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Abstract

In this dissertation, a graph model called a W-graph is presented. The
graph model €2, consists of an ordinary graph G(V, F) and k(> 0)
wild-components wy, ws, -+, wy, and is represented by Q,,(V, E, W) =
G(V, E) U unU wyU - -+ Uwy. BEach wild-component w, is a pair of a
vertex set V(w;) having p; vertices and a tree containing V' (w,) and
pi — 1 edges, and is formally defined as w; = {V(w;),t® | ") € T'(w,)},
where V(w;) = {vi1, vi2, =+, vip}, T(w;) is a set of all trees con-
taining all vertices in V(w;) and #) is any tree in 7'(w;). Hence, a
wild-component w, can represent any tree containing all vertices of
V(w,), where no specific tree is given. Hypergraphs and hyper-edges
are related to W-graphs and wild-components. The definition of the
former is more general than that of the latter, which restricting wild-
components to trees leads us to more sophisticated discussion, as will

be given in this dissertation.

Introduction is given in Chapter 1 and basic definitions are explained



in Chapter 2.

In Chapter 3, we introduce the concept of W-circuits and W-cutsets
of a W-graph as an extension of circuits and cutsets of an ordinary
graph. Also defined is an operation of W-ring sum in a W-graph. It
is proved that the W-ring sum of two W-circuits is a W-circuit and
that the W-ring sum of two W-cutsets is also a W-cutset. Further-
more, W-incidence, W-cutset and W-circuit matrices are introduced.
In a W-incidence matrix A,, we define a W-tree corresponding to the
columns of a non-singular major submatrix of A4,. By the W-tree,
a fundamental W-cutset matrix and a fundamental W-circuit matrix
can be constructed where their rows corresponds to a set of linearly
independent W-cutsets and a set of linearly independent W-circuits,

respectively.

In Chapter 4, the relation between a W-graphs and its derived graphs
is discussed. When structure of each wild-component is specified, a
W-graph ©,,(V, £, W) becomes an ordinary graph G4(V, E') which is
called a derived graph. We prove (i) and (ii) as follows: (i) A W-
circuit, a W-cutset and a W-tree of a W-graph can be transformed to
a circuit (or edge disjoint union of circuits), a cutset (or edge disjoint
union of cutsets) and a tree of any derived graph, respectively; (ii) if all
elements in a set of W-circuits (W-cutsets, respectively) are linearly

independent under W-ring sum, then all elements in a set of edge
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disjoint circuits (edge disjoint cutsets) obtained in (i) are also linearly
independent under ring sum.

In Chpter 5, some applications of W-graphs are mentioned. Consider
the via-minimization problem in two-layered topological routing that
is often used in design of VLSI or printed wiring boards. The problem
can be modeled by a W-graph Q,,(V, £, W), where V represents a set
of all terminals, £ does a set of two-terminal nets and W does a set
of multi-terminal nets. With this modeling, the problem is reduced
to two problems of W-graphs: the one is detection of planarity of W-
graphs and the other is plane drawing of planar W-graphs. At present,
the two problems still remain unsolved, we are unable to evaluate our
approach by W-graphs explicitly. However, if we can solve the two
problems in W-graphs, the advantages of this approach will be shown.
In this dissertation, some theorems are provided for testing planar W-
graphs for some particular W-graphs.

Finally, unsolved problems on W-graphs left for future research are

stated.
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Chapter 1

Introduction

Graph theory has been found useful in modeling systems arising in
physical science, engineering, social science and economic problems
because of their intuitive diagrammatic representation. The fact is
that any system involving a binary relation can be represented by a

graph.

In this introductory chapter, some basic concepts of graph theory
will be reviewed and several definitions and terminologies through-
out this dissertation will be introduced based on the standard texts
[Mayedal 72], [Chen 71], [Chan 69] and [Harary 69]. Through sev-
eral instances, we illustrate why the concepts of wild-components are
needed where each wild-component is a minimally connected subgraph

with unspecified edges, then we define a W-graph which contains wild-
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components. Since the relation between vertices and edges in each
wild-component is unspecified, a W-graph is different from an ordi-

nary graph.

1.1 Graphs

A graph G or called an ordinary graph is a pair (V(G), F(G)), where
V(G) is a non-empty set of elements called vertices, and E(G) is a
family of unordered pairs of elements of V() called edges. V(G) and
F(G) are called a vertex set and an edge set of G. When there is
no possibility of confusion, these can be indicated by the symbols of V
and F, respectively. The graph is represented by G(V, E'). The number
of vertices of G(V, E) is usually denoted by | V' | and the number of
edges of G(V, E) is denoted by | F |.

[t should be noticed that the relation between vertices and edges in
a given graph is fixed, which makes a difference between graphs and
W-graphs introduced in this dissertation.

If €,(vq, vp) is an edge of G(V, E), the ¢, is said to join the vertices
v, and v, and these vertices are then said to be adjacent. In this case,
it is also said that e; is incident at v, and v, and that v, and v, are
called endpoints of ¢,. The number of edges incident at v, is called

a degree of v,. Two edges of G(V, F) incident at the same vertex
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will be called adjacent edges, and two or more edges joining the
same pair of vertices will be called parallel edges. An edge joining
a vertex to itself will be called a self-loop. A graph containing no
self-loop or parallel edges is called simple graph. A simple graph in
which every two vertices are adjacent is called a complete graph. A
complete graph with n vertices and n(n—1)/2 edges is denoted by A’,,.
The rank of a graph is equal to | V | —p where p is the number of
maximally connected components. A planar graph is a graph which
can be embedded in the plane in such a way that no two edges intersect
geometrically except at a vertex. A graph drawn on a plane in this
way is called a plane drawing graph and the areas which the plane
drawing graph divides the plane are called the regions (windows).

The unbounded region is called the outside region.

1.1.1 Paths and Circuits

An edge sequence {(vo, v1), (v1,v2), -+, (v,-1,7,)}, 7 > 2, in a graph
G(V, E) is said to be closed if v9 = v,, and open otherwise. In an
open edges sequence, v is called the initial vertex, and v, is called
the final vertex of the edge sequence. Together they are called the
terminals of the edge sequence. If all the edges appearing in an edge
sequence are distinct, the edge sequence is called an edge train. If

all vertices vy, v, -+, v, in an open edges train are distinct, a set of
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these edges is called a path. When the initial and the final vertices of
a path are the same, it is called a circuit. In other words, a circuit
is a closed edge train. When some circuits are edge disjoint, we call
these circuits as an edge disjoint union of circuits. It can be seen
that the degree of every vertex in a circuit or an edge disjoint union
of circuits is even, that is, every vertex as an endpoint appears even
times in the closed edge train.

1

With the aid of ring sum operation ', we have the following impor-

tant property:

Theorem 1.1.1 The ring sum of two different circuits is a circuit or

an edge-disjoint union of circuits. [ |

The proof of Theorem 1.1.1 has been given in [Chen 71] and [Mayedal 72].

1.1.2 Cutsets

For a connected graph G(V, E), let V, and V, be two non-empty sub-
vertex sets of V such that V, =V —V, and V,UV, = V. An edge set .S
consisting of all edges between a vertex in V, and a vertex in V, is either

a cutset or an edge disjoint union of cutsets. If removal all edges of

'Ring-sum operation & is defined as C, & Cp = (C, U Cy) = (Co N Cy).



S, the rank of G(V, F) reduces by one, S is called a cutset. Otherwise
S is called an edge disjoint union of cutsets. When either V, or V,
contains one and only one vertex, the edge set S is called an incidence
set. In other words, an incidence set is formed by the edges incident
at a vertex of G(V, £). The number of linearly independent cutsets or
edge disjoint union of cutsets in G(V, /) is | V | —1. [Mayedal 72] has
presented the following important relation of cutsets or edge disjoint

union of cutsets under the ring sum operation.

Theorem 1.1.2 The ring sum of two distinct cutsets or edge disjoint
union of cutsets of a graph s either a cutset or an edge disjoint union

of cutsets of the graph. L]

1.1.3 Trees

A connected graph which contains no circuits is called a tree, and a
separated graph whose maximally connected components are trees is
called a forest. The main properties of trees are summarized in the

following theorem ([Wilson 72]):

Theorem 1.1.3 If T is a tree containing | V' | vertices, then



1. T is a connected graph with | V | —1 edges.
2. T contains no circuits.

3. If v, and vy are distinct vertices of T, then there is exactly one

path between v, and vy. [ |

The concept of a tree is extremely important in graph theory because
the number of linearly independent cutsets and circuits can be related
to a tree. The discussion of the number of trees in G has been given
by [Moon 67]. In particular, the number of trees in a complete graph

K, is n"~% ([Harary 69]).

Some fundamental definitions and theorems in graph theory con-
cerning this dissertation has been introduced, which establish the basic

vocabulary for describing W-graphs hereafter.



1.2 Several Motivating Examples

It is well-known that any system involving a binary relation can be
represented by a graph. In modern technologies, however, there are
instances that the representation by graphs may not be sufficient to
indicate some systems. One of instances is related to layout design of a
PCB (printed circuit board) or a VLSI. Fig. 1.1(a) is a routing problem
where there are two nets n, = {a1, as, az} and n, = {by, b}, all of
pins (terminals) in each net must be connected by wires electrically.
The net ny is a two-terminal net, whose terminals can be connected by
an edge. The net n, is a multi-terminal net, whose terminals can be
connected by any connection as long as those terminals are connected.
This means that those terminals should be connected at least by a tree
structure.

Another example in [Tanenbaum 81] is in modern communication
technology. There exists such a computer network consisting of some
terminals (hosts) and a subnet which is an unspecified structure as
shown in Fig.1.1(b). The job of a subnet is to carry message from
one terminal to other terminal. All terminals in a subnet must be

connected but its connection is unspecified.



'/boundary of routing region

di b2
& iy
o 42
be
L
a3
(a)
subnet

Figure 1.1: (a)A routing problem (b) a computer network



It can be seen that the connection of a multi-terminal net in a rout-
ing problem or a subnet in a computer net is unspecified though we
know all terminals or all hosts must be connected. Using an ordinary
graph for modeling above systems is unsuitable because the neces-
sary requirement is that the relation between vertices and edges in the
connections is unspecified, unless the connections are fixed by a par-
ticular structure such as a complete graph, a tree, a rectangle and so
on [Mal. 83], [Hsu 83], [Xiong 89] and [Zhaol 89].

Should the connection be fixed by a particular structure 7 Fixing
it by a particular structure may produce an influence on physical de-
sign. Can we make a graph model for these systems without particular
structures ? For example, we define an connected component contain-
ing vertices aj, a, and az as shown in Fig.1.2 to describe the connection
of net n, as shown in Fig.1.1(a). The connected component will be

discussed later.



Figure 1.2: A graph containing a connected component.
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1.3 New Graph Models — W-graphs

In 1988, the concept of wild-component in graph theory has been
presented by [Mayeda2 88]. A wild-component (Definition 2.1.1) is an
incompletely defined connected subgraph having p vertices and p — 1
unspecified edges. In other words, we know there is one and only
one path between any two vertices in a wild-component, but which
vertices being in the path other than initial vertex and final vertex are
unknown. It can be considered that a wild-component is an unspecified
tree containing all vertices of the wild-component. Hence, a wild-

component is a partially known graph.

The background of a wild-component is for modeling a multi-terminal
net or for indicating a set of specific terminals under some requirements
such as these terminals can not be separated by any wires [Zhaol 89]
and [Zhao3 90]. Because a multi-terminal net is a means of minimally
connecting terminals but the connecting structure is unspecified, it
can be represented by a wild-component in which these terminals are

represented by vertices.

When a graph G(V, E) contains wild-components each of whose ver-
tices are in V| the graph is called a W-graph whose formulation will

be given later (Definition 2.1.3).
Because a W-graph contains some wild-components, it is a partially
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known graph which is different from an ordinary graph. It is very in-
teresting and useful to discuss the properties of such a partially known
graph.

Although in each wild-component the relation between vertices and
edges is unspecified, some theorems related to W-graphs have been
summarized in [Mayeda3 90], [Zhao5 92], [Zhao6 92] and [Zhao7 92]
where knowing the structure of each wild-component being a tree is
enough to study the properties of W-graphs such as circuits and cut-
sets, and some properties under matrix representations. Some possible
applications of W-graphs for solving the problems of layout design have

been introduced in [Zhaol 89] and [Zhao3 90].

[t must be pointed out that a W-graph is different from a hyper-
graph [Bergel 73]. A hypergraph is defined as follows. Let V = {v;,
Uy, Uy } be a finite set, and let E = {e,/1 € I'} be a family of subsets

of V. The family £ is said to be a hypergraph on V' if
(1) e, #0 (1€l

(2) Uier ei=V.

p—

The couple H = (V| E) is called a hypergraph. The elements v,, v,
-+« v, are called the vertices and the sets e, e5, - -+, €, are called the
hyper-edges. An edge e, with | ¢, |> 2 is drawn as a curve encircling

all the vertices of e¢,. An edge e, with | e, |= 2 is drawn as a curve

12



connecting its two vertices. An edge ¢, with | e, |[= 1, is drawn as a

self-loop.

From the definition of a hypergraph, we can see that an edge e,
with | e; |> 2 is a sub-vertex set and all vertices in the edge e, are
connected but the connection is undefined. Because hypergraphs are
too ambiguous to be used. However, the structure of a wild-component
is defined as a minimally connected graph which is any one of p*~* trees

if the wild-component contains p vertices.

Although a cycle can be defined in a hypergraph which is formed by
hyper-edges, however, the relation between any two cycles can not be
established such as to obtain one from others and so on. Furthermore,
in a hypergraph there are no concepts similar to cutset and tree of an
ordinary graph [Berge2 74]. However, we will show that W-circuits,
W-cutsets and W-trees which we will define in W-graphs have very

similar properties as circuits, cutsets and trees of an ordinary graph.

In fact, when we fix each wild-component with a tree, a W-graph
becomes an ordinary graph, called a derived graph (Definition 4.1.2).
W-circuits, W-cutsets and W-trees become circuits or edge disjoint
union of circuits, cutsets or edge disjoint union of cutsets and trees
of the derived graph, respectively. Furthermore, without choosing a
tree for each wild-component, we can show that there are linearly

independent W-circuits and linearly independent W-cutsets which lead

13



to fundamental W-circuit matrix and fundamental W-cutset which are

theoretically very important.

Thus, W-graphs may be an important model in the field of circuits

and systems.
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1.4 Organization of This Dissertation

In this dissertation, a graph model called a W-graph will be introduced.

The properties of W-graphs will be discussed.

Chapter 1 : Some basic terminologies in graph theory are reviewed
and the summary of this dissertation is given. The terminologies in-
cluding paths and circuits, incidence sets and cutsets, and trees are
mentioned which are related to later chapters. In this introductory
chapter, the concepts of wild-components and W-graphs are introduced.
A wild-component w, is defined as a pair of a vertex set and a span-
ning tree containing all vertices in the vertex set. In other words,
wild-component can be considered as an unspecified tree-structure. A
W-graph consists of an ordinary graph and k(> 0) wild-components so
that which is partially known graph. It is pointed out that hyper-edges
and hypergraphs are related to wild-components and W-graphs. The
definition of the former is more general than that of the latter, which
restricting wild-components to trees leads us to more sophisticated

discussion, as will be given in this dissertation.

Chapter 2 : The basic concepts on W-graphs are explained. First,
we give the definition of wild-components. A wild-component w, is a
pair of a vertex set V(w;) having p, vertices and a spanning tree con-

taining p; and p; — 1 edges, and is formally defined as w, = {V (w,), t") |
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t) € T'(w;)}, where V(w,) = {vi1, vz, =+, vipi}, T(w;) is a set of all
trees containing all vertices in V(w;) and t*) is any tree in T'(w;).
Hence, a wild-component w, can represent any tree containing all ver-
tices of V(w,), where no specific tree is given. The information avail-
able on a wild-component is only that there exists exactly one path (

called an inner path ) between any two vertices of a wild-component.

