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CHAPTER 1 

INTRODUCTION 

The study of computable number-theoretic functions has 

produced two important notions for classifying them: one is that 

of subrecursive hierarchies, and the other one is that of prova­

bly computable functions in formal theories of arithmetic. 

Subrecur s i ve hierarch i es have been developed in recursion 

theory (cf.Lob and Wainer[31] , Wainer[48] , Cichon and Wainer[5]). 

Each hierarchy consists of a sequence {fa} of unary computable 

functions indexed with ordinals, in such a way that f~ dominates 

f (i. e. , 
a 

for sufficiently large I) if a < ~. Computable functions are 

classified by this notion of domination. 

On the other hand, provably computable functions are intro­

duced in proof theory (cf. Krei sel [27], Kino [25], Buchholz and 

Wainer[4]). In a given formal theory T of arithmetic, we say 

that a computable function f is provably computable in T if the 

total-definedness of f, (or equivalently, termination of the 

algorithm for computing f) is provable in T. 

In the present dissertation, we will study these two clas­

sifications of computable functions, i. e., subrecursive hierar­

chies and provably computable functions in formal theories of 

arithmetic, and clarify the relation between them. 

A typical example of subrecursive hierarchies is obtained 

by a sequence {F n} nEN of unary computable functions, indexed 

with n in the set N of all natural numbers (={O,1,2, .. . }), which 

is defined as follows: 

FO(I) I+l; 
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F l(x) = F x+l(x). 
n+ n 

Here, the superscript x+1 means 

(i . e., iff: N -4 N, then fO (x) 

(x+1)-times iteration of F 
x, and f n+1 (x) = f(ln(x))) ~ 

Grzegorczyk(cf.Rose[36]) showed that each F is primitive reCUT­n 
sive (cf.Definition 2.1.1), and any primitive recursive function 

I is dominated by F for some n E N, i.e., there is a number 
n 

mEN such that if m < max(xl' ... ,xk ) then 

f ( xl' . . . ,x k) < F n ( max ( Xl' ... , x k) ) . 

Then, we can measure a given primitive recursive function I "by 

n E N, where n is the least integer such that F dominates I. 
n 

Hence, the sequence {Fn} nEN classifies the set of all primi-

tive recursive functions. 

In order to extend this to a hierarchy {Fa}a<! indexed by 

ordinals less than a countable ordinal I, we consider an assign­

ment of a sequence {a[x]} xEN for each limi t ordinal a < I 

which satisfies the following (a) and (b): 

(a) a[O] < a[l] < ... < a[n] < a[n+1] < ... < a; 

(b) sup a[x] = a. 
xEN 

We call this {a[x]}xEN a fundamentaL sequence for a. Then, we 

define {Fa}a<1 by transfinite induction on a as follows: 

Fo(x) x+1; 

F (x) 
a 

if a is a limit ordinal. 

We call {Fa}aE! the last-growing hierarchy (or extended 

Grzegorczyk hierarchy ) for I. 

For the first limit ordinal w (={O,1,2, ... }), we assign a 
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fundamental sequence {w[x]}xEN by 

W[x] = x for every x E N. 

Then the function F (x) (= F (x» becomes a variant of famous 
W x 

Ackermann's function, which is computable but is not primitive 

recursive. 

For the ordinal EO' Schwichtenberg[38] and Wainer[48] in-

troduced a so-called standard system of fundamental 

The ordinal EO is defined by the least a such that a 

sequenees. 
a = W , or 

sup ... W) k w's. 
k WW 

Each ordinal 0 < a < EO is written in its Cantor normal form as 

a = W + W + ••. + W 
a 

n 

where a > a
1 

> a2 ; ... ; an' We define {a[x]}xEN as follows: 

if a n f3+l, then a[x] 

if a is limit, then a[x] 
n 

al 
W + .•. + 

Then, they showed independently that 

a n - 1 f3 
W + W 'x; 

defined by this 

system classifies the set of ordinal recursive functions of 

finite order by Kreisel[27] (which we call here a-ordinal recur­

sive functions for a < EO)' in such a way that, for each ordinal 

recursive function I, I is dominated by F for some a < EO' 
a 

Provably computable functions are defined as the functions 

whose total-definedness can be provable in a given formal theory 

containing basic arithmetic (cf .Kino[25], Kreisel[27]). From 

Kleene's normal form theorem (cf. Kleene [26] ), we can represent 

any computable function f: Nk 
-t N by a pr imi ti ve recur si ve 

predicate A and function g so that 
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where JiyA( ... y) is the minimization operator which means the 

least y such that A( ... y). Hence the formula 

expresses that [(II"" ,I
k

) is defined for every II"" ,Ik . This 

means the total-definedness of [. We say that [ is provab ly 

computable in a theory T if 

For the case of Peano arithmetic PA, we have the axioms of 

mathematical induction: 

A(O)AVx(A(x) ~ A(x+1)) ~ VxA(x), 

where A is any formula of the language of arithmetic. Kreisel 

[27] showed that the set of all provably computable functions in 

PA is equal to the set of ordinal recursive functions of finite 

order. As we have mentioned above, the latter set can be 

classified by the fast-growing hierarchy {F ex} ex<E o· Hence I all 

functions provably computable in PA can also be classified by 

this hierarchy. 

In 1977, Paris and Harrington[35] discovered a finite com-

binatorial statement PH which is undecidable in PA, i.e., 

neither PH nor .Pf{ are provable in PA. The statement PH is 

a variant of the finite Ramsey theorem. 

G~del' s incompleteness theorem says the existence of unde­

cidable statements in PA. The statement PH is the first exam­

ple of finite combinatorial undecidable statements. 

Ketonen and Solovay[24] gave an alternative proof of the 

undecidability of PH in PA, by establishing the equivalence of 

the Ramsey statement with the statement that F is totally de­
EO 
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fined. Ono and Kadota[33] studied the relation between {F } 
a a<Eo 

and provably computable functions in PA in detail, and showed 

the provabili ty and unprovabili ty resul ts on PH as applications 

(cf. Kadota and Ono[23], Kadota[16]). 

Each sequence {I } of computable functions wi th which a a<1 
we are concerned is defined by transfini te induction on a. In 

particular, for a limi t a, it is defined by a fundamental se-

quence {a[x]}xEN for a as 

I (x) = f [ ] (x). a a x 

Hence, in order to study subrecursi ve hierarchies, we need to 

investigate the systems of fundamental sequences. Schmidt[37] 

introduced the notion of buil t-upness on the systems to show 

that the hierarchy determined by a gi ven fundamental sequences 

has the following properties. 

Increase: Each fa is strictly increasing. 

Domination: If a < fi < /, then la is dominated by 1ft. 

Kadota and Aoyama[22] extended this to the notion of (n)-built­

upness which can be applied a wider class of fundamental se­

quence s (cf. al so Aoyama and Kadota [1], Kadota [1 7], Kadota and 

Aoyama[21]) . 

In recent years, much attention has been paid to the rela­

tion between the fast-growing hierarchy {Fa}a<1 and the slow-

growing hierarchy {G} which is defined as follows: a a</ 

Go(x) 

G l(x) a+ 

G ( I) 
a 

0; 

G (x) + 1; 
a 

Ga[x](x) if a is a limit ordinal. 
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For the ordinal w, the function G is merely the identity one, w 
since G (x) = G (x) = x. Compare this with the fact that F is 

w x w 
not primitive recursive. Now, the following problem arises: 

Is there an ordinal a 

with the function F ? a 
the minimum one. 

so that the function G catches up 
a 

If there is such an ordinal a, give 

The answer was given by Girard[12],[13]. Then he used the slow-

growing hierarchy as 

theory named n~ -log i c , 

Gi rard, Wainer [49] , [50] 

an important tool for the study of the 

introduced by him. From the results of 

gave such a minimum a, which is named T 

and called a subrecursive inaccessible. Kadota[19], [20] studied 

this ordinal 'T and gave a precise proof of the fact that T is 

a minimum subrecursive inaccessible, by showing that {F } < has a a T 

the increase and the domination properties considered above. 

Wainer[49],[50] also stated that the fast-growing hierarchy 

{Fa}a<T classifies all provably computable functions in IDn for 

every n E N, where ID is the theory of n-tirnes iterated in­n 
ductive definitions(cf.Buchholz[3]). Kadota[18] modified T and 

introduced T'. Then, he showed the similar resul ts on {F} a a<T' 
by using the proof-theoretic method developed by Buchholz[3]. 

In Chapter 2, we give basic notions on subrecursive hierar­

chies and provably computable functions, which are used throtigh 

this dissertation. We summarize the results on the fast-growing 

hierarchy {F} and provably computable functions in Peano a a<Eo 

arithmetic PA. We also state the unprovability result in PA of 

the strong Ramsey statement. 

In Chapter 3, we develop a basic theory on systems of fun­

damental sequences for treating subrecursive hierarchies more 

generally. We introduce the notion of (71) -buil t-upness (n l;:: N) 

on the systems and study the increase and the domination proper­

ties of a sequences {f } of number-theoretic functions. This a a<1 
notion is used in the later chapters. 
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In Chapter 4, we show the classifications of provably com­

putable functions in fragments PA of PA by means of the fast­
n 

growing hierarchy up to w . This result is a refinement of that 
n 

in Chapter 2. We prove the provabili ty and the unprovabili ty 

resul ts in PA of strong Ramsey statements. Then, we extend 
n 

these results to provably ~ -functions. 
m 

In Chapter 5, we study the relation between the slow­

growing and fast-growing hierarchies. We prove that the ordinal 

T is minimum subrecursive inaccessible by showing that the 

system of fundamental sequences of T is (3) -buil t-up. Then, we 

modify T and introduce T', and show 

provably computable functions in ID 
n 

growing hierarchy up to T' • 

the classification of 

by means of the fast-

In Chapter 6, we discuss some problems on subrecursive 

hierarchies and provably computable functions in formal theories 

of arithmetic. We also discuss some applications of our results. 
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CHAPTER 2 

SUnl1ECURS I VE HIERARCH I ES AND FOI1'IAL THEOR I ES 

In this chapter, we give some basic notions and results on 

subrecursive hierarchies and provably computable functions which 

are used throughout this dissertation. 

To classify computable functions, we consider the following 

two approaches: one is to classify them by means of subrecursive 

hierarchies, and the other one is to classify them by means of 

the notion of provably computable functions. 

In Section 2.1, we give basic definitions and facts on the 

fast-growing hierarchy {F} < ' and state the relation with 
a a EO 

ordinal recursive functions by Wainer[48]. 

In Section 2.2, we summarize 'the notions on the provably 

computable functions in Peano arithmetic PA, and give the rela-

tion with the fast-growing hierarchy {F } . 
a a<Eo 

In Section 2.3, we state the unprovabili ty resul t in PA of 

the strong Ramsey statement given by Paris and Harrington[35] 

using the results of Ketonen and Solovay[24]. 

2.1 Fas t-grow i ng hierarchy 

Some of the essentials in classifying computable functions 

by subrecursive hierarchies are given as follows. 

Let N be the set of all natural numbers (={O,1,2,.,.}) 

and f:N -t N be a function. Let f711: N -t N be the iteration of f 

m-times. More precisely, we define it by 

fO(I) = I and 

Let us consider fI+l for a given f. For example: 
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if f(x) x+1, then f x +1 (x) 2x+1; 

then f x +1 (x) x+1 
if f(x) 2x, 2 'x; 

if f(x) 2x , then f x +1 (x) 
22 

.. 2I } 
x+1 2's. 

Consider a sequence {Fn}nEN of unary number-theoretic 

functions defined inductively 

Fo(x) = x + 1; 

F x+1(x). 
n 

as follows: 

Then, the following relations hold: for all x E N, 

2x+1; 

Grzegorczyk showed in 1953(cf.Rose[36]) that all primitive re­

cur s i ve functions can be classi f i ed as shown in the following 

definition and proposition: 

DEFINITION 2.1.1(Primitive recursive functions). The set of 

all primitive recursive functions is the smallest one of number­

theoretic functions which contains the zero 0 (where O(x) = 0), 

the successor S (where S(x) = x+l), the projections I~ (where 
k I 

I i (Xl"" ,xk ) = Xi for 1 ~ ~ k), and is closed under 

substitution: 

primitive recursion: j(O,~) 

f(y+1 .~) 

gl(-!)' 

g2(Y,~,f(y,!.» 

where x is a finite sequence of numbers xl"" ,X . A predicate 
n 

R(XI"" ,xk ) is primitive recursive if its representing junction 

KR is primitive recursive, where KR is defined by 
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{ 
1 

o if R(II"" ,Ik ) 

i f -,R ( I I ' ... , I k) . 

Let I:N k ~ Nand g:N ~ N be functions. We say that f is 

dom ina t ed by g when there is a number mEN such that if 

m < max(II"" ,Ik ) then 

hold: 

(a) 

(b) 

f (I I ' ... , I k) < g (max (I I ' ... , I k) ) . 

PROPOSITION 2.1.2(cf.Rose[36]). The following properties 

For each n E N, the function F is primitive recursive. 
n k 

For each primitive recursive function f:N ~ N, there is 

an n E N such that I is dominated by F . 
n 

o 

From this proposition, we can classify all primitive recur-

sive functions by means of {F } as follows. 
n nEN 

DEFINITION 2.1.3(Elementary closure). Let C be a set of 

number-theoretic functions. The elementary closure of C, denoted 

by & (C), is the smallest set which contains all functions in C, 

the zero, successor, projections, and is closed under 

substitution and the following limited primitive recursion: 

I(O,!.) 

I(y+l,!.) 

I(!.) 

g2(y,I,/(y,I)) ; 
- -

Each function in &(C) is elementary 

then &(C) is written as 8(/). The set 

recursive 

&(F ) 
n 

in C. If C = {f}, 

is written as 1. 
n 

Since any function in 

following relation: 

1 n is dominated by F l' we have the n+ 

c; 
n 

c; 
n+l 

Moreover, from Proposition 2 . 1.2, it is easy to see that U c; 
nEN n 
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is equal to the set of all primitive recursive functions. Hence 

{ F } gives a classification of all primitive recursive func­
n nEN 

tions. 

We are now considering the problem how we can classify com­

putable functions in a larger set. For this problem, it is 

natural to consider extension of {F } EN to {F} 1 where 1 is n n 1~ a a< 
an countable ordinal, analogously to the above discussion. 

For the definition and basic notions of ordinals, see e.g., 

Levy[30]. We identify the set N with the first infinite ordinal 

w (i.e., identify n E N with n < w). 

Let 1 be a countable ordinal and let Lim(/) be the set of 

all limit ordinals less than I. As we considered in Chapter 1, 

we consider here P:Lim(/) ---+ IW which assigns a sequence 

{a[x]} xEN for each limi t a < I, which satisfies the following 

conditions: 

(a) 

(b) 

a[O] < a[l] < ... < a[n] < a[n+l] < ... < a; 

sup a[x] a. 
xEN 

Then, we call {a[x]}IEN a fundamental sequence for a, and this 

assignment P a system of fundamental sequences for I. 

From this notion, we can extend {F } EN to {F} 1 . n n 1~ a a< We fix 

a system of fundamental sequences for an countable ordinal I. 

DEFINITION 2.1.4. The first-growing hierarchy (or extended 

Grzegorczyk hierarchy) {Fa}a<1 is defined inductively as: 

Fo(x) x+l; 

F a+l(x) Fa X +1 (x); 

F (x) F a[x] (x) a if a is limit. 

We notice here that F depends on the choice of fundamental a 
sequences for a. We stated in Chapter 1 the definition of stand-

ard system of fundamental sequences for EO' In the case of this 

standard system, the following lemma holds: 

LEMMA 2.1.5 . Let P be the standard system of fundamental 
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sequences. Then the following properties hold: 

(a) 

(b) 

For every a < EO' F is strictly increasing. a 
If a < fi < EO' then Fa is dominated by Ffi' 

This lemma says that the fast-growing hierarchy up to EO 

defined by the standard system of fundamental sequences has the 

increase and the domi na t i on properties mentioned in Chapter 1. 

