
STUDIES ON

CONFIG URA TION AND RECOVERY TECHNIQUES

FOR

FAULT-TOLERANT COMPUTING SYSTEMS

January 1992

Satoshi Fukumoto

STUDIES ON

CONFIGURATION AND RECOVERY TECHNIQUES

FOR

FAULT-TOLERANT COMPUTING SYSTEMS

Satoshi Fukumoto

January 1992

STUDIES ON

CONFIGURATION AND RECOVERY TECHNIQUES

FOR

FAULT-TOLERANT COMPUTING SYSTEMS

Satoshi Fukumoto

January 1992

Dissertation submitted to the Faculty of Systems Engineering, Doctoral

Course of the Graduate School of Engineering, Hiroshima University, in par­

tial fulfillment of the requirements for the degree of Doctor of Philosophy

(Engineering) .

Copyrighted

by

Satoshi Fukumoto

1992

ABSTRACT

It is of great importance to operate a computer system with high reliability.

Several techniques to achieve the high reliability of a computer system have

been proposed and implemented in the real computer systems. This dis­

sertation discusses configuration and recovery techniques for fault-tolerant

computing systems, for which stochastic models are presented to evaluate

performance and/or reliability. Chapter 1 gives introduction for configura­

tion and recovery techniques based on the concept of redundancy. Chapter 2

presents two l1!odels for evaluating database recovery mechanisms. The first

model discusses the recovery mechanism with periodical checkpoint gener­

ations. The second model further discusses the recovery rnechanism in the

situation where the road of the system varies with time in a shape of a cy­

cle. Chapter 3 presents a model for evaluating the improvement on system

reliability by retries based on time redundancy. In Chapter 4, two models

for multi-processor systems are proposed from the viewpoint of transaction

assignment, and are compared using the reliability /perforrnance measures.

Qhapter 5 discusses a reliability evaluation software package tool for a system

formulated by a continuous-time Markov chain with many states. Finally,

Chapter 6 summarizes the results obtained in the dissertation, and discusses

the further research works on configuration and recovery techniques .

Vll

ACKNOWLEDGEMENTS

The author would like to express his thanks to Professor Shunji Osaki for

his continuing support, encouragement and guidance for this dissertation.

The author wishes to thank the members of the dissertation reviewin(j o

committee: Professor Noriyoshi Yoshida, Professor Mitsuo Nagamachi, and

Professor :Vlasatoshi Sakawa for their careful review of this dissertation.

The author is also grateful to Associate Professor Shigeru Yamada and

Research Associate Dr. Hiroaki Tanaka of Hiroshima University for their

continuing encouragement and useful discussions. The author has also re-

ceived invaluable cooperation and suggestions from many individuals during

the course of this work. In particular, the author wishes to thank Associate

Professor Naoto Kaio of Hiroshima Shudo University, Mr. Hideshi Ohshimo

of Nishikawa Rubber Co., Ltd., and Associate Professor Kazumi Yasui of

Aichi Institute of Technology.

Finally, it is a special pleasure to acknowledge the hospitality and encour-

agement of the past and present members of Professor Osaki's Laboratory.

lX

Contents

Abstract Vll

Acknow ledgements IX

Contents xi

List of Figures xv

List of Tables XIX

1 Introduction 1

1.1 Configuration and Recovery Techniques for Fault-·Tolerance . 1

1.2 Organization of Dissertation 7

References 9

2 Evaluation for Database Recovery Mechanisms 15

2.1 A Recovery Mechanism with Periodical Checkpoint Generations 15

2.1.1 Introduction.... 15

Xl

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

Recovery Mechanisms and Checkpoints

Model for a Recovery Mechanism

Analysis

Numerical Illustrations

Concluding Remarks .

18

22

23

29

33

2.2 Checkpoint Generations in a Time Varying Load Situation 37

2.2.1 Introduction............ 37

2.2.2 Model for a Recovery Mechanism 42

2.2.3 Analysis........ 44

2.2.4 Numerical Illustrations 48

2.2.5 Concludi,ng Remarks

References

3 Effects of Time Redundancy by Retries

3.1 Introduction..........

3.2 Model for a Retry Procedure.

3.3 Analysis

3.4 Numerical Illustrations

3.5 Concluding Remarks

References

4 Reliability/Performance Evaluation for Multi-Processor Sys-

54

55

57

57

60

63

70

82

86

tems fron1 the Viewpoint of Transaction Assignments 89

xu

4.1 Introduction 89

4.2 Multi-Processor System Modeling 91

4.3 Modell 93

4.4 Model 2 100

4.5 Numerical Illustrations 106

4.6 Concluding Remarks 111

References 114

5 A Reliability Evaluation Software Package Tool for Markov

Models with Many States

5.1 Introduction.......

5.2 Mathematical Preliminaries

5.2.1 Randomization Technique

5.2.2 Steady-State Solution ...

5.2.3 Convergence Time of Steady-State Solutions

5.3 Applications

5.3.1 Maintenance Policies for a Computing System with

Retries

117

117

119

119

121

124

126

126

5.3.2 Maintenance Policies for a Hardware-Software System 131

5.4 Concluding Remarks

Referen ces

6 Conclusion

Xlll

135

135

139

Publications List of the Author 145

XIV

List of Figures

1.1 Recovery procedures for a system. 6

2.1 A sample function of the model for one cycle. 24

2.2 The dependence of T on A(T) for m = 0.5 and 1.0 in varying

E[X]. 31

2.3 The dependence of T on A(T) in varying /-L . 33

2.4 The dependence of T on A (T) in varying C . 34

2.5 The dependence of T on RC(T) and R(T). . 35

2.6 A sample function of transaction arrival rate for a cycle . 41

2.7 A shape of the failure rate for a cycle. 42

2.8 The illustration for the density and the sequence of checkpoint

generations for the phase 1. 51

2.9 The illustration for the density and the sequence of checkpoint

generations for the phase 2.

3.1 The state transition diagram of the computer system .

3.2 The maximized availabili ty for ¢ = 1.

xv

53

64

73

3.3 The maximized availability for ¢ = 5. 74

3.4 The maximized availability for ¢ = 20. 75

3.5 The maximized availability for ¢ = 50. 76

3.6 The maximized MTBF.. 77

3.7 The behaviors of availability Av(t) for P = 50 in varying N. 80

3.8 The behaviors of availability Av(t) for P = 90 in varying N. 81

3.9 The behaviors of availabili ty Av (t) for P = 50 in varying m. 83

3.10 The behaviors of availabili ty Av (t) for P = 90 in varying m. 84

4.1 The configuration of the mul ti-processor system. 94

4.2 The state transition diagram for Modell.

4.3 The state transition diagram for Model 2.

4.4 The dependence of the capacity of the buffer N on the C J for

95

101

A2 = O. 108

4.5 The dependence of the capacity of the buffer N on the Av for

A2 = 0.0001. .. 109

4.6 The dependence of the capacity of the buffer N on the Ac for

A2 = 0.0001. .. 110

4.7 The dependence of the capaci ty of the buffer N on the C J for

A2 = 0.0001. " 112

5.1 An illustration of how to calculate 7ft: (t). 122

XVl

5.2 The Poisson distribution and the discrete-time ?vlarkov chain

at time ts. 127

5.3 The state transition diagram of the computer system. 129

5.4 The behavior of Av(t) for each N. 130

5.5 The state transition diagram for each model . 133

5.6 The behavior of Av (t) for each model. . 134

XVll

List of Tables

1.1 A classification of typical redundant techniques . 5

2.1 T* and A(T*) for each parameter in Fig. 2.2 .. 31

2.2 The sequences of checkpoint generations for the phase 1. 50

2.3 The sequences of checkpoint generations for the phase 2. 52

2.4 The expected total overheads to completion of phases . . 54

3.1 The optimum number of successful retries maximizing the

availability for ¢ = l. 72

3.2 The optimum number of successful retries ma..'(imizing the

availability for ¢ = 5. 72

3.3 The optimum number of successful retries maximizing the

availability for ¢ = 20. 72

3.4 The optimum number of successful retries maximizing the

avai lability for ¢ = 50. 72

3.5 The optimum number of successful retries maximizing iVITBF. 78

X1X

Chapter 1

Introd uction

1.1 Configuration and Recovery 1['echniques
for Fault-Tolerance

In our daily lives we are usually using computer systems to keep our high

quali ty lives and highly social acti vi ties. Such computer systems are tele-

phone exchange systems, communication systems, banking systems, train

and/or airline seat reservation systems, and so on. Demands of applying

such computer systems has a remarkably increasing tendency following the

progress of computer hard ware and software technologies. Without such

computer systems, we cannot keep our high quality lives.

