        |    |
| 2.3.3  | 母材の顕微鏡組織と硬度                 |        |    |
| 2.3.4  | 熱処理による母材の残留応力               |        |    |
| 2.3.4. | 1 残留応力の測定方法                 |        |    |
| 2.3.4  | 2. FRMの強度とそのばらつきに及ぼす残留応力の影響 | 墅      |    |

## 第2.4節 考察

36

- 2.4.1 母材強度の役割
- 2.4.2 強度のばらつきをもたらす要因
- 第2.5節 母材に埋め込まれた状態での繊維強度を考慮したFRMの強度の計算
   式の提案 ・・・・・ 42
  - 2.5.1 母材に埋め込まれた状態での繊維強度を考慮した複合則の修正式
  - 2.5.2 修正した複合則の適用

第2.6節 まとめ

第2章参考文献

· · · · · 47 · · · · 50

| 第3章   | 一方向FRMの引張強度とそのばらつきに及ぼす母材の | の弱 | 負度 | EO | )景 | 》響 |    |
|-------|---------------------------|----|----|----|----|----|----|
|       | (高温加熱により母材の強度を変化させた場合)    |    | ·  |    | •  | •  | 54 |
| 第3.1節 | はじめに                      | •  |    | •  |    | •  | 54 |
| 第3.2節 | 試料および実験方法                 |    |    |    |    | ·  | 54 |
| 3.2.1 | FRMの高温引張試験                |    |    |    |    |    |    |
| 3.2.2 | 抽出繊維の引張試験                 |    |    |    |    |    |    |
| 3.2.3 | 純AIの高温引張試験                |    |    |    |    |    |    |
| 第3.3節 | 実験結果                      |    |    |    |    |    | 58 |
| 3.3.1 | FRMの高温強度とそのばらつき           |    |    |    |    |    |    |
| 3.3.2 | 抽出繊維の強度とそのばらつき            |    |    |    |    |    |    |
| 3.3.3 | 純Alの高温強度                  |    |    |    |    |    |    |
| 第3.4節 | 考察                        |    | •  |    |    | ·  | 66 |
| 3.4.1 | 修正した複合則の適用                |    |    |    |    |    |    |
| 3.4.2 | 熱処理を受けたFRMの強度およびばらつきとの比較  |    |    |    |    |    |    |
| 第3.5節 | まとめ                       |    |    |    |    |    | 69 |
| 第3章参考 | 考文献                       |    | •  |    | •  | •  | 70 |

ü

第 4 章 弾塑性有限要素法を用いたモンテカルロ・シミュレーションによる一 方向FRMの引張強度とそのばらつきに及ぼす母材の強度特性の影響 の検討

- ・・・・・ 71第4.1節はじめに・・・・・ 71第4.2節シミュレーションのモデルおよび手法・・・・・ 71
  - 4.2.1 有限要素モデルと要素分割
  - 4.2.2 シミュレーションの手順
  - 4.2.3 シミュレーションに用いたFRMの材料定数
- 第4.3節 一方向FRMの強度とそのばらつきに及ぼす母材の強度特性の影響

79

- 4.3.1 シミュレーションの結果
- 4.3.2 複合則、修正した複合則および実験結果との比較
- 第4.4節 母材の強度特性を変化させたときのFRMの破壊過程と強度およびば
   らつきとの相関 ・・・・・ 86
  - 4.4.1 シミュレーションの結果
  - 4.4.2 FRMの強度とそのばらつきに及ぼす破壊過程の影響についての考察
- 第4.5節 母材の強度特性を変化させたときの破断した繊維の近傍の応力分布からの考察・・・・・ 91
  - 4.5.1 応力分布の計算手法
  - 4.5.2 繊維の耐荷能力およびFRMの破壊過程と応力分布との関係

4.5.3 FRMの強度のばらつきと応力集中の範囲

| 第4.6節 | まとめ |  | • | • | 98  |
|-------|-----|--|---|---|-----|
| 第4章参考 | 文献  |  |   |   | 100 |

| 第5章 総 括 | · · · · · 101 |
|---------|---------------|
| 付 録 1~4 | · · · · · 105 |
| 公表論文    | · · · · · 115 |
| 謝辞      | 117           |

### 緒

論

#### 第1.1節 はじめに

繊維強化金属(Fiber Reinforced Metal,以下FRMと記す)は、比強度および比 剛性が大きく、耐摩耗性および耐特殊環境性(高真空、放射線、原子状酸素中な ど)にすぐれ、熱および電気の良導体であるために、新素材として注目され、そ の特徴を生かしてディーゼルエンジン用ピストン、シリンダーライナ、人工衛星 用構造部材継手などに近年実用されてきた。また、この材料は強化繊維の方向と 体積含有量を変えることによって、発現する性質を調整できること、すなわち設 計できるために、機械設計技術者により広い設計の自由度を提供している。FR Mは従来の金属材料に比べて、強度のばらつきの大きいことが、構造材料として の広範な応用の大きな障害となっている。構造用FRMの性能としては、今一層、 強度を上昇させてなおかつ強度のばらつきを小さくすること、すなわち、強度の 信頼性向上が要求されている。この要求にこたえ、そして設計技術者がこの材料 を安心して利用するためには、強度とそのばらつきに寄与する要因が、まず材料 科学的に解明され、つづいて複合素材の特性からFRMの特性が定量的に予測さ れなければならない。

この研究では、FRMの強度とそのばらつきに着眼し、複合素材のうちの母材 の強度が、それらにどのような寄与をするかを明らかにするため、二種類の方法 で母材の特性を変化させ、FRMの強度とそのばらつきを実験的に調査した。つ づいて、有限要素法を用いたモンテカルロ・シミュレーションによって、FRM の強度とそのばらつきの予測を試みるとともに、強度の信頼性に影響を及ぼす要 因を母材の特性から考察しようとしたものである。以上の実験と計算機シミュレ

ーションを通じて、母材の強度特性の観点からFRMの強度と信頼性向上に資するものである。

第1.2節 従来の研究

1.2.1 FRMの強度に関する従来の研究

FRMの強度特性に影響を及ぼす材料要因は(1)繊維の特性、(2)界面の特性お よび(3)母材の特性、に大別される。この中で、(1)と(2)に関しては、ミクロ、 マクロ的な観点から多くの理論的および実験的研究が行なわれている<sup>(1-1~10)</sup>。 まず、繊維の強度特性および界面の特性を改善するために、新しい繊維が開発さ れ、繊維の改質(表面メッキ、特定成分リッチ層の形成など)<sup>(1-1~4)</sup>が施されつ つある。FRMに用いられる代表的な繊維とその特性例<sup>(1-5)</sup>を表1-1に示す。また、 界面の特性を改善するため母材の合金化が数多く研究されてきた<sup>(1-6~10)</sup>。

さらに、FRMの強度を高くする一つの手法として繊維の体積率を向上するこ とがとりあげられた。SiC/Al合金のワイヤ状FRMの開発にあたって繊維の体積 率を高くすることによって強度が大幅に上昇したことが報告された<sup>(1-11)</sup>。しかし、 繊維の体積率を向上するのは限界があり、六方の配列では  $V_f^{max}=0.9$ 、四方の配 列では $V_f^{max}=0.79^{(1-12)}$ となり、また、繊維の体積率が高くなるほどFRMの強度 は期待したほど高くならず、FRMの破断伸びと破壊じん性は逆に小さくなって しまうことがある。

一方、FRMの構成材の一つである母材は、FRMの破壊に先立って繊維が破壊した後の応力緩和に重要な役割を果たすことが指摘されている<sup>(1-13~15)</sup>。しかし、従来の研究では金属母材に必要な特性として繊維との濡れ性<sup>(1-16)</sup>、反応性<sup>(1-17)</sup>あるいはFRMの成形性<sup>(1-18)</sup>などに注目されたものが多く、母材の機械的性質のみを抽出して、その特性がFRMの強度に及ぼす影響を調べる報告は極めて少ない。著者の調べた範囲において、母材の機械的性質のみを要因として実験的にFRMの強度特性を調べたのは香川ら<sup>(1-19)</sup>の論文の一つしか見あたらなかっ

|                             | 引張強度                  | 弾性率                     | 密度                   | 直径          | /#: + <b>*</b> |
|-----------------------------|-----------------------|-------------------------|----------------------|-------------|----------------|
| 繊維(メーカ)                     | (Kg/mm <sup>2</sup> ) | $(10^3 \text{Kg/mm}^2)$ | (g/mm <sup>3</sup> ) | (µm)        | 俪 考            |
| ボロン系(CVD法)                  |                       | -                       |                      |             |                |
| B on W (AVCO,CTI            | ) 350                 | 40                      | 2.46                 | 100,140,200 |                |
| B on C (AVCC                | ) 330                 | 37                      | 2.23                 | 100,140     | 単繊維            |
| Borsic(SiC coated B/W) (CTI | ) 300                 | 40                      | 2.58                 | 100,145     |                |
| B4C coated B/W (AVCC        | ) 400                 | 37                      | 2.27                 | 145         |                |
| 炭化ケイ素系                      |                       |                         |                      |             |                |
| SiC on W(CVD法) (AVCC        | ) 315                 | 43                      | 3.16                 | 100,140     | 単繊維            |
| SiC on C(CVD法) (AVCC        | ) 330                 | 40                      | 3.07                 | 100         | 単繊維            |
| SiC(ポリマー燒成法)                | 250                   | 18                      | 2.55                 | 10-15       | 繊維束            |
| (日本カーボン                     | )                     |                         |                      |             |                |
| 炭素系                         |                       |                         |                      |             |                |
| PAN系 高強度タイプ (*)             | 350-700               | 24-30                   | 1.70-1.77            | 7-9         |                |
| 高弾性率タイプ(*)                  | 230-300               | 35-80                   | 1.82-1.87            | 7-9         | 继续击            |
| ピッチ系 P55 (U.C.C             | ) 210                 | 39                      | 2.02                 | 5-10        | 利以亦正大          |
| P75 (U.C.C                  | ) 210                 | 53                      | 2.06                 | 5-10        |                |
| P100 (U.C.C                 | ) 210                 | 70                      | 2.10                 | 11          |                |
| アルミナ系                       |                       |                         |                      |             |                |
| Fiber FP (Du Pont           | ) 150                 | 39                      | 3.90                 | 20          | 繊維束            |
| 住化アルミナ (住友化学                | 180                   | 21                      | 3.20                 | 9           |                |

表1-1 FRMに用いられる代表的な強化繊維とその特性例(1-5)

\*: 例えば、東レ

た。この研究によると、母材の破壊じん性が高い場合では、FRMは累積的な破壊を示し、強度の向上が期待できる。また、繊維の強度特性を発揮させるために必要な母材の特性としては高い破壊じん性が必要となると指摘された。ほかに、前川ら<sup>(1-20)</sup>がFRPの強度特性に及ぼす母材の破壊じん性の影響について調べた結果によると、破壊じん性が高い母材の使用はFRPの強度を向上させる。彼らの結果によると、複合材料の強度への母材の機械的性質の寄与は、母材の強度そのもののみではなく、繊維の強度特性を発揮させることがより重要なのである。しかしながら、彼らは母材の機械的性質としては破壊じん性だけを取りあげ、母

材の強度特性について触れていない。

FRMの高温強度については多くの報告がある(1-21~26)。今井(1-21)、大西(1-22) および平野(1-23)の報告では、FRMの高温強度の低下は母材の高温強度の低下と 同じ傾向となり、母材強度の低下に起因する応力伝達能力の低下によるものと述 べたが、いずれも応力伝達能力がどのようにFRMの強度特性に影響を与えるか について詳しく検討していない。なお、計算機シミュレーションを用いると各要 因を独立に変化させてFRMの強度特性を調べることができるので、これを用い た研究が数多く行なわれている(1-27~34)。このなかで、母材の強度特性を要因と してFRMの強度を調べた研究がいくつかある。奥野ら<sup>(1-34)</sup>は繊維端末の応力集 中にいち早く注目し、有限要素法による計算で繊維の臨界長さを求めた。しかし、 この研究では応力集中や臨界長さをFRMの強度と関連させて検討していない。 落合ら<sup>(1-27)</sup>はシアラグモデルを用いてFRMの強度についてシミュレーションを 行ない、母材の破壊じん性と降伏応力を影響要因として、破断した繊維の無効長 さと応力集中を求めてFRMの強度を考察した。この研究では、母材の破壊じん 性が十分高いときは、母材の降伏応力の増加とともにFRMの強度が上昇してい る。ただし、降伏応力の低いときは無効長さが長いため、また、降伏応力の非常 に高いときには破断繊維による隣接繊維への応力集中が高いため、繊維の強化効 率は低下すると指摘した。このように応力集中および無効長さに基づく繊維の強 化効率あるいは耐荷能力という観点で母材の機械的性質の寄与に関する取り扱い は現在もつづいている。しかし、いずれの研究者もFRMについて、重要な性質 である強度のばらつきとの関連において検討しておらず、実験的に検証をもして いない点に今日、問題が残されている。

Kelly-Tyson<sup>(1-35)</sup>は不連続繊維で強化された複合材料の強度について複合則の計 算式を提案している。この計算式では、繊維は臨界長さの概念を用いて、繊維耐 荷能力を母材のせん断降伏応力の関数とみなすことができる。森本ら<sup>(1-36)</sup>はこの Kelly-Tyson の複合則を SiC ウィスカ強化アルミニウム合金の強度に適用したと ころ、実験結果がよく再現できたと報告した。臨界長さを有する繊維強度という 概念、つまり、繊維の耐荷能力を母材のせん断降伏応力の関数とする、このよう な概念がFRMについても有用なものと考えているが、延性母材が連続繊維で強

化されたFRMへの適用の可能性が残されている。上述により一方向FRMの強 度特性に及ぼす母材の強度特性の影響について実験するとともに、その原因と機 構について解明しておかなければならない。

一方、FRMの強度特性が破壊過程と関連すると指摘されている<sup>(1-19,37)</sup>。香川 ら<sup>(1-19)</sup>の報告では、母材の破壊じん性が高いときFRMは累積的な破壊を示し、 母材の強度が高く破壊じん性が低いとき、初期破断した繊維の破壊が材料全体の 破壊を引き起こし、非累積的な破壊を示すと指摘した。向後ら<sup>(1-37)</sup>もFRMの強 度とそのばらつきは破壊の様式と関係があると報告している。しかし、破壊様式 が母材の強度にどのように影響されるかは明らかにされていない。破壊過程に影 響する要因を究明するのはFRMの強度特性の影響要因を解明するのに役立つと 思われる。

1.2.2 FRMの強度のばらつきに関する従来の研究

FRMの強度のばらつきを論じた報告が少なくないが、そのほとんどは繊維の 強度特性<sup>(1-38~40)</sup>、界面特性<sup>(1-30)</sup>を影響要因としての実験結果を述べることにと どまり、実験結果についての考察、理論的取り扱いが少なく、また、その多くは 計算機によるシミュレーションに関するものである。FRMの強度の信頼性に影 響する要因、そのメカニズムを解明するにはまだまだ多くの研究が必要であると 思われる。

Coleman<sup>(1-41)</sup> は単繊維の強度のばらつきと繊維束の強度のばらつきについて理 論的に取り扱ったが、構成素材の力学的特性から複合材料の強度のばらつきを理 論的に論じる報告はまだ見あたらない。K.Godaら<sup>(1-29)</sup>はシアラグモデルを用いて B/Alの高温強度特性を計算機でシミュレートした。この研究によると、高温にな り母材の降伏応力が低下すると、FRMの強度が低下するとともに、強度のばら つきが大きくなり、強度のばらつきと母材の強度特性が関連することを指摘し、 その要因については破断した繊維に起因する応力集中の範囲と関係があると推測

した。向後ら<sup>(1-37)</sup>はSiC繊維強化ガラス複合材料の破壊挙動と強度のばらつきに ついて報告した。彼らは破壊強度が破壊過程に依存するために、その結果として 強度のばらつきが変わると指摘した。また、藤井ら<sup>(1-42)</sup>はFRPの強度のばらつ きが母材の強度に若干影響されることを報告した。

以上のように、従来の研究によれば複合材料の強度のばらつきに母材の力学的 特性が何らかの影響を与えていることは明らかである。しかし、何がどのような 機構で複合材料の強度のばらつきに影響を与えているのかを考えるとき、強化繊 維はもとより、母材までも強度がばらつく性質のセラミックスやエポキシ樹脂が 用いられており、また、母材の力学的特性が系統的に変化させられていないため、 その原因を明らかにすることができない。FRMは母材が金属で、強度がほとん どばらつかないうえ、その強度を熱処理や高温加熱によって系統的に変化させる ことができるので、これを利用した実験ならびに考察によって複合材料の強度を ばらつかせる要因のいくつかを的確には握できることが期待できる。強度をばら つかせる要因の解明は、強度の信頼性を改善する複合材料の創製に資するので、 本研究では母材の強度特性がどのようにFRMの強度のばらつきに影響を与える かについて系統的に実験しその要因を明らかにしようとした。

第1.3節 本研究の目的

前述のように、FRMの強度とその信頼性について実験的、理論的にまだ明ら かにされていないことが多く、工業的応用に対し問題が残されている。本研究で は実験と計算機シミュレーションによってFRMの強度とそのばらつきに及ぼす 母材の強度特性の影響を明らかにすることを目的とする。

第1.4節 本研究の内容

本論文は緒論および総括を含め5章からなっている。以下各章の概略を記述する。

第1章は緒論であり、従来の研究をまとめるとともに本研究の目的と意義につい て述べた。

第2章では、3種類の SiC/Al 合金のFRMを用いて熱処理により母材を軟・硬化 させ、FRMの強度とそのばらつきに及ぼす母材の強度の影響について実験をす るとともに、Rosenモデルを用いて複合則を修正することによって繊維強化効果か ら母材強度の寄与について検討した。また、本実験範囲内では、熱処理による残 留応力はFRMの強度とそのばらつきに影響を与えないことを確認した。

第3章では、2種類の SiC/AI 合金のFRMを用いて高温加熱により母材の強度を 変化させ、FRMの強度とそのばらつきに及ぼす母材の強度の影響について実験 をするとともに、母材の高温引張試験を行ない、修正した複合則の適用によって 母材強度の寄与について検討した。

第4章では、弾塑性有限要素法を用いたモンテカルロ・シミュレーションによっ てFRMの強度とそのばらつきに及ぼす母材の強度特性の影響について計算機シ ミュレーションを行なうとともに、FRMの強度特性と破壊過程を関連づけ、母 材の強度特性の影響を調べた。また、繊維の無効長さ、破断した繊維のまわりの 応力分布を調べ、母材の強度がFRMの強度とそのばらつきに影響する機構につ いて考察した。

第5章は総括であり、本研究で得られた結果を要約した。

### 第1章参考文献

- (1-1) K. Honjo and A. Shindo, Proc. Ist. Intern. Conf. on Composite Interfaces, (1986), Elsevier, P.101.
- (1-2) 福永、機械の研究、39(1987), 6, P.677.
- (1-3) 金・ほか3名、日本複合材料学会誌、9(1983), 1, P.22.
- (1-4) 森田、金属、48(1978), P.2.
- (1-5) 坂本、日本熔接学会誌、56(1987), P.20.
- (1-6) D. Bechet · ほか5名、日本複合材料学会誌、14(1988), P.16.