The proof of this lemma will be gi ven in Chapter 3 in a more 

general situation. 

Next, we state the relation between the fast-growing hier­

archy up to EO defined by the standard system of fundamental se­

quences and a-ordinal recursive functions for a < EO' The set of 

a-ordinal recursive functions is an extension of that of primi­

tive recursive functions, which has been studied by Kreisel[27] 

and are called ordinal recursi ve functions of fini te order by 

him. We give a definition of this class, following Wainer[48]: 

Define the ordinal w (m) for n,m E N inductively by 
n 

wo(m) = m, w l(m) = n+ 
w 

w (m) 
n 

We write wn for w
n
(l). For each 0 < kEN, <k denotes the 

primitive recursive well-ordering on N of order-type wk' For 

the precise defini tion, see §3 of Wainer [48]. For each I EN, 

ord (I) is the ordinal represented by I in the well-ordering < 
n n 

and conversely, for each ordinal a < w , num (a) is the uni.que 
n n 

I E N such that ord (I) = a. 
n 

Let a < EO and n be the smallest integer such that a < W . 
Tit 

DEFINITION 2.1.6(a-ordinal recursive junctions). The set of 

a-ordinal recursive junctions CU(a) is the smallest one which 

contains all pr imi ti ve recursi ve functions and is closed under 

substitution and the following unnested a-recursion: 

j(O,lJ.) go(lJ.); 

j(I,lJ.) gl (x,lJ.,j(h(x,lJ.) ,lJ.)) if 0 < I, 
n 

where h(I,y) 

otherwise. 

< I whenever 0 < I < num (a), 
n n n n 

- 12 -
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As in Definition 2.1.3, we write 1 for 8(F ) when a < EO· a a 
Wainer[48] showed the following proposition: 

PROPOSITION 2.1.7. For each ordinal a such that 0 < a < EO, 

'l1(wa ) u 1 
f3<a·w f3 

In particular, if n > 0, then 

u 'l1(w (m)) 
u 

1f3 f3<w 
0 

m<w n n 

REMARK. The set m~w 1m 
functions. By this theorem, 

u 'l1(wm) , since wl(m) = wm. m<w 

is that of all primitive recursive 

this is also equivalent to the set 

2.2 Provable computability 

In this section, we define the notion of provably computa­

ble functions in formal theories of arithmetic. 

From Church's thesis, the set of computable functions is 

equivalent to the set of recursive functions. The set of recur­

sive functions is defined as the smallest one which contains the 

projections, addition +, multiplication and representing 

function K< of < (see Defini tion 2.1.1), and is closed under 

substitution and the following minimalization: 

f(~) = py(g(~,y) = 0) if V~3y(g(~,y) = 0). 

Here, py( . . . y ... ) means the least number y such that ( .. . y .. . ), 

and I denotes the sequence I
1
,··· ,I

k
. 

By minimalization, we can generate a new recursive function 

f under the condition that the predicate 

V~3y(g(~,y) = 0). 

The truth of this formula guarantees the total-definedness of f. 
However, in order to know that this formula is true, we must 
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prove this formula in some way. That is, the proof must be car­

ried out in some formal theory. By formalizing this situation, 

we define provably computable functions. 

Here, we sketch some basic notions on formal theories of 

ari thmetic. For more precise defini tions, see e. g., Shoenfield 

[42] and Takeuti[46,Chapter 2]. We consider Peano arithmetic PA, 
which formalizes classical number-theory and is defined as 

follows. 

The language 5£ (PA) is the first-order one whose non-logical 

symbols are the constant 0, the function symbols S (successor), 

+ and', and the predicate symbols = and <. 

The non-logical axioms of PA are as follows: 

PAl. -,( Sx = 0) . PA6. x'Sy = (x·y) + x. 

PA2. Sx = Sy --t X y. PA7. ..,(x < 0) . 

PA3. x + 0 = x. PA8. x < Sy +--+ x < y V x = y. 

PA4. x + Sy = S (x+y) . PA9. x < y V x y V Y < x. 

PA5. x·O = O. 

PAlO. Mathematical inductions: 

A(O) A Vx(A(x) --t A(Sx)) --t VxA(x), 

where A is any formula of 5£ (PA) , and A is called an induction 

formula. 

The logical system of PA is the first-order classical logic 

with equality axioms. 

In PA, we can treat only elementary number-theoretic state­

ments, but PA is strong enough to prove them (cf.Simpson[43.]). 

Actually, the theory of pr imi ti ve recursi ve functions can be 

translated into PA (cf.Shoenfield[42,Section 8.1] and Takeuti 

[46,Proposition 10.6]). IIence we will assume that <i..(PA) contains 

the function symbols for primi tive recursive functions and PA 

contains their defining equations for axioms. Also, we will as­

sume that <i..(PA) contains predicate symbols for some primi tive 

recursive predicates and PA contains their defining formulas for 

axioms. 
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However, for PA, the following Godel's incomp leteness 

theorem holds (cf.Godel[14], cf.also Takeuti[47] for de t a ils ) . 

PROPOSITION 2.2.1(Godel's incompleteness theorem). For any 

axiomatized extension T of PA, if T is consistent, then for some 

sentence A, neither A nor ,A is provable in T . Moreover the for­

mula Cons(T) which asserts the consistency of T is not prova ble 

in PA. o 

Now we define provably computable functions. By the normal 

form theorem (cf.Kleene[26]), there are a primitive recursive 

function U and a primitive recursive predicate T for n E N such n 
that, for any computable function f:N n ~ N, there is an e E N 

(which is called a Godel number of f) such that 

(a) 

(b) 

Here, 

definedness 

Vx3yT (e,x,y); - n -

f(x) = U(pyT (e,x,y)). - n-

the predicate Vx3yT (e,x,y) expresses the total-- n -
of the function f as we mentioned above. For the 

technical reason, we will fix a canonical construction for the 

predicate T (e.g., Kleene[26], Shoenfield[42,Section 1.4]). 
n 

Thus, we give the following definition. Let T be a formal theory 

of arithmetic which contains PA. We write e for the numeral of e 

defined by SS· ·SO with e occurrences of S. 

DEFINITION 2.2.2(Provably computable functions). A computa­

ble function f is provably computable in T if the formula 

Vx3yT (e,x,y) - n -

is provable in T, where e is a Godel number of f and T in this 
n 

formula is the predicate symbol which expresses the predicate T . 
n 

Next, we consider the classification of provably computable 

functions by means of the fast-growing hierarchy up to EO. First 

we notice the following result of Kreisel[21]. 

PROPOSITION 2.2.3. Let f be a computable function. Then, f 
is provably computable in PA if and only if f belongs to ~l(a) 
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for some a < EO. o 

Then the following proposition is obtained immediately from 

Proposition 2.2.3, and Proposition 2.1.7. 

PROPOSITION 2.2.4. Let f be a computable function. Then, f 
is provably computable in PA if and only if f belongs to 1 a 
some a < EO. 

for 

o 

This proposi tion shows that provably 

in PA can be classified by the hierarchy 1 a 

computable 

(a < EO). 

functions 

2.3 Undecidable statements 

In 1977, Paris and Harrington[35] showed that a strong 

version of fini te Ramsey theorem is true but unprovable in PA. 

To explain this result, let us define some notations. 

For a set A c N and an n E N, define 

{B ~ A card (B) = n}, 

where card(B) is the number of elements in B. Let f be a func­

tion from A[n] to a set X. Then, a set H ~ A is homogeneous for 

f if f is constant on H[n]. A set HeN is large if 

card(H) ; min (H) , 

where min (II) is the smallest element of H. For any k, mEN, 

[h,71l] is the set {x E N: h ~ x ~ 7ll}. For c,h,m,n E N, the 

predicate, which we call the Ramsey relation, 

[h, m] --4 (n+l)n 
* c 

means that for every f:[h, 7ll][n]--4 {O,l, ... ,c-l}, there is a 

set H c [h, m] such that 

(a) card(H); n + 1, 

(b) H is homogeneous, 

(c) H is large. 

Here, we remark that the Ramsey relation is primitive 
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recursi ve. Hence, it is expressed by a predicate symbol in PA 
(cf. the definition of PA). We define the formula PH as 

z 
VxVzVw3y([x, y] ~ (z+l)w)· 

The following proposition can be shown by using infinite 

Ramsey theorem (cf. Paris and Harrington[35, p.1135]). 

PROPOSITION 2.3.1. PH is true (i.e., for every c,k,n E N, 

there is an mEN such that [k, m] ~ (n+l)n holds). 0 
* C 

By this proposition, we define a recursive function a by n,c 

a (x) = IlY( [I, y] --+ (n+l)n). 
n, C * C 

Then, the following lemma can be easily shown. 

LEMMA 2.3.2. If C ; C , k < k' , then a (k) < a = n,c n,c 
(k' ). 0 

Ketonen and Solovay[24] showed the following proposition: 

PROPOSITION 2.3.3. (a) Let n > 1, C > 1 and x > 3. Then, 

a ( x ) ; Fw ( C + 5) (x) . 
n,c n-2 

(b) Let n > 1. For any increasing function I, I is dominated 

by a for some C if and only if I is dominated by F for some n,c a 
a < wn- 1 . o 

By using this proposi tion, Ketonen and Solovay [24] proved 

the unprovabili ty of PI! in PA, by a proof-theoretic method. We 

will show this in Section 4.2 as a corollary (Corollary 4.2,.2) 

of our study on provably computable functions. Here, we state 

this statement as a proposition, and give a proof by using 

Theorem 4.1.2. 

PROPOSITION 2.3.4. PI! is unprovable in PA. 

Prool· Assume contrarily that PI! is provable in PA. Then, 

by Theorem 4.1.2, the function )Z.)w.)I.a (I) is provably 
Z,W 

- 17 -



computable in PA. Hence, i t belongs to 'li (a) for some a < EO by 

Proposition 2.2.3. From Proposition 2.1.7, it belongs also to 1fi 
for some fi < EO· Then, it is dominated by Ffi+l since every 

function in 1 fi is dominated by F fi+l. Therefore, by Proposi t ion 

2.3.2, it is dominated by the function )x.a (x) for some n ~ c E n,c 
N, and hence there is m such that a (x) < a (max(z,w,x)) for 

Z,W n,c 
all Z,W,X such that m < max(z,w,x). Put z = n, W = c, and x = 
max(n,c,m+l). Then we have max(z,w,x) = x. Thus, the relation 

a (x) < a (max(z,w,x)) = a (x) z,w n,c z,w 

is led t o the contradiction. o 

We will study this undecidable sentence of PA in more 

detail in Chapter 4. There, we will gi ve a refinement of this 

argument by considering it in some fragments of PA. 
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CHAPTER 3 

BUILT-UP SYSTEMS OF FUNDAMENTAL SEQUENCES 

In Chapter 2, we considered the fast-growing hierarchy up 

to EO as a tool for classifying a subclass of computable func­

tions or provably computable functions in PA. 

In this chapter, we consider more general situation on the 

hierarchy of number-theoretic functions. This consideration is 

useful for classifying large subclasses of number-theoretic 

functions, because our general theory is applicable to the study 

on such classification by hierarchies. The results of this chap­

ter were obtained by Kadota and Aoyama[21]. 

In Section 3.1, we introduce (n)-built-up systems of funda­

mental sequences. Then, we study properties such as increase and 

domination of the fast-growing hierarchies defined by (n)-built­

up systems. 

In Section 3.2, we clarify relations between conditions on 

systems of fundamental sequences considered in the Ii terature, 

comparing with (n)-built-up systems. We examine the results in 

Section 3.1 under some conditions weaker than (n)-built-upness. 

In Section 3.3, we study the existence problem on systems 

of fundamental sequences for the first uncountable ordinal Q, 

under the conditions which are considered in Section 3.2. 

3.1 Growing hierarchies on (n)-bui I t-up systems 

In Chapter 2, we studied the fast-growing hierarchy up to 

EO defined by the standard system of fundamental sequences. Here 

we study sequences of unary number-theoretic functions defined 

by transfinite induction such as the fast-growing hierarchy. 

Let I be a countable ordinal and let P be a system of fun­

damental sequences for I (as for the defini tion of systems, cf. 
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Chapter 2.1). For a sequence {I} I of n umber - theore tic func­a a< 
tions , we consider the following condit i ons: 

(f1) 10 is strictly increasing; 

(f2) 

(f3) 

1 1 is defined from 1 so that, i f la is strictly a+ a 
increasing, then 1 1 is also strictly increasing, a+ 

1 (0) < 1 1(0) and 1 (x) < 1 l(x) for x > 0; a a+ a a+ 

1 (x) a 
!a[x](x) for all x E N, if a i s a limit, 

where a[x] is the x-th element of a fundamental sequence for a . 

For a given system P for I, we can define sequences {!a}a<1 

which satisfy the above condi tions (f1) - (f3), as the following 

examples show: 

EXAMPLES 3.1.2.(a) The fast-growing hierarchy {Fa}a<1 (cf. 

Section 2.1) satisfies the conditions (f1)-(f3), e.g., we obtain 

(f2) as follows. It is easily shown that x < F (x) for all x E N a 
by induction on a E I. Hence, 

F n(x) < F n(x+1) and thus 
a a 

if F is strictly increasing, then 
a 

F l(x) a+ 
F x+1(x) < F x+1(x+1) 

a a 
x+2 < F (x+1) a F l(x+l). a+ 

Therefore (f2) is obtained. 

(b) The Hardy hierarchy {H} I is ~efined inductively as: a a< 

Ho(x) 

H (x) 
a 

x; Ha+l (x) = Ha(x+l); 

Ha[x] (x) for limit a. 

This hierarchy satisfies the conditions (f1)-(f3). This can be 

easily shown by induction on a. 

Now, we are concerned with the problem that und e r what con­

di tions on systems of fundamental sequences, {I a} a<1 satisfying 

(f1)-(f3) have the increase and domination properties: 

Increase: For each a E I, 1 is strictly increasing. 
a 
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Domination: For each a < fi E I, then fa is dominated by ffi· 

Concerning this problem, Schmidt[37] introduced built-up 

systems of fundamental sequences and proved that if a system is 

built-up, then {!a}a<1 has the increase and domination proper­

ties. However, there are some important systems used in the 

Ii terature which are not buil t-up. In particular, the standard 

system for EO is not built-up. Then, Kadota and Aoyama[22] in­

troduced a stronger notion of built-upness, called (n)-built-up­

ness for each n E N so that it can be applicable to a wide class 

of systems, and studied the increase and domination properties 

of the fast-growing hierarchy determined by (n)-built-up systems. 

In the remaining of this section, we will explain these 

results of Kadota and Aoyama[22]. 

DEFINITION 3.1.3. Let n E N and let P be a system for I. 

The relation ~ on I is the transitive closure of 
n 

(a) 

(b) 

a+1 ~ a· 
n ' 

a ~ a[n] for a limit ordinal a. n 

The relation a ~ fi means a ~ Q or a Q n n ~ ~. 

In o ther word, a ~ fi means that there n is 

{r i IO;i;k,O<k} such that ro=a, rk=fi, and r·[n]=r· 1 
I I + 

limit or 0 = ri+1 if r· I is 0+1 for 0 < i < k. = 

a sequence 

if r· is 
I 

Now, we define (n) -buil t-up systems as follows (cf. Kadota 

and Aoyama[22]): 

DEFINITION 3.1.4((n)-built-up systems). A system P for I is 

(n)-built-up if 

for any limit a < I and I E N. 

In particular, (0) -buil t-up systems for I in our sense are 
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just the same as built-up systems for I i n Sch mi d t's sense [37]. 

We will show the following theorem by Kado t a a nd Aoyama [22, 

Theorem 3 . 1]. 

THEOREM 3. 1 . 5 . 

(f2) and (f3), and 

properties hold: 

If {f } satisfies t h e con dition s ( £'1 ) , a a<1 
if P is (1) - buil t-up, the n t he fo l lowin g 

(a) fa is strictly increasing for each a E I. 

(b) If a 7 13 and m > 0, then fj3(m) ~ fa(m) and fj3(x) < for(x) 

for m < x E N. 