Once failure of such computer systems takes place, it might be costly,

dangerous, and might cause confusion in our society. Even now, the se-

rious crisis is facing us. To achieve the high reliability of such cornputer

systems, we should propose and implement the highly reliability techniques

1

for computer systems from the viewpoint of hardware and software. The

main objective of this dissertation is to introduce and evaluate such high

reliability and/or performance techniques for computer systems.

vVe have two approaches for improving the reliability of the system, which

are called fault-avoidance and fault-tolerance [1, 2]. Fault-avoidance is a

technique which decreases the possibility of fault occurrence. Adoption of

the high-reliable components is a typical example for such a technique. On

the other hand, fault-tolerance is a technique by which the system tries to

tolerate the faults, considering that a fault can not be completely prevented.

There are three principal stages in fault-tolerant techniques [1, 2] : error

detection and correction, configuration and recovery, and, diagnosis and

repaIr.

This dissertation concentrates our interest on configuration and recovery

techniques in fault-tolerant computing systems [11, 12], for which we intro­

duce stochastic models to evaluate performance and/or reliability [13-20] .

It is of great importance for system design, operation and maintenance, to

evaluate the reliability and/or performance qualitatively and/or quantita­

tively.

A system configuration technique and a recovery technique have a closely

mutual relation, and are realized by the concept of redundancy. vVe can clas­

sify redundancies into three types from the viewpoint of their actualization

methods [1; 2] as follows :

2

Hardware redundancy: The system has additional redundant hardware

modules or redundant information.

Software redundancy: The system has additional redundant software mod­

ules including the software which controls hardware redundancy and

time redundancy.

Time redundancy: The system spends redundant time.

We can also classify redundancies into two types from the viewpoint of their

principles [1, 2] as follows :

Masking redundancy: Faults are masked by fixed redundant configura­

tions; and are not recognized by the outside. This redundancy is also

called static redundancy.

Dynamic redundancy: Errors caused by faults are detected, and the re­

covery procedures are executed .

A classification of the typical redundant techniques is shown in Table 1.1.

Redundancy by error correcting codes is the first-step of fault masking and,

is also called an information redundant technique [1, 2]. T~1R (Triple Mod­

ular Redundancy) has three equivalent hardware modules and decides the

output by a majority vote of them [1, 2, 19] . On the other hand, standby

redundancy and graceful degradation are the techniques which execute the

reconfiguration of system component by redundant hardware modules. In

3

standby redundancy, redundant modules are used for replacement of failed

rn.odules [1, 19]. Graceful degradation uses even the redundant modules in

normal operation, and separates failed modules on the occurrence of the

failure [19, 21, 22]. Similarly, N-version programming and recovery blocks

have multi-version software modules, and use the redundancy for a majority

vote and replacement, respectively [1, 13]. The rollback is a fundamental

procedure for a recovery action [1, 2]. If a failure spoils the the system states,

the consistent states which are called checkpoints and have been collected

in a safe place at prespecified time points, are reintroduced to the system

[23-25]. The retry is a technique which attempts repeatedly the same action

interrupted by a failure to recover from a transient or intermittent failure

[26,27].

Based on the redundancies above, when a fault takes place, the system

carries out the recovery procedures as shown in Fig. 1.1 [1) 2] so as to restore

the correct states and restart the normal operation.

The dissertation studies the following four themes concerned with the

above configuration and recovery techniques; Database Recovery, Retry pro­

cedure, Nlulti-processor systems (Gracefully degrading systems), Software

package tool for reliability evaluation.

Table 1.1: A classification of typical redundant techniques.

------ Masking Redundancy Dynarnic Redundancy

Error Correcting Code

Hardware
TMRCTriple Modular Stand by Redundancy Redundancy

Redundancy)

Graceful Degradation

Software
N-Version Programming Recovery Blocks

Redundancy
Rollback

Time
Retry Redundancy

5

Normal Operation

Fault -~~~- Fault Masking - ___ ~---l

t
Fault Detection

t
Retry

t
Reconfiguration

t
Recovery Processing

t t
System Down Graceful Degradation

t t
Diagnosis and Repair

Figure 1.1: Recovery procedures for a system.

6

1.2 Organization of Dissertation

In this section, we summarize the dissertation. The dissertation is organized

by Introduction, Chapter 2-5, and Conclusion.

Chapter 2 discusses database recovery techniques [23; 24] . Two models

are presented for evaluating the recovery mechanisms. The first model eval­

uates the recovery mechanism with periodical checkpoint generations [24].

The expected recovery time and the availability for one cycle are derived un­

der the assumption of an arbitrary failure-time distribution. In particular,

we analytically obtain the optimum checkpoint interval with the maximum

availability in the case of an exponential distribution. vVe numerically calcu­

late the above results by assuming vVeibull distributions . VVe further discuss

the numerical results in varying the parameters that we define in our model,

and show the impact of these parameters on the recovery mechanism. The

second model discusses the recovery mechanism with checkpoint generations

in a varying load situation. The density of checkpoint generations is analyt­

ically derived from minimizing the expected total overhead to completion of

a phase, and this density yields the optimum sequence of checkpoint gener­

ations measured in unit of update pages . We further present the numerical

examples for the results obtained and show that the sequence gives effective

checkpoint generations.

Chapter 3 presents a rnodel for evaluating the improvernent on reliability

7

bv retries based on time redundancy [1, 2, 26]. Taking account of the behav-
"

ior of intermittent and permanent failures [27], we consider the evaluation

model which manages the system maintenance with the prescribed number

of successful retries. Analysis of the model, by applying the Markov renewal

processes [28], yields the availability and the mean time between failures in

the steady-state. vVe further describe a calculation method for the availabil-

ity in the transient-state introducing continuous time NIarkov chains and

a randomization technique [29, 30]. Numerical illustrations for the results

above shows the several important properties of retry procedures .

Chapter 4 discusses a multi-processor system which is one of the typical

fault-tolerant computing systems; and is also called A Gracefully Degrading

System from its redundant technique [I, 2,19]. The system is assumed to be

composed of two processors and buffer(s), and is evaluated taking account

of the reliability, performance and computational demands simultaneously.

vVe propose two models for the system from the viewpoint of transaction

assignment. Applying Markov renewal [28] and queuing theories [31], we

obtain the reliability/performance measures for each model. Using the nu­

merical results of our models, we compare two models and show the impact

of transaction assignment on the evaluation measures based on our numerical

examples.

In Chapter 5, we discuss a reliability evaluation software package tool for

a system formulated by a continuous-time Markov chain with many states.

8

The randomization technique [29, 30] is discussed to derive the transient

solution for the Markov chain. The software package tool is implemented by

using the randomization technique and introducing a new idea of identifying

when the transient solution converges to the steady-state solution in advance.

Numerical examples are illustrated by using our software package tool to

evaluate the optimal maintenance policies for computing systems. Some

interesting maintenance policies for compute systems are suggested from

the numerical examples.

The conclusion summarizes the results obtained in the dissertation . Fi­

nally, discussion of the future research works on configuration and recovery

techniques concludes the dissertation.

References

[1] D. P. Siewiorek and R. S. Swarz (eds.): The Theory and Practice of

Reliable System Design, Digital Press, Bedford, Massachusetts (1982).

[2] lVI. lVlukaidono (ed .): Introduction to Highly Reliable Techniques for

Computer Systems, Japanese Standards Association, Tokyo (1988) (in

Japanese).

[3] Reliabili ty Center for Electronic Components of Japan: The Report of

Research Studies on Highly Reliable System Techniques (Electronic Ap­

plication Systems) fOT the 57th Fiscal YeaT of Showa; Reli ability Center

9

for Electronic Components, Tokyo (1983) (in Japanese).

[4] Japan Information Processing Development Center: The Report of Re­

search Studies on Highly Reliable System Techniques (Electronic Appli­

cation Systems) for the 58th Fiscal Year of Showa, Japan Information

Processing Development Center (1984) (in Japanese).

[5] Japan Information Processing Development Center: The Report of Re­

search Studies on Highly Reliable System Techniques (Electronic Appli­

cation Systems) for the 59th Fiscal Year of Showa, Japan Information

Processing Development Center, Tokyo (1985) (in Japanese) .

[6] Japanese Standards Association: The Report of Research Studies on

Highly Reliable System Techniques (Electronic Application Systems)

for the 60th Fiscal Year of Showa, Japanese Standards Association,

Tokyo (1986) (in Japanese).

[7] Japanese Standards Association: The Report of Research Studies on

Highly Reliable System Techniques (Electronic Application Systems)

for the 61th Fiscal Year of Showa, Japanese Standards Association,

Tokyo (1987) (in Japanese) .

[8] Japanese Standards Association: The Report of Research Studies on

Highly Reliable System Techniques (Electronic Application Systems)

10

for the 62th Fiscal Year of Showa, Japanese Standards Association,

Tokyo (1988) (in Japanese).

[9] Japanese Standards Association: The Report of Research Studies on

Highly Reliable System Techniques (Electronic Application Systems)

for the 63th Fiscal Year of Showa, Japanese Standards Association,

Tokyo (1989) (in Japanese).