- (1-7) L. S. Gyzei, Fiz. Khim. Obrab. Mater., 2(1980), P.132.
- (1-8) 今井・ほか3名、鉄と鋼、76(1990), 1, P.65.
- (1-9) 近藤・ほか3名、鉄と鋼、75(1989), 9, P.1463.
- (1-10) 手塚・ほか3名、鉄と鋼、75(1989), 9, P.1470.
- (1-11) 今井・ほか3名、鉄と鋼、75(1989), 9, P.1555.
- (1-12) 香川、繊維強化複合金属、(1985), P.8, シーエムーシ.
- (1-13) D. Hull, An Introduction to Composite Materials, Cambridge Univ.Press, Cambridge, (1981), P.136.
- (1-14) A. S. Argon, Treaties on Materials Science and Technology 1, Ed.
   by H.Herman, Academic Press, New York, (1972), P.79.
- (1-15) 香川、繊維強化複合金属、(1985), P.143, シーエムーシ.
- (1-16) W. H. Sutton, Whisker Technology, Ed. by A.P.Levitt, Wiley-Interscience, New York, (1970), P.273.
- (1-17) S. Ochiai and K. Osamura, J. Mater, Sci., 23(1988), P886.
- (1-18) A. Mortensen, et al., Met. Trans., 19A(1988), P.709.
- (1-19) 香川、日本金属学会誌、53(1989), 3, P.339.
- (1-20) 前川・ほか4名、日本複合材料学会誌、17(1991), 4, P.155.
- (1-21) 今井・ほか3名、軽金属、40(1990), 3, P.202.
- (1-22) 大西、第4回次世代産業基盤技術シンポジウムー金属・複合材料技術ー 予稿集、(1986), P.335.
- (1-23) 平野、日本機械学会材料力学講演会講演論文集、(1990), P.174.
- (1-24) 松田・ほか4名、構造強度に関する講演会講演集、33(1991), P.206.
- (1-25) 正木、第4回次世代産業基盤技術シンポジウムー金属・複合材料技術ー 予稿集、(1986), P.343.
- (1-26) K. B. Park and I. G. Greenfield, Proc. Inter. Symp. on Comp. Mater. and Struc., (1986), P.1051.
- (1-27) 落合·長村、鉄と鋼、75(1989), 9, P.1730.

- (1-28) 合田·福永、鉄と鋼、75(1989), 9, P.1761.
- (1-29) K. Goda and H. Fukunaga, Comp. Sci. Tech., 35(1989), P.181.
- (1-30) I. Kimpara, el at., Proc. Japan-U.S. CCM-V, (1990), Tokyo, P.521.
- (1-31) S. Ochiai, el at., Proc. Japan-U.S. CCM-V, (1990), Tokyo, P.505.
- (1-32) K. P. Oh, J. Comp. Meter., 13(1979), P.311.
- (1-33) 奥野·三浦、日本金属学会誌、42(1978), 7, P.736.
- (1-34) 奥野·三浦、日本金属学会誌、37(1973), 9, P.1031.
- (1-35) A. Kelly and R. Tyson, High Strength Materials, (1965), John Wiley & Sons, P.578.
- (1-36) 森本·大内、軽金属、38(1988), 10, P.658.
- (1-37) 向後·香川、鉄と鋼、75(1989), 9, P.1769.
- (1-38) 合田、広島大学博士学位論文、(1989).
- (1-39) 合田・ほか2名、日本機械学会誌、54(1988), 500, P.753.
- (1-40) 合田・福永、第9回設計における信頼性工学シンポジウム前刷集
   (日本材料学会)、(1989), P.146.
- (1-41) B. D. Coleman, J. Mech, Phys, Solids, 7(1958), P.60.
- (1-42) 藤井・ほか1名、材料、27(1978), 303, P.57.

第2章 一方向FRMの引張強度とそのばらつきに及ぼす

母材の強度の影響

(熱処理により母材の強度を変化させた場合)

第2.1節 はじめに

第1章で述べたように、本研究の目的はFRMの強度とそのばらつきに及ぼす母 材の強度の影響を明らかにすることである。この目的を達成するためには、ほか の要因をできるだけ変化させずに 母材の強度のみを変化させて 実験する必要があ る。母材の強度を 変化させる方法としては、熱処理、 あるいは高温下での試験な どいくつか考えられるが、本章では、熱処理によってSiC/pure-Al、SiC/Al-5.7% Ni およびSiC/Al-4.0%Cu の3種類のFRMにおける母材を軟・硬化させることで、 母材の強度を変化させた。 FRMの引張試験を行なったのち、 FRMの強度への 母材の強度の寄与については、母材に埋め込まれた状態での繊維強度を用いて従 来の複合則を修正することによって考察した。また、母材の強度の影響を検討す るにあたって熱処理による残留応力の影響が無視できることを実験的に確認した。

第2.2節 試料および実験方法

2.2.1 試料

試料には強度のばらつきを調べるため多数の試料の引張試験が容易に実施でき るワイヤ状FRM(日本カーボン製(株))を用いた。これは約500本の連続SiC 繊維束に Al合金を溶浸して 作られた 直径 0.5mm のFRMである。 連続 SiC 繊 維<sup>(2-1)</sup>(商品名Nicalon)は日本カーボン(株)において製造されたもので、微細 なβ-SiC結晶から成っている。この繊維は、ポリカルボシラン(Poly-Carbosilane; PCS)を紡糸-不融化処理-焼成して製造され、主として、Si, C, Oの3成分からな り、その組成比がほぼ Si3C4Oである。SiC繊維の一般的特性を表2-1に示す。ワイ ヤ状FRMは図2-1に示すように、溶融金属浸透法<sup>(2-2)</sup>によって製造され、その製 造プロセスは次のとおりである。

| Property                        | Value                             |
|---------------------------------|-----------------------------------|
| Filament diameter               | 14 μm                             |
| Shape of cross section          | Round                             |
| Filament / Yarn                 | 500                               |
| Tex                             | 210 g/Km                          |
| Density                         | $2.55 \times 10^3 \text{ Kg/m}^3$ |
| Tensile strength                | 2.5~3.0 GPa                       |
| Elastic modulus                 | 180~200 GPa                       |
| Maximum usable temperature      | 1500 K                            |
| Coeffcient of thermal expansion | 3.1×10 <sup>-6</sup> /K           |

表2-1 SiC (ニカロン) 繊維の一般的特性<sup>(2-1)</sup>

- (1) 繊維供給:ヤーン状の素材 SiC 繊維の撚りを除きながら紙管から連続的 に引き出して工程に導入する。
- (2) サイジング剤除去:繊維の保護や取り扱い性のための熱分解タイプのサイジング剤(集束剤)を高温雰囲気中で連続的に通過させて取り除く。
- (3) 溶湯浸透:繊維束を溶融 A1 合金中に 連続的に浸せきし通過させながら、
   十分に開繊した繊維間に液相の金属を浸透させ複合化を行なう。
- (4) 引き上げ:ノズルの小孔を通して引き上げ余剰の溶湯を絞り出す。
- (5) 凝固および巻取り:母材の Al 合金を凝固させ、ドラム上に巻き取って



図2-1 連続式の溶融金属浸透法による SiC/Al 合金 F R M の製造プロセス

ワイヤ状FRMとする。

表2-2に純 AI 母材のワイヤ状FRMの一般的特性を示し、図2-2 (a)および (b) に、 それぞれ、ワイヤ状FRMの外観および横断面顕微鏡組織を示す。このワイヤ状 FRMは、このまま工業的に一部利用されるが、一般的には、ホットプレス成形 法の中間素材として複合製品の製造に用いられる<sup>(2-3)</sup>。

なお、上のような製造プロセスを経て、納入された状態の試料を本実験では受入れ材と呼ぶ。

| Shape of cross section   | Round    |  |
|--------------------------|----------|--|
| Diameter                 | 0.5 mm   |  |
| Wire weight              | 0.50 g/m |  |
| Tensile strength         | 1.2 GPa  |  |
| Elastic modulus          | 130 GPa  |  |
| Volume fraction of fiber | 40 vol%  |  |
| Minimum loop diameter    | 30 mm    |  |
|                          |          |  |

表2-2 純 Al 母材のワイヤ状FRMの一般的特性

#### 2.2.2 熱処理条件

母材は、純Al, Alに5.7%Niを添加したAl 合金 および Al に4.0%Cuを添加した Al合金の3種類であり、実験に用いたワイヤ状FRMを熱処理することによって母 材の組織や強度特性を変化させることができる。以下、これらのFRMをそれぞ れ、SiC/pure-Al, SiC/Al-5.7NiおよびSiC/Al-4.0Cuと記す。 熱処理はいずれもア ルゴンふん囲気の中で 200℃~600℃ の範囲で行ない、加熱保持時間は10minとし た。加熱保持後、ただちに水中に焼き入れし母材の組織を安定させた。また、 SiC/Al-4.0Cuについては高温加熱(500℃以上)後急冷して、溶体化処理したのち、



(a) ワイヤ状FRMの外観



(b) ワイヤ状FRM (SiC/Al)の横断面顕微鏡組織

図2-2 ワイヤ状FRMの外観および横断面組織写真

時効硬化させた。時効硬化条件としては2024のAl-Cu合金(3.9~5.0%Cu含有)の時効硬化プロセス<sup>(2-4)</sup>に参考して室温で72時間放置として、その後引張試験を行なった。

2.2.3 FRMおよび抽出繊維の引張試験方法

FRMの引張試験はインストロン形引張試験機(島津製、 AUTOGRAPH IS-5000)にエアーチャックを取付けて行ない、 荷重はロードセルの信号を動ひずみ アンプを介してペンレコーダーに記録した。なお、 エアーチャックのはさみ部分 にAI板を張り付け、引張試験片にはタブをつけていない 。試験条件としてゲージ 長さは50mm、引張速度は0.5mm/minを採用し、エアーチャックの空気圧は2.5Kg /mm<sup>2</sup>とした。試料本数は強度のばらつきを調べるため各試験条件につき40本とし た。

抽出繊維の引張試験片の作製要領は図2-3に示す。まず、熱処理を受けたFRM の母材の Al 合金を10%NaOH水溶液で溶かし、溶け残った繊維束を水で数回洗い、 室温で乾燥させてからSiC繊維を1本ずつ引き出し、10mm×6mmの穴あきの方眼紙 の中央線に沿って一直線になるように接着剤で張り付けて単繊維の引張試験用の 試料(図2-3の(2))とした。この試料をチャックに取付けてから、線香で両側 の方眼紙を焼き切って引張試験を行なった(図2-3の(3))。試験条件として、 試料本数は繊維強度のばらつきを調べるため各条件につき60本、引張速度は 0.2mm/min,ゲージ長さは10mmとした。また、繊維直径を測定するにあたって、 レーザー外径測定器(アンリツ製、Model M550A)を用いた。測定は一定の間隔 をおいて3点測定し、その平均値を繊維直径とした。

2.2.4 強度とばらつきの評価方法

セラミックス繊維の強度の分布は2母数ワイブル分布によく適合するとした多くの報告がある<sup>(2-5)</sup>。 具体的に, SiC繊維の強度については Godaら<sup>(2-6)</sup>、Kagawa



(1) Extracting of fiber

Composite wire



(2) Tensile test piece



図2-3 抽出繊維の試料作製と引張試験

ら<sup>(2-7)</sup>および Simon ら<sup>(2-8)</sup>によって、2母数ワイブル分布によく適合することが確 認されている。また、セラミックス繊維強化金属のFRMの強度についても、同 様に2母数ワイブル分布よってよく整理されることがすでに示されている<sup>(2-9~12)</sup>。 そこで、本研究では SiC 繊維とFRMの強度の分布は2母数ワイブル分布を用いて 評価することとした。

2母数ワイブル分布 F(σ) は一般に次式で表される。

 $F(\sigma)=1-\exp\{-(\sigma/\sigma_0)^m\}$ 

(2-1)

ここで、m および<sub>の0</sub>は、それぞれ、ワイブル形状母数およびワイブル尺度母数で ある。本実験では得られた強度のデータに対し、式(2-1)で最尤法<sup>(2-13)</sup>を用いて 形状母数と尺度母数の推定を行なった。式(2-1)の尤度関数 LF は一般的に次式 のように与えられる。

 $L_F = \prod_{i=1}^{n} f(\sigma_i)$ 

(2-2)

ここで、n はサンプル数、 $f(\sigma)$  は式 (2-1)の確率密度関数である。式 (2-1) に おいて尤度 LFを最大にするm と $\sigma_0$  が最尤推定量である。したがって、これらを 求めるための尤度方程式は次式のように表すことができる。

$$\frac{1}{m} + \frac{1}{n} \sum_{i=1}^{n} \ln \sigma_i - \frac{\sum_{i=1}^{n} \sigma_i^m \cdot \ln \sigma_i}{\sum_{i=1}^{n} \sigma_i^m} = 0$$

(2-3)

 $\sigma_0 = (\frac{1}{n}\sum_{i=1}^n \sigma_i^m)^{1/m}$ 

式(2-3)では、Newton-Raphson法によって第1式のmを求め、これを第2式に代

入してのを求めた。

異なるゲージ長さの繊維またはFRMの強度を比較するとき、同じゲージ長さの強度に換算する必要がある。ゲージ長さを変化させた場合の2母数ワイブル分布は、寸法効果によって次式のように表されている<sup>(2-6)</sup>。

 $F(\sigma)=1-\exp\{-L/L_0(\sigma/\sigma_0)^m\}$ 

(2-4)

ここで、L はゲージ長さ、Lo はワイブル母数の推定の時に用いられたゲージ長さである。

式(2-4)により、ゲージ長さLをもつ繊維のワイブル平均強度は次のように計算される。

$$\sigma_{L} = \int_{0}^{\infty} \{1 - F(\sigma)\} d\sigma$$
  
=  $(\frac{L_{0}}{L})^{1/m} \sigma_{0L_{0}} \Gamma(1 + \frac{1}{m}) = (\frac{L_{0}}{L})^{1/m} \sigma_{L_{0}}$  (2-5)

ここで、「はガンマ関数である。

なお、実験で得られた強度のデータをワイブルプロットするときは、次式に示 される平均ランク法<sup>(2-14)</sup>を用いた。

$$F(\sigma) = \frac{j}{n+1}$$
(2-6)

ここで、j は強度のデータの順序統計量の順序数、n はサンプル数である。また、 式(2-1)の両辺の対数を2度とると、

$$\ln \ln(\frac{1}{1-F(\sigma)}) = m \cdot \ln\sigma + \text{const.}$$
(2-7)

となるので、ワイブル形状母数 m は、強度のデータのワイブルプロットの傾きであり、強度のばらつきを示すパラメーターとなっている<sup>(2-15~17)</sup>。

2.2.5 母材の組織観察および硬度測定

熱処理による母材の組織と強度の変化を調べるため、顕微鏡組織の観察と硬度の測定を行なった。顕微鏡組織は粒度の異なる数種のダイヤモンド研磨材を用いてFRMを注意深く研磨し、5%HFの水溶液を腐食液として組織を出現させた。また、10本のFRMの横断面の顕微鏡組織写真から繊維本数を数えてその平均値をワイヤ状FRMの繊維本数Nとして次式<sup>(2-18)</sup>によって繊維体積率Vfを算出した。

$$V_{\rm f} = \frac{N \cdot d_{\rm f}^2}{d_{\rm w}^2} \times 100 \tag{2-8}$$

ここで、N:繊維本数、df:繊維直径、dw:ワイヤ状FRMの直径、本実験では レーザー外径測定器を用いて測定した抽出繊維の直径の平均値を繊維直径 df とし、 ワイヤ状FRMの直径 dw は0.5mm とした。

一方、母材硬度の測定方法として、ビッカース微小硬度計(松沢製、MHT-1) を用いて、顕微鏡組織の観察のために研磨したFRMの横断面上で繊維を避けて、 荷重10g、負荷時間 25sec で20点を測ってその平均値を母材の硬度とした。本章で は母材の硬度から、母材の降伏応力および強度を推定した。

#### 第2.3節 実験結果

2.3.1 FRMの強度とそのばらつき

図2-4 (a), (b) および (c) はそれぞれ熱処理を受けたSiC/pure-Al, SiC/Al-5.7Ni およびSiC/Al-4.0Cuの引張強度をワイブル確率紙上にプロットしたものである。 この図から、それぞれ強度の分布はほぼ直線性を示し2母数ワイブル分布によって 良好に整理できることがわかる。図2-5は熱処理を施した3種類のFRMの平均強 度と熱処理温度の関係を示す。この図から、400℃まで3種類の試料の平均強度は ほとんど変化していないことがわかる。しかし、熱処理温度が400℃を超えるとそ



図2-4 熱処理を受けたSiC/pure-Al, SiC/Al-5.7Ni および SiC/Al-4.0Cu の引張 強度のワイブルプロット



図2-5 熱処理を受けたSiC/pure-Al, SiC/Al-5.7Ni および SiC/Al-4.0Cu の 平均強度と熱処理温度の関係

れぞれ挙動が異なる。すなわち、SiC/pure-Al と SiC/Al-5.7Niの平均強度は低下し、 また、SiC/Al-5.7Niの平均強度の低下がSiC/pure-Alのそれより大きい。例えば、  $600^{\circ}$ の平均強度はSiC/pure-Alが受入れ材より15%低下したのに対して、SiC/Al-5.7Niは37%低下した。また、それらに対し、SiC/Al-4.0Cuの平均強度は熱処理温 度とともに上昇し、例えば、受入れ材に対し $600^{\circ}$ の平均強度は14% 高くなった。

