Determination of Atomic Form Factors by

means of Coherent Bremsstrahlung

Makoto Tobiyama
Department of Materials Science, Faculty of Science,

Hiroshima University, Higashi-Hiroshima 724, Japan



Contents

1

[$2

Introduction

Coherent Bremsstrahlung

2
2.2
2.3

Thearetical fousdslion . . v b i v s v o b vie v g
Dip-biip sRMetQtes .« 5 4 oy e v i i T B A

Fiffect of the atomic TOTM PACHOT - & o s s b b o o o bt s

Experimental Set-up

3.1
3.2
3.3
3.4
3.5

Cretiera) ponsidSralian 5 o 0w s 4 000 IR B 0 500
Filsatipoh Snilir i 0y o B e AR el B & B
Tagging system and electron monitor . . . . . . ... ... ..
Targel-8nd BotloMIEer: 4. ;= o 5 ¢ 52 @ 5 ¢ 95 54w 0@ mt s

Data dopnetiidn alebionl . ;oo 0l R w v i Yoo w ' 4.

Experimental Procedure

4.1

Rl Rran MR b - A ARt e AL o (ST

Results and discussion

5.1
5.2
5.3
5.4
9.5

Theoretical caltaalaon » . ¢ .8 5 s B = 2 % s bon #3p
Atomic form fattor-of siliconerystal . . . . o, Wiy o b,
Effect of the imperfection of silicon crystal . . . .. .. .. ..
Atomic form factor of aluminum crystal . . . . . ... ... ..

Possible improvement of experimental methods . . . . .. ..

22
22
25
26



6 Conclusion

43



Abstract

A method has been developed by means of coherent bremsstrahlung
from a single crystal for the determination of atomic form factors.
This method employs a precise measurement of energy spectra of -
rays of several-hundred MeV region produced by 1.2-GeV electrons
from single crystals as a function of relative angle between a defi-
nite crystal axis and the incident electron beam. It is shown that
the spectra contain the electron-screening effect around the target nu-
clei and give information on the atomic form factor mainly at small
momentum transfers. Possible problems with this method have been
examined with this experiment using silicon crystal. A method to
analyze the experimental results has been established and with this
method the deviation of atomic form factor from theoretical calcula-
tion is detectable at a level of down to a few %. The present exper-
imental results for silicon crystal are consistent with the form factor
obtained by the Pendellésung method which shows small deviations
from Hartree-Fock model at small momentum transfers. The accuracy
attained in this method has been shown not too much affected by the
imperfectness of the crystal, at least the dislocation density of up to
10*cm™2. This method has been applied to an aluminum crystal and
it was shown that the experimental results supports the form factor
determined by x-ray diffraction; the form factor is deviated at the 111

point by as large as 3.6% from the Hartree-Fock calculation.



1 Introduction

The atomic form factor is one of the most fundamental quantities in solid
state physics. It is a Fourier transform of an electron distribution around a
nucleus and bears knowledge of the electron wave function. Precise knowl-
edge of the atomic form factor has also some practical importance as exem-
plified by the problem associated with the computation of X-ray attenua-
tion coefficientst!l. Tt is generally impossible to calculate the atomic form
factor exactly, because it needs an exact solution for a complicated many-
body problem. There are some calculations 2. 3] using approximate methods
which are believed to be accurate enough in practical use for some materials.
The adequacy of these theoretical treatments, however, should be verified
experimentally. Furthermore, it should be noted that the atomic form factor
in aggregate may be slightly different from that of an isolated atom. The
quality of existing data is inadequate for answering these problems and more
detailed measurements have been desired.

Most measurements to determine the atomic form factor performed up

(4 o low-energy electrons®). The X-

to now are mainly by means of X-rays
ray experiments are classified into two groups; kinematical and dynamical
methods. In the former method, integrated intensities of diffraction images
from a single or powder crystal are measured. This method has been applied
to many kinds of materials. The most serious problem in the method is that
the absolute measurement is not possible and that absorption or extinction

corrections are necessary. On the other hand, the absolute value of the form

factor is obtainable in the dynamical method. Nevertheless, as the method
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needs a crystal which is perfect with large dimension, there are few kinds of
crystal which are applied in the method. It is therefore highly desirable to
develop a new method which is not sensitive to the imperfectness of target
crystal.

The photon spectra of coherent bremsstrahlung from high-energy elec-
trons have been found to be very sensitive to the atomic form factor of the
target materiall® 7. This means that a precise measurement of such photon
spectra may give us new information on atomic form factors. In addition,
the information obtained in this way is complementary to that obtained from
X-ray measurements in a sense that the former information reflects the elec-
tron screening around nuclei, while the latter directly reflects the electron
distribution around nuclei.

In the coherent bremsstrahlung experiment stated above, all the real par-
ticles such as the incident and recoil electron and the emitted photon have
their momentum of the order of several hundred MeV or higher. As the cor-
responding wavelength is far smaller than the size of atomic structure and
rather closer to the nuclear size, they may be regarded to interact only with
the nuclear field. The momentum transfer from incident electron to nucleus,
on the other hand, ranges from keV to several hundred MeV. The phonon
associated with the atomic vibration can interact with slow electrons sur-
rounding nucleus but not with such high-energy electrons as in the present
case. As a result, the phenomenon of our interest is free from any complex-
ity inherent to dynamical treatment of keV electronst® and the plane-wave
approximation is well valid.

