SUBRECURSIVE HIERARCHIES
AND
PROVABLY COMPUTABLE FUNCTIONS

IN FORMAL THEORIES OF ARITHMETIC

(BRHNESOBIRE L RNAORRERTCOXMTRE ST T T ML)

Noriya Kadota

(ABE%EH)

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

Department of Applied Mathematics
Faculty of Engineering

Hiroshima University

March 1892



CONTENTS

CHAPTER INTRODUCTION
CHAPTER SUBRECURSIVE HIERARCHIES AND FORMAL THEORIES
28, Fast-growing hierarchy
2 Provable computability
2 Undecidable statements
CHAPTER BUILT-UP SYSTEMS OF FUNDAMENTAL SEQUENCES
3L Growing hierarchies on (n)-built-up systems
S Conditions on systems of fundamental sequences
S Existence problems
CHAPTER PROVABLY COMPUTABLE FUNCTIONS IN PEANO ARITHMETIC
40 Provable computability
il Undecidable combinatorial statements
7S Relativized hierarchies
CHAPTER THE FAST AND SLOW GROWING HIERARCHIES AND
INDUCTIVE DEFINITIONS
b Fast-growing versus slow-growing
5% The collapsing theorem and (3)-built-upness
5. Provable computability
CHAPTER DISCUSSIONS
(7 Undecidable statements in theories of arithmetic
6% Applications of subrecursive hierarchies
ACKNOWLEDGMENTS
REFERENCES

13

16

19

25

Z9

34

40

44

50

55

61

69

!

15

76



CHAPTER 1

INTRODUCTION

The study of computable number-theoretic functions has
produced two important notions for classifying them: one is that
of subrecursive hierarchies, and the other one is that of prova-

bly computable functions in formal theories of arithmetic.

Subrecursive hierarchies have been developed in recursion
theory (cf.Lob and Wainer[31], Wainer[48], Cichon and Wainer([5]).
Each hierarchy consists of a sequence {fa} of unary computable
functions indexed with ordinals, in such a way that fﬁ dominates
fa {{ T ripnes

folx) < fﬁ(r)

for sufficiently large r) if a < B. Computable functions are
classified by this notion of domination.

On the other hand, provably computable functions are intro-
duced in proof theory (cf. Kreisel[27], Kino[25], Buchholz and
Wainer[4]). In a given formal theory 7 of arithmetic, we say
that a computable function f is provably computable in 7 if the
total-definedness of f, (or equivalently, termination of the

algorithm for computing f) is provable in T.

In the present dissertation, we will study these two clas-
sifications of computable functions, i.e., subrecursive hierar-
chies and provably computable functions in formal theories of

arithmetic, and clarify the relation between them.

A typical example of subrecursive hierarchies is obtained
by a sequence {Fn}nEN of unary computable functions, indexed
with n in the set N of all natural numbers (={0,1,2,...}), which
is defined as follows:

Fo(x) = x+1;



F A

n TN

Fn+1(I) =
Here, the superscript zr+1 means (zr+l)-times iteration of Fa
(i.e., if f:N — N, then f0(z) = z, and [ (z) = f(fM2))).
Grzegorczyk(cf.Rose[368]) showed that each Fn is primitive recur-

sive (cf.Definition 2.1.1), and any primitive recursive function

f is dominated by Fn for some n € N, i.e., there is a number
m € N such that if m < max(rl,...,zk) then
f(rl,...,rk) < Fn(maX(r,,...,rk)).

Then, we can measure a given primitive recursive function f by
n € N, where n is the least integer such that Fn dominates f.

Hence, the sequence {Fn} classifies the set of all primi-

neN
tive recursive functions.

In order to extend this to a hierarchy {Fa}a</ indexed by
ordinals less than a countable ordinal /, we consider an assign-
ment of a sequence {0([1]}1eN for® ‘each l1amit “ordimal Yo s=r

which satisfies the following (a) and (b):

(a) al0] < a[1] < +++ < a[n] < aln+l] < -+ < a;
(b) sup alzr] = «a.
€N

Ye call thils falr]d a fundamental sequence for «a. Then, we

€N
define {Fa}a</ by transfinite induction on a as follows:
Falzl) & g+l;
SRS T NCE R POF
Fa(I) = Fd[I](I) 1f o esira MG tord gl .

We call {Fa}ael the fast-growing hierarchy (or ertended

Grzegorczyk hierarchy) for |.

For the first 1limit ordinal w (={0,1,2,...}), we assign a



fundamental sequence {w[r]}IEN by

wlr] = = for every x € N.
Then the function Fw(x) (= FI(I)) becomes a variant of famous

Ackermann' s function, which is computable but is not primitive

recursive.

For the ordinal &, Schwichtenberg[38] and Wainer[48] in-
troduced a so-called standard system of fundamental sequences.

The ordinal ¢, is defined by the least « suchesthat o = wa, or

where a > « - Sy e T We define {a[I]}IEN as follows:

aq a
% @, = B+1, then al[z] = w + -+ + w + w1

ag a4 an[r]
1054 a lowldmisty. sthent gailE] SR e+ s+ W + W

Then, they showed independently that {Fa}a<eo defined by this

system classifies the set of ordinal recursive funcetions of
finite order by Kreisel[27] (which we call here a-ordinal recur-
sive functions for a < €3), in such a way that, for each ordinal

recursive function f, f is dominated by Fa for some o < €.

Provably computable functions are defined as the functions
whose total-definedness can be provable in a given formal theory
containing basic arithmetic (cf.Kino[25], Kreisel[27]). From
Kleene's normal form theorem (cf.Kleene[28]), we can represent
any computable function f:Nk — N by a primitive recursive

predicate A4 and function g so that



f(Il,...,Xk) =g(#}’A(Il,---.Ik:}'))

where uyA(...y) is the minimization operator which means the

least y such that A(...y). Hence the formula
VXl s ‘VIka}’A(Xl, s ,Xk,Y)

expresses that f(rl,...,rk) is defined for every TpseeesTp. Bhi's
means the total-definedness of f. We say that f 1is provably
computable in a theory T if

Vxl---kaByA(xl,...,xk,y) is provable in T.

For the case of Peano arithmetic PA, we have the axioms of

mathematical induction:
A(O)AYX(A(x) — A(x+1)) — VxA(x),

where A 1is any formula of the language of arithmetic. Kreisel
[27] showed that the set of all provably computable functions in
PA is equal to the set of ordinal recursive functions of finite
order. As we have mentioned above, the latter set can be

classified by the fast-growing hierarchy {Fa}a<eo' Hence, all

functions provably computable in PA can also be classified by
this hierarchy.

In 1977, Paris and Harrington[35] discovered a finite com-
binatorial statement PH which is undecidable in PA, i.e.,
neither PH nor -PH are provable in PA. The statement PH 1is

a variant of the finite Ramsey theorem.

Godel' s incombleteness theorem says the existence of unde-
cidable statements in PA. The statement P/ is the first exam-

ple of finite combinatorial undecidable statements.

Ketonen and Solovay[24] gave an alternative proof of the
undecidability of PH in PA, by establishing the equivalence of

the Ramsey statement with the statement that FE is totally de-
0
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fined. Ono and Kadota[33] studied the relation between {FO(}CX<£0

and provably computable functions in PA in detail, and showed
the provability and unprovability results on PH as applications
(cf. Kadota and Ono[23], Kadota[16]).

Each sequence {fa} of computable functions with which

e f
we are concerned is defined by transfinite induction on a«a. In
particular, for a 1limit a, it is defined by a fundamental se-
quence {oz[z:]}IEN foria as

fa(I) = f ](I).

alx
Hence, in order to study subrecursive hierarchies, we need to
investigate the systems of fundamental sequences. Schmidt[37]
introduced the notion of built-upness on the systems to show
that the hierarchy determined by a given fundamental sequences
has the following properties.

Increase: Each fa Lsistribetly Iinereasikng.

Domination: TE _ W 2 et Lo SBivah fa is dominated by fﬁ'

Kadota and Aoyama[22] extended this to the notion of (n)-built-
upness which can be applied a wider class of fundamental se-

quences (cf. also Aoyama and Kadota[l], Kadota[l1l7], Kadota and
Aoyama[21]).

In recent years, much attention has been paid to the rela-
tion between the fast-growing hierarchy {Fa}
growing hierarchy {Ga}

. and the slow-

which is defined as follows:

a</
Go(zx) = 0;
Hoatr) = G Ll ¢ 1]
Gk o e Ga[I](I) if a is a limit ordinal.



For the ordinal w, the function Gw is merely the identity one,
since G (1) = GI(I) = r. Compare this with the fact that Fw is
w

not primitive recursive. Now, the following problem arises:

Is there an ordinal « so that the function Ga catches up
with the function Fa? If there is such an ordinal «a, give

the minimum one.

The answer was given by Girard([12],[13]. Then he used the slow-
growing hierarchy as an important tool for the study of the
theory named Il4-l/ogic, introduced by him. From the results of
Girard, Wainer[49],[50] gave such a minimum «, which is named <
and called a subrecursive inaccessible. Kadota[19],[20] studied
this ordinal +t and gave a precise proof of the fact that t is
a minimum subrecursive inaccessible, by showing that {F _} has

a’ o<t
the increase and the domination properties considered above.

Wainer[49],[50] also stated that the fast-growing hierarchy
{Fa}a<r classifies all provably computable functions in IDn fon
every n € N, where !Dn is the theory of n-times iterated in-
ductive definitions(cf.Buchholz[3]). Kadota[1l8] modified <t and
introduced <t'. Then, he showed the similar results on {Fa}a<r'
by using the proof-theoretic method developed by Buchholz[3].

In Chapter 2, we give basic notions on subrecursive hierar-
chies and provably computable functions, which are used through
this dissertation. We summarize the results on the fast-growing

hierarchy {FO(}O(<£0 and provably computable functions in Peano

arithmetic PA. We also state the unprovability result in PA of
the strong Ramsey statement.

In Chapter 3, we develop a basic theory on systems of fun-
damental sequences for treating subrecursive hierarchies more
generally. We introduce the notion of (n)-built-upness (n € N)
on the systems and study the increase and the domination proper-

ties of a sequences {fa}a</ of number-theoretic functions. This

notion is used in the later chapters.

- 6 -



In Chapter 4, we show the classifications of provably com-
putable functions in fragments PAn of PA by means of the fast-
growing hierarchy up to w - Ihi:s sresnlted shrageefiinemenc: off “shat
in Chapter 2. We prove the provability and the unprovability
results in PAn of strong Ramsey statements. Then, we extend

these results to provably Am-functions.

In Chapter 5, we study the relation between the slow-
growing and fast-growing hierarchies. We prove that the ordinal
7 1s minimum subrecursive 1inaccessible by showing that the
system of fundamental sequences of 1 is (3)-built-up. Then, we
medidfivahd s ande dntroduce it' 4 wand showlgthe?r pellassifidcation: of
provably computable functions in an by means of the fast-

growing hierarchy up to 7'.

In Chapter 6, we discuss some problems on subrecursive
hierarchies and provably computable functions in formal theories

of arithmetic. We also discuss some applications of our results.




CHAPTER 2

SUBRECURSIVE HIERARCHIES AND FORMAL THEORIES

In this chapter, we give some basic notions and results on
subrecursive hierarchies and provably computable functions which

are used throughout this dissertation.

To classify computable functions, we consider the following
two approaches: one is to classify them by means of subrecursive
hierarchies, and the other one is to classify them by means of

the notion of provably computable functions.

In Section 2.1, we give basic definitions and facts on the

fast-growing hierarchy {tF 3} and state the relation with

a’a<eg’

ordinal recursive functions by Wainer[48].

In Section 2.2, we summarize ‘the notions on the provably
computable functions in Peano arithmetic PA, and give the rela-

tion with the fast-growing hierarchy {F } 1
a’a<eg

In Section 2.3, we state the unprovability result in PA of
the strong Ramsey statement given by Paris and Harrington[35]

using the results of Ketonen and Solovay[24].

2.1 Fast-growing hierarchy

Some of the essentials in classifying computable functions
by subrecursive hierarchies are given as follows.

Let N be the set of all natural numbers (={0,1,2,...})
and f:N — N be a function. Let /m:N ==+ N be the iteration of f

m-times. More precisely, we define it by

065 %e peiurand FP ey e peF% )

< o
Let us consider fI 3 for a given f. For example:




if f(I) = I+l, then fI+1(I) = 21-+l;
if f(r) = 2z, then fT*r(r) = 271,
2I
if f(z) = 2%, then fI+l(I) = 2.' } A
2

Consider a sequence {Fn} of unary number-theoretic

neN
functions defined inductively as follows:

Fo(l') A e I

T
n+l(I) = Fn 3}

F

Then, the following relations hold: for all x € N,

. 2I
. Tt e
22

Grzegorczyk showed in 1953(cf.Rose[36]) that all primitive re-

Py} = 21+1; Fq(z) 2 gt Fa(x)

nv

cursive functions can be classified as shown in the following

definition and proposition:

DEFINITION 2.1.1(Primitive recursive functions). The set of

all primitive recursive functions is the smallest one of number-

theoretic functions which contains the zero 0 (where 0(r) = 0),
the successor S (where S(x) = x+l1l), the projections lf (where
If(rl,...,rk) = X, for 1 < i < k), and is closed under

substitution: f(x) = g(hl(g).....hk({));

primitive recursion: f(0,z) = g,(x),

f(y+lr~£) i gz(}ﬁ{;[(}’-{))

where zr is a finite sequence of numbers rl,....rn. A predicate
R(Il,...,Ik) is primitive recursive if its representing function

KR is primitive recursive, where KR is defined by




0 4 R(Il""'-rk)
KR(II,...,Ik) =
1 if 1R(Il,....Ik).

Let f:Nk — N and g:N — N be functions. We say that f 1is
dominated by g when there is a number m € N such that if
m < max(r,,...,:k) then

flry,ooovxy) < gmax(zy, ..., 1,)).

PROPOSITION 2.1.2(cf.Rose[36]). The following properties

hold:

(a) For each n € N, the function Fn is primitive recursive.
(b) For each primitive recursive function f:Nk — N, there is
ani n € N such that: f is dominated: by Fn. o

From this proposition, we can classify all primitive recur-

sive functions by means of {Fn} as follows.

neN

DEFINITION 2.1.3(Elementary closure). Let C be a set of
number-theoretic functions. The elementary closure of C, denoted
by (&(C) 1s Jthe smallest set which contalns ‘all functionst insgc,
the Zero, successor, projections, and is closed under

substitution and the following [imited primitive recursion:

TR )" £ E)S
f()’*l»l_f) = 8'2(}’»-}'.]'(}',{))2
flr) < galz).

Each function in &6(C) is elementary recursive in C. If C = {f},
then &(C) is written as &(f). The set 8(Fn) is written as ?n

Sinces any function: in ?n is dominated by Fn+1' we have the

following relation:

20 cobem Ithetrol (outtr Lhnne Badbasi -5

Moreover, from Proposition 2.1.2, it is easy to see that nZN ?n

= AP0 =



is equal to the set of all primitive recursive functions. Hence

{Fn}nEN
tions.

gives a classification of all primitive recursive func-

We are now considering the problem how we can classify com-
putable functions 1in a 1larger set. For this problem, it is
natural to consider extension of {Fn}neN to {Fa}a</ where [ is
an countable ordinal, analogously to the above discussion.