[10] Japanese Standards Association: The Report of Research Studies on

Highly Reliable System Techniques (Electronic Application Systems)

for the First Fiscal Year of Ii eisei, Japanese Standards Association,

Tokyo (1990) (in Japanese) .

[11] A. Avizienis: "Fault-Tolerant System", IEEE Trans. Comput., Vol.

C-25, ~o. 12, pp. 1304-1311 (1976).

[12] A. Avizienis and J. C. Laprie: ':Dependable computing: From concepts

to design diversiti', Proc. IEEE} Vol. 74, No.5, pp. 629-638 (1988) .

[13] A. Avizienis, H. Kopetz and J. C. Laprie (eds.): The Evolution of

Fault- Tolerant Computing, Springer-Verlag, Wien (1988).

[14] A. Costes, C. Landrault and J. C. Laprie: "Reliability and A \·ailability

Models for Maintained Systems Featuring Hardware Failure and De­

sign Faults", IEEE Trans. Comput., Vol. C-27, No.6, pp. 548-560

(1978).

11

[15] Y. W. Ng and A. Avizienis: "A Unified Reliability Model for Fault­

Tolerant Computers", IEEE Trans. Comput., Vol C-29, No. 11, pp.

1002-1011 (1980).

[16] S. Osaki and T. Nishio: Reliability Evaluation of Some Fault- Tolerant

Computer Architectures, Springer-Verlag, Berlin (1980).

[17] [v1. D. Beaudry: "Performance-Related Reliability Measures for Com­

puting Systems", IEEE Trans. Comput., Vol. C-27, No.6, pp. 540-

547 (1978).

[18] J. F. Nleyer : "On Evaluating the Performability of Degradable Com­

puting Systems", IEEE Trans. Comput., Vol. C-29, No.8, pp . 720-

731 (1980).

[19] S. Osaki: ::Performance/Reliability Measures for Fault-Tolerant Com­

puting Systems", IEEE Trans . Reliab ., Vol. R-33, No.4, pp. 268-271

(1984).

[20] M. Nakamura and S. Osaki: "Performance/Reliability Evaluation of a

Nlulti-Processor System with Computational Demands," Int. J. Sys­

tem Sci., Vol. 15, No.1, pp. 95-105 (1984).

[21] F. A. Gay and M. L. Ketelsen: "Performance Evaluation for Gracefully

Degrading Systems", in Proc. 9th FTCS, Nladison, vVisconsin, pp. 51-

58 (1979).

12

[22] T . \"akagawa and S. Osaki: "Stochastic Behavior of a Two-Gnit Standby

Redundant System", I1VFOR, Vol. 12, No . 1, pp. 66-77 (1974).

[23] J. M. Verhofstadt: "Recovery Techniques for Database Systems", ACM

Comput. Surv., Vol. 10, 1 o. 2, pp. 167-196 (1978).

[24] T. Haerder and A. Reuter: "Principles of Transaction-Oriented Database

Recovery" , ACM Comput. Surv., Vol. 15, No.4, pp . 287-317 (1983).

[25] R. Koo and S. Toueg: ::Checkpointing and Rollback-Recovery for Dis­

tributed Systems':, IEEE Trans . So/two Eng., Vol. SE-13, No. 1, pp.

23-31 (1987).

[26] H. Inose (ed.): Reliable Computer Systems, IPS Japan, Tokyo (1977)

(in Japanese).

[27] Y. K. Malaiya: "Linearly Correlated Intermittent Failures", IEEE

Trans. Reliab ., Vol. R-31, No. 2, pp. 211-215 (1982).

[28] T . Nakagawa and S. Osaki : "Markov Renewal Processes with Some

Non-Regeneration Points and Their Applications to Reliability The­

ory", Nlicroelectron . Reliab ., Vol . 15, pp. 633-636 (1976).

[29] D. Gross and D. R. Miller: "The Randomization Technique as a Mod­

eling Tool and Solution Procedure for Transient Markov Processes",

Oper. Res., Vol. 32, No . 2, pp. 343-361 (1984).

13

[30] E. D. S. Silva and H. R. Gail: "Calculating Availability and Performa­

bility ?v1easures of Repairable Computer Systems Using Randomiza­

tion", J. ACM, Vol. 36, No.1, pp. 171-193 (1989).

[31] L. Kleinlock: Queueing Systems; Volume I: Theory, John vViley and

Sons, New York (1975).

14

Chapter 2

Evaluation for Database
Recovery Mechanisms

This chapter discusses database recovery techniques. T\vo models are pre-

sented for evaluating the recovery mechanisms. First, we describe a model

in order to treat the changing of a failure rate of the system with time.

Secondly, we develop a model in the situation where the road of the system

varies with time in a shape of a cycle.

2.1 A Recovery Mechanism with Periodical
Checkpoint Generations

2.1.1 Introduction

It is of great importance to recover a computer system after a system fail-

ure in order to restart the system operation. Such a recovery action is

one of the fault-tolerant technologies, and must be considered in operation

15

of all systems. However, it is particularly important in database systems

which support on-line transaction processing (OLTP) system such as bank­

ing and airline seat reservation systems. Therefore, several recovery tech­

niques are applied to the database management system (DBMS) that con­

trols the database recovery actions. Verhofstadt [1] surveyed the standard

database recovery mechanisms. Haerder and Reuter [2] introduced a frame­

work for establishing and evaluating the basic concepts for fault-tolerant

database operation. In this section, we discuss evaluation for a database

recovery action.

In general, checkpoints are used to limit the amount of the data process­

ing for the recovery action. Generating a checkpoint means that the results

of a complete transaction(s) in the database buffer are collected in a safe

place. vVhen a system failure occurs, we trace the transaction processing

back to the checkpoint instead of the starting point of the system opera­

tion, and reconstruct the logical consistency of the database which had been

constructed just before the failure.

It is very important to decide the optimum checkpoint time interval,

if periodical checkpoint generations are used, considering the influence of

the overhead during normal operations on the system performance. If we

make the interval too short, we have to incur the high overhead time for

frequent checkpoint generations, and, conversely, if we make it too long, we

have to spend much recovery time when the system failure occurs. Chandy

16

et al. [3], and Gelenbe [4] discussed the optimum checkpoint interval, by

assuming that the failures occur as a Poisson process. Sumita et al. [5]

discussed such problems by assuming a nonhomogeneous Poisson process.

In these previous works, one cycle for evaluating the recovery action is the

interval between two successive checkpoint generations, and therefore, the

completion of the checkpoint generation implies a renewal of the system in

terms of a failure rate. Since the failure rate of the system seems to be

unchanged by the checkpoint generation, it is necessary to re-examine the

situation above. Young [6] derived the optimum checkpoint interval for the

endless job processing, minimizing the time lost caused by the checkpoint

generations and recovery from the failure due to the exponential distribution .

Reuter [7] proposed a set of models that evaluate mean value of transaction

rate for comparing recovery techniques of the taxonomy in the reference [2] .

In these works, unlike the above assumption, one cycle is the interval from

the beginning of the processing to the completion of the recovery. However,

we can not use the models in case where the failure rate of the system

changes with time, e.g.) the system is in the early phase or wearout phase.

Vle discuss the study of the above problem, proposing a new model to

evaluate the database recovery action. In our model, one cycle is defined as

the interval from the start of the system operation to the completion of the

recovery action after the failure. Vie are especially interested in evaluation

for the recovery actions, under the assumption of an arbitrary failure-time

17

distribution [8]. This is of great use for various kinds of distributions, such

as decreasing failure rate (DFR) distributions in the early stage of system

operation. In the next subsection, we discuss general database recovery

mechanisms and checkpoint generations to explain the environment of the

recovery action which we evaluate in this paper. In Subsect. 2.l.3, we de­

scribe our new model based on the concepts above, introducing several as­

sumptions. In order to evaluate the recovery action, we obtain the expected

recovery time and the availability for one cycle as a function of checkpoint

interval, in Subsect. 2.1.4. vVe further derive analytically a formula of the

optimum checkpoint interval with the maximum availability, in a case where

the failure-time distribution obeys an exponential distribution, generalizing

the formula obtained by Young [6] . Finally, we numerically evaluate the re­

covery actions and the optimum checkpoint intervals from the above results

by assuming vVeibull distributions including a DFR distribution in Subsect .

2.l.5. We discuss the numerical results in varying the parameters such as

the mean time to the failure, the overhead for a checkpoint generation, etc.,

and show the impact of these parameters on the recovery action.

2.1.2 Recovery Mechanisms and Checkpoints

A design goal of the recovery mechanisrns is to be able to reconstruct the

logical consistency of the database on the occasion of a system failure. This

fact implies that once we have allowed a transaction to commi tits results

18

to the database, we must protect the effects of the transaction from any

system failure, conversely, if we have not allowed a transaction to commit

yet, we must not leave the incomplete effects of the transaction caused by

the system failure. In the former case, we call the transaction a complete

transaction, and in the latter case, an incomplete transaction.