熱履歴を受けたFRMの強度について多く報告されているが<sup>(2-19~21)</sup>、熱処理 を受けたあと、FRMの強度が上昇するのは、本研究でのSiC/Al-4.0Cuの結果の ほかに、まだみあたらない。これらの3種類のFRMの強度の変化は、SiC/pure-Al の母材が単一のAlのα相であるのに対して、SiC/Al-5.7Niの母材はAl-Ni合金の共 晶成分に近くほとんどAl-Al3Niの共晶組織<sup>(2-22)</sup>であり、また、SiC/Al-4.0Cuの母 材は時効硬化による大きな強度の変化がある材料<sup>(2-23)</sup>であるから、熱処理による 母材の強度特性の変化、界面反応による繊維の強度特性の変化および熱履歴によ る残留応力などの点から検討しなければならない。

図2-6は熱処理を受けた3種類の試料の強度のワイブル形状母数mと熱処理温度の 関係を示す。この図からわかるように3種類の試料のm値は、若干ばらつきはある ものの、熱処理温度によって、SiC/pure-Alのそれはほとんど変わらず、平均で27 であり(この値は報告された同じSiC/pure-Alのワイヤ状FRMの引張試験の結果 と同じである<sup>(2-19)</sup>)、それに対し、SiC/Al-5.7Niのm値は熱処理温度の上昇とと もに小さくなり、逆に、SiC/Al-4.0Cuのm値は大きくなる傾向にある。すなわち、 熱処理温度の上昇によって、SiC/pure-Alの強度のばらつきがほとんど変わらない のに対し、SiC/Al-5.7Niのほうは熱処理温度の上昇とともに強度のばらつきは大き くなり、SiC/Al-4.0Cuのほうは小さくなる傾向にある。これらの結果に対する要 因として、上述したFRMの強度に影響する要因と同じように、熱処理による母 材の強度特性の変化、界面反応による繊維の強度特性の変化および熱履歴による 残留応力などが考えられる。



図2-6 熱処理を受けた SiC/pure-Al, SiC/Al-5.7Ni および SiC/Al-4.0Cu の引張強度のワイブル形状母数

2.3.2 抽出繊維の強度とそのばらつき

図2-7 (a)および (b) は受入れ材および400℃と600℃で10min加熱して水冷した3 種類のFRMから抽出した繊維の平均強度および強度のワイブル形状母数を、そ れぞれ、示したものである。この図からわかるように、熱処理温度が高くなるに つれ繊維の平均強度は若干低下する。これは400℃以上で母材と SiC 繊維がわずか 反応しはじめることに起因する繊維の弱化によるもので、前述したFRMの強度 変化の一要因と考えられる。一方、抽出繊維の強度のワイブル形状母数mf は熱処 理温度に対しほとんど変化しておらず、繊維の表面に新しい欠陥を与える界面反 応層はほとんど生成していないことを示唆している。このことから上述の熱処理 を受けたFRMの強度とそのばらつきの変化は界面反応層そのものの影響による ものとは考えがたく、熱処理による母材の強度特性および強化繊維の強度低下が 主な原因と考えられる。表2-3に抽出繊維の強度のワイブル形状母数mf の平均値を 示す。従来、複合材料の強度特性が主に繊維の強度特性に支配されると考えられ、

| Sample | SiC/pure-Al | SiC/Al-5.7Ni | SiC/Al-4.0Cu |
|--------|-------------|--------------|--------------|
| mf     | 3.46        | 4.46         | 4.50         |

表2-3 抽出繊維の強度のワイブル形状母数の平均値

複合材料の強度特性についての研究は繊維の強度特性から議論されてきた。とこ ろが、上述の抽出繊維の強度特性から本実験の熱処理を受けたFRMの強度とそ のばらつきの変化(図2-5と図2-6)を説明するのは明らかに難しいものである。 例えば、熱処理温度の上昇によってSiC/Al-4.0Cuからの抽出繊維の強度は若干低 下する傾向にあったが、FRMそのものの強度は熱処理温度500℃以後では大きく なっている実験事実を繊維強度の変化で説明することはできない。このことは、 母材そのものは引張荷重をわずかしか負担できないが<sup>(2-24)、</sup>複合したとき母材の 強度特性が何らかの形でFRMの強度特性に無視できない影響を与えていること





図2-7 抽出繊維の平均強度と強度のワイブル形状母数

を示唆している。

2.3.3 母材の顕微鏡組織と硬度

図2-8 (a)および (b) は、それぞれ、熱処理を受けたSiC/Al-5.7NiおよびSiC/Al-4.0Cuの母材の顕微鏡組織である。図2-8 (a) から、SiC/Al-5.7Ni の母材であるAl-5.7%Ni 合金は、共晶Al-Al3Niの成分に近い<sup>(2-22)</sup>から (Al-Ni 合金の状態図<sup>(2-22)</sup>を 付録1に示す)、受入れ状態ではワイヤ状FRMが製造されたとき溶融状態から凝 固した共晶組織であるが、熱処理温度が350℃から共晶組織が消滅しはじめ、600 ℃になると観察されなくなることがわかる。Al-Niの共晶合金では、焼きなましに より共晶組織は細かく粒状化されることおよび粒状化が進むにつれ強度は低下す ることが報告されている<sup>(2-25)</sup>。したがって、熱処理を受けたSiC/Al-5.7Niの母材 の強度の変化は共晶組織の粒状化によるものと考えられる。一方、図2-8 (b) から わかるように、SiC/Al-4.0Cuの母材である Al-4.0%Cu 合金は、受入れ状態では網 状組織となっており、これはワイヤ状FRMが製造されたとき溶融状態から凝固 して結晶粒界に生成した化合物の CuAl2 の組織と推定できる<sup>(2-26)</sup> (Al-Cu 合金の 状態図<sup>(2-23)</sup>を付録1に示す)。加熱温度が高くなるにつれ、化合物のCuAl2が固溶 され網状組織が次第にくずれ、600℃になると網状組織が観察されなくなる。Al-Cu合金は熱処理硬化型合金系であり、一般には溶体化処理とその後の時効硬化処 理で強度が上昇する(2-23)。

図2-9は母材の硬度を熱処理温度とともに示したものである。この図からわかる ように、SiC/pure-Al の母材は熱処理を受けても顕微鏡組織に何らの変化もないた め、硬度の変化がなかった。一方、SiC/Al-5.7Ni と SiC/Al-4.0Cu の母材硬度は 400℃までほとんど変化していないが、400℃以上では SiC/Al-5.7Ni の母材硬度は、 母材の共晶組織が粒状化されるにしたがい硬度が低下した。それに対し、SiC/Al-4.0Cuの母材硬度は、固溶体から化合物の CuAl2 が細かく析出することによる硬 化、いわゆる、時効硬化により大きく上昇した。





a) as-received b) 400°C

d) 600℃

20µm 1

(b) SiC/Al-4.0Cu

図2-8 熱処理を受けたFRMの顕微鏡組織



図2-9 熱処理を受けたFRMの母材の硬度

なお、金属材料の硬度は、変形を与えられるとき呈する抵抗の大小を示す尺度 で、他の機械的性質をおおよそ推定することができる<sup>(2-27,28)</sup>。図2-10 (a) および (b)はアルミニウムハンドブック<sup>(2-29)</sup>から引用したもので、それぞれ、純AI(1060) とAI-Cu (2024、3.8~4.9%Cu含有)の強度および降伏応力を硬度とともにプロッ トしたものである。この図から AI 合金の強度と降伏応力が硬度と良好な直線性を 示し、比例する関係をもつことが認められる。そこで、本実験では母材の強度と 降伏応力は母材の硬度に比例するものとして硬度の変化から強度と降伏応力の変 化を推測して考察に用いた。

2.3.4 熱処理による母材の残留応力

本実験で用いたFRMでは、SiC 繊維の熱膨張係数が 3.1×10<sup>-6</sup>/K<sup>(2-1)</sup>、純AI (1050) のそれが 24×10<sup>-6</sup>/K<sup>(2-30)</sup>で、その差が大きい。したがって、本実験で 熱処理を行なった後、FRMには残留応力が必ず発生する。FRMの変形や比例 限に対する残留応力の影響についていくつかの報告<sup>(2-31~33)</sup>があるが、破壊強度 とそのばらつきに及ぼす残留応力の影響ついての報告は、まだ見当たらない。そ こで、熱処理によるFRMの強度変化を考察する前に、FRMの強度とそのばら つきに及ぼす残留応力の影響を調べておく必要があるので、以下の実験を行なっ た。残留応力の測定には、その方法が確立しているX-ray 回折法を用いた。

2.3.4.1 残留応力の測定方法

X-ray 回折により格子面の間隔の変化率を測定し、残留応力を計算することがで きる。本実験では JDX-11P の X-ray 回折装置(日本電子製)を用いて 平行ビー ム法の並傾法<sup>(2-34)</sup>(Iso-Inclination Method)でFRMの残留応力の測定を行なった。 測定装置の校正には標準粉末Si 試料を用いた。図2-11に X-ray による残留応力測 定における並傾法を示す。この図において $\phi_0$ はX-rayの入射角で、 $\eta$ の値は(180-2 $\theta$ )/2で、 $\theta$ は測定する格子面の回折角である。表2-4にFRMの残留応力の測定条



図2-10 純 Al と Al-Cu 合金の強度および降伏応力と硬度との関係<sup>(2-29)</sup>


図2-11 X-ray による残留応力測定法(並傾法)

件を示す。また、母材のAl- $\alpha$ 相の(422)格子面の回折ピークの測定を行ない、 ピーク位置決定法としては半価幅法<sup>(2-35)</sup>を、母材のAl- $\alpha$ 相の標準試料としては直 径0.5 $\mu$ mの焼鈍された純Al粉末試料を用いた。

| Characteristic X-ray Cu-K a 1  |                        |  |
|--------------------------------|------------------------|--|
| Current, Voltage of X-ray tube | 100 mA, 40 KV          |  |
| Irradiated area                | 0.5mm×10 mm            |  |
| Counting step                  | 0.01 deg               |  |
| Counting time                  | 1.0 sec                |  |
| X-ray incident angle           | 90,97,104,111,118 deg. |  |

表2-4 X-ray による残留応力の測定条件

残留応力の計算は一般によく用いられる次式(2-35)で行なった。

 $\sigma_r = -KM$ 

(2-9)

ここでは、K は応力係数、M は2 $\theta$ -sin<sup>2</sup> $\psi$ 線図の傾きである。すなわち、

$$K = \frac{E}{2(1+\nu)} \cot\theta_0$$

$$M = \frac{\partial(2\theta)}{\partial \sin^2 \psi}$$
(2-10)
(2-11)

ただし、E は弾性係数、v はポアソン比、  $\theta$ は(422)格子面の X-ray の回折角、  $\theta$ oは無ひずみ状態の(422)格子面のX-rayの回折角である。 $\theta$ oとして本実験で は、純A1粉末試料の(422)格子面の回折角を用いた。また、X-ray弾性係数 E/(1+v)は報告された純Alの(422)格子面の実験値である52.1±1.9GPa<sup>(2-36)</sup>を用 いた。また、測定に際してはワイヤ状FRMを粘着テープ上に20本(長さ20mm× 幅10mm)並べたものをX-ray 回折試料とした。 2.3.4.2 FRMの強度とそのばらつきに及ぼす残留応力の影響

2.3.4.2-1 残留応力の測定結果

図2-12はAl粉末および400℃で熱処理を受けたSiC/pure-Alと SiC/Al-5.7Niの2 $\theta$ -sin<sup>2</sup> $\phi$ 線図を示したものである。この図からわかるように、実験値は2 $\theta$ -sin<sup>2</sup> $\phi$ 線 図上で良好な直線性を持っていること、および、標準Al 粉末試料の2 $\theta$ -sin<sup>2</sup> $\phi$ 線 図の傾きはゼロで残留応力のないことを示している。また、2種類のFRM試料の 2 $\theta$ -sin<sup>2</sup> $\phi$ 線図の傾きはマイナスとなっており、焼き入れと焼きなましを受けたF RMの軸方向には母材が引張残留応力を受けていることがわかる。 式 (2-9) によ り計算すると、 焼き入れを受けた SiC/pure-Al の母材は 23.9MPa、SiC/Al-5.7Ni の母材は27.4GPaの引張残留応力を、焼きなましを受けたSiC/pure-Alの母材は 17.1MPa、SiC/Al-5.7Niの母材は17.1GPaの引張残留応力を受けている。

図2-13はFRMの残留応力を熱処理温度とともにプロットしたものである。 SiC/Al-5.7Ni の母材は共晶成分に近く、第2.3節に示したように400℃以上で熱処 理をすると共晶組織は粒状化されることによる組織の変化があるので、熱処理温 度400℃まで測定した。この図からわかるように、2種類のFRMは熱処理の冷却 速度にかかわらず、熱処理を受けると残留応力はプラス、すなわち、母材が引張 残留応力を受けていることことがわかる。また、焼き入れを受けたものは300℃ま で、焼きなましを受けたものは200℃まで熱処理温度の高くなるにつれ、残留応力 がほぼ直線的に大きくなるが、それぞれ300℃、200℃以上になると残留応力はほ とんど一定になる。なお、焼き入れを受けたものの残留応力は焼きなましを受け たもののそれよりやや大きい。

2.3.4.2-2 残留応力のFRMの強度とばらつきへの影響

第2.3節の図2-7 (a) に示したように熱処理を受けたFRMから抽出した繊維の引 張強度は、400℃以上の熱処理を受けると若干低下し、また、図2-13に示したよう に、残留応力は熱処理温度が400℃以上ではほとんど一定となっているので、熱処



図2-12 Al粉末と400℃の熱処理を受けたFRMの2 $\theta$ -sin<sup>2</sup> $\psi$ 線図



図2-13 X-ray回折測定によるFRMの残留応力と熱処理温度のプロット

理温度としては400℃までで残留応力を変化させた試料を引張試験した。図2-14お よび図2-15は、それぞれ、SiC/pure-Al および SiC/Al-5.7Niの平均引張強度とワイ ブル形状母数を残留応力に対してプロットしたものである。これらの図から、本 実験の範囲ではFRMの強度とそのばらつきに対し残留応力がほとんど影響を与 えていないことが認められる。また、第4章に述べる有限要素法を利用し、あらか じめ残留応力を与え、計算機上でFRMの強度とそのばらつきを調べたが、残留 応力は破壊強度とばらつきにほとんど影響を与えなかった。以上のことによって、 本実験では熱処理による残留応力がFRMの強度とそのばらつきに及ぼす影響を 無視できることが確認された。

第2.4節 考察

2.4.1 母材強度の役割

本章の第2・3節での実験結果から母材の強度はFRMの強度特性に対し、大き な影響を与えることが判明した。そこで、まず次式に示す複合則を用いて母材強 度の寄与分を考察する。

 $\sigma_c = \sigma_f V_f + \sigma_m^* (1 - V_f)$ 

(2-12)

ここで、 $\sigma_c$ は複合材料の強度、 $\sigma_f$ は繊維の強度、 $\sigma_m$ は複合材料が破壊するときの 母材の負担する応力、および $V_f$ は繊維の体積率である。実際の計算では、 $\sigma_f$ に抽 出繊維の強度の平均値を、 $V_f$ に試料の繊維体積率(式2-8による値、表2-5に示す) をそれぞれ用いた。また、pure-Alの母材は、焼きなまし状態の工業用純Al(1050 材)を第3章で述べる実験方法によって実際に引張試験して得た強度83MPaを $\sigma_m^*$ と してを用いた。これに対し、Al-5.7%NiとAl-4.0%Cuの母材は文献値<sup>(2-37,38)</sup>を参 考にし、常温でそれぞれ130MPaおよび150MPaとして $\sigma_m^*$ を見積った。ただし、こ れらの母材強度は熱処理温度によって変化するが、熱処理後の母材強度はすでに 述べたように硬度と比例するので、図2-9に示したFRMの母材の硬度の測定結果



図2-14 熱処理を受けたSiC/pure-Alの強度とワイブル形状母数への残留応力の影響



図2-15 熱処理を受けたSiC/Al-5.7Niの強度とワイブル形状母数 への残留応力の影響

表2-5 F R M の断面写真から測定した繊維の体積率

| Sample         | SiC/pure-Al | SiC/Al-5.7Ni | SiC/Al-4.0Cu |
|----------------|-------------|--------------|--------------|
| V <sub>f</sub> | 34.9%       | 32.7%        | 30.4%        |

を利用して得た値をそれぞれ採用した。一方、抽出繊維の平均強度は2母数ワイブ ル分布に従うとしたから、式(2-5)を用いて引張ゲージ長さの10mm を Lo とし、 m<sub>f</sub>には表2-3の平均値を代入してゲージ長さ50mm の強度に換算し、本実験でのゲ

ージ長さ 50mm のFRMの強度の実験値との比較に備える。

F R Mの強度変化を熱処理による繊維強度の低下によるものと母材強度の変化 によるものの2要因に分けて検討する。まず、最初に母材強度が熱処理を受けても 不変なものとし、繊維強度が熱処理を受けて変化したことだけを取り入れ、複合 則の式(2-12)を適用する。図2-16にSiC/pure-Al,SiC/Al-5.7NiおよびSiC/Al-4.0Cuの複合則による計算強度(○印)および実験値(●印)を基準化して示す。 この基準化した強度とは熱処理後の強度 σιを熱処理前の強度 σrで割ったもので あり、また、ここで基準化した強度を用いて考察するのは、図2-5、図2-6、図2-7、 表2-3および表2-5に示したように、3種類の試料の受入れ材の強度、抽出繊維の強 度およびそれらの強度のばらつきならびに繊維の体積率が異なって直接に比較し がたいからである。図2-16の○印と●印の比較からわかるように、SiC/pure-Alに ついては、熱処理による繊維強度の低下を考慮して複合則による基準化された強 度は、実験値による基準化された強度とほとんど同じである。それに対して、 SiC/Al-5.7NiとSiC/Al-4.0Cu ついては実験値による基準化された強度と複合則によるそれと違うのは、熱 処理による母材強度の変化を取り入れていないから当然のことである。

つぎに、熱処理による繊維強度と母材強度の2要因の変化を取り入れ複合則の式 (2-12)に適用する。その結果を同じ図2-16に△印で示す。この図からわかるよ うに、熱処理による繊維強度と母材強度の2要因の変化を同時に取り入れても、な おかつ、熱処理による母材強度の変化のあるSiC/Al-5.7NiとSiC/Al-4.0Cu材は複合