Then, we define a W-graph. A W-graph 2, consists of an ordinary
graph G(V, E) and k(> 0) wild-components w;, wy, «++, wy, and is
represented by Q,(V, E,W) = G(V, £) U wU wyU -+« Uwy. If we use
colors to distinguish each wild-component in a W-graph Q,,(V, £, W),

it is clear that the total number of edges in the W-graph is equal to

| E | +Z£ivll | V(w;) | — | W |. However, as we have mentioned
previously, Zlivll | V(w,) | — | W | edges in wild-components are
unspecified.

The properties of a W-graph can be classified into two types: The
one is called an arbitrary property which holds for any tree given to
each wild-component; the other is called a restricted property which
can hold for at least one tree given to each wild-component. We will
discuss some arbitrary properties of a W-graph in Chapter 3 and 4,

and some restricted properties in Chapter 5 .

Chapter 3 : We introduce W-circuits and W-cutsets of a W-graph

as an extension of circuits and cutsets of an ordinary graph. A W-
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circuits is defined as a set consisting of edges and w,(V,,/V (w,) — V,.)
which satisfy four conditions. w,(V,,/V(w,) — V.;) can be considered
as a set of | V,; | /2 inner paths of w; whose terminals are in V,, and
are different. No matter how we choose pairs of vertices in V,, as long
as each vertex is exactly in one pair, a set of | V,, | /2 inner paths can
be obtained. We replace each w;(V,;/V,;) in a W-circuit by the set of
inner paths, the W-circuit becomes a closed train which is similar to

an closed edge train in ordinary graph.

A W-cutset separates the vertex set V of a W-graph into V, and V,
where V,UV, =V and V,NV, = §. If wild-component w, is separated
by a W-cutset such that V (w,) is divided into V,; and V,; where V,, U
V., = V(w;), Vi CV, and Vi C V., w; is represented by WV V).

Hence, a W-cutset consists of edges and w;(V,; : V,;).

Also defined is an operation of W-ring sum in a W-graph. It is
proved that the W-ring sum of two W-circuits is a W-circuit and
that the W-ring sum of two W-cutsets is also a W-cutset. Further-
more, W-incidence, W-cutset and W-circuit matrices are introduced.
In a W-incidence matrix A,,, we define a W-tree corresponding to the
columns of a non-singular major submatrix of A4,. By the W-tree,
a fundamental W-cutset matrix and a fundamental W-circuit matrix
can be constructed where their rows corresponds to a set of linearly

independent W-cutsets and a set of linearly independent W-circuits,
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respectively.

Chapter 4 : The relation between a W-graph and its derived graphs
is discussed. When structure of each wild-component is specified, a
W-graph Q,,(V, E, W) becomes an ordinary graph G,4(V, E') which is

called a derived graph. We prove (i) and (ii) as follows:

(i) A W-circuit, a W-cutset and a W-tree of a W-graph can be trans-
formed to a circuit (or edge disjoint union of circuits), a cutset (or
edge disjoint union of cutsets) and a tree of any derived graph,

respectively;

(i1) if all elements in a set of W-circuits (W-cutsets, respectively) are
linearly independent under W-ring sum, then all elements in a
set of edge disjoint circuits (edge disjoint cutsets) obtained in (i)

are also linearly independent under ring sum.

These results are theoretically very important.

Chapter 5 : Some applications of W-graphs are mentioned. Con-
sider the via-minimization problem in two-layered topological routing
that is often used in design of VLSI or printed wiring boards. The
problem can be modeled by a W-graph Q,(V, £, W), where V repre-
sents a set of all terminals, F does a set of two-terminal nets and W
does a set of multi-terminal nets. It is proved that a W-graph for mod-

eling a routing problem can be embedded on either inside or outside
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(the inside and the outside are corresponding to two layers, respec-
tively) of the boundary of routing region without crossing edges by
created vertices and that the number of vias is equal to the number of
created vertices. With this modeling, the routing problem can be re-
duced to two problems of W-graphs: The one is detection of planarity
of W-graphs and the other is plane drawing of planar W-graphs.

At present, the two problems still remain unsolved, we are unable
to evaluate our approach by W-graphs explicitly. However, if we can
solve the two problems in W-graphs, the advantages of this approach
will be shown. In this dissertation, some theorems are provided for
testing planar W-graphs for some particular W-graphs. The difficulty
of testing planar W-graphs are analyzed.

Chapter 6 : The properties of W-graphs introduced in this disser-
tation are summarized and some suggestions together with unsolved

problems are stated.
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Chapter 2

Basic Concepts of W-graphs

The basic concepts on a W-graph will be introduced. First, we give the
definition of a wild-component. A wild-component w, is defined by a
pair of a vertex set and an unspecified tree containing all vertices in the
vertex set. The information available on a wild-component is only that
there exists exactly one path (called an inner path) between any two
vertices of a wild-component. Then, we define a W-graph. A W-graph
2, consists of an ordinary graph G(V, F) and k(> 0) wild-components
wy, Wq, +++, Wy, and is represented by Q. (V, £, W) = G(V, £) U w,U
wyU -+« Uwy. The properties of a W-graph can be classified into two
types: The one is called an arbitrary property which holds for any tree
given to each wild-component; the other is called a restricted property

which can hold for at least one tree given to each wild-component. We
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will discuss some arbitrary properties of a W-graph in Chapter 3 and

4, and some restricted properties in Chapter 5.

2.1 Definitions of Wild-components and
W-graphs

Since a W-graph is a new concept in graph theory, it is very important

to notice the following definitions.

2.1.1 Wild-components

If a subsystem should be connected but there is no requirements on
how the connection should be, the subsystem can be modeled by a

wild-component, defined as follows:

Definition 2.1.1 (Wild-component ) A wild-component w; con-

tarnang p; (2 < p; < 00) vertices v,1, Uiz, **, Uiy 15 defined as:
w; = {V(wi),t(') | %) € T(w;)}

where V(w;) = {vi1, iz, *++, vipi }, T(w;) 15 a set of all trees containing

all vertices in V(w;) and ) means any one of trees in T'(w;).

It should be noticed that a wild-component can be considered as an

incompletely defined tree. In other words, a wild-component is not
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a vertex set but is a minimally connected graph where the relation
between vertices and edges is unspecified. Hence, the existence of
edges in a wild-component is known but the endpoints of these edges
are unspecified. The information available on a wild-component is
that there exists one and only one path between any two vertices in
the wild-component.

For avoiding confusions in terms of path, we give a definition of a

path in wild-component as follows:

Definition 2.1.2 (Inner path of w, ) A path in a wild-component
w; 15 called an inner path of w,, denoted by pyi(va, vy) where v, and vy

are terminals 1 of the path.

It should be noticed that the terminals of an inner path of wild-
component w, is known but the other vertices contained in the inner
path are unknown though there always exists exactly one inner path
between any two vertices in w,. Of course, all vertices in the inner

path are in V (w;).

2.1.2 W-graphs

If a system contains wild-components, the system can be expressed by

a W-graph which is defined as follows:

Terminal is either an initial vertex or a final vertex in a path whose degree is

one.
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Definition 2.1.3 (W-graph ) A W-graph ,, 1s represented by
Q,V,EW)=G(V,E)Uwy Uwy U-+--U wy (2.1)

or simply denoted by Q,,(V, E,W) where W s a set of wild-components
wy, Wy, +++y wi, GV, E) (V # 0) is an ordinary graph and V(w;) C V,

for all 1= 1,2,++ K,

It should be noticed that a wild-component w, contains | V(w;) | —1
unspecified edges which are different from unspecified edges in any
other wild-components. In other words, if we use colors, one color is
given to all unspecified edges in one wild-component, another color is
given to all unspecified edges in another wild-component and so on.
Hence, if wild-components w; and w, have common vertices, unspeci-
fied edges in w; and w, may be connected between the same vertices
but those are different colors (that is, they are considered to be differ-
ent).

For a given W-graph Q,,(V, E, W), we use the symbols of | V |, | £ |
and | W | for indicating the number of vertices, the number of edges
and the number of wild-components in the W-graph, respectively. It
should be noticed that we only consider the case that | V |, | £ |
and | W | are finite and V' # #. When the wild-component set W
in a W-graph is an empty set, the W-graph is an ordinary graph.

Hence, we suppose W # @ in this dissertation. Since a W-graph is
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a partially known graph and differs from an ordinary graph, for each
wild-component, there is only one information available that each wild-
component has one and only one inner path between any two vertices.

For a W-graph Q,,(V, E, W), since each wild-component has | V (w,) |
vertices and | V(w,) | —1 edges, the total number of all edges in the
W-graph is equal to | B | + " | V(w,) | = | W |. However, as
we have mentioned previously, Zl‘;vll | V(w;) | = | W | edges in wild-
components are unspecified, that is, we know these edges exist, but

don’t know where they exist.

Example 2.1.1 A given W-graph Q,(V, F,W) is shown in Fig.2.1,
which contains vertices vy, vy, -+, v19 and edges e;, e, --+, €17 and
two wild-components V(w;) = {va, vs, vs, vz} and V(w,) = {va, v,
v7, Ug, Vg}. Hence, we can obtain that | V |= 10, | £ |= 11 and
| W |= 2. The total number of edges in the W-graph is eighteen where

three edges in w; and four edges in w, are unspecified. 0O

Definition 2.1.4 (Connected W-graph ) A W-graph is sepa-
rated if there exist two vertices such that there are no paths or inner
paths between them. A W-graph is said to be connected if 1t 1s not

separated.

Since there exists one and only one inner path between any two

vertices in a wild-component, it should be noticed that Fig.2.1 is a
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Figure 2.1: A W-graph.

connected W-graph though it contains vertex vs.

2.2 Classifying Properties of W-graphs

A W-graph is a partially known graph where the edges in each wild-
component are unspecified. When we study the properties of W-
graphs, we should notice that the properties of W-graphs have two

types. One is that some properties of a W-graph hold for any trees
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given to each wild-component, called arbitrary property and other is
some properties hold only for some trees given to each wild-component,

called restricted property.

1. Arbitrary Property: The property holds for any tree given to

each wild-component in a W-graph.

2. Restricted Property: The property can hold for at least one

tree given to each wild-component in a W-graph.

We show a simple example to explain what is the arbitrary property
of W-graphs. Fig. 2.2 is a W-graph containing two edges ¢, ¢, and a
wild-component w; where V(w;) = {vy, va, v3, v4}. We say that there
exists one and only one path between vs and vg, which is true for any
tree containing vy, v, v3 and vg to be the structure of w;.

On the other hand, a W-graph is said to be planar (Definition 5.2.1)
if there exists at least one tree given to each wild-component in the
W-graph such that it can be drawn on a plane without crossing edges.
It is clear that the properties of planar W-graphs is restricted property.

We will give some arbitrary properties of W-graphs in Chapter 3
and 4 such as W-circuits and W-cutsets where those properties satisfy
any tree to be the structure of each wild-component. Some restricted

properties are introduced in Chapter 5.
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Chapter 3

W-circuits and W-cutsets

Circuits and cutsets are very important subgraphs not only in terms of
theories but also in applications in graph theory, [Chen 71], [Chan 69],
[Wilson 72], [Mayedal 72], [Breuer 77] and [Lauther 79]. Though W-
graphs are partially specified graphs, W-circuits and W-cutsets which
are similar to circuits and cutsets of ordinary graphs can be defined in
W-graphs. Also defined is an operation of W-ring sum in a W-graph.
It is proved that the W-ring sum of two W-circuits is a W-circuit and
that the W-ring sum of two W-cutsets is also a W-cutset. Further-
more, W-incidence, W-cutset and W-circuit matrices are introduced.
In a W-incidence matrix A,,, we define a W-tree corresponding to the
columns of a non-singular major submatrix of A,. By the W-tree,

a fundamental W-cutset matrix and a fundamental W-circuit matrix
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can be constructed where their rows corresponds to a set of linearly
independent W-cutsets and a set of linearly independent W-circuits,

respectively.

3.1 W-circuits

A W-circuit in a W-graph corresponds to a closed train consisting of
edges and inner paths (Definition 2.1.2) which is similar to a closed
edge train in an ordinary graph. Under the defined W-ring sum op-
eration, we will discuss the relation of W-circuits in a W-graph. In
fact, when each wild-component is specified by a tree, a W-circuit be-
comes either a circuit or an edge disjoin union of circuits which will be

discussed in Chapter 4.

3.1.1 Definition of a W-circuit

By Definition 2.1.1 and 2.1.2, we know that there exists one and only
one inner path between any two vertices in a wild-component. It is
possible to describe a closed train in a W-graph by edges and inner

paths. A W-circuit is defined as follows:

Definition 3.1.1 (W-circuit) For a W-graph Q,,(V, E,W) where |
W |=k, let eqi(ve, va) be an edge in E where v, and vg, are endpoints

of the edge, also let V,; be a sub-vertex set of V(w;). A W-circuit is
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represented by:

Cw = {ecl(vcl; Udl)a 662(U627 'Udf,’)x T ecm(?’cma Ud?rx)\ u’l("l'al/‘,(u)l) an ‘/'o] )w

wa (Voo [V (w2) — Voa), + -+, we(Vor /V (wi) — Vor) }
(3.1)

which satisfies the following four conditions:
1. Any two edges in Eq.(3.1) are different.

2. Each vertex set V,; (i = 1,2,--+,k) must consists of different

vertices and | Vi, | 1s even.
3. If Viu =0, wi(Vii/V(wi) — Vi) = 0 by definition.

4. Considering vertices as endpoints of edges and wvertices in V,, of
wi(Voi /V(w;) = V) fori=1,2,-- k, then each vertex appears

even times.

For a W-graph as shown in Fig. 3.1, we can find a W-circuit ex-

pressed as follows:

Cw = {e1(v1, v7), e2(vr, v2), €3(vs, vg), e4(vs, ve), (3.2)
wq(vs, Ve /3, Us), wa(vy, va, vs, vs /0)}
where all edges are different and V,; = {v4, v} and V5 = {vy, vy, vs,
vs } which satisfies Definition 3.1.1.

Consider a W-circuit in a W-graph. A W-circuit corresponds to a

closed train consisting of edges and inner paths defined as follows:
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Figure 3.1: A W-graph having two wild-components.

For a W-graph Q. (V, E,W), we can get an sequence consisting of
edges in I and inner paths of wild-components in W. Let e(v,,,v,,41)
be an edge in £ whose endpoints are v,,, v,;41 and pu.(v,;, vy;41) be
an inner path of a wild-component w, indicated by its subscript whose

terminals (Definition 2.1.2) are v,;,v,,41 € V(w;).
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We make the sequence composed of the edges e(v,,,v,,41) and inner

paths py,(vy,,v,,41) as follows.
{FI)FQa"'>FT,"'aFm}:

{[f(vll; U12)> f(vi2, v13), -+ -, f(Ulj,Ulﬁl), riedeny f(‘Uu-u), '011)],

[f(Uzl, Uzz), f(vm, ’023), < f(U:zJ, 'Uzg+1), e f(“zkm, 'Uzl)],

[f(vrl’ UTZ)a f(UrZ» UrB)a i f(UT], UTJ+1)7 e f(vrk(r)’ Url)]’

[f(vmla UmZ)a f(vm2’ UmS)a Y43y f(vm_)a Um_]+1)1 ok ey f('Umk(m)a Um.l)]}

where each of {f(vr;,¥rj41)}, r=1,2,c-,m, j=1,2,-+- k(r), is
either an edge e(v,;, v,;41) or an inner path p,(v,;, v;;41). In F,, it
can be seen that each of {f(v,;,v,,;41)} (for r, [ < j < k(r)), has one
endpoint or terminal in common with the preceding f(v,,-1, v,,), and
the other endpoint or terminal in common with the succeeding f(v,, 41,

Urj+2) and Urk(r)+1 = Ur1-

Definition 3.1.2 (Closed train ) If the following two conditions
are satisfied, the sequence in Eq.(3.3) consisting of edges and inner

paths s called a closed train, denoted by ®.

Condition 1: Neither each v,; nor v,;41 of an inner path p,.(v,,,
Urj+1) can be a terminal of another inner path of the same wild-

component w; in Eq.(3.3).
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Condition 2: Each edge and each inner path of w; appear exactly

once in Fq.(3.3).

