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ABSTRACT 

It is of great importance to operate a computer system with high reliability. 

Several techniques to achieve the high reliability of a computer system have 

been proposed and implemented in the real computer systems. This dis

sertation discusses configuration and recovery techniques for fault-tolerant 

computing systems, for which stochastic models are presented to evaluate 

performance and/or reliability. Chapter 1 gives introduction for configura

tion and recovery techniques based on the concept of redundancy. Chapter 2 

presents two l1!odels for evaluating database recovery mechanisms. The first 

model discusses the recovery mechanism with periodical checkpoint gener

ations. The second model further discusses the recovery rnechanism in the 

situation where the road of the system varies with time in a shape of a cy

cle. Chapter 3 presents a model for evaluating the improvement on system 

reliability by retries based on time redundancy. In Chapter 4, two models 

for multi-processor systems are proposed from the viewpoint of transaction 

assignment, and are compared using the reliability /perforrnance measures. 

Qhapter 5 discusses a reliability evaluation software package tool for a system 

formulated by a continuous-time Markov chain with many states. Finally, 

Chapter 6 summarizes the results obtained in the dissertation, and discusses 

the further research works on configuration and recovery techniques . 
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Chapter 1 

Introd uction 

1.1 Configuration and Recovery 1['echniques 
for Fault-Tolerance 

In our daily lives we are usually using computer systems to keep our high 

quali ty lives and highly social acti vi ties. Such computer systems are tele-

phone exchange systems, communication systems, banking systems, train 

and/or airline seat reservation systems, and so on. Demands of applying 

such computer systems has a remarkably increasing tendency following the 

progress of computer hard ware and software technologies. Without such 

computer systems, we cannot keep our high quality lives. 

Once failure of such computer systems takes place, it might be costly, 

dangerous, and might cause confusion in our society. Even now, the se-

rious crisis is facing us. To achieve the high reliability of such cornputer 

systems, we should propose and implement the highly reliability techniques 
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for computer systems from the viewpoint of hardware and software. The 

main objective of this dissertation is to introduce and evaluate such high 

reliability and/or performance techniques for computer systems. 

vVe have two approaches for improving the reliability of the system, which 

are called fault-avoidance and fault-tolerance [1, 2]. Fault-avoidance is a 

technique which decreases the possibility of fault occurrence. Adoption of 

the high-reliable components is a typical example for such a technique. On 

the other hand, fault-tolerance is a technique by which the system tries to 

tolerate the faults, considering that a fault can not be completely prevented. 

There are three principal stages in fault-tolerant techniques [1, 2] : error 

detection and correction, configuration and recovery, and, diagnosis and 

repaIr. 

This dissertation concentrates our interest on configuration and recovery 

techniques in fault-tolerant computing systems [11, 12], for which we intro

duce stochastic models to evaluate performance and/or reliability [13-20] . 

It is of great importance for system design, operation and maintenance, to 

evaluate the reliability and/or performance qualitatively and/or quantita

tively. 

A system configuration technique and a recovery technique have a closely 

mutual relation, and are realized by the concept of redundancy. vVe can clas

sify redundancies into three types from the viewpoint of their actualization 

methods [1; 2] as follows : 
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Hardware redundancy: The system has additional redundant hardware 

modules or redundant information. 

Software redundancy: The system has additional redundant software mod

ules including the software which controls hardware redundancy and 

time redundancy. 

Time redundancy: The system spends redundant time. 

We can also classify redundancies into two types from the viewpoint of their 

principles [1, 2] as follows : 

Masking redundancy: Faults are masked by fixed redundant configura

tions; and are not recognized by the outside. This redundancy is also 

called static redundancy. 

Dynamic redundancy: Errors caused by faults are detected, and the re

covery procedures are executed . 

A classification of the typical redundant techniques is shown in Table 1.1. 

Redundancy by error correcting codes is the first-step of fault masking and, 

is also called an information redundant technique [1, 2]. T~1R (Triple Mod

ular Redundancy) has three equivalent hardware modules and decides the 

output by a majority vote of them [1, 2, 19] . On the other hand, standby 

redundancy and graceful degradation are the techniques which execute the 

reconfiguration of system component by redundant hardware modules. In 
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standby redundancy, redundant modules are used for replacement of failed 

rn.odules [1, 19]. Graceful degradation uses even the redundant modules in 

normal operation, and separates failed modules on the occurrence of the 

failure [19, 21, 22]. Similarly, N-version programming and recovery blocks 

have multi-version software modules, and use the redundancy for a majority 

vote and replacement, respectively [1, 13]. The rollback is a fundamental 

procedure for a recovery action [1, 2]. If a failure spoils the the system states, 

the consistent states which are called checkpoints and have been collected 

in a safe place at prespecified time points, are reintroduced to the system 

[23-25]. The retry is a technique which attempts repeatedly the same action 

interrupted by a failure to recover from a transient or intermittent failure 

[26,27]. 

Based on the redundancies above, when a fault takes place, the system 

carries out the recovery procedures as shown in Fig. 1.1 [1) 2] so as to restore 

the correct states and restart the normal operation. 

The dissertation studies the following four themes concerned with the 

above configuration and recovery techniques; Database Recovery, Retry pro

cedure, Nlulti-processor systems (Gracefully degrading systems), Software 

package tool for reliability evaluation. 



Table 1.1: A classification of typical redundant techniques. 

------ Masking Redundancy Dynarnic Redundancy 

Error Correcting Code 

Hardware 
TMRCTriple Modular Stand by Redundancy Redundancy 

Redundancy) 

Graceful Degradation 

Software 
N-Version Programming Recovery Blocks 

Redundancy 
Rollback 

Time 
Retry Redundancy 
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Normal Operation 

Fault -~~~- Fault Masking - ___ ~---l 

t 
Fault Detection 

t 
Retry 

t 
Reconfiguration 

t 
Recovery Processing 

t t 
System Down Graceful Degradation 

t t 
Diagnosis and Repair 

Figure 1.1: Recovery procedures for a system. 
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1.2 Organization of Dissertation 

In this section, we summarize the dissertation. The dissertation is organized 

by Introduction, Chapter 2-5, and Conclusion. 

Chapter 2 discusses database recovery techniques [23; 24] . Two models 

are presented for evaluating the recovery mechanisms. The first model eval

uates the recovery mechanism with periodical checkpoint generations [24]. 

The expected recovery time and the availability for one cycle are derived un

der the assumption of an arbitrary failure-time distribution. In particular, 

we analytically obtain the optimum checkpoint interval with the maximum 

availability in the case of an exponential distribution. vVe numerically calcu

late the above results by assuming vVeibull distributions . VVe further discuss 

the numerical results in varying the parameters that we define in our model, 

and show the impact of these parameters on the recovery mechanism. The 

second model discusses the recovery mechanism with checkpoint generations 

in a varying load situation. The density of checkpoint generations is analyt

ically derived from minimizing the expected total overhead to completion of 

a phase, and this density yields the optimum sequence of checkpoint gener

ations measured in unit of update pages . We further present the numerical 

examples for the results obtained and show that the sequence gives effective 

checkpoint generations. 

Chapter 3 presents a rnodel for evaluating the improvernent on reliability 
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bv retries based on time redundancy [1, 2, 26]. Taking account of the behav-
" 

ior of intermittent and permanent failures [27], we consider the evaluation 

model which manages the system maintenance with the prescribed number 

of successful retries. Analysis of the model, by applying the Markov renewal 

processes [28], yields the availability and the mean time between failures in 

the steady-state. vVe further describe a calculation method for the availabil-

ity in the transient-state introducing continuous time NIarkov chains and 

a randomization technique [29, 30]. Numerical illustrations for the results 

above shows the several important properties of retry procedures . 

Chapter 4 discusses a multi-processor system which is one of the typical 

fault-tolerant computing systems; and is also called A Gracefully Degrading 

System from its redundant technique [I, 2,19]. The system is assumed to be 

composed of two processors and buffer(s), and is evaluated taking account 

of the reliability, performance and computational demands simultaneously. 

vVe propose two models for the system from the viewpoint of transaction 

assignment. Applying Markov renewal [28] and queuing theories [31], we 

obtain the reliability/performance measures for each model. Using the nu

merical results of our models, we compare two models and show the impact 

of transaction assignment on the evaluation measures based on our numerical 

examples. 

In Chapter 5, we discuss a reliability evaluation software package tool for 

a system formulated by a continuous-time Markov chain with many states. 
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The randomization technique [29, 30] is discussed to derive the transient 

solution for the Markov chain. The software package tool is implemented by 

using the randomization technique and introducing a new idea of identifying 

when the transient solution converges to the steady-state solution in advance. 

Numerical examples are illustrated by using our software package tool to 

evaluate the optimal maintenance policies for computing systems. Some 

interesting maintenance policies for compute systems are suggested from 

the numerical examples. 

The conclusion summarizes the results obtained in the dissertation . Fi

nally, discussion of the future research works on configuration and recovery 

techniques concludes the dissertation. 

References 

[1] D. P. Siewiorek and R. S. Swarz (eds.): The Theory and Practice of 

Reliable System Design, Digital Press, Bedford, Massachusetts (1982). 

[2] lVI. lVlukaidono (ed .): Introduction to Highly Reliable Techniques for 

Computer Systems, Japanese Standards Association, Tokyo (1988) (in 

Japanese). 

[3] Reliabili ty Center for Electronic Components of Japan: The Report of 

Research Studies on Highly Reliable System Techniques (Electronic Ap

plication Systems) fOT the 57th Fiscal YeaT of Showa; Reli ability Center 

9 



for Electronic Components, Tokyo (1983) (in Japanese). 

[4] Japan Information Processing Development Center: The Report of Re

search Studies on Highly Reliable System Techniques (Electronic Appli

cation Systems) for the 58th Fiscal Year of Showa, Japan Information 

Processing Development Center (1984) (in Japanese). 

[5] Japan Information Processing Development Center: The Report of Re

search Studies on Highly Reliable System Techniques (Electronic Appli

cation Systems) for the 59th Fiscal Year of Showa, Japan Information 

Processing Development Center, Tokyo (1985) (in Japanese) . 

[6] Japanese Standards Association: The Report of Research Studies on 

Highly Reliable System Techniques (Electronic Application Systems) 

for the 60th Fiscal Year of Showa, Japanese Standards Association, 

Tokyo (1986) (in Japanese). 

[7] Japanese Standards Association: The Report of Research Studies on 

Highly Reliable System Techniques (Electronic Application Systems) 

for the 61th Fiscal Year of Showa, Japanese Standards Association, 

Tokyo (1987) (in Japanese) . 

[8] Japanese Standards Association: The Report of Research Studies on 

Highly Reliable System Techniques (Electronic Application Systems) 

10 



for the 62th Fiscal Year of Showa, Japanese Standards Association, 

Tokyo (1988) (in Japanese). 

[9] Japanese Standards Association: The Report of Research Studies on 

Highly Reliable System Techniques (Electronic Application Systems) 

for the 63th Fiscal Year of Showa, Japanese Standards Association, 

Tokyo (1989) (in Japanese). 

[10] Japanese Standards Association: The Report of Research Studies on 

Highly Reliable System Techniques (Electronic Application Systems) 

for the First Fiscal Year of Ii eisei, Japanese Standards Association, 

Tokyo (1990) (in Japanese) . 

[11] A. Avizienis: "Fault-Tolerant System", IEEE Trans. Comput., Vol. 

C-25, ~o. 12, pp. 1304-1311 (1976). 

[12] A. Avizienis and J. C. Laprie: ':Dependable computing: From concepts 

to design diversiti', Proc. IEEE} Vol. 74, No.5, pp. 629-638 (1988) . 

[13] A. Avizienis, H. Kopetz and J. C. Laprie (eds.): The Evolution of 

Fault- Tolerant Computing, Springer-Verlag, Wien (1988). 

[14] A. Costes, C. Landrault and J. C. Laprie: "Reliability and A \·ailability 

Models for Maintained Systems Featuring Hardware Failure and De

sign Faults", IEEE Trans. Comput., Vol. C-27, No.6, pp. 548-560 

(1978). 

11 



[15] Y. W. Ng and A. Avizienis: "A Unified Reliability Model for Fault

Tolerant Computers", IEEE Trans. Comput., Vol C-29, No. 11, pp. 

1002-1011 (1980). 

[16] S. Osaki and T. Nishio: Reliability Evaluation of Some Fault- Tolerant 

Computer Architectures, Springer-Verlag, Berlin (1980). 

[17] [v1. D. Beaudry: "Performance-Related Reliability Measures for Com

puting Systems", IEEE Trans. Comput., Vol. C-27, No.6, pp. 540-

547 (1978). 

[18] J. F. Nleyer : "On Evaluating the Performability of Degradable Com

puting Systems", IEEE Trans. Comput., Vol. C-29, No.8, pp . 720-

731 (1980). 

[19] S. Osaki: ::Performance/Reliability Measures for Fault-Tolerant Com

puting Systems", IEEE Trans . Reliab ., Vol. R-33, No.4, pp. 268-271 

(1984). 

[20] M. Nakamura and S. Osaki: "Performance/Reliability Evaluation of a 

Nlulti-Processor System with Computational Demands," Int. J. Sys

tem Sci., Vol. 15, No.1, pp. 95-105 (1984). 

[21] F. A. Gay and M. L. Ketelsen: "Performance Evaluation for Gracefully 

Degrading Systems", in Proc. 9th FTCS, Nladison, vVisconsin, pp. 51-

58 (1979). 

12 



[22] T . \"akagawa and S. Osaki: "Stochastic Behavior of a Two-Gnit Standby 

Redundant System", I1VFOR, Vol. 12, No . 1, pp. 66-77 (1974). 

[23] J. M. Verhofstadt: "Recovery Techniques for Database Systems", ACM 

Comput. Surv., Vol. 10, 1 o. 2, pp. 167-196 (1978). 

[24] T. Haerder and A. Reuter: "Principles of Transaction-Oriented Database 

Recovery" , ACM Comput. Surv., Vol. 15, No.4, pp . 287-317 (1983). 

[25] R. Koo and S. Toueg: ::Checkpointing and Rollback-Recovery for Dis

tributed Systems':, IEEE Trans . So/two Eng., Vol. SE-13, No. 1, pp. 

23-31 (1987). 

[26] H. Inose (ed.): Reliable Computer Systems, IPS Japan, Tokyo (1977) 

(in Japanese). 

[27] Y. K. Malaiya: "Linearly Correlated Intermittent Failures", IEEE 

Trans. Reliab ., Vol. R-31, No. 2, pp. 211-215 (1982). 

[28] T . Nakagawa and S. Osaki : "Markov Renewal Processes with Some 

Non-Regeneration Points and Their Applications to Reliability The

ory", Nlicroelectron . Reliab ., Vol . 15, pp. 633-636 (1976). 