For the definition and basic notions of ordinals, see e.g.,
Levy[30]. We identify the set N with the first infinite ordinal
w (i.e., identify n € N with n < w).

Let / be a countable ordinal and let Lim(/) be the set of
all limit ordinals less than /. As we considered in Chapter 1,
we consider here P:Lim(/) — o which assigns a sequence
{or[Jr]}IEN for each limit a < [, which satisfies the following

condistrons.:
(a) ald] <€ gfll) <€ «++ € gin] < wlntl) € <+ ¢ @2
(b) sup alr] = «a.

reN
Then, we call {o([.zc]}IEN

assignment P a system of fundamental sequences for I.

a fundamental sequence for «a, and this

From this notion, we can extend {Fn}neN to {Fa}a</' We fix

a system of fundamental sequences for an countable ordinal /.

DEFINITION 2.1.4. The first-growing hierarchy (or ertended

Grzegorczyk hierarchy) {Fa} is defined inductively as:

a</

Fo(x)

b

F ()

aesedl .
o+l Fa ()

Fa(I) = Fa[r](r) Hafe o L ELsRiGBmsEe

We notice here that Fa depends on the choice of fundamental
sequences for a. We stated in Chapter 1 the definition of stand-
ard system of fundamental sequences for £gr INn the case of this

standard system, the following lemma holds:

LEMMA 2.1.5. Let P be the standard system of fundamental

- 11 -




sequences. Then the following properties hold:

(a) For every o < &g, Fa I's” strictly aincreasing:

(b) T8 ' o €' < &g, theh Fa is dominated by FB.

This lemma says that the fast-growing hierarchy up to ¢,
defined by the standard system of fundamental sequences has the
increase and the domination properties mentioned in Chapter 1.
The proof of this lemma will be given in Chapter 3 in .a more

general situation.

Next, we state the relation between the fast-growing hier-
archy up to &, defined by the standard system of fundamental se-
quences and a-ordinal recursive functions for a < &p. The set of
a-ordinal recursive functions is an extension of that of primi-
tive recursive functions, which has been studied by Kreisel[27]
and are called ordinal recursive functions of finite order by

him. We give a definition of this class, following Wainer[48]:

Define the ordinal wn(m) for n,m € N inductively by

wn(m)

wo(m) = m, (m) = w

w
i L

We write w, for wn(l). For each 0 < k € N, <p denotes the
primitive recursive well-ordering on N of order-type Wy, - For
the precise definition, see §3 of Wainer[48]. For each r € N,
ordn(r) is the ordinal represented by r in the well-ordering B
and conversely, Tor ‘each ordinal o < wn, numn(a) is the unique

r € N such that ordn(r) =

Let a < ¢ and n be the smallest integer such that a < wn'
DEFINITION 2.1.6(a-ordinal recursive functions). The set of
a-ordinal recursive functions 9U(a) is the smallest one which
contains all primitive recursive functions and is closed under

substitution and the following unnested a-recursion:

f(O,u) = golu);
flz,u) = g1 (z,u,fCh(z,u),u)) 1Iif O <54

where h(r,u) < 1 whenever 0 <, £ <, num (a), and A(z,u) = 0
otherwise.




As in Definition 2.1.3, we write ?a for 8(Fa) when o < gy.

Wainer[48] showed the following proposition:

PROPOSITION 2.1.7. For each ordinal a such that 0 < a < gy,

208 .. Wed
Ql(w ) s /3<O"w ?B
In particular, if n > 0, then
U SOl
iy ﬂ(wn(m)) = 5<wn ?ﬁ . o

REMARK. The set i 7 is that of all primitive recursive

m<w “m
functions. By this theorem, this is also equivalent to the set
u m . m
o U(w"), since w;(m) = w .

2.2 Provable computability

In this section, we define the notion of provably computa-
ble functions in formal theories of arithmetic.

From Church's thesis, the set of computable functions is
equivalent to the set of recursive functions. The set of recur-
sive functions is defined as the smallest one which contains the
projections, addition +, multiplication -, and representing
function K< of < (see Definition 2.1.1), and is closed under

substitution and the following minimalization:
f(x) = py(g(z,y) = 0) 18- ¥oiplg(ripd = 0ds

Here, uy(...¥...) means the least number y sueh that (...y...),
and r denotes the sequence Tyvee e Iy

By minimalization, we can generate a new recursive function
f under the condition that the predicate

VYzdylglr.y) = Q).

The truth of this formula guarantees the total-definedness of i3

However, in order to know that this formula is true, we must

..13_




prove this formula in some way. That: dife, Etheriproofi imist "be car-
ried out in some formal theory. By formalizing this situation,

we define provably computable functions.

Here, we sketch some basic notions on formal theories of
arithmetic. For more precise definitions, see e.g., Shoenfield
[42] and Takeuti[46,Chapter 2]. We consider Peano arithmetic PA,
which formalizes classical number-theory and 1is defined as

follows.

The language ¢(PA) is the first-order one whose non-logical
symbols are the constant 0, the function symbols S (successor),

+ and +, and the predicate symbols = and <.

The non-logical axioms of PA are as follows:

PAL. =Sk = 0). PAB., Xx-8y = (X-¥) + X.

PA2. Sx = Sy — X =Y. PAT S Sl <098

RASSS e S0 =, RBASIa X < Sy tanea Wl en e= W,
PA4, x + Sy = S(x+y). BA9 X < V. X = N v R X

PAGS X0 = S0

PA10. Mathematical inductions:
A(0) A ¥Vx(A(x) — A(Sx)) — VxA(x),

where A is any formula of %(PA), and A is called an induction

formula.

The logical system of PA is the first-order classical logic
with equality axioms.

In PA, we can treat only elementary number-theoretic state-
ments, but PA is strong enough to prove them (cf.Simpson[43]).
Actually, the theory of primitive recursive functions can be
translated into PA (cf.Shoenfield[42,Section 8.1] and Takeuti
[46,Proposition 10.6]). llence we will assume that ¢(PA) contains
the function symbols for primitive recursive functions and PA
contains their defining equations for axioms. Also, we will as-
sume that ¥¢(PA) contains predicate symbols for some primitive

recursive predicates and PA contains their defining formulas for
axioms.




However, for PA, the following Godel's incompleteness

theorem holds (cf.Godel[14], cf.also Takeuti[47] for details).

PROPOSITION 2.2.1(Godel's incompleteness theorem). For any
axiomatized extension T of PA, if T is consistent, then for some
sentence A, neither A4 nor a4 is provable in 7. Moreover the for-

mula Cons(T) which asserts the consistency of T is not provable
fins PA. o

Now we define provably computable functions. By the normal
form theorem (cf.Kleene[26]), there are a primitive recursive
function U and a primitive recursive predicate Tn for n € N such
that, for any computable function f:Nn — N, there is an e € N
(which is called a Godel number of f) such that

(a) Vx3IyT (e,z,¥);
(b) flz) = U(pyT _(e,z,¥)).

Here, the predicate VgByTn(e,g.y) expresses the total-
definedness of the function f as we mentioned above. For the
technical reason, we will fix a canonical construction for the
predicate Tn (e.g., Kleene[26], Shoenfield[42,Section 7.4]).
Thus, we give the following definition. Let T be a formal theory
of arithmetic which contains PA. We write e for the numeral of e

defined by SS-:S0 with e occurrences of S.

DEFINITION 2.2.2(Provably computable functions). A computa-
ble function f is provably computable in T if the formula

Vx3yT (e,x,y)

is provable in T, where e is a Godel number of f and Tn 1 sthils

formula is the predicate symbol which expresses the predicate Tn'

Next, we consider the classification of provably computable
functions by means of the fast-growing hierarchy up to Tl £ B i
we notice the followling result of Kreisel[27].

PROPOSITION 2.2.3. Let f be a computable function. Then, f
is provably computable in PA if and only if f belongs to U(a)

_15.‘




o Some .o <t ¥agns

Then the following proposition is obtained immediately from
Proposition 2.2.3, and Proposition 2.1.7.

PROPOSITION 2.2.4. Let f be a computable function. Then, f
is provably computable in PA if and only if f belongs to ?a for

some a < ¢£g. o

This proposition shows that provably computable functions
in PA can be classified by the hierarchy ?a (g < §5)

2.3 Undecidable statements

In 1977, Paris and Harrington[35] showed that a strong
version of finite Ramsey theorem is true but unprovable in PA.

To explain this result, let us define some notations.

For a set A ¢ N and an n € N, define

At™ _ (B ca | card(B) = n,

where card(B) is the number of elements in B. Let f be a func-
tion from A[n] to a set X. Then, a set H ¢ A is homogeneous for
f If f is constant on H[n]. A set § ¢ N 1s large if

card(f) > min(H),

where min(//) is the smallest element of H. For any k,m € N,
[R, m] 15 the set {r & N: % = 'r < m}. For . k.w,.n € N, the
predicate, which we call the Ramsey rtelation,

[k, m] —> (n+1)7
means that for every f:[k, m][n]——+ {Qstdsns. o e=ll, thereée fisa
set § < [k, m] such that

(a) card(H) ¥ 5 Ay
(b) H is homogeneous,
{c) H is large.

Here, we remark that the Ramsey relation is primitive

- 16 -




recursive. Hence, it is expressed by a predicate symbol in PA
(cf. the definition of PA). We define the formula PH as

VxVzVwiy ([x, ¥y] s (z+1)i).

The following proposition can be shown by wusing 1infinite

Ramsey theorem (cf. Paris and Harrington[35, p.1135]).

PROPOSITION 2.83.1. PH is true (i.e., for every c,k,n € N,
there is an m € N such that [k, m] w—r (n+l)Z holds) . 0

By this proposition, we define a recursive function o & by

0. 002) = pytlz, ¥1 — (n+1)7).

Then, the following lemma can be easily shown.

LEMMA 2.8.2. If ¢ < ¢, k

A

R Ehen On,c(k) = Un,C'(k‘)' u]

Ketonen and Solovay[24] showed the following proposition:

PROPOSHTTGNESZ S S (aty e s =10 e &> L and @ > 3. Ther,

On,c(I) E Fwn_z(c+5)(r)'
(b) Let n > 1. For any increasing function f, f 1is dominated
by ST for some ¢ if and only if f is dominated by Fa for some
(98 wn~l. O

By using this proposition, Ketonen and Solovay[24] proved
the unprovability of PH in PA, by a proof-theoretic method. We
will show this in Section 4.2 as a corollary (Corollary 4.2.2)
of our study on provably computable functions. Here, we state
this statement as a proposition, and give a proof by using
Theorem 4.1.2.

PROPOSITION 2.3.4. P// is unprovable in PA.

Proof. Assume contrarily that PH is provable in PA. Then,

by Theorem 4.1.2, the function Xz.lw.lr.az w(r) is provably

A

._17_




computable in PA. Hence, it belongs to U(a) for some a < g4 by
Proposition 2.2.3. From Proposition 2.1.7, it belongs also to ?B
for some B < ¢€p. Then, it 1is dominated by FB+1 since every
function in ?ﬁ is dominated by Fﬁ+1' Therefore, by Proposition
2.3.2, it is dominated by the function XI.on C(I) for some n,c €

N, and hence there is m such that o, w(r) < o, C(max(z,w,r)) for

alll, za,r tsiiehisbhiaeitnm < ax(2 oy )R PuGiEz-Er bl o = Lesuandy ri=

max(n,c,m+1l). Then we have max(z,w,r) = r. Thus, the relation
oz,w(z) < an,c(maX(z.w.r)) = Uz,w(I)

is led to the contradiction. o

We will study this undecidable sentence of PA in more
detail in Chapter 4. There, we will give a refinement of this

argument by considering it in some fragments of PA.




CHAPTER 3

BUILT-UP SYSTEMS OF FUNDAMENTAL SEQUENCES

In Chapter 2, we considered the fast-growing hierarchy up
to €9 as a tool for classifying a subclass of computable func-

tions or provably computable functions in PA.

In this chapter, we consider more general situation on the
hierarchy of number-theoretic functions. This consideration is
useful for classifying large subclasses of number-theoretic
functions, because our general theory is applicable to the study
on such classification by hierarchies. The results of this chap-

ter were obtained by Kadota and Aoyama[21].

In Section 3.1, we introduce (n)-built-up systems of funda-
mental sequences. Then, we study properties such as increase and
domination of the fast-growing hierarchies defined by (n)-built-
up systems.

In Section 3.2, we clarify relations between conditions on
systems of fundamental sequences considered in the literature,
comparing with (n)-built-up systems. We examine the results in

Section 3.1 under some conditions weaker than (n)-built-upness.

In Section 3.3, we study the existence problem on systems
of fundamental sequences for the first uncountable ordinal s

under the conditions which are considered in Section 3.2.

3.1 Growing hicrarchies on (n)-built-up systems

In Chapter 2, we studied the fast-growing hierarchy up to
to defined by the standard system of fundamental sequences. Here
we study sequences of unary number-theoretic functions defined
by transfinite induction such as the fast-growing hierarchy.

Let / be a countable ordinal and let P be a system of fun-

damental sequences for /[ (as for the definition of systems, cf.
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Chapter 2.1). For a sequence {/a}a<l of number-theoretic func-

tions, we consider the following conditions:

(f1) fo 1s strictly increasing;
B2 fa+l is defined from fa seatthaites A5f fa s istriigtil sy
increasing, then fa+l i sallisor isitriciily® incr casing.;
fq(0) < fys1(0) and f (1) < fgep(x) for r > 0;
L 4 Lamits
sy fa(r) fa[I](I) Rom add! Sr s b i fad o wids! avlimi

where a[r] is the r-th element of a fundamental sequence for «.

Por a given system P for [, we can define seguences {fa}a<l
which satisfy the above conditions (f1)-(f3), as the following

examples show:

EXAMPLES 3.1.2.(a) The fast-growing hierarchy {Fa}a<l (et
Section 2.1) satisfies the conditiens. (FL)Y-(Ff3), e.g., we obtain
(f2) as follows. It is easily shown that z < Fa(I) for all r € N
by induction on a € [. Hence, 1T Fa ks’ strillectly dnereasing, then
Fan(x) = Fan(z+1) and thus

o T+l I+2
Fa+l(I) = F& (i 54 F& (r+l) < F& (x+l) = F&+1(I+l).

Therefore (f2) is obtained.

(b) The Hardy hierarchy {Ha}a</ is defined inductively as:

Ho(z) = 13 Ha+l(I) = Ha(1+l):

Ha(r) = HG[I](I) IROEMIGEM NG o

This hierarchy satisfies the conditions (f1)-(f3). This can be
easily shown by induction on «.