Consider the W-graph containing four edges and two wild-components

wy and w, as shown in Fig.3.1. There is a closed train ¢:

¢ = {F, F}
= {[64(?)8,Ue),pwl(vs,U4),Pw2(l’4>’U3),€3(U3, Us)], (3‘4)

[61(01, v7), e2(v7, V2), Puwa(v2, ?«’1)]}

because this sequence satisfies Condition 1 and 2. It should be noticed
that v4 as a terminal appears twice but one is in an inner path of w; and
other is in an inner path of w,. However, another sequence {e3(vs, v3),
Pu1(V3,Vs), Pwi(vs, vs), €4(vg, vg)} is not a closed train since there exist
Puwi1(v3,vs) and p,;(vs, v6) in the sequence having a common vertex vs

as a terminal vertex not satisfying Condition 1.

Property 3.1.1 Let a W-circuit contain w;(Vy/Vy) (1 € 1,2,+++, k)
where | V,; | is even. No matter how we choose pairs of vertices in V,,
as long as each vertez is exactly in one pair, we can obtain | V,; | /2
inner paths of w; whose terminals are in V,;, so that we can replace
each w;(Voi/Vo:) in the W-circuit by these inner paths to produce a

closed train.

34



Example 3.1.1 FEq. (3.2) is a W-circuit expressed by

Cw = {e1(v1, v7), e2(v7, v2), e3(vs, vs), e(vs, vg),
w1 (vs, ve [Us, Us), wa(v1, va, vs, 4 /0).}
For changing wi(vy, ve/vs, vs), since V,; = {vy, v6}, there exists only
one inner path p,(vs, vs) available. However, we can replace wy(vy,
Vs, v3, Us/B) by any one set of {pu2(v1, v2), Pw2(vs, v4)}, {Puwal(v1, v3),
Puw2(v2, v4)} and {pua(vz, vs), Pua(vi, va)}.
When we choose {p.2(v1, v2), pwa(vs, v4)} to change wy( vy, va, vs, v4/0),
the corresponding closed train is shown in Fq. (3.4).
When we choose {pu2(v1, v3), pw2(v2, v4)}, the corresponding closed
train is
®' = {e1(v1, v7), e2(vr, v2), Pu(v2, V), Pui (v, V6),
e4(vs, vs), €3(vs, U3), puwa(vs, v1)}

When {pu2(va, v3), pu2(v1,v4)} is chosen, the corresponding closed

train is expressed as

" = {61(01, U7)’ 62(1)7’ U2)a pw2(U2a US)a 63(1)3, US):
64(’08, Ue),Pwl(’Us, U4),Pw2(v4, Ul)-}

O

It can be seen that w,(V,;/V,) in a W-circuit is a set of | V,, | /2
inner paths of w, and V,; is a set of terminals of those inner paths.

Hence, we give a definition to describe V,; as follows.
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Definition 3.1.3 (Terminal set ) A wverter set V,;, (1 = 1,2,+--,
| W |) in a W-circuit in Eq.(3.1) is a terminal set of w,. The total

number of vertices in V,; 1s always even.

It should be noticed that for a W-circuit containing w;(V,; / V..)
(i € 1,2, -+, k), when we change w;(V,; / V.;) by | V,; | /2 inner
paths of w; whose terminals are distinct in the W-circuit, the W-circuit
becomes a closed train by Property 3.1.1. Furthermore, we will show in
Chapter 4 that when each wild-component is specified by a tree, there
exists exactly one subgraph of the tree which consists of | V,, | /2 edge
disjoint paths suth that the W-circuit becomes either a circuit or an

edge disjoin union of circuits.

We will establish a relation of W-circuits in a W-graph under an

operation called W-ring sum which is defined next.

3.1.2 Ring Sum Operation of W-circuits

A theorem associated with the W-ring sum of W-circuits will be given.
First, we define an operation of W-ring sum with respect to W-circuits

C, and Cg, denoted by C,&Cj, as follows.
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Definition 3.1.4 (W-ring sum of W-circuit ) Let C, and Cj be
W-circuits,

Ca = {eala €a2)° 'y am, ’wl(v’aol/vaol)s u72(vaoﬁ/vuo2)s gty

Ww|(Vaolw|/Vaow)) }

(3.5)

and

Cﬂ = {661’ €82, ", €pn, 'wl(Vﬁol/Vﬂol)a 'WZ(V[JOE/‘/ﬂOQ)a VIEE RS

wiw|(Vaojw/Vaow)-}

(3.6)

Then, Co®Cjp is formed by the following three parts:
Part I: C,&Cjy contains all edges in {ea1,€a2,"* " €am} ® {€s1, €52,
.. eﬁn}-
Part II: If w,(V, /V(w;) — Vi) is in Cy or Cg but not in both C, and
Cg, then w;(Vo; [V (w;) — V) is in C,&Cs.
Part III: ]fVaoi [&3) Vgo, # 0 (Z = 1, 2, % $2A ,l W l), U},'(VQO,‘®V50,/V(U7,)-—
Vaoi ® Vaoi) 1s 1n Caé}Cﬁ. Eles, w; s not contained in Caé)C/j.
The W-ring sum of W-circuits is explained by the following example.
Example 3.1.2 In the given W-graph in Fig. 2.1, we can find a W-
circuit C, in as:

Co = {e1(vs,v1), e2(v1, v2), €7(ve, v4), €10(vs, v9),

’LU1(U2, Us, Vs, U7/ﬁ)1 wQ(U'f! UQ/UQ: Vs, US)}
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Also, we can obtain another W-circuit Cy expressed as:
Cs = {65(03, Us), 68(“9» U7), 610(U4, vg), wa(v3, z’7/”112, Vg, 1’9)}-
By Definition 3.1.4, C,&Cjy can be obtained as

Cy = C,®Cp
= {G](Uf,, Ul)a 62('1)1, U?)) 65(U3a U4)’ 67(U6a U4)a 68(U9a U?)» (37)
wi(va, Us, Vg, U7/ B), wa(vs, ve/va, v7, vs) }.

O

It is clear that C, is also a W-circuit because it satisfies Definition
3.1.1. There is a question whether the W-ring sum of any two W-
circuits of a W-graph is also a W-circuit of the W-graph, which will

be answered in the following discussion.

3.1.3 Properties of W-circuits in a W-graph

In graph theory, we have Theorem 1.1.1 which states that the ring
sum of circuits becomes either a circuit or an edge disjoint union of
circuits. If we can provide a theorem corresponding to Theorem 1.1.1
in a W-graph, then any W-circuit can be obtained by the W-ring sum
of linearly independent W-circuits.

From Definition 3.1.4, the following lemma is trivial.

Lemma 3.1.1 Let C, and Cg be two W-circuits, we have,
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1. If C4 = Cg, then Co@®Cps =0, and
2. C,o0 =C,. -

In general, we have the following theorem.

Theorem 3.1.1 The W-ring sum of two different W-circuits of a W-

graph Q.,(V, E,W) 1s also a W-circuit in the W-graph.

Proof: Let C, and Cy be two different W-circuits. Suppose C,&C's

1s:
{651, €2,° "y E¢m, wl(‘/fol/m), g u’|W|(V£o]W|/V£o|W|)}' (3~8)

In order to show that the set in £¢.(3.8) is a W-circuit, we must
show that the conditions in Definition 3.1.1 will be satisfied.

Since {eg1, €62, * s €em} = {€a1, €a2s *** €am} D {€p1, €82, ***, €an},
edges in {eg1,€¢2,° "+, €gm } are all different which satisfies Condition 1
in Definition 3.1.1.

For any terminal set Vi, since Vi = Vi @ V3, where | V,,,, | and
| Vo | are both even, | Vi, | is also even which satisfies Condition 2
in Definition 3.1.1.

When V,,; = 0, we will remove w,(Vioi/Vess) from Eq.(3.8) so it

satisfies Condition 3 in Definition 3.1.1.
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Now we only need to show that C,&Cj satisfies Condition 4 in
Definition 3.1.1.

Let v¢ be any vertex in Fg. (3.8) as either an endpoint of an edge
or a vertex in a terminal set.

Consider v¢ is contained in both C, and Cs. Let d\¢)(v¢) be a number
of times that vg appears as an endpoint of an edge in C, and d"(v)
be a number of terminal sets V,,, (: € 1,2,--- | W |) which contains
ve in C. Similarly, we can define those with respect to Cjy as d(;)(-vf)
and d(ﬂw)(vf)‘ By Definition 3.1.1, since C, and Cp are W-circuits, we
know d(©)(ve) + d()(v¢) is even number and d(ﬁe)(vf) + d%w)(vf) is also

even number. Hence, v¢ in Fq. (3.8) appears the following times:
i) (ve) + d (ve) + di” (ve) + dg” (ve) — 2 ve) — 2 (v)

where d{®)(v¢) is a number of common edges whose one endpoint is v;
and in both C, and Cj, and d\")(v¢) is a number of pairs of terminal
sets Voo and Vg, (1€ 1,2,-+- | W |) each of which contains v;.
Since d(®(ve) + d)(ve) + d%e)(vf) + di,w)(vé) is even and d(®(vg)
and d(")(vg) are multiplied by 2 so that the above result is always even

which proves that every vertex in C,&Cj appears even times. [ |

Theorem 3.1.1 establishs the relation of W-circuits in a W-graph
under the defined W-ring sum operation, so that we can obtain any

W-circuit by W-ring sum of linearly independent W-circuits. A set
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of linearly independent W-circuits {C;}, 2 = 1,2,--+ r, is defined as
follows.
If for some set of constants a, = 1 or 0, not all of which are zero, we

have

alC’lé)agC'géasC;;é---éa,C, = ﬁ (39)

where 1C; = C; and 0C; = @, then the W-circuits are said to be lin-
early dependent. If however Fq.(3.9) is satisfied only when all the
constants a; are zero, the W-circuits are said to be linearly indepen-
dent.

We will provide a method for obtaining a set of linear independent

W-circuits by matrix representation later.

3.2 W-Cutsets

Consider a cutset or an edge disjoint union of cutsets separating
the vertex set V of a W-graph Q,,(V, £, W) into two vertex subsets V,
and V, such that V,uV, =V, V,NV, =0. Ifan edge in F' is connected
between a vertex in V, and a vertex in V,, we say that the cutset or
the edge disjoint union of cutsets contains the edge. If v, and v, are
two vertices in V(w;) and v, € V, and v, € V,, we will use the colon
“” to divide V (w;) into two subsets V,, and V.. such that v, € V,, and

v, € V,; where V,; = V(w,;) — V,,, then we say the cutset or the edge
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disjoint union of cutsets contains w, as form of w;(V,, : V,;).

3.2.1 Definition of a W-cutset

A W-cutset is defined as a collection of edges and wild-components
which are contained by a cutset or an edge disjoint union of cutsets
separating the vertex set V of Q,(V, E, W) into two vertex subsets V,

and V, where V, =V — V.

Definition 3.2.1 (W-cutset ) For a W-graph Q,(V, E,W), a W-
cutset corresponding to a cutset or an edge disjoint union of cutsets

separating V into V, and V, is represented by

Sw - {651)6327 18* )esmvu)l(val : Val)’w’l(VaQ . Va?)) il

(3.10)

u/|W|(Va|W| . Va|W|)}
where €41, €4, , €em are all edges which are connected between a ver-
tex in V, and a vertex in V, =V =V,. Vo, and V,, (1 =1,2,-++ | W |)

are two vertexr subsets of V(w;) such that V,, C V,, Vo C V, and
Vo UV, = V(w;). When one of V,; and V,; is an empty set, then we

define wy(Vyi : Vi) = 0 which is not contained in S.

Consider a W-cutset separating vertices of the W-graph in Fig.2.1
into two parts V, = {vy,v,vs,v6} and V, = {vs, v4, vz, vg, Vg, v10} as
shown in Fig.3.2. The W-cutset contains edges e3, €4, € and eg which

are connected between a vertex in V, and a vertex in V,. Also, the
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W-cutset separates V(w;) into V,; = {v,, vs, v6} and Vo, = {vr} and
separates V (w,) into V,, = {v>} and Va2 = {vs, vr, vg, vg}. Hence, the

W-cutset S; is as follows.

Sy = {es, €4, €6, €7, €9, W1 (2, Vs, Vg : U7), wa(V2 : V3, V7, Us, v)}. (3.11)

W-cutset Si

Vi ; : . O Va

€1 Sl

Vio

. wild-component w2
wild-component wi

Figure 3.2: A W-cutset.

It should be noticed that the definitions of w;(V,; : T.,) in a W-cutset
and that of w;(V,i/V,) in a W-circuit. For a W-cutset, w;(Vq, : Vi)
and w;(V,; : V,,) have the same meanings. And we have defined that

wi(Vai : V) = 0 if one of V,; and V.. is an empty set. However, in
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W-circuit, only if V,; = 0, w;(V,;/V,) =0

3.2.2 Ring-sum Operation of W-cutsets

For W-cutsets S, and S, an operation of W-ring sum with respect to

S, and Sy represented by S,®S, is defined as :

Definition 3.2.2 (W-ring sum of W-cutsets ) Let S, and S, be

two W-cutsets of a W-graph, which are expressed as:
Se = {€a1, €a2," " " €am, wl(Val : Tal)a T w|W|(Va|WI : m)} (3-12)
and
Sy = {ew, ev2, =+ €on, wi(Vir 2 Vir), -+, wyw | (Vyw) = V)3 (3.13)

Then we define the W-ring sum of S,@S, which consists of three parts

as:
Part 1: S,®S, contains all edges in {ea1,€a2, "+, Cam yD{es1, €42, *, €tn }-

Part 2: If w,(V,; : V(w;) —V,;) 1s only in one of Sy or Sy, the wi(V,; :
V(w;) — Va;) is in S,®S.

Part 3: For each wild-component w;, a wy(Vay; @ Vi : V(w;) — Vai @ Vi)
is 1 S,®Sy if both Vyy @ Vg # 0 and V(w;) — Vi @ Viy # 0
(1 = 1,2,---, | W |) are satisfied. Otherwise, S,®S, does not

contain w.
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Consider the W-graph as shown in Fig.2.1. One W-cutset S, has
been obtained in Fjq. (3.11). There is another W-cutset S, separates
vertices of the W-graph into V, = {vy, vs, ve, v7, vg, vo} and V, = {vs,
V3, Uy, U10}. Sz contains edges es, e3, €7, €19 and separates V(w;) into

{v2} and {vs, vs, v7} and V(w;) in to {v,, v3} and {vy, vg, ve}. Hence,
Sy = {62; €3, €7, €10, W1 (V2 : Vs, Vg, U7), w(vz, V3 : V7, Vg, ’Ug)}-
The result of S;&S5, is shown as follows.

S5185,; = {62, €4, €6, €9, €1o,w1(02,v7 . Us, 'Us),‘wQ(Us 1 Uz, U7, Vg, ’09)}-

(3.14)

3.2.3 Properties of W-cutsets

It is well-known that a cutset or an edge disjoint union of cutsets in a
graph independent of the structure being either totally unknown, par-
tially known, or completely known, because the definition of a cutset or
an edge disjoint union of cutsets itself is made without specifying the
edge structure of a graph [Mayedal 72]. The following theorem is triv-
ial, but the description of W-ring sum of W-cutsets and the expression

related to wild-components should be verified.

Theorem 3.2.1 If S, and Sy(# S.) are two W-cutsets of a W-graph,

then S,®S, is a W-cutset of the W-graph.
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Proof: We show that the W-ring sum of two W-cutsets becomes
one shown in Fg¢.(3.10). First, suppose V' is the vertex set of a graph.
Consider four subset of V' as Vi1, V5, V51 and V5, which are not empty

sets and satisfy

ViUV UV UV =V

and

Via ﬁ'Vrs =0

where p,q,r, s = 1 or 2, (pq) # (rs) as shown in Fig.3.3.