Normalized tensile strength

図2-16 F R Mの複合則による基準化された強度と実験による基 準化された強度

則による基準化された強度(△印)と実験値による基準化された強度(●印)と かなり違う。このことから、FRMの強度に対する母材強度の寄与は母材強度と 体積率の積、つまり、母材強度の変化分そのものより大きいことが明らかである。 いわば、従来の複合則はFRMの強度に対する母材強度の寄与を正確に評価して いないので、その要因を本論文で明らかにしていく。

2.4.2 強度のばらつきをもたらす要因

ぜい性材料の破断強度がばらつくのは、材料にある多種類の欠陥に起因すると 考えられる<sup>(2-39,40)</sup>。FRMは繊維、母材および界面で構成されるが、もともと 強化材としてのセラミックス繊維の強度がばらつくので、FRMの強度のばらつ きが大いに繊維強度のばらつきの影響を受けていると考えられる。ところで、本 研究に用いたSiC/Al合金FRMは、図2-7 (b) に示したように本実験条件の範囲で は界面反応による強化繊維の強度のばらつきの変化がほとんどないので、繊維強 度のばらつきから図2-6に示した3種類の試料のFRMの強度のばらつきの変化を 説明するのは無理がある。とくに、SiC/Al-4.0Cuは熱処理を受けて強度のばらつ きが小さくなったのに対し、抽出繊維の強度のばらつきがほとんど変化しなかっ たので、対応がつかない。それに対して、熱処理により試料の母材の強度が大き く変化したので、FRMの強度のばらつきは母材強度と関連があると考えられる。 これまで複合材料の強度のばらつきに対する繊維強度のばらつきの影響について はいくつかの研究が報告されている(2-16,41~44)が、母材強度の影響についての報 告はきわめて少ない。藤井ら<sup>(2-45)</sup>は複合則にもとづいてFRPの強度とそのばら つきへの影響要因を検討し、母材が弱くなるとFRP(繊維強度プラスチック) の強度のばらつきは大きくなる結果を得ている。また、合田ら<sup>(2-46)</sup>はシアラグモ デルを用いて高温での母材のせん断降伏強度の低下にともなうFRM強度の変化 をモンテカルロシミュレーションによって推定し、高温になるにしたがって強度 が低下し、そのばらつきが大きくなることを指摘した。そして、強度のばらつき

の変化の原因について破断した繊維に起因する応力集中に関係すると推測した。 なお、香川ら<sup>(2-47)</sup>は炭素繊維強化アルミニウムの強度のばらつきに及ぼす繊維体 積率の影響について実験し、繊維体積率が大きくなるとFRMの強度のばらつき が大きくなり、繊維自体の強度のばらつきに近い値となっていると報告し、その 原因については繊維の体積率の増加とともに母材の応力緩和能力が小さくなった ために、FRMの中の弱い繊維が破壊してから即座に最終破壊に至り、FRMの 強度のばらつきが繊維の強度のばらつきに近くなったと考えている。また、向後 ら<sup>(2-48)</sup>と香川ら<sup>(2-49)</sup>はFRMの強度のばらつきが破断過程と関連すると指摘した。 本実験結果は上述のようにFRMの強度のばらつきの変化も母材の強度の変化と 関連することを示している。このFRMの強度のばらつきへの母材強度の影響は 第3章での高温加熱による母材の強度を変化させたとき実験的に確かめ、さらに第 4章でコンピューターによるシミュレーションの結果と合わせてその原因について 考察する。

第2.5節 母材に埋め込まれた状態での繊維強度を考慮したFRMの 強度の計算式の提案

2.5.1 母材に埋め込まれた状態での繊維強度を考慮した複合則の修正式

従来の複合則、式(2-12)は、繊維の強度と繊維が破断した時の母材の応力に それぞれの体積率を 乗じて加算したものであり、 単純かつ物理的意味が 明瞭で あるため、 しばしば複合材料の強度予測に用いられている<sup>(2-45,50~51)</sup>。 とく に、FRMにおいては、 達成すべき強度の目標値として採用されることがあっ た<sup>(2-52~53)</sup>。しかし、この複合則は2本棒モデル、すなわち、繊維と母材間の接合 力をまったく考慮していない状態で成立する性格のものである。このことは、母 材に埋め込まれた状態での繊維の耐荷能力は母材の強度特性とまったく無関係と されている。また、この複合則を使うとき、繊維の強度として、平均強度を用い

るのか、束強度を用いるのか、さらに繊維強度のゲージ長さをいくらとするのか について決定する根拠に欠ける。また、セラミックス繊維の強度の統計的性質も 記述できていない。このような問題のため、前節で述べたように、従来の複合則 はFRMの強度に対する母材の強度の寄与を正当に評価しているとは言えない。

この節では、どのようにすればFRMの強度に対する母材の強度の寄与を比較 的正確に評価できるかを検討する。ここでは、ぜい性繊維が延性母材に埋め込ま れ、良好な界面接合を有する、すなわち界面で母材からの荷重が完全に伝達され るFRMを想定する。連続繊維が引張荷重方向に平行に入っているとき、従来の 複合則では、繊維、母材、および複合材料のひずみが等しいとして式(2-12)で 表されている。一般に、式(2-12)の中の繊維強度 **o**f については母材の強度と無 関係に繊維束試験から得られた強度<sup>(2-52)</sup>、あるいは単繊維試験から得られた平均 強度<sup>(2-54)</sup>が用いられてきたが、ここでは繊維が母材に埋め込まれた状態であるこ とを考慮して繊維の耐荷能力と母材強度の関連に着眼して検討する。

連続繊維強化複合材料が破壊するまでに多くのところで繊維がすでに破断して いることはすでに実証されている<sup>(2-55)</sup>。Rosen<sup>(2-56)</sup>モデルによると複合材料は繊 維の間を母材が埋めているため、破断した繊維の端末から軸方向にある程度離れ たところでその繊維の耐荷能力は回復する。Rosenは、図2-17に示すように、その 耐荷能力が発揮できない長さを無効長さδ(ineffective length)と呼び、破断した 繊維の影響はこの無効長さδの範囲に限られると考えられた。そして、複合材料が 無効長さδを有する繊維束を一つのリンク(link)としたチェーン(鎖)によって モデル化できると考えた。このモデルによると、連続繊維強化複合材料内のある リンクの損傷がすすみ、与えられた荷重をもはや支えきれなくなったときにその リンク内ですべての繊維が破断し、それを複合材料の破壊とみなしている。

いま、この無効長さδを求めるために、次式に示す Kelly-Tyson の式<sup>(2-57)</sup>を利用する。

 $L_C = d_f \sigma_f / 2\tau$ 

(2-13)



図2-17 破断した繊維近傍の応力分布

ここで、Lcは臨界長さと呼ばれ、df は繊維直径、  $\sigma_f$  は繊維強度、 $\tau$  は界面せん断 強さである。ただし、 $\sigma_f$ は一般に繊維が引張試験されたときの値とされている。し かしながら、その値は繊維の寸法効果のため、引張試験片のゲージ長さによって 大きく異なってくる。そこで、繊維は式 (2-5) より無効長さ $\delta$ に対応する強度  $\sigma_{f(\delta)}$ を用いることを考えた。

F R Mが破壊するときは母材がすでに十分に降伏し<sup>(2-58)</sup>、なお、界面で母材からの荷重が完全に伝達されるとしたので、界面せん断強さ τ は母材のせん降伏応力 τm に置き換えられる。すなわち、式 (2-13) は次式となる。

 $\delta = d_f \sigma_{f(\delta)}/2\tau_m$ 

(2 - 14)

また、 $\sigma_{f(\delta)}$ は強度平均値の式(2-5)より次式で与えられる。  $\sigma_{f(\delta)} = \sigma_{f(Lf)}(\delta/L_f)^{-1/mf}$  (2-15)

式 (2-14) と (2-15) から無効長さ $\delta$ は次式のように求められる。  $\delta = \left[\sigma_{f(Lf)} L_{f}^{1/mf} d_{f} / 2\tau_{m}\right]^{1/(1+1/mf)}$  (2-16)

ここで、Lf, mf,および<sup>σf(Lf)</sup>は、それぞれ、FRMから抽出した繊維の引張試験に おけるゲージ長さ、ワイブル形状母数および引張強度の平均値である。同様に式 (2-14)と(2-15)からリンク長さδを有する繊維強度<sup>σ</sup>f(δ)を求めると次式とな る。

 $\sigma_{f(\delta)} = \sigma_{f(Lf)} \left\{ L_f \left\{ \sigma_{f(Lf)} L_f^{1/mf} d_f / 2\tau_m \right\}^{1/(1+1/mf)} \right\}^{1/mf}$ (2-17)

式(2-17)によれば  $\sigma_{f(\delta)}$ はリンク長さに対応する繊維の強度すなわち耐荷能力で あり、母材せん断降伏応力 $\tau_m$ の関数となっている。したがって、複合則の式(2-12)の繊維強度  $\sigma_f$ の代わりに $\sigma_{f(\delta)}$ を代入することによって、母材の寄与を考慮し た $\delta$ のリンク長さを有するFRMの強度が評価できる。そこで、修正した複合則の 計算式として次式を提案する。

 $\sigma_{c(\delta)} = \sigma_{f(\delta)} V_f + \sigma_m (1 - V_m)$ (2-18)

-般にリンク長さδが小さいので、実験値と比較するためにFRMの引張試験を するときのゲージ長さに換算する必要がある。ぜい性繊維強化延性母材のFRM の破壊強度はワイブル分布によって比較的よく整理されるので、式(2-5)により 引張試験でのゲージ長さがLtとすると、FRMの強度は次式によって計算される。

 $\sigma_{c(Lt)} = \sigma_{c(\delta)} (L_t / \delta)^{-1/mt}$ 

(2-19)

ここで、Ltとmtはそれぞれ試験した複合材料のゲージ長さと引張試験による強度のワイブル形状母数である。

2.5.2 修正した複合則の適用

上述の複合則の修正式(2-18)では、強化繊維の耐荷能力を母材の強度の関数 とすることによって複合材料の強度に対する母材の強度の寄与を評価できるよう にした。ここではこの複合則の修正式による計算結果を従来の複合則による計算 値および実験結果と比較する。

計算には抽出繊維の強度を用いるため、その平均強度として図2-7 (a) のデータから回帰計算により得られた次式を用いる。

SiC/pure-Al:

 $\sigma_{f(Lf)} = 1.894 + 6.432 \times 10^{-4} \text{T} - 1.783 \times 10^{-6} \text{T}^2$ (2-20)

SiC/Al-5.7Ni:

 $\sigma_{f(Lf)} = 2.263 + 3.522 \times 10^{-4} \text{T} - 1.707 \times 10^{-6} \text{T}^2$ (2-21)

SiC/Al-4.0Cu:

 $\sigma_{f(Lf)} = 2.268 + 9.384 \times 10^{-5} \text{T} - 6.788 \times 10^{-7} \text{T}^2$ (2-22)

ここで、T は熱処理温度(C)である。なお、母材のせん断降伏応力は材料降伏の最大せん断応力説により $\sigma_m=2\tau_m$ とし、また、第2.4節と同じように母材の強度と降伏応力が硬度と比例するものとして図2-9の母材の硬度の測定結果を利用して算出した。繊維直径はレーザー外径測定器で測定した平均値の15 $\mu$ mを用い、FRMのワイブル形状母数は図2-6の実験結果を用いた。

図2-18は式(2-16)を用いて計算した平均リンク長さδと母材のせん断降伏応 力のプロットである。この図から母材のせん断降伏応力が高いほど平均リンク長 さδが短くなることがわかる。図2-19に修正した複合則の式(2-18)(式(2-19) によってゲージ長さを換算した)および従来の複合則の式(2-12)による計算結 果を示す。この図からわかるように、修正した複合則と従来の複合則によるFR Mの強度を比較してみると、修正した複合則は、FRMの強度に対する母材のせ ん断降伏応力の影響がより大きく現われていることがわかる。修正した複合則は 母材に埋め込まれた状態での繊維の耐荷能力を取り入れることによって母材の強 度の寄与を評価したためである。図2-20は熱処理を受けた3種類の試料の平均引張 強度、修正した複合則による計算値および従来の複合則による計算値を示したも のである。この図から修正した複合則による計算値は実験値よりやや高いが、傾 向としては実験値とかなりよく一致していることがわかる。一方、従来の複合則 による計算値にはFRMの強度への母材の強度の寄与がよく評価されていないこ とが指摘できる。なお、修正した複合則による計算値と実験値が完全に一致して いないのは、計算に用いた最終のモデルは非累積的な破壊であるが、実際のFR Mの破断は累積的な破壊をともなっていること、また、破断した繊維による応力 集中を考慮していないことが主な原因と考えられる。また、実験に用いたワイヤ 状FRMの試料に関しては強化繊維が必ずしも一方向に整列していないことも不 一致の一因と考えられる。上述の修正した複合則による計算値と実験値の比較に より、母材強度の複合材料の強度への寄与は、母材が強くなると母材に埋め込ま れた状態での繊維の無効長さ、すなわちFRMのリンク長さが短くなることで繊 維の耐荷能力が上昇する結果として現われたと考えられる。

第2.6節 まとめ

熱処理によりSiC/pure-Al、SiC/Al-5.7NiおよびSiC/Al-4.0Cuの3種類のFRMの











図2-20 引張試験、複合則および修正した複合則によるFRMの強度

母材を軟・硬化させて、引張試験を行ない、FRMの強度とばらつきに及ぼす母 材の強度の影響を調べ、その要因について考察した。FRMの強度への母材の強 度の影響については、母材に埋め込まれた状態での繊維の強度は母材の強度の関 数と考え、従来の複合則を修正することによって考察した。その結果は以下のよ うに要約される。

- (1) 熱処理を受けたSiC/pure-Al、SiC/Al-5.7NiおよびSiC/Al-4.0Cuの3種類の FRMは、母材の強度が低くなると、FRMの強度が低下し、強度のばらつ きが大きくなる。
- (2) FRMの強度への母材の強度の影響は母材の強度の変化による繊維の強化 効果、すなわち母材に埋め込まれた状態での繊維の耐荷能力の変化による ものである。
- (3)従来の複合則はFRMの強度への母材の強度の寄与を適正に評価していない。母材に埋め込まれた状態での繊維の耐荷能力が母材の強度に依存すると考えて修正した複合則は、比較的正確にFRMの強度への母材の強度の寄与を評価している。
- (4) F R M の強度のばらつきは母材の強度の影響をかなり受けることが認められる。
- (5) 本実験の範囲内では、FRMの強度とそのばらつきに及ぼす母材の残留応 力の影響は認められない。

第2章参考文献

- (2-1) たとえば、次世代複合材料技術ハンドブック、(1990), P.356, 日本規格協会.
- (2-2) 中田、塑性と加工、22(1981), P.799.
- (2-3) 今井・ほか5名、日本複合材料学会誌、16(1990), 1, P.36.
- (2-4) アルミニウムハンドブック、(1990), P.9, 軽金属学会.
- (2-5) たとえば、J. W. Hitchon and D. C. Phillips, Fib. Sci. Tech.,

12(1979), P.217., 日和・ほか2名、材料、34(1985), 376, P.59.

- (2-6) K. Goda and H. Fukunaga, J. of Mater. Sci., 21(1986), 12, P.4475.
- (2-7) Y. Kagawa and E. Nakata, Proc. Jpn. Cong. Mater. Res., 27(1984), P.159.
- (2-8) G. Simon and A. R. Bunsell, J. Mater. Sci., 19(1984), P.3649.
- (2-9) E. M. Wu and S. C. Chou, ASTM Spec. Tech. Publ., No.964(1988),P.104.
- (2-10) 近藤・ほか3名、鉄と鋼、75(1989), 9, P.1463.
- (2-11) 合田・福永、鉄と鋼、75(1989), 9, P.1763.
- (2-12) 三木・ほか2名、材料、37(1988), 420, P.1022.
- (2-13) 牧野·野中、信頼性工学、(1981), P.45, 日科技連.
- (2-14) 市川、構造信頼性工学、(1988), P.28, 海文堂.
- (2-15) 合田·福永·東原、日本機械学会論文集、52(1986), 480, P.1848.
- (2-16) 合田·糸永·福永、日本機械学会論文集、54(1988), 500, P.753.
- (2-17) Y. Imai, et al., Proc. 20th SAMPE, Minnesota, (1988), P.1-12.
- (2-18) 次世代複合材料技術ハンドブック、(1990), P.871, 日本規格協会.
- (2-19) 今井・ほか3名、軽金属、40(1990), 3, P.202.
- (2-20) A. Kohyama, et al., Proc. ICCM(VI)&ECCM(II), London UK, 2(1989), P.2.245.
- (2-21) 和久・ほか4名、鉄と鋼、75(1989), 9, P.1563.
- (2-22) L. F. Mondolfo, Aluminum Alloys: Structure & Properties,(1976), P.338, Butterworth & Co(Publishers) Ltd..
- (2-23) アルミニウムの組織と性質、(1991), P.192, 軽金属学会.
- (2-24) D. ハル、複合材料入門(宮入・池上・金原訳)、(1984), P.120, 培風館.
- (2-25) 柳沢・ほか2名、第10回軽金属技術講演会概要、(1984), P.22.
- (2-26) アルミニウムの組織と性質、(1991), P.81, 軽金属学会.
- (2-27) 松尾・ほか4名、機械材料、(1988), P.95, 朝倉書店.
- (2-28) 金属便覧、(1990), P.427, 日本金属学会.