[29] D. Gross and D. R. Miller: "The Randomization Technique as a Mod

eling Tool and Solution Procedure for Transient Markov Processes", 

Oper. Res., Vol. 32, No . 2, pp. 343-361 (1984). 

13 



[30] E. D. S. Silva and H. R. Gail: "Calculating Availability and Performa

bility ?v1easures of Repairable Computer Systems Using Randomiza

tion", J. ACM, Vol. 36, No.1, pp. 171-193 (1989). 

[31] L. Kleinlock: Queueing Systems; Volume I: Theory, John vViley and 

Sons, New York (1975). 

14 



Chapter 2 

Evaluation for Database 
Recovery Mechanisms 

This chapter discusses database recovery techniques. T\vo models are pre-

sented for evaluating the recovery mechanisms. First, we describe a model 

in order to treat the changing of a failure rate of the system with time. 

Secondly, we develop a model in the situation where the road of the system 

varies with time in a shape of a cycle. 

2.1 A Recovery Mechanism with Periodical 
Checkpoint Generations 

2.1.1 Introduction 

It is of great importance to recover a computer system after a system fail-

ure in order to restart the system operation. Such a recovery action is 

one of the fault-tolerant technologies, and must be considered in operation 

15 



of all systems. However, it is particularly important in database systems 

which support on-line transaction processing (OLTP) system such as bank

ing and airline seat reservation systems. Therefore, several recovery tech

niques are applied to the database management system (DBMS) that con

trols the database recovery actions. Verhofstadt [1] surveyed the standard 

database recovery mechanisms. Haerder and Reuter [2] introduced a frame

work for establishing and evaluating the basic concepts for fault-tolerant 

database operation. In this section, we discuss evaluation for a database 

recovery action. 

In general, checkpoints are used to limit the amount of the data process

ing for the recovery action. Generating a checkpoint means that the results 

of a complete transaction(s) in the database buffer are collected in a safe 

place. vVhen a system failure occurs, we trace the transaction processing 

back to the checkpoint instead of the starting point of the system opera

tion, and reconstruct the logical consistency of the database which had been 

constructed just before the failure. 

It is very important to decide the optimum checkpoint time interval, 

if periodical checkpoint generations are used, considering the influence of 

the overhead during normal operations on the system performance. If we 

make the interval too short, we have to incur the high overhead time for 

frequent checkpoint generations, and, conversely, if we make it too long, we 

have to spend much recovery time when the system failure occurs. Chandy 
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et al. [3], and Gelenbe [4] discussed the optimum checkpoint interval, by 

assuming that the failures occur as a Poisson process. Sumita et al. [5] 

discussed such problems by assuming a nonhomogeneous Poisson process. 

In these previous works, one cycle for evaluating the recovery action is the 

interval between two successive checkpoint generations, and therefore, the 

completion of the checkpoint generation implies a renewal of the system in 

terms of a failure rate. Since the failure rate of the system seems to be 

unchanged by the checkpoint generation, it is necessary to re-examine the 

situation above. Young [6] derived the optimum checkpoint interval for the 

endless job processing, minimizing the time lost caused by the checkpoint 

generations and recovery from the failure due to the exponential distribution . 

Reuter [7] proposed a set of models that evaluate mean value of transaction 

rate for comparing recovery techniques of the taxonomy in the reference [2] . 

In these works, unlike the above assumption, one cycle is the interval from 

the beginning of the processing to the completion of the recovery. However, 

we can not use the models in case where the failure rate of the system 

changes with time, e.g.) the system is in the early phase or wearout phase. 

Vle discuss the study of the above problem, proposing a new model to 

evaluate the database recovery action. In our model, one cycle is defined as 

the interval from the start of the system operation to the completion of the 

recovery action after the failure. Vie are especially interested in evaluation 

for the recovery actions, under the assumption of an arbitrary failure-time 

17 



distribution [8]. This is of great use for various kinds of distributions, such 

as decreasing failure rate (DFR) distributions in the early stage of system 

operation. In the next subsection, we discuss general database recovery 

mechanisms and checkpoint generations to explain the environment of the 

recovery action which we evaluate in this paper. In Subsect. 2.l.3, we de

scribe our new model based on the concepts above, introducing several as

sumptions. In order to evaluate the recovery action, we obtain the expected 

recovery time and the availability for one cycle as a function of checkpoint 

interval, in Subsect. 2.1.4. vVe further derive analytically a formula of the 

optimum checkpoint interval with the maximum availability, in a case where 

the failure-time distribution obeys an exponential distribution, generalizing 

the formula obtained by Young [6] . Finally, we numerically evaluate the re

covery actions and the optimum checkpoint intervals from the above results 

by assuming vVeibull distributions including a DFR distribution in Subsect . 

2.l.5. We discuss the numerical results in varying the parameters such as 

the mean time to the failure, the overhead for a checkpoint generation, etc., 

and show the impact of these parameters on the recovery action. 

2.1.2 Recovery Mechanisms and Checkpoints 

A design goal of the recovery mechanisrns is to be able to reconstruct the 

logical consistency of the database on the occasion of a system failure. This 

fact implies that once we have allowed a transaction to commi tits results 
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to the database, we must protect the effects of the transaction from any 

system failure, conversely, if we have not allowed a transaction to commit 

yet, we must not leave the incomplete effects of the transaction caused by 

the system failure. In the former case, we call the transaction a complete 

transaction, and in the latter case, an incomplete transaction. 

In general, an update transaction modifies the pages in the database 

buffer as required, and the modified pages will be propagated to the sec

ondary (nonvolatile) storage of the database according to the buffer manage

ment. When a system failure occurs, it is assumed that the database buffer 

loses the information on modified pages, since the system failure forces the 

system to terminate the transaction processing in an uncontrolled manner. 

Therefore, we must assume that the contents of the secondary storage are 

not enough to satisfy the logical consistency of the database. 

The recovery action in such a si tuation consists of two operations. One 

is UNDO operation, which rolls back the effects of all incomplete transac

tions from the database, and the other is REDO operation, which reflects 

the results of all complete transactions in the database. The amount of 

UNDO operation depends on the number of pages which have been prop

agated to the secondary storage before the failure even though the pages 

have been modified by incomplete transactions. On the other hand, the 

amount of REDO operation depends on the number of pages which were 

remaining in the buffer at the time of the failure even though the pages 
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have been modified by complete transactions. These are regulated by the 

buffer manager according to the capacity of the database buffer. In order 

to process these operations, redundant information for each transaction is 

collected in a log file which survives system failures. The log file contains 

the following information: BOT (begin of transaction) records; information 

for UNDO operation; information for R.EDO operation; and EOT (end of 

transaction) records. Applying the inforrnation of the log file to the contents 

of the secondary storage, the DBMS enables us to reconstruct the database 

to be logically consistent, and restart processing normally. 

However, as a worst-case assumption, i.e., if there is no propagation to 

the secondary storage before the system failure, we have to process REDO 

operation from the beginning of the log file. To prevent such heavy overhead, 

an additional redundant method should be taken . Hence we institute the 

specific provisions which are called checkpoints, and in which the results of 

a complete transaction(s) are collected in a safe place such as the secondary 

storage or the log file. Checkpoints are used to define and limit the amount 

of REDO operation . 

In particular, if checkpoint generation means that the pages modified by 

a transaction are propagated to the secondary storage before the transac

tion is recognized as a complete transaction, no REDO operation is required 

in the recovery action after the system failure. Such a type of checkpoints 

is called Transaction-Oriented Checkpoints (TOG) in the classification pre-
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sented by Haerder and Reuter [2]. In this approach, however, every time 

an update transaction is recognized as a complete transaction, the pages 

which are modified by that transaction and remaining in the buffer must be 

propagated to the secondary storage. This regulation is disadvantageous to 

the propagation overhead for what we call hot spot pages which remain in 

the buffer for a long time since many transactions modify these pages again 

and again frequently. Although TOC is excellent in terms of REDO opera

tion, its overhead during normal processing is too high to be used in large 

applications, since the number of hot spot pages increases in proportion to 

the buffer capaci ty. 

In this section, we discuss the periodical checkpoint generations, in which 

all modified pages in the buffer are reflected in secondary storage, in other 

words, contents of the secondary storage are synchronized with the database 

buffer. After the system failure, we process REDO operation from the 

most recent checkpoint. In this case, we can limit the extent of REDO 

operation to the checkpoint interval, that is, the time interval between two 

successive checkpoint generations. Such a type of checkpoints corresponds 

to Transaction-Consistent Checkpoints (TCe) or Action-Consistent Check

points (A Ce) in the above classification [2]. TOC and fuzzy checkpoints, 

which have the advantage of low overhead during normal operations [2], are 

of great interest, but we do not discuss these types. 
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2.1.3 Model for a Recovery Mechanism 

In this section, all results of complete transactions remaining in the database 

buffer are reflected to the secondary storage periodically with the checkpoint 

interval T. \Ve spend the overhead time C for a checkpoint generation, which 

is independent of the checkpoint interval T. This assumption might seem 

not to apply in practice, e.g., in a case where T is a short period and the 

number of the modified pages are small. However, in large applications 

which are the subjects of our model mainly, the assumption is justified by 

the following reasons: 

• After the (re)start of the normal operation, the amount of update 

information in the buffer reaches to an upper bound of the capacity 

within a very short term. Then, that is controlled to be constant by 

the buffer manager propagating the modified pages other than hot 

spot ones. \~Te can neglect the above transient term compared with 

the interval T. 

• The hot spot pages remaining in the buffer for a long time, contain 

many updates which increase with the interval T. On the other hand, 

the number of these pages is almost constant, that is, the propagation 

overhead for the pages are constant independent of the interval T. 

vVe assume that the time to the failure X obeys an arbitrary distribution 

F(t) with a finite rnean E[X]. vVe define the survival probability F(t) == 
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1 - F(t). 

Let R(x) be the recovery function, which denotes the required time in

terval for the recovery actions after the failure for x units of time for normal 

operations. Hence, we have to spend the recovery time R[t - (k - l)(T + C)] 

when the system failure takes place at time t which is in kth normal opera

tion. If the system failure occurs during checkpoint generations, the results 

of transactions processed in time interval T are lost and we have to spend 

the recovery time R(T). The concrete recovery function is introduced in the 

later. 

'vVe define a cycle as the interval from the start of the system operation 

to the completion of the recovery action after the failure . A sample function 

of our model for one cycle, is depicted in Fig. 2.1. 

2.1.4 Analysis 

Let us derive the expected recovery time and the availability for one cycle. 

In the case where the failure occurs in the kth normal operation, the 

total time for the normal operations, Y, is given by Y = X - (k - l)C. In 

the case where the failure occurs in the kth checkpoint generation, the total 

time Y is given by Y = kT. Let E[Y I tl ::; X < t 2] be the conditional 

expectation of Y given L1 ::; )( < L2, and Tk = k(T + C). \Ve obtain UTi the 
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expected total time for the normal operations before the failure: 

UT = f [E[Y I Tk - 1 :S X < Tk-J + T]· Pr {Tk - 1 :S X < Tk - 1 + T} 
k=l 

+E[Y I Tk-J + T:S X < Tk ]· Pr{Tk - 1 +T:S X < Td] 

ex [k-l +T [t - (k - l)C] dF( t) 

= L [ ;k-{T < X T + T} . Pr {Tk - 1 :S X < Tk - 1 + T} 
k= 1 r k-l _ < k-l 

+kT· Pr {TH + T :S X < Td] 

= t, [.(~~I+T[t - (k - l)C] dF(t) + kT h.~~'+T dF(t)] 

= t, [f~~I+T F(t) dt + (k - 1)TF(Tk _ 1) - kTF(Tk )] 

= t, [f~~'+T F(t) dt] . (2.1 ) 

Let RUk and RSk denote the mean times required by the recovery ac-

tions when the failure occurs in the kth normal operation and in the kth 

checkpoint generation, respectively. By means of recovery function R(x), we 

have 
r Tk-1 +T 

RUk = J7 R(t - Tk - 1) dF(t); k 2:: I, 
Tk-l 

(2.2) 

RSk = rTk R(T) dF(t); k 2:: l. 
JTk-l +T 

(2.3) 

From the above equations, we can derive the expected recovery time RC(T) 

as follows: 
00 

RC(T) = L[RUk + RSk ]. (2.4) 
k=l 
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We fur ther have the availability for one cycle A(T): 

[IT 

A(T) = E[X] + RC(T) , (2.5) 

since the expected time for one cycle consists of the mean time to the failure 

and the expected recovery time. 

Let us next consider the recovery function R(x). The recovery action 

after the system failure consists of UNDO operation and REDO operation. 

For UN DO, which rolls back the effects of all incomplete transactions , the 

log file must be scanned to the BOT record of the oldest incomplete transac-

tion. The amount of log information to process UNDO operation depends on 

the number of pages which have been propagated to the secondary storage 

before the failure even though the pages have been modified by incomplete 

transactions. vVe can assume that the overhead for UNDO operation is 

constant, i.e., the time interval between the latest checkpoint and the sys

tem failure is independent of the degree of the above redundant information, 

since transactions are recognized as a cornplete transaction one after another. 

REDO operation is processed by applying the results of all complete trans

actions, collected in the log file, to the secondary storage of the database. 

The amount of data to be processed for REDO operation depends on the 

time interval between the latest checkpoint and the system failure. Then we 

assume the following definition for R(x): 

R(x) = I.LT.X + b, (2.6) 
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which is similarly to Gelenbe [4] and Sumita et al. [5], where b represents the 

overhead for U~DO operation, f-L the relative share of update transactions, 

and r the ratio of the overhead for a transaction in REDO operation to the 

overhead for a transaction in normal operation. 

Substituting Equation (2.6) into Equation (2.4), we obtain the expected 

recovery time, RC(T): 

(2.7) 

Equations (2 .5) and (2.7) are our new results for evaluating a recovery action 

in case where the failure rate of the system changes with time. 

From these results, we can evaluate RC(T) and A(T) numerically, as-

suming an appropriate distribution to F(t). vVe perform such evaluation in 

Subsect. 2.1.5. However, we first examine the behavior under the assump-

tion that the time to the system failure obeys an exponential distribution 

with mean 1/ A, i.e., 

(2.8) 

vVe can obtain simpler forms in Equations (2 .5) and (2.7). Chandy et al. 