Possible problems in the method using coherent bremsstrahlung are as



follows:

e It is generally difficult to measure the energy-spectra of high-energy
v rays precisely enough to discuss the small deviation of the spectral

shape.

e The method requires considerably complicated experimental technique
and long time-consumption. Moreover, there may be no guarantee of

the reproducibility for the experimental system in some case.

e By a radiation damage, the target crystal may be broken to some ex-

tent.

e The dislocation of the target crystal may heavily affect to the result

obtained in the method.

We have already tested the feasibility of the coherent bremsstrahlung
method and reported that we could reproduce the shape of the photon spectra
for the perfect silicon”). As the most precise experiments were made for sili-
con by measuring pendellésung fringes using wedge-shaped crystal[lo' 11, 12],
silicon crystal may be the most suitable for checking a new method to deter-
mine the atomic form factor. We have performed the experiment to clarify
the possible problems stated above. We have constructed a new detectors
with improved control system. In order to check the reliability of this kind of
measurements, we have prepared two kinds of silicon crystal; one is a perfect
crystal which is the same one as in the previous experiment and the other is

a crystal in which a heavy dislocation has been intentionally introduced.



For the metal crystal, as it has free-electrons, the electron distribution
may appreciably differ from the model of an isolated atom and its atomic
form factor is await for measured with improved accuracy. We therefore have
measured -the atomic form factor of aluminum crystal by means of coherent
bremsstrahlung and compared with the experimental- and theoretical-form
factors based on the results obtained in the experiment stated above.

This thesis is organized as follows: Firstly, we briefly describe a theo-
retical background for coherent bremsstrahlung in section 2. Secondly, in
section 3, we give an explanation of the present experimental set-up. Sec-
tion 4 is devoted to a description of our experimental procedure, data analysis
and experimental results. In section 5, the present results for silicon and alu-
minum crystals are compared with the results of X-ray experiments and also
given are the discussions on the validity of the present method and on other

related problems. Finally our conclusion is summarized in section 6.

2 Coherent Bremsstrahlung

v 0 Theoretical foundation

A bremsstrahlung process is diagrammatically represented in Fig. 1, where
an electron with energy Ey and momentum pg is deflected by the potential
shown by a blob and emits a photon with' momentum k. Let the energy and
momentum of the final state electron be denoted by E and p, respectively,

the energy and momentum conservation law read;

po=p+k+q, (1)



Figure 1: Momentum and angular relations in electron bremsstrahlung. The
incident electron momentum, scattered electron momentum, photon momen-

tum and momentum transfer are denoted by po, p, k and g, respectively.

E0=E+/C, (2)

where q is the recoil momentum of the nucleus. The recoil energy correspond-
ing to q can be neglected because of the large mass of the recoiling nucleus.
Here, and henceforth, we use the natural units in which m, = ¢ = h = 1,
where m, is the electron mass. Conversion of the momentum transfer ¢ in
this natural units to the [A(A)~'sin(§/2)] unit is accomplished by multiplying
a factor 20.60744, which is convenient to represent the momentum transfer
in the Rayleigh scattering for the wave length A and the deflection angle 6.

At {rery high energies where the bremsstrahlung is strongly collimated in
the forward direction, 8 ~ 1/Fy, the longitudinal and transverse momentum

transfer ¢; and g, respectively, with respect to the incident electron direction



are restricted by the relations:
§< q 526, (3)

0 S qt ’S 2"1") ([1)
where ¢ is the minimum recoil momentum given by

z

2 2Eo(1 —113)’

with z = k/FEj the relative photon energy. Outside the region defined above,
the bremsstrahlung is either inhibited or negligibly small.

Though 6 grows rapidly when z approaches unity, it is usually a very small
quantity compared to the other momenta involved. Thus, the kinematically
allowed region for momentum transfer forms a very thin disc, the ”pancake”
named by Uberall, of which the thickness is about § and the radius is of the
order of unity. It is axially symmetric with respect to the initial electron mo-
mentum po and it stands at the distance ¢ from the origin of the interaction
as visualized in Fig. 2.

Using the first order Born approximation, we obtain the Bethe-Heitler
expression[13] for the differential cross section for an isolated atom. Accord-
ing to the Bethe-Heitler formalism, the atomic electrons surrounding the
nucleus make partial screening of the nuclear charge. This screening effect
is represented in terms of the atomic form factor F(q?), which is the Fourier

transform of the charge distribution p(r) around the nucleus;

F(g®) = [ ¥ p(r)dr. (6)



S
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Figure 2: The pancake region (shaded area). Its thickness ¢ is far smaller than

x or q. The upper kinematical boundary for q is drawn only schematically.
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For an ideal crystal at zero temperature, the momentum transfer is not
permitted except at the reciprocal lattice points due to the periodic nature
of the potential. From the conditions (3) and (4), only the reciprocal lattice
points which enter the pancake region can contribute to the bremsstrahlung
process in this case.

At finite temperature, however, we must take into account the effect of

thermal oscillation, and the differential cross section is expressed by the sum

of the coherent contributions and the incoherent ones[14];
k do } 2 :
— = [14 (1= 2)*)(¢1 + ¥) — (1 — 2)(¥3 + ¥5), (7)
J9 dk 3
where ;
z? e’ ~2T 73 . 2
Jp = 13—7 <m> = 0.5794 x 10 Zcm y
, 1 5. 1= Bn2)?
T R e R ]
- 10 1 1— F(qg?))? 63
==+ 4/ (1- e_‘qqz)(—(q)—)—(q2 — 682Ind 4 357 - 4—)qdyq,
3 s q* ) q

c _ l(%r)z 2,—Aq? (1-F(q?))* 8.
Yi = % of ;{15((1)1 gt 02

Ne]

)

o _ o(27)? _ag (1= F(g%)* 8%¢¢(q — ¢)
Y5 =32 |S(q)|*e™ ; e
a q=g q q
with a being the lattice constant. The superscripts 1 and ¢ denote the in-

coherent part and coherent part, respectively. We used A for the thermal

oscillation constant

3m?2c? i

©p
=T o LA (8)

A
Op
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where M is the atomic mass of the crystal, A5 is the Boltzmann constant, © p
and 7" are the Debye temperature and the absolute temperature of the crystal
respectively. We also introduced the structure factor S(q) which accounts for
the interferencial effect coming from the periodic nature of the crystal. The
summation in the coherent part should be done over the reciprocal lattice

points ¢ kinematically allowed, i.e. mainly those in the pancake region.