Now, we are concerned with the problem that under what con-

ditions on systems of fundamental sequences, {fa}a</ satisfying

(f1)-(f3) have the increase and domination properties:
Increase: ForSeach®a e/ /a IS Erlc Iy S inereas e
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Domination: For each a < B € [, then fa is dominated by fﬂ'

Concerning this problem, Schmidt[37] introduced built-up
systems of fundamental sequences and proved that if a system is
built-up, then {fa}a<l has the increase and domination proper-
ties. However, there are some important systems used in the
literature which are not built-up. In particular, the standard
system for e, is not built-up. Then, Kadota and Aoyama[22] in-
troduced a stronger notion of built-upness, called (n)-built-up-
ness for each n € N so that it can be applicable to a wide class
of systems, and studied the increase and domination properties
of the fast-growing hierarchy determined by (n)-built-up systems.

In the remaining of this section, we will explain these

results of Kadota and Aoyama[22].

DEFENTTEON. 3.1.3. Let .n & N and let P be .a system ftor [.

The relation —;4 on [ is the transitive eclosure of

(a) a+1l —E+ o3

(b) o —;+ al efor a. iinits ordiinail (..

The relation a = B means « =t Bor o= B

In other word, a« & B means that there is a sequence
{ri|O§i§k,0<k} such that 7ro=a, 7,=f, and rilnl=r,, 4 if ry s

limit or 4 = b i 7 Te dwlefom 0. < 1" < ki

Ti+1
Now, we define (n)-built-up systems as follows (cf.Kadota

and Aoyama[22]):

DEFINITION 3.1.4((n)-built-up systems). A system P for [ is
(n)-built-up if

alx+1] a3 od e

for any limit a < / and r € N.

Insparticulars (0)-built-up systems for / in our sense are
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just the same as built-up systems for [ in Schmidt s -sense: § 87+
We will show the following theorem by Kadota and Aoyama[22,
Theorem 3.1].

THEOREM™ 5% iesbys wiksi {fa}a<l satisfies the conditions (f1),
(f2) and (f3), and if P 1is (1)-built-up, then the Tfollowing
properties hold:

(a) fa is strictly increasing for each a € /.

(b) I & B and m > 0, then fB(m) 5 fa(m) and fﬁ(r) < fa(r)

for me< werN?

{c) It g <&, thel f/g is dominated by fa.

Before proving this theorem, we show a lemma (cf.Kadota and
Aoyama[22,Lemma 2.3]).

LEMMA 3.1.6. Let n € N and let P be an (n)-built-up system
for /. Then the following properties hold:
(a) ey e B and m,n < s € N, then «a % B.

(b) I'f B < s then o =t B for some m > n.

Proof. We show this by induction on a«. (a) Assume « —Eﬁ B
and m,n < s. Then a[m] :%? B. Since P is (n)-built-up, als] :ﬁ$
oa[m]. Hence als] :g: alm] :§$ B by the induction hypothesis.
Therefore « e B. (b) Assume B < a. Then B < almy] for some my
2 n. Hence a[mg] == p for some k > n by the induction hypothe-
sis. If we put m = max(mg,k), then « 4 almgl] == § by (a).

m
Hence « o B o

By this lemma, if the system P is (n)-built-up and n < k,
then P 1is (k)-built-up. Then, we can prove Theorem 8.1.5 as
follows:

Proof of Theorem 3.1.5. First, we show (a) and (b) by
induction on «a.

Calsenilis ol = GEE S Ea)i hethds ERe (GiT. @by » diss trivial,
Case 2. g ="rhi i AT By sthe dnduction hypothesis, fT 1S
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strictly increasing, so is fa from (f2). (b) If « rd B, then

—> A. By the induction hypothesis and (f2), fﬁ(m) < fT(m)
= =

fa(m) and fﬂ(r) < fT(I) = fa(r) ROE il <. %

Case 3. @ is. . limits (Ca) dSince . P is (1) -built-up, alzti] fort
ozl ., 80, £ A271) = pap y484L) B oo g atl) > [ q13) = £ (2)
from the induction hypothesis. (b) If « " B, then al[m] :ﬁi B.
a[m](m) = fa(m) for m > 0.
Moreover, since P is (1)-built-up, al[z] —— a[m] for z > mnm.

1
Hence alx] e a[m] by Lemma 3.1.6. Thus, fﬁ(x) & F

| | S

By the induction hypothesis, fﬁ(m) s

a[m](x) <
fa[r](r) = fa(r) for > m > 1 by the induction hypothesis.
We show (c¢). If B < a, then « —E+ B for some m > O by Lemma

Sl BN R (R fﬁ is dominated by fa' o

The following proposition says that Theorem 3.1.5 can be
applied to the standard system of fundamental sequences for ¢

(cf. Ketonen and Solovay([24]).

PROPOSITION 3.1.7. The standard system of fundamental se-
quences for e is (1)-built-up.

To prove this proposition, recall that the standard system
1s defined as follows: For a limit a« < g4, we write a to the

Cantor normal form:

ag ak_l &
a =" L R S +wk(a>a12"'20’k)-

Then we define a[x] for r € N as follows:

ay

If a, = B + 1, then aflx] = w + e 4+ W + wB-r.
i@ o s i

Y% 4 ap, MRl tes S e nE w1 s () R . T + W :

Then the following lemma can be shown by induction on «.

LEMMA 3.1.8. (a) For each n € N and a > 0, « g 0.
(b) If « < r and « ~ghs B for some n € N, then 7 + « =% 7 & B.

(o il = e B for some n € N, then % od wﬁ. o

Proof of Proposition 8.1.7. For a limit a, write a = 7y +
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(24 ag ak-'l
w kR in the above Cantor normal form where 7 = w + e+ oW .

Then we show ol[zr+1] —T+ alr] for r € N by induction on a. We
have the following two cases:
(i) Tdwagi= g + 1, then afz+l] = r + w’g-(r+l) e wﬁ-r =

L
alr] by Lemma 3.1.8(a) and (b).

ak[I+l] aklf]
i) I a, feldimitestheny a2t 1ll] =47 = 0 el
= a[r] by the induction hypothesis that ak[I+l] —l—> ak[I] since
< a and by Lemma 3.1.8(c). 0

&5

From this proposition and Theorem 3.1.5, the proof of Lemma
2.1.5 can be obtained, which states that the fast-growing
hierarchy up to ¢y defined by the standard system has the

increase and domination properties.

Next, we consider an extension of Theorem 3.1.5 where P is
(n+1)-built-up for some n € N. We can prove the following
Theorem wB.l..9d ‘which™ ls "a rellativization of Theorem 3.1.5(ct.
Kadota and Aoyama[22,p.361]) by the same way as Theorem 3.1.5.

Consider the following conditions for each n € N:

(fl)n Fo 18 strictly' Increasing &fter n (d.e., fglx) £ fehr+l)
for m < x).

(f2)n T fa is strictly Inecreasing after mn, then so iIs fa+ and

1
EF(m)~Ff (n), A lEh%e f

() wEOE i < 5

ol a+l

(f3)n fa(r) = fa[I](I) for n < r if a 1is a limit ordinal.

THEOREM 3.1.9. Let n € N. If {[a}a</ satisfies conditions
(fl)n,(fZ)n and (f3)n, and if P is (n+l)-built-up, then the
following holds:

(a) fa is striclily increasing after n for gach o & /.

(b) If « —— B and m > n, then fﬁ(m) < fa(m) and fB(I) < fa(x)
flopsmat s e SN

e Ef & < B, then fa is dominated by fﬁ' o

Thie ‘case Ghat sne =00 rof fthigutheorem! 1ssgust vthe isame as

- 24 -



Theoprem 3.1.5%

EXAMPLES 3.1.10.(a) The fast-growing hierarchy {Fa} 8%
satisfies the conditions (fl)n. (f2)n and (f3)n for every n € N
as in Examples 3.1.2.

(b) The Hardy hierarchy {H } _, satisfies the conditions
(£1)_, (f2)n and (f3)n for every n € N as in Examples 3.1.2.
n

EXAMPLE 3.1.11. The slow-growing hierarchy {G_} is

aa<]
defined as follows: :
Go(I) = 0;
Ga+l(r) = Ga(r) e T
Ga(I) = Ga[I](I) for aplimitlordinal .

This hierarchy does not satisfy (fl1). In fact Gk(r) = R o il

However, we can prove the following proposition by the same way
as Theorems 3.1.5 and 3.1,9.

PROPOSITION 3.1.12. If the system P is (n+l1l)-built-up for
some n € N, then the following results on {Ga} i hold:

(a) Ga(r) < Ga(r+l) tor n< 2 Por avery o € 4.
(b) Lt o s B and g >y, then
Gﬂ(m) < Ga(m) and GB(I) < Ga(I) for: Tod m
Le) ISB @as vBs Sthen Ga is dominated by Gﬁ' o

3.2 Conditions on systems of fundamental secquences

In this section, we clarify relations between several con-
ditions for systems of fundamental sequences, and study the in-

crease and domination properties of {fa}a</ determined by these

systems.
Let /| be a countable ordinal. We defined in the preceding
section that the system P of fundamental sequences for [ is
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(n)-built-up if
alzhl)reee alz]
for any 1limit a < [/ and r € N. In the literature, several

conditions other than (n)-built-upness are studied:

DEFINITION 3.2.1. Let P be a system for /.
(a) (Aoyama and Kadota[l]) P is (n)-diagonal-built-up if

gladd et a[r] for any limit a < / and r € N.

(b) (cf.Lob and Wainer([31]) P is LW 1if «a[1] — «[0] and
alzx+1] —Eﬁ a bz o any: dinitsem<iirand O < 1.

(c) (Dennis-Jones and Wainer[8]) P is structured if
alz+1] =7 a[r] + 1 for any limit a < / and r € N.

(In Kadota and Aoyama[22], this is said to be nice.)

(c)(Zemke[51]) P is normed if it has a norm N:] — N
which satisfies the following conditions (N1)-(N3):
(N1) N(0) = 0;
(N2) N(a) < N(a+1);
(N3) N(alr]l) < N(alr+1l]) for any 1limit a« < [/ and r € N.

(d) (Zemke[51]) P is regulated if it is normed and it satisfies

a[N(B)] > B for B < a < [.

As the case of (n)-built-upness, we can show the following

lemma which states elementary properties for our conditions:

MEMMA *3 .2 #2¢, Let P bera sysitemifore].
(a) If P is either LW or (k)-diagonal-built-up where k = 0
or 1, and « e g. then a P B fotm 2.

(b) If P is (0)-diagonal-built-up and « —;+ B, then «a :ﬁffj B,

Proof. We prove by induction on a. (a) Assume « YR B and m
< s CThens d ] :ﬁb B. If P ds (k)-diagonal-built-up for k& = 0 or
o tliten: calfs = e a[m]. By the induction hypothe-
gig, als] ) alm] == B. Therefore « = g. If P is LW, the
proof is similar to this case of (1)-diagonal-built-up systems.

(b)Y Case 1., a ="07 Trivial. Cage 2. @ = 7 + 1: If @ o B, then
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7 :ﬁé B. By the induction hypothesis, « :%ffb oA A o L
19 lLimPesait o —;+ B, then aln] :ﬁ# B. Since P is (0)-diagonal-

built-up, aln+1] e aln]. By the induction hypothesis, a[n+1]

=7 a[nl+1. If a[n] = B, then the conclusion holds. If a[n]
ne

ey B, then by (a) and the induction hypothesis, a[n+1] e
aln] =T B+1. Therefore, a —/=> B+1. o

Using this lemma and Lemma 3.1.6, we can show the following
theorem by Kadota and Aoyama[22,Theorem 2.4].

THEOREM 3.2.3. Let P be a system for /.
(a) If P is (n)-built-up, then P is (n+1)-built-up.
(b) If P is (n)-built-up, then P is (n)-diagonal-built-up.
(¢) If P is (1)-diagonal-built-up and n > 1, then P is (n)-diag-
onal-built-up.
(d) If P is (1)-built-up, then P is LW.
(e) If P is (0)-diagonal-built-up, then P is LW and structured.
(f) If P is LW or structured, then P is (1)-diagonal-built-up. o

Next, we show a theorem on relations between (n)-built-up
systems and regulated systems by using the following proposition
which is shown by Kadota and Aoyama[22] (cf.Schmidt[37]).

PROBROSTMION 3% 2.4. Let £ be a isystem for [, and let n & N.
The following three conditions are equivalent:
(a) P is (n)-built-up.
(b) P satisfies the Bachmann property B[n] which is defined as
follows: If a[r] < p < alx+l], then al[z] < plnl, for limit a € /
and £ € N.
ey PUsatisties ‘the property’ that for limi® ‘o € [ and % € N, if
alzl = g £ Ilz+lY, then # Tt 2h R o

Kadota and Aoyama[22,p.359] showed the following Theorem

and Corollaries on the regulated systems:

THEOREM 8.2.5. -Let £ be a wsystem for [ @and tlet Nia) =
[{B e I: «a e & BY|. If P is (n)-built-up, then N is a norm on /
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such that a[N(B)] 2 B whenever a > B.
(Hence, if P is (n)-built-up, then P is regulated.) o

COROLLARY 3.2.6. Let P be a regulated system for /. If «a >
@]
B, then « m)—* B

COROLLARY 3.2.7. Let P be either regulated or (1)-diagonal-

built-up. If a > B, then « _ﬁﬁ B for some m € N. o

Let (n)-BU, (n)-DBU, REG, STR and LW be the class of all
(n)-built-up, (n)-diagonal-built-up, regulated, structured and
LW systems. For ¢/, respectiivelys By Theorems 3.2.8 and 3.2.5, we
can obtain the following diagram. Here, for two classes S and
S, § — S means that S contains S. Moreover, each arrow

means that S' contains S properly( see the following example).

HEG, 4 chsn [nTuRl] doecatsiims ([ 1F=Ff e—"{0) Bl

A !

&, = (Q)-Dit

l l

(n)-DBU +——— (1)-DBU +— STR
(n>1)

EXAMPLES 3.2.8. Let f:N — N and / = w-w+l. The following
system P for | gives the proof of the properness of the above

pProposiktieonsia P

w-wlr] = w1, w(m+1l)[1r] =

wem + I iEex > fimp)
I otherwise.

(a) Let n > 0 and f(m,n) = n. Then, P is (n)-built-up, but it
is not (n-1)-built-up. In particular, if n = 1, then P is LW but
it is not (0)-diagonal-built-up.

(b) Let f(m,n) = m+n. Then, P is (n)-diagonal-built-up, but it
is not (m)-built-up. For n > 0, it is not (n-1)-diagonal-built-
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up. In particular, if n = 1, then P is structured but it is not
IFW. If n = 0, then P is LW but it is not (1)- built-up.
(c) We consider the system P for [ which is defined by

modifying P such that

w-m+r-(m+l) if 7 > m+l and m > D

wwlr] = wr, w-(m+l)[z] = [
Tt otherwise.

Then P' is (1)-diagonal-built-up but it is not structured.

The following theorem is a result of Kadota and Aoyama[22,
Theorem 3.1] which shows that the condition (1)-built-upness in

Theorem 3.1.5 can be weakened.

THEOREM = 35290 If {fa}a<l satlisfles  conddtions (f1)-(£3)
and the system P for [ is either LW or structured, then the
following holds:

(a) fa is strictly increasing for each a € /.
(b) I o = B and m > 0, then fﬁ(m) < fa(m) and
fﬂ(I) < fa(I) for m < r € N.
(c) If B < a, then fﬂ is dominated by fa' o

3.3 Existence problems

In this section, we study the existence of systems of
fundamental sequences for all countable 1limit ordinals, which
possess some natural conditions considered in the preceding
sechion.