[3], Gelenbe [4] and Young [6] also assumed Poisson failures, that is, the 

time to failure obeys an exponential distribution, which has the memoryless 

property. Hence we have 

(2.9) 
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and 

(2.10) 

We can explicitly obtain Equation (2.10) which enables us to derive analyt

ically the optimum checkpoint interval ~T* with the maximum availability 

A(T*). That is, \ve can derive the non-linear equation d~A(T) = 0 for T , 

which is restated as 

~(1 + bA)(eAc 
- 1) + 1 - AT - e-AT = O. 

fJr 

Consider applying the second order series approximation 

(2 .11) 

(2.12) 

to Equation (2.11). A truncation error remains less than I (- AT)3 /3! I in 

Equation (2.12). In the ordinary case, we can expect the approximation to 

be good one, since T « E[X] = 1/ A, i.e., AT « 1 as we show in the next 

section. vVe can obtain T* as follows: 

(2 .13) 

This formula of the evaluation model for a database recovery action is a 

generalized version of the model for a endless job processing presented by 

Young [6]' since it coincides with that obtained by Young when fJr = 1, 

b = 0 i and we apply the first order approximation to eAC . 
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2.1.5 Numerical Illustrations 

In this subsection, we compute numerically the availability for one cycle, 

the optimum checkpoint intervals and the overhead for the recovery action , 

obtained in the preceding section. In the following, let us take up the robust 

numerical results which hold even in the case where the parameters vary in 

the ordinary range. 

In many applications , we are interested in the early failure period of 

system operation , in which the time to the failure obeys a DFR distribution, 

and the random failure period, in which the time to the failure obeys a 

constant failure rate (CFR) distribution. Thus, we assume that the arbitrary 

failure-time distribution is a \,veibull distribution: 

(2.14) 

where m and 7] are called the shape and scale parameters, respectively. The 

Weibull distribution gives a reasonable description of the above periods, 

since it is DFR for 0 < m < 1.0 and CFR for m = 1.0. Note that the CFR 

distribution for m = 1.0 is an exponential distribution. 

The system failures are principally caused by a software error of the 

DBMS or an operating system, a hardware failure, an unaccustomed oper

ation by the system operator, and so on. The frequency of the failure is 

affected by the stability of the DBMS and the operational environment, and 

is assumed to be several times a week , like in the Reference [2]. Evaluating 
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the early phase of the system operation, we assume that the occurrence of 

the failure is a little more frequent than is generally thought. 

Figure 2.2 shows the dependence of checkpoint interval T on A(T) for 

m = 0.5 and l.0, where E[X] = 104 ,2.5 x 10\ 5 x 104[sec], C = 2[sec], 

p, = 0.8 , r = l.5 , and b = 2[sec]. It is obvious that the critical value of 

T, i.e., the optimum checkpoint interval, is yielded by means of the trade

off between the overhead for checkpoint generations and the overhead for 

recovery actions. Table 2.1 shows the optimum checkpoint interval T* and 

A(T*) for each parameter in Fig. 2.2. 'We can see from these results that 

there is no great difference between the value of T* or A(T*) for m = 0.5 and 

that for m = l.0 , and when T increases, the decrease in A(T) for m = 0.5 

is less than that of m = 1.0, in any E[X]. On the whole, the impact of 

E[X] on the evaluation is greater than that of a shape of the failure time 

distribution. The more E[X] increases, the more T* and A(T*) increase. 

This fact shows clearly that if the systern failure is a rare event, checkpoint 

generations should also be rare operations. 

In the case of m = 1.0, we can use the analytical result of the for

mula (2 .13) and obtain numerical results as T* = 183,289,408 for E[X] = 

104,2.5 X 104,5 X 104
, respectively. These results show that our approximate 

formula is sufficiently precise. 

Let us next discuss the optimum checkpoint interval T* and A(T*) in 

varying other parameters. Figure 2.3 shows the dependence of T on A(T), 
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Figure 2.2 : The dependence of T on A(T) for m = 0.5 and 1.0 
in varying E[X] (11 = 0.8, T = 1.5, b = 2, C = 2). 

Table 2.1 : T* and A (T*) for each parameter in fig . 2.2 . 

E [X]=10
4 

E [X]=2.5x10
4 

E[X]=5x10 
4 

* * * * * * 
T A (T ) T A (T ) T A (T ) 

184 0.978 288 0.986 408 0.990 

194 0.978 305 0.985 426 0.989 
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where m = 0.5, E[X] = 5 X 104
, j.L = 10.2,0.5,0.8 and other parameters 

are the same as in Fig. 2.2. The decrease in the relative share of update 

transactions, j.L, causes the decrease in the amount of REDO operations 

after the system failure. Hence, the more j.L decreases, the more T* and 

A(T*) increase. Figure 2.4 shows the dependence of T on A(T), where 

m = 0.5, E[X] = 5 X 104
, C = 2,4,6,8,10 and other parameters are the 

same as in Fig. 2.2. vVhen C increases, T* increases and A(T*) decreases . 

This fact shows that the high overhead for the checkpoint generation causes 

the decrease in the availability, and we should not make frequent checkpoint 

generations. The value of C is dependent on how many modified pages are 

kept in the buffer during the normal processing. In general, database systems 

which support large applications are at a disadvantage in this respect, since 

its large buffer tends to have a great nurnber of modified pages. We further 

obtain numerical results in varying b, the overhead for UNDO operation, 

e.g., b=O, 2, 4, 6, 8, 10. (Note that in the case of b=O, UNDO operation is 

not required .) However: the difference between these resul ts is fairly small. 

The overhead for UNDO operation has almost no effect upon the evaluation 

of the recovery action wi th periodical checkpoint generations, since the total 

quantity of UNDO operation is far less than that of REDO operation. 

Determining a checkpoint interval T, we can evaluate the expected recov

ery time RC(T), and can limit the time for the recovery actions to R(T) at 

the worst. Figure 2.5 show the dependence of T on RC(T) and R(T); where 
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m = 0.5., E[X] = 5 X 104
, and other parameters are the same as Fig. 2.2. 

From a practical point of view, the recovery actions may be bounded in time. 

We should determine a checkpoint interval with the maximum availability 

under the condition that the recovery actions must be completed within the 

appointed time limit. 

ACT) 

l.0 

0 . 98 

0.96 

0.94 

0.92 

0.9 

Figure 2.3: The dependence of T on A(T) in varying f.L 
(m = 0.5, E[X] = 5 x 104,r = 1.5,b = 2, C = 2). 

2.1.6 Concluding Remarks 

T 

In this section, we have discussed the evaluation for a database recovery 

action with the periodical checkpoint generations. We have proposed a new 

model to evaluate the recovery action, where it is defined that one cycle 
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is the interval from the start of the syste:m operation to the completion of 

recovery action after the failure in order to treat the changing of a failure 

rate of the system with time. \Ve have obtained the expected recovery time 

and the availability for one cycle, under the assumption of an arbitrary 

failure-time distribution. In particular, we have shown that it is possible 

to obtain analytically the optimum checkpoint interval with the maximum 

availability in the case of an exponential distribution . Finally, we have 

numerically obtained the optimum checkpoint interval from the above results 

by assuming vVeibull distributions which include a DFR distribution and an 

exponential distribution. vVe further have discussed the numerical results in 

varying the parameters that we have defined in our model, and have shown 

the impact of these parameters on the recovery action. 

As discussed in Subsect. 2.1.5, when we actually determine the check

point interval, an overhead for the recovery action must be considered more 

seriously than an overhead for the checkpoint generations according to cir

cumstances. For instance, an on-line banking system should be recovered 

after the system failure within a fe\v minutes. If the recovery action takes 

more than an appointed time limit, we should make the checkpoint interval 

short so as to restrict the recovery time to the appointed time limit, even 

though the checkpoint interval maximizes the availability of our model. 

Demand of operational environment which support large applications, 

such as OLTP, has an increasing tenden cy every year. The recovery tech-
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niques applied to the DBMS are more and more important. In these large 

systems, having large buffer capacity, the performance during the normal 

operation is influenced considerably by the overhead for the checkpoint gen-

erations. Therefore, database buffer management is important to system 

operation. In future, we have to study modeling of the recovery actions 

taking further account of the buffer management. 

2.2 Checkpoint Generations in a Time Vary
ing Load Situation 

2.2.1 Introduction 

Fault tolerant techniques play an important role in the operation of a com-

puter system with high reliability. In particular, recovery mechanisms are 

indispensable for reconstructing the states of the computation after the sys-

tern failure. A database system is a typical example of what seriously needs 

such recovery mechanisms [1, 2]. This section discusses checkpoint genera-

tions for a recovery mechanism on large applications of database systems. 

When a system failure makes update information in the database buffer 

lost, the recovery action consists of two operations . One is UNDO opeTation 

which rolls back the effects of all incomplete transactions from the database, 

and the other is REDO opcTation which reflects the results of all complete 

transactions in the database (see [2]) . In general, we execute REDO oper

ation from the latest checkpoint instead of the starting point of the system 
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operation. Generating a checkpoint implies that the update information in 

the buffer is collected in a stable secondary storage. It is important to decide 

the effective checkpoint generations. If we generate checkpoints frequently, 

we must incur large overhead for checkpoint generations, and conversely, 

if we generate few checkpoints, we must incur large overhead for recovery 

actions after the system failures. Vie should, therefore, decide checkpoint 

generations considering the trade-off between the two overheads above. 

Several studies of deciding checkpoint generations have been discussed, 

which are the components of general recovery mechanisms including a database 

recovery. Young [6] derived the optimurn checkpoint interval for the com

putation restart after the system failure. Chandy et al. [3] and Gelenbe [4] 

discussed evaluation models for database recovery and the generalized forms 

of the optimum checkpoint interval maximizing the system availability or 

the overhead during the normal operation. In these previous works, the 

failure rate of the system is assumed to be constant. We have proposed a 

model for evaluating the database recovery action in case where the failure 

rate of the system changes wi th time in the previous section. vVhile these 

efforts yield the optimum checkpoint interval measured in unit of time, some 

models deal with the checkpoint interval measured in other quanti ty to de

scribe the recovery mechanisms more reasonably. Reuter [7] considered the 

models to evaluate the transaction throughput as a performance measure 

for the database recovery mechanisms of the taxonomy in the reference [2], 
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where the checkpoint interval is measured in unit of block transfers. Toueg 

and Babaoglu [9] derived an algorithm which minimizes expected execu

tion times of tasks placing checkpoints between two consecutive tasks with 

very general assumptions. Koren et al. [10] also discussed the model which 

minimizes the average time per instruction as a function of the number of 

instruction retries and the checkpoint interval measured in the number of 

the instructions, assuming the constant failure rate. 

In this section; we propose a new model to determine the checkpoint gen

erations for the database recovery. \,ye consider that the transaction arrival 

rate and the failure rate of the system vary with time. The algorithm above 

derived by Toueg and Babaoglu [9] seems to give a reasonable description 

of such situations. However, the dynamic programming algorithm, which 

yields the optimum sequence of checkpoints, is not suitable for large appli

cations since the number of the transactions is expected to reach a great deal 

between the successive checkpoint generations. One of the primary interests 

in our model is that the transaction arrival rate, i.e., the load of the system 

changes with time in a shape of a cycle (e .g., a day) as an illustration of Fig. 

2.6. In this case, we can see that the constant checkpoint interval measured 

in unit of time is not pertinent, since the failure rate of the system and the 

overhead for the recovery action obviously seems to vary with the load of 

the system. Taking account of these situations the third model exhibited by 

Chandy in the Reference [3] yields the problem of finding the shortest route 

39 



of the graph whose nodes correspond to the beginning of intervals divided 

into from a cycle. 

vVe derive an analytically efficient result by means of a simpler model. 

Occurrence of the failure and checkpoint generations are estimated by unit 

of update pages in the database buffer instead of time. We further regard 

the cumulative update of pages as a continuous quantity. Assume that the 

failure rate of the system (as a function of the cumulative update of pages) is 

dependent on the transaction arrival rate at which the corresponding page 

is updated: and the failure mode of a cycle is described as consisting of 

phases, e.g., as shown in Fig. 2.7. The optimum checkpoint generations 

are derived as the sequence measured in the cumulative update minimizing 

the expected total overhead to completion of a phase, where the checkpoint 

interval changes with the failure rate of the system. 

In the following subsection, we define our new model introducing a den

sity of checkpoint generations and several assumptions. Subsection 2.2.3 

discusses the analysis of the model. The expected total overhead to com

pletion of a phase is derived. vVe obtain the density of checkpoint gener

ations minimizing the total overhead, which yields the optimum sequence 

of checkpoint generations. ~v1oreover, the above total overhead and density 

are replaced by new forms assuming concrete overhead functions. vVe next 

show the results in case where the cumulative update to the system failure 

obeys a \l\1eibull distribution. Subsection 2.2.4 gives numerical examples for 
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Figure 2.6: A sample function of transaction arrival rate for a cycle. 
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our analyses under the assumption that the failure rate is described as the 

shape of phases in Fig. 2.7. 

The Failure Rate of the 
System ~~/pagel /The Average Value 

10 
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Figure 2.7: A shape of the failure rate for a cycle. 

2.2.2 Model for a Recovery Mechanism 

In our model, all the pages modified by complete transactions remaining in 

the buffer are reflected to the secondary storage by generating a checkpoint. 

While the cumulative update of pages in the buffer is a discrete quantity 

obviously, we can regard it as continuous, since we consider a great num-

ber of update pages such as thousands or tens of thousands of pages. A 
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phase we deal with completes when the cumulative update reaches to lV, 

with the sth checkpoint generation. Let {nl' n2, ... ,ns-l, ns( = N)} be the 

sequence of checkpoint generations, where each checkpoint is generated se-

quentially up to the cumulative update from the beginning of a phase to 

nk(k = 1,2, "', s). Note that these checkpoint generations are executed 

independently of real time lost by recovery actions, since the generations are 

managed by unit of update pages instead of time. 

'vVe introduce a density of checkpoint generations, g(n) , when the cu-

mulative update is n, which is a smooth function and denotes the number 

of checkpoint generations per unit update. If we use the density g(n), the 

above sequence satisfies : 

rnk 

k =)0 g(n)dn, (k= 1,2,···,s-1). (2 .15 ) 

\;Ve assume that the cumulative update of pages to the system failure X 

obeys the cumulative distribution function F(n) . If the reliability function 

F(n) = 1 - F(n) and the probability density f(n) = dF(n)/dn , the failure 

rate of the system is defined by ,(n) = f(n)/F(n). For all the failures 

occurred in the checkpoint interval (nk-l, nk], (k = 1,2"," s; no = 0), we 

make recovery actions from the state of kth checkpoint generation to the 

consistent states which had been constructed just before those failures. We 

consider that checkpoint generations and recovery actions never cause the 

system failure and never change the failure rate of the system. 
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The expected total overhead to completion of a phase, L(N,g(n)), con-

sists of the overhead for checkpoint generations to completion of a phase 

and the expected overhead for recovery actions to completion of a phase. 

In order to derive these overheads, we introduce the overhead for the kth 

checkpoint generation, Hc(nk - nk-l), and the overhead for a recovery ac-

tion, Hr (n - nl), in case X = n and the latest checkpoint generation is the 

lth one. 