(c) If 13 < a, then fj3 is dominated by fa' 

Before proving this theorem, we show a lemma (cf.Kadota and 

Aoyama[22,Lemma 2.3]). 

LEMMA 3.1.6. Let n E N and let P be an (n)-built-up system 

for I . Then the following properties hold: 

(a) If a -t 13 and m,n < s E N, then a -t 13· m = 

(b) If 13 < a, t hen a -t 13 for some m > m 

Proof. We show this by induction on 

and m,n < s. Then arm] ~ Q . Since P is = In IJ 

a[m]. Hence a[s] ~ arm] ~ 13 by the 
s s 

s 
n. 

a. (a) Assume a --+ 13 
Tn 

(n)-built-up, a[s] ~ 
n 

induction hypothesis . 

Therefore a 7 ~. (b) Assume 13 < a. Then 13 ~ a[mo] for some 7llo 

; n. Hence a[mo] T f3 for some k > n by the induction hypothe­

sis. If we put m = max(mo,k), then a 7 a[mo] '7 13 by (a). 

Hence a -t 13. m 
o 

then 

By this 

P is 

lemma, if the system P is 

(k)-built-up. Then, we can 

(n)-built-up and n < k, 

prove Theorem 3.1.5 as 

follows: 

Proof of Theorem 3 . 1.5. First, we show (a) and (b) by 

induction on a. 

Case 1. a = 0: (a) holds by (f 1) . (b) is trivial. 

Case 2. a = r + 1: ( a) By the induction hypo t hesis, fr is 
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strictly increasing, so is I from (f2). (b) If a ---+ f3, then r a m 
7 f3. By the induction hypothesis and (f2), 1

f3
(m) ~ Ir(m) < 

a - r a 
I (m) and 1

f3
(x) ~ I (x) < I (x) for m < x. 

Case 3. a is limit: (a) Since P is (1)-built-up, a[x+l] -T 
a [x]. So, I (x+ 1) = I [ 1] (x+ 1) > I [ ] (x+ 1) > I [ ] (x) = I (x) a a x+ = a x a x a 
from the induction hypothes is. (b) If a ---+ f3, then a [m] ~ f3. m m 
By the induction hypothesis, 1f3 (m) ~ la[m](m) = la(m) for m > O. 

Moreover, since P is (1)-built-up, a[x] ~ arm] for x > m. 

Hence a[x] 7 arm] by Lemma 3.1.6. Thus, 1 f3 (x) ~ la[m] (x) < 

I [ ](x) = I (x) for x > m ~ 1 by the induction hypothesis. a x a 
We show (c). If f3 < a, then a ---+ f3 for some m > 0 by Lemma 

m 
3.1.6. By (b), 1f3 is dominated by la· [) 

The following proposi tion says that Theorem 3.1.5 can be 

applied to the standard system of fundamental sequences for EO 

(cf. Ketonen and Solovay[24]). 

PROPOSITION 3.1.7. The standard system of fundamental se­

quences for EO is (1)-built-up. 

To prove this proposi tion, recall that the standard system 

is defined as follows: For a limi t a < EO, we wri te a to the 

Cantor normal form: 

al ak - 1 ak a = w + ... + W + W (0: > al > 

Then we define a[x] for x E N as follows: 

a1 a k - 1 f3 
If ak = fi + 1, then o:[x] = W + ••• + W + W ·x. 

al a k - 1 ak[x] 
If ak is limit, then a[I] = W + ••. + W + W 

Then the following lemma can be shown by induction on a. 

LEMMA 3.1.8. (a) For each n E N and a > 0, a ---+ o. 
n 

(b) If 

(c) If 

a ~ r and a ~ f3 for some n E N, then r + a ~ r + f3. 
a ---+ f3 for some n E N, then wa ---+ wf3. 

n n 
o 

Prool 0/ Proposi t ion 3.1 . 7. For a limi t a, wri te a r + 
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a 
w k in the above Cantor normal 

al 
form where T = w + ... 

Then we show a[I+l] ~ a[I] 

have the following two cases: 

for I E N by induction on a. We 

(i) If a
k 

= f3 + 1, then a[x+1] 

a[x] by Lemma 3.1.8(a) and (b). 
ak [x+1] 

(ii) If a
k 

is limit, then a[x+l] = T + W ~ T + 

= a[I] by the induction hypothesis that ak [x+1] ~ ak[x] 

a
k 

< a and by Lemma 3.1.8(c). 

since 
(] 

From this proposition and Theorem 3.1.5, the proof of Lemma 

2.1.5 can be obtained, which states that the fast-growing 

hierarchy up to EO defined by the standard system has the 

increase and domination properties. 

Next, we consider an extension of Theorem 3.1.5 where P is 

(n+1)-built-up for some n E N. We can prove the following 

Theorem 3.1.9 which is a relativization of Theorem 3.1.5(cf. 

Kadota and Aoyama[22,p.361]) by the same way as Theorem 3.1.5. 

Consider the following conditions for each n E N: 

(fl) fo is strictly increasing after n (i.e., fOCI) < fo(x+l) 
n 

for n ; x). 

(f2)n If fa is strictly increasing after n, then so is fa+1 and 

fa(n) ; f a+1 (n), fa(x) < f a+1 (x) for n < x. 

(f3)n fa(x) = fa[x] (I) for n ; x if a is a limit ordinal. 

THEOREM 3. 1 . 9. Le t n EN. 

(f1) ,(f2) and (f3) , and if 

If {f} I satisfies conditions 
a a< 

n n n 
P is (n+1)-built-up, then the 

following holds: 

(a) fa is strictly increasing after n for each a E I. 

(b) If a 7 j3 and 7ll > n, then fj3(m) ; fa(m) and fj3(x) < fa(x) 

for m < x E N. 

( c ) If a < f3, then fa is dominated by ff3' (] 

The case tha t n o of this theorem is just the same as 
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Theorem 3.1.5. 

EXAMPLES 3.1.10.(a) 

satisfies the conditions 

as in Examples 3.1.2. 

The 

(f1) , 
n 

fast-growing hierarchy {Fa}a<! 

(f2) and (f3) for every n E N 
n n 

(b) The Hardy hierarchy {Ha}a<! satisfies the conditions 

(f1) , (f2) and (f3) for every n E N as in Examples 3.1.2. 
n n n 

EXAMPLE 3.1.11. 

defined as follows: 

G (x) 
a 

The slow-growing hierarchy {G} a a<! 

G (x) + 1; 
a 

Ga[x](x) for a limit ordinal a. 

is 

This hierarchy does not satisfy (f1). In fact Gk(x) = k for k<w. 

However, we can prove the following proposition by the same way 

as Theorems 3.1.5 and 3.1.9. 

some 

(a) 

(b) 

( c ) 

PROPOSITION 3.1.12. If the system P is (n+1)-built-up for 

n E N, then the following results on {G} ! hold: 
a a< 

G (x) :; G (x+1) for n < x for every a < ! . 
a a 

If a --+ j3 and m > n, then 
m 

Gj3(m) < G (m) and Gj3(x) < G (x) for x > m. 
a a 

If a < (3, then G is dominated by G(3. 0 
a 

3 . 2 Cond it ions on sys tems 0 f fundamen ta 1 sequences 

In this section, we clarify relations between several con­

di tions for systems of fundamental sequences, and study the in­

crease and domination properties of {f} ! determined by these 
a a< 

systems . 

Let ! be a countable ordinal. We defined in the preceding 

section that the system P of fundamental sequences for I is 
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(n)-built-up if 

a[x+l] --+ a[x] 
n 

for any limi t a < I and x EN. In the Ii terature, several 

conditions other than (n)-built-upness are studied: 

DEFINITION 3.2.1. Let P be a system for I. 

(a) (Aoyama and Kadota[I]) P is (n)-diagonal-built-up if 

a[x+l] ---t) a[x] 
x+n 

for any limit a < I and x E N. 

(b)(cf.Lob and Wainer[31]) P is LW if a[l] ~ a[O] and 

a[x+l] --+ a[x] for any limit a < I and 0 < x. 
x 

(c) (Dennis-Jones and Wainer[8]) P is structured if 

a[x+l] ==~~> a[x] + 1 for any limit a < I and x E N. x+l 

(In Kadota and Aoyama[22], this is said to be nice.) 

(c)(Zemke[51]) P is normed if it has a norm N:I ~ N 

which satisfies the following conditions (Nl)-(N3): 

(Nl) N(O) = 0; 

(N2) N(a) < N(a+l); 

(N3) N(a[x]) < N(a[x+l]) for any limit a < I and x E N. 

(d)(Zemke[51]) P is regulated if it is normed and it satisfies 

a[N(ft)] > ft for ft < a < I. 

As the case of (n)-built-upness, we can show the following 

lemma which states elementary properties for our conditions: 

LEMMA 3.2.2. Let P be a system for I. 

(a) If P is either LW or (k)-diagonal-built-up where k 0 

or 1, and a --+ ft, then a --+ ft for 
77l s 

(b) If P is (O)-diagonal-built-up and 

m < s. 

a --+ ft, th en a 
n n+I> ft+l. 

Proof. We prove by induction on a. (a) Assume a --+ ft and 77l 
77l 

< s. Then a[m] ~ ft. If P is (k)-diagonal-built-up for k = 0 or 
1ll 

1, then a[s] s+k-l k ) a[m]. By the induction hypothe­
m+ 

sis, a [ s ] --+ a [ TTl ] ~ ft. Th ere for e a --+ ft. If Pis LW, the s s s 
proof is similar to this case of (1)-diagonal-built-up systems. 

(b) Case 1. a = 0: Trivial. Case 2. a = r + 1: If a 
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T ==> {3. By the induction hypothesis, a n+l;' {3 + 1. Case 3. a 
n 

is limit: If a ---t {3, then a[n] ~ {3. Since P is (O)-diagonal-n n 
built-up, a[n+l] ---t a[n]. By the induction hypothesis, a[n+l] 

n 
:=::=::;;:=» a[n]+l. If a[n] = {3, then the conclusion holds. If a[n] 

n+l 
---t {3, then by (a) and the induction hypothesis, a[n+l] ----:--+ 

n n+l 
a [ n ] n + I;' {3 + 1. Th ere for e, a n + 1 > {3 + 1 . [J 

Using this lemma and Lemma 3.1.6, we can show the following 

theorem by Kadota and Aoyama[22,Theorem 2.4]. 

THEOREM 3.2.3. Let P be a system for I. 

(a) If P is (n)-built-up, then P is (n+l)-built-up. 

(b) If P is (n)-built-up, then P is (n)-diagonal-built-up. 

(c) If P is (l)-diagonal-built-up and n > 1, then P is (n)-diag­

onal-built-up. 

(d) If P is (l)-built-up, then P is LW. 
(e) If P is (O)-diagonal-built-up, then P is LW and structured. 

(f) If P is LW or structured, then P is (l)-diagonal-built-up. 0 

Next, we show a theorem on rela tions between (n) - buil t-up 

systems and regulated systems by using the following proposition 

which is shown by Kadota and Aoyama[22] (cf.Schmidt[37]). 

PROPOSITION 3.2.4. Let P be a system for /, and let n E N. 
The following three conditions are equivalent: 

(a) P is (n)-built-up. 

(b) P satisfies the Bachmann property B[n] which is defined as 

follows: If a[x] < J1 < a[x+l], then a[I] ~ J1[n], for limi t a E I 

and x E N. 
(c) P satisfies the property that for limit a Eland x E N, if 

A[r] < J1 ~ A[I+l], then J1 ~ A[X]. 0 

Kadota and Aoyama [22, P . 359] showed the following Theorem 

and Corollaries on the regulated systems: 

THEOREM 3.2.5. Let P be a system for I and let N( a) 

1{j3 E I: a -t {3}I. If P is (n)-built-up, then N is a norm on 1 n 
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such that a[N(fi)] ~ fi whenever a > fi· 
(Hence, if P is (n)-built-up, then P is regulated.) 

COROLLARY 3.2.6. Let P be a regulated system for I. If 

fi, then a N ( fi)) fi· 

(J 

(1 > 

o 

COROLLARY 3.2.7. Let P be either regulated or (l)-diagonal-

built-up. If a > fi, then a ~ fi for some mEN. 0 
m 

Let (n) -BU, (n) -DBU, REG, STR and LW be the class of all 

(n)-built-up, (n)-diagonal-built-up, regulated, structured and 

LW systems for I, respectively. By Theorems 3.2.3 and 3.2.5, we 

can obtain the following diagram. Here, for two classes Sand 

S', S ~ S' means that S' contains S. Moreover, each arrow 

means that S· contains S properly( see the following example). 

REG ... +--- (n) -BU +--- ... +--- (l)-BU +--- (O)-BU 

j 
1 1 

LW +--- (O)-DBU 

1 1 
(n)-DBU E (1) -DBU +--- STR 
(n>l) 

EXAMPLES 3.2.8. Let [:N -t N and I = w·w+l. The following 

system P for I gi ves the proof of the properness of the above 

propositions. P: 

+ x if L ; [(m,n) 
W·W[x] = W·L, W· (m+l) [L] 

otherwise. 

(a) Let n > 0 and [(m,n) = n. Then, P is (n)-built-up, but it 

is not (n-l)-built -up. In particular, if n = I, then P is LW but 

it is not (O)-diagonal-built-up. 

(b) Let f(m,n) = m+n. Then, P is (n)-diagonal-built-up, but it 

is not (n) -built-up . For n > 0, it is not (n-l)-diagonal-built-
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up. In particular, if n = 1, then P is structured but it is not 

LW. If n = 0, then P is LW but it is not (1)- built-up. 

(c) We consider the system P' for I which is defined by 

modifying P such that 

__ ( w'm+x-(m+1) if x ~ m+1 and m > 0 
w'w[x] = W·X, w'(m+1)[x] 

x otherwise. 

Then P' is (l)-diagonal-built~up but it is not structured. 

The following theorem is a result of Kadota and Aoyama[22, 

Theorem 3.1] which shows that the condition (l)-built-upness in 

Theorem 3.1.5 can be weakened. 

THEOREM 3.2.9. If 

and the system P for I 

following holds: 

{ f } satisfies 
a a<1 

is ei ther LW or 

conditions 

structured, 

(a) fa is strictly increasing for each a E I. 

(b) 

( c) 

If a ~ fi and m > 0, then ffi(m) ~ fa(m) and 

ffi(x) < fa(x) for m < x E N. 

If ~ < a, then f~ is dominated by fa' 

3.3 Existence problems 

(f1)-(f3) 

then the 

o 

In this section, we study the existence of systems of 

fundamental sequences for all countable limi t ordinals, which 

possess some natural conditions considered in the preceding 

section. 

Let Q be the first uncountable ordinal and let Lim(Q) be 

the set of all countable limit ordinals. Then, we say that 

P:Lim(Q) ~ QW which assigns a fundamental sequence for any 

countable limit ordinal is a system of fundamental sequence for 

Q (or a system for Q). 

In [37], Schmidt showed the following resul ts on the prob­

lem whether there is a built-up (i.e.,(O)-built-up) system of 

fundamental sequences for all countable limit ordinals. 
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(a) There is a built-up system for any initial segment I of 

countable ordinals, but 

(b) there is no built-up system for Q. 

Here, we prove another two theorems on this problem. One is 

on regulated systems for Q and the other is on (0) -diagonal­

built-up systems for Q. The latter case is essentially different 

from the result (b), i.e. there is a (O)-diagonal-built-up sys­

tem for Q. All the following resul ts are proved in Kadota and 

Aoyama[22,Section 4]. 

THEOREM 3.3.1. There is no regulated system for Q. (Hence, 

for any n < w, there is no (n)-built-up system for Q.) 

Proal· We show tha t there is no regula ted system for Q, 

i.e. ,there is no system for Q such that 

(*) for all ~ < Q, there is an m (depending only on ~) such 

that, for any a, if ~ < a < Q, then a[m] ~ ~. 