Let Q@ be the first uncountable ordinal and let Lim(Q) be
the set of all countable 1limit ordinals. Then, we say that
P:Lim(Q) — QY which assigns a fundamental sequence for any
countable limit ordinal is a system of fundamental sequence for
Q (or a system for Q).

In [37], Schmidt showed the following results on the prob-
lem whether there is a built-up (i.e.,(0)-built-up) system of

fundamental sequences for all countable 1limit ordinals.



(a) There is a built-up system for any initial segment [/ of

countable ordinals, but

(b) there is no built-up system for Q.

Here, we prove another two theorems on this problem. One is
on regulated systems for Q and the other is on (0)-diagonal-
built-up systems for Q. The latter case is essentially different
from the result (b), i.e. there is a (0)-diagonal-built-up sys-
tem for Q. All the following results are proved in Kadota and

Aoyama[22,Section 4].

THEOREM 3.3.1. There is no regulated system for Q. (Hence,

for any n < w, there is no (n)-built-up system for Q.)

Proof. We show that there is no regulated system for Q,
i.e.,there is no system for Q such that
(#) for all B < Q, there is an m (depending only on B) such
that, for any oy I 8 = o 2 82, then-aln] = 8.
Assume there is such a system P. Then, for each n, the function
fn:Q — Q defined by fn(a) = aln] is regressive (i.e.,fn(a) < «
for all a > 0). Hence, there are an An c Q of order type Q and a
Bn < 5§ suUch that fn(a) = Bn for all a € An (cf.Levy[30] p.154,

Theorem 4.41). We define (sup Bn)+1 = B and a, = the least a of
n<w
Anﬂ{a<Q|B<a}. This contradicts (*), since a, = al[n] = Bn £ 5. D

On the contrary, we can show the following theorem, whose
proof 1is suggested by M.Hanazawa. It can be proved in ZF set

theory with the axiom of choice.

THEOREM 3.3.2. There is a (0)-diagonal-built-up system of

fundamental sequences for Q.

Proof. Firstly, we prove the following claim:

CLAIM. Let a be a countable limit ordinal and P be a (0)-
diagonal-built-up system for a such that (A + w)[zr] = X2 + 1 for
all 2 with 2 + w < a and r € N. Then, there is a (0)-diagonal-
built-up system P for a+l such that P' (B) = P(B) for all B < a,
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and (A + w)[r)] = A + r for all 2 with 2 + w £ a and 1 € N.

Proof of Claim. We define P° such that P’ (a) = {a[r]}reN
and P () = P(B) for B < a. where {alr]} _y is a fundamental
sequence for a defined as follows:

Case 1. a is of the form B + w. Then, alx] is B + =z.

Case 2. a 1s not of the form B + w. Then, there is a se-

quence {xn}neN gich that Ag< Af<€ 2+ £ &, iég A_ = a and XI + W
< 2 for: ald 'z € N. Sinece P is (0)-diagonal-built=up, ~Ffor

s

every i, there is an z; such that for all m > T, xi+1 T Xi+ w.

We define a sequence of numbers {mn}neN

o

mg = 0, m = max(ri, mi+l) 0 oy I

i+l
Then, {a[I]}IEN is defined as follows:

al0] = 29,
a[mi+l] = Xi o 1 oatly
alm; _j+j+1] = 2, 4+ j + 1, where m, ;+ j <m; for 4 » U

We prove this claim as follows.

If = = m. for  seme t >0y “then aliz+ll = Ai —F A a4 —F
i 1 mi Pl mi

A. == Ai— ) = a[mi] = a[r]. So alzx+1] 5 ¥ Z) .,

+ .-
1) ; (mz i

i Lzl

Otherwise, a[zr+l1l] = a[x]+1 —E+ alzx]. Hence, P 1is (0)-diagonal-
built-up. The proof of this claim is completed.

By our claim, we can prove there is a sequence {Pa} so

a<Q
that every Pa is (0)-diagonal-built-up for a« and if B < a < Q,
then Pﬁ is '8 restriction of Pa 5 P - S Pﬁ(r) = Pa(r) Tor T =< g).
We define PQ by putting PQ(a) = Pa+l(a) for ‘af <@ = Then, PQ is
(0)-diagonal-built-up system for Q. o

From this theorem and Theorem 3.2.8, we can prove the
following corollary.

COROLLARY 3.8.38. If a sequence {/a}a<Q satisfies (f1l)-(f3)
(see Example 3.1.2) and is defined by a (0)-diagonal-built-up
Sy sbems Stor w0 ~(ef. Theorem 3.8.2), then 1t has the increase and

the domination properties.



Finally, we show a result on the problem whether any unary

function g:N — N 1is dominated by some fa in {fa} The fol-

a<Q)’
lowing is proved in ZF set theory with the axiom of choice and

the continuum hypothesis CH.

COROLLARY 3.3.4. There is a (0)-diagonal-built-up system
TS with (f1)-
(f3) and for each g:N — N, g is dominated by fa for some g < S,

for Q which satisfies that for each sequence {fa}

Proof. By CH, we take a sequence 9% = {ga}a<Q of all unary
number-theoretic functions. Then, we can get a new sequence # =

{ha} of unary number-theoretic functions by defining that:

a<Q

h,(0)

ha(1+1)

g,(0) + 1,

max{ha(r). ga(r+l)} L F

for «a < Q@ and r € N. We can easily show that ha e S EET et 1Ny
increasing, and dominates ga. Moreover, we get a sequence #' =
{h‘o(}a<Q of unary number-theoretic functions as follows:

h&(r) = ha(r) + 1 fTor o = 0 o o ks a Limitt,

h' i s max{h&(r),h ez [ o S

a+l (55
for r € N. Then, the function h&+I(I) of r dominates the func-
tion h&+n(1) of r for every n < w.

Now, we get a (0)-diagonal-built-up system for @ from

Theorem 3.3.2 by modifying (Axw)lzl = A+x in dts Claim to:

(A+w)[x] = R + hi+I

and alx] = B+xr 1in Case 1 of the Claim to:

(z),

alz] = B » hip (3).

Let {fa}a<Q be any sequence which satisfies (fl1)-(f3). Then, for

limit A, we have

Fre0® = F1eny (z)
+.T

for r > 0 by (f2). By this relation, we can show this theorem as

(I)(I) > fx(r) + hk+x

follows. For a given g:N — N, there is a < Q such that g = 6.
Hence g is dominated by h&. On the other hand, we can express a

= A+n, where A is a limit or 0 and n < w. Since the function
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hi+I(I) of r dominates this h& from the argument above,

(2) 2 Fyl2) «dy, (xR, (2) > & (1)

fl+w A+x A+n
for sufficiently large z. Thus, we have that g is dominated by

the function f}+w' This completes the proof. n]

We have shown., the existence of a (0)-diagonal-built-up
(hence LW and structured) system of fundamental sequences for Q.
Hence, the sequences {fa}a<Q whiich, satisfies (f1)-=-(£3) .and. is
defined by (0)-diagonal-built-up systems for Q have the increase
and domination properties. On the other hand, by Theorem 3.3.1,
there is no (n)-built-up system for Q for any n. Hence, in order

to treat sequences {fa} indexed with all countable ordinals,

the conditions such asa<?0)—diagonal—built—upness, LW-ness and
structuredness should be considered.

However, as we shall see in the following chapters, (n)-
built-upness 1is wuseful for treating a subrecursive hierarchy
which consists of sequence {fa}a<l indexed with all ordinals

less than a countable ordinal /.



CHHAPTER 4

PROVABLY COMPUTABLE FUNCTIONS IN PEANO ARITHMETIC

We have already shown in Chapter 2 that the set of all
provably computable functions 1in Peano arithmetic PA can be
classified by the fast-growing hierarchy up to g3 using the fact
that any function provable computable in PA is dominated by Fa

for some «.

In this chapter, we study this characterization in detail.
Then, we analyze the unprovability result of undecidable finite

combinatorial statement PH.

In Section 4.1, we introduce fragments PAn of PA for''n € N
and prove that the set of all provably computable functions in

PA can be classified by the fast-growing hierarchy up to w, forr

=
nw 3

1. This result was proved by Ono and Kadota[33,Section 3].

In Section 4.2, we give the provability and unprovability
results on finite combinatorial statements PH(n) following Ono
and Kadota[33,Section 41].

In Section 4.3, we give the relativization results of those
in Sections 4.1 and 4.2, which were studied by Kadota[1l6].

4.1 Provable computability

In this section, we will introduce some fragment PAn of PA
Tor edeh™ "> T0, "and Fsitudy provably compltable S fullctions in" it.
Then, we will prove that the set of all provably computable
functions dn PAn can be classified by the fast-growing hierarchy

P ito wn. This result gives a refinement of Proposition 2.3.4.

Our formal theory PA of Peano arithmetic has been defined
in Section 2.2. As we mentioned in Section 2.2, we assume that
?(PA) contains the symbols for primitive recursive functions and

predicates. For convenience, we will use the same letters to
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express these functions or predicates and to express the symbols
in ¢(PA) which express them.

We abbreviate the formulas Vx(x<t > A(x)) and 3Ix(xgt A
A(x)) (where t does not contain x) to Vx<tA(x) and 3IxgtA(x),
respectively, and these types of quantifiers are called bounded
quantifiers. A formula is called bounded if it contains only
bounded quantifiers as quantifiers. Any bounded formula is both
a Ilg-formula and a Zp-formula. A formula A is a Hm+l—formu1a if
it is of the form Vxlo--kaB with a X -formula B, and A is a
Zm+1—formula if 1t 1s of the form Hx,---ﬂka with a Hm—formula s

For each 0 < n € N, the formal theory PAn is defined from
PA by restricting the induction formulas of the mathematical
induction to formulas containing at most n quantifiers. Then we
define provable computable functions in PAn in the same way as
the case of PA as follows (cf.Definition 2.2.2).

DEFINITION 4.1.1(Provably computable functions in PAn). For

each n > 0, a computable function f:Nk——+N 16 said to - be

provably computable in PAn if there exists a Godel number e of i
such that the formula

VgHka(E,g,Y)

is provable in PAn.

Now, we state our main theorem of this section (cf.Ono and

Kadota[33,Theorem 3.1]). For a formula R(xl,...,xk,y) of %(PA),
the predicate (R(El,---,ik,}) is true) is often abbreviated by
R(E,---,Ek,§). for convenience.

THEOREM 4.1.2. Let n > 1. Then, the following conditions

(a)-(d) are equivalent:
(a) f is provably computable in PAn.

(b) There are a primitive recursive function g and a bounded
formula R such that

f(Ilv"'ka) = g(r,.---,rk,uyR(31,~--,Ek.y));

Vx3yR(x,y) is provable in PAn.
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U
(oY L& o0, ﬂ(wn(m)))
Clogens.  f 1S wn(m)-ordinal recursive for some m < w).

U
(d) f € a<w  “a

(i.e., f is elementary recursive in Fa for some a < wn).

This theorem shows that a refinement of the result given in
Theorem 2.3.4 which says that the set of all provably recursive
functions in PA is classified by the fast-growing hierarchy up
to €o. We will give the proof of Theorem 4.1.2 in the following.

Clearly, (a) implies (b) by the definition. As we stated in
Proposition 2.1.7, we have that (c) implies (d). Hence, we will
show that (d) implies (a), and that (b) implies (c), to complete
the proof of Theorem 4.1.2.

We Pirst show that (4) in Theorem 4.1.2 implies (1). Notiece
here that we can show easily the following lemma (cf. Kino[25,
Section 3]).

LEMMA 4.1.8. Let n > 0. The .class: of all provably computa-
blesfunatiions &mn PAn contains the zero, successor and projection
functions and is closed under substitution and primitive recur-

shon. s

Hence, every primitive recursive function is provably com-
putable in PA,.

We will make use of the following primitive recursive

functions. Let <+,:> be the funetion 'defined by

<r,y> = 3((z+y)2+3z+y).

flven S A s Sal ibitjiectiion  firom® N X N ®te N, *We can. defime
projection functions (:),;, (-J),, satisfying that

(a) <tz lzlieg> = 2,

(b) (2. y2)y = 2 angd  {Xy,y5ed = N,

for all r,y,z € N. As for the detail of these functions, see
Davis([7,Chapter 3].

Recall that in Section 2.1, for each n > 0, we took primi-
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tive recursive well-ordering <n on N, which is of order-type w.
and has the least element 0. For each r € N, define ordn(r) to
be the ordinal represented by zr in the ordering R and for each
ordinal a < &g, define numn(a) to be the natural number r such
that ordn(r) = o. We introduce a primitive recursive predicate
limn(z) and a primitive recursive function prn(x) by

limn(x) 1 randyonly if ordn(:) is a 1limit number.

numn(ﬂ) 1T sbord (1) =18% .1
pr_(z) = o
0 otherwise.

By using the ordering <n’ we can define another ordering <;

on N by the condition that

i3 <; y if and only if
(1), <, Wy or ((g = (¥, and (1), < (y) 1),

where < is the usual order on N. It is easy to see that <; g a
primitive recursive well-ordering of order-type w-w . As usual,

T < Yy means that r <n S o iy

In [41], Shirai obtained the provability and the unprova-
bility results of transfinite induction in fragments of Peano
arithmetic, by examining into the Gentzen's proof[1l1l] in detail.
For our present purpose, we refer to his results in the follow-

ing specialized form. For each r € N, r denotes the numeral of =z.
PROPOSTTRON 4 4 Vet g < w, for, au B N Pheny

(a) Vy[Vx(x <; y 2 €(x)) 2 e(y)] = YuVv(v < numn(a) + eg(<u,v>))

is provable in PAn—l’ where €(z) is a new predicate symbol;

(b) in particular, if A(z) is a Ilp-formula, then
Vy[¥x(x <* y =+ A(x)) = A(y)] » Yu¥v(v ¢ num (a) + A(<u,v>))

is provable in PAn. o]

Notice here that the set {r € N | (1), 5 numn(a)} is an
initial segment of the well-ordering <;, which is of order-type

w*a (<wn), when n > 1 and a < w.
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Next, we introduce a ternary function h by

HF

h(U;U,I) =~ Fordn(v)(r)v

where Fa's are of the fast-growing hierarchy up to ¢4. Clearly,
h is a computable function. Let e be a Godel number of h. Then

we show the following lemma.

LEMMA 4.1.5. Let a < wn Eor nr =k, Sihen.,

L numn(a) + Yx3yT3(e,u,v,x,y)

n

is provable in PAn.

Proof. Let W(z) be the Iy-formula VYx3yTs(e, (z),,(2)q,X,y).
We first show that the formula

(a) Yu (u <; v o W(u)) + W(v)

is provable in PA;. Suppose first that (v; = 0. If (v)4, = 0,
then W(v) is provable in PA; and hence (a) is also provable in

it. Next, we assume that

(b) (v)J; = 0AO0 %4 (v) g A Alim( (V) q).