2.2.3 Analysis 

General Analysis 

Let us derive the optimum sequence {ni, n;,· .. ,n;_l' ns} which mini-

mizes the expected total overhead to completion of a phase from the as-

sumptions above . 

First, the overhead for checkpoint generations to completion of a phase 

is obtained as follows by using the density of checkpoint generations: 

(2.16) 

We next deri ve the expected overhead for recovery actions to completion of 

a phase. If X = n, the overhead for recovery actions between two successive 

checkpoint generations is approximately given by 
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where we consider the overhead for a recovery action to be equal to the 

overhead after a system failure in the middle of the checkpoint interval, in 

average, similarly to Reuter [7]. This approximation can be expected to 

be a good one, since we are estimating the mean value of the total over-

head. Thus, we can obtain the expected overhead for recovery actions to 

completion of a phase: 

(2.18) 

From Equations (2.16) and (2 .18), we have the expected total overhead to 

completion of a phase: 

(2 .19) 

We obtain the density of checkpoint generations, g(n), minimizing the 

functional L(lV, g(n)). This is a problern of calculus of variations in which 

9 (n) is the unknown function. Euler's equation implies 
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Applying concrete overhead [unctions HeC) and Hr C), and solving Equation 

(2.20) yield the density g(n). Substituting g(n) into Equation (2.15) enables 

us to derive the optimum sequence {ni,n;)··· ,n;_l,nS}' 

Overhead Functions 

Let us introduce concrete overhead functions to obtain the density g(n) 

based on the analytical results above. In large applications of database 

systems, we can assume the overhead function for a checkpoint generation 

to be the simplest form: 

(2.21) 

that is, the overhead for a checkpoint generation is always constant and 

independent of the checkpoint interval (see [2]). We further assume the 

overhead function for a recovery action: 

(2 .22) 

where hu. is the constant overhead for UNDO operation and hr is the over-

head for REDO operation per unit update of pages corresponding to the 

forms of [3] and [4]. From Equation (2.19), the expected total overhead to 

completion of a phase is gi ven by 

N h 
L(JV,g(n)) = r [heg(n) + (o_(r ) + hu.),(n)]dn. 

)0 2g n 
(2 .23) 

We further obtain Euler's equation from Equation (2.20): 

(2.24) 
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Solving Equation (2.24) with respect to g(n) yields: 

g(n) = (2.25) 

A Case of ~Veibull Distribution 

vVe next discuss a case where the cumulative update of pages to the 

system failure obeys the \t\1eibull distribution: 

(2.26) 

The weibull distribution is able to give a reasonable description of sev-

eral failure modes, in which the failure rates change wi th the time vari-

ables, by varying the parameters. The parameters T) and m are called 

the scale and shape parameters, respectively. vVe have F(n) = e-CT]n)Tn, 

f(n) = mT)mnm-le-CT]n)"' and ,(n) = mT)mnm- l. 

From Equation (2.25), the density of checkpoint generations is given by 

g(n) = 
hrmT)mnm-l 

2hc 
(2.27) 

Moreover, substituting g(n) from Equation (2 .27) into Equation (2 .23) yields 

the expected total overhead to completion of a phase: 

L(JY, g(n)) = 2y'2hchrmT)m NTntl + hu(T)N)m. 
m+ 1 

(2 .28) 

From Equations (2.15) and (2.27) , we can explicitly obtain the optimum 

sequence as follows: 

(k=1,2 , ···,s-1). (2.29) 
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vVe can see that the interval between checkpoint generations increases with 

the cumulative update for 0 < m < 1 and decreases for 1 < m. In particular, 

in case of m = 1, F(n) is an exponential distribution. vVe have the constant 

intervals between checkpoint generations: 

(k == 1 2 ... s - 1) '" , (2.30) 

which coincides with the formula obtained by Young [6] when we regard n 

as the time variable and hr = 1. 

2.2.4 Numerical Illustrations 

Let us numerically compute the sequence of checkpoint generations by as

suming the phases as shown in Fig. 2.7. If the failure rate ,( n) is described 

as the function of the first degree, i.e., ,(n) = vn+w, the optimum sequence 

of checkpoint generations is given by 

* 1 [3v /f:hc k .;!] ~ w (k = 1 2 ... s - 1) nk = - - -h . + W 2 - -, '" , 
v 2 r v 

(2.31 ) 

from Equations (2.15) and (2.25). We further have the expected total over

head from Equation (2.23) as follows: 

2.J2hchr { 3 3 } v 
L(N, g(n)) = 3v (vN + W)2 - W2 + hU(2N2 + wlV). (2 .32) 

Let {n'l; n;, . . . ,n~_l' ns} be the sequence of checkpoint generations in 

case where the constant failure rate T/c, that is the average value of the 

failure rate of Fig. 2.7, is used instead of the fai lure rate of the phase 
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1 or the phase 2 to obtain the density g(n). Table 2.2 shows the op

timum sequence {ni, n;, ... , n;_l, ns} for the phase 1, and the sequence 

{nll,n;,···:n~_l,nS}, where v =(10- 6 -10-7)/(2 x 106), W = 10-7,N = 

2 x 106,he = 5[sec], hr = O. 1 [sec] and hu = 5[sec]. Figure 2.8 illustrates 

the relation between the sequence and the density of checkpoint generations 

g(n). Table 2.3 and Fig. 2.9 similarly show the results for the phase 2, 

where v = (10- 8 
- 10-6

) /10 6
, W = 10-6

, N = 106 and the other parameters 

are the same as in Table 2.2. Note that the checkpoint interval is decreasing 

with the cumulative update in case of the phase 1, since the failure rate is 

increasing. Conversely: the interval is increasing wi th the cumulati ve update 

in case of the phase 2, since the failure rate is decreasing. 

vVe next discuss comparisons between the expected total overhead by 

the optimum sequence {ni, n;, ... , n;_l' ns} and the one by the sequence 

{n~, n;, ... : n~_l' ns} assuming the failure rate is described as the phase 1 

or the phase 2. Let Lp denote the expected total overhead by the optimum 

sequence which is obtained by Equation (2.32) . Furthermore, let Le denote 

the expected total overhead by the sequence {n'l' n;, ... , n~_l : ns}. We can 

obtain Le from Equation (2 .19) in which g(n) is derived by the constant 

fail ure rate above al though ,( n) is the failure rate of the phase 1 or the 

phase 2. Table 2.4 shows the gain of Lp to Le) ((Le - Lp)/ Le) x 100[%], 

for the phase 1 and the phase 2) where all parameters are the same as in 

Tables 2.2 and 2.3, and the average value of the failure rate is calculated as 
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Table 2.2: The sequences of checkpoint generations for the phase 1. 

k 

1 

2 
3 
4 

140 
141 
142 
143 
144 

nk* nk 
4 

[xIO pages] 

3.05 

5.94 
8.68 

11.31 

196.52 
197.52 
198.53 
199.53 
200.00 

50 

1.36 

2.73 
4.10 
5.46 

191.40 
192.77 
194.13 
195.50 
200.00 



g(n) [l/page] 

0.0001 

0.00008 

• • • • • • 0.00006 

0.00004 

0.00002 

0 . 0 
. .. * 

n140 20 . 0 
5 

n [xlO page] 

Figure 2.8: The illustration for the density and the sequence of checkpoint 
generations for the phase 1. 
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Table 2.3: The sequences of checkpoint generations for the phase 2. 

k 

1 

2 
3 
4 

64 
65 
66 
67 
68 

nk* 
, 

nk 
4 

[ Xl 0 pages] 

1.00 

2.01 
3.02 
4.04 

87.37 
90.25 
93.59 
98.03 

100.00 

52 

1.36 

2.73 
4.10 
5.46 

87.49 
88.86 
90.23 
91.60 

100.00 



g(n) [l/page] 

O . OOOlTlII~I!~~~ __ _ 

0.00008 

0 .000 06 

0 .00 004 

0 .00002 

• • • • • • 

10 . 0 
5 n [X10 page] 

Figure 2.9: The illustration for the density and the sequence of checkpoint 
generations for the phase 2. 
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'TIc = 5.35 X 10-7
. It is evident that checkpoint generations by the optimum 

sequence is more effective than the other in either case. This fact implies that 

the sequence of checkpoint generations, varying its interval with the failure 

rate of the system, gives a reasonable strategy of the database recovery 

mechanism. 

Table 2.4: The expected total overheads to completion of phases. 

Phase 1 

Phase 2 

L p [sec] 

1440 

675 

L c [sec] 

1488 

713 

2.2.5 Concluding Remarks 

3.3 

5.6 

In this section, we have discussed checkpoint generations for a database re

covery mechanism. The expected total overhead to completion of a phase 

has been presented. The density of checkpoint generations has been ana

lytically derived minimizing the total overhead, which yields the optimum 

sequence of checkpoint generations measured in unit of update pages. Fi

nally, numerical examples for the results have been given in case where the 

failure rate of a phase is described as a linear shape. 

The results presented in this paper are the analytical ones . Applying 

the appropriate failure rate and the parameters enable us to calculate the 
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optimum sequence relati vely easily. We can see that the sequence obtained is 

of great use for various kinds of failure modes and gives reasonable strategy 

for checkpoint generations as discussed by the numerical examples above. 
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Chapter 3 

Effects of Time Redundancy 
by Retries 

3.1 Introduction 

Fault-tolerance Jor a computer system is attained by some redundancy. We 

can classify redundancies into three types: hardware redundancy; software 

redundancy and time redundancy according to their actualization methods 

[1]. For instance; TMR (Triple Modular Redundancy) or graceful degrada-

tion techniques are good examples of hardware redundancy. It is similarly 

well-known that lV-version programming and recovery blocks are based on 

the concept of software redundancy. Moreover, a typical example of time 

redundancy must be given by retries for instructions or I/O operations . 

Time redundancy for a computer system is more generally available than 

hardware redundancy or software redundancy. In most cases; hardware re

dundancy and software redundancy require physical and/or logical resources 
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allocated previously; e.g., processor units , alternate software modules or the 

subsystems. VIe can not always install these resources since they are de

pendent on system configuration and cause the increase of the hardware or 

software cost . On the other hand , few additional resources are needed for 

executing the time redundant methods. 

In this chapter, we present a model for evaluating the improvement on 

system reliability by retries based on time redundancy. While retry proce

dures are incorporated into recovery mechanisms of almost all the systems 

for the reason above; there are few previous works of the evaluation model

ing for retry procedures. It is interesting and important for a system design 

or maintenances to estimate the effects of time redundant techniques as well 

as hardware and software redundant techniques. 

Retries are principally executed for the purpose of recovery from an in

termittent failure [1; 2, 4]. The effect of this failure is temporary, and is 

caused by an error operation of electronic devices, a contact fault in a hard

ware and so on. On the other hand, a permanent failure is continuous and 

stable, and is caused by a damage of electronic devices or wiring in a hard

ware. In the actual computer systems, intermittent failures are said to be 

the most frequent failures. Thus, when a failure takes place, the repeated 

actions by retry procedures are greatly useful for the first step of recovery 

from the mal functional state. 

Ho\vever ; even though the ret ry succeeds and the system is res tored to 
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the correct state, information of the failure state is logged out to investi

gate the cause of the failure [2]. From the viewpoint of a n1aintenance, we 

should remove the intermittent failures masked by retries, some day, since 

the latent failures will bring on the same failures and may develop into the 

permanent failures. An intermittent failure is more difficult to detect and re

move than a permanent failure, as intermittent failures are not reproducible. 

The maintenance is executed based on the log out information above. 

The model we discuss here is concerned wi th the references [3-7]. A model 

for reliability analysis of a computer system with retry has been proposed in 

the reference [3], where the maintenance is carried out with the inspection 

interval of T, or with the number of successful retries K. Several models 

for intermittent failures have been discussed, which describe diagnosable 

systems [4] and maintenance strategies [5-7]. 

Taking account of the behavior of intermittent and permanent failures, 

we consider the evaluation model which manages the system maintenance 

with the prescribed number of successful retries. When a failure takes place, 

retry procedures are repeated m times at the maximum lin:lit. If no retry 

succeeds within the limit, we identify the failure as a permanent failure 

and remove it by the maintenance. If any retry succeeds, we identify the 

failure as an intermittent failure and remove it by the maintenance after the 

successful retries are observed N times. 

Our main interest in this model is to discuss the reliability evaluation in 
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the transient-state as well as the steady-state. Evaluation in the steady-state 

is important for a long term operation of the systems. However, evaluation 

in the transient-state, such as an early phase of the system operation, is not 

always coincide with the one in the steady-state. 

In the next section, we define the evaluation model introducing several 

assumptions. Section 3.3 analyzes the nlOdel by applying the Markov re

newal processes [8, 9] to derive the availability and the mean time between 

failures in the steady-state. \!1oreover, a calculation method for the avail

ability in the transient-state is described by continuous-time NIarkov chains 

and a randomization technique [10] . In Section 3.4, we discuss the numer

ical illustrations such as the numbers of successful retries with which the 

availabilities are maximized. 

3.2 Model for a Retry Procedure 

In our model, when a failure takes place, retries are executed m times at 

the maximum limit. If any retry succeeds within the limit, we identify the 

failure as an intermittent failure, and if no retry succeeds, we identify the 

failure as a permanent failure. Vie introduce a model described as follows 

for evaluating the effects of retry procedures. 

(1) Consider a si tuation just afler a start of system operation . \Ve assume 

that the time to the first failure obeys an arbitrary distribution Ao(t) 
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with a finite mean ao : and an overhead time for a retry, Bo(t) with 

a finite mean boo Each retry succeeds with the probability rOj (j = 

1,2, ,,, ,Tn), and does not succeed with probability rOj(= 1 - rOj). 

Taking account that the probability of success deteriorates according 

as the number of retries are increasing, we assume that rOl > r02 > 

. .. > rOm' If retries do not succeed m times, the failure is identified as a 

permanent failure and is removed by a maintenance. This maintenance 

incurs an overhead which obeys the arbitrary distribution Ro(t) with 

a finite mean ao, and restore the failure mode of the system to the one 

at the start of system operation. 

(2) Consider situations just after the successful retries are observed k times. 

We assume that the time to the failure obeys an arbitrary distribution 

Ak(t) (k = 1,2"", IV - 1) with a finite mean ak, and an overhead 

time for a retry, Bk(t) with a finite mean bk. Each retry succeeds 

with the probability rkj (r = 1,2" . . ,m), and does not succeed with 

probability rkj(= 1 - rkj). Taking account that the probability of 

success deteriorate according as the number of retries are increasing, 

we assume that rkl > rk2 > ... > rkm. If retries do not succeed m 

times, the failure is identified as a permanent failure and is removed by 

a maintenance. This maintenance incurs an overhead ti.me which obeys 

the arbitrary distribution Rk(t) with a finite mean elk , and restores the 
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failure mode of the system to the one just after the successful retries 

are observed k times. vVe further describe the influence of failure 

latencies produced by successful retries as ao > al > ... > aN-l and 

r01 > TIl> ... > rS-1 1· 

(3) If the successful retries are observed N times (N ~ 1), intermittent 

failures latent in the system are removed by a maintenance based on 

log-out information. This maintenance incurs an overhead time which 

obeys the distribution ZN(t) with a finite mean cPN, and restores the 

failure mode of the system to the one at the start of system operation. 