Assume there is such a system P. Then, for each n, the function 

I :Q ~ Q defined by I (a) = 
n n 

for all a > 0). Hence, there 

~ < Q such that I (a) = ~ 
n n n 

Theorem 4.41). We define (sup 
n<w 

a[n] is regressive (i.e. ,I (a) < a n 
are an A c Q of order type Q and a 

n 
for a 11 a E A ( c f . Levy [ 30] p. 154 , 

n 
~ )+1 = ~ and a = the least a of 

n n 

A n{a<QI~<a}. This contradicts (*), since a 
n . n 

= a[n] = ~ <~. 0 
n 

On the contrary, we can show the following theorem, whose 

proof is suggested by M. Hanazawa. It can be proved in ZF set 

theory with the axiom of choice. 

THEOREM 3. 3 . 2 . There is a (0) -diagonal-buil t-up system of 

fundamental sequences for Q. 

Proal. Firstly, we prove the following claim: 

CLAIM. Let a be a countable limit ordinal and P be a (0)­

diagonal-built-up system for a such that () + W)[I] ) + I for 

all) with) + W < a and I E N. Then, there is a (O)-diagonal­

buil t-up system P' for a+1 such that P' (~) = P(~) for all ~ <: a, 
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and (A + W)[I] = A + I for all A with A + W ~ a and I E N. 

Proof of Claim. 

and P' (fi) P ( fi) for 

We def ine P' such tha t P' (a) 

fi < a. where {a[I]} IEN is a 

{ a [I] } ~rEN 
fundamental 

sequence for a defined as follows: 

Case 1. a is of the form fi + w. Then, a[I] is fi + I. 

Case 2. a is not of the form fi + w. Then, there is a se­

quence {An}nEN such that AO< Al< ... < a, lim A = a and A + W 
IEN I I 

< AI+l for all I E N. Since P is 

every i, there is an I. such that for 

(O)-diagonal-built-up, for 

I 
all m > x. , A. 1 ---+ A.+ w. = I I + m I 

We define a sequence of numbers {mn}nEN 

mo = 0, m. 1 = max(x., m.+l) for > 0. 
1+ l l 

Then, {a[x]} N is defined as follows: 
XEr~ 

a[O] AO' 

a[m.+l] 
1 

A. for i > 0, 
1 

arm. l+ j +l] 
1 -

A. 1+ j + 1, where m. 1+ j < m. for 
1 - 1 - I 

> 0. 

We prove this claim as follows. 

If x m. 
1 

for some > 0, then a[I+l] A. --+ A. l+w --+ 
1 m. 1 - m. 

1 l 

A. l+m. ===? A. 1+ (m . -m. 1) = a[m.] = a[x]. So a[x+l] --+ a[I]. 
1- 1 m. 1- 1 1- 1 I 

1 

Otherwise, a[x+l] = a[x]+1 --+ a[x]. Hence, P' is (O)-diagonal­
x 

built-up. The proof of this claim is completed. 

By our claim, we can prove there 

that every P is (O)-diagonal-built-up 
a 

is a sequence {P a} a<Q so 

for a and if fi < a < Q, 

then Pfi is a restriction of Pa (i.e., P[3(r) 

We define PQ by putting PQ(a) = Pa+1 (a) for 

(O)-diagonal-built-up system for Q. 

P (r) for r < [3). a 
a < Q . Then, P

Q 
is 

o 

From this theorem and Theorem 3.2.8, we can prove the 

following corollary. 

C0l10LLAl1Y 3.3.3. If a sequence {f} r"\ satisfies (f1)-(f3) a a<H 
(see Example 3.1.2) and is defined by a (O)-diagonal-built-up 

systems for Q (cf. Theorem 3.3.2), then it has the increase and 

the domination properties. 
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Finally, we show a result on the problem whether any unary 

function g:N --+ N is dominated by some fain {f a} a<Q' The fol­

lowing is proved in ZF set theory with the axiom of choice and 

the continuum hypothesis CH. 

COROLLARY 3.3.4. There is a (O)-diagonal-built-up system 

for Q which satisfies that for each sequence {f} n with (fl)­
a a<H 

(f3) and for each g:N --+ N, g is dominated by f for some a < Q. 
a 

Proof. By CH, we take a sequence <§ = {g} n of all unary 
a a<lI' 

number-theoretic functions. Then, we can get a new sequence ~ = 
{ha}a<Q of unary number-theoretic functions by defining that: 

h (0) 
a 

h (x+ 1) 
a 

g (0) + 1, 
a 

max{h (x), g (x+l)} + 1 
a a 

for a < Q and x E N. We can easily show that h is strictly 
a 

increasing, and dominates g . Moreover, we get a sequence te. ' 
a 

{ h' } of unary number-theoretic functions as follows: 
ex a<Q 

h' (x) = h (x) + 1 a a for ex = 0 or ex is a limit, 

h~+1 (x) = max{h~(x), ha+l (x)} + 1 

for x E N. Then, the function h' (x) of x dominates the func-
a+x 

tion h' (x) of x for every n < w. 
ex+n 

Now, we get a (O)-diagonal-built-up system for Q from 

Theorem 3.3.2 by modifying (A+W)[X] = A+X in its Claim to: 

(A+W) [x] = A + h; (x), 
A+X 

and ex[X] fi+x in Case 1 of the Claim to: 

a [ x ] = f3 + h 'Q ( x) . 
/J+x 

Let {f} n be any sequence which satisfies (fl)-(f3). Then, for 
ex ex<H 

limit A, we have 

fA+W(x) = fA+h' (x) (x) ; fA (x) + h)+x(x) 
A+X 

for x > 0 by (f2). By this relation, we can show this theorem as 

follows . For a given g:N --+ N, there is ex < Q such that g = g . 
ex 

Hence g is dominated by h'. On the other hand, we can express ex 
ex 

= A+n, where A is a limi t or 0 and n < w. Since the function 
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h' (I) of I dominates thi s h' from the argument above, 
A+I a 

fA+w(x) ; fA(x) + hl+x(x) ; hl+x(x) > hl+n(x) 

for sufficiently large x. Thus, we have that g is dominated by 

the function f1 . This completes the proof. ,,+w 
[] 

We have shown the existence of a (O)-diagonal-built-up 

(hence LW and structured) system of fundamental sequences for Q. 

Hence, the sequences {fa} a<Q which satisfies (f1)-(f3) and is 

defined by (O)-diagonal-built-up systems for Q have the increase 

and domination properties. On the other hand, by Theorem 3.3.1, 

there is no (n)-built-up system for Q for any n. Hence, in order 

to treat sequences {f} ~ indexed with all countable ordinals, 
a a<!l' 

the conditions such as (O)-diagonal-built-upness, LW-ness and 

structuredness should be considered. 

However, as we shall see in the following chapters, (n)­

built-upness is useful for treating a subrecursive hierarchy 

which consists of sequence {!a}a<1 indexed with all ordinals 

less than a countable ordinal I. 
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CHAPTER 4 

PROVABLY COMPUTABLE FUNCTIONS IN PEANO ARITINETIC 

We have already shown in Chapter 2 that the set of all 

provably computable functions in Peano arithmetic PA can be 

classified by the fast-growing hierarchy up to EO using the fact 

that any function provable computable in PA is dominated by F 
a 

for some a. 

In this chapter, we study this characterization in detail. 

Then, we analyze the unprovability result of undecidable finite 

combinatorial statement PH. 

In Section 4.1, we introduce fragments PA of PA for n E:: N 
n 

and prove that the set of all provably computable functions in 

PA can be classified by the fast-growing hierarchy up to w for 
n n 

n ~ 1. This result was proved by Ono and Kadota[33,Section 3]. 

In Section 4.2, we gi ve the provabili ty and unprovabili ty 

resul ts on fini te combinatorial statements PH( n) following Ono 

and Kadota[33,Section 4]. 

In Section 4.3, we give the relativization results of those 

in Sections 4.1 and 4.2, which were studied by Kadota[16]. 

4. 1 Provab I c compu tab iii ty 

In this section, we will introduce some fragment PA of PA 
n 

for each n > 0, and study provably computable functions in it. 

Then, we will prove that the set of all provably computable 

functions in PA can be classified by the fast-growing hierarchy 
n 

up to w . This result gives a refinement of Proposition 2.3.4. 
n 

Our formal theory PA of Peano ari thmetic has been defined 

in Section 2.2. As we mentioned in Section 2 . 2, we assume tha t 

~(PA) contains the symbols for primitive recursive functions and 

predicates. For convenience, we will use the same letters to 
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express these functions or predicates and to express the symbols 

in ~(PA) which express them. 

We abbreviate the formulas 

A (x) ) (where does not contain 

Vx(x;t ::> A(x)) 

x) to Vx;tA(x) 

and 

and 

3x(x;t 1\ 

3x;tA(x) , 

respectively, and these types of quantifiers are called bounded 

quantifiers. A formula is called bounded if it contains only 

bounded quantifiers as quantifiers. Any bounded formula is both 

a ITo-formula and a Lo-formula. A formula A is a ITm+ 1 -formula if 

it is of the form Vx l' .. VxkB wi th a Lm -formula B, and A is a 

L
m

+ 1 -formula if it is of the form 3xl" ·3x
k

C with a ITm-formula C. 

For each 0 < n EN, the formal theory PA is defined from 
n 

PA by restricting the induction formulas of the mathematieal 

induction to formulas containing at most n quantifiers. Then we 

define provable computable functions in PA in the same way as 
n 

the case of PA as follows (cf.Definition 2.2.2). 

DEFINITION 4.1.1(Provably computable functions 

each n > 0, a computable function f:Nk~N is 

in PA ). For 
n 

said to be 

provably computable in PA if there exists a Godel number e of f n 
such that the formula 

is provable in PA . 
n 

Now, we state our main theorem of this section (cf.Ono and 

Kadota[33,Theorem 3.1]). For a formula R(xI"" ,Xk,y) of 5f(PA) , 

the predicate (R(XI"" ,rk,y) is true) is often abbreviated by 

R(x,··· ,Xk,y), for convenience. 

THEonEM 4.1.2. Let n > 1. Then, the following condi tions 

(a)-(d) are equivalent: 

(a) f is provably computable in PA . 
n 

(b) There are a pr imi ti ve recursi ve function g and a bounded 

formula R such that 

f(II"" ,Ik ) = g(II"" ,Ik ,llyR(XI"" ,rk,y)); 

V~3yR(~,y) is provable in PA . 
n 
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(c) 

(d) 

fEU ~(w (m))) 
m<w n 

(i.e., f is wn(m)-ordinal recursive for some m < w). 

U 0; 
f E a<w a 

n 
(i.e., f is elementary recursive in Fa for some a < wn )· 

This theorem shows that a refinement of the result given in 

Theorem 2.3.4 which says that the set of all provably recursive 

functions in PA is classified by the fast-growing hierarchy up 

to EO. We will give the proof of Theorem 4.1.2 in the following. 

Clearly, (a) implies (b) by the defini tion. As we stated in 

Proposition 2.1.7, we have that (c) implies (d). Hence, we will 

show that (d) implies (a), and that (b) implies (c), to complete 

the proof of Theorem 4.1.2. 

We first show that (4) in Theorem 4.1.2 implies (1). Notice 

here that we can show easily the following lemma (cf. Kino[25, 

Section 3]). 

LEMMA 4.1.3. Let n > 0. The class of all provably computa­

ble functions in PA contains the zero, successor and projection 
n 

functions and is closed under substitution and primitive recur-

sion. o 

Hence, every pr imi ti ve recursi ve function is provably com­

putable in PA 1 • 

We will make use of the following primitive recursive 

functions. Let <.,.> be the function defined by 

1 <r,Y> = z((r+y)2+3r+y). 

Then, <.,.> is a bijection from N x N to N. We can define 

projection functions (.) l' (.) 2, satisfying that 

(a) 

(b) «r,y» I = rand «r,y>2) = y, 

for all r, y, zEN. As for the detail of these functions, see 

Davis[7,Chapter 3]. 

Recall that in Section 2.1, for each n > 0, we took primi-
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tive recursive well-ordering < on N, which is of order-type w 
n n 

and has the least element O. For each x E N, define ord (x) to 
n 

be the ordinal represented by x in the ordering < and for each 
n 

ordinal a < EO' define num (a) 
n 

to be the natural number x such 

that ord (x) = a. 
n We introduce a primitive recursive predicate 

lim (x) and a primitive recursive function pr (x) by 
n n 

1 im (x) 
n 

if and only if ord (x) is a limit number. 
n 

pr (x) =: 
n { 

num (~) 

o n 

By using the ordering 

on N by the condition that 

* x < y if and only if 
n 

< (y) 2 
n 

if ord (x) 
n ~ + 1 

otherwise. 

< , 
n 

or 

we can define another ordering 

( (x) 2 = (y) 2 and (x) 1 < (y) 1) , 

* < 
n 

where < is the usual order on N. It is easy to see that <* is a 
n 

primitive recursive well-ordering of order-type W·W . As usual, 
n 

x < Y means that x < y or x = y. =n n 

In [41], Shirai obtained the provabili ty and the unprova­

bili ty resul ts of transfini te induction in fragments of Peano 

arithmetic, by examining into the Gentzen's proof[ll] in detail. 

For our present purpose, we refer to his results in the follow­

ing specialized form. For each x E N, i denotes the numeral of x. 

PROPOSITION 4.1.4. Let a < w for n > 1. Then, 
n 

* (a) Vy[Vx(x < y ~ E(X)) ~ E(Y)] ~ VuVv(v < num (a) ~ [«u,v») n =n n 

is provable in PA l' where £(z) is a new predicate symbol; n-
(b) in particular, if A(z) is a TI 2 -formula, then 

* Vy[Vx(x < y ~ A(x)) ~ A(Y)] ~ VuVv(v < num (a) ~ A«u,V») n =n n 

is provable in PA 0 n 

Notice here that the set {x E N 

initial segment of the well-ordering 

w'a «w ), when n > 1 and a < w . 
n n 
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Next, we introduce a ternary function h by 

u+1 
h(u,v,x) = Ford (v)(x), 

n 

where F . s are of the fast-growing hierarchy up to EO' Clearly, a 
h is a computable function. Let e be a G~del number of h. Then 

we show the following lemma. 

LEMMA 4.1.5. Let a < w for n > 1. Then, 
n 

v < num (a) 4 Vx3yT 3 (e,u,v,x,y) 
=n n 

is provable in PA . 
n 

Proof. Let W( z) be the IT2 -formula Vx3yT 3 (e, (z) I ' (z) 2' x, y) . 

We first show that the formula 

(a) * Vu(u < v 4 W(u)) 4 W(v) 
n 

is provable :in PA I' Suppose first that (v) 1 O. If (v) 2 = 0, 

then W(v) is provable in PAl and hence (a) is also provable in 

it. Next, we assume that 

(b) (v) I = 0 /\ 0 < (v) 2 /\ .., 1 im ( (v) 2 ) . 
n 

. * Then, <x,pr((v)2» <n v is provable in PAl' Therefore 

* Vu(u < v -4 W(u)) -4 W«x,pr((v)2») 
n 

is provable in PAl' On the other hand, 

i. e. , 

W«x,pr((v)2») -4 W(v) 

is also provable in PAl' since we can effectively construct the 

computation for the input (0, (v) 2'x) from the computation for 

the input (x,pr( (v) 2) ,x). lIence, (a) is provable in PAl under 

the assumption (b). Similarly, we can show that (a) is provable 

in PAl under the assumption that (v) I = 0 /\ lime (v) 2) or (v) I > 

O. Combining these facts, we can deduce that (a) is provable in 

PAl' Now, taking W(z) for A(z) in Proposition 4.l.4(b), we 

obtain that 
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is provable in PA . 
n 

o 

The following proposition says that Kleene' s iteration 

theorem can be proved in PAl' which is shown by Ono and Kadota 

[33,Lemma 3.7]. 

PROPOSITION 4.1.6. For each 

recursive function si such that 

E N, there exists a primitive 

VxVyT. ( ;c , k I ' ... , k . ,x, y) +-+ VxVyT (s i (e , k ! ' ... , k . ) ,x, y) 
- l+m I - - m I -

is provable in PAl for every e,k!, ... ,k. E N. 
I 

o 

By this proposition, we have that 

is provable in PAl for every m,k E N. 