- (2-29) アルミニウムハンドブック、(1990), P.31-32, 軽金属学会.
- (2-30) アルミニウムの組織と性質、(1991), P.414, 軽金属学会.
- (2-31) L. N. Mccartney and T. A. E. Gorley, Mech. Phys. Behav. Metallic. Ceran. Compos., (1988), P.439.
- (2-32) B. D. Zahl and M. R. Mcmeeking, Acta. Metall. Mater., 39(1991),
  6, P.1117.
- (2-33) I. Dutta, Comp. Sci. Tech., 41(1991), 2, P.193.
- (2-34) X線応力測定法標準、(1982), P.18, 日本材料学会.
- (2-35) X線応力測定法標準、(1982), P.24, 日本材料学会.
- (2-36) 池内・ほか2名、材料、38(1989), 429, P.623.
- (2-37) L. F. Mondolfo, Aluminum Alloys: Structure & Properties, (1976), P.339, Butterworth & Co(Publishers) Ltd..
- (2-38) アルミニウムの組織と特性、(1991), P.452, 軽金属協会.
- (2-39) 市川、構造信頼性工学、(1988), P.50, 海文堂.
- (2-40) 合田·福永·東原、日本機械学会論文集(A編)、52(1986), 480, P.1848.
- (2-41) 合田·山本·福永、日本機械学会論文集(A編)、54(1988), 502, P.1191.
- (2-42) 合田・福永、鉄と鋼、75(1989), 9, P.1761.
- (2-43) 奥野·三浦、日本金属学会誌、42(1978), 7, P.736.
- (2-44) S. Ochiai and K. Osamura, J. Mater. Sci., 23(1988), 3, P.886.
- (2-45) 藤井・前川、材料、27(1978), 303, P.57.
- (2-46) K. Goda and H. Fukunaga, Comp. Sci. Tech., 35(1989), P.181.
- (2-47) 香川·大蔵、鉄と鋼、75(1989), 9, P.1719.
- (2-48) 向後·香川、鉄と鋼、75(1989), 9, P.1769.
- (2-49) 香川·B. H. Choi、日本金属学会誌、53(1989), 3, P.339.
- (2-50) 宮入・ほか6名、複合材料の事典、(1991), P.51, 朝倉書店.
- (2-51) 福田·邉、複合材料の力学序説、(1989), P.218, 古近書院.
- (2-52) 手塚・ほか3名、鉄と鋼、75(1989), 9, P.1470.

- (2-53) 和久・ほか4名、鉄と鋼、75(1989), 9, P.1563.
- (2-54) 山森・ほか2名、軽金属、40(1990), 11, P.845.
- (2-55) S. Ochiai, et al., Proc. Japan-U.S. CCM-V, Tokyo, (1990), P.505.
- (2-56) B. W. Rosen, AIAA Journal, 2(1964), P.1985.
- (2-57) A. Kelly and W. R. Tyson, High Strength Materials, (1965), P.578, John Wiley & Sons.
- (2-58) 林、複合材料工学、(1975), P.27, 日科技連.

第3章 一方向FRMの引張強度とそのばらつきに及ぼす

母材の強度の影響

(高温加熱により母材の強度を変化させた場合)

第3.1節 はじめに

第2章で熱処理によって母材を軟・硬化させてFRMの強度とそのばらつきに及 ぼす母材の強度の影響について実験し、母材の強度がFRMの強度とそのばらつ きにかなり大きな影響を与えることを認め、その要因について考察を行なった。 しかし、熱処理による母材の強度の変化幅には制限があった。本章では、母材の 強度を大幅に変化さるため、SiC/pure-AlとSiC/Al-5.7Niの2種類のワイヤ状FRM について、高温加熱によって母材の強度を変化させた状態で引張試験を行ない、 FRMの強度とそのばらつきに及ぼす母材強度の影響を調査した。SiC/pure-Alの 強度については、純Al母材の高温引張試験を行なって修正した複合則を適用し、 FRMの強度への母材強度の寄与について考察した。

第3.2節 試料および実験方法

3.2.1 FRMの高温引張試験

FRMの高温引張試験片は、第2章と同じように強度のばらつきを調査するため 多数の試料の引張試験が容易に実施できるワイヤ状FRM(日本カーボン製(株)) を用いた。試料は第2章で用いたものと同じで、SiC繊維強化純AlおよびAl-5.7%Niの2種類で、以下、SiC/pure-Al、SiC/Al-5.7Niと記す。入手した試料を 250mmの長さに切断し数百本をたばね、まきぐせなどによるひずみを除去するた

めに、引張試験前に200℃で10minの焼きなましを施した。

高温引張試験は、ワイヤ状FRMの試験片の外側に内径3mm、長さ100mmの環 状電気炉を設け、試料をエアーチャックでつかみ(チャック間距離150mm)、ゲ ージ長さを50mm として大気中で 行なった。つかみ部にはタブを設けなかった。 また、SiC/pure-Al については室温から500℃まで、SiC/Al-5.7Ni については、室 温から400℃までの温度範囲で引張試験を行なった。加熱に用いた環状電気炉は5 ℃以内の均熱帯がほぼ50mmで、炉内の温度分布を図3-1に示す。荷重はロードセ ルの信号を動ひずみアンプとA/Dコンバータを介し、パソコンで記録した。引張速 度は0.5mm/min、高温引張試験前の加熱時間は5minとし、環状電気炉の5℃以内の 均熱帯である50mm内で破断したものを有効なものとした。引張試験は1条件につ き40本を行ない、得られた引張強度を2母数ワイブル分布で整理した。

## 3.2.2 抽出繊維の引張試験

高温加熱による繊維の強度特性の変化を調べるため、また、本実験条件におい ては繊維と母材との界面反応が無視できるかどうかを確認するため、FRMを高 温引張試験と同じ温度と保持時間で加熱してから水冷し、抽出した繊維の引張試 験を行なった。繊維の引張試験方法および試験条件は第2.2節で述べたものと同じ である。ただし、試料本数は、繊維の強度特性と試料本数との関連をあわせて調 べるため、各条件につき108本とした。

3.2.3 純A1の高温引張試験

母材強度の寄与を考察するためにSiC/pure-Alについては母材だけの高温引張試 験を行なった。高温引張試験片にはSiC/pure-Alの母材と同じ工業用純Al(1050) の丸棒を、図3-2に示す形状および寸法に機械加工したものを用いた。また、高温 引張試験の前に200℃×30minの焼きなまし処理を行なった。試験条件としては、 温度は室温~500℃の温度範囲で、引張速度は0.5mm/min、加熱保持時間は30min とした。高温引張試験機としては、半割れ環状電気炉と差動トランス式高温伸び



図3-1 高温加熱炉内の温度分布





図3-2 純AI高温引張試験片

計がついたインストロン型引張試験機(島津製、AG-25TA)を用いた。

## 第3.3節 実験結果

3.3.1 FRMの高温強度とそのばらつき

図3-3はSiC/pure-AlとSiC/Al-5.7Niの高温強度をワイブル確率紙上にプロットしたものである。この図からFRMの高温強度は2母数ワイブル分布によって良好に整理されることがわかる。SiC/pure-AlおよびSiC/Al-5.7Niを高温引張試験したときの平均強度と強度のワイブル形状母数を、それぞれ、図3-4 (a), (b)および図3-5 (a), (b)に示す。これら図から、試験温度が高くなるにつれ、いずれのFRMとも強度は低下し、ワイブル形状母数は若干ばらつきはあるものの小さくなる、すなわち、強度のばらつきは大きくなることが認められる。高温加熱によって母材の強度を系統的に変化させたこれらの結果は、同じ試料を熱処理し母材の強度を変化させた場合の結果(第2章)とまったく同じ傾向となっている。なお、FRMは高温強度が優れているので、強度については多くの報告<sup>(3-1~5)</sup>があり、いずれの報告でも試験温度による強度の変化は本実験と同じ傾向にあるが、高温強度のばらつきについては触れられていない。

F R M の 高温強度とそのばらつきに影響する要因としては、高温加熱による母 材強度の低下および高温での界面反応による強化繊維の強度特性の変化が考えら れる。なお、空気中加熱だけでは700℃までの加熱によるSiC繊維の強度特性その ものの変化は無視できることはすでに確認されている<sup>(3-6~8)</sup>。

3.3.2 抽出繊維の強度とそのばらつき

図3-6はSiC/pure-Alの抽出繊維の強度をワイブル確率紙上にプロットしたもので ある。この図から抽出したSiC繊維の強度はワイブル確率紙上でほぼ直線性を示し、 2母数ワイブル分布によって整理できることがわかる。図3-7 (a)および(b) に、そ れぞれ、抽出繊維の平均引張強度および強度のワイブル形状母数を試験温度とと



図3-3 FRMの高温引張強度のワイブルプロット



(a)



図3-4 SiC/pure-Alの引張強度とワイブル形状母数の試験 温度による変化





図3-5 SiC/Al-5.7Niの引張強度とワイブル 形状母数の試験温度による変化



図3-6 SiC/pure-Alからの抽出繊維の強度のワイブルプロット



図3-7 SiC/pure-Alからの抽出繊維の平均強度とワイブル形状母数

もに示す。この図から、本実験条件ではFRMの高温加熱によって強化繊維の強 度には変化がなく、強度のワイブル形状母数も変化していないこと、すなわち強 度とばらつきは変わらないことが認められる。したがって、本実験での加熱条件 ではSiC 繊維と純 Al との界面反応を無視して考察を行なうことができる。このこ とは、また、第2章の図2-5からSiC/pure-Alに500℃までの熱処理を施してもFRM の強度の低下は小さく界面反応の影響を無視してもよいことを示唆している。な お、本実験の温度範囲ならびに保持時間では、SiC繊維と純Alの間の界面反応がと くに強度に影響を及ばさないことはすでに報告されている実験からも確認でき る<sup>(3-3,9~10)</sup>。

SiC/Al-5.7Niについては、第2章の図2-7に示したように本実験で長時間の熱処理 を受けても400℃まではSiC繊維の強度特性に大きな変化をもたらしていないこと から、400℃までの範囲ではSiC/Al-5.7Niの界面反応による繊維特性の変化は無視 できると考えられる。

上述のことによって、本実験でFRMの高温引張試験によって得られた結果、 すなわち、FRMの高温強度の低下および強度のばらつきの増加は、母材の強度 の低下にその原因が求められる。

3.3.3 純A1の高温強度

図3-8はSiC/pure-Alの母材とほぼ同じ成分をもつ工業用Al(1050)の高温引張試 験から得た強度と降伏応力を示す。この図からわかるように、試験温度が高くな るにしたがい、純Alの強度と降伏応力が低下し、強度と降伏応力との差が小さく なる。とくに、試験温度が400℃および500℃においては純Al母材の強度は10MPa 以下に低下し、強度と降伏応力の差はほとんどなくなる。この結果はアルミニウ ムハンドブック<sup>(3-11)</sup>に記載されている工業用Al(1050)の高温での強度と降伏応 力の値とほぼ同じで、その変化は同じ傾向にある。以上の結果により、本実験で はSiC/Alの母材の強度をかなり大幅に、かつ系統的に変化させることができたと 考えられる。



図3-8 純Al(1050)の高温強度

第3.4節 考察

3.4.1 修正した複合則の適用

第2章ですでに RosenモデルおよびKelly-Tyson式を用いることにより、母材に 埋め込まれた状態での繊維強度を考慮して複合則の修正式を得ている。その考察 により、FRMの強度に対する母材強度の寄与は従来の複合則に表される母材強 度と母材体積率の積より大きいことがわかった。母材が強くなると、FRMの破 壊の単位となるリンク長さが短くなって、繊維の耐荷能力が高くなり、結果とし て強化繊維がより有効に利用されると言うことができる。いま、SiC/pure-Alの高 温強度に複合則および修正した複合則を適用し、実験結果と比較して考察する。

複合則および修正した複合則の適用にあたって、繊維の強度とワイブル形状母 数は図3-7に示した実験結果の平均値を、FRMのワイブル形状母数は図3-4(b)に 示した実験結果による回帰計算の値を用いる。繊維直径はレーザー外径測定器に より測定した抽出繊維の直径の平均値15μmを、繊維体積率は横断面組織写真から 測定した値34.9%を用いる。また、母材強度と降伏応力については図3-8に示した 実験値を用いる。以上の諸値を用いた複合則および修正した複合則による強度の 計算値ならびにSiC/pure-Alの高温引張強度の実験値を図3-9に示す。この図からわ かるように、修正した複合則による計算値は、実験値より若干高いが、試験温度 の上昇に伴い、同じ傾向の変化を示し、従来の複合則による計算値より実験値に 近い。このことによって、母材強度のFRM強度に対する寄与には、繊維の耐荷 能力の変化が加わっており、FRMの強度に母材強度が加算されるだけの場合よ りかなり大きな寄与をしていることが明らかになった。

3.4.2 熱処理を受けたFRMの強度およびばらつきとの比較

高温加熱は熱処理より母材の強度を大きく変化させることができる。そこで、 高温引張試験での加熱がFRMの強度とそのばらつきに与える影響は、熱処理の 影響より大きくなると期待できる。ここで、FRMの高温での強度とそのばらつ


# 図3-9 複合則、修正した複合則および高温引張による SiC/pure-Alの平均強度



図3-10 FRMの高温での引張強度およびばらつきと熱処理を受けた後の引 張強度およびばらつきとの比較

きを熱処理を受けた後のそれらと比較してみる。図3-10にSiC/pure-Alおよび SiC/Al-5.7Niの基準化された強度とワイブル形状母数を示す。基準化された強度と ワイブル形状母数を用いたのは、高温引張試験に用いた試料のロットが熱処理を 受けたものと異なり、直接比較しにくいからである。この図からわかるように、 高温引張試験から得た強度とワイブル形状母数は予測どおり熱処理を受けたFR Mのそれらより大きく変化している。特に、ワイブル形状母数、すなわちばらつ きについてみると、図3-10 に示した高温引張強度のワイブル形状母数から、高温 になるとFRMの強度のばらつきが大きくなることがわかる。それに対して、熱 処理を受けた場合は熱履歴を経たものではあるが、室温で引張ったので、FRM の強度のばらつきがほとんど変化していない。これらの比較により、FRMの強 度のばらつきに母材の強度がかなりの影響を与えていることがわかる。もともと Al合金母材の強度はばらつかないと考えてよいので、何がどのようにFRMの強 度のばらつきに影響を与えるか、その原因を明らかにするのは本研究の目的の一 つである。その原因については、第2章に考察したように、母材の強度を変化させ ると、破断した繊維の無効長さが変化すること、あるいは、破断した繊維に起因 する応力集中が変わることがFRMの強度のばらつきに関連するのではないかと 推測し、第4章において計算機シミュレーションの結果と合わせて、検討する。

第3.5節 まとめ

SiC/pure-Alと SiC/Al-5.7Niを用い、それぞれ500℃および400℃までの高温引張 試験を行ない、FRMの強度とばらつきに及ぼす母材の強度の影響を調べた。第2 章において修正した複合則を適用し、FRMの強度とそのばらつきへの母材の強 度の寄与について考察した結果は次のように要約される。

 (1) SiC/pure-Al と SiC/Al-5.7Niは試験温度が高くになるにしたがい、強度が 低下し、そのばらつきが大きくなる。この結果は、それぞれのFRMに熱 処理を施し、母材の強度を変化させてFRMの強度とばらつきを調査した 実験結果と一致している。高温におけるFRM強度の低下とばらつきの増 大は母材強度の低下によるものである。

- (2)母材に埋め込まれた状態での繊維強度が母材の強度に依存すると考えて修正した複合則はFRMの強度への母材強度の影響を比較的よく評価している。すなわち、FRMの強度への母材の強度の寄与は、母材による繊維の強化効果、言いかえれば、母材に埋め込まれた状態での繊維の耐荷能力の変化によるものである。
- (3)母材の強度がFRMの強度のばらつきに大きく影響を与えることが認められる。この原因については、次章のコンピュータシミュレーションの結果を用いて検討する。

第3章参考文献

- (3-1) 今井・ほか3名、軽金属、40(1990), 3, P.202.
- (3-2) 松田・ほか4名、構造強度に関する講演会講演集、33(1991), P.206.
- (3-3) 大西、第7回次世代産業基盤技術シンポジウムー金属・複合材料技術ー 予稿集、(1990), P.335.
- (3-4) 和久・ほか4名、鉄と鋼、75(1989), 9, P.1563.
- (3-5) Y. Favry and A. R. Bunsell, Comp. Sci. Tech., 30(1987), P.85.
- (3-6) 葛西・ほか2名、日本複合材料学会誌、5(1979), 1, P.26.
- (3-7) R. L. Crane and V. J. Krukonis, J. Mat. Sci., 54(1975), 2, P.
- (3-8) M. A. Rigdon and W. S. Hong, Thermal and Mechanical Behavior of Composites, P.116.
- (3-9) 今井、第6回次世代産業基盤技術シンポジウムー金属・複合材料技術ー 予稿集、(1989), P.327.
- (3-10) 福永·合田·魯、日本機械学会論文集(A編)、57(1991), 535, P.536.
- (3-11) アルミニウムハンドブック、(1990), P.40, P.215, 軽金属協会.