We define the following states which characterize the behavior of the 

system. 

State 00 State after the start of system operation. 

State OJ : State that the jth retry is executing after the failure on State 00 

(j=1,2, .. ·,m). 

State ko : State after the successful retries are observed k times (k -

1,2, ... , t.,r - 1). 

State kj : State that the jth retry is executing after the failure on State ko 

(k = 1, 2, ... , N - 1: j = 1,2,' .. , m). 
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State Dk : State that all m times retries do not success after the failure 

on State ko, and the maintenance for the permanent failure is being 

executed (k = 0,1,2, ... ,1V - 1). 

State D : State that successful retries are observed N times and the main-

tenance for the intermittent failures is being executed. 

We redefine State k (k = 0,1"", AT -1) which is composed of m+ 1 states, 

State ko, State kl' State k2' .. . and State km . vVe can formulate the model 

by a Markov renewal process with the states above. The state transition 

diagram is shown in Fig. 3.1. 

3.3 Analysis 

We first derive the availabili ty, Au; and the mean time between failures, 

MTBF, in the steady-state; applying NIarkov renewal processes theory [8, 

9]. 

Let Fk(t) denote the probability distribution function with which any 

retry succeeds within m times after the failure on State k (k = 0, 1; ... ,N -

1), and G k (t) the probabili ty distribution function with which no retry suc-

ceeds. vVe have the following equations in terms of convolutions: 

m 

1; k ( t) = }h (L) * L [ { C k (j - 1) - C k (j) } B ij) ( t) ], (3.1 ) 
j=1 

(3.2) 
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I. 

Figure 3.1: The state transi tion diagram of the computer system. 
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where 

(3.3) 

(J' = 0 1 ... m) )' , , (3.4) 

and Bkj
) (t) implies the j-fold convolution of Bk(t) with itself. 

Let Qij(t) denote the transition probabilities from State i to State j for 

the Markov renewal process. We can define the following probabilities: 

Q kk+ 1 ( t) = Fk ( t ) (k = 0 1 ... IV - 1) '" , (3.5) 

QkDk(t) = Gk(t) (k = 0 1 ... JV - 1) '" , (3.6) 

Q Dkk(t) = Rk(t) (k = 0 1 ... IV - 1) '" , (3.7) 

QN-1D(t) = FN-1(t), (3 .8) 

QDO(t) = ZN(t). (3.9) 

vVe also have qij(S), the LS (Laplace-Stieltjes) transforms of these transition 

probabilities: 

Tn 

q kk+ 1 ( S) = a k (S) L [ { C k (j - 1) - C k (j) } b{ (s ) ] (k = 0, 1 , ... , N - 1), 
j=1 

(3.10) 

q k D k ( s) = a k ( s) b r; ( S ) C k ( m ) (k = 0, 1, . .. , IV - 1), (3. 11 ) 

qDkk(S) = Tk(S) (k = 0,1" " , N - 1), (3.12) 

m 

q N - 1 D ( S) = aN - 1 ( S) L [ { eN - 1 (j - 1) - C v - 1 (j) } ~v _. 1], (3. 13) 
j=1 
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(3.14) 

where ak(s), bk(s), rk(s) and ZN(S) are the LS transforms of Ak(t), Bk(t), Rk(t) 

and ZN(t), respectively. 

Let us derive the mean recurrence time loo for State 0. If we define 

00 

Uj(t) = Fj-1(t) * L(Gj(t) * Rj(t))(l) (j = 1,2,·· ., N - 1), (3.15) 
l=O 

the recurrence time distribution for State () is obtained by 

H 00 ( t) = Go ( t) * Ro ( t) + {u 1 ( t) * U2 ( t) * . . . * UN - 1 ( t)} * FN - 1 (t) * Z N ( t ) , 

(3 .16) 

and its LS transform hoo(s) yields loo as follows: 

(3 .17) 

From the above results, we can derive 1\1j, the expected number of visits 

to State j (j = 0,1, ·· · ,N -l,Do,Dl' · ·· ,DN-1, D) per unit time in the 

steady-state. Let J\!fj (t) denote the expected number of visits to State j in 

an interval of time (0, t] given that it was in State ° at time 0. Vie have 

1 
lvIo(t) = 1 - f1oo(t) , 
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It A ( ) _ Ul (t) * U2 (t) * ... * Uk (t) 
i V1k t - . 

1 - Hoo(t) , 
(3.19) 

1'v! () _ GO(t) 
Do t - 1 - H 00 ( t) , (3.20) 

M D (t) = {U 1 ( t) * U2 ( t) * . . . * Uk ( t )} * G k ( t ) 
k 1 - Hoo(t) , (3.21 ) 

M D(t) = {Ul (t) * U2(t) * ... * uN-d * FN- 1 (t) 
1 - Hoo(t) , 

(3.22) 

where k = 1,2" " , N - 1. The LS transforms of these equations, mj(s), 

yields M j as 

1 
1'.;1. = lim -M·(t) 

J t-+oo t J 

Thus, we obtain 

ivh = ~ . 1 - Co(m) 
loo 1 - Ck(m) , 

(k = 0 1 ... l'l - 1) '" , 

MD = ~ . {I - CO(m)}Ck(m) 
k loo 1 - C k ( m) , 

(k = 0 1 ... N - 1) '" , 

ltA _ 1 - Co(m) 
iVl D - l . 

00 

(3.23) 

(3.24) 

(3 .25) 

(3.26) 

vVe further deri ve the steady-state probabilities for State j, P.i (j = 0, 1, .. . , N

I, Do, D l ,'" ,D iY - l , D). Let Pj(t) denote the transition probabilities that 

the process is in state j at time t gi yen that it was in State 0 at time O. We 

have 

() 
1 - (Fo(t) + Go(t)) 

Po t = ( ) , 1 - Hoo t 
(3.27) 
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( ) 
_ {U 1 ( t) * U2 ( t) * . . . * Uk ( t )} * {I - (Fk ( t) + G k ( t ) ) } 

Pk t - 1 - Hoo U) , (3.28) 

P () 
= Go(t) * (1 - Ro(t)) 

Do t ( ) , 1 - lIoo t 
(3.29) 

{Ul (t) * U2(t) * ... * Uk(t)} * Gk(t) * (1 - Rk(t)) 
PDk (t) = 1 - Hoo(t) , (3.30) 

( ) 
_ {U 1 ( t) * U2 ( t) * . . . * Uk ( t )} * F N - 1 ( t) * (1 - Z N ( t ) ) 

PD t - 1 - Hoo (t) , (3.31) 

where k = 1,2, ... 1 n - l. Using the formula for the LS transforms of these 

equations 

(3.32) 

we can obtain 

m 

{I - Co(m)}{ak + bkLCk(j)} 

Pk=~· j=l, (k=0,1,···,N-1), (3.33) 
loo 1 - Ck(m) 

P
D 

= ~. {I - CO(m)}Ck(m)ak 
k loo 1 - C K ( m) , 

(k = 0 1 ... N - 1) ", , (3.34) 

1 
PD = -l . {I - Co(m) }¢N. 

00 
(3.35) 

Applying the above results, we can derive the availability Au and the 

mean time between failures MTBF. From Equation (3.33), Au is given by 

N-I 

At! = L Pk 
k=O 
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~lak + bkLJ=I Ck (j) ~1 Ck(m)(Jk 
t:a 1 - Ck(m) + t:a 1 - Ck(m) + cPN 

If MDT denote the mean down time, the formulae 

A = MTBF 
v MTBF + MDT' 

and 

MTBF + MDT = -N--
1
---

-1 

LMDk+ MD 
k=O 

yield MTBF as follows: 

MTBF = Av(MTBF + MDT) 

N-l + b "m C ( .) L ak k~j=1 k J 
k=O 1 - Ck(m) 

lI:l Ck(m) + 1 

k=O 1 - Ck(m) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Let us next deri ve the availability in the transient state, Av (t), by apply-

ing a continuous-time Markov chain and the randomization technique [10] to 

the previous model. If we assume all the time distributions in the model to 

be exponential distributions, stochastic behavior of the system is described 

by a continuous-time Markov chain. Though a transient solution is analyt-

ically obtained for several continuous-time Markov chains , we numerically 

calculate the solution since the analytical derivation is qui te difficul t for the 

Markov chain with many state such as states in our model. The availability 
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in the transient-state, Av(t) , is derived from the transient-state probability 

vector obtained. 

The state probability \"ector at time t for the continuous-time Markov 

chain with 2JV + 1 states, 

(3.40) 

is transformed by the randornization technique as follows, 

oc (J1t)n 
7r (t) = L _,_e-At¢(n) , 

n=O n. 
(3.41 ) 

where J1 is the maximum absolute value of diagonal elements of the in

finitesimal generator Q for the continuous-time Markov chain, and ¢(n) is 

the state probability vector for a discrete time Markov chain characterized 

by a transition probability matrix P which is transformed from the matrix 

Q. Using the state probability vector, the availability at time t is given by 

N-I 

Av(t) = L 7rk· (3.42) 
k=O 

3.4 Numerical Illustrations 

In this section: let us first numerically evaluate the optimum number of suc-

cessful retries, lV s, which maximizes the availability, Av , the mean times 

between failures , NITBF, in the steady-state. We next calculate the avail

abilities, Av(t); in the transient-state for N = Ns and N in the vicinity of 

lVs . 
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k+ . Assume that Tkj = P ] (k = 0,1,···, N -1;) = 1,2,···;m -1), where 

P is a initial probability with which a retry succeeds at first. the mean 

time incurred for removing a permanent failure and intermittent failure are 

assumed to be al = a2 = ... = aN-l = 1 [hour] and if;N == if; = 1,5,20,50 

[hours], respectively. We apply a failure mode ak = 100/(k + 1) [hours] 

(k = 0,1" ., ,N - 1) to the mean time between the successful retry and the 

failure. We further consider that an overhead for a retry is enough law to 

ignore, i.e., bk = ° [hour] (k = 0,1"" ,N - 1). 

Table 3.1 shows the optimum number of successful retries, Ns , which 

maximizes Au, for if; = 1, P = 50,60,70,80,90,99 [%] and m = 1,2,3,4. 

In the case of if; = 5,20,50, the results are shown in Table 3.2, 3.3, 3.4, 

respectively. Moreover; the maximized availabilities corresponding to Table 

3.1, ... , Table 3.4 are shown in Fig. 3.2, 3.3, 3.4, 3.5, respectively. Table 

3.5 similarly shows the optimum number of successful retries, Ns , which 

maximizes MTBF, when the parameters are the same as in Table 3.1 . The 

maximized MTBF is shown in Fig. 3.6. Note that MTBF is independent 

of ak and if;N as is evident from Equation (3.39). From these results, for 

instance, we can see that in case if; = 1, m = 2, and P = 90[%], the max-

imized availability 0.9939 is yielded at N = 4, and the maximized MTBF 

164.5 [hours] is yielded at 1V = 4. 

The number; 1V5 , which maximizes Au increases when a initial probabil

ity, P, or a prescribed number of retries, m, increase as shcm'n in Table 3.1 
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Table 3.1: The optimum number of successful retries maximizing the avail
ability for ¢ = 1. 

~ 50 60 70 80 90 99 

1 1 1 1 2 2 7 

2 1 1 2 2 4 15 

3 1 2 2 3 5 24 

4 1 2 2 3 5 33 

Table 3.2: The optimum number of successful retries maximizing the avail
ability for ¢ = 5. 

~ 50 60 70 80 90 99 

1 2 3 3 4 5 1 3 

2 2 3 4 4 7 2 6 

3 3 3 4 5 8 37 

4 3 3 4 5 9 48 

Table 3.3: T he optimum number of successful retries maximizing the avail
abili ty for ¢ = 20. 

~ 50 60 70 80 90 99 

1 4 5 6 7 10 25 

2 5 5 7 8 12 41 

3 5 6 7 9 13 55 
4 5 6 7 9 14 68 

Table 3.4: The optimum number of successful retries maximizing the avail
abili ty for ¢ = 50. 

~ 50 60 70 80 90 99 

1 6 7 9 11 15 38 

2 6 8 10 13 18 58 

3 7 8 11 14 19 73 

4 7 9 11 14 20 86 

72 



A 1 
V 

0.995 

m=l 
m=2 
m=3 
m=4 

0.985~------+-------~------~------4-·------~1 
50 60 70 80 90 99 

p 

figure 3.2: The maximized availability for ¢ == 1. 
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Figure 3.3: The maximized availability for ¢ = 5. 
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Figure 3.4: The maximized availability for cP = 20. 
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Figure 3.5: The maximized availability for ¢ = 50. 
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Figure 3.6: The maximized MTBF. 
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Table 3.5: The optimum number of successful retries maximizing MTBF. 

~ 50 60 70 80 90 99 

1 1 1 1 2 2 7 

2 1 1 2 2 4 15 

3 1 2 2 3 5 24 

4 1 2 2 3 5 33 

... Table 3.4. The mean time incurred for removing intermittent failures, ¢, 

is also tend to enlarge Vs as a whole. In Table 3.1, there is no improvement 

in the availability by increasing the prescribed number of retries) in the case 

of P = 50[%]. vVhen P increases, the more retries are repeated, the more the 

availability becomes high. In Table 3.4 for ¢ = 50) the increase of m brings 

the decrease of the availability in P = 50[%]. Such a tendency is observed 

in P = 50· . ·90[%]. The availability is just improved in P = 99[%]. These 

facts imply that the improvement in the availability can not be expected by 

increasing the prescribed number of retries when the mean time incurred for 

removing intermittent failures is relatively long or the initial probability P 

is not high. 

We can similarly see that the effects for MTBF by retries depends on the 

initial probability p) from Table 3.5 and Fig. 3.6. When P increases) Ns and 

NITBF increase, and these values also increase according as the prescribed 

number of retries increases. 
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The result of MTBF is independent of the overhead tim.e for the mainte

nances as before. The optimum number of successful retries, Ns , for MTBF 

coincides with Ns for Au in case cP = 1. We should determine which Ns 

is adopted in the maintenance policy, Ns for Au, or Ns for NITBF, taking 

account of the operational costs , the application of the system and so on. 

We next show the resul ts of the numerical calculations for the availability 

in the transient-state Au (t). Though the following examples are discussed 

in the case of cP = 5, similar properties are observed in the other cases of cP. 

Let us show the availability in the transient-state for N = lVs and N in 

the vicinity of lVs , where N s maximizes the availability in the steady-state. 