2.2 Dip-bump structures

We show in the following the qualitative behavior of the differential cross
section. For most conditions, the incoherent part depends weakly on z and is
a slowly varying function of £. On the other hand, the coherent part depends
strongly on both z and the direction of the crystal.

We first investigate the case where the incident electron enters parallel to
one of the crystal axes, [110]*. For the lower boundary of the pancake to reach
the first row of reciprocal lattice points, 6 is equal to /2 x 27/a=9.6x10"%in
the case of silicon crystal. Choosing Ey = 1.2GeV = 2.3 x 10° in the present
unit, we find that the corresponding z1s 0.98. This is very close to the end of
the spectrum, where the momentum transfer is so large that the intensity of
coherent contribution is very small with respect to the incoherent one. The
cross section has therefore no appreciable enhancement in the coherent part.

Next, we consider the case where the incident electron enters the crystal
with a.small angle © with respect to the axis [110]* as seen in Fig. 3(a).
Now, for a certain photon energy ko, the pancake intersects the (110) plane,

as shown in Fig. 3(b). This gives a large enhancement in the cross section.
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Figure 3: (a) The direction of the incident electron momentum pg is directed

?

through a small angle © in the plane (110). (b) The pancake now includes
the reciprocal lattice points in the (110) plane.



While rotating the crystal in the (110) plane to decrease ©, it happens that
the lower boundary of the pancake move away from the first row. Then,
the contributions from the first row suddenly disappear and the cross sec-
tion drops accordingly. With decreasing © further, the cross section again
increases and reaches the maximum when the lower boundary is just on the
third row. Thereafter the cross section decreases with decreasing angle, thus,
resulting in a dip-bump structure in angular dependence.

A similar argument is applicable to the case where we vary the photon
energy for a fixed incident angle; we first assume that the pancake intersects
the (110) plane as shown in Fig. 3(a). With increasing photon energy from £,
the lower boundary of the pancake proceeds away from the origin. The cross
section grows with the photon energy and has the maximum when the lower
boundary of the pancake reaches the first row. The cross section suddenly
drops when the lower boundary acrosses the row.

The above mechanism gives a specific dip-bump structure in the coherent

bremsstrahlung spectrum which is to be observed in the present experiment.

2.3 Effect of the atomic form factor

In the ordinary X-ray experiments, the intensity of the diffraction image
is proportional to |F(g?)|?, while the coherent part of the bremsstrahlung
spectrum is proportional to the factor (1— £(¢%))%/¢".

The discussion of the previous section shows that the specific dip-bump
structure of the coherent bremsstrahlung comes from the lattice structure of

the crystalline target and that the intensity of the spectrum is inversely pro-

14



portional to the fourth power of the momentum transfer which corresponds
to the distance in the reciprocal lattice space. Now, it is clear that a possible
small deviation in the atomic form factor at small momentum transfer may

result in a large deviation in the coherent bremsstrahlung intensity.

3 Experimental Set-up

3.1 General consideration

There are several methods to determine the energy of photons emitted in
the bremsstrahlung process. The first one is to measure the momenta of
et and e~ pair which is converted from a photon, which is known as pair-
spectrometry. In this method, though a good energy resolution can be
achieved, the time needed to get the photon spectrum is huge. Another
direct-measurement method is to convert the photon to an electromagnetic
cascade shower. To get a good accuracy, we must keep the intensity of the
photon beam to be such low that the only one photon will enter the detector
in one trigger signal. The data amount to a large magnitude and the time
needed to get one photon spectrum is accordingly long.

Instead of these direct measurements, we adopt the following indirect
method: if we know both the energy of the incident electron, Ey, and that of
the final electron, F, we can determine the photon energy & by the relation
k = Eo — . We place an analyzer magnet downstream the target. The
electron which emits a photon has a smaller curvature in the magnetic field

compared with the electrons which do not emit any photon and therefore
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appears at different exit point of the analyzer magnet. We place a counter
hodoscope downstream the analyzer magnet and measure the momentum of
a recoil electron by its hit position on the hodoscope. This method is called
the tagging method because the energy of all the photons is tagged by the
momentum of the recoil electron. As we do not need to identify the individual
photons, we only count the number of the recoil electrons which hit and of
counter elements of the hodoscope. The. counting rate in this case can be
increased until it reaches to the limiting counting rate for single electrons.

As the characteristic feature of the coherent bremsstrahlung appears in
the lower photon energy region, we mainly confine ourselves to employ a
hodoscope which can measure high-energy recoil electrons..

Since we had to remove the error due to the differences in the energy
acceptances for different counter elements of the hodoscopes, we took the
ratio of each spectrum to the standard one which was obtained for the poly-
crystalline aluminum target under the standard conditions. Hereafter, this
ratio is referred to as the normalized spectrum.