In general, an update transaction modifies the pages in the database

buffer as required, and the modified pages will be propagated to the sec­

ondary (nonvolatile) storage of the database according to the buffer manage­

ment. When a system failure occurs, it is assumed that the database buffer

loses the information on modified pages, since the system failure forces the

system to terminate the transaction processing in an uncontrolled manner.

Therefore, we must assume that the contents of the secondary storage are

not enough to satisfy the logical consistency of the database.

The recovery action in such a si tuation consists of two operations. One

is UNDO operation, which rolls back the effects of all incomplete transac­

tions from the database, and the other is REDO operation, which reflects

the results of all complete transactions in the database. The amount of

UNDO operation depends on the number of pages which have been prop­

agated to the secondary storage before the failure even though the pages

have been modified by incomplete transactions. On the other hand, the

amount of REDO operation depends on the number of pages which were

remaining in the buffer at the time of the failure even though the pages

19

have been modified by complete transactions. These are regulated by the

buffer manager according to the capacity of the database buffer. In order

to process these operations, redundant information for each transaction is

collected in a log file which survives system failures. The log file contains

the following information: BOT (begin of transaction) records; information

for UNDO operation; information for R.EDO operation; and EOT (end of

transaction) records. Applying the inforrnation of the log file to the contents

of the secondary storage, the DBMS enables us to reconstruct the database

to be logically consistent, and restart processing normally.

However, as a worst-case assumption, i.e., if there is no propagation to

the secondary storage before the system failure, we have to process REDO

operation from the beginning of the log file. To prevent such heavy overhead,

an additional redundant method should be taken . Hence we institute the

specific provisions which are called checkpoints, and in which the results of

a complete transaction(s) are collected in a safe place such as the secondary

storage or the log file. Checkpoints are used to define and limit the amount

of REDO operation .

In particular, if checkpoint generation means that the pages modified by

a transaction are propagated to the secondary storage before the transac­

tion is recognized as a complete transaction, no REDO operation is required

in the recovery action after the system failure. Such a type of checkpoints

is called Transaction-Oriented Checkpoints (TOG) in the classification pre-

20

sented by Haerder and Reuter [2]. In this approach, however, every time

an update transaction is recognized as a complete transaction, the pages

which are modified by that transaction and remaining in the buffer must be

propagated to the secondary storage. This regulation is disadvantageous to

the propagation overhead for what we call hot spot pages which remain in

the buffer for a long time since many transactions modify these pages again

and again frequently. Although TOC is excellent in terms of REDO opera­

tion, its overhead during normal processing is too high to be used in large

applications, since the number of hot spot pages increases in proportion to

the buffer capaci ty.

In this section, we discuss the periodical checkpoint generations, in which

all modified pages in the buffer are reflected in secondary storage, in other

words, contents of the secondary storage are synchronized with the database

buffer. After the system failure, we process REDO operation from the

most recent checkpoint. In this case, we can limit the extent of REDO

operation to the checkpoint interval, that is, the time interval between two

successive checkpoint generations. Such a type of checkpoints corresponds

to Transaction-Consistent Checkpoints (TCe) or Action-Consistent Check­

points (A Ce) in the above classification [2]. TOC and fuzzy checkpoints,

which have the advantage of low overhead during normal operations [2], are

of great interest, but we do not discuss these types.

21

2.1.3 Model for a Recovery Mechanism

In this section, all results of complete transactions remaining in the database

buffer are reflected to the secondary storage periodically with the checkpoint

interval T. \Ve spend the overhead time C for a checkpoint generation, which

is independent of the checkpoint interval T. This assumption might seem

not to apply in practice, e.g., in a case where T is a short period and the

number of the modified pages are small. However, in large applications

which are the subjects of our model mainly, the assumption is justified by

the following reasons:

• After the (re)start of the normal operation, the amount of update

information in the buffer reaches to an upper bound of the capacity

within a very short term. Then, that is controlled to be constant by

the buffer manager propagating the modified pages other than hot

spot ones. \~Te can neglect the above transient term compared with

the interval T.

• The hot spot pages remaining in the buffer for a long time, contain

many updates which increase with the interval T. On the other hand,

the number of these pages is almost constant, that is, the propagation

overhead for the pages are constant independent of the interval T.

vVe assume that the time to the failure X obeys an arbitrary distribution

F(t) with a finite rnean E[X]. vVe define the survival probability F(t) ==

22

1 - F(t).

Let R(x) be the recovery function, which denotes the required time in­

terval for the recovery actions after the failure for x units of time for normal

operations. Hence, we have to spend the recovery time R[t - (k - l)(T + C)]

when the system failure takes place at time t which is in kth normal opera­

tion. If the system failure occurs during checkpoint generations, the results

of transactions processed in time interval T are lost and we have to spend

the recovery time R(T). The concrete recovery function is introduced in the

later.

'vVe define a cycle as the interval from the start of the system operation

to the completion of the recovery action after the failure . A sample function

of our model for one cycle, is depicted in Fig. 2.1.

2.1.4 Analysis

Let us derive the expected recovery time and the availability for one cycle.

In the case where the failure occurs in the kth normal operation, the

total time for the normal operations, Y, is given by Y = X - (k - l)C. In

the case where the failure occurs in the kth checkpoint generation, the total

time Y is given by Y = kT. Let E[Y I tl ::; X < t 2] be the conditional

expectation of Y given L1 ::;)(< L2, and Tk = k(T + C). \Ve obtain UTi the

23

Normal
Operation

Checkpoint
Generation

One Cycle

Time to the Failure

>l
System ;Failure

):

.,.....

Recovery
Action

.. L.-__

\. R(x))

System
Starts

Figure 2.1: A sample [unction of the model for one cycle.

24

System
Restarts

expected total time for the normal operations before the failure:

UT = f [E[Y I Tk - 1 :S X < Tk-J + T]· Pr {Tk - 1 :S X < Tk - 1 + T}
k=l

+E[Y I Tk-J + T:S X < Tk]· Pr{Tk - 1 +T:S X < Td]

ex [k-l +T [t - (k - l)C] dF(t)

= L [;k-{T < X T + T} . Pr {Tk - 1 :S X < Tk - 1 + T}
k= 1 r k-l _ < k-l

+kT· Pr {TH + T :S X < Td]

= t, [.(~~I+T[t - (k - l)C] dF(t) + kT h.~~'+T dF(t)]

= t, [f~~I+T F(t) dt + (k - 1)TF(Tk _ 1) - kTF(Tk)]

= t, [f~~'+T F(t) dt] . (2.1)

Let RUk and RSk denote the mean times required by the recovery ac-

tions when the failure occurs in the kth normal operation and in the kth

checkpoint generation, respectively. By means of recovery function R(x), we

have
r Tk-1 +T

RUk = J7 R(t - Tk - 1) dF(t); k 2:: I,
Tk-l

(2.2)

RSk = rTk R(T) dF(t); k 2:: l.
JTk-l +T

(2.3)

From the above equations, we can derive the expected recovery time RC(T)

as follows:
00

RC(T) = L[RUk + RSk]. (2.4)
k=l

25

We fur ther have the availability for one cycle A(T):

[IT

A(T) = E[X] + RC(T) , (2.5)

since the expected time for one cycle consists of the mean time to the failure

and the expected recovery time.

Let us next consider the recovery function R(x). The recovery action

after the system failure consists of UNDO operation and REDO operation.

For UN DO, which rolls back the effects of all incomplete transactions , the

log file must be scanned to the BOT record of the oldest incomplete transac-

tion. The amount of log information to process UNDO operation depends on

the number of pages which have been propagated to the secondary storage

before the failure even though the pages have been modified by incomplete

transactions. vVe can assume that the overhead for UNDO operation is

constant, i.e., the time interval between the latest checkpoint and the sys­

tem failure is independent of the degree of the above redundant information,

since transactions are recognized as a cornplete transaction one after another.

REDO operation is processed by applying the results of all complete trans­

actions, collected in the log file, to the secondary storage of the database.

The amount of data to be processed for REDO operation depends on the

time interval between the latest checkpoint and the system failure. Then we

assume the following definition for R(x):

R(x) = I.LT.X + b, (2.6)

26

which is similarly to Gelenbe [4] and Sumita et al. [5], where b represents the

overhead for U~DO operation, f-L the relative share of update transactions,

and r the ratio of the overhead for a transaction in REDO operation to the

overhead for a transaction in normal operation.

Substituting Equation (2.6) into Equation (2.4), we obtain the expected

recovery time, RC(T):

(2.7)

Equations (2 .5) and (2.7) are our new results for evaluating a recovery action

in case where the failure rate of the system changes with time.