Figure 3.7 shows the behavior of Au (t) for P = 50 [%], N = 1: 2, 3, 4. Figure 

3.8 similarly shows the behavior for P = 90[%], N = 3,4,5,6,7. We can 

see that the optimum lV which maximizes the availability in the transient

state does not coincide with the one in the steady-state. In the early phase 

of the system operation, particularly, the more N increases, the more the 

availability is improved. 

"vVe further show the numerical results in varying the prescribed number 

of retries. Figure 3.9 shows the behavior of the availability for P = 50[%], 

m = 1,2,3,4, where we use lV which maximizes the availabiHty in the steady

state for each value of m . Figure 3.10 also shows the behavior for P = 90[%], 

where the other parameter is situated similarly to Fig. 3.9. In case P = 

50[%] ; though the availability at m = 1 is the greatest in the steady-state, 
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Figure 3.7: The behaviors of availability Au (t) for P = 50 in varying N 
(¢ = 5, m = 1, tis = 2). 
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the availability at m = 3 is greater than the one at m = 1 for 0 ::; t ::; 180. 

In case P = 90[%], the availability at m, = 4 is greater than the others 

in the transient-state as well as the steady-state. These results imply that 

when the initial probability P is not high, the prescribed number of retries 

maximizing the availability in the early phase of the system operation, IS 

greater than the one in the steady-state. 

On the numerical illustrations above, we have obtained some important 

properties of the retry procedure. In particular, it is interesting that the 

optimum number of N or m in the steady-state does not always coincide with 

the one in the transient state. '-IVe have also seen some results implying that 

the more m increases, the more the availability or MTBF increases. From 

a practical point of view; however, retries may be limited in the available 

number, since the number of m should be determined taking account of the 

overhead for a retry which has been ignored in our model. 

3.5 Concluding Remarks 

In this chapter, we have presented a model for evaluating the effects of time 

redundancy by retries. Taking account of the behavior of intermittent and 

permanent failures, the system has been assumed to be maintained with 

the prescribed number of successful retries. The analysis of the model has 

yielded the reliability evaluation in the transient-state as well as the steady

state. 
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Figure 3.9: The behaviors of availability Av(t) for P = SO in varying m 
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vVe have obtained several important properties of retry procedures from 

the analytical or numerical results. The principal results are shown as fol

lows: 

• The improvement in the availability in the steady-state can not be 

expected by increasing the prescribed number of retries when the mean 

time incurred for removing intermittent failures is relatively long or the 

initial probability of successful retry is not high. 

• The optimum number of successful retries which maximizes the avail

ability in the transient-state does not coincide with the one in the 

steady-state. Particularly, in the early phase of the systern operation, 

the more the number of successful retries increases, the more the avail

ability in the transient-state is improved . 

• When the initial probability of successful retry is not high, the pre

scribed number of retries, which maximizes the availability in the early 

phase of the system operation, is greater than the one in the steady

state. 

In the actual systems, a retry procedure is greatly useful for the compo

nent of a recovery mechanism as before. Specifying the parameters of our 

model statistically, we can roughly estimate the prescribed optimum number 

of retries or successful retri es in many situations of the systems , and intro-
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duce the reasonable strategies for the retry procedures based on the resul ts 

above. 
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Chapter 4 

Reliability /Performance 
Evaluation for Multi-Pr«:lcessor 
Systems from the Vie"WI)oint 
of Transaction Assignm(~nts 

4 .1 Introduction 

The remarkable progress of modern computer technology enables us to make 

a large-scale and complex computing system which plays an important role in 

our society. Examples of such systems are telephone exchange systems, the 

on-line banking systems, vehicle control systems, seat reservation systems, 

and so on. A break-down of such systems may be costly, dangerous and 

may cause social panic. It is, therefore, of great importance to operate such 

computing systems with high reliabi lity. 

The fault-tolerant computing systems [1 -4] have been proposed behind 

above background. The fault-tolerant computing systerns are the systems 
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which operate with high reliability using the technique of redundancy and/or 

maintenance. Several stochastic models for such systems have been pro

posed, and the reliability evaluations have been discussed [5-8]. For evalu

ating the fault-tolerant computing systerns, the traditional reliability mea

sures, such as the availability, the MTBF (Mean Time Between Failures), 

are not adequate since such systems assunle not up and down state, but also 

several different levels. Therefore, we should propose new reliability and/or 

performance measures adequate to evaluate such systems. Several measures 

have been proposed [9-12]. 

Beaudry [9] proposed the performance-related reliability measures, such 

as the computation availability and the MCBF (Mean Computation Between 

Failures), for such systems. Meyer [10] proposed the performability tak

ing account of accomplishment levels frolm a user's viewpoint for a multi

processor system. Gay and Ketelsen [11] proposed the throughput availabil

ity, the expected system throughput and the expected number of transactions 

lost which are measures taking account of reliability, performance and com

putational demands simultaneously. Nakamura and Osaki [12] classified the 

lost jobs caused by processor failure and by cancellation (i.e., overflow of 

the arriving jobs). 'vVe will characterize the multi-processor systems using 

not only the traditional measures but also reliability/performance measures 

above to evaluate the systems. 

In this chapter we analyze a rnulLi-processor system which is one of the 
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typical faull-tolerant computing systems , and is also called A Gracefully 

Degrading System from its redundant technique. Assuming that the system 

is composed of two processors and the buffer(s) (i.e., the storage facility 

of the arriving transactions). We propose two models from the viewpoint 

of transaction assignment, and obtain analytically the conventional relia

bility /performance measures for each model applying the Markov renewal 

processes [13,14] and queueing theory [15]. We show numerical examples for 

evaluating two models from the viewpoint of transaction assignments . We 

finally show the impact of transaction assignment on the multi-processor 

systems. 

4.2 Multi-Processor System Modeling 

Consider a multi-processor system which is composed two processors and 

the buffer whose maximum storage capacity is 2N. Vie assume that each 

processor obeys an exponential failure time distribution with failure rate Al 

and an arbitrary repair time distribution G1(t) with mean repair time 1/111' 

We assume that a buffer is composed of buffer elements, where each element 

obeys an exponential failure time distribution with rate A2 and an arbitrary 

repair time distribution G2(t) with mean time 1/112' That is, if a buffer is 

composed of lV elements, the exponential failure rate for the buffer is N A2 

since it can be considered a series of buffer elements. There is a single repair 

facility and repair discipline is first come, first served. A processor or a 
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buffer recovers its functioning upon repair completion. 

Consider the behavior of the arriving; transactions. The transactions 

arrive as a Poisson process with arrival rate AT and form a queue in the 

buffer. Each processor performs a transaction exponentially with processing 

rate /-LT. The break-down of the processor or the buffer implies that the 

existing transactions are lost . In particular, the break-down of a system 

implies that all transactions in the syste:m are lost. When the system is 

under break-down or is occupied by the transactions of full capacity, the 

arriving transactions cannot be accepted (i.e., it is cancelled). 

vVe propose the following two models from the viewpoint of transaction 

assignments: 

Modell: It is composed of two processors and a buffer with maximum 

capaci ty 2J\'. The transactions are distributed to each processor after 

forming a queue in the buffer. 

Model 2: It is composed of two processors and two buffers with maximum 

capacity!'/. That is) it is composed of two subsystems, where each 

subsystem is cornposed of a processor and a buffer. The arriving trans

actions are distributed to each subsystem with even probability. 

Figure 4.1 shows a configuration of each model. If two processors break 

down simultaneously or a buffer breaks down, the system breaks down in 

Modell . If a processor or a buffer breaks down, the subsystem breaks down, 
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and if two subsystems break down simultaneously, the system breaks down 

in Model 2. The discipline of transaction assignment is uniform for Model 

1, and is random for Model 2, respectively [11]. 

4.3 Modell 

Applying Markov renewal processes and queueing theory, we analyze the 

above Models. Nakamura and Osaki [12] analysed a multi-processor system 

by considering both the behaviors of the processors and of the queue of the 

transactions. They derived the exact formulae and approximate formulae by 

considering the behaviors to be simultaneous and independent, respectively, 

and showed that the approximate formulae are sufficiently precise. vVe apply 

this result in our models. That is, we analyse our models by considering both 

the behaviors of the processors and of the queue to be independent. 

To analyze ~lodel 1, we first define the following states which characterize 

the behavior of the system: 

State 0 : All units are operating. 

State 1: Through state 0, one of the processors breaks down and its repair 

starts. 

State 2: Through state 1, the remaining processor breaks down (system 

break-down) . 
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Figure 4.1: The configuration of the multi-processor system. 
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State 3: Through state 1, the buffer breaks down (systern break-down). 

State 4: Through state 0, the buffer breaks down (systern break-down). 

The state transition diagram among the states above is shown in Fig. 4.2, 

where the number circled denotes a regeneration point and the number 

squared denotes a non-regeneration point [14]. 

2 

Figure 4.2: The state transition diagram for Nlodel 1. 

Let qij(S) and qi(k)j(S) be the L8 (Laplace-8tieltjes) transforms of one

step and two-step transition probabilities Qij (t) and Q/k) j (t) ; respectively. 
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Then we have 

2Al 
qo 1 ( S) = S + 2 Ao ' 

2JVA2 
q04(S) = --

s+ 2Ao 

qlO(S) = gl (s + AI), 

() 
Al[1 - gl(S + AI)] 

q12 s =1 A ' 
S T 1\.1 

(2) ( ) _ A dg 1 ( S) -- 9 1 (S + AI)] 
ql 1 s - Al ' 

(
S) _ 2JVA2[1 - gl(S + AI)] 

q13 - S + Al ' 

(3) ( ) _ 2 JV A2 [g 1 ( S) - 9 1 (S + 1\ 1 ) ] 
ql 4 S - Al ' 

q40(S) = g2(S), 

( 4.1) 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

(4 .6) 

(4.7) 

(4.8) 

where Ao = Al + 1VA2, Al = Al + 21VA2 ', and gl (s) is the L8 transform of 

Gi(t) (i = 1,2). 

Let ~i be the unconditional mean neglecting the non-regeneration points 

for state i (i = 0,1,4): 
1 

~o = 2A(~' 
1 

~1 =-, 
/-Ll 
1 

~4 =-, 
/-L2 

(4.9) 

(4 .10) 

(4.11) 

and'Tli be the uncondi tional mean not neglecting the non-regeneration points 

for state i (i = 0,1,2,3,4): 

(i=0,4), ( 4.12) 
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1 - 91 (AI) 
TJl = Al ' ( 4.13) 

A [-.L _ l-g1 (A 1)] 

1 J1.1 Al ( 4.14) 

(4.15) 

Using the limi ting transition probabilities qij (0), q/k) j (0) and the un-

conditional means ~i' we can obtain the mean recurrence time for all the 

regeneration points i (i = 0, 1,4): 

D 
loa = 1 (2)' 

- ql 1 
( 4.16) 

D 
III = , 

1 - q04 
( 4.17) 

( 4.18) 

Applying the above results, we have the following transition probabilities 

for all state i (i = 0,1,2,3,4) in the steady-state: 

(i=0,1,4), ( 4.20) 

p. -~ 
t - III (i=2,3) . (4.21) 
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vVe also have the following expected numbers of visits to all state i (i = 

0,1,2,3,4) per unit time in the steady-state: 

M . - qli 
t - III 

(i=0,1,4), 

(i=2,3). 

( 4.22) 

( 4.23) 

Let us next consider the behavior of the arriving transactions. The trans

actions form an M/M/2/2N +2 queue in state 0. Let p}O) denote the steady

state probability that the number of transactions in system is j in state 0. 

Then p}O) (j = 0,1, ... ,21V + 2) is given by 

RCO ) ________ -::1,---_____ ----;-

° - AT 1 (AT) 2 2N +2 ( AT ) k , 
1+-+- - +2 L -

/.iT 2 J.1T k=3 2J.1T 

( 4.24) 

( 4 .25) 

(j = 1, 2, .. . , 2N + 2). ( 4.26) 

The transactions form an M/M/1/21V + 1 queue in state 1. Let pjl) denote 

the steady-state probability that the nu:mber of transactions in the system 

is j in state 1. Then we have 

( 4.27) 

pCl) = 1 
) 21V + 2 (Pl = 1), ( 4.28) 

where PI = AT/flT and j = 0; 1, ... ; 2JV +- 1. 
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Applying the results in Equations (4.20)-(4.28), we can obtain the fol

lowing reliability/performance measures: 

(i) The steady-state availability Av: 

(4.29) 

(ii) MTBF (Mean Time Between Failures): 

( 4.30) 

(iii) The computation availability Ac [9]: 

(4.31) 

(iv) The expected system throughput Tp [11]: 

(0) Pl (1) 

( 
(0) ) 

T p = 2fLT 1 - Po - -2- Po + fLT (1 - Po ) Pl· ( 4.32) 

(v) The expected number of lost jobs by cancellation per unit time in the 

steady-state; Cj [12]: 

(4.33) 

Note that the following identity holds: 

( 4.34) 
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4.4 Model 2 

Just similar to Model 1, we define the following states for Model 2: 

State 0: All units are operating. 

State 1: Through state 0, one of the processors breaks down and its repair 

starts. The system is operating as degrading the remaining subsystem 

function. 

State 2: Through state 1, the remaining processor breaks down (system 

break-down). 

State 3: Through state 1, the operating buffer breaks down (system break

down). 

State 4: Through state 0, one of the buffers breaks down and its repalr 

starts. The system is operating as degrading the remaining subsystem 

function. 

State 5: Through state 4, the remaining buffer breaks down (system break

down). 

State 6: Through state 4, the operating processor breaks down (system 

break-down) . 