Then, <x,pr((v)y)> <; v 1is provable in PAl. Therefore
Yu(u <; v o= Fiu)) —= Fi<xpplvl)q)>)

is provable in PA;. On the other hand,

W(<x,pr((v)q)>) — W(v)

is .also provable in P4y, since we can effectively construct the
computation for the input (0, (v),,x) from the computation for
the input (x,pr((vJ),),x). Hence, (a) is provable in PA; under
the assumption (b). Similarly, we can show that (a) is provable
in PA, under the assumption that (v); = 0 A lim((v)y) or (vJ,; >
0. Combining these facts, we can deduce that (a) is provable in
PA,. Now, taking W(z) for A(z) in Proposition 4.1.4(b), we
obtain that

v < num(a) + Vx3yTz(e,u,v,x,y)

n



is provable in PAn. o

The following proposition says that Kleene's iteration
theorem can be proved in PA;, which is shown by Ono and Kadota
[33,Lemma 3.7].

PROPOSITLON 4.1 .6, For each t € N, there exists a primitive
recursive function sl sliichl that

VERRL b6 Ry i on By adha ) +— NSVT 08 Ao iy ohy) 1227

is provable in PA, for every c,kl,...,ki € N, o

By this proposition, we have that
VxVyTs(e,m, k,x,y) +— VxVyT,(s%Z(e,m,k),x,y)

is provable in PA; for every m,k € N. Clearly, s2(e,m,k) is a

Godel number of the function h(m,k,x) (= Fg;é (k)(r)) of r. Then
n

we show the following lemma(cf.Ono and Kadota[33, Lemma 3.9]).

[RENMAY A ase S agsl St S s o R w then Fa is provably
computable in PAn.

Preaf. If n = i, then Fa is primitive recursive. Hence it
is provably computable in PA; (see Lemma 4.1.3). Suppose that n
> 1. By Lemma 4.1.5, the formula VxHyT3(E,O,Hﬁﬁ;TET.x,y) is
provable in PAn. By Proposition 4.1.6, the formula

VxHyTl(éy(e,O,numn(a)),x,y)

is also provable in PAn’ where sz(e,O.numn(a)) is a Godel number
(©4 Fa' since ordn(numn(a) = a. Thus, Fa is provably computable

P ANS o
n

Thus, we have completed the proof of that (d) of Theorem
4.1 72 impiliies: (b)) ‘of Theorem 4.1 2

Now, it remains to show that (b) in Theorem 4.1.2 implies
(c). From Corollary 12.16 of Takeuti[46], we immediately have
the following proposition (cf. Ono and Kadota[33, Lemma 3.3]).
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PROPOSITION 4.1.8. Let n > 0. Suppose that R(x,y) is a Ig-
formula such that Vx3yR(x,y) is provable in PAn. Then, the func-
tion f defined by

f(x) = uyR(z,y)

A wn(m)—ordinal recursive for some m < w. o
Then, we have the following corollary:

COROLLARY 4.1.9. Let n > 0. Suppose that R(x,y) is a
bounded formula and the formula Vx3yR(x,y) is provable in PAn'
Then, the function f defined by

f(Ilv""Ikyy) =ll}’R(i'1.'°',Ek,5’)

is wn(m)—ordinal recursive for some m < w. (Thus, (b) in Theorem
4., 1,20 np e s vte ) oin Thicoriem 4R . 257) o

Proof. First, we remark that we can assume that the se-
quence X of variables consists of only one variable x. To see
this remark, we assume that Vx;Vx,3yR(Xx,,X9,y) 1is provable in
PAn, as an example. We put R (x,y) +— R((x),,(x)q9,y) and f' (1)
= pyR' (xr,y). Then, R' 1is also a bounded formula and Vx3yR' (x,y)
is provable in PAn. We have that f(ri,x9) = f (<x;,x9>). Since
the SfunEtionit=sns>"is primitive recursive, f is wn(m)—ordinal
recursive if so is f'. Thus, by iterating this argument, we can
assume that x consists of only one variable.

We also remark that for any bounded formula A4, there is a
predicate symbol p of 2(PA4) such that

A(x) = p(X)

is provable in PA;. Hence, we can prove this corollary from

Preopositront 41 8 8]

Thus, we have completed our proof of Theorem 4.1.2.

4.2 Undecidable combinatorial statcments

2 A0 =



In Section 2.3, we studied a finite combinatorial statement
PH, which is shown to be unprovable in Peano arithmetic PA by
Paris and Harrington[35]. Here we analyze this statement in
fragments of PA by using Theorem 4.1.2. We defined in Section
2.3 the formula PH:

PH = VYwVxVz3y([x, y] viep (w+1)¥).

By Proposition 2.3.1, PH is true. We defined also a computable
function @35, for n,c € N by

’

0, (k) = py([k.y] == (a+v1)7).

Here, we define the formula PH(n) for each n € N.

PHGRY s Na¥zIm(Ix. ol 5 417D s

The Ramsey relation [k, m] —)> (n+l)? can be represented by
a bounded formula P(w,x,z,y) of 4(PA), i.e., P(w,r,z,y) is true
if and eonly if [z, 1 —t (w+l)f for all w,r,z,¥y & N, We must
pay attention to the fact that there are many ways of expressing
the Ramsey relation by formulas. Here, for each fixed n, we
say that a formula P(x,z,y) which represents the Ramsey rela-
)Z for all
r,z,y € N. Then, we prove the following theorem (cf.Theorem 4.5

of Ono and Kadota[33]) .

tion if P(z,z,y) is true if and only if [z,y] —/ (n+1

THEOREM 4.2.1. Let n > 1. If P(x,z,y) is a bounded formula
which represents the Ramsey relation, then the formula

VxVz3ayP(x,2z,Y)

is not provable in PAn_l.

Proof. Suppose that VxVz3dyP(x,z,y) is provable in PAn_l.
Then VYu3dyP(u,u,y) 1is also provable in PAn—l' Let us define a

function 7 by rn(u) = pyP(u,u,y), i.e., Tn(u) 2 B u(u). Then,

e is elementary recursive in F, for some B < w by Theorem

7=k

7« 0 IO PN S i is dominated by Fﬁ+l' Thus, o is dominated by on,C

for some ¢ by Proposition 2.3.3. Hence, there is k € N such that

for every u > R,



(a) On,u(u) = Tn(u) < On,c(u)'

Let d be max{c+1,k}. Then, by (a),

(b) an,d(d) Wk R

which contradicts Lemma 2.3.2. Therefore, VxVz3yP(x,z,y) is not

provable in PAn_l. s]
In this theorem, the formula VxVz3yP(x,z,y) is interpreted

as PH(n) in the standard sense. Hence, from this theorem, we

sometimes say informally that PH(n) is not provable PAn for n

=il
> 1. The following result follows immediately from Theorem 4.2.1

et N PReposiitien 2l 85 du) s

COROLLARY 4.2.2. The formula VYwVxVz3y([x, ¥y] == (w+l):) is
not provable in PA fFfor any bounded formula representation of

Ramsey relation. o

We prove the following theorem, which 1is 1in some sense
stronger but in another sense more restricted than the previous
theorem (cf. Theorem 4.7 of Ono and Kadota[33]).

THEOREM 4.2.3. For n 2 2, VxVziy([x, y] —p (7+1)]) is
provable in PAn, but not provable in PAn—l in the following
sense: For each n > 2, there exists a X;-formula P(x,z,y) which

represents the Ramsey relation such that,
VxVz3iyP(x,z,y)

is provable in PAn, but not provable in PAn

_l'
Proof. We. can. show . similarly to Theormem 4.2.1. From
Proposition 2.3.3, we can obtain that
g Jdx) 2 F f22, 254 T = B (<x,2>+7)
naz = Tw,_o(<x,2>+7) w4

gince <gz,z> ¥ 1, z. Hence we have

G, by R E Fwn_1(<r.z>+7)(R(I,z,y)),

where R denotes the Ramsey relation [x,y] ey (n+1) Defiine a

n
i
function j by



ilruznid) » pyR(z,z,y) if 3y < U(v) R(z,z,y)

0 otherwise.
Then, j is primitive recursive. From Theorem 4.1.2, the function

Fw is provably computable in PAn. Hence, we have a Godel
el
number e of the function Fw such that Vx3yT,(e,x,y) is
1
provable in PAn (el Seettom 4.1%. Since

Fw {2, zB+TY) = UCpVT (Lo, <2284 Tuv )y
=il
e I(z) = Jlx,z,puT (e, <x,z>+T,v)). Now, we will define a El-

formula P(x,z,y) by

P(x,z,y) = 3v(T (e,<x,z>+7,v) A

Vu<vaT,(e,<x,z>+7,u) A j(x,2,v) = y).

Then we can easily show that P represents the Ramsey relation
and VxVz3yP(x,z,y) is provable in PAn.

It can be easily seen that P(x,z,y) 1is of the form
vP' (x,z,y,v) where P' is bounded. Let @ be the formula

YxVz3IwP' (x,z, (W), (W q).

Then @ is also provable in PAn' since so is VxVz3iyP(x,z,y). Now,
_1- Then, @ is
Similarly to the proof of Theorem 4.2.2,

we assume that VxVz3yP(x,z,y) is provable in PAn
also provable in PAn_l.
we define function rh by

Tﬁ(u) = pwP (u,u, (W), (W ,y).

Then, since @ 1is provable in PAn_l, rh is elementary recursive

in FB for some B < w by Theoren™ 4.0l . 25 S0 rh is dominated by

=i
Fﬁ+l' Thins, rh is dominated by on - for Some"'c by Propositlion
2.3.3. Here we can assume that ¢ > 2, by Lemma 2.3.2. Hence,

there exists a k such that for every u > R,

(a) o, ,u) = () g ) <o (w).

Let d be max{c+1,k}. Then, by (a)

(b) On,d(d) < Un.c(d)'
Phtis,. we! are Iled To. & contnadiietiong by «(b) ‘and Lemma 2.312:
Therefore, VxVz3yP(x,z,y) is not provable in PA _,. o
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We notice here that the formula VxVz3y([x,y] s (ﬁ+l)g) is
not provable in PAn for some Zp-representation of the Ramsey
relation, contrary to Theorem 4.2.4. This can be shown as
follows: Let P(x,z,y) be any Z,-formula representing the Ramsey
relation and Provn(u,v) be a Zo-formula representing the
provability predicate for PAn in the canonical way. More
precisely, Provn([P],[A]) means the provability of a formula A4
in PAn with a proof P, where [Z] is the Godel number of Z. Then,

PUX,Z2,%) A WProvn(x,[O=l])

is also a Zy-formula representing the Ramsey relation, since for

each m, ﬂProvn(ﬁ,[O=l]) is true. On the other hand, since
Yx¥zaviP{X.2,7) KA 1Provn(x,[0=l]))

implies the consistency of PAn, b ks mot provable. dn PAn‘

4.3 Relativized hierarchies

We are concerned here with an extended version of Theorem
4.1.2 in Section 4.1, which gives a characterization of provably
Am—functions in PAn for n > m > 1. This characterization theorem
is studied by Kadota[l8].

First, we will consider a relation between the relativized
ordinal recursive hierarchy and relativized fast-growing
hierarchy. Let f:N — N be a strictly increasing function. Let /
be a countable ordinal and P a system of fundamental sequences
for /. Then, we define the fast-growing hierarchy relativized by

f as follows:

Féf)(r) =

5 i
(fri o B mnnrt sy d
rereTiem et (r):
et Fé{}(I)](r) % b Tinfe,

Llet: ™ @ Rbe a set of number-theoretic functions which

satisfies the following property(#):
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(a) & contains the identity function, and
(#) (b) for every g,, g9 € ®, there is a unary strictly
increasing function f such that for

every r € N, max(g,;(zx),g,(x)) < f(x).

Now, we consider the standard system of fundamental se-
quences for &5, and define the following classes of functions by

relativizing the corresponding classes in Section 2.1.

DEFINITION 4.3.1. ?¢ is the smallest set of functions
containing all functions in ¢, all functions Féf) for each B < a
and each unary strictly increasing f € ¢, the zero, successor
and projection functions, which is closed under substitution and

limited recursion.

DEFINITION 4.3.2. Let a < €9 and n the least number such
Ghab* Ve < w . Then, ﬂQ(a) is the smallest set of functions
containings all "functioens Ane @ rand: all primitive reeursive
functions, which 1is <closed wunder substitution and unnested

a-recursion.

In [16], Kadota showed the following theorem, which is a
relatigslizatuen eof Broposition 2.9 7.

HTHEQREM 428253 " (Datwn > 10 -and @ ellasst of fNnctions Wikt
the property (#). Then,

V] o Leld ¢, «
o ?a = i U (™).
n n
Next, we introduce extended language f(l) of ¢(PA) for each
i € N inductively as follows:

We write 2(0) for Y(PA). Let i > 0. Then, we assume that
=) )
@1

is defined. For ‘each formula A(x,¥) of 2(1—1 whose free

variables are in X,y, we define the function fA as follows:

pyA(my,...,m,,y) if IyA(m;,...,m,,y) is true
k k
fA(Il,...,Ik) =

0 otherwise.
For each such Fformula 4 of Q(l_l), we consider a new function
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symbol 7A whose interpretation on N is f,. Then, we define

f(i) = gti=1) {7A | A(x,y) is a bounded formula of f(i—l)}.

Next, for each i > 1, we will define functions 6i:N — N
and ¢i:N = N. Let TTi_l(z,x,y) be the X, ,-truth formula of
2(PA) for Zi_l—formulas of 2(PA) with two fixed variables, i.e.,

for every Ei_l—formula A(x,y) of ¢%(PA) which has its Godel
number e,

Tr,_,(e,x,y) +— A(x,y)

is provable in PA,(cf. Takeuti[46, Proposition 14.1]).

DEFINITION 4.3.4(6i:N -+ N ¢i:N — N for i > 0). The func-
tions 6; and ¢; are both identity functions. For i > 1,

Q;(u,z) = Vwgu¥xgu(3yTr, ,(w,x,y) — 3Jy<zTr, ,(W,Xx,¥)));

&, (u) = uZQi(ﬂ,E); Q:(u.Z) = 0;(u,z) A Vx<ua@Q, (u,z);
W;(u,z) = Hy(nguQ:(x,y) ANZ = yeu) ]

¢i(u) = qui(ﬂ,E).

A formula A of $(PA) is Ak in PAn if there are a Ek—formula
B and a Hk—formula C such that (4 + B)JA(A & C) is provable in

PAn. Then, we have the following lemma(cf.Lemma 3.5 of Kadota
LI )5

IHEMMAT G, 3996 S ITeIt 51 2RIt

(a) Qi is Ai in PA, and the function 6i dominates fA for each
L, ,-formula A(x,y) of £(PA) .

(b) Wi is Ai in PA,, the function ¢i dominates 5i ang Lkt oS
sitrlctly” knereasing. o

DEFINITION 4.3.8. Let ¢ > 0,

(a) Fy is the set of all primitive recursive functions.
(b) F, is F,_juif, | A(x,y) is a bounded formula of gty

e, Qi is the set of all functions elementary recursive in
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We give the definition of provably Am~functions in the
fragments of PA.