第4章 弾塑性有限要素法を用いたモンテカルロ・シミュレーションに よる一方向FRMの引張強度とそのばらつきに及ぼす母材の強 度特性の影響の検討

#### 第4.1節 はじめに

第2章および第3章では、それぞれ、熱処理および高温加熱によってFRMの母 材の強度を変化させてFRMの引張強度とそのばらつきに及ぼす母材の強度の影 響について、実験し検討してきた。ところで、実験においては、試料処理につい ていくら配慮をしても、完全に母材の強度特性のみを独立に変化させることは実 現できない。そこで、本章では、FRMの強度とそのばらつきに影響する要因を 一つ一つ独立に変化させてその影響を調査するために、計算機シミュレーション を実行した。まず、弾塑性有限要素法を用いたモンテカルロ・シミュレーション によって、母材の強度特性を変えたときのFRMの強度とそのばらつきを求め、 第2章および第3章の実験結果と比較し、つづいて、FRMの破壊過程の計算機シ ミュレーションを行ない、FRMの強度とそのばらつきに及ぼす母材の影響要因 とその機構について検討した。さらに、弾塑性有限要素法による計算を用いて破 断した繊維に起因する応力集中を求めて考察を加えた。

第4.2節 シミュレーションのモデルおよび手法

4.2.1 有限要素モデルと要素分割

図4-1に本研究で用いた有限要素モデルと要素分割を示す。本モデルは、繊維要素を棒要素、母材要素を平面応力条件に基づく4節点アイソパラメトリック要素で



図4-1 有限要素モデルと要素分割

それぞれモデル化し、棒要素を4節点アイソパラメトリック要素のy軸方向の2辺 上に組み込むことによって複合化を表すものである(付録2)。柔らかい母地中に 埋め込まれた剛性の大きい繊維内では、軸方向の引張に対して、軸方向以外の応 力成分がほぼ無視できる<sup>(4-1)</sup>。この結果を利用し、節点数を節約するために棒要素 を導入した。なお、繊維要素はぜい性材料であるセラミック繊維を想定している ので、線形弾性体とし、負担する応力がその要素強度に達したときに要素中央で 静的に破断し、その後は変形抵抗を全く示さないものとする。母材要素は弾線形 硬化体とみなし、破断は考えない。また、強固に接着した界面を想定し、繊維一 母材要素の間でははく離は生じないとする。

一方、シミュレーションで用いた要素分割は、10本の繊維からなる単層板を想定し、1本の繊維を20の要素に分割する。結局、節点数210、繊維要素数200、母材 要素数180となる。境界条件には、下端をy方向に固定し、上端にy方向に引張の 変位境界条件を与える。x方向には、両繊維端の左端の節点が動かず、y方向に のみに移動するようにしている。

4.2.2 シミュレーションの手順

本シミュレーションでは、繊維の引張強度 σ が次式の2母数ワイブル分布 F(σ) に従うと仮定する。

 $F(\sigma) = 1 - \exp\left\{\frac{L}{L_0} \left(\frac{\sigma}{\sigma_0}\right)^{m_f}\right\}$ (4-1)

ただし、mf は形状母数、σo は尺度母数、Lo は標準ゲージ長さをそれぞれ示す。 また、L は外そうされるゲージ長さを意味し、ここでは繊維要素長さΔx に相当さ せる。式(4-1)の逆関数形を考えると、繊維要素 i の引張強度σiは、次のように 見積ることができる。

$$\sigma_{i} = \sigma_{0} \left\{ \frac{L_{0}}{\Delta x} \ln(\frac{1}{1-Z}) \right\}^{1/mf}$$
(4-2)

ここで、Zは0~1間で発生する一様乱数である。

繊維要素は、その要素 i にかかる応力  $\sigma_Z$  が固有の強度  $\sigma_i$  に達したときに破断 すると考える。このとき、どの繊維要素の破断が優先して生じるかを判断する手 段として  $r_{min}$  法<sup>(4-2)</sup>を利用した。これは図4-2 (a) にその概念を示すように、任意 の変位増分dU を与えて計算した後、繊維要素が破断するまでの応力増分を、仮の 応力増分に対する要素強度までの応力増分比 r の最小値  $r_{min}$  から見積る方法であ る (付録3)。この方法によって破断の優先順位が決まり、破断直前における各要 素の確定した応力を計算することができる。破断後の処理として、破断要素の弾 性率をゼロに設定するとともに、図4-2 (b) に示すように、繊維要素に働いていた 全荷重分を要素上下の2節点で増分的に (m回に分けて) 打ち消すことによって応 力分布を推定した。また、本シミュレーションでは母材要素に金属を想定してい るため、繊維破断の生じるひずみレベルでは、すでに母材要素の降伏は一様に生 じている<sup>(4-3)</sup>。そこで、母材要素の降伏は全要素を対象に一度で行ない、そのあと [D] マトリックスの評価は、ひずみ増分理論に基づいた塑性応力ーひずみマトリッ クスを用いる通常の手法に従った (付録4)。

以上の手法を取り入れてシミュレーションを行なった。図4-3にそのフローチャ ートを示す。まず、材料定数を入力したあと、式(4-2)で与えられたワイブル乱 数によって各繊維要素に固有の引張強度を与える。続いて、繊維端に引張方向(y 方向)の任意変位増分を境界条件として与え、増分法によって解析をすすめる。 そして、一つあるいは二つ以上の繊維要素で $\sigma_Z \ge \sigma_i$ が満たされたならば、rmin から確定応力を求めるとともに、その対象となった要素を破断させる。ひきつづ き、境界条件に荷重増分を与えて計算をすすめるが(method<sup>®</sup>)、荷重増分の総 和が破断させる繊維要素の破断荷重に達し、なおかつrmin>1のときは、再び境界 条件に任意変位増分を与えてrmin≤1を満たす繊維要素を探索する(method<sup>®</sup>)。 破断荷重に達する前にrmin≤1が満たされたときは、rminの対象となった新しい要素 の荷重増分を境界条件に設定するとともに、前回の荷重の残り分も今回の境界条 件と同時にm回に分けて与える(method<sup>®</sup>)。さらに、繊維破断が連続的に進行 し、複合材料の耐荷能力が低下するが、本研究では便宜上最大応力(引張強度)



(a) method 1







図4-3 シミュレーションのフロチャート

の70%を割った時点で計算を終了させた。これは、経験上、最大応力の70%も低下 した複合材料が息を吹き返し、その最大値を逆転するようなことはまずありえな いであろうという考えによるものである。

4.2.3 シミュレーションに用いたFRMの材料定数

本研究では連続 SiC 繊維強化 Al と連続ボロン繊維強化 Al (以下 SiC/Al と B/Al と記す)を想定し、これまで述べた手順にしたがってシミュレーションを50 回繰り返し行ない、引張強度のばらつきを検討した。表4-1にシミュレーションに

| Assumed composite                             | SiC/Al                                 | B/Al                   |
|-----------------------------------------------|----------------------------------------|------------------------|
| Cross-sectional area of fiber : Af            | 7.85×10 <sup>-5</sup> m m <sup>2</sup> | 0.0154 mm <sup>2</sup> |
| Elastic modulus of fiber: Ef                  | 196 GPa                                | 392 GPa                |
| Weibull shape parameter of fiber : mf         | 3.203                                  | 16.3                   |
| Weibull scale parameter of fiber : $\sigma$ 0 | 2.405 GPa                              | 3.97 GPa               |
| Standard gage length : Lo                     | 10 mm                                  | 30 mm                  |
| Distance between fiber                        | 0.014 mm                               | 0.14 mm                |
| Element length of fiber : $\Delta x$          | 0.15 mm                                | 1.5 mm                 |
| Elastic modulus of matrix : Em                | 68.6 GPa                               | 68.6 GPa               |
| Poisson's ratio of matrix : v                 | 0.33                                   | 0.33                   |
| Thickness of matrix elment                    | 0.014 mm                               | 0.25 mm                |
| Volume fraction of fiber : Vf                 | 35.7 %                                 | 32.8 %                 |

表4-1 シミュレーションで用いた材料定数

用いた SiC/Al と B/Al の材料定数を示す。この表の中に繊維と母材の弾性率は文 献<sup>(4-4~5)</sup>によるもの、繊維強度のワイブル形状母数と尺度母数は抽出繊維の引張 試験によるものである。 母材 Al の引張降伏応力ならびに加工硬化率は1050加工用 Al を実際に引張試験 したものを線形近似して得たものであり、また、母材の強度特性を変えるときは 引張試験によるAl の引張降伏応力と加工硬化率の値を変化させた。表4-2にシミュ レーションに用いた母材 Al の強度特性値を示す。

| Туре | Yield stress of matrix $\sigma$ y | Work hardening rate H' |
|------|-----------------------------------|------------------------|
| R    | 52.23 MPa                         | 620.5 MPa              |
| C-1  | 104.41 MPa                        | 1241.1 MPa             |
| C-2  | 26.12 MPa                         | 310.3 MPa              |
| C-3  | 10.45 MPa                         | 124.1 MPa              |
| C-4  | 5.23 MPa                          | 62.1 MPa               |

表4-2 シミュレーションに用いた母材の強度特性

また、前述した繊維破断後の荷重境界条件に対する増分回数mは、表4-1および 表4-2の材料定数を用いて予備的に検討した結果、15回以上になるとほぼ一定の応 力分布に収束することが、破断した繊維まわりの応力分布ならびに母材要素にお いて確認された。したがって、本シミュレーションではm=15としてすべての計算 を行なった。

第4.3節 一方向FRMの強度とそのばらつきに及ぼす母材の強度特性の影響

4.3.1 シミュレーションの結果

図4-4にシミュレーションによる SiC/Al の応力ーひずみ線図の一例を示す。この図から、ひずみ0.076% 付近で母材の降伏による傾きの変化、ひずみ1%以上での繊維破断による応力低下およびFR Mの破壊過程がわかる。また、FR Mの強



図4-4 シミュレーションによる SiC/Al の応力-ひずみ線図の一例

度はこの応力-ひずみ線図に示される最大応力から決定される。図4-5に図4-4の 応力-ひずみ線図と対応した SiC/Al の破壊過程を示す。この図からわかるように、 破断した繊維の応力集中による破断と思われるものがあれば、破断した繊維の影 響と無関係と思われるものもある。また、FRMの最大応力までに多くの繊維要 素が破断していることがわかる。このようなFRMの破壊の様子はすでに報告さ れている研究結果<sup>(4-6~8)</sup>と同じである。図4-6はシミュレーションによる SiC/Al と B/AI の引張強度をワイブル確率紙上にプロットしたものである。この図からシ ミュレーションによるFRMの強度も2母数ワイブル分布によってよく表されるこ とがわかる。図4-7はシミュレーションによる SiC/Al および B/Al の平均強度と母 材の強度特性の関係を示し、図4-8は強度のワイブル形状母数と母材の強度特性の 関係を示す。これらの図からわかるように、母材は弱くなる(降伏応力と加工硬 化率が小さくなること)と、FRMの強度は低下し、強度のばらつきは大きくな る。このシミュレーションの結果は、第2章の熱処理でおよび第3章の高温加熱で 母材の強度を変化させたときの SiC/Al 合金の平均強度とそのばらつきの変化とま ったく同じ傾向にある。この結果により改めて母材の強度特性がFRMの強度と そのばらつきに大きく影響を与えることが確認される。

4.3.2 複合則、修正した複合則および実験結果との比較

F R M の強度に対する母材の強度の寄与について第2章と第3章に複合則および 修正した複合則を用いて検討した。ここでは、高温引張試験、複合則、修正した 複合則およびシミュレーションによる SiC/Al の高温強度を比較し、F R M の強度 への母材強度の寄与について検討する。図4-9に引張試験、複合則、修正した複合 則およびシミュレーションによる SiC/Al の高温強度を示す。この図からわかるよ うに、複合則は明らかにF R M の強度を正確に評価していない。それに対して、 修正した複合則およびシミュレーションによるものは、引張試験による高温強度 と同じ傾向にあり、その値は実験値にかなり近い値を与えている。これは、修正 した複合則と弾塑性有限要素法を用いたシミュレーションがかなり正確にF R M



図4-5 シミュレーションによる SiC/Al の破断過程の一例







図4-8 SiC/A1と B/A1の強度のワイブル形状母数



図4-9 引張実験、複合則、修正した複合則およびシミュ レーションによるSiC/Alの高温強度

の強度を評価していることを示している。ところで、修正した複合則がFRMの 中で破断した繊維に起因する応力集中を考慮していないこと、および本シミュー ションは完全に整列した繊維の板状FRMをモデルとし、なお、モデルが実際の FRMよりかなり小さいことが、それぞれ、修正した複合則および本シミュレー ションによる結果が実験によるそれと完全に一致していない主な原因と考えられ る。

# 第4.4節 母材の強度特性を変化させたときのFRMの破壊過程と強度およびその ばらつきとの相関

これまでの実験により母材の強度を低下させるとFRMの強度が低下し、強度 のばらつきが大きくなる結果を得た。また、FRMの強度の変化に関する要因に ついては、母材の強度の変化による繊維の無効長さ、つまりFRMのリンク長さ の変化によって繊維の耐荷能力が変化することが、主な原因と考えてきた。一方、 FRMの強度とそのばらつきはFRMそのものの破壊過程に関連する<sup>(4-9~10)</sup>と指 摘されているが、その機構は明らかにされていない。ここで、本シミュレーショ ンを用いて母材の強度特性を変えたときのFRMの強度とそのばらつきが破壊過 程とどのように関連するかを調べて、その機構の検討を試みる。

4.4.1 シミュレーションの結果

図4-10に SiC/Al の最大荷重までに破断した繊維要素数の平均値と母材の強度特 性の関係を調べたシミュレーション結果を示す。この図から母材が強くなる(降 伏応力と加工硬化率が大きくなること)と、最大荷重までの破断した繊維要素数 が増える、すなわち、FRMの破壊過程が累積的になることがわかる。言い換え れば、母材が弱くなるとFRMの破壊過程は非累積的になる。図4-11は B/Al の最 大荷重までの破断した繊維要素数のヒストグラフを示す。この図からわかるよう に、 B/Al の破壊は、SiC/Al と同じ傾向にある。つまり、母材が弱くなると非累積







図4-11 B/Alの最大荷重までに破断した繊維要素数で整理した 破壊FRMの本数に及ぼす母材強度の影響 (シミュレーション回数:50)



(E) 35 35 30 25 20 20 15 0.5 1.0 1.5 2.0 2.5 3.0 3.5Broken number of fiber element
(b)

図4-12 最大荷重までに破断した繊維要素数で整理したB/A1 の平均強度と形状母数(シミュレーション回数:500)

的破壊になり、母材が強くなると累積的破壊になる。そこで、FRMの強度とそ のばらつきを破壊過程との関連でさらに詳しく調べるために、B/Al について一つ の材料条件においてシミュレーションを500回繰り返し、FRMの最大荷重までに 破断した繊維要素数でその結果を分類してFRMの強度特性を調べた。SiC/Alの 場合は計算時間が非常に長いため、B/Alを対象にして調べた。図4-12 (a)および (b) には、以上の結果をワイブル分布で整理して、それぞれ、平均強度および形状母 数を示した。この図からわかるように、最大荷重までに破断した繊維要素数が増 える、すなわち、FRMの破壊が累積的になると、平均強度が大きくなる傾向に あり、強度のばらつきが小さくなる。上述の結果により、FRMの強度とそのば らつきは破壊過程と関連していることが確認される。すなわち、母材の強度特性 がFRMの破壊過程を変化させることによってFRMの強度とそのばらつきに影響するもう一つの原因である。

4.4.2 FRMの強度とそのばらつきに及ぼす破壊過程の影響について考察

図4-13 (a)は、繊維の強度特性が同じで母材の強度だけが異なるFRMの強度と ばらつきに及ぼす破壊過程の影響を示すモデル図である。FRMについては、強 化繊維の強度が統計的性質を有するので、その破壊が一つの確率過程であり、最 大荷重で破断する繊維の強度特性が強度とそのばらつきを左右すると考えられる。 一般に荷重をかけていくと、FRMの中には、破断した繊維に起因する応力集中 の影響により局所的に強い繊維が先に破断することを除いて、全体的に最大荷重 まで弱い繊維あるいは繊維の弱いところが先に破断すると想定されるので、FR Mの破壊過程が累積的になるほど強い繊維あるいは繊維の強いところの破断がF RMの最大荷重、つまり強度を左右するようになる。よって、FRMは、破壊が 累積的になるほど強度が高くなる。つづいて、破壊過程がどのようにFRMの強 度のばらつきに影響を与えるかを検討する。繊維強度が確率変数であるので、そ れを大きさの順に並べたものを順序統計量という。順序統計量の分布理論<sup>(4-11)</sup>に



(b) FRMの最大荷重における破断した繊維の順序統計量の分布

図4-13 FRMの強度とそのばらつきに対する破壊過程の影響のモデル図

より順序統計の番号が大きくなると、この番号における繊維の強度のばらつきが 小さくなる(図4-13 (b) に示す)。そこで、FRMの破壊は、累積的になるほど 順序統計量の大きな番号を有する繊維の破断によって、つまり、強度のばらつき が小さい繊維の破断によって、左右されるため、FRMの強度のばらつきが小さ くなると考えられる。すなわち、母材の強度が強くなると、FRMの破壊過程は 累積的になり、その結果FRMの強度のばらつきが小さくなる。

## 第4.5節 母材の強度特性を変化させたときの破断した繊維の近傍の

### 応力分布からの考察

本節では、母材の強度特性を変化させたときの破断した繊維のまわりの応力分 布を有限要素法で計算し、繊維の強化効果およびFRMの破壊過程に及ぼす母材 の強度特性の影響を検討して、FRMの強度とそのばらつきに及ぼす母材の強度 特性の影響について考察する。

4.5.1 応力分布の計算手法

本弾塑性有限要素法のモデルと計算手法は、第4.2節で述べたものと同じである。 ただし、計算に用いた要素分割は、9本の繊維からなる単層板を想定し、1本の繊 維を31の要素に分割する。結局、節点数288、繊維要素数279、母材要素数248と なっている点が第4.2節と異なる。計算ではSiC/AlとB/Alの板状FRMを想定し、 材料定数および母材強度特性は第4.2節の表4-1と表4-2のデータを用いた。なお、 応力集中をはっきり表すためモデルの中心の繊維要素のみを破断させた。そのた めに、中心の繊維要素以外に大きな強度値(例えば100GPa)を、中心の要素だ けに単繊維の引張実験で得た繊維の平均強度を与え、SiC/AlとB/Alにはそれぞれ 2.156 GPaと3.14GPaを与えた。

4.5.2 繊維の耐荷能力およびFRMの破壊過程と応力分布との関係

4.5.2.1 繊維の耐荷能力

一般にFRMに荷重をかけたとき、ほとんどの荷重は強化繊維に負担され、母 材は繊維に荷重を伝える役割を果たす(4-12)とされる。しかし、第2章および第3章 では母材に埋め込まれた状態での繊維は耐荷能力が母材の強度に依存し、その結 果としてFRMの強度を変化させていることを明らかにしてきた。ここでは、弾 塑性有限要素の計算による破断した繊維の近傍にある応力分布から繊維の強化効 果を調べ、これによってFRMの強度への母材の強度の寄与を検討する。図4-14 (a),(b)に破断した繊維の応力分布を示す。ただし、応力分布は応力集中係数、つ まり、各要素の応力値と応力の変化のないところの繊維要素の応力値(本計算で は図4-1に示したモデルの両端の応力の平均値)との比を用いて評価している。こ の図から母材が弱いほど破断した繊維の応力の回復は悪くなることがわかる。図 4-15と図4-16にそれぞれ SiC/Al と B/Al の破断した繊維の応力分布から求めた無 効長さを母材の強度特性とともに示す。これらの図からわかるように、母材が強 くなる(降伏応力と加工硬化係数が大きくなること)ほど破断した繊維の無効長 さは短くなる、言い換えれば、母材が弱くなるほど繊維の無効長さは長くなる。 それによると、母材が弱くなるほど強化繊維としての役割が完全に果たせない部 分、すなわち強化繊維としての機能は無効になる部分が多くなる。具体的に言え ば、母材が弱くなると繊維の無効長さが長くなることによって第2章に述べたリン ク長さを有する繊維の強度(式(2-17))、すなわち繊維の耐荷能力が低下する、 つまり、繊維の強化効果が低下する。これは母材の強度が弱くなるとFRMの強 度が低下する第一の原因である。