From these results, we can evaluate RC(T) and A(T) numerically, as-

suming an appropriate distribution to F(t). vVe perform such evaluation in

Subsect. 2.1.5. However, we first examine the behavior under the assump-

tion that the time to the system failure obeys an exponential distribution

with mean 1/ A, i.e.,

(2.8)

vVe can obtain simpler forms in Equations (2 .5) and (2.7). Chandy et al.

[3], Gelenbe [4] and Young [6] also assumed Poisson failures, that is, the

time to failure obeys an exponential distribution, which has the memoryless

property. Hence we have

(2.9)

27

and

(2.10)

We can explicitly obtain Equation (2.10) which enables us to derive analyt­

ically the optimum checkpoint interval ~T* with the maximum availability

A(T*). That is, \ve can derive the non-linear equation d~A(T) = 0 for T ,

which is restated as

~(1 + bA)(eAc
- 1) + 1 - AT - e-AT = O.

fJr

Consider applying the second order series approximation

(2 .11)

(2.12)

to Equation (2.11). A truncation error remains less than I (- AT)3 /3! I in

Equation (2.12). In the ordinary case, we can expect the approximation to

be good one, since T « E[X] = 1/ A, i.e., AT « 1 as we show in the next

section. vVe can obtain T* as follows:

(2 .13)

This formula of the evaluation model for a database recovery action is a

generalized version of the model for a endless job processing presented by

Young [6]' since it coincides with that obtained by Young when fJr = 1,

b = 0 i and we apply the first order approximation to eAC .

28

2.1.5 Numerical Illustrations

In this subsection, we compute numerically the availability for one cycle,

the optimum checkpoint intervals and the overhead for the recovery action ,

obtained in the preceding section. In the following, let us take up the robust

numerical results which hold even in the case where the parameters vary in

the ordinary range.

In many applications , we are interested in the early failure period of

system operation , in which the time to the failure obeys a DFR distribution,

and the random failure period, in which the time to the failure obeys a

constant failure rate (CFR) distribution. Thus, we assume that the arbitrary

failure-time distribution is a \,veibull distribution:

(2.14)

where m and 7] are called the shape and scale parameters, respectively. The

Weibull distribution gives a reasonable description of the above periods,

since it is DFR for 0 < m < 1.0 and CFR for m = 1.0. Note that the CFR

distribution for m = 1.0 is an exponential distribution.

The system failures are principally caused by a software error of the

DBMS or an operating system, a hardware failure, an unaccustomed oper­

ation by the system operator, and so on. The frequency of the failure is

affected by the stability of the DBMS and the operational environment, and

is assumed to be several times a week , like in the Reference [2]. Evaluating

29

the early phase of the system operation, we assume that the occurrence of

the failure is a little more frequent than is generally thought.

Figure 2.2 shows the dependence of checkpoint interval T on A(T) for

m = 0.5 and l.0, where E[X] = 104 ,2.5 x 10\ 5 x 104[sec], C = 2[sec],

p, = 0.8 , r = l.5 , and b = 2[sec]. It is obvious that the critical value of

T, i.e., the optimum checkpoint interval, is yielded by means of the trade­

off between the overhead for checkpoint generations and the overhead for

recovery actions. Table 2.1 shows the optimum checkpoint interval T* and

A(T*) for each parameter in Fig. 2.2. 'We can see from these results that

there is no great difference between the value of T* or A(T*) for m = 0.5 and

that for m = l.0 , and when T increases, the decrease in A(T) for m = 0.5

is less than that of m = 1.0, in any E[X]. On the whole, the impact of

E[X] on the evaluation is greater than that of a shape of the failure time

distribution. The more E[X] increases, the more T* and A(T*) increase.

This fact shows clearly that if the systern failure is a rare event, checkpoint

generations should also be rare operations.

In the case of m = 1.0, we can use the analytical result of the for­

mula (2 .13) and obtain numerical results as T* = 183,289,408 for E[X] =

104,2.5 X 104,5 X 104
, respectively. These results show that our approximate

formula is sufficiently precise.

Let us next discuss the optimum checkpoint interval T* and A(T*) in

varying other parameters. Figure 2.3 shows the dependence of T on A(T),

30

T
1.0

500 1000 1500 2000 2500 3000

0.98

0.96
... 4

0.94
E [X J=2.SxIO ~

, , ,
"

0.92 " ,
" "- 4

ACT) E [~.J=10 "-

m

1.0

0.5

0.9

m =0.5

- - - - m =1.0

Figure 2.2 : The dependence of T on A(T) for m = 0.5 and 1.0
in varying E[X] (11 = 0.8, T = 1.5, b = 2, C = 2).

Table 2.1 : T* and A (T*) for each parameter in fig . 2.2 .

E [X]=10
4

E [X]=2.5x10
4

E[X]=5x10
4

* * * * * *
T A (T) T A (T) T A (T)

184 0.978 288 0.986 408 0.990

194 0.978 305 0.985 426 0.989

31

where m = 0.5, E[X] = 5 X 104
, j.L = 10.2,0.5,0.8 and other parameters

are the same as in Fig. 2.2. The decrease in the relative share of update

transactions, j.L, causes the decrease in the amount of REDO operations

after the system failure. Hence, the more j.L decreases, the more T* and

A(T*) increase. Figure 2.4 shows the dependence of T on A(T), where

m = 0.5, E[X] = 5 X 104
, C = 2,4,6,8,10 and other parameters are the

same as in Fig. 2.2. vVhen C increases, T* increases and A(T*) decreases .

This fact shows that the high overhead for the checkpoint generation causes

the decrease in the availability, and we should not make frequent checkpoint

generations. The value of C is dependent on how many modified pages are

kept in the buffer during the normal processing. In general, database systems

which support large applications are at a disadvantage in this respect, since

its large buffer tends to have a great nurnber of modified pages. We further

obtain numerical results in varying b, the overhead for UNDO operation,

e.g., b=O, 2, 4, 6, 8, 10. (Note that in the case of b=O, UNDO operation is

not required .) However: the difference between these resul ts is fairly small.

The overhead for UNDO operation has almost no effect upon the evaluation

of the recovery action wi th periodical checkpoint generations, since the total

quantity of UNDO operation is far less than that of REDO operation.

Determining a checkpoint interval T, we can evaluate the expected recov­

ery time RC(T), and can limit the time for the recovery actions to R(T) at

the worst. Figure 2.5 show the dependence of T on RC(T) and R(T); where

32

m = 0.5., E[X] = 5 X 104
, and other parameters are the same as Fig. 2.2.

From a practical point of view, the recovery actions may be bounded in time.

We should determine a checkpoint interval with the maximum availability

under the condition that the recovery actions must be completed within the

appointed time limit.

ACT)

l.0

0 . 98

0.96

0.94

0.92

0.9

Figure 2.3: The dependence of T on A(T) in varying f.L
(m = 0.5, E[X] = 5 x 104,r = 1.5,b = 2, C = 2).

2.1.6 Concluding Remarks

T

In this section, we have discussed the evaluation for a database recovery

action with the periodical checkpoint generations. We have proposed a new

model to evaluate the recovery action, where it is defined that one cycle

33

T
1. 0 ,....---+-----+----_+_I ----+1---+-1 --~I

500 1000 1500 2000 2500 3000

0.98

0.96

0.94

0.92

A(T)0.9

Figure 2.4: The dependence of T on A (T) in varying C
(m = 0.0 , E[X] = 0 X 104

, J1 = 0.8, r = 1.5 , b = 2).

34

•

Overhead

2000

1750

1500

1250

1000

750

500

250

o 200 400 600 800 1000 1200 1400 1600

Figure 2.5: The dependence of T on RC(T) and R(T)
(m = O.5,E[X] = 5 x lO4,M = O.8,r = 1.5,b = 2, C = 2) .

35

T

is the interval from the start of the syste:m operation to the completion of

recovery action after the failure in order to treat the changing of a failure

rate of the system with time. \Ve have obtained the expected recovery time

and the availability for one cycle, under the assumption of an arbitrary

failure-time distribution. In particular, we have shown that it is possible

to obtain analytically the optimum checkpoint interval with the maximum

availability in the case of an exponential distribution . Finally, we have

numerically obtained the optimum checkpoint interval from the above results

by assuming vVeibull distributions which include a DFR distribution and an

exponential distribution. vVe further have discussed the numerical results in

varying the parameters that we have defined in our model, and have shown

the impact of these parameters on the recovery action.

As discussed in Subsect. 2.1.5, when we actually determine the check­

point interval, an overhead for the recovery action must be considered more

seriously than an overhead for the checkpoint generations according to cir­

cumstances. For instance, an on-line banking system should be recovered

after the system failure within a fe\v minutes. If the recovery action takes

more than an appointed time limit, we should make the checkpoint interval

short so as to restrict the recovery time to the appointed time limit, even

though the checkpoint interval maximizes the availability of our model.