DEFINITION 4.3.7. Let k,n > 0. A function f is provably Ak
in PA if there is a A, -formula A(x,y) in PA_ such that

(a) flzy,ooooz) = uyA(}l,...,}T,§) for all ry,...,z_ € N;

(b) Vx3yA(x,y) is provable in PAn.

Then, we have the following theorem shown by Kadota [186,
Theorem 4.1], which gives a characterization of provably Am—
functions within relativized ordinal recursive functions. This
theorem is a relativization of Theorem 4.1.2 in Section 4.1.

THEOREM 4.3.8. Let n 2 1 and m > 1. Let ® be the set ®m
defined above. Then, the following are equivalent:

(a) f is provably Am in PA

n+m-1"
V] )
(b) f € M /i (wn(m)).
U o)
(c) f E a<wn ?a' s}

Now, we extend the combinatorial statements which are stud-
ied in Section 4.2, and give some provability and unprovability

results in fragments of Peano arithmetic by using Theorem 4.3.8.

Let foN — N be. a _striectly increasing function. For ¢,k,m,n
€ N, the predicate

[k, m] —£+ (n+1)Z

means that, for every function g:[k,m][n] —3 {0,1, .5 =1},

there is H ¢ [k, m] such that
(a) card(H) 2 n + 1;
(b). H 4is homogeneous (i.e., g 1s constant on ”[n]);

(c) H is f-large., d.¢.; fimindf)) < card(l).

Then, we can prove the following proposition similarly to
Proposiitdon 2. 3Ll

_47_



PROPOSITION 4.3.9. For a strictly increasing f:N — N and
for each c,k,n € N, there is m € N such that the following holds.

(k, m) L (ne1)™. o

From this proposition, we define a computable function as

follows: For c,k,n € N,
(f) L f n
O o b8 * gpilie.pl =5+ Anely )

Now, we say that the relation [k, m] —é* (n+l)2 is f-Ramsey
relation. We consider representations of f-Ramsey relation in
Y(PA). For a given function f:N — N, let f be a new unary
function symbol whose interpretation on N is f. Then, we can
represent f-Ramsey relation by using a bounded formula
P(w,x,z,y;f) of the language $%(PA)+{f}, i.e., P(w,r,z,y;f) |is
true if and only if [z,y] —£+ (w+1)f Tor 1) wix.2,v & K. It f
is defined by minimalization of a Am-formula Ry i PAn.
i.e., f(xr) = puyR(x,y) for all r € N, then f-Ramsey relation can
be represented by a Am—formula, since we can replace the
formulas of the form p(f(x)) by the Am—formula By(R*(x.y)Ap(y))
(or Vz(R*(x.z)—+p(z))). where p is a predicate symbol in Z2(PA)
and R*(x,y) = R(x,y) A Vz<yaR(x,y).

Then, we have the following (see Kadota[l1l6, Theorem 5.4 and
Theorem 5.8) :

THEOREM 4.3.10. Let m > 0 and let us denote ¢ for ¢m.

(a) Let n > 0. For some Am representation of ¢-Ramsey relation

in PA , the formula
el

YzVx3y ([x, y] —%4 (ﬁ+l)Z)

is provable in PA . ..

(b) ettt > 1 Fon rany Am representation of ¢-Ramsey relation

in PA , the formula
n+m-2

VzVxdy ([x, y] - (ﬁ+l)g)
is not provable in PAn+m—2'
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This theorem shows a relativization of the results given in
Seetilon 4.2
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CHAPTER 5

THE FAST AND SLOW GROWING HIERARCHIES AND INDUCTIVE DEFINITIONS

~In this chapter, we consider the slow-growing hierarchy,
opposing it to the fast-growing one, and study the relation
between them. Actually, we study the ordinal t where GT of the
slow-growing hierarchy catches up with Fr of the fast-growing
hierarchy. This ordinal tv is called a subrecursive inaccessible

ordinal (or s-inaccessible, for short).

In Section 5.1, we summarize the definition and results on

the s-inaccessible ordinal.

I Ssectiion 5.2 e iintroduce chel Sterm strueture of sthe
ordinal notation, and show the strong normalizability of the
structure. We also show that the ordinal tv is (3)-built-up.

In seetion 5.8, we intreduce an ordinal t', which 1is a
variant of 1, and show that the fast-growing hierarchy up to Tt'
classifies the set of all provably computable functions in the

v
an).

theory of finitely iterated inductive definitions ID<w(= neN

5.1 Fast-growing versus slow-growing

Let I be a countable ordinal. We say that an ordinal a < [/
is subrecursive inaccessible (or s-inaccessible) if the slow-
growing hierarchy {Gﬁ}ﬁ<a catches up with the fast-growing

hierarchy {Fﬁ} atir, IncelsERornsome pyie N

p<a
G, (1) < F ol < G, (x+1)

yiflo st IR 58 S8

In this section, we define a tree-ordinal =t following
Wainer[49], and show that t 1is a minimum s-inaccessible by
assuming the collapsing theorem and (3)-built-upness of 7, which

will be proved in the following sections.



Here, we will consider countable ordinals as infinitary
terms. These ordinals are called countable tree-ordinals. Each
fundamental sequence of a countable 1limit ordinal will be
considered as a tree-ordinal. We will use the symbol @ for the
set of countable tree-ordinals which is the same for the set of
countable ordinals, since we will pay attention to the systems
of fundamental sequences in this chapter.

DERENTTEON sub sl (TFree-ordinals: Q)i 1 The iset #Q wof ihe
countable tree-ordinals consists of i the infinitary terms
generated inductively by:

(a) O0'e Q
(b) if a € Q, then a+l € Q;
s it a, € O for all r € N, then ((:(1_)1EN e 0.

(In the case of (c¢), the term (a_)

o sl T8 caldiedwta. [Limity and

al[xr] denotes ax.)

We define the less than relation < on Q as the transitive

closure of

(a) o < ot e SPor ek sas e and

(b) a[x] < a for each limit a € Q and x € N.

Wew remark that the notion of tree-ordinals includes that of
systems of fundamental sequences. More precisely, for each
system P for [, each 1limit ordinal a < [/ and its fundamental

sequence {alz]} .y, We can identify a with (alz]) _y € Q.

Next, we define the fast-growing {Fa} and slow-growing

a€Q
{Ga)

hierarchies inductively as follows:

a€Q
Folx) = 2413 Go(x) = 0;
o g b
Foute) = F 7 iah G oy DER S E) + 1
FA(I) = FR[I](I)' GX(I) =GR[I](I)’

where 2 is a limit.

The relation =+ on Q for each n € N are defined by the

transitive closure of
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(a) a + 1 —H+ o for each a € @, and
(b) a —Eﬁ a[n] for each limit a € Q.

This relation —77} can be identified with the relation = in
Chapter 3. We also define the relation :%9 on Q for each n € N
similarly to Chapter 3 as follows: For a, B € Q, « =n> B is
ot Bl oL g SBe

We define the notion of (n)-built-upness for n € N defined
as follow: The subset (™) ~PYU
is defined by the set of all a € Q satisfying that:

c Q@ of (n)-built-up tree-ordinals

Ailerl ] —Eﬁ Alz] for any limit 2 < a and 1 € N.

As in Chapter 3, we can prove the following theorem.

PROPOSITION 5.1.2. Assume a € PP £or some p € N. Then
the following holds:

(a) Fa(r) < Fa(x+l) and Ga(I) < Ga(r+l) for pr< 4.

(b) If « =t B for p < m, then FB(I) < Fa(r) and GB(I) < Ga(r)

COr ~F = 1 o

Nexite sWes say ' Ghat: o € Q) ds a subrecursive indccessible (o
s-inaccessible for short) if the following property holds: For

some m € N,

Fa(r) < Ga(r+l)
Top saillls o e s
Then, we show the following lemma and proposition(cf.Wainer
[50]). For n € N, the tree-ordinal O+1+ --- +1 for n times 1's

is said to be finite and is denoted by n.

LEMMA 5.1.3. For p € N and a € 9P 7 P% the following
holds:

(a) For all r > p, Ga(I) < Fa(I)'

(b) EY s eian  sEinaccessible, Ehen’ o ds a 1imit ‘and Ga

dominates every Fﬁ with B < a.

Proof. (a) We can show by induction on a«. (b) Assume a is
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an s-inaccessible. Clearly, a« cannot be 0. Moreover, a cannot be
of the form B+1, since for any B+1 € Q(p)—bu andd .5 max(pyl)s,

I+l(

Gﬁ+l(I+1) = Gﬁ(1+l)+1 < FB(I+1) < (e F I) = FB+1(I).

(F
BB B
Hence a must be a limit. Assume B < a. Then f+1 < a since a is a
limit, and then we can see that for some m > p, « i B+1. Hence

Fplz+l) < Fg™"h(z) = Fy i (1) < Folz) 5 G (z+1). o

PROPOSITION 5.1.4. Let p € N and « € 9P)PY gatisfy that

Ga[n+1] f Fa[n]

for each n € N. Then a is s-inaccessible and, if «[0] is finite,
then no B < a is s-inaccessible.
Proaf. 1f &

=8 ] for each n, then

al[n+1] aln

Fa(I) = Fa[I](I) = Ga[r+1](r) < Ga[I+l](I+l) = Ga(1+1)

and hence a is s-inaccessible. If «a[0] is finite and B < a were
s-inaccessible, then «[0] AR - 39 since B is 1limit. So
aln] < B < aln+1l] for some n. For sufficient large r, aln+l] :ﬁ#

B, and hence

G {OEY FF g LBk 3 Gﬁ(r) <G 152K o

aln+1 a[n+1

Now, we define the minimum s-inaccessible ordinal T
following Wainer[49].

DEFINITION 5.1.5. For each n € N, the set Qn of higher
level tree-ordinals are defined by induction similarly to the
case of Q:

(a) 0 € Qn.

(BlRlE Vase Qn' then a+l € Qn.
gt dint aT € Qn L L e (e Qk(k<n), then (aT)TEle Qn.

(In the case of (¢l . the term. (o ) jiet fcal led a' Limit, and

% TEQ,

and a[7] denotes ar.)

From this definition the sets Qy and Q; can be identified
witth. N and "Q,. nespectively. Similarly: to the case of Q, we
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define the relation < on Qn as the transitive closure of (a) a <

a+l, and (b) al[7r] < a for each limit a = (cr[r])rEQ and 7 € Qk‘

k
We also define the set theoretic height |a|l] of a € @

n
inductively as (a) |0|] = o0, (b) J|a+1| = |a|+1, and (c)
l(a[T])TEQk| = sup{|al7]]| | reQ,}.

DEFINITION 5.1.6. For each n € N, the function

¢n:Q XQn e Qn,

n+l
which is called the level n fast-growing hierarchy, is defined

inductively by

(a) ¢,(0,8) = B+1;

(b) ¢ (a+l,B) = wnﬁ(a,wn(a,ﬂ));

(c) ¢ (A,B) = (¢n(l[rl,ﬁ))TEQk for A = (l[r])TEQk (kR < n),
(d) ¢ (2,B) = ¢ (A[B),B) for 2 = (A[rl)

TEQn’

where ¢nﬁ denotes the iteration fB-times of P s o1 S K i
¢:Qn+len g Qn'

B, %" Ma B) = ¢la.¢(a. B)).

R CH I <¢‘[T](a,ﬂ>)regm for & = (AlrD) o

then ¢%(a,pB)

Note that, in the case n = 0, ¢g(a,B) = Fa(ﬂ) for a € Q,
and B € Q¢(= N). For each k < n € N, we define w, € Qn by

Wy = () '
k TEQk
i.e.; wk[r] = y. The tree-ordinals w, and w, for each k > 0 has

its set-theoretic height w and the k-th uncountable cardinal,

respectively.

DEFINITION 5.1.7. For each n € N, the set 7n = Qn) of

named tree-ordinals is defined inductively by:

(a) 01 l! w01 w1| ety wn_l & ?n;
(b) 7k c 7n for i < 5
i 7
(eh"' 1% a-¢€ 7n+1 and B,r € 7n, then ¢ (a,B) € 7n.
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For a fixed r € N, the function co (= coI) which collapses
each 7n+1 to 7n is defined by:

co(0) = 0, <co(l) =1, colwyg) = =z, co(wk+l) =,

colpy,17(8.6)) = 0,5°) (co(8),co(8)), colygT(5.6)) = 407 (5,6).

The well-definedness of this function can be proved by using
Theorem 5.2.4 and Lemma 5.2.5.

THEOREM 5.1.8(Collapsing Theorem). Let z € N, a € 7, and
B € 70. Then,

)(I) = F )(Gﬁ(I)).

Gwl(a,ﬁ co(a

Hence, in particular, if « is generated in 7, without reference

to wy then, as Gwo(z) = r, we have Gwl(a-wo) = Fco(a)'

Proof. We will prove in Section 5.2. o

DEFINITION 5.1.9. The tree-ordinal Tt = (T[I])IEN is defined
as follows: ol = 8

t[n+l] = w,(...¢n(¢n+l(3,wn),wn_l),...,wo) for w =0,

THEOREM 5.1.10. v 1s a minimal s-inaccessible.
Proof. From the results of Section 5.2, 7 is (3)-built-up.

Then, we can prove this theorem by using Proposition 5.1.4 and

Theorem 5.1.8(Collapsing Theorem). o

5.2 The collapsing thecorem and (3)-built-upness

In this wsection, we will prove Theorem 5.1.8(Collapsing
Theorem) and that the tree-ordinal t is (3)-built-up, which were
used 1in Sectlion b.1l. Flrst, we '‘prove the strong normalization
theorem shown by Kadota[20]. We introduce term structures

<7n,NTn,-[-],——+> by considering each element in 7n as a
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finitary term and each defining equation of ¢, as a rewrite (or
reduction) rule of the terms. Let 0, I, wg, Wy, ...; @g, @y,

be formal symbols.

DEFINITION 5.2.1. For each n € N, the set 7n of terms is
defined inductively by:
(a) 6v ]—-: E)Ol I-Z)l,---,l—l-) 67 H
(b) 7k g 7n for k < n;

’ - ¢
(c) if a € 7n+1 and b, ¢ € 7n' then ¢ "(a,b) € 7n.

Naturally, terms in 7n are interpreted as tree-ordinals by
the function ord: 7n — 7n such that

(a) ord(0) = 0, ord(1) = 1, ord(ik) = W

(b) ord(p (a.8)) = ¢ °"4) (ord(a),ora(s)).

ABBREVIATIONS. én(a,b) = &nl(a,b); b+l = &n(é,b).

DEFINITION 5.2.2. The sets NI of normal terms in 7n:
dom(a) € {¢,{6},70,...,7n_1} and alz] for a € NT_, z € dom(a)
are defined inductively as follows:

$.
{0}, 1[0] = O.

(N1) 0 € NTn; dom(0)

=1

(N2) € NTn; dom(1)
(N3) @k E NTk for & < n; dom(ik) = 7k’ ik[z] = z.

Ny N, «G NTn RoOr Ak <ii.

k =
T -

(N5) Let a € NTn+1' b,c € NTn and A ¢, Can b)) "Thens: A & NTn

if one of the following holds:

(a) ¢ =1and a = 0 (i.e., A = b+l).
In this case, define dom(4) = {0}, A[z] = b.