As it is difficult to extract beam with high enough stability and to make
a direct measurement of beam intensity upstream of the target without dis-
turbing the beam properties, we count the number of electrons of 1.2 GeV by
a thick-walled ionization chamber placed downstream the analyzer magnet.

To vary the direction of the crystalline target relative to the incident
electron beam, we use a high-precision goniometer which is controlled by a

personal computer at the counting room.
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3.2 Electron synchrotron

The electron synchrotron and the tagging system at the Institute for Nuclear
Study, University of Tokyo, was used) in this experiment. The circulating
electrons lose their energy in an absorber and are kicked out to the external
beam line by two fast kickers. The beam line is schematically shown in [Iig. 4.
It has two lead slits that can collimate the electron beam in both vertical
and horizontal directions.

At the first collimator, the beam is scraped to £1mm in both vertical
and horizontal directions. The secondary electrons which are created at the
first collimator are scraped out by the second collimator. The quadrupole
magnets are tuned to make the beam divergence at the target position as

small as possible.

3.3 Tagging system and electron monitor

The tagging system consists of the analyzer magnet and two counter ho-
doscopes as shown in Fig. 5. The magnet supplies a magnetic field of 1.17 T
and an effective field length of 0.8 m. The high-energy electrons from the
accelerator, after hitting a target material, enter this magnetic field and give
their trajectories according to their momenta.

There are two kind of counter hodoscopes of plastic scintillators. One is
for low-energy electrons, the other is for high-energy ones. The spread of
the electron beam due to the multiple scattering in the target material is
not negligible because the analyzer magnet is horizontally defocusing. In the

case of 0.5 mm silicon target, the spread of the beam at the hodoscope is
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Figure 5: The layout of the tagging system. The electron beam comes from
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ter. Electrons are analyzed according to their momenta by an analyzer mag-
There are two sets of counter hodoscope. Downstream the analyzer

net.
magnet, there is a thick-walled ionization chamber which counts the number

of extracted electrons.
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calculated to have a width corresponding to the energy spread of 20 MeV. We
designed the energy acceptance of each bin to be 20 MeV. The corresponding
horizontal size of the scicntillators ranged from 10.6 to 19.0 mm.

An energy calibration using an electron beam has shown that the ho-
doscope covers the energy range from 975 MeV to 600 MeV with bin width
ranging from 15 MeV to 20 MeV. The nonuniformity in the acceptance is
irrelevant to our experimental results because we are concerned only with
the ratio of coherent spectrum to incoherent one.

The low-energy hodoscope has a resolution of 10 MeV, covering an energy
range between 100 and 370 MeV. We use this hodoscope for calibration and
monitoring of the electron beam.

The thick-walled ionization chamber is made of one 2 cm-thick copper
wall, and twenty-three 1 mm-thick copper plates. The extracted beam in-

tensity was about 2 x 10%¢ /s.

3.4 Target and goniometer

Two kinds of high-purity silicon single crystal were used to observe the effect
of crystal imperfectness. One is a dislocation-free, perfect crystal and the
other is a crystal which has dislocation with a density of ~ 10*cm™2. They
have been provided by Shin-etsu Handoutai Co. Ltd. It is hard to introduce
dislocations heavier than in the present case into a silicon crystal without
making cracks.

The silicon crystals used in the experiment were wafers with a thickness of

0.5 mm and a dimension of 20 mmx20 mm. The surface of the target crystal
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is (110) and the edges are parallel to [111] and [112] within an accuracy
of 0.5°. The orientation of the target crystal was determined by the back
reflection Laue method.

The goniometer has three axes which cross at one point and one transla-

tional moving axis as shown in Fig. 6. Around each axis, rotation is made

¥ axis

| Saonat
(D 6)3.805_1 L;Ie? step
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P |/] |—i
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Figure 6: Whole view of the goniometer. It has three axes which cross at

one point each other. It is placed in a vacuum chamber.

by a stepping motor in vacua and the position is informed through rotary
encoders. The possible range of rotation‘is —30.000° ~ 210.000° for the
axis, —30.000° ~ 30.000° for the ¢ axis and 0.000° ~ 180.000° for the ¢
axis with a common precision of 0.005°. The crystalline target is mounted
on a holder which has a circular opening window of 20 mm in diameter for
the beam. The crystal must therefore be larger than 20 mm at least in one

direction to bee mounted on the holder.



Sliding the goniometer transversal to a beam line, we can use a poly-
crystalline material as the target. The polycrystalline radiators used are a
0.5 mm thick aluminum strip, an aluminum wire of 0.5 mm in diameter and
a 50 pum-platinum strip. The frame of these targets is far from the beam and

has no appreciable contribution to the spectrum.

3.5 Data acquisition methods

We counted the number of electrons by using the full range of the high-
energy hodoscope, 8 elements of the low-energy hodoscope and the electron
monitor. We used a special TAG module which can convert the signal from
photomultipliers to NIM level signals through the discriminators and the
coincidences. The CAMAC 24-bit scalers are used. The CAMAC system and
the goniometer are controlled by a personal computer PC-9801RA4 with use
of the online code programmed with Turbo PASCAL Ver. 4. The goniometer
and the scaler were computer-controlled . The temperature of the crystal

holder of the goniometer was monitored by three thermistors.