ﬁ Vi2
Q

Figure 3.3: V separated into Vj;, Via, Vo1 and Vi,

Let a cutset or an edge disjoint union of cutsets separate V' into
Vo, = Vi3 UV and V, = V5, U Vi, and another one separate V into
Vy = ViaUVas and Vy = Vi; U Vay. By Eq.(2-3-17) in [Mayedal 72], the

ring sum of the two cutsets or edge disjoint union of cutsets separates
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V into ‘/c = Vll U VQQ and T/—c = V]Q U ""231, that iS,

S:®8 =e(VaxVo)@e(Vy x V)
= e((Vaz U Viz) x (Var U Vaz)) @ e((Via U Vi) x (Vaia U Var))
=e((Vii UV) x (VioU Vo)) =e((Va® V3) x (Vo @ V3))
=450 Ve 2 AL)

= 53.
(3.15)

Notice that V, and V. are two disjoint vertex subsets of V separated
by Sg.
Suppose we separate vertex set V in a W-graph Q,,(V, £/, W) by the

same way, that is, Vi; U Vo UV UV =V and V,, NV, = 0 where

pg, s = Lor2, (pg) # (rs).

Let two W-cutsets be
Sy = {e(Va x Vo), ws(Var : V1), + -, wywr|(Vaywy : Vaw))}
and
Sp = {e(Ve x Vo), wn(Vaa : Vi), -+ wiw) (Vaywy : Vaw)}

where V, = Vi3 U Vig, V, = Vo1 U Vi, Vy = Vio U Vg and V, = Vj; U
Va1, and (Vi x Vi) (k = a or b) is an edge set connected between a
vertex in V; and a vertex in V.

Then we will show the W-ring sum S,&.5), becomes one in Fq.(3.10).
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Now, we consider only edges in a W-graph. The edges in S,®5; by

Fq.(3.15) will be

eVoxV)@e(Vox V) =ce((Vo,oV) x (Voo V) =e(V, x V)

which satisfies edges in £q.(3.10).

For a wild-component w; which is either in S, or in S, but not
in both S, and S, we will show that w; will be in the W-ring sum
of S, and S,. Suppose S, contains w;(V,, : V,,), but S, does not
contain w;. By Definition 3.2.1, w;(V,, : V,;) is in S, means V,; C V,
and V,; C V,. Since S, does not contain w,, either V(w;) C V, or
V(w;) C V4. Let V(w,;) CV,. Then, we can see that V,, CV,®V, = V.
and V,; CV, &V, = V.. Thus, Wi Wi 2 V..) must be in S,®S, which
satisfies the conditions in £¢.(3.10). When V (w,) C V,, exchanging V}
and V;, makes the same result. Also, we can achieve the same result
when S, contains w;(Vj, : Vi) but S, does not contain w;.

When w; is in both S, and S,, that is, w;(V,, : V) is in S, and
wi(Vi : Vi) is in Sy, let V,; C V, and V;; C V4. Thus, V. =V, & V,
contains V,;@®V,, and V. = V,®V, contains V,,®V,,. Hence, Wi (Vi ® Vi -
V,, ®Vy,) is in S,@®S, which satisfies the conditions of w; in Fq.(3.10).

Suppose V,;® Vi =B or Vo, @&V = 0. Since V,, CV,, V,, CV,, V4, C
V, and Vi, CVy, Vo @ Vi = O means V, &V, = V(w,) CV, @V, = V..
Hence, W-ring sum of S,®S;, does not contain w; (@ : V(w;)). Similarly,

when V,, @ V;, = 0, we will have the same result. Thus, w, is not in
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S,®S, which satisfys conditions in Fq.(3.10).

These conclude that the W-ring sum of S, and S, gives a W-cutset
separating V of Q,(V, E, W) into two vertex subsets V. and V, where
V. = V =V, by Definition 3.2.1, so S,®S, is a W-cutset when S, e S

It is evident that S,S, = 0if S, = S, and 0.5, = S, by Definition
3.2.2. A set of W-cutsets {S,}, i = 1,2,--+,r, is said to be linearly
independent, only when all the constants a, are zero, the following

FEq.(3.16) is satisfied.
a1 519a,5,8a35:@ - a, S, =0 (3.16)

By Theorem 3.2.1, we can see that S;@®S, in Fq.(3.14) is a W-cutset
separating all vertices of the W-graph in Fig. 2.1 into {v,, v7, vg, vg}

and {Ul, V3, V4, Us, Vs, Um}-

3.3 Matrix Representation of W-graphs

Matrix representations of a graph play an important role in graph the-
ory, each of which is a mathematical form indicating all informations
such as incidence situations and characteristics of a graph. The main
purpose of this section is to provide linearly independent W-cutsets

and linearly independent W-circuits based on [Zhao5 92].
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For a given W-graph Q,(V, £, W), we will prove that a W-graph
can be expressed by a mixed matrix representations in spite of the
existence of unspecified edges in the W-graph. We will use matrices
such as W-incidence matrix, W-cutset matrix and W-circuit matrix to
represent W-incidence sets, W-cutsets and W-circuits in a W-graph.
Particularly, a fundamental W-cutset matrix and a fundamental W-
circuit matrix are useful for obtaining linearly independent W-cutsets
and W-circuits, respectively.

A matrix is here composed by either 0 or 1, whose columns consist of
edges and vertices for dealing with the unspecified edges, which differs
from general matrix representation of ordinary graphs. The rows of the
matrix represent either W-incidence sets, or W-cutsets, or W-circuits,
which is similar to general one.

In order to avoid the confusion which vertex belongs to wild com-
ponent w; in a matrix representation of W-graphs, we will indicate it
by using a superscription (1) as ng) for a vertex v, € V(w;). In other
words, the symbols of ’ug'), véi), e ’Uz(,i) are employed for specifying

wild component w; containing vertices vy, vy, « -+, v,. Hence, V(w,) =

{1’)51)3 ng)s it U;(')i)}'

Definition 3.3.1 (Reference vertex of w, ) For a W-graph, we choose
one vertex in each wild component w, as a reference verter of w;, de-

noted by drawing a line under the verter such as i')
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For conveniences, we suppose that W-graphs used hereafter are con-
nected and having no self-loops. Of course, it is not difficult to extend
the results of connected W-graphs to a separable one.

For a given W-graph Q,,(V, £, W), a matrix whose columns represent
all edges in E and all vertices in {V(w;) — v}, 1= 1,2,--+, | W |
and whose rows represent W-incidence sets (W-cutsets, W-circuits) is

called a W-incidence (W-cutset, W-circuit) matrix.

3.3.1 W-incidence Matrix

Every row of a W-incidence matrix represents a W-incidence set. Hence,
a W-graph without self-loops is completely characterized by its W-
incidence matrix.

First, we define a W-incidence set as follows. Since a W-incidence
set is also a W-cutset (Definition 3.2.1) where either V, or V, contains

one and only one vertex.

Definition 3.3.2 (W-incidence set ) For a W-graph Q.,,(V, E, W)
having k wild components, a W-incidence set A(v,) with respect to
verter v, € V is a W-cutset where either V, or V, contains v, only,

represented by:

A(ve) = {€a1, €azy* * * y €ar, w1 ({viV} : {vgl)}),wg({vff)} : {vgz)}), nist
wi({oP} : {va7})}
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where €,1,€42,***,€a are edges connected between v, and a verter in

{va} =V — {v.}. When v, 1s a vertez in V(w;), we denote v, by v

and {v"} = V(w;) — {ol} (G € 1,2, k).

wild-component wi wild-component w2

\'%4

Figure 3.4: A W-graph with two wild components.

Consider the W-graph as shown in Fig.3.4, the W-incidence set A(vs)
can be obtained as follows: Set A(vs;) separates the vertex set of the
W-graph into v5 and m = {v1, va, v3, V4, vg, U7}, V(wy) is separated
into {v{"} and {v{", v{"'} and V (w,) is separated into {v{*'} and {?,
véQ)}. Thus, A(vs) contains edges ey, eg and wild component w; as form

e B (@), () (@
5

of wy( tvy ', vy ') and wy as wa(vs vy ,vg ). Hence,

A(vs) = {es, es, wi(vg 2 v5”, 057), wa(of? : oY, ™)}

A W-incidence matrix is described as follows:
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A W-incidence matrix A, = [a,,q] of a W-graph Q,,(V, £, W) consists
of rows representing W-incidence sets with respect to all vertices except
one which is chosen to be the reference vertex of the W-graph €,,.
Instead of representing edges by each column of an incidence matrix

of an ordinary graph, columns of a W-incidence matrix representing

all edges in E and all vertices in {V (w;) — v{V}, i = 1,2,--+, [ W |.

Definition 3.3.3 (W-incidence matrix ) A W-incidence matriz A,, =

[apg] of @ W-graph Q.,,(V, E, W) is defined as:

Case 1: When column q indicates an edge e,

1 edge ¢ incidents at v,
@pq = _
0 otherwise.

Case 2: When column q corresponds to a vertex v;’), for all 2, if
(a) v, is not the reference vertex of w;, then

o o F)
- 1 v,=0v,",
4pq =

0 otherwise.
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b) v, 1s the reference vertex of w;, then
P ,

1 vy vj(”,

0 otherwise.

Apq =

Example 3.3.1 Obtaining the W-incidence matrix A,, of the W-graph

as shown in Fig.3.4 where V(w;) = {{", v{", Ugl)} and V (w,) = {vy”,

v, vV}, Let the reference vertex of wild component w; be ﬁ and

that of wild component w, be ﬁ Then, the columns of the W-
incidence matrix A, consist of edges e1, e,, €3, €4, €5, €q, €7, €5, €9 and
vertices 15", v obtained by V(wy) — {ggl_)} and v\? v obtained by
V(wy) — {ﬁ} We choose v7 as the reference vertex of the W-graph,
the rows of A, indicate W-incidence sets with respect to every vertex
other than v;. Thus, the W-incidence matrix A, is formed as follow:

1 1) (2) (2
€1 €2 €3 €4 €5 € €7 €8 €9 ’Ug )'U‘(i )Ug )'Ué)

() |11 1000000000 O0
Av) |00 1 1100000000
(

vs) 1000010001000 (3.17)

In the row corresponding to A(v;) = {ej, ez, €3}, there are 1Is in

columns ey, e, and e3 because these edges incident at v; and Os in
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(1 (1) 2)

. 2 2 G a
columns representing v5", v{", v{*) and Vg ! because v; is in neither

V(wy) nor V(w;). In the row corresponding to A(v3) = {ey, e, wy (v :

1 1 ; 1

oM, vl ))}, there are 1s in columns e;, g and 1" because e; and ¢4

incident at vz and v3 is in V(w;) and v; is not the reference vertex
1 .

of wy so that the column of vg) has 1. The row corresponding to

A(vs) = {eq,es, wl(v_gli : vgl), vg])), wz(vgz) : ﬁ, Uéz))} has 1s at

columns ey, eg, Ugl), Uil) and column vg) because edges ¢4 and eg in-
cident at vs, and v; is in V(w;) as the reference vertex of w; so the
columns of vgl) and uf,” have 1s according to Case 2 (b). Also v is
in V(w;) and is not the reference vertex of w, so that the column of

ng) has 1 and column of ’UéQ) has 0 according to Case 2 (a). The other

rows also can be obtained easily by the same procedure. 0

Now, we study the rank of a W-incidence matrix of a W-graph.

Consider a W-graph ,, consisting of only one wild component
as shown in Fig.3.5(a). Suppose vy is the reference vertex of w; and
also the reference vertex of Q,. W-incidence set with respect to v,
is Ay(vg) = {wl('u(il) : 0(21), vgl), il), 'Uél))}. When we obtain a W-
incidence matrix of €,,, the row of A,(v;) has 1 in the column corre-
sponding to vertex vﬁ” and has Os in the other columns corresponding
to vgl), vgl), Ugl) according to Case 2 (a) in Definition 3.3.3. When

assigning a star to the wild component w; where the center of the star

is _yg (the reference vertex of w;), Q, becomes a graph g, as shown
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W- 1n01dence set Aw(v1)

o

/

i

/ { oV1 oV oV3 ovs,

OVa4 v
Gl e R L BB e

reference
vertex of wi

(a) ‘ (b)

Figure 3.5: (a)A W-graph ©,, (b) a graph g;,.

in Fig.3.5(b). In the graph g,, the incidence set of v; is A(v;) {815 }

)

because only edge e( incidents at vertex v;. In the incidence matrix

A, of the graph g,, let vy is the reference vertex of g,, the row of A(v,)

has 1 at the columns of e(lls) and has 0s in columns of 6(23), egls) and e(l).

: )
This means that when we make correspondence between column Ugl

(¥)

of A, and column e} *

of A, where €, is an edge connecting between
')Ji and v (') in the star, a W-incidence matrix A, of a W-graph ,, is
identical to an incidence matrix A, of a graph g,. In general, we have

the following corollary.

Corollary 3.3.1 A W-incidence matriz A,, of a W-graph Q., is iden-
tical to an incidence matriz Ay of a graph G, obtained by assigning

each wild component w; i Q,, by a star whose center is the reference
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verter of w;, if the reference vertices of Q,, and G, are the same one.

Let’s use an example to illustrate Corollary 3.3.1. For the W-
graph €, shown in Fig.3.4, when w; and w, are specified by two star-

3 1) 3 s a
structures whose center vertices are 'Ug and 'vi ) as shown in Fig.3.6(a),

2, becomes an ordinary graph G/ as shown in Fig.3.6(b). Anincidence

matrix A, of GG, can be obtained as follows:

’’’’’’’’’’’’’

..............................
vex

“a es: I P 5 PR,

S N

v?b\ OVs u,/)vm
R L R Y

reference
vertex of w2 (@)

(b)

Figure 3.6: (a)Two star structures given to w; and w; (b) A graph G,
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J A (1) (1) (2) (2)
€1 €3 €3 €4 €5 € €7 €8 €g B3, €4, €5, €qy

v | 31T 0 RO DTN ST g
) {0 011 100 0%0°09"0 00

1 0000100071000 (3.18)

Although the implications of columns of A, and A, are different,
the matrices of A, and A, are the same. It is well known that the
rank of an incidence matrix A, of a connected graph G, having | V|

vertices is | V | —1. Thus, following property can be obtained:

Property 3.3.1 The rank of a W-incidence matriz of a connected W-

graph Q,(V,E;W) is |V | —1.

3.3.2 W-trees

Before defining a W-tree, it is necessary to study about a major sub-
matrix of a W-incidence matrix A,. By Property 3.3.1, we know that
the rank of a W-incidence matrix A,, is | V | —1, there exists at least
one non-singular major submatrix in A,. Let A; be a non-singular

major submatrix of A,. In Eq.(3.17), we form a major submatrix by
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’ 1
taking | V | —1 columns of A, such as columns e, es, eg, €q. 'ui ‘

(2)
6 .

and v By Corollary 3.3.1, we know that the major submatrix is

non-singular.

|5
€1 €5 €g €9 ’Ug )'Ué)

100000
010000

A="1"1 01000 (3.19)

_OIOIOIJ

For a non-singular major submatrix A;, we define a W-tree as fol-

lowing;:

Definition 3.3.4 (W-tree ) A W-tree is a set of edges and vertices
of Uj(»i) corresponding to columns of a non-singular major submatriz A,

of Ay .

Hence, the columns of A; in Fq.(3.19) form a W-tree {e;, s, €g, €9,
vil), 'U((;Q)} of the W-graph as shown in Fig.3.4.
From Definition 3.3.4, it can be seen that a W-tree may consist of

edges and vertices of wild-components.
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3.3.3 W-cutset Matrix

By Definition 3.2.1, we know that a W-cutset can be represented by
S = 1815 Cas 7 * 4 Caps W { V1 Vi), wy(Vas m), N
wiw|(Vaw) : Vaw)}-

Consider a W-cutset S; as shown in Eq. 3.4, here we add super-

scripts (7) to vertices which belong to w;, so that S; becomes to
Sy = {es, €4, €6, €7, €9, wl(vgl), vél), vél) . vgl)),
w2, 2, 2, ),

which separates vertices of the W-graph into two parts {vs, vy, v5} and
{v1, va, ve, vr}.

Now we describe a W-cutset Matrix.