Godel number of the function h(m.k.x) 

Clearly, s2(e.m,k) is a 
m+l 

(= Ford (k)(x)) of x. Then 
n 

we show the following lemma(cf.Ono and Kadota[33. Lemma 3.9J). 

LEMMA 4. 1 . 7. For n > 0 . 

computable in PA . 
if a < w then F is provably n a 

n 

Proof. If n = 1. then F is primi ti ve recursi ve. Hence it a 
is provably computable in PA I (see Lemma 4.1.3). Suppose tha t n 

> 1. By Lemma 4.1.5. the formula Vx3yT 3 (e.O.num (a) .x.y) is 
n 

provable in PA . By Proposition 4.1.6. the formula 
n 

Vx3yT 1 (s2(e.O.num (a)) .x,y) 
n 

is also provable in PA . where s2(e.O.num (a)) is a Godel number 
n n 

of F • since ord (num (a) = a. Thus, F is provably computable 
ann a 

in PA . 0 
n 

Thus. we have completed the proof of tha t (d) of Theorem 

4.1.2 implies (b) of Theorem 4.1.2. 

Now. it remains to show that (b) in Theorem 4 . 1.2 implies 

(c). From Corollary 12.16 of Takeuti [46]. we immediately have 

the following proposition (cf . Ono and Kadota[33. Lemma 3.3]). 
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PROPOSITION 4.1.8. Let n > O. Suppose that R(x,y) is a TIo­

formula such that Vx3yR(x,y) is provable in PA . Then, the func­
n 

tion f defined by 

is w (m)-ordinal recursive for some m < w. 
n 

Then, we have the following corollary: 

o 

COROLLARY 4.1.9. Let n > O. Suppose that R(~,y) is a 

bounded formula and the formula V~3yR(~,y) 

Then, the function f defined by 

f(XI"" ,Xk,y) = J.1yR(XI'··· ,Ik,y) 

is provable in PA . 
n 

is w (m)-ordinal recursive for some m < w. (Thus, (b) in Theorem 
n 

4.1.2 implies (c) in Theorem 4.1.2.) 0 

Proof. First, we remark that we can assume that the se­

quence ~ of variables consists of only one variable x. To see 

this remark , we assume that Vx I Vx z3yR(XI'xZ'Y) is provable in 

PA , as an example. We put R' (x,Y) ~ R( (x) I' (x) z ,Y) and f' (x) 
n 

= J.1yR' (I,Y). Then, R' is also a bounded formula and Vx3yR' (x,y) 

is provable in PA . We have that f(xI ,xz) = f' «XI ,xz». Since 
n 

the function <','> is primitive recursive, f is w (m)-ordinal 
n 

recursive if so is f'. Thus, by iterating this argument, we can 

assume that ~ consists of only one variable. 

We also remark that for any bounded formula A, there is a 

predicate symbol p of ~(PA) such that 

A(x) f--t p(x) 

is provable in PA I' Hence, we can prove this corollary from 

Proposition 4.1.8. o 

Thus, we have completed our proof of Theorem 4,1.2. 

4.2 Undecidable combinatorial statements 
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In Section 2.3, we studied a finite combinatorial statement 

PH, which is shown to be unprovable in Peano ar i thmetic PA by 

Paris and Harrington[35]. Here we analyze this statement in 

fragmen ts of PA by using Theorem 4.1.2. We def ined in Section 

2.3 the formula PH: 

PH = VwVxVz3y([x, y] ~ (w+l)w). 
* z 

By Proposition 2.3.1, PH is true. We defined also a computable 

function a for n,c E N by n,c 

0' (k) = IlY( [k,y] ~ (n+l)n). 
n,c * C 

Here, we define the formula PH(n) for each n E N. 

PH(n) = 

n The Ramsey relation [k, m] ~ (n+l) can be represented by 
* C 

a bounded formula P(w,x,z,y) of <i(PA) , i.e., P(W,I,Z,Y) is true 
w if and only if [x, y] ~ (w+l) for all w,x,z,y E N. We must 

* Z 
pay attention to the fact that there are many ways of expressing 

the Ramsey relation by formulas. Here, for each fixed n, we 

say that a formula P(x,z,Y) which represents the Ramsey rela­

tion if P(I,Z,y) is true if and only if [x,y] ~ (n+l)n for all 
* Z 

X,Z,y E N. Then, we prove the following theorem (cf.Theorem 4.5 

of Ono and Kadota[33]). 

THEOREM 4.2.1. Let n > 1. If P(x,z,Y) is a bounded formula 

which represents the Ramsey relation, then the formula 

VxVz3yP(x,z,y) 

is not provable in PAn-I' 

Proof, Suppose that VxVz3yP(x, Z ,Y) is provable in PA I' n-
Then Vu3yP(u,u,Y) is also provable in PA I' Let us define a 

11-

function r by r (u) = IlYP(u,u,y) , i.e., r
1
(u) = a (u), Then, 

n n 7 n,u 
r n is elementary recursi ve in F f3 for some f3 < wn - 1 by Theorem 

4.1.2. So r is dominated by Ff3 l' Thus, r is dominated by a n + n n,c 
for some C by Proposition 2.3,3. Hence, there is kEN such that 

for every u > k, 
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(a) (J (u) = T (u) < (J (u). n,u n n,c 

Let d be max{c+l,k}. Then, by (a), 

(b) (J d(d) < (J (d) , n, n, C 

which contradicts Lemma 2.3.2. Therefore, VxVz3yP(x, z, y) is not 

provable in PA l' n- o 

In this theorem, the formula VxVz3yP(x, z, y) is interpreted 

as PH( n) in the standard sense. Hence, from this theorem, we 

sometimes say informally that PH(n) is not provable PA n-
1 

for n 
> 1. The following result follows immediately from Theorem 4.2.1 

(cf. Proposition 2.3.4). 

COROLLARY 4.2.2. The formula VwVxVz3y([x, y] ---t (w+l)w) is 
* z 

not provable in PA for any bounded formula representation of 

Ramsey relation. o 

We prove the following theorem, which is in some sense 

stronger but in another sense more restricted than the previous 

theorem (cf. Theorem 4.7 of Ono and Kadota[33]). 

THEOREM 4.2.3. For n > 2, VxVz3y([x, y] -;-r (n+l)~) is 

provable in PAn' but not provable in PA n- 1 in the following 

sense: For each n ; 2, there exists a L}-formula P(x,z,y) which 

represents the Ramsey relation such that, 

VxVz3yP(x,z,y) 

is provable in PA , but not provable in PA l' n n-

Proof. We can show similarly to Theorem 4.2.1. From 

Proposition 2.3.3, we can obtain that 

(J (r) < F ( 7) «r,z>+7) 
n,z = W 2 <r,z>+ 

F «r,z>+7) 
wn - 1 n-

since <r,z> ; r, z. Hence we have 

(J (z) = I1Y < F «r,z>+7) (R(r,z,y)), 
n,z wn - 1 

where R denotes the Ramsey relation [r,y] 

function j by 
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j(L,Z,V) JiyR(L,Z,y) if 3y < U(v) R(L,Z,y) 

o otherwise. 

Then, j is primitive recursive. From Theorem 4.1.2, the function 

F 
wn - 1 

is provably computable in PA . 
n 

Hence, we have a Godel 

number e of the function F 
wn - 1 

such 

provable in PA (cf.Section 4.1). Since 
n 

that 

F «L,z>+7) = U(JivT 1(e,<L,z>+7,v), 
w 1 n-

a (z) j(L,z,JivT 1 (e,<L,z>+7,v)). 
n,L 

Now, we will define 

formula P(x~z,y) by 

P(x,z,y) ~ 3v(Tl(~,<X,z>+7,v) A 
VU<VITl(~,<X,z>+7,u) A j(x,z,v) = y). 

a L -
1 

Then we can easily show that 

and VxVz3yP(x,z,y) is provable 

It can be easily seen 

P represents the Ramsey relation 

in PA . 
n 

that P(x,z,y) is of the form 

3vP' (x,z,y,v) where P' is bounded. Let Q be the formula 

VxVz3wP' (x,z, (w) l' (w) 2)' 

Then Q is also provable in PA , since so is VxVz3yP(x,z,y). Now, 
n 

we assume that VxVz3yP(x,z,y) is provable in PA n-
1

. Then, Q is 

also provable in PA l' Similarly to the proof of Theorem 4.2.2, n-
we define function r' by 

n 

r' (u) = JiWP' (u,u, (w) l' (w)2)' n 

Then, since Q is provable in PA l' r' is elementary recursi ve n- n 
in F Q for some f3 < w 1 by Theorem 4.1.2. So r' is domina ted by 

p n- n 
F f3+1' Thus, r~ is dominated by an, c for some c by Proposi tion 

2.3.3. Here we can assume that c ~ 2, by Lemma 2.3.2. Hence, 

there exists a h such that for every u ~ h, 

(a) a (u) = (r' (u)) 1 < r' (u) < a (u). 
n,u n = n n,c 

Let d be max{c+1,h}. Then, by (a) 

(b) a d(d) < a (d). 
n, n, C 

Thus, we are led to a contradiction, by (b) and Lemma 2.3.2. 

Therefore, VxVz3yP(x,z,y) is not provable in PA l' 0 n -
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We notice here that the formula VxVz3y([x,y] 

not provable in PA for some 
n 

relation, contrary to Theorem 

La-representation 

4.2.4. This can 

----+ (n+1)n) is 
* z 

of the Ramsey 

be shown as 

follows: Let P(x,z,Y) be any La-formula representing the Ramsey 

relation and Prov (u,v) be a 
n 

provability predicate for PA 
n 

precisely, Prov (rp1, r A1) means 
n 

in PA with a proof p, where rZ1 n 

LO-formula representing the 

in the canonical way. More 

the provabili ty of a formula A 

is the Godel number of Z. Then, 

P(x,z,y) ;\ .,Prov (x, rO=11) 
n 

is also a La-formula representing the Ramsey relation, since for 

each m, .,Prov (m, rO=11) is true. On the other hand, since 
n 

VxVz3y(P(x,z,y) ;\ .,Prov (x, rO=11» 
n 

implies the consistency of PA , it is not provable in PA . 
n n 

4.3 Relativized hierarchies 

We are concerned here wi th an extended version of Theorem 

4.1.2 in Section 4.1, which gives a characterization of provably 

~ -functions in PA for n > m ~_ 1. This characterization theorem m n 
is studied by Kadota[16] . 

First, we will consider a relation between the relativized 

ordinal recursive hierarchy and relativized fast-growing 

hierarchy. Let f:N ~ N be a strictly increasing function. Let I 

be a countable ordinal and P a system of fundamental sequences 

for I. Then, we define the fast-growing hierarchy relativized by 

f as follows: 

F6 / ) (r) 

p(/) (r) 
a+1 

p(/) (r) 
a 

r + 1; 

(F~!lV(r)+l(r) ; 

( I) 
Pa[/(r)] (r) if a is limit. 

Let ¢ be a set of number-theoretic functions which 

satisfies the following property(#) : 

- 44 -



(a) <1> contains the identity function, and 

(b) for every gl' g2 E <1>, there is a unary strictly 

increasing function I such that for 

every x E N, max(gl(x) ,g2(X)) ~ I(x). 

Now, we consider the standard system of fundamental se­

quences for £0, and define the following classes of functions by 

relativizing the corresponding classes in Section 2.1. 

DEFINITION 4.3.1. ~¢ is the smallest set of functions 

containing all functions in <1>, all functions F1/ ) for each ~ ~ a 

and each unary strictly increasing I E <l>, the zero, successor 

and projection functions, which is closed under substitution and 

limited recursion. 

DEFINITION 4.3.2. Let a < £ ° and n the least number such 

that a < w. Then, ~<1>(a) is the smallest set of functions 
n 

containing all functions in <1> and all primitive recursive 

functions, which is closed under substitution and unnested 

a-recursion. 

In [16:1, Kadota showed the following theorem, which is a 

relativization of Proposition 2.1.7. 

THEOREM 4.3.3. Let n > 0 and ¢ a class of functions wi th 

the property (#). Then, 

U 

a<w 
n 

U 

a<w 
n 

o 

Next, we introduce extended language t.(i) of t.(PA) for each 

E N inductively as follows: 

We write t.(O) for t.(PA). Let i > O. Then, we assume that 

t.( i-I) is defined. For each formula A(~,y) of t.( i-I) whose free 

variables are in ~,y, we define the function fA as follows: 

{ 

J.10YA(TnI"" ,iizk,y) if 3yA(n11"" ,nZh'Y) is true 

otherwise. 

For each such formula A of t.( i-I), we consider a new function 
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symbol 7A whose interpretation on N is fA' Then, we define 

~(i) = ~(i-1) u {7
A 

I A(~,y) is a bounded formula of ~(i-1)}. 

Next, for each i ~ 1, we will define functions 0 i : N --+- N 

and cp.:N --+- N. Let Tr. l(z,X,y) be the L. 1-truth formula of 
I I - I -

~(PA) for L i _1 -formulas of ~(PA) with two fixed variables, i.e., 

for every 2=i_1-formula A(x,y) of ~(PA) which has its Godel 

number e, 

Tr. l(e,x,y) ~ A(x,y) 
I -

is provable in PA 1 (cf. Takeuti[46, Proposition 14.1]). 

DEFINITION 4.3.4(0.:N --+- N, cp.:N --+- N for i > 0). The func-
I I 

tions 01 and CPI are both identity functions. For i > 1, 

Qi(u,z) = Vw~uVx~u(3YTri_1(w,X,y) --+- 3y<zTr i _1 (w,X,y))); 

o.(u) = j.1zQ.(u,Z); 
I I 

* Q.(u,z) = Q.(u,z) 1\ Vx<u..,Q.(u,Z); 
I I I 

W.(u,Z) -
I 

* 3y(Vx<uQ.(x,y) 1\ Z = y+u); 
= I 

cp.(u) = j.1zW.(u,Z). 
I I 

A formula A of ~(PA) is ~k in PAn if there are a Lk-formula 

B and a TIk-formula C such that (A +-+ B)A(A +-+ C) is provable in 

PA . Then, we have the following lemma (cf . Lemma 3.5 of Kadota 
n 

[16] ) . 

LEMMA 4.3.5. Let i > 1. 

(a) Q. is ~. in PAl and the function O. dominates fA for each 
I I I 

L
i

_
1

-formula A(~,y) of ~(PA). 

(b) W. is ~. in PAl' the function cp. dominates O. and it is 
I I I I 

strictly increasing. 0 

DEFINITION 4.3.6. Let i > O. 

(a) Fo is the set of all primitive recursive functions. 

(b) 
( i -1 ) 

Fi is F
i

_
1
U{fA I A(~,y) is a bounded formula of ~ }. 

¢. is the set of all functions elementary recursive in 
I 

( c ) 

{cp.} u F. l' 
I I -
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We give the 

fragments of PA. 

definition of provably 11 -functions m 
in the 

DEFINITION 4.3.7. Let k,n > O. A function! is provabLy 11k 

in PAn if there is a 11 k-formula A(~,y) in PAn such that 

! (II' ... ,I ) = llyA (II' ... ,I ,y) for all II"", I EN; 
r . r r 

(b) V~3YA(~,y) is provable in PA . 
n 

Then, we have the following theorem shown by Kadota [16, 

Theorem 4.1], which gives a characterization of provably 11 -
m 

functions wi.thin relativized ordinal recursive functions. This 

theorem is a relativization of Theorem 4.1.2 in Section 4.1. 

THEOREM 4. 3 . 8 . Let n ; 1 and m ; 1. Let ¢ be the set ¢ 
m 

defined above. Then, the following are equivalent: 

(a) ! is provably 11 in PA n+m-1' m 

(b) ! E 
U <l> 

m<w 
'lJ. (w (m)). n 

( c) ! E 
u 1¢. 0 

a<w a n 

Now, we extend the combinatorial statements which are stud­

ied in Section 4.2, and give some provability and unprovability 

results in fragments of Peano arithmetic by using Theorem 4.3.8. 