4 Experimental Procedure

4.1 Check runs

The number of data sets obtained in this experiment is summarized in Ta-
ble 1.
To estimate the contribution of the secondary electrons produced in the

beam line to the main spectrum, we measured the energy spectrum of elec-
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Run name Yazis Number of data
Completely empty 15
Empty holder 200
Normalization run 20
Perfect Si check run 910
[001]* search 850
[001]*  high statistics 330
[110]* search | 720
[T10]* high statistics 70
Imperfect Si check run 340
[001]* search 270
[001]* high statistics 60
[110]* search 770
[110]* high statistics 90
Aluminum run check run 9600
[110]* search 800
[T10]*  high statistics 70
[001]* search 800
[001]*  high statistics 60

Table 1: The number of data obtained in this experiment
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trons with the target removed. Two types of empty runs were carried out
occasionally. The first type is completely empty runs whose data are taken
at the transverse position of the goniometer completely far away from the
beam line. The obtained ratio of the spectrum for the completely empty to
that for A¢ target ranged from 0.6% to 1% for the high-energy hodoscope
and 1.5% to 4% for the low-energy hodoscope.

The other is empty holder run for which we set the goniometer at the
normal position but without target crystal. Because the opening window
of the holder is not large enough to avoid the contribution from the beam
halo, the obtained empty ratio is larger than that in the completely empty
case. The ratio in this case to the Af spectrum amounted to 3 ~ 4.5% and
9 ~ 11 % for high- and low-energy hodoscopes, respectively. We preformed
completely empty runs and empty holder runs 7 times each.

We used the incoherent bremsstrahlung spectra for a calibration of the
energy acceptance of the tagging channels and for the checking of the reliabil-
ity of the system. The polycrystalline target of 0.5 mm-aluminum strip with
a thickness of 0.5 mm was used for this purpose. Since the beam condition
might change in time, the incoherent bremsstrahlung runs were preformed
from time to time, 7 times in total. The spectra of two adjacent incoherent
runs were found to be the same within a deviation less than 0.1%. The inco-
herent bremsstrahlung spectra from an aluminum strip measured in 10 s is

shown in Fig. 7.
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Figure 7: The incoherent bremsstrahlung spectrum measured in 10 s from

the A polycrystalline radiator. The errors are due to statistics only. The
dashed curve is the fitted 1/k curve.

4.2 Silicon runs

We mounted the crystalline target on the holder in such a way that the (110)
plane of the crystal faced to the incident beam with one edge of [111] directed
to the vertical when both of the goniometer angles ¢ and § is 0°. By rotating
the target around the # axis, the symmetry axis was made to be parallel to
the 9 axis. The symmetry axes we have chosen were [221]*, [110]* and [001]*.

First, rotating one axis while leaving the others unchanged, we observed
the orientational dependence of the spectrum and searched for the symmetry
center.v Next, fixing this temporary symmetry center, we rotated the target
around the other axis and searched for another symmetry center. We re-

peated this process until we confirmed the two symmetry axes. For example,
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in order to align a [110]* axis vertically, it took 5 survey runs to establish the
required symmetry. Each set of runs includes about eighty set of data. At the
angular position where the coherent enhancement at the low photon-energy
counter reaches its maximum, the counting rate increases to 80k counts/s.
To take one data set at any angular position, it took about 10 seconds.

After having established the relation between the angle of the goniometer
and the direction of the crystal target relative to the extracted electron beam,
we rotated one axis and made a precise measurement of the spectrum, which
need about two minutes to get one set of data.

The spectrum from the imperfect silicon crystal is obtained in a manner

completely similar to the perfect silicon case.

4.3 Aluminum runs

The aluminum single crystal used in this experiment was a 24 mmx5 mm
strip of 0.5 mm thickness which was grown up by means of strain-annealing
method. The purity was 99.999 %. The face of the strip was about 3° from
the (110) crystal plane and longer edge directed to [001]*.

The crystalline target was mounted on the holder in such a way that the
(110) plane of the crystal faced to the incident beam with longer edge of
[001]* directed to the vertical when both of the goniometer angles ¢ and ¢ is
0°. The symmetry axes we have chosen were [110]* and [001]*.

The spectrum is obtained in a manner similar to the silicon case. As
the dislocation density of the aluminum crystal was far heavier than that of

silicon one, we spend long time to search for the good place on the crystal
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by moving the incident beam or L axis of the goniometer.

In Fig. 8 the orientational dependence of the normalized spectrum for
aluminum crystal is shown. The farthest peaks from the symmetry center
correspond to the enhancements when the pancake region intercepts the re-
ciprocal lattice points on the line defined by 111 and 111. The second peaks
correspg&d to the line of 222 and 222, and so on.
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Figure 8: The orientational dependence of the normalized spectra of alu-
minum crystal. The symmetry axis is [001]. The photon energies are 245

(solid curve), 365 (dashed), 490 (dotted) and 600 MeV (Dot-dashed).
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5 Results and discussion

5.1 Theoretical calculation

We compare the present experimental results with the theoretical calculations
which employ Eq. (7) and various types of form factors. Since the differential
cross section for the coherent spectrum is quite sensitive to the direction of
the crystal axis, we need to know the degree of the goniometer misalignment
and of the beam divergence for more precise discussion. The misalignment
of the goniometer is determined from the measured differences between two
position of symmetry axes where |Af|is about 90°. The electrons undergo the
multiple elastic scattering in the target. As the scattering does not depend
on the periodicity of the crystal, we adopted the ordinary formula for average

angular deviation 6y for amorphous materials:

14.1MeV /c
g = —————
124

where p and f are the momentum (in MeV/¢) and velocity of the incident

VIILa[1 + glogso(L/ L)), (9

particle, respectively, and L/Lp is the thickness, in units of radiation length
of the scatterer. Since the scattering effect has azimuthal symmetry, we get
the same multiple scattering divergence 66,, = 0.0368° in both horizontal
and vertical directions. With the beam divergence of 66, = 0.009° in both
direction, we finally get the total directional divergence of the beam using

the foll.owing relation:

(60) = (863)* + (66.m)?,
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which leads to ¢ = 0.0379° for both 1 and ¢ directions. In the calculation,
we summed spectra from the 10 angular values for both vertical and hori-
zontal directions with the Gaussian-type weight whose standard deviation is
given by 466.