図4-17は弾塑性有限要素計算およびKelly-Tyson式(式(2-16))による SiC/Al の繊維の無効長さと母材の降伏応力を示したものである。この図からわかるよう に、弾塑性有限要素計算による無効長さは、Kelly-Tyson 式によるものより短く、 母材の降伏応力が大きくなるとKelly-Tyson式によるものとの差が小さくなる。こ れは、Kelly-Tyson 式が母材の加工硬化を考慮していないことで弾塑性有限要素を 用いた計算より破断した繊維の応力の回復が悪くなるためと考えられる。また、



Stress concentration factor 1.2 1.0 0.8 0.6 C-1 R 0.4 B/AI C-2 C-3 0.2 C-4 0.0 2 0 1 3 4 5 6 Distance from broken edge of fiber mm (b)

図4-14 破断した繊維の応力分布



図4-15 FEMによるSiC/Alの繊維の無効長さ



図4-16 FEMによるB/A1の繊維の無効長さ





母材の降伏応力が変化すると、Kelly-Tyson 式による無効長さは弾塑性有限要素計 算によるそれより大きな変化幅を示す。このことは第4.3節で図4-9に示したよう に試験温度が高くなるにつれ、修正した複合則によるFRMの高温強度が、実験 値および弾塑性有限要素を用いたシミュレーションによるそれより大きな変化幅 を表し、FRMへの母材の強度の寄与を弾塑性有限要素によるシミュレーション より過大に評価した原因であると考えられる。

### 4.5.2.2 FRMの破壊過程

第4.4節ですでに述べたように、FRMの強度は、破壊過程に関連し、累積的な 破壊をするとき高くなり、非累積的な破壊をするとき低くなる。また、FRMの 破壊過程は母材の強度特性に関連し、母材が強くなると累積的破壊になり、母材 が弱くなると非累積的破壊になる。一方、FRMの破壊過程は、繊維の欠陥の性 状(種類、大きさなど)に関係するが、与えられたFRM、すなわち繊維の欠陥 の性状が決まった場合には破断した繊維の近傍にある応力集中に関連すると考え られる。ここでは、FRMの破壊過程と母材の強度特性との相関を応力分布の計 算結果から検討する。図4-18に破断した繊維の近傍にある繊維の応力分布を示す。 また、便宜上繊維間に存在する母材要素部分にもあたかも繊維応力が分布してい るかのように表記している。この図から母材が弱い場合には、破断した繊維に起 因する応力集中は大きな範囲にわたるのに対して、母材が強い場合にはその応力 集中は小さい範囲に限られることがわかる。これは、母材が強い場合には応力伝 達の能力が高く効率よく破断した繊維の応力をすぐ側にある繊維に伝達し、荷重 を負担させるためと考えられる。ここで、応力集中の範囲の大きさとFRMに存 在する欠陥との相関を図4-19 (a), (b)のモデル図に示すように表すと、FRMの破 壊過程を繊維の破断に起因する応力集中の範囲の変化と次のように関連づけられ る。FRMの中に何種類かの欠陥が必ず存在するから、応力集中の範囲が大きい 場合ではその応力集中の範囲にある欠陥の種類が多くなり、また、大きな欠陥の 存在する確率も大きくなるため、一本の繊維が破断すればFRMに与える負荷を





(b)

図4-18 破断した繊維の近傍の応力分布



Broken fiber

a) 母材が強い、応力集中の範囲が小さい場合



b) 母材が弱い、応力集中の範囲が大きい場合

図4-19 破断した繊維の応力集中の範囲の大きさとFRMの欠陥のモデル図

増加しなくても(あるいは、ひずみ増分を与えなくても)その応力集中でつぎつ ぎにほかの繊維を破断させ、最大荷重までFRMは非累積的な破壊となる(図4-19(a)に示す)と考えられる。それに対して、応力集中の範囲が小さい場合ではそ の応力集中の範囲における欠陥の種類が少なく、大きな欠陥の存在する確率も小 さくなるため、一本の繊維が破断してもFRMに与える負荷を増加しなければ(あ るいは、ひずみ増分を与えなければ)その応力集中だけでほかの繊維を破断させ るのは無理で、次に、新たに負荷を増加して繊維の破断に起因する応力集中の範 囲の以外の弱い繊維要素を破断させ、FRMは最大荷重まで累積的な破壊過程を とっていくことになる(図4-19(b)に示す)。

4.5.3 FRMの強度のばらつきと応力集中の範囲

第4.4節ですでに述べたように、FRMの強度のばらつきは、破壊過程に関連し、 累積的な破断をするとき小さくなり、非累積的な破壊をするとき大きくなる。こ こでは、この現象をFRMの破壊過程と破断した繊維に起因する応力集中との関 係で検討する。図4-19のモデル図に示したように、破断した繊維の応力集中の範 囲が大きくなると大きな欠陥を含む確率が増加するだけでなく多種類の欠陥を含 む確率も多くなる、つまり、多くの種類の欠陥がFRMの破壊に寄与するように なる。すなわち、母材が弱くなると破断した繊維の応力集中の範囲が大きくなり 多種類の欠陥がFRMの破壊のもとになり、結果としてFRMの強度のばらつき が大きくなると考えられる。

第4.6節 まとめ

弾塑性有限要素法を用いたモンテカルロ・シミュレーションによって、FRM の強度とそのばらつきに及ぼす母材の強度特性の影響を調査し、第2章および第3 章の実験結果と比較して母材の強度特性の寄与を総合的に検討した。さらに、弾 塑性有限要素法を用いて母材の強度特性を変化させたときの繊維の破断に起因す る応力分布を計算し、繊維の強化効果、FRMの破壊過程および応力集中の範囲 からFRMの強度とそのばらつきに及ぼす母材の強度特性の影響について考察を 加えた。その結果は次のように要約される。

- (1)母材の強度が低くなると、FRMの強度が低下し、強度のばらつきが大きくなる。また、母材の強度が変化するとFRMの破壊過程が変化する。すなわち、母材が強くなると累積的な破壊過程となり、弱くなると非累積的な破壊過程となる。
- (2)母材の強度が低くなると破断した繊維の応力の回復が悪くなるため、繊維の無効長さが長くなり、繊維の耐荷能力が低下する、すなわち、繊維の強化効果が低下する。このことがFRMの強度に及ぼす母材の強度特性の影響を説明する主な原因である。
- (3) FRMの強度とそのばらつきは破壊過程の累積の程度に関係がある。累積的な破壊過程ではFRMの強度が高く、強度のばらつきが小さくなる。非累積的な破壊過程ではFRMの強度が低く、強度のばらつきが大きくなる。母材の強度特性の変化は破壊過程の変化をもたらすことによってFRMの強度とそのばらつきを変化させる。これはFRMの強度とそのばらつきに及ぼす母材の強度特性の影響を説明するもう一つの原因である。
  - (4)破断した繊維のまわりの応力集中の範囲の大きさは、母材の強度特性に影響され、母材の強度が高くなると応力集中の範囲の大きさが小さく、母材の強度が低くなるとそれが大きくなる。FRMの破壊過程は破断した繊維のまわりの応力集中の範囲の大きさに関係があり、応力集中の範囲の大きさに関係があり、応力集中の範囲が小さくなれば累積的な破壊となる。また、FRMの強度のばらつきは応力集中の範囲の大きさに関係があり、応力集中の範囲が大きくなると大きな欠陥あるいは異なった種類の欠陥を含む確率が大きくなるため、結果としてFRMの強度のばらつきが大きくなると考えられる。

第4章参考文献

- (4-1) 浅岡·三浦、日本金属学会誌、40(1976), 6, P.644.
- (4-2) 鷲津・ほか4名、有限要素法ハンドブックII・応用編、(1981), P.245, 培風館.
- (4-3) 林、複合材料工学、(1975), P.27, 日科技連.
- (4-4) アルミニウムハンドブック、(1990), P.31, 軽金属学会.
- (4-5) 次世代複合材料技術ハンドブック、(1991), P.307, P.358, 日本規格協会.
- (4-6) S. Ochiai and K. Osamura, J. Mater. Sci., 23(1988), 3, P.886.
- (4-7) 合田・福永、第9回設計における信頼性工学シンポジウム・前刷集(材料学会)、(1989), P.146.
- (4-8) 奥野·三浦、日本金属学会誌、42(1978), 7, P.936.
- (4-9) 向後·香川、鉄と鋼、75(1989), 9, P.1769.
- (4-10) 香川 · B. H. Choi, 日本金属学会誌、53(1989), 3, P.339.
- (4-11) 竹内、数理統計学、(1978), P.140, 東洋経済新報社.
- (4-12) S. B. Batdorf, J, Rein, Plas. Comp., 1(1982), P.153.

第5章

総 括

本論文では、母材の強度を変化させFRMの強度とそのばらつきに及ぼす母材 の強度の影響について調べた。FRMに対して熱処理を施し、常温および高温引 張試験を行なうとともに、計算機シミュレーション実験を行なって、母材の強度 特性がFRMの強度に大きな影響を与えることを明らかにした。とくにFRMの 強度のばらつきは母材の強度特性によってかなり影響されることおよび熱処理に よる母材の強化によってFRMの強度が上昇することを見いだした。なお、複合 則を修正する一式を提案し、弾塑性有限要素法によるシミュレーション結果と比 較してFRMの強度に母材の強度特性が影響する原因が母材に埋め込まれた繊維 の耐荷能力の変化であることを明らかにした。また、母材の強度特性を変化させ たときのFRMの破壊過程と破断した繊維の近傍の応力集中を調べて、FRMの 強度とそのばらつきに及ぼす母材の強度特性の影響要因を考察した。本論文での 研究成果はFRMの強度と信頼性の向上に資すると思われる。

本論文の内容を各章ごとに要約すると、つぎのようになる。

第1章では、本研究の背景を述べ、この分野における従来の研究を紹介して本研 究の位置づけを行なうとともに本研究の目的を述べた。

第2章では、熱処理によりSiC/pure-Al、SiC/Al-5.7NiおよびSiC/Al-4.0Cu の3種 類のFRMの母材を軟・硬化させて、引張試験を行ない、FRMの強度とばらつ きに及ぼす母材の強度の影響を調べ、その要因について考察した。FRMの強度 への母材の強度の影響については、母材に埋め込まれた状態での繊維の強度は母 材の強度の関数と考え、従来の複合則を修正することによって考察した。その結 果は以下のように要約される。

1) 熱処理を受けたSiC/pure-Al、SiC/Al-5.7NiおよびSiC/Al-4.0Cuの3種類の

FRMは、母材の強度が低くなると、FRMの強度が低下し、強度のばらつきが 大きくなる。

2) FRMの強度への母材の強度の影響は母材の強度の変化による繊維の強化効果、すなわち母材に埋め込まれた状態での繊維の耐荷能力の変化によるものである。

3) 従来の複合則はFRMの強度への母材の強度の寄与を適正に評価していない。 母材に埋め込まれた状態での繊維の耐荷能力が母材の強度に依存すると考えて修 正した複合則は、比較的正確 にFRMの強度への母材の強度の寄与を評価してい る。

4) FRMの強度のばらつきは母材の強度の影響をかなり受けることが認められる。

5)本実験の範囲内では、FRMの強度とそのばらつきに及ぼす母材の残留応力の影響は認められない。

第3章では、SiC/pure-Alと SiC/Al-5.7Niを用い、それぞれ500℃および400℃ま での高温引張試験を行ない、FRMの強度とばらつきに及ぼす母材の強度の影響 を調べた。第2章において修正した複合則を適用し、FRMの強度とそのばらつき への母材の強度の寄与について考察した結果は次のように要約される。

1) SiC/pure-Al と SiC/Al-5.7Niは試験温度が高くになるにしたがい、強度が低下し、そのばらつきが大きくなる。この結果は、それぞれのFRMに熱処理を施し、母材の強度を変化させてFRMの強度とばらつきを調査した実験結果と一致している。高温におけるFRM強度の低下とばらつきの増大は母材強度の低下によるものである。

2)母材に埋め込まれた状態での繊維強度が母材の強度に依存すると考えて修 正した複合 則はFRMの強度への母材強度の影響を比較的よく評価している。す なわち、FRMの強度への母材の強度の寄与は、母材による繊維の強化効果、言 いかえれば、母材に埋め込まれた状態での繊維の耐荷能力の変化によるものであ る。
3) 母材の強度がFRMの強度のばらつきに大きく影響を与えることが認められる。この原因については、次章のコンピュータシミュレーションの結果を用いて 検討する。

第4章では、弾塑性有限要素法を用いたモンテカルロ・シミュレーションによっ て、FRMの強度とそのばらつきに及ぼす母材の強度特性の影響を調査し、第2章 および第3章の実験結果と比較して母材の強度特性の寄与を総合的に検討した。さ らに、弾塑性有限要素法を用いて母材の強度特性を変化させたときの繊維の破断 に起因する応力分布を計算し、繊維の強化効果、FRMの破壊過程および応力集 中の範囲からFRMの強度とそのばらつきに及ぼす母材の強度特性の影響につい て考察を加えた。その結果は次のように要約される。

1) 母材の強度が低くなると、FRMの強度が低下し、強度のばらつきが大きく なる。また、母材の強度が変化するとFRMの破壊過程が変化する。すなわち、 母材が強くなると累積的な破壊過程となり、弱くなると非累積的な破壊過程とな る。

2) 母材の強度が低くなると破断した繊維の応力の回復が悪くなるため、繊維の 無効長さが長くなり、繊維の耐荷能力が低下する、すなわち、繊維の強化効果が 低下する。このことがFRMの強度に及ぼす母材の強度特性の影響を説明する主 な原因である。

3) FRMの強度とそのばらつきは破壊過程の累積の程度に関係がある。累積的 な破壊過程ではFRMの強度が高く、強度のばらつきが小さくなる。非累積的な 破壊過程ではFRMの強度が低く、強度のばらつきが大きくなる。母材の強度特 性の変化は破壊過程の変化をもたらすことによってFRMの強度とそのばらつき を変化させる。これはFRMの強度とそのばらつきに及ぼす母材の強度特性の影 響を説明するもう一つの原因である。

4) 破断した繊維のまわりの応力集中の範囲の大きさは、母材の強度特性に影響 され、母材の強度が高くなると応力集中の範囲の大きさが小さく、母材の強度が 低くなるとそれが大きくなる。FRMの破壊過程は破断した繊維のまわりの応力

103

集中の範囲の大きさに関係があり、応力集中の範囲が大きくなれば非累積的な破壊、応力集中の範囲が小さくなれば累積的な破壊となる。また、FRMの強度の ばらつきは応力集中の範囲の大きさに関係があり、応力集中の範囲が大きくなる と大きな欠陥あるいは異なった種類の欠陥を含む確率が大きくなるため、結果と してFRMの強度のばらつきが大きくなると考えられる。

第5章では、前章までに得られた結果を総括した。

付録1 Al-Ni 合金と Al-Cu 合金の二元状態図





付録2 要素の節点の共有による複合化を表す方法

本研究では、繊維の棒要素を母材の4節点のアイソパラメトリック要素のY軸方向の2辺上に組み込んで同一節点をそれぞれの要素に共有させることによって複合化を表した。例えば、図F2-1に示す節点1,2,3,4からなる4節点アイソパラメト



図F2-1 繊維要素と母材要素の組み込み

リック要素内の節点 1,4 上に棒要素が組み込まれる場合、その要素剛性マトリックス [k] は次式のように表される。

| [k]=[k <sup>m</sup> ]+[k <sup>f</sup> ]= | $k_{11}^{m} + k_{11}^{f}$    | $k_{12}^{m} + k_{12}^{f}$    | $k_{13}^m$                   | $k_{14}^m$                    | $k_{15}^m$                   | $k_{16}^m$                   | $k_{17}^{m} + k_{13}^{f}$ | $k_{18}^{m}+k_{14}^{f}$      |
|------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|
|                                          | $k_{21}^m + k_{21}^f$        | $k_{22}^{m} + k_{22}^{f}$    | k <sup>m</sup> <sub>23</sub> | $k_{24}^m$                    | k <sub>25</sub> <sup>m</sup> | $k_{26}^m$                   | $k_{27}^{m} + k_{23}^{f}$ | $k_{28}^{m}+k_{24}^{f}$      |
|                                          | k <sub>31</sub> <sup>m</sup> | k <sub>32</sub> <sup>m</sup> | k <sub>33</sub>              | $k_{34}^m$                    | k <sub>35</sub> <sup>m</sup> | k <sub>36</sub> <sup>m</sup> | k <sub>37</sub>           | k <sub>38</sub> <sup>m</sup> |
|                                          | $k_{41}^m$                   | k <sub>42</sub> <sup>m</sup> | k <sub>43</sub> <sup>m</sup> | $k_{44}^m$                    | $k_{45}^m$                   | $k_{46}^{m}$                 | k <sub>47</sub>           | k <sub>48</sub> <sup>m</sup> |
|                                          | k <sub>51</sub> <sup>m</sup> | k <sup>m</sup> <sub>52</sub> | k <sup>m</sup> <sub>53</sub> | $k_{54}^m$                    | k <sub>55</sub>              | k <sup>m</sup> 56            | k <sub>57</sub>           | k <sub>58</sub> <sup>m</sup> |
|                                          | k <sub>61</sub> <sup>m</sup> | k <sub>62</sub> <sup>m</sup> | k <sub>63</sub> <sup>m</sup> | $k_{64}^m$                    | $k_{65}^m$                   | k <sub>66</sub> <sup>m</sup> | k <sub>67</sub>           | k <sub>68</sub> <sup>m</sup> |
|                                          | $k_{71}^{m} + k_{31}^{f}$    | $k_{72}^{m} + k_{32}^{f}$    | k <sub>73</sub>              | k <sup>in</sup> <sub>74</sub> | k <sub>75</sub>              | k <sub>76</sub> <sup>m</sup> | $k_{77}^{m} + k_{33}^{f}$ | $k_{78}^{m}+k_{34}^{f}$      |
|                                          | $k_{81}^{m}+k_{41}^{f}$      | $k_{82}^{m} + k_{42}^{f}$    | k <sub>83</sub>              | k <sub>84</sub>               | k <sub>85</sub>              | k <sub>86</sub> <sup>m</sup> | $k_{87}^{m}+k_{43}^{f}$   | $k_{88}^{m}+k_{44}^{f}$      |

(F2-1)