The state transition diagTam among the states above is shown in Fig. 4.3. 
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Figure 4.3: The state transition diagram for Model 2. 
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Let qij (s) and q/k) j (s) be the L8 transforms one-step and two-step tran

sition probabilities Qij(t) and Q/k)j(t), respectively. Then we have 

2Al 
qOl (s) = s + 21\0 ' ( 4.35) 

2N'\2 
q04 ( s) = s + 21\0 ' ( 4.36) 

qlO(S) = 91 (s + 1\0), ( 4.37) 

q12(S) = 
Al [1 - 91 (s + 1\0)] 

( 4.38) 
s+ Ao 

, 

ql (2) 1 (s) = A d91 ( s) - 91 (s + AD)] 
( 4.39) 

AD 
, 

qI3(S) = 
1VA2[1 - 91 (s + 1\0)] 

( 4.40) 
s + AD 

, 

Ql(3)4(S) = N A2[91(S) -. 91(S + 1\0)] 
(4.41 ) 

AD 
, 

q40(S) = 92(S + 1\0), ( 4.42) 

( ) _ N A2[1 - 92(S + AD)] 
( 4.43) q45 s - + '\ ' S 1 0 

q4(5)4(S) = N A2[92(S) _. 92(S + 1\0)] 
(4.44) 

AD 
, 

Q46(S) = 
Ad1 - 92(S + 1\0)] 

( 4.45) 
s + AD 

, 

Q4 (6) 1 (s) = Ad92(S) - 92(S + 1\0)] 
( 4.46) 

AD 

Let ~i be the unconditional mean neglecting the non-regeneration points 

for state i (i = 0; 1,4): 

1 
~o = 2Ao' 
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1 
6=-, 

/.11 

1 
~4 =-, 

j.12 

( 4.48) 

( 4.49) 

and T/i be the unconditional mean not neglecting the non-regeneration points 

for state i (i = 0,1,2,3,4,5,6): 

T/o = ~o, (4.50) 

(4.51) 

T/2 = Ao ' ( 4.52) 

N)' [-.L _ 1-91 (Ao)] 
2 Ji.l Ao 

( 4.53) 

( 4.54) 

(4.55) 

T/6 = Ao . ( 4.56) 

Using the limiting transition probabilities qij, q/k)j and the unconditional 

means ~i' we can obtain the mean recurrence time for all the regeneration 

point i (i = 0,1,4): 

( 4.57) 

(4.58) 
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( 4.59) 

where 

Applying the above results, we have the following transition probability 

for state i (i = 0: 1, ... ,6) in the steady-state: 

(4.61) 

p. =~ 
t III 

(i=2,3), ( 4.62) 

p. =~ 
t 144 

(i==5,6). ( 4.63) 

We also have the following expected number of visits to state i (i = 0, 1, ... ,6) 

per unit time in the steady-state: 

1 
i'vf. = -

t iii 
(i=0,1,4), 

(i==2,3), 

(i = 5,6) . 

( 4.64) 

( 4.65) 

( 4.66) 

Let us next consider the behavior of the arriving transactions. The trans-

actions fonn an \ If/M/1/N + 1 queue with arrival rate AT/2 in each subsys

tem in state O. Let p}O) denoLe the steady-state probability that the number 
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of transactions in the subsystem is j in state O. Then we have 

p~O) = (1 - P2)p~ 
J 1 _ p~+2 ( 4.67) 

p~O) = _1_ 
J N + 2 (P2 = 1), ( 4.68) 

where P2 = ATI2/LT and j = 0,1"", N + 1. The transactions form an 

M/m/1/1'l + 1 queue with arrival rate AT in the remaining subsystem in 

state 1 or 4. Let p?) denote the steady-state probability that the number 

of transactions in the subsystem is j in state 1 or 4. Then we have 

( 4.69) 

p(l) = _1_ 
J N + 2 

(PI = 1), (4.70) 

where j = 0, 1, ... , 1'/ + 1. 

Applying the results in Equations (4.61)-(4.70), we can obtain the fol-

lowing reliability Iperformance measures: 

(i) The steady-state availability Av: 

(4.71) 

(ii) NITBf: 

NITBF = Av 
M2 + M3 + M5 + M6 

(4.72) 

(iii) The computation availability Ac: 

(4.73) 
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(iv) The expected system throughput Tp : 

(4.74) 

(v) The expected number of lost jobs by cancellation per unit time in the 

steady-state ; GJ : 

(4.75) 

Note that the following identity holds: 

(4.76) 

4. 5 Numerical Illustrations 

Let us numerically compute the reliability/performance measures obtained 

in the preceding sections. Applying the appropriate values to all the param-

eters, we can derive the following results of the numerical examples. These 

results hold even in the case where the parameters vary in the ordinary range. 

Assume that the arbitrary repair time distribution is a gamma distribution 

of order 2: 

(4.77) 

Let us discuss a case in which the buffers cannot break-down, i.e., /\2 = o. 

In this case; the stochastic behaviors of each model are identical since the 

behavior of the systern is jusL the behavior or the two processors. Note 
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that Av , NITBF and Ac are entirely identical for each model, respectively. 

Figure 4.4 shows the dependence of N on C j for each model, where )'1 = 

0.001, 111 = 1 i AT = 15000 and I1T = 10000. The more N increases: the 

more C j decreases for each model, and C j of Modell always is less than 

that of Model 2. From this numerical example, the uniform assignment (i.e., 

Modell) is superior to the random assignment (i.e., Model 2) as Gay and 

Ketelsen showed [11]. Note that the behaviors of Cj and Tp are symmetrical, 

since identi ty Equation (4 .34) or (4.76) hold. Hence, the two measures are 

equivalent in the evaluation. 

Let us next discuss a case in which the buffers can break down, i.e., 

A2 > O. In this case: the stochastic behaviors of each model are not identical 

since the configurations of each model are different. Figure 4.5 shows the 

values of Av in varying I\T for each model, where all the parameters are 

specified just same as in Fig. 4.4 and A2 = 0.0001, 112 = 1. \Nhen N 

increases, Av of each model decreases and, in particular, Av of Model 2 is 

al ways greater than that of Model 1. vVe can obtain a sirnilar result with 

respect to N[TBF . Figure 4.6 shows the values of Ac in varying N for each 

model, where all the parameters are specified just same as in Fig. 4.5 . The 

increase in buffers causes the decrease in Ac. When N increases, the decrease 

in Ac of Nlodel 2 is al ways less than that of Modell. These facts show that 

Model 2 is superior to Model 1 from the viewpoint of fault-tolerance. 

Figure 4.7 shows the dependence of N on Cj for each model , where all 

107 



c] 800 

700 

600 

500 

400 

300 

200 

100 

0 
0 10 

Model 2 

Modell 

20 30 40 50 

N 

Figure 4.4: The dependence of the capacity of the buffer N on the CJ for 
"\2 = o. 
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Figure 4.5: The dependence of the capacity of the buffer lV on the Av for 
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Figure 4.6: The dependence of the capacity of the buffer N on the Ac for 
'\2 = 0.0001. 
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the parameters are specified just same as in Fig. 4.5. When N is small, Cj of 

Model 1 is less than that of :vrodel 2. However, when N is large, Cj of Model 

1 is greater than that of Model 2. The turning position is N = 16. This 

measure shows the trade-off between reliability and performance in varying 

N. When N increases, the reliability decreases as shown in Fig. 4.5 and the 

performance increases as shown in Fig. 4.4. The trade-off yields the critical 

value of N which minimizes C j . The critical value of lV is 11 and 23 for 

Models 1 and 2, respectively. It is obvious that the critical value of N of 

Model 2 is greater than that of Nlodel 1 because of its fault-tolerance. From 

the above results, the random assignment (i.e.) Model 2) is superior to the 

uniform assignment (i.e., lVlodel 1) when the value of N is high. 

4.6 Concluding Remarks 

In this chapter) we have discussed a multi-processor systern composed of two 

processors and the buffer(s) and proposed two models fron1 the viewpoint of 

transaction assignments. \Ve further have compared two models using the 

numerical examples of the reliability/performance measures and shown the 

characteristics of each model. 

In general, the reliability and performance of the con1puting system is 

mutually contradictory. For instance) a massive redundant system can attain 

the high reliability by sacrificing the high performance. From this viewpoint, 

a multi-processor system should be recomrnended for both of reliability and 
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Figure 4.7: The dependence of the capacity of the buffer N on the CJ for 
A2 = 0.0001. 
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performance. We have proposed two models from the viewpoint of transac

tion assignments. We have shown some fruitful conclusions. That is, when 

the storage capacity of the buffer is small, the uniform assignment of Model 

1 is better than the random assignment of Model 2, and , conversely, when 

the storage capacity is large, the random assignment is better than the uni

form assignment. From a practical point of view, this implies that we should 

compose the two unit multi-processor system by two independent buffers for 

a large scale application such as on-line transaction processing. 

It seems that we can expand our models as follows: Modell is composed 

of m processors and a buffer with maximum capacity ml'l. Model 2 is com

posed of m processors and m buffers with maximum capacity JV. However, 

it is too difficult to analyze these extended models by applying Markov re

newal processes and queueing theory. Some particular assumptions must be 

made, e.g., a two-out-of-m: F system. 

The assertion of the above conclusions are based on our models and nu

merical computations. In particular) under the assumption of Model 2, one 

buffer can overflow although the other buffer is able to accept the arriving 

transactions. This fact may not fit an actual situation, however it is too 

difficult to analyze Model 2 taking account of such a si tuation. Compar

isons should be done more precisely by applying the existing and forthcom

ing sophisticated techniques. Our assertion is a first stage of mathematical 

modeling for reliabili ty / performance evaluation. 
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Chapter 5 

A Reliability Evaluation 
Software Package Tool for 
Markov Models with Many 
States 

5.1 Introduction 

It is of great interest and importance to operate a computing system with 

h igh reliabil ity and performance [1,2] . To evaluate such a system, we should 

derive analytically and/or numerically reliability/performance measures by 

formulating a stochastic model of the system [3-5]. A continuous-time 

Markov chain is one of the most powerful stochastic processes to analyze 

the system. In particular, we are very much interested in a continuous-time 

Markov chain with many states since modeling a Markov chain yields many 

states in practice [6]. vVe develop a software package tool for calculating the 

transient state probabilities for a continuous-time iVlarkov chain with many 
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states. Several performance/reliability measures can be calculated by using 

the state probabilities. 

We adopt the randomization technique [7] for calculating the transient 

state probabilities as well as the steady-state probabilities. It is assumed 

that the transient state probabilities converge the steady-state probabilities 

as time tends to infinity under certain assumptions. In principle, it is possible 

to calculate the transient and steady state transition probabilities. However, 

it is quite difficult to do so if there are many states such as some hundreds 

or thousands of states. 

For our software package tool, we specify the initial state probability vec

tor 7r(O). Once the initial state probability vector 7r(O) is specified, we can 

calculate the transient state probability vector 7r(t) at time t . However, it 

is quite difficult in advance to identify when the transient state probability 

vector converges to the steady-state probability vector with enough preci

sion. vVe propose a new idea of calculating the convergence time ts of the 

steady-state probability in advance from the knowledge of the randomization 

technique. 

In this chapter; we discuss our software package tool and its applications. 

In Subsect. 5.2, we discuss the randomization technique for calculating the 

transient solutions as well as the steady-state solutions for a continuous

time Markov chain with many states . vVe propose a new idea of the con

vergence time which will be implemented in our software package tool. We 
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further present two examples of maintenance policies for a computing sys

tem in Subsect . 5.3, and show how our software package tool is useful. The 

first example is maintenance policies based on retries for a computing sys

tem, which has been discussed in Chapter 3. Calculating the transient and 

steady-state availabilities, we can obtain the effective maintenance policies. 

The second example discusses maintenance policies for a hardware and soft

ware system. We propose two software maintenance policies for a two-unit 

hardware system and compare them. 

5.2 Mathematical Preliminaries 

5.2.1 Randomization Technique 

Let us briefly sketch the randomization technique (see Ross [6], pp 141-183). 

There are several techniques of calculating the exponential of matrix [8], 

since they are quite famous as the eigen value problems of the matrices. 

Consider a continuous-time Markov chain with jV states. Let 

(5.1 ) 

be the state probabili ty vector at time t, where the initial state vector 

(5.2) 

is prespecified. Let Q be the, infini tesimal generator for the continuous-time 
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Markov chain . Then: the matrix differential equation is given by 

d7r(t) = ()Q 
dt 7r t , (5.3) 

where the initial condition 7r(O) is given. Note that each element of the 

infini tesimal generator is gi ven by 

.. = lim P{X(t + 6.t) = jIX(t) = i} 
qt] 6. t--+O 6. t ' 

N 

qii = - I:: qij· (i = j) 
iij 

(i i= j) 

It is easy to solve the Matrix Differential Equation (5.3). \Ve have 

7r(t) = 7r(O)eQt 

= 7r(O)[I + f (Q?n], 
n=l n. 

where I is an identity matrix. 

(5.4) 

(5.5) 

(5 .6) 

Specifying J1 such that J1 = maxi Iqi I, we transform the matrix Q into 

the matrix P: 

P=Q/J1+I. (5 .7) 

vVe notice that the matrix P is a transition probability matrix and the 

properties of all states are preserved under the Transformation (5 .7) . Intro

duce the n-step transition probability vector ¢(n) for a discrete-time Markov 

chain with transition probability rnatrix P. That is, 

¢(O) = 7r(O), (5.8) 

120 



¢(n + 1) = ¢(n)P. (n ~ 0) (5.9) 

Substituting Equation (5.7) into Equation (5.6), we have 

7f(t) = f {(At?n e- l1t . ¢(n)}. 
n=O n. 

(5.10) 

The right-hand side of Equation (5.10) is the infinite series of the product 

of the probability rnass function of the Poisson distribution with parameter 

At and the n-step transition probability ¢(n). 

In practice, instead of infinite series in Equation (5.10) , we adopt the 

finite series 
T(e:,t) (At)n 

7fe:(t) = I: {-I e- l1t . ¢(n)} 
n=O n. 

(5.11) 

where 
k (At)n 

T(c, t) = min[k : I: _,_e- l1t > 1 - c]. 
n=O n. 

(5.12) 

and c is an acceptable error which is enough small. Applying Equation 

(5 .11) with the prespecified acceptable error, we can calculate 7fe:(t), which 

is the transition probability vector at time t with enough precision. Figure 

5.1 shows an illustration of how to calculate 7fe:(t). 

5.2.2 Steady-State Solution 

If the continuous-time Markov chain under consideration is regular, there 

exists the steady-state probability vector 7f whose solution is given by 

7fQ = 0, (5.13) 
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Figure 5.1: An illustration of how to calculate 1f€. (t) . 
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where 

N 

L7fi = 1, 
i=l 

(5.14) 

(5.15) 

In principle : it is analytically easy to solve the Linear Simultaneous Equa

tions in (5 .13) and (5.14). However, if we consider many states such as 

several hundreds or thousands of states, we have to consider the efficient 

method of solving equations (5.13) and (5.14) numerically. 

As shown in Equation (5.10), we have to calculate ¢(n). It is easier 

to obtain the steady-state vector ¢ = limn --+ oo ¢(n) since the properties of 

all states are preserved both for the discrete-time Markov chain and the 

continuous-time Markov chain. That is 

lim 7r(t) = lim ¢(n). 
t--+oo n--+oo 

(5.16) 

It is evident that ¢ = ¢P. Multiplying ¢ for both sides of Equation (5.7), 

we have 

¢Q= 0, (5.17) 

and Li Oi = 1, which is a unique steady-state vector 7r . Let ns be the min

imum step number in which ¢(ns) approximates ¢ with enough precision. 

That is, 

(5.18) 
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where ns is the minimum number of the step n such that 

[maxj lcPj (n) - cPj(n - 1) 1] < C2 , 

¢ = {91, cP2, ... , cP N } . 