In order to take into account the effect of the energy acceptances of the
counter hodoscope, we calculate the differential cross section for the three
photon energies AE = E — E,,, = —7,0 and + 7 MeV for each energy bin,
and then took the mean of the results for these three points.

We make an ellipsoid of revolution that contains normal pancake region
completely to choose the reciprocal lattice points which contribute to the
spectrum in the calculation. It is insufficient to count the reciprocal lattice
points only in the normal pancake region to attain an accuracy high enough to
distinguish the difference between the form factors because the longitudinal
momentum transfer has no upper limit. We added a few more points out
of the ellipsoid and checked the magnitude of their contribution. The upper
limit point we adopted has a contribution of at most 5 x 107° of that of the
boundary points in the ellipsoid.

The measured temperature near the crystal holder was from 30°C to 40°C
due to the heat transfer from the stepping motors of the goniometer. As the
Debye temperature of silicon is high enough, the variation of the temperature
contributes very little in the present case. We have chosen a temperature of
40°C in the calculation.

The incoherent bremsstrahlung spectrum for the aluminum target is given
in a published tablel. We finally obtain the result in a form of (spectrum

from the crystalline target) / (spectrum from the polycrystalline target).
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5.2 Atomic form factor of silicon crystal

Since the crystal holder of crystalline target partially intercepts the beam
halo, we correct the data for the crystalline target by using the holder empty
data. In the case of the data for polycrystalline target, the contribution {rom
the target holder is negligible. We compensated the data for the polycrys-
talline target using the results of completely empty runs.

We show the orientational dependence of the normalized spectrum on
several selected counters of the hodoscopes in Fig. 9(a) for the perfect silicon
where the ¢ axis is set at the symmetry center, ¢ = —1.756°. The abscissa
is the angle 1 of horizontal rotation, while the ordinate is the ratio of counts
(crystalline silicon) /(polycrystalline aluminum) normalized to the same count
of the electron monitor. The error bars are due to statistical effects only. We
clearly see the symmetric behavior with respect to the crystal axis [110]*
and this behavior has a good reproducibility. The farthest peaks from the
symmetry center correspond to the enhancements when the pancake region
intercepts the reciprocal lattice points on the line defined by 111 and 111.
The second and the highest peaks correspond to the line of 113 and 113,
and so on. The peaks move with photon energy, being consistent with the
theoretical prediction in section 2.

Fig. 9(b) shows the orientational dependence of the normalized spectrum
for the imperfect silicon crystal where the ¢ axis is set at the symmetry center
¢ = —0.978°. Almost the same structure as in the case of perfect silicon can
be seen.

Very close to the symmetry center, 1. = 2.299° for the perfect silicon in

30



I(Si(crystal))/I(Al(polycrystal))

I(Si(crystal))/I(Al(polycrystal))

perfect Si crystal and (b) imperfect Si. The abscissa is the horizontal rotation
1. The symmetry axis is [110]. The photon energies are 300 (solid curve),
400 (dashed), 510 (dotted) and 600 MeV (dot-dashed). The error bars are

due to statistics only.

5]

2.00

15545)

1.50

1525

11|vlrrrr,||rrIr

R R g

rvIv[lvlyslvl

Il||||‘r17_4

(a)

LL;LL!I[IIII!LILI[L

g

¥ (deg)
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Fig. 9(a), 0.5° for imperfect one in Fig. 9(b), the curve of the normalized

spectrum has a small peak which is not predicted by the theory as reported
carlier! 01, In such a region, however, the approximation used in the theory

of coherent bremsstrahlung is not valid.

To see the effect of the atomic form factor of the silicon to the spectrum,
let us examine the normalized spectrum when the pancake is near the line
of 111 and 111 mentioned above. Fig. 10 shows the normalized spectrum of

the perfect silicon where 1 = 2.299°. The solid curve shows the calculated
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Figure 10: Normalized spectrum of perfect Si where the pancake is near the

[111] line, ¥ = 2.299°, Ay = ¥ — Yeenter is 1.8°. A theoretical calculation

based on Hartree-Fock model are also shown by the dashed curve.

spectrum for the Hartree-Fock form factor®. and there is a good agreement
between the experimental and the theoretical curves besides a slight differ-

ence near the peak of the normalized spectrum, where the theoretical curve
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lies below the experimental data. This behavior is kept unchanged during
the experiment and hence not due to the radiation damage effect.