For a W-graph Q,,(V, E, W) where | W |= k, we define an exhaus-
tive W-cutset matrix whose rows represent W-cutsets and columns

correspond to all edges in E and all vertices in V(w;) — {o{V} (i =

Ly s

Definition 3.3.5 (Exhaustive W-cutset matrix ) An ezhaustive
W-cutset matric Qe, = [qpg] of a W-graph having k wild components

18 defined as:
Case 1: When column q indicates an edge e,

1 W-cutset s, contains the edge ¢,
Upq =
0 otherwise.
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Case 2: When column g corresponds to a vertex of the form v,

,

1 W-cutset s, contains w,(V,, : V,:) and

either 'Ug’) € V,; and i') eV,
dpq = R
or vg') €V, and v\ € V,,,

0 otherwise.
\

By Definition 3.2.1 and Definition 3.3.2, it can be seen that a W-
incidence set is a particular W-cutset such that the W-incidence matrix

Ay 1s a submatrix of Q... The rank of Q., is therefore equal to the

rank of A, whichis |V | —1 by Property 3.3.1.

Figure 3.7: W-cutsets of a W-graph.

Example 3.3.2 Obtaining a submatrix @,, of an exhaustive W-cutset

matrix Q., in the W-graph as shown in Fig.3.4 where V(w;) = {1)(3”,
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) (1 2) (2 1 - (2
o, o8P} and V(ws) = {2, o2, o{?}. Let i = . and v = o7,

then we have @, as follow:

1 1 2 2
€1 €2 €3 €4 €5 €4 €7 €3 692}:(3) i)Ug)’U()

s 111000000000 0]
s |01 100100071000
Rwsap L0 -1 1 & 1T G090 .4 1ul (3.20)
w |08 11l 8009 0021

S5 001 1100O0O0O0O0TO0OQO0

56 0000O0O1111O0O0O00

where the rows of @, represent W-cutsets s;, sq, s3, $4, 55 and sg which
are shown in Fig.3.7. In the row of s;, there are 1s in columns ¢, ¢; and
e3 and Os in all other columns because W-cutset s is a cutset consisting

of only edges as s; = {ey, €2, €3}. Row s, is corresponding to W-cutset

1 1 1 ,
sy = {eq, €3, es, wl(vg) : ui ), vg ))}, there are 1s in columns e,, €3,

¢!

e¢ and the column representing vertex v; ) which is not in the vertex

subset containing the reference vertex of w;. Row s; indicates W-

1) DINE (2) . (2  (2)
(( : ( ())7 ILUZ(U < )}1

cutset s3 = {ea, €3, €4, €5, €3, w1(vg  : V3 ,vs T

(1)

h 1 d columns d v
there are 1s in columns e,, e3, €4, €g, €g and columns v, * and v;™".

) is in the vertex subset of wy, which does not

The reason is that v}
contain the reference vertex U( ). Also ng) is in the vertex subset of

wy not containing v4 . Row sy corresponds to W-cutset sy = {ey, €,
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2) , (2 (2 .
wg(vé X vé , U5 ')} where there are 1s in columns ¢4, eq and column

. 2 _
corresponding to vertex 'Ué ). Rows sy and sg indicate W-cutsets s;

and sg where s; = {e3, e4, es} and ss = {es, €7, g, e} which contain

only edges. 0

Consider the relations of two rows of an exhaustive W-cutset matrix

under mod 2 operation.

Theorem 3.3.1 Adding (mod 2) two different rows in an erhaustive

W-cutset matriz produces a row indicating a W-cutset.

Proof: Let s, and s, be two W-cutsets corresponding to row s,,
and row s, in an exhaustive W-cutset matrix. Also let s, be a row
obtained by mod 2 addition of rows s,, and s,,. We need prove that
mod 2 addition of rows is equivalent to the W-ring sum of W-cutsets.

(1). Consider only edges in W-cutsets s,,, s,. It is clear that the
W-ring sum of s,, and s,, gives the same result as the mod 2 addition
of rows s,, and s, as far as edges are concerned.

(2). Consider the case when w; is either in s,, or in s, but not in
both s,, and s,. By Definition 3.2.2, w;(V,, : V,;) will be in s,,®s,,.
Let w;(V,; : Vi) be in s,, also let the reference vertex of w, be in

V... Then by Definition 3.3.5, the columns of an exhaustive W-cutset

63



matrix corresponding to every vertex in V,; have 1s in row s,, but have
0Os in row s,. On the other hand, all other columns corresponding to
a vertex in V,; except the reference vertex will have Os in both row
sm and row s,. Notice that there is no column corresponding to the
reference vertex of w,. Hence, the mod 2 addition of the rows s,, and
s, will have 1 only at columns corresponding to vertices in V,, which
will be the same when row s, is employed for indicating s,,®s, for w,

being in either s,, or s, but not in both s,, and s,,.

The same result can be obtained when the reference vertex is in V,,.
Also when w;(V,, : V,,) is in s, rather than s,, gives the same result.
Thus, in the columns corresponding to w;, the row s, obtained by mod

2 addition of rows s,, and s, is identical with s,,®s,.

(3). Consider the case when w;, is in both s,, and s,. Suppose

w; (Vi : Vi) is in 8, and w;(Vy, 1 Vi) is in s,,.

Case 1: The reference vertex of w, is in either V,, or Vj,. If the
reference vertex of w, is in V,,;, by Definition 3.3.5, in the row s,, there
are 1s in the columns corresponding to the vertices in V,;. In the row s,,,
there are 1s in the columns corresponding to the vertices in V;,. When
we add (mod 2) rows s,, and s, in the resultant row s, there are 1s in
the columns which are corresponding to the vertices either in V,, or in
Vi; but not in both V,, and Vj,. This means that the resultant row o

has 1 at the columns corresponding to vertices in V,; @ V}, and has 0
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at the columns corresponding to vertices in V(w;) — (V,; @ Vi,). Thus,
the columns for w; in row s, indicate w;(V,; ® Vi, : V(w,) — (Vi @ Vi)
= w;(Vai ® Vi : V(w;) — (Vo @ Vi) which is the form of w; in s,,®s,,.
We can obtain the same result when the reference vertex of w, is in Vj,

but not in V,;.

Case 2: Both of V,, and V}, contain the reference vertex of w,. By
Definition 3.3.5, the row s,, has 1s in the columns corresponding to the
vertices in V,,. Also row s, has 1sin the columns corresponding to the
vertices in V;;. When we add (mod 2) rows s,, and s,,, the resultant row
s, has 1s in the columns which are corresponding to the vertices either

in V,, or in V4, but not in both V,, and V,,. This means the resultant

s, has 1 at the columns corresponding to vertices in V,, ® V;, and has 0

at the columns corresponding to vertices in V(w,) — (Vi & V;;). Hence,
columns corresponding to w, in the resultant s, indicate Wi (Va; @ Vi
V(w;) = (Vai ® Vi) = wi(V(w;) = (Vi @ Vi) @ Vi @ Vi) which is the

form of w; in s,,®s,,.

Case 3: Neither V,; nor V}; contain the reference vertex of w,. By
Definition 3.3.5, the row s,, has ls in the columns corresponding to
the vertices in V,,. Also row s, has Is in the columns corresponding
to the vertices in V;;. When we add (mos 2) rows of s, and s, the
resultant row s, has 1s in the columns which are corresponding to

the vertices either in V,; or in Vj; but not in both V,; and V,,. This
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means that the resultant row s, has 1 at columns corresponding to
vertices in V,; @ V;; and has 0 at the columns corresponding to vertices
in V(w,) — (Vo & V4). Hence, the columns corresponding to w; in the
resultant s, indicate w;(Vy; @ Vi @ V(w;) — (Vai @ Vii)) which is the
form w; in s,,®s,,.

(4). If w; is neither in s,, nor s,, the resultant row s, obtained by
mod 2 addition of rows s,, and s,, contains no 1 in the columns corre-
sponding to vertices of w,. This means that columns corresponding to
w; in resultant s, are all 0 which indicates that w; is not in $,,®s,.

These conclude that mod 2 addition of two rows in an exhaustive W-
cutset matrix is equivalent to operating W-ring sum of two W-cutsets
corresponding to the two rows. By Theorem 3.2.1, this theorem is

true. ]

According to an ordinary graph, we define a fundamental W-
cutset matrix which is a submatrix of exhaustive W-cutset matrix

having the form as:
Qus = (@ | U] (3.21)

where U is an unit matrix and the columns of U are corresponding
to a chosen W-tree. A set of W-cutsets corresponding to rows of a
fundamental W-cutset matrix is called a fundamental W-cutsets.

For a W-graph, when a W-tree is chosen, we provide the following
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method to obtain a fundamental matrix from the W-graph directly.

By Corollary 3.3.1, from a W-graph we obtain a graph G,
by assigning each wild component w; in the W-graph by a star
whose center is the reference vertex of w,, then find a tree cor-
responding to the W-tree where each vertex of zzj(i) is changed

by an edge eﬁ? connected between v, and the reference ver-

q

tex of w,. We can obtained a fundamental cutset matrix of

(2)
Js

the graph G,. Then, we change each edge of the form ¢
on column of the fundamental cutset matrix by vertex of the
form U;i), the result becomes a fundamental W-cutset matrix

of the W-graph.

Example 3.3.3 Finding a fundamental W-cutset matrix of the W-

graph in Fig.3.4 under the W-tree {e;, es, €6, €9, vi”, '112;2)}. First we
assign stars to every wild-components w; and w; to make a graph as
shown in Fig.3.8(a) where {ey, €5, €g, €9, eils), 6(62,)} is a tree. Then obtain

a set of fundamental cutsets of the graph as follows:
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Pigure 3.8: (a)A set of fundamental cutsets of G (b) a set ol funda-

mental W-cutsets of a W-graph.
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1) (2 J 1) (2)
€2 €3 €4 €7 €3 €3, €54 €1 €5 €g €9 €4 €g;

3,31'1100000|100000
8452 |01 10000 ] 010000
Q= 5453 |1 100010001000 (3.22)
s4¢ |1 101 110)]000100

Sfs5 g 101130006140

s;f6 |10 1 1110] 000001

When we change 6(315), egls), 6(525) and egi) by vertices '0(31), v,(,‘l),véz) and

Uéz), respectively, a fundamental W-cutset matrix can be obtain. A set
of fundamental W-cutsets are shown in Fig. 3.8(b).

1 2 1 2
62633646768'01(3)1)2) 61656669’1}&)’1)((5)

sf1'1100000|100000-
8 |OngLsed nhaliai Obile Bod W Biidind
@r= g3z |4 M0 BRG0S0 G 40 (3.23)
s LT L8149 6k 0ae L oh

Sfs 0 010111000010

Sf6 I 1111440870410 1

O

Since every fundamental W-cutset has one element which is not in

the others, fundamental W-cutset matrix provides | V | —1 linearly
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independent W-cutsets in a W-graph. Also the rank of an exhaustive

W-cutset matrix is | V' | —1, so we have the following property.

Property 3.3.2 Any row of an exhaustive W-cutset matriz can be
obtained by adding (mod 2) some rows of a fundamental W-cutsets

matriz.

3.3.4 W-circuit Matrix

By Definition 3.1.1, we can obtain a W-circuit of the W-graph in

Fig.3.4 as follows:
. (1) (1), 2) (2), (2
Cw = {61,62,66, 69,201('04 ),7-’5 /'U(s ))a U)2(Ué )a Ué )/'Ui ))}

For a W-graph Q,(V, £, W), we use a matrix whose rows represent
W-circuits indicated by Fg¢.(3.1) and whose columns represent all edges
in £ and all vertices of each wild component except ﬂ h=1,24+,

| W) to show all W-circuits in a W-graph.

Definition 3.3.6 (Exhaustive W-circuit matrix ) An ezhaustive

W-circuit matriz Be,, = [byg) of a W-graph is defined as follows:

1. When column q indicates an edge e,

1 We-circuit ¢, contains the edge e,

=2
I

pq — _
0 otherwise.
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2. When column q corresponds to a vertex of form v,

r

1 W-circuit ¢, contains w,(V,,/Ve), U((';) e V..,
bpq =

0 otherwise.

For a given W-tree, consider a submatrix of B., whose rows repre-
sent fundamental W-circuits each of which has only one element that

is not in the W-tree. The submatrix can become a form of
By =[U | B (3.24)

where U is an unit matrix and the columns of By, are corresponding to
the given W-tree. B, is called a fundamental W-circuit matrix.
Since a fundamental W-circuit matrix is a submatrix of an exhaus-
tive W-circuit matrix B.,,, the rank of an exhaustive W-circuit matrix
is equal to the rank of the fundamental W-circuit matrix which is
W]
T=|E|+_X;|V(wi)|—|W|—|V|+1-
=
We can obtain a set of fundamental W-circuits by the same method

as a fundamental W-cutset matrix.

Example 3.3.4 Under the chosen W-tree {e;, es, e, €9, vil), véz)}, we
can obtain a set of fundamental W-circuits of the W-graph as shown

in Fig.3.4 by using the graph in Fig.3.8(a).
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We use a symbol ¢,(e,) to indicate a fundamental W-circuit ¢, con-
taining edge e, which is not in the W-tree. Also, we employ sym-
bol ¢, (v (‘)) for indicating a fundamental W-circuit ¢, which contains

w; (Vi /Ve:) where 'Ugi) € V., ’Ugl) o ﬁ and 'Ugi) is not in the W-tree.

ci(ez) = {61,62,66,esaailjz(%(;)»Ué7 Uég))}

ca(es) = {61,63,65,66,69}

ca(es) = es,es, wi( vil),vs”/v”) wz(U4 :"Uez)/ (7))}
ce(er) = {e7,eg,w2(v§2),v62)/vé2))}

cs(es) = {68,69,'11)1(”21), 51)/ (l) z(iz)’véz)/vgz))}
co(vs) = {es, e0,wi(vs”, vg [057), wa(vg”, v [oi)}
C7(Ug2)) = {wl(Uil)ﬂ’sl)/ % w2(Uz(;),052)/ 5 )}

When each row represents one of above fundamental W-circuits, a
fundamental W-circuit matrix can be obtained as form of Fq.(3.24)

as:



1) (2 1) (2
€y €3 €4 €7 €3 vg)vg) €1 €5 €g €9 z)i )vé)

c1 - G APRE g gy a et gpeerie 1heg - ' |
Ca g TV ¢ N S TR R O (R G
L s 0010000 0100711
C4 LS T S I S I 1 SO R (O O e A e |
Cs oy o 4.6, 648,00 1 1 1

Ce e ade it D3 Tt -0 4 1.1

¢ |]O0O0OO0OO0O0OT1]0000T1O

=1

The following theorem shows that we can obtain any W-circuit by

mod 2 addition of some rows of a fundamental W-circuit matrix.

Theorem 3.3.2 Mod 2 addition of two different rows of a W-circuit

matriz produces a row representing a W-circuit.
Proof: Let ¢,, and ¢, be two W-circuits which are
Cm = {eml, €m2y """ Emp, wl(‘/mol/v—m;)a Ty wk(Vmok/m)}
and
Cn = {€n1,€nz, ** %y Engy wl(Vnol/m)a = ',wk(Vnok/m)}-

(1). When we add (mod 2) rows ¢, and c,, it is evident that the

resultant row ¢, contains all edges which are in {e,,1, €2, =+, €mp} ®
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{€n1, €n2, ***, €nq}. Hence, when only edges are concerned, mod 2
addition of two rows of an exhaustive W-circuit matrix is equivalent

to the W-ring sum of two W-circuits represented by these two rows.

(2). Consider the case when w;, is in either ¢,, or ¢,, but not in both ¢,,
and c,. If ¢, contains w;(V,0i/Vpe ), ToW ¢,, has no 1’s in the columns
corresponding to the vertices of V,,;. Hence, by adding (mod 2) rows ¢,,
and c,,, the columns corresponding to vertices of w, in the resultant row
¢, are the same as those of ¢,,. This means that the resultant ¢, contains
Wi (Vooi [ Vo). If ¢y contains w;(Vio /Vinei), we can show that the
resultant ¢, contains 'wl(me/m). Hence, the columns corresponding
to vertices of w; in the resultant row ¢, is identical with those indicated

in ¢, ®c,.