(b) dom(c) = 7k for k< 1.
In this case, define dom(A4) = dom(c), Alz] = ;nc[z](a,b).
(c) ¢ =1 and dom(a) = 7k for k < n; dom(A) = dom(a),

Alz] = @n(a[z],b).

Next, we define term rewriting system S (see e.g
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Dershowitz[9] as for the definition) so that, for every term in
7n which is not normal, some rewrite rule in S is applied to it.

Its rewrite rules are as follows: For normal terms a,b,c,

R1) 5 %(a.b) — b;  (R2) p (1,6) — p °

(0,9 _(0,0));
(R3) én(a+1,b) — &nb(a,én(a,b));
(R4) 5 “"(a,b) — 5 (a,5 “(a,b));
(R5) ;n(a,b) — an(a[b],b) if dom(a) = 7n.

PROPOSITION 5.2.3. For every a € 7n, a € NT_ if and only if
there is no b € 7n sueh that —i+ b (where a _14 b means that b
is obtained from a by a single application of some rule of S).

Proof. We can prove by induction on the length of a. o

Kadota[ 20, Theorem e showed the following theorem.

THEOREM 5.2.4(Strong normalization theorem). Every term a

in 7n is strongly normalizable (i.e., there 1is no infinite
sequence such that a —l+ a —l+ aq s LT D

Now, we introduce a function col(= ?BI) for 'a. tixed T & N,
which represents the function co (in the collapsing theorem) on

the terms as follows:

(a) To(d) =08, co(l) =1, Tolle) = I, coli,,,) = B,
() Tolpy,, (a.8)) = 5,52 ((), To (b)) and
co(po“(a,b)) = ¢o“(a,b),
where 1 is the numeral of r (i.e., if z = 0, then r = 0; if 1 =

y+1, then 1 = ¢o(0,y) (= y+1)).

LEMMA 5.2.5. Let a € 7n. Then, the following hold.
(a) If a = b+l for some b, then co(a) = co(b)+1.

(b) If a € NT_ and dom(a) = Jo, then co(alr]) = co(a) and

ord(al[zr]) = ord(a)[r] for r € N.
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(c¢) If g e NT_ and dom(a) = ?k for some k > 0, then

ord(alb])

[}

ord(a)[ord(b)] and

ord(co(albl))

{d) " If a —l+ b, then ord(a)

ord(co(a))[ord(co(b))] for b € dom(a).

ord(b) and

ord(co(a)) ord(co(b)).

Proof. We can prove by induction on the length of a. o

LEMMA 5.2.6. If r € N and a € 7,, then

G )(r) = ord(co(a)).

ord(a

Proof. From the strong normalization theorem, the proof is
proceeded by transfinite induction on a over the well-founded
ordering << (where << on 7n is defined as the transitive closure
of (a) b[z] << b for normal b with z € dom(b), (b) d << b for

nonnormal b with b —l+ d) .

Case 1. a = 0. This case is trivial.

Case 2. a € NT; and dom(a) = {0}. Then, a = 1 or b+l for
some b € J,. If a = 1, then the assertion is trivial. If a =
b+1, then

Gord(a)(r) = Gord(b)(r)+l = ord(co(b))+1 = ord(co(a))

by the induction hypothesis and Lemma 5.2.5(a).

Case 3. a € NT; and dom(a) = J,. By Lemma 5.2.5(b) and the
induction hypothesis,

G )(I) =G

Case 4. a —lﬁ b for some b. By Lemma 5.2.5(d) and the

)(r) = ord(co(alz])) = ord(co(a)).

ord(a ord(alzr]

induction hypothesis,

G =G = ord(co(b)) = ord(co(a)). o

ord(aq) %) ord iy el

Proof of Theorem 5.1.8(Collapsing Theorem). For a € J, and
b € 7,, we have

Tolb (e, b)) = GpleBta).coth))
and hence ord(co(p,(a,b)) = go(ord(co(a)),ord(co(b))). Thus,
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G¢](ord(a).ord(b))(1) A Gord(@.(a,b))(r)

ord(co(¢,(a,b)) by Lemma 5.2.6,

¢o(ord(co(a)),ord(co(b)))

= Ford(zg(a))(ord(co(b)))

= Forda(zota)) Coracp) (V)
by Lemma 5.2.6. For given a € 7o and B € 7,, we choose a and b
above such that (a) ord(a) = a, ord(co(a)) = co(a), and (b)
ord(b) = B. (We can choose such a and b since the elements of 7
are constructed by the same way as to the element in 7n). Bhis
completes the proof. s

Next, we prove that v is (3)-built-up. This completes the
proof of Theorem 65.1.10 that T is a minimal s-inaccessible.

First, we remark that the following proposition holds:

BROROSIEEON, 55 2 7o e b v ic 7n CROVE I (or[r])TEQ . Then,

alr] € 7n for every r € 7m.

Preof. For a given o = (a[r])reQ S 7n’ there is a normal
m

term a € J such that ord(a) = o« by Lemma 5.2.5(d) and the
strong normalization theorem. We fix such a term a € 7n with the
minimal length. We can prove this proposition by induction on
e lrength of" thi's term a for' a. o

It follows from this proposition that we can use trans-

finite induction on the tree-ordinals in 7n over the ordering <.

PERINFELEON 55208 Eor” each B € N, the Trelation —Eﬁ on the

set 7n for each n € N 1s defined inductively as follows:

S B if a # 0 and one of the following holds;

(a) i :%3 B 2 Lo i el K R

() alk) = § A § = (Alx])yeq

(c) alr] N B torvall 17 e 7m\{0} if B = (ﬁ[r])TEQ (m>0) .

m
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where ¢ =%> B means that 3§ S i g o §.= P,

Note that if a, B € 7;, then the relation o i for each k €

N is the same as that defined on Q. Then, the following lemmas
and theorem can be proved (see Kadota[18]). Let n, k € N.

L)
LEMMA 5.2.9. If a € 7n+l’ B € 7n and 7 € 7n\{0}, then
o (0 B) = .

LEMMA 5.2.10. Let a € 7n+l and B,d8,7r € 7n' If & —= 7, then

<pn5(a.ﬂ) s dnT(a,,z).

LEMMA 5.2.11. Let a, 7 € T B € 7n\{o} and n > O.

n+l’

SR, ot —Eﬁ 7, then wn(a,ﬁ) —;» wn(r,ﬁ).

- 8 )
THEOREM 5.2.12. (a) If a € 7n, g (“[E])Eeﬂm’ 7,0 € 7m
and 7 o o 6, then

alr] a4 ald],

Here the set 7; (g 7n) for each n € N is defined inductively by

+ +
(T l) O’ ls wo»"'ywn_l E?n;
+ + +
- 2) 7k c 7n for k < n;
+ . + + + 7 +
e if a € 7n+1' r € 7n and B € 7n\{0}, then ¢ (a,B) € 7n.

(b) Each a € 7T is (k)-built-up for each k € N.
We remark that (k)-built-upness does not hold for some

element in 7, since, if we put a = ¢;(wy,0), then alzr] = ¢,;(x,0)
= Jofor all- e N,

THEOREM 5.2.13. 7 is (3)-built-up.

Proof. From the definition of t, we can show that t[z] € 7T

for " every o "&£ Nv e, " Thel s iis S ()i-buiflt=ups SHences @t 1S
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sufficient to prove that t[r+1l] —— 1[x]. For this, we have

3
tlred] = w,(...¢I(¢I+l(3.w1),w1_l)...,wo)
—3° ¢,(...¢I(w1.w1_l)...,wo)
'—3-) (‘pl(...(pl_(on,wI_l). o 1o ,ll)o)
= P Biw_g) . we) = tl]
since wy Tt 3. )

5.3 Provable computability

In this section, we summarize the results of Kadota[1l8] on
the classification of provably computable functions in ID<w by
means of the fast growing hierarchy. Here, ID<w is the theory of
finitely iterated inductive definitions, which is defined later
InEhis ssection. Ing 8l Kadotda: medified v, intreduced ‘T4 ‘and

showed the following three theorems.

RHEOREM SRS FT.(I) < GT.(GT.(I+1)) Por & = o
THEOREM: 5812 | Fa is provably computable in /D<w RO Yot < 5’ ..

THEGREM! '5n.30 35" If" 8 ~computabilie: funetion fk:N —x N 3Is
provably computable in ID<w’ then f is dominated by Fa for some

o

As a corollary of the last two theorems, we can immediately

prove the following corollary.

COROLLARY 5.3.4. Provably computable functions in /D<w are

exactly those which are elementary recursive in {Fal R ST

The tree-ordinal 7' 1is defined by the same way as Tt except

that the definition (d) of ¢4 is replaced by

(d) ¢ (2, B) = ¢ (X[z],B), where z = o (A[1],8).

We define the formal theory /Dv for v € N following
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Buchholz[3, Sectien 4].

By s,t,t,,...,- we denote arbitrary terms of Z(PA). We will
use the same symbols i,j,k,m,n,u,v to denote natural numbers and
numerals for convenience. A formula of the shape p(tl,-",tk) or
ﬁp(tl,'-~,tk). where p is a k-ary predicate symbol of %(PA4), is
called an arithmetic prime formula (abbreviated by a.p.f.).

Let X be a unary and Y a binary predicate variable. A
positive operator form is a formula A(X,Y,y,x) of <L(PA)+{X,Y}
in which only X,Y,y,x occur free and all occurrences of X are
positive. The language ¢(/D) is obtained from %(PA) by adding a
binary predicate constant P21 and a 3-ary predicate constant Pg
for each positive operator form «A.

ABBREVIATIONS. (f e P?) 3 Pf(t) = PP, 1)
(1 ¢ P

ﬂs(X,x)

A 2 A
‘l(tEPS); P<s(to,11)=P<(S,to,f]);

m(x,Pfs,s,x).

The formal theory IDV with v € N is an extension of Peano
Arithmetic, formulated in the language ¢(ID), by the following
axioms:

P¥.1) Vny(ﬂy(Pg.x) T P?).

(P%.2) V(X (4,%) — A(x)) — VYx(x € Ph — A(x)), for each
formula A(x) of ¢(/D) and each u < vy.

(Pﬂ.S) VnyVz(ng(x.z) T e A - pg))'

Next, we introduce the infinitary theory w/wa. SQUSHTT)
Buchholz[3,Section 4]. The theory w/Djw shall be formulated in
the language L(/D)+{N} where N is a new unary predicate symbol.
This' Lseagtechnitecal tool wirich will help us, to keep control ever
the numerals n occurring in 3-inferences A(n) F 3IxA(x) of @/wa~
derivations. Following Tait[45], we assume all formulas to be in
Nerdl Lo eRomnads sLoT s dtiel . thier “formulas. ape sbuillt: wups f£rom
atomic and negated atomic formulas by means of A,V,V,3. If A is

a complex formula we consider 14 as a notation for the
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corresponding negation normal form.

Let QID(N) be the language ¢(/D)+{N}. The length |A| of
each formula A of QID(N) is defined as follows:

(a) IN(t)| = |[aN(t)]| = 0.
(b) |4] €1 “i£'4 18 an'd.p.T. Pf(t) or ﬂPf(t).
2
(e)  |PE (to, t)| = |AP% (to 1) ] = 2.
(d) |A A Bl = |AV B| = max{|A4],|B|} + 1.
(e) |Vx4| = |3IxA| = |4] + 1.
PROPOSITION 5.3.5. |-4| = |A|, for each formula A of £, p(N) .

For each v € N, the set Posv of formulas of QID(N) s
defined as follows:

(a) All formulas of ¢(PA)+{N} belong to Posv.

: o o .
(b) ALl formulas Ph(1), Ph (tg.t;), P5, (fg,1y) with u <

belong to Posv.

(c¢) All formulas 1P3(t) with u < v belong to Posv.

(d)y . Tf A and B.belong to Posv, then: the Fformulasisd ABe AN B
VxA, 3xA also belong to Posv.

REMAREK 5306, Tf Pg(t) € Posv, then also ﬂu(Pﬁ,t) S Posv.

In the following, A,B,C always denote closed formulas of
QID(N). [, T', A denote finite sets of closeiJformulas of f/D(N).
We write, e.g., T, A, A for T U A U {A4}. A denotes the result
of * restiRieting “all™ auantifiers in A4 to No' MWe ‘defime the

following:

(t €e N) = N(t); (t ¢ N) = aN(t).

DEFINITION 5.3.9, For a.f € Qn for some n € R, o —+ B is

I
a —> B where k = max({3} U {3n | AN(n) € T}).

PROPOSITETEONSEES3RSS e bl e Qn for some n € N.

(a) If « e g and T ¢ A, then « s B.
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(Y ' If & _W B, then « o5 sl B.

To define the system w/D:w. we first define the basic
inference rules as follows:

(A) Ao, A1 F Ao A A
(V) AF AV B; B+ AV B.
(V) (A(n))nEN F VYxA(X).
(3) Aok dxA e )i
(N) n € NF Sn € N.
ST :
(P2) PHm) b PL(dim)s o 125 < u.
(ﬂpgu) 1P?(n) F ﬂpgu(j,n), it 7 < u.

Every instance (Ai)iel F A of these rules is called a basic
inference. If (Ai)ie/ F A is a basic inference with A4 € Posv,
then Ai € Posv for all i € /. This property will be used in the
proofi of* Femmar 558 .13,

The system ¢ID<£°will consist of the language ZID(N) and a
certain derivability relation kg [ for each a € ?; for some n €
N and for each m € N. This means that T is derivable with order
a € 7; and cut degree m € N. Here, for each n € N, the set 7; (E

7;, cf. Theorem 5.2.12) are defined inductively as follows:

*

(ay 1esly & 403

(b) 0, 1, wg,***,w, _, € 7;.

(c) 7; c 7; for k < n.

(d) If o € 7;+1. r € 7; and B € 7; i 7;_1, then wnr(a,ﬁ) & 7;.

We define kg [ (m € N, a € 7; for some k € N) inductively
as follows. Let n € N.

(Ax1) F; | A 1 A Tsea tnie @ apr e 00 e N -or 1P§u(j,n)

with u < j.

(Ax2)  FET, A, A if Ais (n € N) or Pf(n).
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(Bas) i1 (Ai)iel F A is a basic inference with A4 € T and
o ; a+l
Fm | Ai Tor all 4 %€ [~ then km ¥

a+3

(Pg) % F; [, n €NA ﬂE(Pg.n) and P%n € T, then Fm .

(Cut) If 7 T, aC and }5 T, C and |C| < m, then k;+lf-

* all] 2A
(Qu+1) Lt ey (a[T])TEQu+1 and Fm i Pun and
alz]
Fm An N Rer Valldl Lz e Qu+1 and A ¢ Posu such that
= 2A a+l
Fl A, Pun, then Fm i 2
(—)  If +P 1 and @ — B, then 1% T.
Then, the following 1lemmas and a theorem are proved

similarly to Buchholz[3].