The experimental results for the perfect silicon are compared with the
calculations which employ the Hartree-Fock (HF) form factor®), In order to
simplify our calculation, we expand the form factor in the following form by

means of least-sqare method:
7
F(g®) = a;exp(—big®) +c. (10)

The fitted coefficients are shown in Table 2.

aq ag as dy4 as ag ar

7.4456 | 3.3509 | 1.6818 1.5049 | 1.3791 x 107* | 1.5653 x 10~% | 1.3791 x 10~*

by ba bs bs bs be by

1.9520 | 28.745 | 0.069804 | 89.377 | 9114.2 91.749 9994.0

Table 2: The atomic form factor of Si expressed in the form of F(g?) =

(7, a; exp (—big?) 4 0.018712)/14

The calculated normalized spectrum is given in Fig. 10 by the dashed
curve, which is to be compared with the experimental data for the angular
divergence being A1) = 1.8° and A¢ = 0° with respect to the symmetry axis.
The experimental data lie somewhat lower than the HF curve near the peak
of the spectrum. It is, however, difficult to regard the difference observed
between experimental data and the calculation as due to the inadequacy of
the form factor used because the theoretical treatments we have adopted has

uncertainties of the order o = 1/137, the fine structure constant, whereas the
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observed difference is also of this order. It may be a systematic error in the
theoretical calculation. On the other hand, if we assume that the difference
1s due to the deviation in the atomic form factor, the resulting form factor
should be slightly increased in comparison with the HF.

The form factor of Si crystal is known to an accuracy of 0.05% from the
measurement with the Pendellésung method by Saka and Katol101, They
showed that the form factor of 111 reflection, the lowest reflection, has the
largest deviation from the HF form factor. In our case, since the calculated
curve is the sum of the contribution from many reciprocal lattice points, it
is generally impossible to uniquely determine which part of F(q?) is to be
modified. We first follow the result from Saka and Kato. We have tried to

fit our results adding the following extra Gaussian term

PRI pe )} (11)

of which standard deviation is ¢ = 0.024 ™. We first fixed the center of the
extra Gaussian to the 111 (p = O.IGA_I) and varied the height a to reproduce
our experimental result. Fig. 11(a) shows the result in the case of a = 0.02
whose form factor differs from the HF by about 3.3% at 111. The original HF
form factor and the modified one are compared in Fig. 12 as functions of the
momentum transfer. This modified form factor can reproduce the present
experimental results very well.

If we change the center of the extra Gaussian to 220 point (u = 0.261&_1)
keeping its height unchanged, the fit goes worse as shown in Fig. 11(b),
implying that the 111 reflection mainly contributes to the enhancement. Both

of the present analysis and that by Pendellosung method suggest the same
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trend of deviation from the HF at 111, but the deviation in our case is larger
than the latter; in our case, the deviation from HF is 3.3% whereas that
for the latter is 1.9%. This difference may be regarded as a consequence of

systematic error in our theoretical calculation.

5.3 Effect of the imperfection of silicon crystal

If the target silicon has dislocation, the reciprocal lattice points become fuzzy.
This is equivalent to increase the beam divergence for perfect silicon. This
effect will reduce the normalized spectrum to some extent.

The spectrum obtained from the imperfect silicon target is analyzed by

employing the same method as that for prefect one. The symmetry center
ploying I A v
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was 1 = 0.55° and ¢ = —0.978°, as shown in Fig. 9(b). The structure of
the orientational dependence of the spectra is almost the same as that for
the perfect ones. The calculated normalized spectrum and the experimental
data for Ay = 1.759° and A¢ = 0° are shown in Fig. 13, where the HF form

factor is us/gd in the calculation.
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Figure 13: Normalized spectrum of imperfect Si under almost the same con-

dition for the perfect one as shown in Fig. 10.

The difference between the theoretical curve and the experimental data
in the vicinity of the peak is slightly larger than that for the perfect silicon.
The difference between prefect and imperfect silicons is found to be so small
that our method is applicable to such a metal crystal that has its dislocation

density of the order of magnitude similar to that of the present imperfect

silicon.
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5.4 Atomic form factor of aluminum crystal

An example of energy spectrum is shown in Fig. 14 at an incident angle A1) of
1°, measured from the [001]" axis for the incident electron beam in the crystal

plane (110). The error bars are due to statistical effect only. The solid curve
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Figure 14: Normalized spectrum of aluminum where A1) = 1°. The error
bars are due to statistical error only. A theoretical calculation based on

Hartree-Fock model are also shown by the solid curve.

is a theoretical calculation with the atomic form factor based on the Hatree-
Fock model (HF)[Q] under the assumption of that the crystal is perfect and
is oriented exactly to the desired direction. In this calculation we take into
account the effect of the angular divergence and multiple scattering in the
target material of the incident electrons together with the energy resolution.
When the crystal temperature is varied from 30° to 60°C, the calculated

result shows no appreciable variation.
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‘We see, in I'ig. 14, that the experimentally observed peak is somewhat
broader than the theoretical curve, which causes unacceptable disagreement
around the high-energy side of the peak. There may be two possible origins
of such softening of the peak structure in the experimental data; the first one
comes from the misalignment of the crystal around the ¢ axis. The second
one comes from the imperfectness of the crystal. For the misalignment of the
crystalline target, we have tried to fit our data by varying the angle ¢ of the
goniometer in the calculation. We found that ¢ should be changed by 4° in
order to fit the data at the high energy part and that an unreasonably large
amount of modification of atomic form factor is necessary to reproduce the
data around the peak of the spectrum.

We simulated a possible effect of imperfectness of the target crystal by
changing the value of angular spread of the incident beam and searched
for the optimum value. When we used the total angular spread of 0.07°
instead of using 0.04° which is estimated from multiple scattering and beam
divergence only, the shape agrees well with the data. In this case, we have
found that relatively small change of the atomic form factor can reproduce
the height of the spectrum.