(3). Suppose w;(Vinoi/Vinei) is in ¢y and w;(Vi0i/Vioi) is in ¢,,. Then
row ¢, has 1’s in the columns corresponding to the vertices in V.
Also row ¢, has 1’s in the columns corresponding to the vertices in
Vooro When we add (mod 2) rows ¢, and ¢,, the resultant row ¢, has
I’s in the columns corresponding to the vertices in either V,,,, or V,,
but not in both V,,,, and V,,,. This means that the resultant row c,
has 1 at the columns corresponding to vertices in V,,,, @ V,,,, and has
0 at the columns corresponding to vertices in V(w,;) — (Viuoi @ Vior)-
By Definition 3.3.6, the resultant ¢, represent w;(V,,; & Vi /V (w;) —

(Vinor ® Vio)) which is in Cm®Cn.
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(4). Suppose w, is neither in ¢, nor in ¢,. Then adding (mod 2)
of rows ¢, and ¢, will not produce 1’s in columns corresponding to
vertices of w,;. Since ¢,,®c, will not contain w,, columns for w, in a
row representing cm®c, will be the same as the result obtained by
adding (mod 2) rows ¢, and c,.

Hence, the above results and Theorem 3.1.1 lead to the conclusion

that this theorem is true. ]
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Chapter 4

A W-graph and Its Derived
Graphs

For a W-graph Q,(V, E,W), we know the structure of each wild-
component is unspecified. Some properties and some theorems of a
W-graph have been obtained in Chapter 3 without considering the
structure of each wild-component as long as we know that there ex-
ists exactly one inner path between any two vertices in each wild-
component. In fact, when the structure of each wild-component in a
W-graph is given, the W-graph becomes an ordinary graph, called a
derived graph. When we use different structure to specify each wild-
component, the W-graph produces a family of derived graphs. In other

words, a W-graph corresponds to many derived graphs. In this chap-
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ter, we will consider the relation between a W-graph and its derived
graphs. We will show that W-circuits, W-cutsets and W-tree of a W-
graph can become circuits or edge disjoint union of circuits, cutsets or
edge disjoint union of cutsets and trees of a derived graph, respectively.
Furthermore, we can obtain linearly independent circuits or edge dis-
joint union of circuits of any derived graph from linearly independent
Wh-circuits and also a set of linearly independent cutsets or edge dis-
joint union of cutsets can be obtained from a set of linearly independent

W-cutsets. These results are theoretically very important.

4.1 Derived Graphs of a W-graph

In a W-graph, the structure of each wild-component is unspecified,
and also we need not specify it when studying some properties of the
W-graph. However, in applications of W-graphs ([Zhao4 91]) we need
to choose a proper tree for the structure of a wild-component under
given requirements. In this case, it is important to know the follows:

Let T'(w,;) be a set of all tree with respect to all vertices of V(w,).
When the structure of wild-component w; is specified by a tree which

is one of T'(w;,), the specified w;, is described by following definition.

Definition 4.1.1 (Specified tree t{) ) When the structure of

wild-component w;, i a W-graph Q,(V, E,W) is given by a tree t\"

78



€ T(w;), the wild-component w; becomes the chosen tree t\). FEach

edge in t() is denoted by egz) where g = 1,2,+++ | V(w;) | —1.

When the structure of each wild-component w; (1 = 1,2,---, | W

)
is changed by (), respectively, the W-graph in Fq.(2.1) becomes an

ordinary graph G, as follows.

Definition 4.1.2 (Derived graph ) A graph obtained from a W-
graph ., (V, E,W) by changing each wild-component w; by a tree t\"

is called a derived graph Gy represented by
G4V, E") =GV, E) utV utPuy...utWDh (4.1)
where | E' | is equal to | E | +Z!»:Vl| | V(w,)) | = | W |.

When we choose different tree in 7'(w;) as t{"), the W-graph becomes
different derived graph. In other words, a W-graph €, can produce
a family of derived graphs when we specify each wild-component in
Q. by different trees. The number of different derived graphs from a

W-graph Q,(V, E,W) is

W]

IT | Vi) M0
g1

because a wild-component w; has | V (w;) |IV(#9I=2 trees.

Example 4.1.1 For the W-graph as shown in Fig.2.1, when the struc-

tures of w; and w, are specified by t{!) and ¢(*) as shown in Fig. 4.1(a),

9



the W-graph becomes a derived graph G, as shown as Fig. 4.1(b).
When the structures of w; and w, are specified by all possible trees,
the family of derived graphs from the W-graph can be produced where
the number of all derived graphs in the family is 4% * 5° = 2000. Fig.

4.1(c) shows two other derived graphs of the W-graph. 0
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€11

Vio

0O V4

V10

Figure 4.1: (a) Two tree-structures t{! and t{*) corresponding to w,

and ws, (b) a derived graph, (¢) two other derived graphs
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4.2 Relations between a W-graph and

Its Derived Graphs

Since a W-graph has a family of derived graphs whose number is very
large, to discuss the relations between a W-graph and its derived graph
is very important in the study of W-graphs. Since a derived graph is
an ordinary graph, to study the properties between any two of derived
graphs from one W-graph is useful in graph theory.

In Chapter 3, we have presented W-trees, W-circuits and W-cutsets
in a W-graph. When a W-graph becomes a derived graph, it 1s im-
portant to known the properties of W-trees, W-circuits and W-cutsets
between the W-graph and its derived graphs. We will shown that W-
trees, W-circuits and W-cutsets of a W-graph become trees, circuits
or edge disjoint union of circuits and cutset or edge disjoint union of
cutsets of its derived graph, respectively. Also, we will prove that if a
set of W-circuits are linearly independent in a W-graph, we can obtain
linearly independent circuits or edge disjoint union of circuits of any

derived graph from the set of W-circuits.

4.2.1 Instantiation of a W-tree

In graph theory, the concept of a tree is very important because the

number of linearly independent cutsets and circuits can related to a
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tree. Also, trees widely be used for analysis and synthesis of sys-
tems [Mayedal 72], [Chen 71], [Chan 69], [Mal. 83], [Breuer 77] and
[Lauther 79].

A W-tree (Definition 3.3.4) is useful for a fundamental W-cutset
matrix and a fundamental W-circuit matrix whose rows correspond to
a set of linearly independent W-cutsets and W-circuits, respectively.
Here, we will present an important and interesting property on W-
trees, that is, when a W-graph becomes a derived graph Gy, the chosen

W-tree can become a tree of the derived graph G,.

Before giving the property of W-trees, we replenish Definition 4.1.1

as follows:

Let t{) be any specified tree given to wild-component w; and G, be
a derived obtained as Fq. (4.1) by changing each wild-component w,
by t&) (1 =1,2,--+,| W ). Let t{) be a star in T'(w;) given to w, and
Gy be a derived graph formed by replacing every wild-components w,

by #*. The symbol of eg? is an edge in #" connecting between vertex

vi’) and the center of the star.
(2)

: in a W-tree

By Corollary 3.3.1, when we replace each vertex v

(¥)

;e the W-tree becomes a tree of Gy because a W-tree is

by an edge ¢
defined by a non-singular major submatrix A, (Definition 3.19) .

The following theorem shows that a W-tree of a W-graph €, can

become a tree of any derived graph G .
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Theorem 4.2.1 When a W-graph Q.,(V, E,W) becomes a derived
graph G4 where each wild-component w; is changed byt (i = 1,2,+-- |
W |), there exists an edge in t") to replace each ‘Uﬁi) in a W-tree so that

the W-tree becomes a tree of the derived graph Gy.

Proof: Suppose 75 is a tree of G obtained from a W-tree by re-
placing each vertex of form v "in the W-tree by an edge e( Y in ). To
prove that a W-tree can become a tree of G4 is equivalent to prove that

7o becomes a tree of G; by replacing each egi') in 7o to an appropriate

edge of 1V in G,.

We will show the following process to replace each edge of form e( %

in 79 to an appropriate edge in t{") one by one such that the resultant

tree is a tree of G,.

For any one edge e( Y in To, We remove e ) from To, To becomes two

subtrees 7,(e ()) and Tb( ) because 75 is a tree. It must be noticed

that one endpoint of ejs is in 7,(e 5)) and other endpoint is in 7,(e;)).

Hence, Ta( @ )) contains at least one vertex of w; and Tb((”( )) also con-

tains at least one vertex of w, because the edge e]:)

is in t{*) as shown
in Fig.4.2(a). On the other hand, since there is exactly one path be-

tween any two vertices in t( Y there must exist an edge e ) in the path
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connecting between a vertex in 7, (e, ¢ ") and a vertex in To(e; )y as shown

in Fig.4.2(b). We use the edge e( ") to connect 7, (e (vl)) and Tb( ). The

s

resultant tree TG(GJ:) U Tb(eJ:) U eJ’a is clearly a tree, too. According
to the same reason, we repeat above process until all edges of form e( Y

in 79 are replaced by edges in #{*).

To(ei)

(a) (b)

Figure 4.2: (a)7,(e, (¢ )) and (e, ¢ )) (b) there exists an edge e( Y {0 connect

Ta(e ())andr( ()).

Js
Furthermore, if the edge e ) has been used for replacing edge e( 94

i () be ch I b d
successive process, e]-a can not e chosen mmore t nan once because use

egil) is either in ra(e(’;)) or in Tb(e(”)) where eg’;) is another edge in 7o.

Hence, to do the process successively, we will obtain a tree of GG, from

70+ |

For example, suppose a W-tree of a W-graph Q,, in Fig.3.4 is chosen

86



1 2 ; e
as e;, s, €g, eg and Ui ), vé ). When t) and t2) are specified as

shown in Fig.4.3(a), the W-graph Q,, becomes a derived graph G/, in

Fig.4.3(b). We show that the W-tree becomes a tree of G4 as follows:

When we give a star t{!) whose center is vgl) to wy; and a star ¢{*
whose center is v{> to w; in the W-graph as shown in Fig.3.4, the W-
graph becomes a derived graph G, as shown in Fig.4.3(c). Replacing

Uil) and vé2) in the W-tree to edge egls) and egi) in Gy, the W-tree

(1 2
becomes a tree 7y of Gy consisting of ey, e5, €5, €9 and 645), 6(05) as

(1

shown in Fig.4.3(d). We must replace e\, and 6(63) in 75 by one edge

in #{V and one edge in #{*) so that 7, becomes a tree G, in Fig.4.3(b).

First, we delete ¢} in To, we obtain two subtrees 7, e(lﬁ) and 7, (el
) 4s ) 4 4s

. . il . :
as shown in Fig.4.3(e), Ta(egs)) contains vertices vy, vy, U3, U4, Vg and

. 13 1
v7, and Tb(eis)) contains vertex vs. Between vertex vy in 7,(e\}) and

vertex v( )4

6(2? which is in the path to connect 7, (e,(;,)) and rb(ef,j) such that the

in 7(elY), there is a path {e(li), eV} in (. We use the edge

result of 7,(e{)) U m(elY)) U ell) is also a tree as shown in Fig.4.3(f).

From the resultant tree, we delete eg) in Fig.4.3(f), we obtain Ta(eg))

and Tb(egs)) as shown in Fig.4.3(g) where Ta(eg)) contains vertices vy

and Tb(e,(;s)) contains vertices vy, vs, U3, Us, Ug and v;. Between vertex

(2) in 7, (eés)) and vertex v\ in 7p(el), there is a path {e(]i),e(zi}

in #2) where the edge eg? is connected between Ta(eg)) and 7 (egs)).

We use the edge e ) to make a new tree 7, (eg)) U Tb(eg)) U e(]? as
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shown in Fig.4.3(h). Since there no edge of the form 65? in Fig.4.3(h),
Fig.4.3(h) is a tree of G; where eﬁ? and e” in 7y are replaced by edges

e5y) and e\ which are in t{V and #{?), respectively.
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Figure 4.3: (a)t{!) and ¢{2) (b)a graph G, (c)a graph G, (d)a tree of 7,
(e)ra(egi)) and n,(eﬁl,’) (f)a tree (g) Ta(eg)) and Tb(eg':)) (h) the resultant
tree.
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4.2.2 Instantiation of a W-circuit

No matter what tree ¢{") is chosen for the structure of w;, so long as
each t{) (i = 1,2,--+,| W |) is chosen, a W-graph Q, becomes a
derived graph G, by Definition 4.1.2. Let €, be a W-circuit of Q,, and

C7 be a subgraph of G4 obtained from C; by following transformation.

Transformation of W-circuit I':

For edges: C7 contains all edges which are in €.

For wild-components: When C; contains w,(V,; / V),
C'r contains edges in ¢} which form edge disjoint path(s)

whose terminals are in V,;.

We will prove that these edge disjoint paths to replace w;(V,;/V..)

by Transformation I' exists uniquely.

Example 4.2.1 In Example 3.1.2, we have obtained a W-circuit C,
of the W-graph in Fig.2.1 as follows:
G =€ D0y
= {e1(vs, v1), e2(v1, v2), e5(vs, va), €7( Vg, va), €5(vg, v7),
wy (va, vs, v, v7/B), wa(vs, vy /v2, vz, vs) }.
When the W-graph becomes a derived graph as shown in Fig. 4.1(c),

(Y can be transformed by Transformation I' to be a subgraph 7

of the derived graph. For edges, C7 contains all edges e, e;, e,
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er and eg which are in C,. For wild-components in C,, we replace
vy ¢ P

Y

wi (v, vs, v, v7/B) by edges €\t and e$!) which form two edge disjoint

paths p(vs, v7) and p(vy, vg) in t(al) whose terminals are v,, vs, v5 and
v7 as shown in Fig. 4.4(a). We transform w,(vs, vg/va, v7, v5) by edges
(2)

€4, which forms a path p(vs, vg) in t{2) whose terminals are vs, vy as

shown in Fig. 4.4(b). Hence,

* l ‘
C'y = {61,62,65,67,68,6(1‘1),6%),62?} (42)
which is a subgraph of the derived graph denoted by heavy lines as

show in Fig. 4.4(c). 0

Concerning Transformation I', we have two questions:
(1) What kind of subgraph is C* in the derived graph 7
(2) Is the subgraph corresponding to C7 unique ?

The following theorem answers these questions.
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Theorem 4.2.2 [f C; s obtained from a W-circuit C; of a W-graph
by Transformation I', then C} is one and only one subgraph of a derived
graph corresponding to the W-graph and the subgraph is either a circuit

or an edge disjoint union of circuits.

Proof: Let C; be a W-circuit of a W-graph Q,,(V, E, W) containing
wi(Voi [Voi) (3 € 1,2,+++,| W |) where Voi = {via1, Vb1, Viaz, Vie2y *
Vian, Vitn} and | V,; | is even. By Property 3.1.1, we replace each
w;(Voi /Voi) by | Vai | /2 inner paths whose terminals are in V,, so that
the W-circuit becomes a closed train. Suppose these inner paths are
Pwi(Via1, Vit1)y Pwi(Via2, Vib2)y * %5 Puwi(Vians Vin). When wild-component
w; is specified by t{), each of these inner paths becomes one and only
one path in ¢V, that is, p(via1, vis1), P(Viaz, Vit2)s * * * P(Vian, Vien). When
we make the ring sum of these paths p(vi,1, vit1) ® P(viaz @ vi2) D
o+ @ P(Vian, Vitn), the result of p(via1, vit1) & p(viez ® vVirz) ® -+ @
P(Vian, Vipn) is a subgraph of ¢{*) consisting of edge disjoint paths whose
terminals are also in {Via1, Vib1, Via2, Vib2s * **s Vian, Vibn } ([Mayedal 72]).
Hence, when we change each w;(V,;/Vs:) by p(vVia1, vie1) ® p(Viaz ® visa)
@ -+ @ p(Vian, Vitn), the W-circuit becomes an closed edge train of a
derived graph because all inner paths are replaced by edges of ¢{"). We
can see that the closed edge train is C7 which is either a circuit or an

edge disjoint union of circuits.
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Furthermore, since each inner path in a wild-component w, corre-
sponds to exactly one path in ¢{, it is clear that p(via1, vit1) ® P(Via2
D Viz) D -+ ® p(Vian, Vibn) corresponds to one and only one subgraph

of t). Thus, C7 is unique. |

As an example of Theorem 4.2.2, it can be verified that C7 in
Fq.(4.2) transformed from C, in F¢.(3.7) is a circuit in the derived

graph as shown in Fig.4.4(c).