Demand of operational environment which support large applications,

such as OLTP, has an increasing tenden cy every year. The recovery tech-

36

niques applied to the DBMS are more and more important. In these large

systems, having large buffer capacity, the performance during the normal

operation is influenced considerably by the overhead for the checkpoint gen-

erations. Therefore, database buffer management is important to system

operation. In future, we have to study modeling of the recovery actions

taking further account of the buffer management.

2.2 Checkpoint Generations in a Time Vary­
ing Load Situation

2.2.1 Introduction

Fault tolerant techniques play an important role in the operation of a com-

puter system with high reliability. In particular, recovery mechanisms are

indispensable for reconstructing the states of the computation after the sys-

tern failure. A database system is a typical example of what seriously needs

such recovery mechanisms [1, 2]. This section discusses checkpoint genera-

tions for a recovery mechanism on large applications of database systems.

When a system failure makes update information in the database buffer

lost, the recovery action consists of two operations . One is UNDO opeTation

which rolls back the effects of all incomplete transactions from the database,

and the other is REDO opcTation which reflects the results of all complete

transactions in the database (see [2]) . In general, we execute REDO oper­

ation from the latest checkpoint instead of the starting point of the system

37

operation. Generating a checkpoint implies that the update information in

the buffer is collected in a stable secondary storage. It is important to decide

the effective checkpoint generations. If we generate checkpoints frequently,

we must incur large overhead for checkpoint generations, and conversely,

if we generate few checkpoints, we must incur large overhead for recovery

actions after the system failures. Vie should, therefore, decide checkpoint

generations considering the trade-off between the two overheads above.

Several studies of deciding checkpoint generations have been discussed,

which are the components of general recovery mechanisms including a database

recovery. Young [6] derived the optimurn checkpoint interval for the com­

putation restart after the system failure. Chandy et al. [3] and Gelenbe [4]

discussed evaluation models for database recovery and the generalized forms

of the optimum checkpoint interval maximizing the system availability or

the overhead during the normal operation. In these previous works, the

failure rate of the system is assumed to be constant. We have proposed a

model for evaluating the database recovery action in case where the failure

rate of the system changes wi th time in the previous section. vVhile these

efforts yield the optimum checkpoint interval measured in unit of time, some

models deal with the checkpoint interval measured in other quanti ty to de­

scribe the recovery mechanisms more reasonably. Reuter [7] considered the

models to evaluate the transaction throughput as a performance measure

for the database recovery mechanisms of the taxonomy in the reference [2],

38

where the checkpoint interval is measured in unit of block transfers. Toueg

and Babaoglu [9] derived an algorithm which minimizes expected execu­

tion times of tasks placing checkpoints between two consecutive tasks with

very general assumptions. Koren et al. [10] also discussed the model which

minimizes the average time per instruction as a function of the number of

instruction retries and the checkpoint interval measured in the number of

the instructions, assuming the constant failure rate.

In this section; we propose a new model to determine the checkpoint gen­

erations for the database recovery. \,ye consider that the transaction arrival

rate and the failure rate of the system vary with time. The algorithm above

derived by Toueg and Babaoglu [9] seems to give a reasonable description

of such situations. However, the dynamic programming algorithm, which

yields the optimum sequence of checkpoints, is not suitable for large appli­

cations since the number of the transactions is expected to reach a great deal

between the successive checkpoint generations. One of the primary interests

in our model is that the transaction arrival rate, i.e., the load of the system

changes with time in a shape of a cycle (e .g., a day) as an illustration of Fig.

2.6. In this case, we can see that the constant checkpoint interval measured

in unit of time is not pertinent, since the failure rate of the system and the

overhead for the recovery action obviously seems to vary with the load of

the system. Taking account of these situations the third model exhibited by

Chandy in the Reference [3] yields the problem of finding the shortest route

39

of the graph whose nodes correspond to the beginning of intervals divided

into from a cycle.

vVe derive an analytically efficient result by means of a simpler model.

Occurrence of the failure and checkpoint generations are estimated by unit

of update pages in the database buffer instead of time. We further regard

the cumulative update of pages as a continuous quantity. Assume that the

failure rate of the system (as a function of the cumulative update of pages) is

dependent on the transaction arrival rate at which the corresponding page

is updated: and the failure mode of a cycle is described as consisting of

phases, e.g., as shown in Fig. 2.7. The optimum checkpoint generations

are derived as the sequence measured in the cumulative update minimizing

the expected total overhead to completion of a phase, where the checkpoint

interval changes with the failure rate of the system.

In the following subsection, we define our new model introducing a den­

sity of checkpoint generations and several assumptions. Subsection 2.2.3

discusses the analysis of the model. The expected total overhead to com­

pletion of a phase is derived. vVe obtain the density of checkpoint gener­

ations minimizing the total overhead, which yields the optimum sequence

of checkpoint generations. ~v1oreover, the above total overhead and density

are replaced by new forms assuming concrete overhead functions. vVe next

show the results in case where the cumulative update to the system failure

obeys a \l\1eibull distribution. Subsection 2.2.4 gives numerical examples for

40

Transaction arrival rate
[Xl 0 4 transaction/hourJ

20

19

18

17

16

15

14

13

12

11

10

. 9

8

7

6

5

4

3

2

1

0
9 10 11 12 13 14 15 16 17 18

Time [hours]

Figure 2.6: A sample function of transaction arrival rate for a cycle.

41

our analyses under the assumption that the failure rate is described as the

shape of phases in Fig. 2.7.

The Failure Rate of the
System ~~/pagel /The Average Value

10

------:::::::::,---

-8
10

......---- Phase 1 - .- Phase 2-.
6 6

2xlO 10

Cumulative Update of Pages [pages]

Figure 2.7: A shape of the failure rate for a cycle.

2.2.2 Model for a Recovery Mechanism

In our model, all the pages modified by complete transactions remaining in

the buffer are reflected to the secondary storage by generating a checkpoint.

While the cumulative update of pages in the buffer is a discrete quantity

obviously, we can regard it as continuous, since we consider a great num-

ber of update pages such as thousands or tens of thousands of pages. A

42

phase we deal with completes when the cumulative update reaches to lV,

with the sth checkpoint generation. Let {nl' n2, ... ,ns-l, ns(= N)} be the

sequence of checkpoint generations, where each checkpoint is generated se-

quentially up to the cumulative update from the beginning of a phase to

nk(k = 1,2, "', s). Note that these checkpoint generations are executed

independently of real time lost by recovery actions, since the generations are

managed by unit of update pages instead of time.

'vVe introduce a density of checkpoint generations, g(n) , when the cu-

mulative update is n, which is a smooth function and denotes the number

of checkpoint generations per unit update. If we use the density g(n), the

above sequence satisfies :

rnk

k =)0 g(n)dn, (k= 1,2,···,s-1). (2 .15)

\;Ve assume that the cumulative update of pages to the system failure X

obeys the cumulative distribution function F(n) . If the reliability function

F(n) = 1 - F(n) and the probability density f(n) = dF(n)/dn , the failure

rate of the system is defined by ,(n) = f(n)/F(n). For all the failures

occurred in the checkpoint interval (nk-l, nk], (k = 1,2"," s; no = 0), we

make recovery actions from the state of kth checkpoint generation to the

consistent states which had been constructed just before those failures. We

consider that checkpoint generations and recovery actions never cause the

system failure and never change the failure rate of the system.

43

The expected total overhead to completion of a phase, L(N,g(n)), con-

sists of the overhead for checkpoint generations to completion of a phase

and the expected overhead for recovery actions to completion of a phase.

In order to derive these overheads, we introduce the overhead for the kth

checkpoint generation, Hc(nk - nk-l), and the overhead for a recovery ac-

tion, Hr (n - nl), in case X = n and the latest checkpoint generation is the

lth one.

2.2.3 Analysis

General Analysis

Let us derive the optimum sequence {ni, n;,· .. ,n;_l' ns} which mini-

mizes the expected total overhead to completion of a phase from the as-

sumptions above .