In order to quantitatively demonstrate the sensitivity of the atomic form
factor, we shown in Fig. 15 the calculated results for which F(g?) are modified
by adding the extra Gaussian term of Eq (11). The standard deviation o and
the height a are arbitrarily chosen as 0.05A~! and 0.04A~!, respectively. The
solid, dashed and dotted curve corresponds the calculated results of which the
mean of the extra Gaussian is at the reflection points of 111 (u = 0.211613;_1),

200(p = 0.24431&_1) and 220(p = O.3455A_1), respectively. The amount of

39



1.5

1.4

l‘lllli'l1]<

1.3

T o1

Al(crystal) /Al(polycrystal)

N o

e MR AN e e
300 400 500 600
Photon Energy (MeV)
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points by an equal amount.

modification of F'(¢?) is about -3.6% when selecting the 111 reflection point.
Clearly the results are sensitive to the form factor of 111 and 200 reflections.

Since the calculated curve is the sum of the contribution from many re-
ciprocal lattice points, it is generally impossible to uniquely determine which
part of F(g?) is to be modified. Therefore, we only examine the adequacy of
existing values of F(¢?) obtained by x-ray measurements17- 18 19, 20, 21, 22
by putting them in our theoretical formula.

In Fig. 16 we show the calculated result using the F(¢?) of 111, 200 and
220 reflections for HF[2], Takamal“? and Batterman!1”] by solid, dashed and
dotted curve, respectively. It is obvious that the calculation which uses the

F'(g?) of Batterman agrees with our data.
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To examine the fits of the calculated result to the data quantitatively, we

introduce the value of x? which is defined by

where z;, Az; and a,; are the experimental data, the statistical error and the
calculated result for i-th energy bin, respectively. We show in Table 3 the
calculated x? for the present experimental value of F(g?). Most of x? comes
from inadequate treatment of low energy tail, where the sensitivity to form
factor is negligibly small. It is, therefore, reasonable that the form factor
with minimum x? is physically meaningful even though the ¥? per d.of is
bad.

Our experimental result clearly supports a large modification, amount-

ing to 4%, of F(q?) at 111 reflection as asserted by Batterman(!?) and
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Form factorxZ(13) 111 200 220 X2
Hartree-Fockl?! 8.994 8.540 7.364 772
Takama et af2?] 8.90+0.03 852+0.05 7.36+0.03 | 670

Batterman ef af17) | 8.63£0.14 8.25+£0.14 7.094+0.13 | 342
DeMarco ef af!® | 8.6940.043 8.2140.066 7.25+ 0.058 | 385
Jarvinen et afl?! 8.744+0.06 8.24+0.10 7.17+0.09 | 458
Raccah et af20] 8.80 4 0.06 8.38+0.06 7.27+0.06 | 5

g
Rantavuori et af2ll | 8.80+0.04 8274004 7.2440.04 | 525

Table 3: Comparison of calculated x? for theoretical and various experimental
values of F'(g*). In this table, the atomic form factors for 111, 200 and 220

reflections are multiplied by atomic number Z=13.

DeMarcol!®l. This suggests that, in the case of aluminum crystal, the elec-
tron density between the atoms is appreciably modified from that of an iso-

lated atom.

5.5 Possible improvement of experimental methods

As discussed in the earlier section, the present set-up and the theory are
enough to determine the atomic form factor of silicon to the level of few
percents. Though this accuracy is insufficient for silicon but is readily useful
for obtaining information of form factors for A¢, to which we cannot apply
the Pendellosung method completely.

The shortcoming of the present method is in the theoretical treatment

which includes uncertainties of the order of «, the fine structure constant,
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implying that the comparison between calculated and experimental results
1s valid only to a few percent level. We need the terms of the second order
in « to discuss the results within an accuracy of 0.5%.

In this experimental set-up, the beam cannot have the shape optimized
for our experiment. As a results, the crystal must be thin and large in its
perfect area. These constraints confine the kind of crystals to be measured
in the present setup, but are not essential since use of more dedicated beam

line can easily get rid of them.

6 Conclusion

We have developed a new method to determine the atomic form factor by
means of precise measurement of the coherent bremsstrahlung. Counting the
recoil electrons of Ubeall effect, we obtained photon-energy spectra easily in
a short time with strict reproducibility. The form factor was determined by
modifying the HF form factor around the lowest reflection point so as to
reproduce the experimental spectra. The change of experimental result due
to the radiation damage of the target crystal was not observed. The shape
of the coherent spectra from the silicon crystal has been reproduced excel-
lently by a theoretical calculation which uses the HF form factor modified
by about 3.3% at 111 reflection. This change qualitatively supports exper-
imental results from Pendellosung method by Saka and Ka,to[lol, although
quantitatively the deviation from the HF in our case disagreed with that in
the latter case by about 1.3%, which is just of the order of ambiguity in

the theoretical calculations to be compared with our experimental results.
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IFrom these observations, if properly improved, the present method is much
promising for high-precision determination of atomic form factor.

For the imperfect silicon crystal, we obtained a spectrum very similar
to that for the perfect one. The difference is so small that we can apply
the method to such a crystal that the dislocation density is of the order of
10temi™.

The atomic form factor of aluminum crystal is determined by comparing
the result of coherent bremsstrahlung with various experimental or theoret-
ical atomic form factors. Our experimental result supports the atomic form
factor obtained by the kinematical method as asserted by Batterman!l7 and
DeMarcoll8] which clams large modification, amounting to 4%, of atomic
form factor around 111 reflection from Hatree-Fock model calculation. The
electron density of aluminum crystal between the atoms should be apprecia-
bly modified from that of isolated atom.

We conclude that our procedure has a good reliability and will be valid
for many crystals. In addition, our final emphasis is that the present method
enables us to obtain information complementary to that obtained from ordi-

nary X-ray measurements.
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