Let !:N ~ N be a strictly increasing function. For c,h,m,n 

E N, the predicate 

[h, m] ~ (n+l)n 
* C 

means that, for every function g: [k,m] En] ~ {O,l, ... , c-1} , 

there is H ~ [h, m] such that 

(a) card(H); n + 1; 

(b) If ' h (. . t t II[n])., IS omogeneous I.e., g IS cons an on 

(c) H is j-large, i.e., j(min(H)) ~ card(II). 

Then, we can prove the following proposi tion similarly to 

Proposition 2.3.1. 
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PROPOSITION 4.3.9. For a strictly increasing !:N -t Nand 

for each e,k~n E N, there is mEN such that the following holds. 

[k, m] ~ (n+1)~. o 

From this proposi tion, we define a computable function as 

follows: For e,k,n E N, 

a{/) (k) = )lY( [k,y] ~ (n+1)n). 
n,e e 

Now, we say that the relation [k, m] ~ (n+1)n is I-Ramsey 
* e 

re l at ion. We consider representations of I -Ramsey relation in 

<i.(PA). For a given function I: N -+- N, let f be a new unary 

function symbol whose interpretation on N is !. Then, we can 

represent [-Ramsey 

P(w,x,z,y;f) of the 

true if and only if 

relation 

language 

[x,y] ~ 
* 

is defined by minimalization 

i.e., I(x) = )lyR(x,y) for all 

by using a bounded formula 

<i.(PA)+{I}, i.e., p(w,x,z,y;l) is 

(w+1)w for all W,X,z,y E N. If I 
z 

of a 11 -formula R(x,y) in PA , m n 
x E N, then I-Ramsey relation can 

be represented by a 11 -formula, 
m 

since we can replace the 

formulas of the form pCfCx)) by the 11 -formula m 
(or Vz(R*(x,z)-+-p(z))), where p is a predicate 

and R*(x,y) ~ R(x,Y) ;\ Vz<y,R(x,y). 

* 3 y (R C x , y) ;\p (y) ) 

symbol in <i. (PA) 

Then, we have the following (see Kadota[16, Theorem 5.4 and 

Theorem 5.6): 

(a) 

in PA 

THEOREM 4.3.10. Let m > 0 and let us denote ¢ for ¢ . 
m 

Let n > O. For some 11 representation of ¢-Ramsey relation 
m 

n+m-1' the formula 

VzVx3y([x, y] ~ - n (n+1) ) 
* z 

is provable :In PA n+m-1· 

(b) Let n > 1. For any 11 representation of ¢-Ramsey relation 
III 

in PA , the formula n+771-2 

is not provable in PA 2· n+m-
o 
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This theorem shows a relativization of the results given in 

Section 4.2. 
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CHAPTEn 5 

THE FAST AND SLOW GROWING HIEnARCHIES AI'\D INDUCTIVE DEFINITIO~S 

In this chapter, we consider the slow-growing hierarchy, 

opposing it to the fast-growing one, and study the relation 

between them. Actually, we study the ordinal T where G of the 
T 

slow-growing hierarchy catches up wi th F of the 
T 

fast-growing 

hierarchy. This ordinal T is called a subrecursive inaccessible 

ordinal (or s-inaccessible, for short). 

In Section 5.1, we summarize the definition and results on 

the s-inaccessible ordinal. 

In Section 5.2, we introduce the term structure of the 

ordinal notation, and show the strong normalizabili ty of the 

structure. We also show that the ordinal T is (3)-built-up. 

In section 5.3, we introduce an ordinal T', which is a 

variant of T, and show that the fast-growing hierarchy up to T' 

classifies the set of all provably computable functions. in the 

theory of finitely iterated inductive definitions ID (= UN/D ). 
<w nEr~ n 

5.1 Fast-growing versus slow-growing 

Let I be a countable ordinal. We say that an ordinal a < I 

is subrecursive inaccessible (or s-inaccessible) if the slow-

growing hierarchy {G~}fi<a catches up wit h the fast-growing 

hierarchy {Ff3}fi<a at a, i. e. , for some p E N, 

G (x) < F (x) < G (x+1) a a = a 
for all I > p. 

In this section, we define a tree-ordinal T following 

Wainer[49], and show that T is a minimum s-inaccessible by 

assuming the collapsing theorem and (3)-built-upness of T, which 

will be proved in the following sections. 
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Here, we will consider countable ordinals as infinitary 

terms. These ordinals are called countable tree-ordinal s. Each 

fundamental sequence of a countable limit ordinal will be 

considered as a tree-ordinal. We will use the symbol Q for the 

set of countable tree-ordinals which is the same for the set of 

countable ordinals, since we will pay attention to the systems 

of fundamental sequences in this chapter. 

DEFINITION 5.1.1(Tree-ordinals Q). The set Q of the 

countable tree-ordinals consists of the 

generated inductively by: 

(a) o E Q; 

if a E Q, then a+l E Q; (b) 

( c ) if a E Q for all x E N, then (a) N E Q. x X XEl~ 

infinitary terms 

(In the case of (c), the term (ax)xEN is called a limit, and 

a[x] denotes a .) 
x 

We define the less than relation < on Q as the transitive 

closure of 

(a) a < a + 1 for all a E Q; and 

(b) a[x] < a for each limit a E Q and x E N. 

We remark that the notion of tree-ordinals includes that of 

systems of fundamental sequences. More precisely, for each 

system P for I, each limi t ordinal a < I and its fundamental 

sequence {a[x]}xEN' we can identify a with (a[x])xEN E Q. 

Next, we define the fast-growing {Fa} aEQ and slow-growing 

{ G } hierarchies inductively as follows: 
a aEQ 

Fo(x) x+1; Go(x) 0; 

F a+l(x) pI+1(x) ; G a+1(x) G (x) + 1; 
a a 

F).(x) F).[x] (x); G).(x) G).[x](x), 

where)' is a limit. 

The relation -+ on Q for each n E N are defined by the 
n 

transitive closure of 
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(a) a + 1 ~ a for each a E Q, and 

(b) 

n 

a ~ a[n] for each limit a E Q. 
n 

This relation --t- can be identified with the 
n 

Chapter 3. We also define the relation ====> on 
n 

relation --+ in 
n 

Q for each n E N 

similarly to Chapter 3 as follows: For a, 

a ~ ~ or a = ~. 
~ E Q, a ~ ~ is n 

n 

We define the notion of (n)-built-upness for n E N defined 

as follow: The subset Q(n)-bu c Q of (n)-buiLt-up tree-ordinals 

is defined by the set of all a E Q satisfying that: 

).[x+1] ~ ).[x] 
n 

for any limit ). ~ a and x E N. 

As in Chapter 3, we can prove the following theorem. 

PROPOSITION 5.1.2. Assume a E Q(p)-bu for some pEN. Then 

the following holds: 

(a) Fa(x) < Fa (x+1) and Ga(x) ~ Ga (x+1) for p ~ x+1. 

(b) If a ~~ ~ for p < m, then F~(x) < Fa(x) and G~(x) < Ga(x) 

for x > m. 0 

Next, we say that a E Q is a subrecursive inaccessibLe (or 

s-inaccessible for short) if the following property holds: For 

some mEN, 

F (x) < G (x+1) a = a 
for all x > m. 

Then, we show the following lemma and proposition(cf.Wainer 

[50]). For n E N, the tree-ordinal 0+1+ 

is said to be finite and is denoted by n. 

LEMMA 5.1.3. 

holds: 

(a) For all x > p, 

(b) If a is an 

dominates every F 
~ 

For p E Nand a E 

G (x) < F (x) . 
a a 

s-inaccessible, then 

with ~ < a. 

+1 for n times l's 

the following 

a is a limit and G a 

Proof. (a) We can show by induction on a. (b) Assume a is 
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an s-inaccessible. Clearly, a cannot be O. Moreover, a cannot be 

of the form ~+1, since for any fi+1 E n(p)-bu and x > max(p,l), 

G
fi

+1 (x+1) = G
fi

(X+1)+1 ~ F
fi

(x+1) ~ FfiCFfi(x)) < FfiX+1(x) = F
fi

+1 (x). 

Hence a must be a limit. Assume fi < a. Then fi+1 < a since a is a 

limit, and then we can see that for some m > p, 

F
fi

(x+1) < FfiI+1 CX ) = F
fi

+1 (x) < Fa(x) < Ga (x+1). 

a --+ fi+1. Hence 
m 

o 

PROPOSITION 5.1.4. Let pEN and a E Q(p)-bu satisfy that 

G a[n+1] F a[n] 

for each n E N. Then a is s-inaccessible and, if a[O] is finite, 

then no fi < a is s-inaccessible. 

Proof. If Ga [n+1] = Fa[n] for each n, then 

Fa(x) = Fa[x](x) = Ga [x+1](x) ~ Ga [x+1](x+1) = Ga (x+1) 

and hence a is s-inaccessible. If a[O] is finite and fi < a were 

s-inaccessible, then a[O] < fi, since fi is limit. So 

a[n] < fi ~ al[n+1] for some n. For sufficient large x, a[n+1] T 
~, and hence 

o 

Now, we define the minimum s-inaccessible ordinal T 

following Wainer[49]. 

DEFINITION 5.1.5. For each n EN, the 

level tree-ordinals are defined by induction 

case of Q: 

set n of higher 
n 

similarly to the 

(a) 0 E Q 
n 

(b) If a E Q n' then a+1 E Q 
n 

( c ) If a E Q for all r E Qk(k<n), then (a ) EQ E Q 
r n r r k 71 

(In the case of C c) , the term (ar)r EQ 
is called a limit, and 

k 
and a[r] denotes a . ) 

r 

From this defini tion the sets Q o and Q 1 can be identified 

wi th Nand n, respecti vely. Similarly to the case of Q, we 
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define the relation < on Q as the transitive closure of (a) a < n 
a+1, and (b) a[r] < a for each limit a = (a[r]) EQ and r E Qk. 

r k 
We also define the set theoretic height lal of a E Q 

n 
inductively as (a) 101 = 0, (b) la+11 lal+1, and (c) 

l(a[r])rEQkl = sup{la[r]1 I rEQk}· 

DEFINITION 5.1.6. For each n E N, the function 

~:Q 1 xQ ~ Q , n n+ n n 

which is called the level n fast-growing hierarchy, is defined 

inductively by 

(a) C{Jn(O,f3) f3+1; 

(b) C{J (a+1,f3) 
n 

C{Jn f3 (a,C{Jn(a, f3)); 

( c) C{Jn(A,f3) (C{Jn(A[r] ,f3) )r EQ for A = (A[r])r EQ 
k 

(d) C{Jn(A,f3) C{Jn(A[f3] , f3) for A = (A[r] )rEQ ' 
n 

where C{J f3 denotes the iteration f3-times of C{J , i. e. ,if 
n n 

<f;:Q 1 xQ ~ Q , n+ n n 

then <f;°(a,f3) 

<f;A(a,f3) 

0+1 0 
f3, <f; (a,f3) = <f;(a,<f; (a,(3)), 

(<f;A[r] (a,(3) )r EQ for A = (A[r]) EQ 
m r m 

(k < n), 
k 

Note that, in the case n = 0, C{Jo(a,(3) = Fa(f3) for a E Q I 

and f3 E Qo(= N). For each k < n E N, we define wk E Qn by 

wk = (r)rEQk' 

i.e., wk[r] = r. The tree-ordinals Wo and wk for each k > ° has 

its set-theoretic height wand the k-th uncountable cardinal, 

respectively. 

DEFINITION 5.1.7. For each n EN, the set 7 (c Q ) of 
n n 

named tree-ordinals is defined inductively by: 

( a) 0, 1, Wo ' wI' W n-1 
E 7 

n' 

(b) 7k c 7 for k < n; 
n 

( c ) if a E Gj' 
n+1 

and (3,r E 7 
]1' 

then C{Jn r (a,(3) E 7 
n 
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For a fixed I E N, the function co (= co ) which collapses 
I 

each 1 to 1 is defined by: n+1 n 

coCO) = 0, co(l) = 1, co(wo) = I, CO(W
k

+
1

) = Wk' 

cO('Pk+1r(o,~)) = 'Pkco(r)(co(O),co(~)), cO('Por(o,~)) = 'Por(o,~). 

The well-definedness of this function can be proved by using 

Theorem 5.2.4 and Lemma 5.2.5. 

THEOREM 5.1.8(Collapsing Theorem). Let IE N, a E 12 and 

f3 E 1 0 , Then, 

Hence, in particular, if a is generated in 12 wi thout reference 

to Wo then, as G (I) = I, we have G F 
Wo 'Pl (a,wo) co(a)' 

Proof. We will prove in Section 5.2. o 

DEFINITION 5.1.9. The tree-ordinal T (r[I])IEN is defined 
as follows: T[O] = 3; 

r[n+1] 'Pl ( ... 'P ('P 1(3,w) ,w 1)"" ,wo) for n > O. n n+ n n-

THEOREM 5.1.10. T is a minimal s-inaccessible. 

Proof. From the results of Section 5.2, Tis (3)-built-up. 

Then, we can prove this theorem by using Proposition 5.1.4 and 

Theorem 5.1.8(Collapsing Theorem). 0 

5.2 The col lapsing theorem and (3)-huilt-upness 

In this section, we will prove Theorem 5.1.8(Collapsing 

Theorem) and that the tree-ordinal r is (3)-built-up, which were 

used in Section 5.1. First, we prove the strong normalization 

theorem shown by Kadota[20). We introduce term structures 

<1 NT . [ . ] ,.----t> by cons i der ing each element in 1 as a 
n' n' n 
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finitary term and each defining equation of ~ as a rewrite (or 
n 

reduction) rule of the terms. Let 0, 1, Wa, WI' ••• , ~a, ~ I, 

be formal symbols. 

DEFINITION 5.2.1. For each n E N, the set Gj of terms is 
n 

defined inductively by: 

(a) 

(b) 

(c) 

- - - 7 0, 1, wo, wI' ... 'W n- 1 
E n' 

7k c 7 for k < n; n 

if 9' and b, 7 then - c 
GJ a E n+l c E n' cp (a,b) E n n 

Naturally, terms in 9' are interpreted as tree-ordinals by n 
the function ord: 9' ~ 1 such that 

(a) 

(b) 

n n 

ord(O) = 0, ord(i) = 1, ord(wk ) = wk ; 

ord(~ c(a,b)) = cp ord(c)(ord(a),ord(b)). 
n n 

ABBREVIATIONS. 
- 1 

~ (a,b) = cp (a,b); 
n n 

b+l ~ (O,b). 
n 

DEFINITION 5.2.2. The sets NT of normal terms in GJ . 
n n' 

do m ( a ) E { ¢ , 1[ O} , 7 a ' . . . ,7 n _ 1 } an d a [ z ] for a E NT n' zEd 0 m ( a ) 

are defined inductively as follows: 

(Nl) ° E NT n' dom(O) ¢. 

(N2) 1 E NT n' dom(i) {O}, i[o] 

(N3) 
-

E NTh for k dom(w k ) wk < n; 

(N4) NTk ~ NTn for k < n. 

(N5) Let a E NT l' b,c E NT and A n+ n 
- c 
cp (a,b). Then, A E NT 

n n 
if one of the following holds: 

(a) c = 1 and a = ° (i. e ., A = b + 1) . 

In this case, define dom(A) = {O}, A[z] b. 

(b) dom(c) = 7k for k < n. 

In this case, define dom(A) dom ( c ), A [ z] = ~ c [ z] (a , b) . 
n 

(c) c = i and dom(a) = 7k for k < n; dom(A) = dom(a), 

A[z] == ~ (a[z], b). 
n 

Next, we define term rewr i ting system S (see e. g. , 
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Dershowitz[9] as for the definition) so that, for every term in 

~ which is not normal, some rewrite rule in S is applied to it. n 
Its rewrite rules are as follows: For normal terms a,b,c, 

(R1) 

(R3) 

(R4) 

(R5) 

~ O(a,b) ~ b; (R2) ~ (l,b) ~ 
n n 

~ (a+1,b) ~ ~ b(a,~ (a,b)); 
n n n 

- c+1 - - c 
'Pn (a,b) ~ 'Pn(a,'P

n 
(a,b)); , 

~ (a,b) ~ ~ (a[b],b) if dom(a) 
n n 

- b - - -
'P (O,'P (O,b)); 

n n 

c; . 
n 

PROPOSITION 5.2.3. For every a E C; , a E NT if and only if 
1 n 1 n 

there is no b E 1 such that a ~ b (where a ~ b means that b 
n 

is obtained from a by a single application of some rule of S) . 