(5.19) 

(5.20) 

Note that 62 is an acceptable error which is prespecified and enough small. 

From these facts, we can calculate ¢(ns) instead of 7r. For the randomization 

technique, we have to calcula te ¢(n) with enough steps which is approxi

mately regarded as the steady-state. vVe should apply ¢(ns) in practice. 

5.2.3 Convergence Time of Steady-State Solutions 

The randomization technique is available for calculating the transient solu

tions for continuous-time Markov chain. However, it involves an important 

and difficult problem of identifying when the transient solution converges 

to the steady-state solution with enough precision . Otherwise , we have to 

calculate the transient solution by applying the randomization technique in 

Equation (5.10) which is enormous calculations as time tends to infinity. 

Let ts denote the convergence time such that 

(5.21) 

Then we should calculate n(t) for 0 :::; t :::; t s. If we have to calculate n(t) 

for t > ts , we should use n instead of n (t) in order to avoid the unnecessary 

calculation . 

124 



From Equation (5.18), we assume 

¢(n) = 'IT (5.22) 

where n ~ ns· If ts satisfies 'IT(t s) ~ 'IT, almost all the probability mass 

functions of the Poisson distribution with parameter !1ts is distributed on n 

such that n ~ ns. That is, 

(5.23) 

Hence we have the following approximate equation 

(5.24) 

Let ts satisfy 

(5.25) 

(see Fig. 5.2), where !1t s and .J !1ts are the mean and standard deviation of 

the Poisson distribution with parameter 11ts , and k is a positive real constant. 

Solving ts in Equation (5.25), we have 

2ns + k2 + k.Jk2 + 4ns 
Ls = 2/1 ' 

(5 .26) 
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That is, ts is expressed in terms of ns. In other words, once ns and k are 

specified, we can obtain ts in Equation (5.26). Let us consider how to specify 

a constant k in Equation (5.25) or (5 .26). It is well-known that the Poisson 

distribution is approximated by the normal distribution when the parameter 

I1ts is enough large. Noting this fact, we have 

180 1 t 2 

f(Ce- 2 dt = 0.9999864 . 
-4 V 27r 

(5.27) 

In practice, if we assume that k = 4, Equation (5.23) is approximated by 

cc (/lt)n L ~ e- Ats = 0.9999864 . 
n=ns n. 

(5.28) 

which is a good approximation from the viewpoint of round error. 

We summarize the convergence time ts. Once ns is specified by calcu-

lating ¢(ns) which is approximately the steady-state probability vector, we 

can calculate ts from Equation (5.26). That is, if t > ts, we should use 

7r = ¢ instead of calculating 7r (t) for each t. \Ve emphasize that ts can be 

calculated in advance when we implement the randomization technique in 

our software package tool. 

5.3 Applications 

5.3.1 Maintenance Policies for a Computing System 
with Retries 

In this subsection, we discuss rnaintenance policies for a computing system 

with retries; by applying our software package tool. This model has already 
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been discussed in Chapter 3, and is further simplified here. 

It is generally considered that a computing system has two kinds of faults 

from the viewpoint of maintenance [9]. One is an intermittent fault that is 

only occasionally present. The other is a permanent fault that is continuous 

and stable. In order to avoid the system downs caused by the intermittent 

faults, the computing system execute retries several times. \Ve present a 

maintenance policy based on retries for a computing system. 

We assume that for a fault occurrence in the system, if retries are ex

ecuted and do not succeed, we identify the fault as a permanent fault and 

remove the fault, and if retries are executed and succeed, we identify the fault 

as an intermittent fault, and remove the fault after the same actions are ob

served lV times. Let the constant failure rate, repair rate for a permanent 

fault be A and /-Lo, respectively, and let the repair rate for an intermittent 

fault be /-L1, and the failure rate is assumed to be proportional to the num

ber of successful retries. Let pk+1 be the probability with which the retry 

is successful after k times successful retries. 

The state transition diagram is shown in Fig. 3, where each state is 

defined in the following: 

State 0 The system is operating. 

State k : Success of retries are observed k times. 

State Dk Repair for a permanent fault starts (system down) . 
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State D : Success of retries are observed N times and the repair for an 

intermittent fault starts (system down). 

J.11 

Figure 5.3: The state transition diagram of the computer system. 

We can obtain the instantaneous availability Av(t) as follows: 

N-I 

Av(t) = L Pk(t), (5.29) 
k=O 

where Pk(t) is the state probability at time t. 

Specifying all the parameters, we can numerically calculate the instan-

taneous availability Av(t) . Let A = 0.01, /-Lo = 1, /-L = 0.2, and P = 0.9. We 

further specify parameter AT = 1 rv 20. Using our new idea in our software 

package tool, it is shown that the steady-state availability Av attains the 
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maximum 0.976 at N = 5 among all possible N. The convergence time ts at 

N = 5 is 596. Therefore, we should calculate the transient state availabilities 

for 0 :S t :::; 600. 

Figure 5.4 shows the transient state avail abi li ty Av (t). It is interesting 

that the more N increases, the more the availability Av(t) increases, for 

o :::; t :::; 230, in contrast with the steady-state availability. 

/

N=SN=3 

N=10 

/ 

1.00 

.95 

ts for N=5 

.90~------~----~------~------~------~----~1------I I I 
o 100 200 300 400 500 600 

t 

Figure 5.4: The behavior of Av(t) for each lV. 
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Referring to the above results, we can conclude that we should repair 

and remove the intermittent fault after successes of retries are observed 5 

times, in operation of the system for a long term. However, in operation of 

the system for a short term like for 0 ::; t ::; 200, we should not repair the 

intermittent fault. 

5.3.2 Maintenance Policies for a Hardw·are-Software 
System 

In this subsection we discuss a two-unit hardware system, propose two soft-

ware maintenance policies [4], and compare them. Considering maintenance 

for a computing system from the viewpoint of software error detection, we 

present the following model. 

A hardware system is composed of two units. The system can function if 

only one of the two units functions . Each unit is assumed to be repairable, 

and the constant failure rates and maintenance rates for each unit are as-

sumed to be Aa and /La, respectively. 

vVe assume that any software error causes the systern down, and that 

there are N software errors latent at the installation of the software system. 

The detection time of each software error is assumed to be exponentially 

distributed and its detection rate is also constant and proportional to the 

remaining number of errors (see Jelinski and lvIoranda [10]). Let As and 

/J,s be the detection and maintenance rate for each software error. It is 
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assumed that there is a single repair or maintenance facility. Here a repair 

or maintenance is assumed perfect. All the states of the system are defined 

as follows. 

State On A system starts operating. 

State In A hardware failure of a unit takes place and its repair starts. 

State 2n : Through state In, a hardware failure of the remaining unit takes 

place (system down). 

State 3n : Through state On, a software error takes place (system down). 

State 4n : Through state In, a software error takes place (system down). 

Here n denotes the number of remaining error at that time: where n = 

0,1"" ,N. 

We are now ready to introduce the following software maintenance poli

cies through state 4n . 

Modell: After the repair completion of hardware, the software mainte

nance starts. 

Model 2 : The software maintenance starts even if the repair of hard ware is 

interrupted; the interrupted hardware repair restarts after the software 

error rnaintenance completion. 
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From the above definitions, for Model 1 the process can move to state 3n 

from state 4n , and for Model 2 the process can move to state In-l from state 

4n . The state transition diagram is shown in Fig. 5.5. 

I 

I~ 

~A,2~ 
As J.1s " 

--- Modell ---- Model 2 

Figure 5.5: The state transition diagram for each model. 

vVe can obtain the instantaneous availability Av(t) as follows: 

N 

Av(t) = IJPOk(t) + P1k(t)] (5.30) 
k=O 

where POk (t) or P1k (t) is the state probability at time t. 

Specifying all the parameters, we can numerically calculate the instan-

taneous availability Av(t) . Let JV = 10 , As = 0.02, /-Ls = 0.05 , Ao = 0.05 , 
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and /10 = 0.025. Since ts for Modell is 1003 and ts for Model 2 is 871 by 

our software package tool, we should calculate the transient probabilities for 

o ::; t ::; 1000. 

Figure 5.6 shows the availability Av (t). Just after the installation, the 

availability is settling, and attains the minima 0.54 and 0.67 for Models 1 

and 2, respectively. It is obvious that the availability of Model 2 is better 

and approaches stability faster than that of Model l. 

o 

Model 2 

~ I 

I 
ts for Model 2 

100 200 

Model 1. 

300 400 
I 

500 600 
I I 
700 800 

Figure 5.6: The behavior of Av(t) [or each model. 
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5.4 Concluding Remarks 

In this chapter, we have discussed the randomization technique for calcu

lating the transient solutions as well as the steady-state probability for a 

continuous-time Markov chain. Two models of maintenance policies for a 

computing systern are presented by applying our software package tool. Our 

software package tool is useful in a case where the Markovian model for a 

computing system has many states such as two examples above. In particu

lar , the convergence time ts is of great importance to calculate the transient 

probability solutions in practice. Our analytical results for convergence time 

is of great use for analyzing such a computing system, since it is difficult to 

identify when the transient solution converges to the steady-state solution 

in advance. Our software package tool implemented the analytical results 

on convergence time is of great use to calculate reliability/performance mea

sures for a computing system in practice. 
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Chapter 6 

Conclusion 

This dissertation has been discussed configuration and recovery techniques 

for fault-tolerant computing systems. We have presented stochastic models 

for the techniques to evaluate performance and/or reliability, and discussed 

a numerical calculation method for reliability evaluation. 

In Chapter 2, database recovery has been discussed. First, a model 

evaluating the recovery mechanism has been presented in order to treat the 

changing of a failure rate of the system with time. In this model, one cycle 

has been described as the interval from the start of the system operation to 

the completion of recovery action after the failure. Impacts of checkpoint 

intervals on the availability for one cycle has been estimated analytically or 

numerically. Secondly, a model evaluating the recovery mechanism has been 

presented in the situation where the road of the system varies with time 

in a shape of' a cycle. The density of checkpoint generations, measured in 

unit of update pages, has been derived so as to minimize the expected total 
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overhead to completion of a phase. 

In Chapter 3, we have been discussed a model for evaluating the improve

ment on reliability by retries. This model has assumed to manage the system 

maintenance with prescribed number of successful retries, taking account of 

the behavior of intermittent and permanent failures. The availability and 

the mean time between failures in the steady-state, and the availability in 

the transient-state have been evaluated analytically and numerically. 

In Chapter 4, we have discussed multi-processor systems which have been 

assumed to be composed of two processors and buffer(s). Two models have 

been proposed from the viewpoint of transaction assignment, and have been 

compared using the reliability/performance measures. 

Finally, Chapter 5 has discussed a reliability evaluation software package 

tool for a system formulated by a continuous-time Markov chain with many 

states. The randomization technique, which calculates a transient solution 

for the Markov chain, has been used to develop the software package tool. 

We have further introduced a new idea of identifying when the transient 

solution converges to the steady-state solution in advance. Two examples of 

maintenance models for a compu ter system have been shown by our software 

package tool. 

The main contributions obtained in the dissertation are shown as follows: 

(1) A new formula of the system availability for evaluating a database re

covery mechanisrn is derived in the situation where the failure rate of 
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the system changes with time. Moreover, assuming a constant failure 

rate, a formula of the optimum checkpoint interval for a database re-

covery mechanism is derived as a generalized version of the one for 

a endless job processing. Numerical examples of these formulae ex

plain that the rnean time to the failure is the dominatinCT cause of the o 

optimum checkpoint interval more than the shape of the failure rate 

variation. 

(2) In the situation where load of the database system changes with time, 

a new model is proposed for determining the sequence of checkpoint 

generations measured in unit of update pages so as to minimize the 

expected total overhead. \Vhile the previous works discussing such 

situations have presented the algorithms with enormous calculation, an 

analytically efficient result obtained here yields the optimum sequence 

relati vely easily. 

(3) A maintenance policy for a computer system is presented, which re

moves intermittent failures with prescribed number of successful re-

tries. This model enables us to evaluate the reliability in the transient-

state as well as the steady-state. 

(4) The impacts of transaction assignment on reliabili ty /performance eval

uation of multi-processor systems are examined. The analytical and 

numerical results imply that when the storage capacit:y of the buffer 
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is small , the uniform assignment is better than the random assign

ment , and, conversely, when the storage capacity is large, the random 

assignment is better than the uniforrn assignment. 

(5) A new idea is presented to identify when the transient solution of a 

continuous-time Markov chain converges to the steady-state solution 

in advance. Once the initial state probability vector and the infinites

imal generator of the Markov chain are specified , we can calculate the 

convergence time ts , and can restrict the calculation for the transient 

solution 7r(t) to the range of 0 ~ t ~ ts. 

Most results derived in this dissertation are analytical results. Thus, 

we can numerically evaluate the models relatively easily, specifying each 

parameter of the results. In the numerical illustrations of this dissertation, 

we have discussed the mean time to the failure, the mean overhead time for 

the maintenance, and so on, based on the results in the References [3, 10] of 

Chapter 1. 

Generally, in a mathematical modeling, including a stochastic modeling, 

various restrictions are imposed on composing a model, comparing with 

a simulation modeling. However, once the modeling can be implemented, 

a mathematical modeling rather becomes an advantage of a computation 

treatment: a sensitivity test, and so on. 

Vie finally shows the future research works concerned with the configura-
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tion and recovery techniques for fault-tolerant computing systems as follows: 

• Fuzzy checkpoints or other advanced checkpoints for a database recov

ery mechanism (Reference [2] of Chapter 2) should be also discussed, 

which we have not treated. Adoption of these checkpoints will grad

ually increase in the actual systems, since they have the advantage of 

low overhead during normal operations . 

• An e\'aluation model for a recovery mechanism in a distributed sys

tem: in which their databases are brought to consistent states after the 

failure (Reference [25] of Chapter 1), should be examined. Our mod

els in this dissertation have focused the attention on an independent 

database. 

• The failure modes of the intermittent failures should be further studied. 

In particular, we have not obtained the reasonable description for the 

situation where an intermittent failure turns into a permanent failure. 

• Two models for two unit multi-processor systems presented in this 

dissertation may be the first stages of modeling for generalized multi

processor systems, that is, a tightly coupled multi-processor system and 

a loosely coupled multi-processor system. These systems could be ex

arnined by sorne evaluation technique for reliability/performance. 

• Some approach for a Lota! system modeling is expected to develop, 
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which can take account of some or all configuration and recovery 

techniques, fault detection techniques, diagnosis techniques, simulta

neously. 

These works seem to involve many problems to be solved. In particular, 

the evaluation for a recovery mechanism in a distributed database system 

is presumed to yield very complicated models , since the system has a net

work which causes the delay and/or interrupt of the data communication. 

The first approach for the above works will be a simplified description of 

each system component, and selections of the dominating components of 

the evaluation measures in construction of the models. 
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