Let ©, be a W-graph and G, be a derived graph of 2,, and let
{C;}, 7= 1,2,--+,r, be a set of W-circuits of ©,, and {C} be a set
of circuits or edge disjoint unions of circuits of G, obtained from {C,}
by Transformation I'. We will prove that the members in {C} are
linearly independent if and only if the members in {C;} are linearly

independent.

Theorem 4.2.3 Let {C}}, j = 1,2,---,7, be obtained from {C;} by
Transformation T'. All circuits or edge disjoint unions of circuits in
{C:} are linearly independent if and only if all W-circuits in {C,} are

linearly independent.
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Proof: We have proved that transforming I' on C; gives one and
only one C} by Theorem 4.2.2, we need show any circuit or edge disjoint

union of circuits C7 in a derived graph can form exactly one W-circuit

C, of its W-graph. Let C be

C; == {81,62,“ em,e(li)aegi))"'yegll)aa
(2) ,(2) (2) (wp (w W
€1a1€2a 1" "1€a2ar" " " € llal’ (2|a l)*'“’ E!llwll)a}
where each e (] =1,2,-++, i) is an edge in t{*) of a derived graph.

By Transformation I', we know that C, also contains the edges ¢,
€, ***, €, where these edges are different.

Since C7 is either a circuit or an edge disjoint union of circuits, we
can consider C7 to be a subgraph of the derived graph. Consider all
the edges e(la), ega), -+« and ea]a, these edges compose a subgraph of
() which is a set of edge disjoint paths because t{") is a tree. Make a
vertex set V,; by collecting all terminals of these edge disjoint paths,
it is clear that all vertex in V,, are different and | V,, | is even. Then
replace each set of these edge disjoint paths in ¢ (i = 1,2,--- | W |)
by w;(V,;/Va) so that C becomes exactly one W-circuit C, because

C, satisfies the conditions in Definition 3.1.1. ]

Since Theorem 4.2.3 is a necessary and sufficient condition, we can
obtain a set of linearly independent circuits or edge disjoint unions of

circuits of any derived graph from a set of linearly independent W-
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circuits of its W-graph, also we can form a set of linearly independent
W-circuits of a W-graph by a set of linearly independent circuits or
edge disjoint unions of circuits of a derived graph of the W-graph.
It implies that we can obtain a set of linearly independent circuits or
edge disjoint unions of circuits of a derived graph from those of another
derived graph by means of W-circuits. We establish a relation between

any two derived graphs by the following property.

Property 4.2.1 A set of linearly independent circuits or edge dis-
joint unions of circuits of a derived graph can be obtained from those of
another derived graph where the two derived graphs are from the same

W-graph.

For example, there are two graphs GG, and G, as shown in Fig. 4.5(a)
and Fig. 4.5(b). When we have linearly independent circuits of GG, as
{e1, e2) egi)}, {e1, 2, 6(31)} and {e,, e, egi)}, we can obtain a set of lin-
early independent circuits or edge disjoint unions of circuits of Gj by
the following method. Since G, and G}, are two derived graphs of a W-
graph as shown in Fig. 4.5(c) where there is a wild-component w; and

V(wy) = {v1,v2,v3,v4}. We can transform the linearly independent

circuits of G, to W-circuits of the W-graphs as {e1, wy(vy, va/v3, v4) },
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{e1, €2, w1 (va,v4/v1,v3)} and {ea, €3, wi(v1, v3 [va, v4)} which are lin-
early independent by Theorem 4.2.3. Then, By Transformation I', we
can get a set of linearly independent circuits or edge disjoint unions of

Sy 1
circuits of Gy, as {e;, egﬂ)}, {e1, €2, eg), ef,;)} and {e,, e:;,eii),eglg) "
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Figure 4.5: (a) A graph G, (b) a graph Gy (¢) a W-graph.

In graph theory, there are some relations between graphs such as dual
graphs, isomorphic graphs and 2-isomorphic graphs, we know that a
cutset in a graph is a circuit of its dual graph and two isomorphic
graphs have the same incidence sets. Here, Property 4.2.1 shows a

new relation of two graphs with respect to circuits.
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4.2.3 Instantiation of a W-cutset

Let S; be a W-cutset of a W-graph Q,, and S} be a subgraph of a
derived graph of ©2,,. We can obtain S¥ from S, by following transfor-

mation.

Transformation of W-cutset O:

For edges: S* contains all edges which are in S.

For wild-components: When S contains w,(V,, : im, i
contains a set of edges in (") where endpoints of the

edge are in V,, and V,,, respectively.

Example 4.2.2 For the W-cutset S; in £q¢.(3.11) of ©, as shown
in Fig.2.1, it can be transformed to a cutset S} of GG, as shown in
Fig.4.1(b) by Transformation ©. S} has all edges which are in S; and
change wy (v, vs, v : v7) in S; by edge egz) which is connected between
{v7} and {vy, vs,v6} in t\Y and changing ws (v, : vs, v7, vg, v9) by edges
(2) (2)

€1y, €5, which are connected between {vs, v7, v, v9} and {v5} in ¢{") as

shown as Fig.4.6. Hence,

e = (1) (2)'% (2}
S] = {63) €4,€6,€7,€9,€3, €14 €24 }
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Figure 4.6: A cutset transformed from a W-cutset.

Since a W-cutset separates the vertex set V in a W-graph Q,,(V, £, W)
into two sub-vertex sets, it is evident that a W-cutset is a cutset or as

edge disjoint union of cutsets of a derived graph of the W-graph.

Property 4.2.2 Let {S;} be a set of linearly independent W-cutsets
of a W-graph, and {S;} be a set of cutsets or edge disjoint union
of cutsets in a derived graph of the W-graph obtained from {S;} by

Transformation ©. The member of {S;} are linearly independent.
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Although Property 4.2.2 is evident, it is an important property giv-
ing a relation between W-cutsets of a W-graph and cutsets or edge

disjoint union of cutsets of a derived graph of the W-graph.
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Chapter 5

Some Applications of

W-graphs

In this chapter, some possible applications of W-graphs for layout de-
sign are introduced. A wild-component can be employed for model-
ing a multi-terminal net and a specific terminal set related to routing
problems. A multi-terminal net is a means of minimally connecting a
terminal to another by wires electrically whose structure is unspecified.
Hence, the structure of a multi-terminal net can be represented by a
wild-component where these terminals are represented by vertices of
the wild-component. The specific terminal set means that any wires
are forbidden to separate these terminals. In this chapter, an approach

for topological routing is provided for minimizing vias [Zhao3 90] by

103



W-graphs. The via-minimization problem in two-layered topological
routing that is often used in design of VLSI or printed wiring boards
can be modeled by a W-graph Q,(V, E, W), where V represents a set
of all terminals, I does a set of two-terminal nets and W does a set of
multi-terminal nets. It is proved that a W-graph for modeling a rout-
ing problem can be embedded on either inside or outside (the inside
and the outside are corresponding to two layers, respectively) of the
boundary of routing region without crossing edges by created vertices
and that the number of vias is equal to the number of created vertices.
With this modeling, the routing problem can be reduced to two prob-
lems of W-graphs: The one is detection of planarity of W-graphs and
the other is plane drawing of planar W-graphs. At present, the two
problems still remain unsolved, we are unable to evaluate our approach
by W-graphs explicitly. However, if we can solve the two problems in
W-graphs, the advantages of this approach will be shown. In this dis-
sertation, some theorems are provided for testing planar W-graphs for
some particular W-graphs. The difficulty of testing planar W-graphs

are analyzed.
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5.1 An Approach to Topological Rout-
ing by W-graphs

A new approach for topological routing with via minimization is pro-
posed by W-graphs. We employ a W-graph Q,,(V, E, W) for indicating
all nets which will be assigned to two layers, where V is a set of all
terminals, £ is a set of edges corresponding to two-terminals nets and
W is a set of wild-components corresponding to multi-terminal nets.
In other words, the topological routing problem can be considered as
follows: Let H be a circle containing all vertices in the sequence cor-
responding to terminals on the boundary of routing region. Then we
specify the structure of all wild-components in @, so that H U €,
can be drawn on a plane with minimum number of created vertices

(Definition 5.1.3).

5.1.1 Topological Routing Problems

For two-layer routing problem, a via minimization is desirable because
minimizing vias increases the chip space usage and decreases the man-
ufacturing cost. The problem of via minimization can be divided into
two types (1) a constrained via minimization (CVM) and (2) an un-
constrained via minimization (UVM). The former is that the rout-

ing geometrical assignment is given, the wires are to be assigned to
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one of both layers such that the number of vias needed is minimum
[Chen 83]. The latter is where both routing geometrical assignment
and layer assignment of wires are needed to be decided for satisfying
via minimization.

The CVM problem originated in the pioneer PCB design work of
Hashimato and Stevens [Hashimoto 77] in 1971. For a long time, it
has been believed that the CVM belongs to the class of NP-complete
problem. A number of algorithms besed on different heuristics were
proposed for the problem [Sakamoto 75], [Servit 77] and [Stevens 79].
In 1980, Kajitani [Kajitani 80] proposed a polynomial-time algorithm
for a special case of the problem. Ciesielski and Kinnen [Ciesielski 81]
introduced an integer programming formulation to the problem with
a solution which is exponential in time complexity. Chen, Kajitani
and Chan extended Kajitani’s earlier work to a more general, but still
restricted situation and proposed an optimal solution. Independently,
Pinter [Pinter 82] found a polynomial-time algorithm for the same sit-

uation where each via is to connect at most three wires.

For the UVM problem, the first work on topological via minimiza-
tion was proposed by [Hsu 83] in 1983 based on a net intersection
graph. In a topological routing problem, the routing region is a sim-
ple connected region whose boundary contains all terminals. We don’t

consider the geometrical constraints and the only information we need
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is the sequence of terminals along the boundary, so we will use a circle
to represent the boundary and mark all terminals on the boundary to
the circle by using the same counterclockwise sequence. It should be
noticed that the primary aim of a topological routing is via minimiza-
tion.

Hsu restricted the UVM problem to two-terminals nets and pre-
sented that UVM is a problem of “minimum node deletion bipar-
tite subgraph” in a intersection graph. In 1984, Marek-Sadowska
[Marek 84] showed that the problem is NP-complete (as far as we
know, the proof were not perfect). In 1987, Du and Chang [Chang 87]
proposed another heuristic algorithm for this problem based on bi-
partitioning of a graph. In 1989, Xiong and Kuh [Xiong 89] treated
the UVM problem as a unified {0, 1} linear programming formulation
and considered this problem as finding “maximal cut” in a weighted
cluster graph.

Here, we will employ a W-graph €., (V, £/, W) for indicating a set of
terminals by V| a set of two-terminal nets by £ and a set of multi-
terminal nets by W, and employ a circle H containing all vertices of V
for indicating the boundary of routing region. Then it will be shown
that topological routing problem can be transformed to problems of a

W-graph.

Definition 5.1.1 (Via ) A wvia is either a hole or a contact, other
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then a terminal (pin), where wire on different layers is connected.

Definition 5.1.2 (Net ) A net n, = {v;1, vj2, +*+, v} (p > 2) is
a set of all equipotential terminals (pins) which must be connected by
wires electrically. When p > 2, the net 1s called a multi-terminal net.

When p = 2, the net is called a two-terminal net.

We assume that every terminal contacts with both layers. The as-
sumption means that we can connect a net by wires assigned to every
layer. A way of connecting terminals in a multi-terminal net need not
be specified, but those are usually connected by minimum wires. This
means that a multi-terminal net is a connected subgraph having mini-
mum number of edges. Thus, a multi-terminal net n, can be indicated

by a wild-component w, where terminals are represented by vertices.

5.1.2 Approach by the W-graph Model

The approach for topological routing is described as follows: Let a
W-graph Q,,(V, £, W) correspond to all nets which will be assigned to
two-layer, V' be a set of all terminals, £ be a set of edges corresponding
to two-terminal nets and W be a set of wild-components corresponding
to multi-terminal nets.

A vertical-horizontal routing is shown in Fig.5.1(a) where there are

three nets called net n,, net n; and net n., and three vias indicated
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by triangles. Net n, has three terminals, net n; and net n. have two.
We make a circle H containing all terminals in the sequence as like as
those are on the boundary of routing region. The routing problem can
be modeled by a W-graph H U2, as shown is Fig.5.1(b). Since the W-
graph H U, is planar, it can be drawn on a plane without crossing
edges as Fig.5.1(b), which is called a topological solution. We map
the solution onto a rectilinear plane, when edges being on inside of
should be assigned to one of layers and those on outside of H should be
assigned to the other layer, the resultant routing is shown in Fig.5.1(¢)
where there are no vias. By the assumption that the terminals contact
with both layers, it can be seen that net n, is connected by wires in
two layers and the terminal a, is not regarded as a via. Note that
there are wires of net n, on both layers indicated by a rectangle in
Fig.5.1(c).

It is clear that the problem of topological routing can be changed
to a problem of W-graph, that is, how to draw edges in £ and find
a suitable tree for each wild-component in W of a W-graph on either
inside or outside of the circle  to connect every net without crossing
edge or with minimum number of crossing points of edges possibly.

It is evidently that the following argument is true.

Fact 5.1.1 A W-graph Q,, indicating all nets can be assigned to two

layers without via if and only if HUQ,, is planar.
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Figure 5.1: (a) A V-H routing, (b)a W-graph H U Q,,, (c)topological

solution,(d)resultant routing.

However, when H U Q,, is nonplanar, for any drawing of H U Q,, on
a plane, there exist some crossing points of edges surely. It means that
via is necessary.

Consider a non-planar graph as shown in Fig.5.2(a) where p is a

crossing point, if we create a vertex at the point p, the graph can be
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embedded on a plane as shown in Fig.5.2(b). We give a definition of

created vertex.

Definition 5.1.3 (Created vertex ) When an edge crosses H, we
create a vertex at the crossing point such that the edge and H can be

embedded on a plane. The vertex is called a created vertex.

[t should be noticed that the created vertices only appear on H, so
the vertex p in Fig.5.2(b) is not a created vertex. However, we can
draw the non-planar graph of Fig.5.2(a) on a plane by a created vertex

as shown in Fig.5.2(c).

created
vertex

(b) (c)

Figure 5.2: (a) A Non-planar graph, (b)a plane drawing (c)another

plane drawing.

Suppose that there are no common terminals in any two nets. The

following theorem shows that a non-planar H U, can be drawn on a
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plane by crossing edges to H such that all crossing points are created

vertices.

Theorem 5.1.1 Any HUSQ,, can be drawn on a plane by created ver-

tices if necessary.

Proof: Since €2, is a collection of nets and every net can be con-
nected by a tree, it is clear that €, can be drawn on a plane without
crossing edges.

We make a Hamilton circuit H to connected all vertices of €2, by
the sequence as like as those on the boundary of routing region. When
H crosses edges in a drawing of §2,,, we can change the crossing points
by created vertices. Hence, H U2, can be embedded on a plane by
created vertices. [ ]

We give an example to illustrate why we define created vertex. A
non-planar # U €, is shown as in Fig.5.3(a), where there is a cross-
ing point of edge, €, can be assigned to two layers by two vias as
Fig.5.3(b). However, when we draw H U}, on a plane by a created
vertex as shown in Fig.5.3(c), 2, can be assigned to two layers by
only one via as Fig.5.3(d). Hence, the number of created vertices cor-
responds to the number of vias uniquely, also a created vertex implies

where a via must be generated.
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Figure 5.3: (a)A crossing point in H U, (b) a crossing point cor-

responding to two vias, (c¢) a created vertex, (d)one created vertex

corresponding to one via.