First, the overhead for checkpoint generations to completion of a phase

is obtained as follows by using the density of checkpoint generations:

(2.16)

We next deri ve the expected overhead for recovery actions to completion of

a phase. If X = n, the overhead for recovery actions between two successive

checkpoint generations is approximately given by

44

where we consider the overhead for a recovery action to be equal to the

overhead after a system failure in the middle of the checkpoint interval, in

average, similarly to Reuter [7]. This approximation can be expected to

be a good one, since we are estimating the mean value of the total over-

head. Thus, we can obtain the expected overhead for recovery actions to

completion of a phase:

(2.18)

From Equations (2.16) and (2 .18), we have the expected total overhead to

completion of a phase:

(2 .19)

We obtain the density of checkpoint generations, g(n), minimizing the

functional L(lV, g(n)). This is a problern of calculus of variations in which

9 (n) is the unknown function. Euler's equation implies

45

Applying concrete overhead [unctions HeC) and Hr C), and solving Equation

(2.20) yield the density g(n). Substituting g(n) into Equation (2.15) enables

us to derive the optimum sequence {ni,n;)··· ,n;_l,nS}'

Overhead Functions

Let us introduce concrete overhead functions to obtain the density g(n)

based on the analytical results above. In large applications of database

systems, we can assume the overhead function for a checkpoint generation

to be the simplest form:

(2.21)

that is, the overhead for a checkpoint generation is always constant and

independent of the checkpoint interval (see [2]). We further assume the

overhead function for a recovery action:

(2 .22)

where hu. is the constant overhead for UNDO operation and hr is the over-

head for REDO operation per unit update of pages corresponding to the

forms of [3] and [4]. From Equation (2.19), the expected total overhead to

completion of a phase is gi ven by

N h
L(JV,g(n)) = r [heg(n) + (o_(r) + hu.),(n)]dn.

)0 2g n
(2 .23)

We further obtain Euler's equation from Equation (2.20):

(2.24)

46

Solving Equation (2.24) with respect to g(n) yields:

g(n) = (2.25)

A Case of ~Veibull Distribution

vVe next discuss a case where the cumulative update of pages to the

system failure obeys the \t\1eibull distribution:

(2.26)

The weibull distribution is able to give a reasonable description of sev-

eral failure modes, in which the failure rates change wi th the time vari-

ables, by varying the parameters. The parameters T) and m are called

the scale and shape parameters, respectively. vVe have F(n) = e-CT]n)Tn,

f(n) = mT)mnm-le-CT]n)"' and ,(n) = mT)mnm- l.

From Equation (2.25), the density of checkpoint generations is given by

g(n) =
hrmT)mnm-l

2hc
(2.27)

Moreover, substituting g(n) from Equation (2 .27) into Equation (2 .23) yields

the expected total overhead to completion of a phase:

L(JY, g(n)) = 2y'2hchrmT)m NTntl + hu(T)N)m.
m+ 1

(2 .28)

From Equations (2.15) and (2.27) , we can explicitly obtain the optimum

sequence as follows:

(k=1,2 , ···,s-1). (2.29)

47

vVe can see that the interval between checkpoint generations increases with

the cumulative update for 0 < m < 1 and decreases for 1 < m. In particular,

in case of m = 1, F(n) is an exponential distribution. vVe have the constant

intervals between checkpoint generations:

(k == 1 2 ... s - 1) '" , (2.30)

which coincides with the formula obtained by Young [6] when we regard n

as the time variable and hr = 1.

2.2.4 Numerical Illustrations

Let us numerically compute the sequence of checkpoint generations by as­

suming the phases as shown in Fig. 2.7. If the failure rate ,(n) is described

as the function of the first degree, i.e., ,(n) = vn+w, the optimum sequence

of checkpoint generations is given by

* 1 [3v /f:hc k .;!] ~ w (k = 1 2 ... s - 1) nk = - - -h . + W 2 - -, '" ,
v 2 r v

(2.31)

from Equations (2.15) and (2.25). We further have the expected total over­

head from Equation (2.23) as follows:

2.J2hchr { 3 3 } v
L(N, g(n)) = 3v (vN + W)2 - W2 + hU(2N2 + wlV). (2 .32)

Let {n'l; n;, . . . ,n~_l' ns} be the sequence of checkpoint generations in

case where the constant failure rate T/c, that is the average value of the

failure rate of Fig. 2.7, is used instead of the fai lure rate of the phase

48

1 or the phase 2 to obtain the density g(n). Table 2.2 shows the op­

timum sequence {ni, n;, ... , n;_l, ns} for the phase 1, and the sequence

{nll,n;,···:n~_l,nS}, where v =(10- 6 -10-7)/(2 x 106), W = 10-7,N =

2 x 106,he = 5[sec], hr = O. 1 [sec] and hu = 5[sec]. Figure 2.8 illustrates

the relation between the sequence and the density of checkpoint generations

g(n). Table 2.3 and Fig. 2.9 similarly show the results for the phase 2,

where v = (10- 8
- 10-6

) /10 6
, W = 10-6

, N = 106 and the other parameters

are the same as in Table 2.2. Note that the checkpoint interval is decreasing

with the cumulative update in case of the phase 1, since the failure rate is

increasing. Conversely: the interval is increasing wi th the cumulati ve update

in case of the phase 2, since the failure rate is decreasing.

vVe next discuss comparisons between the expected total overhead by

the optimum sequence {ni, n;, ... , n;_l' ns} and the one by the sequence

{n~, n;, ... : n~_l' ns} assuming the failure rate is described as the phase 1

or the phase 2. Let Lp denote the expected total overhead by the optimum

sequence which is obtained by Equation (2.32) . Furthermore, let Le denote

the expected total overhead by the sequence {n'l' n;, ... , n~_l : ns}. We can

obtain Le from Equation (2 .19) in which g(n) is derived by the constant

fail ure rate above al though ,(n) is the failure rate of the phase 1 or the

phase 2. Table 2.4 shows the gain of Lp to Le) ((Le - Lp)/ Le) x 100[%],

for the phase 1 and the phase 2) where all parameters are the same as in

Tables 2.2 and 2.3, and the average value of the failure rate is calculated as

49

Table 2.2: The sequences of checkpoint generations for the phase 1.

k

1

2
3
4

140
141
142
143
144

nk* nk
4

[xIO pages]

3.05

5.94
8.68

11.31

196.52
197.52
198.53
199.53
200.00

50

1.36

2.73
4.10
5.46

191.40
192.77
194.13
195.50
200.00

g(n) [l/page]

0.0001

0.00008

• • • • • • 0.00006

0.00004

0.00002

0 . 0
. .. *

n140 20 . 0
5

n [xlO page]

Figure 2.8: The illustration for the density and the sequence of checkpoint
generations for the phase 1.

51

Table 2.3: The sequences of checkpoint generations for the phase 2.

k

1

2
3
4

64
65
66
67
68

nk*
,

nk
4

[Xl 0 pages]

1.00

2.01
3.02
4.04

87.37
90.25
93.59
98.03

100.00

52

1.36

2.73
4.10
5.46

87.49
88.86
90.23
91.60

100.00

g(n) [l/page]

O . OOOlTlII~I!~~~ __ _

0.00008

0 .000 06

0 .00 004

0 .00002

• • • • • •

10 . 0
5 n [X10 page]

Figure 2.9: The illustration for the density and the sequence of checkpoint
generations for the phase 2.

53

'TIc = 5.35 X 10-7
. It is evident that checkpoint generations by the optimum

sequence is more effective than the other in either case. This fact implies that

the sequence of checkpoint generations, varying its interval with the failure

rate of the system, gives a reasonable strategy of the database recovery

mechanism.

Table 2.4: The expected total overheads to completion of phases.

Phase 1

Phase 2

L p [sec]

1440

675

L c [sec]

1488

713

2.2.5 Concluding Remarks

3.3

5.6

In this section, we have discussed checkpoint generations for a database re­

covery mechanism. The expected total overhead to completion of a phase

has been presented. The density of checkpoint generations has been ana­

lytically derived minimizing the total overhead, which yields the optimum

sequence of checkpoint generations measured in unit of update pages. Fi­

nally, numerical examples for the results have been given in case where the

failure rate of a phase is described as a linear shape.

The results presented in this paper are the analytical ones . Applying

the appropriate failure rate and the parameters enable us to calculate the

54

optimum sequence relati vely easily. We can see that the sequence obtained is

of great use for various kinds of failure modes and gives reasonable strategy

for checkpoint generations as discussed by the numerical examples above.

References

[1] J. M. Verhofstadt: <'Recovery Techniques for Database Systems", ACM

Comput. Surv., Vol. 10, No.2, pp. 167-196 (1978).

[2] T. Haerder and A. Reuter: "Principles of Transaction-Oriented Database

Recovery", ACM Comput. Surv., Vol. 15, No.4, pp. 287-317 (1983).

[3] K. 1v1. Chandy, J. C. Browne, C. \lV. Dissly and W. R. Uhrig: "Analytic

Models for Rollback and Recovery Strategies in Data Base Systems",

IEEE Trans . Softw. Eng., Vol. SE-1, No.1, pp. 100-110 (1975).

[4] E. Gelenbe: "On the Optimum Checkpoint Interval", 1. ACM, Vol. 26,

No.2, pp. 259-270 (1979).

[5] U. Sumita, N. Kaio and P. B. Goes: "Analysis of Effective Service Time

with Age Dependent Interruptions and Its Application to Rollback

Policy for Database ~1anagement", Queueing Systems, 1\0. 4, pp. 193-

212 (1989).

[6] J. vV. Young: :'A First Order Approximation to the Optimum Check­

point Interval " , Comm. A Clvl, Vol. 17, No.9, pp. 530-531 (1974).