ここで、 $[k^m]$  は4節点アイソパラメチリック要素における要素剛性マトリックス、  $[k^f]$  は棒要素における要素剛性マトリックスをそれぞれ示す。また、 $k^m_{ij}$  および  $k^f_{ij}$  はそれらの (i,j) 成分である。 $[k^m]$  に対しては、局所座標系 ( $\xi$ , $\eta$ ) による変数変換を施し、ガウス-ルジャンドルの積分公式によって数値的に積分点上の値を評価する通常の手法に従った。すなわち、

$$\begin{split} [k^{m}] = \int \left[ [B(x,y)]^{T} [D] [B(x,y)] t dx dy = \int_{-1}^{1} \int_{-1}^{1} \left[ B(\xi,\eta) \right]^{T} [D] \left[ B(\xi,\eta) \right] t d\xi d\eta \\ \approx \sum_{i}^{n} \sum_{j}^{n} H_{i} H_{j} \left[ B(\xi_{i},\eta_{j}) \right]^{T} [D] \left[ B(\xi_{i},\eta_{j}) \right] t |J| \end{split}$$
 (F2-2)

である。ここで、[B(ξi,ŋj)] はひずみー変位マトリックス、 [D] 応力ーひずみマト リックス、川 はヤコビアン、t は要素厚さ、H は重み係数、n は積分次数、をそれ ぞれ示す。本計算では H=1, n=2 とした。

一方、[k<sup>f</sup>] を局所座標 z 上の要素剛性マトリックス、 [T] を全体座標への変換 マトリックスとするとき、[k<sup>f</sup>] は次のように評価される。

 $[k^{f}] = [T]^{T} [k_{z}^{f}] [T]$ 

(F2-3)

ただし、

$$\begin{bmatrix} k_z^f \end{bmatrix} = \frac{EA}{\Delta x} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

(F2-4)

$$[T] = \frac{EA}{\Delta x} \begin{bmatrix} \cos\alpha \sin\alpha & 0 & 0 \\ 0 & 0 & \cos\alpha & \sin\alpha \end{bmatrix}$$

(F2-5)

ここで、E:繊維の弾性率、A:繊維の断面積、α:棒要素の x 軸からの傾き、で ある。 付録3

## rmin 法

本研究では、強制変位を増加させていくと繊維の破断や母材の降伏が生じ、このような場合に、どの状態変化が優先して生じるかを判定し、要素が一つずつ状態変化するように変位増分を制御する方法としてrmin法を用いた。以下にその手順を述べる。

まず、繊維要素に対し、

(i) i番目のステップでの任意変位増分{du}iに対し、全体剛性マトリックスを 用いて、各要素の変位増分{du}iを求める。このとき応力増分は、

$$(\sigma_z)_i^{\star} = (\sigma_z)_{i-1} + (d\sigma_z)_i$$

(F3-1)

(F3-2)

(ii) ある繊維要素の応力(σzhがその繊維強度Xを越えている場合、X以降を過大評価しているので、Xまで戻さなければならない。その倍率をrと置くと(F3-1)式より、

 $(\sigma_z)_{i-1} + r \cdot (d\sigma_z)_i = X$ 

これをrについて書き直すと、

$$r = \frac{X - (\sigma_z)_{i-1}}{(d\sigma_z)_i}$$
(F3-3)

この手順を母材要素に対しても行なう。

(i) 母材要素の応力増分を求める。

$$(\sigma_{x})_{i}^{*} = (\sigma_{x})_{i-1} + (d\sigma_{x})_{i}$$
$$(\sigma_{y})_{i}^{*} = (\sigma_{y})_{i-1} + (d\sigma_{y})_{i}$$
$$(\tau_{xy})_{i}^{*} = (\tau_{xy})_{i-1} + (d\tau_{xy})_{i}$$

(F3-4)

(ii) rを求める。rと (F3-4) 式は次のような関係にある。  $\{(\sigma_x)_{i-1}+r\cdot(d\sigma_x)_i\}^2+\{(\sigma_y)_{i-1}+r\cdot(d\sigma_y)_i\}^2-\{(\sigma_x)_{i-1}+r\cdot(d\sigma_x)_i\}\{(\sigma_y)_{i-1}+r\cdot(d\sigma_y)_i\}$ 

$$+3{(\tau_{xy})_{i-1}+r \cdot (d\tau_{xy})_i}^2 = Y^2$$

(F3-5)

これは、各応力増分が同じ倍率で変化している、すなわち、線形関係にあることを表している。(F3-5)式をrについての2次方程式に整理すると、

 $(d\overline{\sigma})_{i}^{2} \cdot r^{2} + \{2(\sigma_{x})_{i-1}(d\sigma_{x})_{i} + 2(\sigma_{y})_{i-1}(d\sigma_{y})_{i} - (\sigma_{x})_{i-1}(d\sigma_{y})_{i} - (\sigma_{y})_{i-1}(d\sigma_{x})_{i}$ 

$$+6(\tau_{xy})_{i-1}(d\tau_{xy})_{i}\cdot r + (\overline{\sigma})_{i-1}^{2} - Y^{2} = 0$$
(F3-6)

ここで、

$$A = (d\overline{\sigma})_{i}^{2} = (d\sigma_{x})_{i}^{2} + (d\sigma_{y})_{i}^{2} - (d\sigma_{x})_{i}(d\sigma_{y})_{i} + 3(d\tau_{xy})_{i}^{2}$$

$$B = 2(\sigma_{x})_{i-1}(d\sigma_{x})_{i} + 2(\sigma_{y})_{i-1}(d\sigma_{y})_{i} - (\sigma_{x})_{i-1}(d\sigma_{y})_{i} - (\sigma_{y})_{i-1}(d\sigma_{x})_{i} + 6(\tau_{xy})_{i-1}(d\tau_{xy})_{i}$$

$$C = (\overline{\sigma})_{i-1}^{2} - Y^{2} = (\sigma_{x})_{i-1}^{2} + (\sigma_{y})_{i-1}^{2} - (\sigma_{x})_{i-1}(\sigma_{y})_{i-1} + 3(\tau_{xy})_{i-1}^{2} - Y^{2}$$
(F3-7)

とおくと、2次方程式の根の公式より、

$$r = \frac{-B \pm \sqrt[4]{B^2 - 4AC}}{2A}$$
(F3-8)

A>0であり、弾性要素に対してはC<0なので、

$$r = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$
(F3-9)

となる。

以上のように、rをすべての繊維要素と母材要素について求めた後、

(iii) 一つのステップでの強制変位増分、応力増分、ひずみ増分、荷重増分は それぞれ比例関係にあることから、rの最小値をrminとすると、図4-2にその概念を 示すように、各要素の確定した応力成分が次のように求まる。

繊維要素について、

$$(\sigma_z)_i = (\sigma_z)_{i-1} + r_{\min}(d\sigma_z)_i$$
(F3-10)

母材要素については、

 $(\sigma_x)_i = (\sigma_x)_{i-1} + r_{\min}(d\sigma_x)_i$ 

 $(\sigma_y)_i = (\sigma_y)_{i-1} + r_{min}(d\sigma_y)_i$ 

 $(\tau_{xy})_i = (\tau_{xy})_{i-1} + r_{min}(d\tau_{xy})_i$ 

(F3-11)

任意に与えた変位増分境界条件は、rmin{du}i<sup>t</sup>となる。必要に応じて、ひずみや変 位についても確定値を求めればよい。

(iv) rminを与えた要素の状態を変化させる。すなわち、rminを与えた要素が繊 維要素であった場合には、繊維を破断させる。マトリックス要素であった場合に は、[D]マトリックスの代わりに[DP]マトリックスを使用する。なお、第4章で述 べたように、本シミュレーションでは、母材要素にアルミニウムを想定している ため、繊維の間隔にばらつきがない場合、繊維破断の生じるひずみレベルより小 さなひずみレベルで、母材要素の降伏が一様に生ずる。そのような場合には、母 材要素の降伏を全要素を対象に一度に行なった。

## 付録4 ひずみ増分理論による母材の [D<sup>P</sup>] の誘導

ひずみ増分理論によれば塑性域における応力増分{dσ}とひずみ増分{dε}の関係 は次式<sup>(F4-1)</sup>で与えられる。

$$\{d\sigma\} = \left[ [D] - \frac{[D] \left\{\frac{\partial f}{\partial \sigma}\right\} \left\{\frac{\partial f}{\partial \sigma}\right\}^{T} [D]}{H' + \left\{\frac{\partial f}{\partial \sigma}\right\}^{T} [D] \left\{\frac{\partial f}{\partial \sigma}\right\}} \right] \{d\epsilon\}$$

$$\equiv \left[ \mathbf{D}^{\mathbf{p}} \right] \{ \mathbf{d} \boldsymbol{\varepsilon} \}$$

(F 4-1)

ここで、[D]は弾性域における応力-ひずみマトリックス、fは塑性ポテンシャル、 H'は加工硬化係数である。ここで、fはミーゼスの降伏関数を用いると次式で与え られる。

$$f = \sqrt{\frac{1}{2} \{(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{yz}^2 + \tau_{zx}^2 + \tau_{xy}^2)\}}$$
(F4-2)

平面応力条件の場合に対して、応力増分とひずみ増分は、

 $\{d\sigma\}^{T} = \{ d\sigma_{x} \ d\sigma_{y} \ d\tau_{xy} \}$  (F4-3)

$$\{d\epsilon\}^{1} = \{ d\epsilon_{x} \ d\epsilon_{y} \ d\gamma_{xy} \}$$
 (F4-4)

また、

.....

$$\left(\frac{\partial f}{\partial \sigma}\right)^{\mathrm{T}} = \left\{\frac{3\sigma_{\mathrm{x}'}}{2\overline{\sigma}} \frac{3\sigma_{\mathrm{y}'}}{2\overline{\sigma}} \frac{3\tau_{\mathrm{xy}}}{\overline{\sigma}}\right\} = \frac{3}{2\overline{\sigma}} \left\{\sigma_{\mathrm{x}'} \sigma_{\mathrm{y}'} 2\tau_{\mathrm{xy}}\right\}$$
(F4-5)

となる。ここで、 σx'、 <sup>σy</sup>および σは、それぞれ、 偏差応力および相当応力で次式 で与えられる。

$$\sigma_{\mathbf{x}}' = \sigma_{\mathbf{x}} - \frac{1}{3} (\sigma_{\mathbf{x}} + \sigma_{\mathbf{y}}) \quad , \quad \sigma_{\mathbf{y}}' = \sigma_{\mathbf{y}} - \frac{1}{3} (\sigma_{\mathbf{x}} + \sigma_{\mathbf{y}})$$

$$\overline{\sigma} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2}$$

(F4-6)

なお、

$$\left\{ \frac{\partial f}{\partial \sigma} \right\}^{\mathrm{T}} [\mathrm{D}] = \frac{3}{2\overline{\sigma}} \frac{\mathrm{E}}{1 - \nu^{2}} \left\{ \begin{array}{cc} \sigma_{\mathrm{x}}' + \nu \sigma_{\mathrm{y}} & \sigma_{\mathrm{y}}' + \nu \sigma_{\mathrm{x}} & (1 - \nu)\tau_{\mathrm{xy}} \end{array} \right\}$$

$$= \frac{3}{2\overline{\sigma}} \left\{ \begin{array}{cc} \frac{\mathrm{E}}{1 - \nu^{2}} \left( \sigma_{\mathrm{x}}' + \nu \sigma_{\mathrm{y}} \right) & \frac{\mathrm{E}}{1 - \nu^{2}} \left( \sigma_{\mathrm{y}}' + \nu \sigma_{\mathrm{x}} \right) & \frac{\mathrm{E}}{1 + \nu} \tau_{\mathrm{xy}} \end{array} \right\}$$

$$= \frac{3}{2\overline{\sigma}} \left\{ \begin{array}{cc} \mathrm{S}_{1} & \mathrm{S}_{2} & \mathrm{S}_{6} \end{array} \right\}$$

$$(F4-7)$$

となる。ここで、 S1、S2および S6は次式で与えられる。

$$S_{1} = \frac{E}{1 - v^{2}} (\sigma_{x}' + v\sigma_{y}') , \quad S_{2} = \frac{E}{1 - v^{2}} (\sigma_{y}' + v\sigma_{x}') , \quad S_{6} = \frac{E}{1 + v} \tau_{xy}$$
(F4-8)

つぎに、

$$\left\{\frac{\partial \mathbf{f}}{\partial \sigma}\right\}^{\mathrm{T}}[\mathbf{D}]\left\{\frac{\partial \mathbf{f}}{\partial \sigma}\right\} = \frac{9}{4\overline{\sigma}^{2}}\left(\mathbf{S}_{1}\sigma_{\mathbf{x}}' + \mathbf{S}_{2}\sigma_{\mathbf{y}}' + 2\mathbf{S}_{6}\tau_{\mathbf{xy}}\right)$$
(F4-9)

である。一方、弾性応力-ひずみマトリックス[D]は対称マトリックスなので、

$$\left[\mathbf{D}\right]\left\langle\frac{\partial \mathbf{f}}{\partial\sigma}\right\rangle = \left[\mathbf{D}\right]^{\mathrm{T}}\left\langle\frac{\partial \mathbf{f}}{\partial\sigma}\right\rangle = \left\langle\left\langle\frac{\partial \mathbf{f}}{\partial\sigma}\right\rangle^{\mathrm{T}}\left[\mathbf{D}\right]\right\rangle^{\mathrm{T}}$$
(F4-10)

が成立する。よって、

$$[D] \left\{ \frac{\partial f}{\partial \sigma} \right\} \left\{ \frac{\partial f}{\partial \sigma} \right\}^{T} [D] = \frac{9}{4\overline{\sigma}^{2}} \left\{ \begin{array}{cc} S_{1} \\ S_{2} \\ S_{6} \end{array} \right\} \left\{ \begin{array}{cc} S_{1} \\ S_{2} \\ S_{6} \end{array} \right\} \left\{ \begin{array}{cc} S_{1} \\ S_{2} \\ S_{6} \end{array} \right\}$$

$$= \frac{9}{4\overline{\sigma}^2} \begin{bmatrix} S_1^2 & S_1S_2 & S_1S_6 \\ S_1S_2 & S_2^2 & S_2S_6 \\ S_1S_6 & S_2S_6 & S_6^2 \end{bmatrix}$$
(F4-11)

式 (F4-9), (F4-11)を式 (F4-1)に代入すると、[D<sup>p</sup>]が次のように求められる。

$$[D^{p}] = \begin{bmatrix} \frac{E}{1 - v^{2}} - \frac{S_{1}^{2}}{S} & \frac{vE}{1 - v^{2}} - \frac{S_{1}S_{2}}{S} & -\frac{S_{1}S_{6}}{S} \\ & \frac{E}{1 - v^{2}} - \frac{S_{2}^{2}}{S} & -\frac{S_{2}S_{6}}{S} \\ & sym. & \frac{E}{2(1 + v)} - \frac{S_{6}^{2}}{S} \end{bmatrix}$$
(F4-12)

ただし、

 $S = \frac{4}{9} \overline{\sigma}^2 H' + S_1 \sigma_x' + S_2 \sigma_y' + 2S_6 \tau_{xy}$ 

である。[D<sup>p</sup>]を塑性域における応力-ひずみマトリックスとして用いた。

付録4の参考文献

(F4-1) 三好・ほか3名、有限要素法、(1990), P.69, 実教出版.

## 本論文に関する公表した文献

Hidiharu FUKUNAGA, Yun LU and Jin PAN
 Effect of Matrix Properties on Statistical Strength and Distribution of SiC/Al Alloy Composite
 Wires

Proceeding of C-MRS'90, BeiJing China, June 18-22, 1990, P.181-186.

2. Yun LU and Hideharu FUKUNAGA

X-ray Residual Stress Analysis of Heat-Treated SiC/Al-Alloy Composite Wires Proceeding of ICRS-3(The Third Internaional Conference on Residual Stress), Tokushima Japan, July 24-26, 1991, P.40-45(Residual Stress III).

3. Hidiharu FUKUNAGA and Yun LU

Effect of Matrix Strength on Statistical Strength of SiC/Al Alloy Composite Wires Proceeding of RASELM'91(International Conferance on Recent Advances in Science and Engineering of Light Metals), Sendai Japan, October 14-16, 1991, P.495-500.

- 福永秀春、 合田公一、 魯 云 SiC/Al合金プリフォームワイヤの強度とそのばらつきに及ぼす熱処理の影響 日本機械学会論文集(A編)、Vol.57(1991), No.535, P.64-69.
- Hideharu FUKUNAGA and Yun LU
   Contribution of Matrix Strength to Tensile Strength of Fiber Reinforced Metals
   Proceeding of APCS-91(Fourth Conference of Asian-Pacific Congress on Strength Evalution),
   Beijing China, October 8-10, 1991, Vol.1, P.232-237.
- 6. 合田公一、 魯 云、 福永秀春
   モンテカルロ・シミュレーションによる一方向FRMの引張強度の評価(有限要素
   法の適用)

日本機械学会論文集(A編)、Vol.57(1991), No.543, P.2708-2714.

7. 福永秀春、 魯 云

マトリックスに埋め込まれた状態での繊維強度を考慮したSiC/AI合金複合材料

の引張強度

日本機械学会論文集(A編)、Vol.57(1991), No.544, P.3023-3028.

福永秀春、 魯 云、 濱田純一
 繰返し負荷を与えたSiC/Al合金コンポジットワイヤの残留強度とそのばらつき
 日本複合材料学会誌、Vol.19(1993), No.1, P.15-19.

本研究は、広島大学・福永秀春教授の指導のもとに行なわれた。ここに、同教 授の熱心なご指導に対し心より感謝の意を表します。また、本研究をまとめるに あたり、多くの有益なご助言ご討論および校閲を頂きました同大学の大森正信教 授、黒木英憲教授ならびに柳沢 平教授に、厚くお礼申し上げます。なお、日頃 より多くの有益なご助言ご援助を頂きました同大学の合田公一助手に厚く感謝い たします。X-ray の回折実験などにあたりご教示を頂きました同大学の中佐啓治郎 助教授に心からお礼申し上げます。

討

辞

また、実験を行なうにあたって当時広島大学学部生、大学院生および研究生・ 潘 進、細谷史成、加洲政幸、菊原真治、村上 亨および濱田純一氏には実験の 遂行にご協力頂き、ここにお礼申し上げます。また、本研究を遂行するにあたり、 広島大学工学部第一類(機械系)機械材料工学講座の教職員をはじめ、多くの方々 からご支援を頂きました。ここに厚くお礼申し上げます。

117