Since a wild-component corresponding to a multi-terminal net is
usually connected by a tree, the number of created vertices in a planar
drawing of H U ,, will be changed by given different tree. It has not
been solved how to obtain an optimal planar drawing of // U2, which

contains minimum number of created vertices.
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Example 5.1.1 Fig.5.4(a) shows a routing problem where there are
three nets n,, n, and n.. We make a circle H as shown in Fig.5.4(b)
containing all terminals in the sequence corresponding to those on the
boundary of Fig.5.4(a). Let a W-graph €, consist of nets w,, e, and
w, corresponding to nets n,, n, and n,, the routing problem can be
modeled by a W-graph H U, as shown in Fig.5.4(c). Since H U,
is a planar W-graph, we can draw H U, on a plane without created
vertex as shown in Fig.5.4(d). By Fact 5.1.1, we know that these nets
can be assigned to two layers without vias as shown in Fig.5.4(e).
However, the same example was also shown in [Xiong 89]. Fig.5.4(f)
is their optimal topological solution and Fig.5.4(g) is a feasible routing

where there is one via. indicated by a triangle. 0O
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5.1.3 Unsolved Problems

The problem of via minimization is to obtain a planar drawing of
H U, which contains minimum number of created vertices. For this

problem, we must solve some questions as follows:

ql: Let Q) = H UK, Testing whether 2 is planar or not.

If 2 is planar, ©2,, can be assigned without via.

q2: ! is nonplanar. Transforming the drawing of G, from
one to other drawings by choosing different tree- struc-
tures to each wild- component so as to find the best
drawing of Q! which contains minimum number of cre-

ated vertices.

If we can find efficient algorithms for q1 and q2, this approach has

the following advantages:

1. By Theorem 5.1.1, it can be seen that inserting created ver-
tices can guarantee 100-percent routing completion provided that

there are no restrictions on space and tracks.

o

Minimizing vias is equivalent to find a proper tree for each wild-
component in ,, so that # U, can be drawn on a plane with
minimal created vertices. Particularly, when H U, is a planar

W-graph, there exists at least one routing scheme without vias.
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It must be noticed to solve the questions q1 and 2 is very hard. The
detection of planarity of W-graphs must be solved. In next section, we

will discuss the planarities of some particular W-graphs.

5.2 On Planarity of W-graphs

The properties of W-graphs are classified to two types: one is called
general property and other is called restricted property. Here, we dis-
cuss the properties of planar W-graphs which belong to restricted prop-
erties. In [Mayeda2 88], as future problems, it has been pointed out
that we should study the restricted properties of W-graphs such as
planar W-graphs so that W-graphs become a useful tool.

The planarity for any W-graph is unsolved except some particular
W-graphs [Zhao4 91]. The difficulty of testing a planar W-graph will

be discussed.

5.2.1 Definition of a Planar W-graph

A planar W-graph is useful for applications of W-graphs. We define a

planar W-graph as follows:

Definition 5.2.1 (Planar W-graph ) A W-graph Q,, is said to be
a planar W-graph if and only if there exist at least one planar derived
graph of the W-graph.
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The W-graph, as an example, as shown in Fig.5.5(a) is planar be-
cause there exists a derived graph as shown in Fig.5.5(b) which can be
drawn on a plane without crossing edges in spite of the existence of a

non-planar derived graphs as shown in Fig.5.5(c).

wild-component

(a)
(b) (c)

Figure 5.5: (a)A W-graph, (b) a planar derived graph, (c¢) a non-planar

a

derived graph.
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By Definition 4.1.2 and 5.2.1, for a W-graph Q,,(V, E, W), if G(V, E)
is not planar, it is impossible that there exist planar derived graphs
of ©,. In other words, when we discuss the planarity of a W-graph,
it is necessary for G(V, F) being planar. We suppose that G(V, F)
corresponding to a W-graph Q,(V, E, W) is planar hereafter. Since
G(V, E) is an ordinary graph, a number of algorithms are available to
test whether a graph is planar or not where some of these are con-
structive algorithms, if the graph is planar, a plane drawing can be

produced. The plane drawing of planar graphs is also introduced in

[Wing 66] and [Mayeda4 85].

Definition 5.2.2 (Plane drawing ) The symbol of D[G(V, E)] in-
dicates a plane drawing of G(V, E). Hence, it 1s also employed for

expressing that G(V, E) is planar.

It should be noticed that a W-graph Q,,(V, £, W) is planar as long
as there exist at least one tree t{) with respect to each wild-component
w; so that D[G(V, E)] with all tree (") (i = 1,2,-+-,| W |) becomes a
planar graph, that is, D[G(V, E)] U (") Ut(2)--- Ut"D can be drawn

on a plane without crossing edges.
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5.2.2 Properties of Planar W-graphs

For a W-graph Q,,(V, E, W), if G(V, F) is corresponding to Q,,(V, E, W)
is planar, a plane drawing D[G(V, E)] divides the plane into some re-

gions.

Definition 5.2.3 (Boundary of a region) The symbol of V(m) s

a vertex set containing all vertices in a boundary of a region m.

When a region m in a plane drawing D[G(V, E)] contains all vertices

of a wild-component w,, we have,

Lemma 5.2.1 If V(w;) C V(m), D[G(V, E)] U t) is planar where

m is a region of D[G(V, E)].

Proof: Since the structure of a wild-component is a tree, we can
draw a wild-component on a plane without crossing edges. Let m be
region in D[G(V, F)], we draw a tree t{) on m such that D[G(V, E)] U

#{ can be drawn on a plane without crossing edges. i

Expanding Lemma 5.2.1, the following theorem is trivial.

Theorem 5.2.1 A W-graph Q.,(V, E, W) is planar if there exist | W |
regions my, my, +-+, myy| in D[G(V, E)] such that V(w;) € V(m,),

fas gpligie | W “
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Example 5.2.1 Fig.5.6(a) shows a W-graph Q,,(V, £, W) containing
two wild-components w; and wy where V (w;) = {va, vy, v7} and V(w3)
= {vs, vy, v11, v13}. Fig.5.6(b) shows a graph G(V, E) corresponding
to Q,,, where there are two regions m; and m, and V(m,;) = {vi, va,
V3, Uy, Us, Us, Ut, Us, Vg } and V(my) = {v1, vs, vs, vr, vg, Vg, V10, V11, V12,
V13, U14}. It is clear that V(w;) € V(m;) and V(w;) € V(m;3) so that

the W-graph is planar, one of plane drawings of G(V, E) Ut("Y U#(?) is

shown in Fig.5.6(c). 0
Vil Viz
= e,
V3
( Vi3
( Vis
2
Ve

(©)
Figure 5.6: (a) A W-graph ©,, (b) a plane drawing of G (c) GUt{V U

¢a),
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When all vertices in a wild-component are not in one boundary, we

define adjacent regions and chain-connected regions as followings:

Definition 5.2.4 (Adjacent region of w, ) Let m, and my be two
regions whose boundaries containing vertices of w; in D[G(V, E)], m,
and my, are said to be adjacent regions with respect to w;, if V(mg) N

Vimg) N V(w,) # 0, denoted by m,Q;my,.

Figure 5.7: Two plane drawings corresponding to a W-graph.

It should be noticed that two regions is said to be adjacent with
respect to w; which is under a specific plane drawing of G(V, F'). With
different plane drawing of G(V, E), the relation of the two regions may
be changed. There is a plane drawing D[G(V, E))] corresponding to a

W-graph as shown in Fig.5.7(a), m; and m; are adjacent regions of

122



wy because V(m;) N V(mz) N V(wy) = {v1, vs, vs, ve, v7} N {01, va,
vs, Ug} N {va, vs, v7} = {vs} # 0. But in Fig.5.7(b) which is another

plane drawing, m; and m, are not adjacent regions with respect to w;.

Definition 5.2.5 (Chain-connected regions ) Two regions m, and
my are said to be chain-connected with respect to w;, if there exists a
sequence of adjacent regions my, my, -+, m, which satisfies following
relation,

ma@,m;Q,myQ;, « - - @Q,m, Q;m,

In order to find chain-connected regions m, and my, the transfor-
mation of plane drawing may be required. A method of transform-
ing a plane drawing to another plane drawing has been presented by

[Mayeda4 85] as follows:

Type 1: When a subgraph ¢ of a graph is connected to the
rest of the graph by one vertex, then this subgraph can
be drawn inside of any region whose boundary contains

the vertex.

Type 2: When a subgraph ¢ is connected to the rest of the
graph by either one or two vertices, then reversing g at

the vertices (rotating 180°).

For example, applying Type 1 to change location of subgraph g; in

a graph in Fig.5.8(a) will result a graph in Fig.5.8(b). Also rotating a
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(a) (b)

Figure 5.8: Applying planar transformation Type 1 and 2.

subgraph g, 180° in a graph in Fig.5.8(a) by planar transformation of
Type 2 will give a graph in Fig.5.8(b).

For a plane drawing of G(V, E), if any two regions containing vertices
of wild-component w, are chain-connected with respect to w;,, there
exists at least one structure of w, which can be drawn on D[G(V, E)]
without crossing edges.

Suppose a W-graph contains only one wild-component w;. Then,

Theorem 5.2.2 Suppose there exists planar drawing D[G(V, E)] where
regions containing vertices of w; are my, my, -+, mg. If and only if
any two regions m, and my (1 < a,b < k) are chain-connected with

respect to wy, D[G(V, E)] Ut is planar.
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Proof: Two regions m, and m; are chain-connected with respect
to w; so that m,@; m;@; m,@, ... @; m,@; my hold. By Lemma
5.2.1, the vertices of a wild-component in a region can be connected
by a planar structure in the region. Suppose any two vertices v, and
vp of wy are in V(m,) and V(my), respectively. Since m, and m; are
chain-connected with respect to w;, there exist an inner path between
v, and v, passing the common vertices of these chain-connected regions
Mg, M1, Ma, *++, M,, M. Hence, there exists at least one structure of
wy which can be drawn on D[G(V, E)] without crossing edges as shown

in Fig.5.9.

Figure 5.9: A structure of t%) through chain-connected regions

If D[G(V, E)]JUtlV is planar, there exists a planar structure connect-

ing all vertices of w;. For any two regions m, and m, which contain
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vertices v, and v, of w,, respectively, there is a path between v, and v,
in the planar structure by Definition 2.1.1. If the path passes through
the regions in sequence of m,, my, my, «--, m,, my, it is clear that
two neighborhoods of these regions m, and m; satisfy V(m,) N V(my)
N V(w;) # 0. Therefore, any two regions in the sequence are chain-
connected with respect to w. L]

[t should be noticed that if two regions m, and m,;, whose boundaries
contain vertices of V(w,) are not chain-connected with respect to w,
for every plane drawings of G(V, F), it can be seen that Q,(V, E, W)

is non-planar by Theorem 5.2.2.

Definition 5.2.6 (Disjonit wild-components ) In a W-graph, two
wild-compo- nents w, and w; are disjoint if regions whose boundary
contains vertices of V(w;) and regions whose boundary contains ver-

tices of V(w;) are different.

By Definition 5.2.6, Theorem 5.2.2 can be extended to:

Corollary 5.2.1 Suppose a W-graph contains wild-components wy,
wy, +++, wx and any two of which are disjoint. There exist at least
one planar drawing D[G(V, E)] such that any two of wy, wa, «-+, wy

satisfies Theorem 5.2.2, then the W-graph is planar. [ |
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Figure 5.10: (a)A W-graph,(b)plane drawing of D[G(V, E)] UtV Ut(»

Example 5.2.2 A given W-graph Q,(V, E, W) containing two wild-
components is shown as Fig.5.10(a). By Theorem 5.2.2, it can be seen
that the W-graph is planar because any two regions whose bound-
aries contain vertices of w; in the plane drawing D[G(V, E)] are chain-
connected of wy, so that D[G(V, E)]Ut{" is planar. When a structure
of w; is chosen as shown in Fig.5.10(b) such that D[G(V, ) Ut{V] is a
plane drawing. For w,, we can find that any two regions whose bound-
aries contain the vertices of w; in Fig.5.10(b) are chain-connected of

wy. Hence, D[G(V, E)] U t{) U #?) is planar. O

However, there is other example of an non-planar W-graph shown
as Fig.5.7. The any two boundaries containing vertices of a wild-

component are not chain-connected under any plane drawings. Hence,
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the W-graph is non-planar.

5.3 Discussion

We introduced some properties of particular planar W-graphs. Gen-
erally, for testing planarity of a W-graph, we firstly confirm whether

D[G(V, E)] exists or not.

Figure 5.11: An example

It must be point out that there exist many planar drawing of G(V, F)
when G(V, F) is planar. For testing whether a W-graph is planar or not
by Theorem 5.2.2, we must check each wild-component one by one. It is
difficult that we not only need to choose a suitable D[G(V, E)] but also
provide a proper tree ") for wild-component w, so that D[G(V, E)Ut\"]
can aid to check next wild-component. As an example, the W-graph in

Fig.5.10(a) is planar. However, when we give a tree to w; as shown in
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Fig.5.11, D[G(V, E)UtY] U t{*) can not be drawn on a plane without
crossing edges.
We are hopeful to find a necessary and sufficient condition for a

planar W-graph in future study on W-graphs.
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Chapter 6

Conclusions

In this dissertation, a new graph model containing unspecified edges,
called a W-graph, has been presented. Because of existence of unspec-
ified edges in wild components, a W-graph is a partially defined graph
where we know that the structure of each wild-component is a tree but
it is unspecified. In other words, except we know that there exists one
and only one inner path between any two vertices in a wild-component,

there are no other information available in a wild-component.

The reason why we introduce a W-graph is because there exist some
partially defined systems arising in routing problem and communica-
tion net and so on. To describe such partially defined systems by an
ordinary graph is impossible since the relation of edge and vertex in

an ordinary graph must be specified. It therefore needs to introduce
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new graph model to satisfy these actual systems. Another reason that
we study W-graphs is because W-graphs are partially known graphs
and it is important to discuss the unknown part with limited known
informations. The third reason is that W-graphs have many interest-
ing and useful properties which can be provided without specifying the
structure of each wild-components.

The main properties of W-graphs have been discussed from two as-
pects in this dissertation, one is in a W-graph (Chapter 3) and the
other is between a W-graph and its derived graphs (Chapter 4). We
summarize the main points of usefulness and results in this dissertation

as follows:

1. W-circuits and W-cutsets can be defined in a W-graph though

there are unspecified tree-structures.

to

A set of W-circuits (W-cutsets) including an empty set in a W-
graph is an Abelian group under the W-ring sum operation of

W-circuits (W-cutsets).

3. Matrix representation which is a convenient way of represent-
ing a W-graph algebraically are presented and a set of linearly
independent W-circuits and W-cutsets can be obtained from a
fundamental W-circuit matrix and a fundamental W-cutset ma-

trix, respectively.



4. When a W-graph becomes a derived graph, W-trees become trees
of the derived graph and a W-circuit (W-cutset) can become
one and only one circuit (cutset) or edge disjoint unions of cir-
cuits (cutsets) of the derived graph. Particularly, when some
We-circuits (W-cutsets) in a W-graph are linearly independent,
we can obtain linearly independent circuits (cutsets) or edge dis-
joint unions of circuits (cutsets) of a derived graph from these W-

circuits (W-cutsets) by Transformation I' (Transformation ©).

5. The relations between any two of derived graphs are established

with respect to circuits and cutsets.

6. An approach and suggestions on routing problems by a way of
W-graphs have been proposed though it is not a complete work in
this dissertation. We wish to introduce and verity a W-graph as
a new model to be able to be applied to this field. The planarities

of some particular W-graphs have been discussed.

Finally, future research on W-graphs is briefly shown as follows:

e The property of a planar W-graph is very important not only
in theories but also in applications. In order to test whether a
W-graph is planar or not, a necessary and sufficient condition

should be solved.
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e Since the number of all derived graphs corresponding to a W-
graph is very huge, to clear what common properties in all de-

rived graphs is useful in graph theory.

o Comparing with the properties of W-graphs and ordinary graphs
is useful for developing the theories of W-graphs. As an example,
we known that for a W-graph there are no dual graph as those
in an ordinary graph because the regions in a W-graph are un-
specified. However, it is possible to define something similar to

a dual graph in a W-graph because these exist planar W-graphs.
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