Proof. We can prove by induction on the length of a. 0 

Kadota[20, Theorem 1] showed the following theorem. 

THEOREM 5.2.4 (S t rong norma l i za t ion theorem). 

in C; is strongly normalizable (i.e., there is 

Every term a 

no infini te 

seque~ce such that a ~ al ~ a2 ~ ... ). o 

Now, we introduce a function co(= coIl for a fixed I E N, 

which represents the function co (in the collapsing theorem) on 

the terms as follows: 

(a) I, 

(b) 
- - c 
cO(CPk+1 (a,b)) ~kCO(C)(co(a),co(b)) and 

- - c 
cO(CPo (a,b)) 

- C 
CPo (a,b), 

where I is the numeral of I (i.e., if I 

y+1, then x = ~o(6,y) (= Y+1)). 

0, then I 

LEMMA 5.2.5. Let a E ~ . Then, the following hold. 
n 

(a) If a b+1 for some b, then co(a) = co(b)+l. 

0; if I 

(b) If a E NT and dom(a) = C;o, then co(a[x]) = co(a) and 
n 

ord(a[x]) = ord(a)[I] for I E N. 
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(c) If a E NTn and dom(a) = ~k for some k > 0, then 

ord(a[b] ) 

ord(co(a[b]) ) 

ord(a)[ord(b)] and 

ord(co(a))[ord(co(b))] for bE dom(a). 

(d) If a ~ b, then ord(a) 

ord(co(a)) 

ord(b) and 

ord(co(b)). 

Proof. We can prove by induction on the length of a. 0 

LEMMA 5 . . 2.6. If x E N and a E ~l' then 

Gord(a) (x) = ord(co(a)). 

Proof. From the strong normalization theorem, the proof is 

proceeded by transfini te induction on a over the well-founded 

ordering « (where « on ~ is defined as the transitive closure 
n 

of (a) b[z] « b for normal b with z E dom(b), (b) d « b for 

nonnormal b with b ~ d). 

Case 1. a = 0. This case is trivial. 

Case 2. a E NTI and dom(a) = {O}. Then, 

some b E ~l' If a = 1, then the assertion is 

b+l, then 

Gord(a) (.r) = Gord(b) (x)+1 = ord(co(b) )+1 

by the induction hypothesis and Lemma 5.2.5(a). 

a = 1 or b+l for 

trivial. If a = 

ord(co(a) ) 

Case 3. a E NTl and dom(a) = ~o. By Lemma 5.2.5(b) and the 

induction hypothesis, 

G (r) G (x) - ord(co(a[x])) ord(co(a)). 
ord(a)' = ord(a[x]) -

Case 4. a ~ b for some b. By Lemma 5.2.5(d) and the 

induction hypothesis, 

Gord(a) (.r) = Gord(b) (x) ord(co(b) ) ord(co(a)). o 

Proof 0/ Theorem 5. J. 8 (Co II aps i ng Theorem). For a E ~ 2 and 

b E ~l' we have 

and hence ord(co(~I(a,b)) = <po(ord(co(a)),ord(co(b))) . Thus, 
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Gcpl (ord(a) ,ord(b)) (x) Gord(~1 (a, b)) (x) 

ord(co(~I(a,b)) by Lemma 5.2.6, 

CPo (ord(co(a)) ,ord(co(b))) 

Ford(co(a))(ord(co(b))) 

Ford(co(a)) (Gord(b) (x)) 

by Lemma 5.2.6. For given a E 12 and fi E 11' we choose a and b 

above such that (a) ord(a) a, ord(co(a)) co(a), and (b) 

ord(b) = fie (We can choose such a and b since the elements of 1 
n 

are constructed by the same way as to the element in j ). This 
n 

completes the proof. 0 

Next, we prove that Tis (3) - buil t-up. Thi s completes .the 

proof of Theorem 5.1.10 that T is a minimal s-inaccessible. 

First, we remark that the following proposition holds: 

PROPOSITION 5.2.7. Let a E 1 and a 
n 

a[r] E 1 for every r E 1 . 
n m 

Proof. For a given a (a[r])r
EQ 

E 1
n

, there is a normal 
m 

term a E J such that ord(a) a by Lemma 5.2.5(d) and the 
n 

strong normalization theorem . We fix such a term a E J with the 
n 

minimal length . We can prove this proposi tion by induction on 

the length of this term a for a. 0 

It follows from this proposi tion that we can use trans­

finite induction on the tree-ordinals in 1 over the ordering <. 
n 

DEFINITION 5 . 2 . 8 . For each kEN, the relation 7 on the 

set 1 for each n E N is defined inductively as follows: 
n 

(a) 

(b ) 

( c ) 

a 7 fi if a ~ 0 and one of the following holds; 

r T f3 

a[k] liP fi 

a[r] 

if a = r + 1, 

if ~ (~[x] )XEQ ' 
o 

for all r E 1 ~{O} if ~ m 
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where ° T I~ means that ° 7 f3 or ° = f3. 

Note that if a, f3 E Gf 1 , then the relation 7 for each k E 

N is the same as that defined on n. Then, the following lemmas 

and theorem can be proved (see Kadota[18]). Let n, kEN. 

LEMMA 5.2.9. If a E Gf l' f3 E Gf and r E Gf "-.{o} , then n+ n n 

LEMMA 5.2.10. Let a E Gf n+1 and f3,o,r E Gfn · If ° 7 r, then 

~no(a,f3) 7 dn
r (a,f3). 

LEMMA 5.2.11. Let a, r E Gf l' f3 E Gf "-.{o} and n > 0. n+ n 

THEOREM ~). 2.12. CJI+ 
(a) If a E J n ' 

and r 7 0, then 

a[r] 7 a[o]. 

a = ( a [ ~ ] ) ~ EQ ' 
m 

r,o E Gf 
m 

Here the set 1+ (c Gf ) for each n E N is defined inductively by 
n = n 

(T+l) 0, 1, wo,'" ,w
n

-
1 

E Gf~; 

(T+2) Gf+ C 1+ for k < n; 
k n 

(T+ 3) if a E' CJI+ l' r E CJI+ d f3 CJI+ {} h r ( f3 ) CJI+ J J an E J "-. ° . t en ~ a, E J • n+ n n n n 

(b) Each a E Gf~ is (k)-built-up for each kEN. 

We remark that (k)-built-upness does not hold for some 

element in Gf 1 since, if we put a = ~l (wo ,0), then a[r] = ~1 (x,O) 

= 1 for all x E N. 

THEOREM 5.2.13. T is (3)-built-up. 

Proof. From the defini tion of T, we can show that T [x] E Gf~ 
for every x E N. SO, T[X] is (O)-built-up. lIence it is 
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sufficient to prove that T[I+l] ~ T[X]. For this, we have 

T[I+l] 

(PI ( ••• <p (w,w 1)'" ,wo) I I I-

(PI("'<P (wo,W 1)""wo) x x-

(PI ( ••. «1 (3,w 1)··· ,wo) = x I-

since Wo ~ 3. 

5.3 Provable computability 

T[X] 

o 

In this section, we summarize the results of Kadota[18] on 

the classification of provably computable functions in ID<w by 

means of the fast growing hierarchy. Here, ID<w is the theory of 

finitely iterated inductive definitions, which is defined later 

in this section. In [18], Kadota modified T, introduced T' and 

showed the following three theorems. 

TIIEonE~1 !3. 3.1. F , (I) < G , (G , (x+ 1)) for I > 3. 
T = T T 

THEonEM !3. 3.2. F is provably computable in I D for a < T a <w 

THEonEM 5.3.3. If a computable function fk: N -t- N is 

provably computable in ID<w' then f is dominated by Fa for some 

a < T' • 

As a corollary of the last two theorems, we can immediately 

prove the following corollary. 

COROLLARY 5.3.4. Provably computable functions in ID<w are 

exactly those which are elementary recursive in {F I a < T' }. a 

The tree-ordinal T is defined by the same way as T except 

that the definition (d) of <P is replaced by 
n 

We define the formal theory 
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Buchholz[3, Section 4]. 

By s,t,t o""'- we denote arbitrary terms of P.(PA). We will 

use the same symbols i,j,k,m,n,u,v to denote natural numbers and 

numerals for convenience. A formula of the shape P(tl"" ,t
k

) or 

-, p ( t 1 ' • • • , t k)' w her e pis a k - a r y pre d i cat e s ym b 0 1 0 f P. ( P A), i s 

called an arithmetic prime formula (abbreviated by a.p.f.). 

Let X be a unary and Y a binary predicate variable. A 

positive operator form is a formula 21(X,Y,y,x) of P.(PA)+{X,Y} 

in . which only X, Y, y, x occur free and all occurrences of X are 

positive. The language P.(ID) is obtained from P.(PA) by adding a 

binary predicate constant p21 and a 3-ary predicate constant ~ 
for each positive operator form 21. 

ABBREVIATIONS. (t E p21) 
s 

(t ~ p21) -,(t E p21); 
s s 

21 (X,x) 
s 

21 21(X,P ,s,x). 
<s 

p21 ( t) = p21 ( s , t ) ; 
s 

The formal theory ID with v E N is an extension of Peano v 
Ar i thmetic, formula ted in the language P. (ID), by the following 

axioms: 

Vy V x ( 21 ( p21 , x) -+ X E p21). 
y y y 

Vx(21 (A,x) -+ A(x)) -+ Vx(x E p21 -+ A(x)), for each 
u u 

formula A(x) of P.(ID) and each u < v. 

Vy V x V z ( p21 ( x , z) +-+ (( x < y) /\ Z E p21x))' 
<y 

00 

Next, we introduce the infinitary theory ~fD<w' as in 
00 

Buchholz [3, Section 4]. The theory ~ f D <w shall be formulated in 

the language L(fD)+{N} where N is a new unary predicate symbol. 

This is a technical tool which will help us to keep control over 
00 

the numerals n occurring in 3-inferences A(n) ~ 3xA(x) of ~fD -<w 
derivations. Following Tait[45]. we assume all formulas to be in 

negation normal form, i.e .. the formulas are built up from 

atomic and negated atomic formulas by means of /\.V.V.3. If A is 

a complex formula we consider ,A as a notation for the 
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corresponding negation normal form. 

Let CJ.1D(N) be the language CJ.(ID)+{N}. The length IAI of 
each formula A of CJ.1D(N) is defined as follows: 

(a) IN ( t ) I = I .,N ( t ) I = o. 

(b) IAI = 1 if A is an a. p. f. , Pl1(t) or .,Pl1(t). s s 
(c) 21 

IP<s(to,tl)1 I"~ s ( to, t 1 ) I = 2. 

(d) IA 1\ BI = IA V BI = max { I A I ' I B I } + 1. 

( e) IVxAI = 13xA I = IAI + 1. 

PROPOSITION 5.3.5. I..,AI = IAI, for each formula A of CJ.1D(N). 

For each v EN, the set Pos
v 

of formulas of CJ.
1 
D(N) is 

defined as follows: 

(a) 

(b) 

All formulas of CJ.(PA)+{N} belong to Pos . v 
21 21 21 

All formulas Pu(t), P<u(to,tl), "P<u(to,tl) with u < v 

belong to Pos . 
v 

( c) All formulas ..,p21
(t) with u < v belong to Pos . 

u v 

(d) If A and B belong to Pos , then the formulas A I\B, A V B, 
v 

VxA, 3xA also belong to Pos . 
v 

REMARK 5.3.6. If p21(t) E Pos , then also 21 (Pl1, t) E Pos . 
u v u u v 

In the following, A, B, C always denote closed formulas of 

CJ.1D(N). r, r', D. denote fini te sets of closed formulas of Y!.ID(N). 

We write, e.g., r, D., A for r u D. u {A}. AN denotes the result 

of restricting all quantifiers in A to N. We define the 

following: 

(t E N) = N(t); (t f/. N) = ..,N(t). 

DEFINITION 5.3.7. For a,fi E Q
n 

for some n E N, a ~ fi is 

a ~ fi where k = max({3} u {3n .,N(n) E f}). 

PROPOSITION 5.3.8. Let a,~ E Q for some n E N. n 

(a) If a -~ ~ and f ~ D., then a ~ fi. 
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(b) If a rU{O~N} I f3, then a -r f3. 

To define the system 

inference rules as follows: 

we first define the basic 

( ") Ao, Al ~ Ao " AI' 

(V) A ~ A V B; B ~ A V B. 

Ct/X)) (A(n))nEN ~ VxA (x) . 

( 3 ) A(n) ~ 3xA (x) . 

(N) n E N r- Sn E N. 

(pfJ1 ) fJ1 r- P~u (j , n) , if P . (n) j < u. <u ) 

(-'P~u) -'~(n) ~ -'~u(j,n), if j < u. 
) 

Every instance (Ai)iEI ~ A of these rules is called a basic 

inference. If (A.). E 1 ~ A is a basic inference wi th A E Pas , 
1 1 v 

then A. E Pas for all i E I. This property will be used in the 
1 v 

proof of Lemma 5.3.13. 

00 

The system ~/D<w will consist of the language ~/D(N) and a 

certain derivability relation ~a r for each a E 1* for some n E 
m n 

N and for each mEN. This means that r is derivable with order 

a E 1~ and cut degree mEN. Here, for each n E N, the set 1~ (S 
1+, cf. Theorem 5.2.12) are defined inductively as follows: 

n 

(a) 

(b) 

( c) 

( d) 

1* = {O}. -1 

0, 1, Wo ••• w E 1*. , , n-1 n 
1* c 1* for k < n. 

k n 

If a E 1* I' r E 1* and f3 E 1* " 1* l' then ~nr(a,f3) E 1*. 
n+ n n n- n 

a CiY* We define ~ r (m E N, a E J
k 

for some kEN) inductively 
m 

as follows. Let n E N. 

(Ax1) a 
~m r, A if A is a true a.p. f. , (0 E N) or -'P~u(j,n) 

with u < j. 
= 

a r, A if A is ( n N) 
21 

r-m -,A, E or P (n). u (Ax2) 
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(Bas) If i(Ai)iEI I- A is a basic inference with A E rand 

I-
a r, A. for all i E I , then l-a +1 r. m 1 m 

If I_a r, n E N /\ 21N(p21 n) and p21 n E r, then l- a + 3 r. m u u' u m 

(Cut) If I_a r, .,C and I-
a r, C and Icl < m, then l-a+1r. 

m m m 

I f a = (a [ r]) EQ 
r u+l 

and and 

I-a[z] A, r for all z E Q and A cPos such that 
m u+l u 

then l- a +1 r. 
m 

(-+) If I-! r and a --r~' then I-~ r. 

Then, the following lemmas and a theorem are proved 

similarly to Buchholz[3]. 

LEMMA ~). 3.9. (a) If I-
a r and k, r A==> a m < c I-k A. m 

(b) If I-
a r, then I-r+a r (where a 

r+a = 'P (O,r))· m m n 

( c) If I-
a r, ° f/. N, then I-

a r. 
m m 

LEMMA 5.3.10(lnversion). Let (A.) 'EI 
00 21 

inference (/\), (V), (P<u)' 
21 I I 

(.,p ). Then, <u 

I- A be a basic 

I-
a r, A implies 
m 

I-
a r, A. for all i E I. m 1 

LEMMA 5.3.11(Reduction). Suppose I-~ r o , .,C and Icl ; m, 

where C is a formula of the shape A V B or 3xA(x) or P~u(j,n) or 
21 ~ .. a+ ~ .,p (n) or a false a.p.f. Then, I- r, C ImplIes I- r o , r. u Tn Tn 

some 

THEOREM 5.3.12(Cuteiimination). If f-a 1 r and a E 1* 1 for 
( k) m+ v+ 

v E Nand m > 0, then f-z r where 
TTl 

a k 
z(k) = 'Pv+l(1,'Pv+l(1,'Pv+l(2,wv))) for each hEN. 