LEMMA 5.3.9. (a) If |- T andm < k, T ¢ A = ) A
tby £ Eoaliy tiien r;*“ I (where 7+a = ¢7(0,7)).
a - a
ey TE YR PSR ien T

LEMMA 5.3.10(/nversion). Let (Ai)

: o0 A A
inference (A), (V ), (P<u), (—1P<u

Fa oA sBor-ally i €, T
m i

Sy A be a basic
e Ehie s, kg ', A implies

LEMMA 5.3.11(Reduction). Suppose r; [o, 2C and |C| < m,
where C is a formula of the shape A V B or 3xA(x) or P21 L3, or
wP (1)L gonsas LA lises . s s Thens Fﬁ [, C implies k a+p [o. F.

THEOREM 5.3.12(Cutelim1;?é;on). T4 Fg+l [ and o & 7:+1 for
i

some v € N and m > 0, then F where
B k , :
Z R ¢V+l(l,wu+l(l v+l(2 w ))) for each k € N.

LEMMA 5.3.13(Collapsing Lemma). If k? [~ and ‘Fie Posv, a €

. 2 g,
7v+2’ then F] [ where z ¢v+l(a,wv).
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DEFINITION 5.3.14. Let ¥£(N), be the set {4 | A4 is a
sentence of %(PA)+{N} in which N occurs only positively}. For T
= {Al,...,An) c 4(N), and each k € N, the relation F T(k) is
defined as

[ AV:+:VA_ 1is true in the standard model

when N is interpreted as {i € N | 3i < k}.

LEMMA 5.3.15. If }t{ i, ¢ Novunidy, db We T 88y o = ¥y
and T ¢ 4(N), and n > max{3, 3iy,...,8i }, then E T(F_ (n)).

THEOREM 5.3.16(Bounding). If kg VXEN(EYEN(AN(X,Y))), where
0'< a € 77 and A(x,y) a Z;-formula of %(PA), then for each n >
1, there® "k e"N 'suehthat™k =< Fa+1(n) and A(n,k) is true.

Proof. From the premise we obtain k n € N, HyeN(AN(n,y)).
Then, we get b(ByeN(A (n, y))(F (7)) $or n > max{3,3n} by Lemma
5.3.18; Hence for; each n, there is: a ok guch that k.x F&(3n+3)
and A(n,k) is true. From 3n+3 < 4n+2 = F{(n) since n > 1. Thus,

F (3n+3) < F_(F}(n)) < F3(n) ¢ F2'N(n) = F_, (n)

=« ol
since «a —I+ NG EGml < g o
In the following, we show that /Dv for veN can be embedded
into ¢lew. The following results can be proved as Buchholz[3,
Seetion . 4] (efs Kadeta K181 )3
k+l

ABBREVIATION. R v+l(2 w, j 8

~

LEMMA 5.3.17. rg ~A, A where k = |A].

LEMMA 5.3.18. F% 44(0), ~VYxeN(A(x) — A(Sx)), n ¢ N, A(n)

where z = (|A|+l)+wU

DEFINET LONavs a0y Let B(x) be a formula of ZID(N) For A

€ Posu, A* denotes the result of replacing all occurrences of P
*

I A By Bl+). 1815534} = {Al,...,Am}.

m
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PROPOSITION 5.3.20. If To U T ¢ Pos , a € 7, ., u*l < v,
k = |B| and Fg Iy, I', then

Fik +1)+a in: 1(Vx€N(ﬂE(B.X)—_+B(X)))' r’
LEMMA 5.3.21. If a € 7:+1. A c Pos , and Fi 4, Pi(")’ Wagh
Fik +1)+a A 1(VxeN(ﬁ§(B,X) — B(x)), B(n)

where k = |B].

LEMMA 5.3.22. Let z = (lBl+l)+wu Then,

+1°
F2 a¥xeN (2N (B, x)—B(x)), P, B(n).

PROPOSITION 5.3.23. For a mathematical axiom A(xl,...,xm)
of D, there is k € N such that K ACiy,...,i )N for all
il,...,im € N.

PROPOSITION 5.3.24. By PLl, we denote Talt's calculus for
the first-order predicate logic in the language ¢(/D). If a set

of formulas F(xl,...,xm) is derivable in PLI, then there is k €
N such that

k™, A 1 : : ;

FO i, ¢ N,...,lm ¢ N, F(zl,...,lm) o1 Lailil NI S N.

THEOREM 5.3.25. If the sentence A is provable in /DV for v

€ N, then there is k € N such that ki AN where z = w€+l(2,wv).

Proof. Suppose a closed formula A is provable in IDV. Then,
w(A|A~-‘AAn),A is provable in PLI where each Ai is the universal
closure of an axiom _of /Dv. Hence, there 1is m such that
#T (AlA---AAn)N and FT ﬂ(A|A~--AAn)N.AN:_By a (eut)y with the "eut

formula (A,A---AAn)N, we obtain that kk AN for some k. o

THEOREM 5.3.26. If a Il,-sentence Vx3dyA(x,y) for A € XI; is
provable in lDu for. w' e N, then there is @« < 7 [w+l] such that
for all n > 1, there is k siuch that k < Fa(n) anid. At ey s SErnes
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N

Proof. Suppose IDv F A for A closed. Then, FZ where a =

v+1(2 w, B flor some =0 s<iihbl el NS TR R sl Sehens hye M TheoFen
5.3, 12(Cutelzmznat10n), Fk 1 N where

a

u+.1(1

a' = ¢ V+1(l ¢ (2, w, 1)) = % . (1 (. &))

(2,a) = wv+l(2,wv).

u+1 v+1 u+1

v+1

By iterating this argument, we obtain kf AN where B = ¢5:T(2 w )
for some moe. N. Then, by iterating Lemma 5.3.13(Collapsing) we

N
have F{ A" where 7 = ¢;(...9 (¢V+1(2 w, ) w _l)...,wo). And we
have r < t' [v+1] since
k+m-1
o ) (atep (¢V+T (2,¢0,,,(23w)))w,_1)... wo)
< Wl(~' w (¢V+l(2 ¢V+l(2'wv))'wv—l).'°'w0)
< wl("'¢u(¢€liz’w0)(2’¢v+l(2’wv))’wv—l)""wo)
where z = ¢2(...¢v(¢b+l(2.¢v+l(2,wv)),wv_l)...,wl)

= er(p (o)l (200 (2w ) 0 1) ... W)

<

: w,

< ¢1(...¢V( u+l(2 ¢ +l(2 w, A v, _1)...,w0)

by ¢l('"¢V(¢V+l(3’wu)’wu—l)'”’wo)

S [ 1 O

Hetice, ¢ < T [e+l1 <" , Wnus, 7%l < ¢ [v+l]. By Théorem 5:9.16
(Bounding), for all n > 1, there is k such that k < FT+l(n) and
A(n,R) s true. 0

From this theorem, we can immediately derive Theorem 5.3.1

and Theorem 5.3.2 which were proved by Kadota[18].
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CHAPTER 6

DISCUSSIONS

In this chapter, we discuss the following two aspects which

come from the present dissertation.

In Section 6.1, we state problems on undecidable finite
combinatorial statements in some formal theories of arithmetic.
Then, we discuss these problems using our results on the
relation between subrecursive hierarchies and provably

computable functions.

In Section 6.2, we discuss the meanings and problems of the
minimum subrecursive inaccessible ordinal. Then, we consider the
relation with the inductive definitions, and state some

application to computer science.

6.1 Undecidable statements in theories of arithmetic

In Chapter 2, we showed that a finite combinatorial
statement PH, which represents strong Ramsey property, is
undecidable in Peano arithmetic PA, i.e., neither PH nor -PH is

provable in PA.

In Chapter 4, we studied this unprovability result in
detail by considering the fragments PAn of PA. Here, PAn s
obtained from PA by restricting the induction formulas of the
mathematical induction to formulas containing at most n quanti-

fiers. This unprovability result is obtained there as follows:
First, we assume that f is a computable function defined by
fizx) = gyitix, o)

where R is a primitive recursive predicate. Then, from Theorem

4.1.2, f is provably computable in PAn 1 Eheformula

Vx3yR(x,y)



is '‘provable in PAn, where R 1is the predicate symbol for the
primitive recursive predicate R. This formula expresses the
total-definedness of f. In this case, we can prove from Theorem
4.1.2 that for n > 0, f is provably computable in PAn if and
only if f is dominated by Fa for some a < w,

Next, we consider the formula PH(n) for every 1 < n € N by:

PH(n) = VxVziy(lx, y] —= (n+1)]),

where the relation [z, y] —( (n+l)Z is primitive recursive.
This formula PH(n) expresses the total-definedness of the
function on(r,z) which is defined by:

¢ (x.z) = pyllz, y] =+ (n+l)Z)-

Then, by Theorem 2.3.2, we obtain the following
(a) The function g is dominated by Fa for some a < w

(b) The function o; is not dominated by Fa for any a < W _q-

By applying the argument above, we 1immediately obtain the

following results:

(¢) PH(n) is provable in PAn.

(d) PH(n) is not provable in PA _,.

This argument gives a method of obtaining the provability
and unprovability results T on some finite combinatorial
statements. This also gives some problems on such statements

unprovable in formal theories of arithmetic. In the remaining of

this section, we discuss these problems.

In 1982, Friedman, McAloon and Simpson[10] introduced a
finite combinatorial statement FMS which states some strong
Ramsey property as P/f. Then, they showed that FMS is undecidable
in the formal theory ATR,. Here, ATR, 1is the theory of second
order arithmetic with arithmetical transfinite recursions as
axioms, which is much stronger than PA. The formulas FMS(n) and
FMS are defined by:

FMS(n) = Vx3y([x, y] is n-dense); FMS = YzFMS(z),
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where the predicate ([z, y] is n-dense) is primitive recursive.
The function a;(r) is defined by:

o;(r) = py([r, y] is n-dense).

They also showed that the set of all provably computable
functions in ATR, is classified by the fast-growing hierarchy up
to Ty, where Ty is the proof-theoretic ordinal of ATR, which is
larger than ¢g.

However, we have not known the detailed relation between
the functions a; and the fast-growing hierarchy up to Iy such
as Proposition 2.3.2 which implies (a) and (b) above. Also we
have not known fragments of ATR, from which we obtain a relation

such as (c¢) and (d). Thus, we now have the following problems:

(e) To prove the detailed relation between o; and Fa for a < Ty

which implies such as (a) and (b).

(f) To obtain fragments of ATR, which correspond to FMS(n),
in the sense of (c) and (4d).

Concerning these problems, we remark the work of Kurata and
Shimodal[29]. They studied the relations among FMS, the
reflection principle of ATRy for ZX,-formulas, transfinite

induction up to I'y and the large set principle for Ty.

There are some other statements which are finite
combinatorial, and undecidable in certain formal systems(cf.
Buchholz[3], Shelah[39] and Paris[34]). T sk ifrteresting
to prove the relations between undecidable statements and the
fast-growing hierarchies up to some ordinals, which will answer

the problems such as (e) and (f).

6.2 Applications of subrecursive hicrarchices

In Chapter 5, we said that an ordinal a« 1is subrecursive
inaccessible (or s-inaccessible) 1if the following holds: There
is m € N such that

E ) = G itawmm)l Steor alil a Som.
o = S
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Then, we proved that the ordinal 7 is a minimum s-inaccessible.

Here we consider this result and discuss its meaning informally.

Let / be a countable ordinal and P a system of fundamental
sequences for /. Then, we consider any sequence {fa}a<l
number-theoretic functions. Here, we recall that {fa}a<l have

the domination property if the following holds:

of unary

Domination: If a < B, then fa is dominated by fﬁ'

Gt {fa}a<l
the sBetiof |alliua <./ "tosthieiset {fal a</} by mapping a to fa ref 4
the following figure):

has the domination property, we have a bijection from

St

e <

Here, fa << fﬂ means that fa is dominated by fﬂ‘ We call this
bijection a coding for [, and each fa 4 code ol .

Then, we consider the slow-growing hierarchy {G }

5 2 g The

hierarchy {Ga}a<l is defined inductively by:

Go(x) = 0;
Ga+1(I) = Ga(r) + 1;

G (r) = G ) e 5 e a1 e T b e Rk p s L
a z)

al

where {a[lr]}IEN is the fundamental sequence for a.

If the system of fundamental sequences for [ is (n)-built-
up for some n € N, then {Ga}a</ has the domination property, by
Propositions8uiiili2y Hencelwthen {Ga}a<l gives a coding for /.

In order to see this situation, we consider the standard
system of fundamental sequences for go as an example of systems

for /. In this case, we have that

Gw(r) =0



@Q

-
Il

N

This system 1is (1)-built-up by Proposition 3.1.7. Thus the

hierarchy {Ga(}o(<£0 has the domination property. Hence {Ga}a<eo

gives a coding for /[, where Ga is a code of a < gj.

Next, we consider the computation of the function Fr for
the minimal subrecursive inaccessible ordinal 7. When we compute
the value of FT(I) for any input z, we need to have the system
of fundamental sequences for 7. More precisely, we need a code
of any ordinals a« < t which has the information on the
assignment of the fundamental sequence for a. As we discussed

above, {Ga}a<r produces natural one of such codings.

If we take GT for a code of 71, we have the following
situation:

We can use GT when we compute Fr'

But, since t is s-inaccessible, FT(I) < GT(I+1) for sufficiently
large r. This means that Fr is not greater than the function
which is used in the computation of FT.

This situation suggests the limitation of the construction
of new greater functions by means of subrecursive hierarchies.
On the other hand, we showed that the ordinal t' satisfies

the following condition which is similar to s-inaccessibility:

FT.(I) < GT'(GT'(I)) HON & oS
Then, we showed also the following:
(g) Fa is provably computable in /D<w for every a < 1.

(h) For any function f provably computable in /D<w'

there is an a < t such that f is dominated by Fa.

Here /D<w is the theory of finitely iterated inductive

definitions.



The theory ID<w contains PA and also contains all
arithmetical consequences of ATR,. In particular, the total-

definedness of the function FF is not provable in ATR, but is
0

provable in ID<w. However, by (h), we can easily show that the
total-definedness of Fr' is not provable in lD<w. From the
argument above and the results (g) and (h), we can say that the

following two notions are closely related:
(i) To construct functions by means of subrecursive hierarchies.

(j) To construct mathematical structures by means of inductive
definitions.

This observation will suggest the possibility of applying
the relation in various fields. In fact, inductive definitions
are used in the constructions of many inductive structures which
appear 1in fields of mathematics and computer sciences. In
particular, inductive definitions are used quite often in formal
language theory. So, we can expect that there will be a lot of
important applications of results on subrecursive hierarchies
and provably computable functions in these fields, especially in

formal language theory.

Finally, we remark a relation between the results of
Chapter &5 and proofs wusing real computers. The collapsing
theorem in Chapter 5 was proved first by Wainer[49] in a quite
abstract manner. On the other hand, Coquand and Paulin[6] gave a
simpler proof of it by using their computer system CC (Calculus
of Construction) based on type theory. The proof is, of course,
far more constructive than Wainer's, but it lacks mathematical
intuitions. Our preef given in Section 5.2 1s moere constructive
than that of Wainer[49], since it is formalized in /D<w‘ Hence,
the author believes that our proof, which highly relies on the
this normalization theorem, will be more understandable than
these two and moreover it will clarify the relation between the
proof using computers by Coquand and Paulin[6] and the abstract
proof by Wainer[48].
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