LEMMA 5.3.13(Coiiapsing Lemma). If f-~ rand r c Pos
v

' a E 

1* 2' then I- z1 r where z = 'P l(a,w). v+ v+ v 
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DEFINITION 5.3.14. Let ~(N) be the set {A A is a 
+ 

sentence of ~(PA)+{N} in which N occurs only positively}. For r 
= {AI,···,A n } ~ ~(N)+ and each kEN, the relation F r(k) is 

defined as 

{ 

A1V" 'VA
n 

is true in the standard model 

when N is interpreted as {i E N I 3i < k}. 

LEMMA 5. 3 . 15 . If r- ~ i 1 f/. N,..., i m f/. N, r for a E 7 ~ 
and r c ~ (N) and n > max {3, 3 ii' ... ,3 i }, then F r (F (n)). 

= + m a 

awN THEOREM 5.3.16(Bounding). If r- 1 yXEN(3YEN(A (x,y))), where 

* o· < a E 71 and A(x,y) a LI-formula of ~(PA), then for each n > 

1, there is kEN such that k < F l(n) and A(n,k) is true. a+ 

Proof. From the premise, we obtain r-~ n f/. N, 3YEN(AN(n,y)). 

Then, we get F(3YEN(AN(n,y))(F (n)) for n > max{3,3n} by Lemma 
a = 

5.3.15. Hence for each n, there is a k such that k < F (3n+3) 
a 

and A(n,k) is true. From 3n+3 < 4n+2 = Fr(n) since n > 1. Thus, 

Fa (3n+3) < Fa(Fr(n)) ; F;(n) ; F~+l(n) = Fa+1 (n) 

since a ~ 1 from 0 < a. o 

In the following, we show that ID for vEN can be embedded 
v 

00 • 
into cpl D . The followIng resul ts can be proved as Buchholz [3, 

<w 
Section 4] (cf. Kadota [18]). 

ABBREVIATION. - k+1 k = cp 1(2,w). v+ v 

LEMMA 5.3.17. r-Z .A, A where k 

LEMMA 5.3.18. r-z .11(0), .VxEN(A(x) -+ A(Sx)), n f/. N, A(n) 

where z = (IAI+1)+w . v 

DEFINITION 5.3.19. Let B(x) be a formula of ~/D(N). For A 

E Pos , A* denotes the result of replacing all occurrences of P~ 
u * * * u 

in A by B ( . ). {A 1 ' ••• ,A} = {A 1 ' ••• ,A }. 
7ll m 
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PROPOSITION 5.3.20. If r our cPos , u 
u+l < I), 

k IBI and ~~ r o , r, then 

L(k +1)+a N * 
'I r o , ,,(YxEN(21

u
(B,x)---+B(x))) , r. 

* a 21 LEMMA ~5. 3.21. If a E 1 u+l' /1 c Pos u ' and ~1 /1, P u (n), then 

~ (h '" + 1) + a /1 ., (YxEN (21N (B , x) -+ B (x) ), B (n) 
1 ' u 

where k = I B I . 

of 

LEMMA 5.3.22. Let z = (IBI+l)+w l' Then, 
u+ 

~ZI "YxEN(21N(B,X)---+B(x)), .,p2ln, B(n). u u 

PROPOSITION 5.3.23. 

fD, there is k E 
I) 

For a mathematical axiom A(xI"" ,x ) m 
N such that ~~ A(i I"'" im)N for all 

PROPOSITION 5.3.24. By PLJ, we denote Tai t' s calculus for 

the fir s t-order predi ca te logi c in the language f£ ( f D). If a set 

of formulas r(xI"" ,x ) is derivable in PLJ, then there is k E 
m 

N such that 

~ok i I ~ N, ... ,i ~ N, rei I"'" i ) for all i l , ... ,i E N. m m m 

THEOREM 5.3.25. If the sentence A is provable in fD for I) 

z N k I) 

E N, then there is kEN such that ~k A where z = ~ 1(2,w). 
I) + I) 

Proof· Suppose a closed formula A is provable in fD . Then, 
I) 

.,(AlA·· ·AA ) ,A is provable in PLJ where 
n 

closure of an axiom of fD. Hence, 
m N m- I) N N 

~1 (A I A· .. AA) and ~1 ., (A I!v .. AA ) ,A . 
n N n k 

formula (AlA" ·AA ) , we obtain that ~ 
n 

each A. is the universal 
z 

there is m such that 

By a (cut) with the cut 

AN for some k. 0 

THEOREM 5.3.26. If a I1 2 -sentence Yx3yA(x,y) for A E L] is 

provable in fD for I) E N, then there is a < T' [1)+1] such that 
I) 

for all n > 1, there is k such that k < F (n) and A(n,k) is true. 
a 
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Proof. Suppose 1Dv r- A for A closed. Then, r-% AN where a = 

'I'~+1 (2.w v ) for some 0 :. k ~ 1\1. If k > 1. then by Theorem 

5.3.12(Cutelimination), r-k-1 A where 

a' CP~+l (1,cpv+1 (l'CP~+l (2,w v ))) = CP~+l (1,cpv+1 (l,a)) 

k+1 
cP 1(2,a) = cP 1(2,w). v+ . v+ v 

By iterating this argument, we obtain r-fi1 AN where fi = cpk+m
1

(2,W ) 
v+ v 

for some mEN. Then, by iterating Lemma 5.3.13(Collapsing) we 
r N k+m 

have r-1 A where r = CPI ( ..• cp (cp 1(2,w),w 1)'" ,wo)· And we v v+ v v-
have r < T' [v+1] since 

r 
k+m-1 

CPI ( ••. cp (cp 1 (2,cp 1(2,w)),w 1)·'· ,wo) v v+ v+ v v-

< CPI ( •.. cp (cpw 0
1 (2,cp 1(2,w)),w 1)'" ,wo) v v+ v+ v v-

( CPI(Z,WO)( ( )) ) ) < CPI(···CP cP 1 2,cp 1 2 ,w ,w 1 ... ,wo v v+ v+ v v-

where Z = CP2(···CP (cpl 1(2,cp 1(2,w)),w 1)'" ,WI) V v+ v+ v v-

< 
In I ( . . . cp (cp w I 1 ( 2 , cp 1 ( 2 , w )), wI) . . . , w a ) 
r V v+ v+ v v-

w v 
< CPI ( •.. cp (cp 1(2,cp 1(2,w)),w 1)'" ,wo) v v+ v+ v v-

CPI(···CP (cp 1(3,w),w 1)'" ,wo) v v+ v v-

T'[v+1]. 

Hen c e, r < T' [v + 1] < T·. Th us, r + 1 < T' [v + 1]. By Th e 0 rem 5. 3 . 16 

(Bounding), for all n > 1, there is k such that k < F l(n) and r+ 
A(n,k) is true. 0 

From this theorem, we can immediately derive Theorem 5.3.1 

and Theorem 5.3.2 which were proved by Kadota[18]. 
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CHAPTER 6 

DISCUSSIONS 

In this chapter, we discuss the following two aspects which 

come from the present dissertation. 

In Section 6.1, we state problems on undecidable fini te 

combinatorial statements in some formal theories of arithmetic. 

Then, we discuss these problems using our results on the 

relation between subrecursive hierarchies and provably 

computable functions. 

In Section 6.2, we discuss the meanings and problems of the 

minimum subrecursive inaccessible ordinal. Then, we 

relation wi th the inducti ve defini tions, and 

application to computer science. 

6.1 Undecidable statements in theories of ari thmetic 

consider the 

state some 

In Chapter 2, we showed that a 

statement PH, which represents strong 

undecidable in Peano arithmetic PA, i.e., 

provable in PA. 

finite combinatorial 

Ramsey property, is 

neither PH nor ~PH is 

In Chapter 4, we studied this 

detai 1 by cons i der ing the fragments 

obtained from PA by restricting the 

unprovability result in 

PA of PA. Here, PA is 
n n 

induction formulas of the 

mathematical induction to formulas containing at most n quanti­

fiers. This unprovability result is obtained there as follows: 

First, we assume that f is a computable function defined by 

where R is a primitive recursive predicate. Then, from Theorem 

4.1.2, f is provably computable in PA if the formula n 
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is . provable in PA , 
n where R is the predicate symbol for the 

primitive recursive predicate R. This formula expresses the 

total-definedness of f. In this case, we can prove from Theorem 

4.1.2 that for n > 0, f is provably computable in PA n if and 

only if f is dominated by F for some a < w . 
a n 

Next, we consider the formula PH(n) for every 1 < n E N by: 

PH(n) VxVz3y([x, y] - n 
- --+ (n+l)z)' 

* 
where the relation [x, y] --+ (n+l)n is primitive recursive. 

* z 
This formula PH(n) expresses the total-definedness 

function a (x,z) which is defined by: 
n 

n 
a (x,z) = JiY([x, y] --+* (n+l)). 

n z 

Then, by Theorem 2.3.2, we obtain the following 

The function a is dominated by F for some a < w . 
nan 

of 

(a) 

(b) * The function a is not dominated by F for any a < W l' n a n-

the 

By applying the argument above, we immediately obtain the 

following results: 

( c ) 

(d) 

PH(n) is provable in PA 
n 

PH(n) is not provable in PA l' n-

This argument gives a method of obtaining the provabili ty 

and unprovability results for some finite combinatorial 

statements. This also gives some problems on such statements 

unprovable in formal theories of arithmetic. In the remaining of 

this section, we discuss these problems. 

In 1982, Friedman, McAloon and Simpson[10] introduced a 

finite combinatorial statement FMS which states some strong 

Ramsey property as PH. Then, they showed that FMS is undecidable 

in the formal theory ATR o . Here, ATRo is the theory of second 

order arithmetic with arithmetical transfinite recursions as 

axioms, which is much stronger than PA. The formulas FMS(n) and 

FMS are defined by: 

FMS(n) = Vx3y([x, y] is n-dense); FM S - V z FM S ( z) , 
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where the predicate ([ I, y] is n-dense) is primi ti ve recursive. 

The function a*(I) is defined by: 
n 

* a (I) = J1Y( [I, y] is n-dense). 
n 

They also showed that the set of all provably computable 

functions in ATRo is classified by the fast-growing hierarchy up 

to ro, where ro is the proof-theoretic ordinal of ATRo which is 

larger than EO' 

However, we have not known the detailed relation between 

the functions * and the fast-growing hierarchy ro a up to such n 
as Proposition 2.3.2 which implies (a) and (b) above. Also we 

have not known fragments of ATRo from which we obtain a relation 

such as (c) and (d). Thus, we now have the following problems: 

(e) * To prove the detailed relation between a and F for a < ro 
n a 

which implies such as (a) and (b). 

(f) To obtain fragments of ATRo which correspond to FMS(n) , 
in the sense of (c) and (d). 

Concerning these problems, we remark the work of Kurata and 

Shimoda [29] . They studi ed the rela t ions among FMS, the 

reflection principle of ATRo for L 1 -formulas, transfinite 

induction up to ro and the large set principle for roo 

There are some other statements which are finite 

combinatorial, and undecidable in certain formal systems(cf. 

Buchholz[3] , Shelah[39] and Paris[34]). It is interesting 

to prove the relations between undecidable statements and the 

fast-growing hierarchies up to some ordinals, which will answer 

the problems such as (e) and (f). 

6.2 Applications of subreeursive hierarchies 

In Chapter 5, we said that an ordinal a is subrecursive 

inaccessible (or s-inaccessible) if the following holds: There 

is mEN such that 

F (I) < G (I+l) for all I > m. 
a a 
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Then, we proved that the ordinal T is a minimum s-inaccessible. 

Here we consider this result and discuss its meaning informally. 

Let f be a countable ordinal and P a system of fundamental 

sequences for f. Then, we consider any sequence {fa}a<1 of unary 

number-theoretic functions. Here, we recall that {f a} a< I have 

the domination property if the following holds: 

Domination: If a < ~, then fa is dominated by f~. 

If {fa}a<1 has the domination property, we have a bijection from 

the set of all a < I to the set {f I a</} by mapping a to f (cf. a a 
the following figure): 

~ 
V 
a 

Here, fa « f~ means that fa is dominated by ff3. 

bijection a coding for I, and each f a code of a. 
a 

We call this 

Then, we consider the slow-growing hierarchy {Ga}a<l. The 

hierarchy {Ga}a<1 is defined inductively by: 

Ga + 1 Cx) = GaCx) + 1; 

Ga(r) = Ga[x]Cx) if a is a limit ordinal, 

where {a[r]}rEN is the fundamental sequence for a. 

If the system of fundamental sequences for I is (n)-built­

up for some n E N, then {G} I has the domination property, by a a< 
Proposition 3.1.12. lIence, then {G} I gives a coding for I. 

a a< 
In order to see this si tuation, we consider the standard 

system of fundamental sequences for EO as an example of systems 

for I. In this case, we have that 

G (x) = x· w ' 

- 72 -



G (x) 
w 

iW 

G (X) 
w 

n 

X 
X 

xx·
·x } n x's, where w 

n ww·
·w} n w's. 

This system is (1)-built-up by Proposition 3.1.7. Thus the 

hierarchy {G
a

} a<Eo has the domination property. 

gives a coding for /, where G is a code of a < EO' 
a 

Hence 

Next, we consider the computation of the function 

the minimal subrecursive inaccessible ordinal T. When we 

F for 
T 

compute 

the value of F (x) for any input x, we need to have the system 
T 

of fundamental sequences for T. More precisely, we need a code 

of any ordinals a < T which has the information on the 

assignment of the fundamental sequence for a. As we discussed 

above, {G } produces natural one of such codings. 
a a<T 

If we take G for a code of T, we have the following 
T 

situation: 

We can use G when we compute F . 
T T 

But, since T is s-inaccessible, F (x) < G (x+1) for sufficiently 
T = T 

large x. This means that F 
T 

is not greater than the function 

which is used in the computation of F . 
T 

This situation suggests the limitation of the construction 

of new greater functions by means of subrecursive hierarchies. 

On the other hand, we showed that the ordinal T' satisfies 

the followlng condition which is similar to s-inaccessibility: 

F , (x) < G , (G , (x)) for x > 3. 
T = T T 

Then, we showed also the following: 

( g) F is provably computable in ID< for every a < T a w 

(h) For any function f provably computable in ID<w' 

there is an a < T such that f is dominated by F . . a 

Here is the theory of fini tely iterated 

definitions. 
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The theory ID<w contains PA and also contains all 

arithmetical consequences of ATRo . In particular, the total­

definedness of the function Fro is not provable in ATRo but is 

provable in ID . However, by (h), we can easily show that the <w 
total-definedness of F, is not provable in ID . From the 

T <w 
argument above and the results (g) and (h), we can say that the 

following two notions are closely related: 

(i) To construct functions by means of subrecursive hierarchies. 

(j) To construct mathematical structures by means of inductive 

definitions. 

Thi s observation wi 11 suggest the possi bili ty of applying 

the relation in various fields. In fact, inducti ve defini tions 

are used in the constructions of many inductive structures which 

appear in fields of mathematics and computer sciences. In 

particular" inductive definitions are used quite often in formal 

language theory. So, we can expect that there will be a lot of 

important applications of results on subrecursive hierarchies 

and provably computable functions in these fields, especially in 

formal language theory. 

Finally, we remark a relation between the results of 

Chapter 5 and proofs using real computers. The collapsing 

theorem in Chapter 5 was proved first by Wainer[49] in a quite 

abstract manner. On the other hand, Coquand and Paulin[6] gave a 

simpler proof of it by using their computer system CC (Calculus 

of Construction) based on type theory. The proof is, of course, 

far more constructi ve than Wainer's, but it lacks mathematical 

intui tions. Our proof gi ven in Section 5.2 is more constructive 

than that of Wainer[49], since it is formalized in ID<w' Hence, 

the author believes that our proof, which highly relies on the 

this normalization theorem, will be more understandable than 

these two and moreover it will clarify the relation between the 

proof using computers by Coquand and Paulin[6] and the abstract 

proof by Wainer[48]. 
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