55

[7] A. Reuter: ':Performance Analysis of Recovery Techniques': , A G/I/! Trans.

Database Syst., Vol. 9, No.4, pp. 526-559 (1984).

[8] S. M. Ross: Applied Probability Models with Optimization Applications,

Holden-Day, San Francisco (1970).

[9] S. Toueg and O. Babaoglu: "On the Optimum Checkpoint Selection

Problem)), SIAN! J. Gomput., Vol. 13, No . 3, pp. 630-649 (1984).

[10] 1. Koren, Z. Koren and S. Y. H. Su: "Analysis of a Class of Recovery

Procedures)), IEEE Trans. Gomput., Vol. C-35, 1'\0 . 8, pp . 703-712

(1986).

56

Chapter 3

Effects of Time Redundancy
by Retries

3.1 Introduction

Fault-tolerance Jor a computer system is attained by some redundancy. We

can classify redundancies into three types: hardware redundancy; software

redundancy and time redundancy according to their actualization methods

[1]. For instance; TMR (Triple Modular Redundancy) or graceful degrada-

tion techniques are good examples of hardware redundancy. It is similarly

well-known that lV-version programming and recovery blocks are based on

the concept of software redundancy. Moreover, a typical example of time

redundancy must be given by retries for instructions or I/O operations .

Time redundancy for a computer system is more generally available than

hardware redundancy or software redundancy. In most cases; hardware re­

dundancy and software redundancy require physical and/or logical resources

57

allocated previously; e.g., processor units , alternate software modules or the

subsystems. VIe can not always install these resources since they are de­

pendent on system configuration and cause the increase of the hardware or

software cost . On the other hand , few additional resources are needed for

executing the time redundant methods.

In this chapter, we present a model for evaluating the improvement on

system reliability by retries based on time redundancy. While retry proce­

dures are incorporated into recovery mechanisms of almost all the systems

for the reason above; there are few previous works of the evaluation model­

ing for retry procedures. It is interesting and important for a system design

or maintenances to estimate the effects of time redundant techniques as well

as hardware and software redundant techniques.

Retries are principally executed for the purpose of recovery from an in­

termittent failure [1; 2, 4]. The effect of this failure is temporary, and is

caused by an error operation of electronic devices, a contact fault in a hard­

ware and so on. On the other hand, a permanent failure is continuous and

stable, and is caused by a damage of electronic devices or wiring in a hard­

ware. In the actual computer systems, intermittent failures are said to be

the most frequent failures. Thus, when a failure takes place, the repeated

actions by retry procedures are greatly useful for the first step of recovery

from the mal functional state.

Ho\vever ; even though the ret ry succeeds and the system is res tored to

58

the correct state, information of the failure state is logged out to investi­

gate the cause of the failure [2]. From the viewpoint of a n1aintenance, we

should remove the intermittent failures masked by retries, some day, since

the latent failures will bring on the same failures and may develop into the

permanent failures. An intermittent failure is more difficult to detect and re­

move than a permanent failure, as intermittent failures are not reproducible.

The maintenance is executed based on the log out information above.

The model we discuss here is concerned wi th the references [3-7]. A model

for reliability analysis of a computer system with retry has been proposed in

the reference [3], where the maintenance is carried out with the inspection

interval of T, or with the number of successful retries K. Several models

for intermittent failures have been discussed, which describe diagnosable

systems [4] and maintenance strategies [5-7].

Taking account of the behavior of intermittent and permanent failures,

we consider the evaluation model which manages the system maintenance

with the prescribed number of successful retries. When a failure takes place,

retry procedures are repeated m times at the maximum lin:lit. If no retry

succeeds within the limit, we identify the failure as a permanent failure

and remove it by the maintenance. If any retry succeeds, we identify the

failure as an intermittent failure and remove it by the maintenance after the

successful retries are observed N times.

Our main interest in this model is to discuss the reliability evaluation in

59

the transient-state as well as the steady-state. Evaluation in the steady-state

is important for a long term operation of the systems. However, evaluation

in the transient-state, such as an early phase of the system operation, is not

always coincide with the one in the steady-state.

In the next section, we define the evaluation model introducing several

assumptions. Section 3.3 analyzes the nlOdel by applying the Markov re­

newal processes [8, 9] to derive the availability and the mean time between

failures in the steady-state. \!1oreover, a calculation method for the avail­

ability in the transient-state is described by continuous-time NIarkov chains

and a randomization technique [10] . In Section 3.4, we discuss the numer­

ical illustrations such as the numbers of successful retries with which the

availabilities are maximized.

3.2 Model for a Retry Procedure

In our model, when a failure takes place, retries are executed m times at

the maximum limit. If any retry succeeds within the limit, we identify the

failure as an intermittent failure, and if no retry succeeds, we identify the

failure as a permanent failure. Vie introduce a model described as follows

for evaluating the effects of retry procedures.

(1) Consider a si tuation just afler a start of system operation . \Ve assume

that the time to the first failure obeys an arbitrary distribution Ao(t)

60

with a finite mean ao : and an overhead time for a retry, Bo(t) with

a finite mean boo Each retry succeeds with the probability rOj (j =

1,2, ,,, ,Tn), and does not succeed with probability rOj(= 1 - rOj).

Taking account that the probability of success deteriorates according

as the number of retries are increasing, we assume that rOl > r02 >

. .. > rOm' If retries do not succeed m times, the failure is identified as a

permanent failure and is removed by a maintenance. This maintenance

incurs an overhead which obeys the arbitrary distribution Ro(t) with

a finite mean ao, and restore the failure mode of the system to the one

at the start of system operation.

(2) Consider situations just after the successful retries are observed k times.

We assume that the time to the failure obeys an arbitrary distribution

Ak(t) (k = 1,2"", IV - 1) with a finite mean ak, and an overhead

time for a retry, Bk(t) with a finite mean bk. Each retry succeeds

with the probability rkj (r = 1,2" . . ,m), and does not succeed with

probability rkj(= 1 - rkj). Taking account that the probability of

success deteriorate according as the number of retries are increasing,

we assume that rkl > rk2 > ... > rkm. If retries do not succeed m

times, the failure is identified as a permanent failure and is removed by

a maintenance. This maintenance incurs an overhead ti.me which obeys

the arbitrary distribution Rk(t) with a finite mean elk , and restores the

61

failure mode of the system to the one just after the successful retries

are observed k times. vVe further describe the influence of failure

latencies produced by successful retries as ao > al > ... > aN-l and

r01 > TIl> ... > rS-1 1·

(3) If the successful retries are observed N times (N ~ 1), intermittent

failures latent in the system are removed by a maintenance based on

log-out information. This maintenance incurs an overhead time which

obeys the distribution ZN(t) with a finite mean cPN, and restores the

failure mode of the system to the one at the start of system operation.

We define the following states which characterize the behavior of the

system.

State 00 State after the start of system operation.

State OJ : State that the jth retry is executing after the failure on State 00

(j=1,2, .. ·,m).

State ko : State after the successful retries are observed k times (k -

1,2, ... , t.,r - 1).

State kj : State that the jth retry is executing after the failure on State ko

(k = 1, 2, ... , N - 1: j = 1,2,' .. , m).

62

State Dk : State that all m times retries do not success after the failure

on State ko, and the maintenance for the permanent failure is being

executed (k = 0,1,2, ... ,1V - 1).

State D : State that successful retries are observed N times and the main-

tenance for the intermittent failures is being executed.

We redefine State k (k = 0,1"", AT -1) which is composed of m+ 1 states,

State ko, State kl' State k2' .. . and State km . vVe can formulate the model

by a Markov renewal process with the states above. The state transition

diagram is shown in Fig. 3.1.

3.3 Analysis

We first derive the availabili ty, Au; and the mean time between failures,

MTBF, in the steady-state; applying NIarkov renewal processes theory [8,

9].

Let Fk(t) denote the probability distribution function with which any

retry succeeds within m times after the failure on State k (k = 0, 1; ... ,N -

1), and G k (t) the probabili ty distribution function with which no retry suc-

ceeds. vVe have the following equations in terms of convolutions:

m

1; k (t) = }h (L) * L [{ C k (j - 1) - C k (j) } B ij) (t)], (3.1)
j=1

(3.2)

63

;.-.. 0 .. " ~.-- N -1 '-":
· . · . · . · . -- - - - --y-":-.-t i : · .
I.

Figure 3.1: The state transi tion diagram of the computer system.

64

where

(3.3)

(J' = 0 1 ... m))' , , (3.4)

and Bkj
) (t) implies the j-fold convolution of Bk(t) with itself.

Let Qij(t) denote the transition probabilities from State i to State j for

the Markov renewal process. We can define the following probabilities:

Q kk+ 1 (t) = Fk (t) (k = 0 1 ... IV - 1) '" , (3.5)

QkDk(t) = Gk(t) (k = 0 1 ... JV - 1) '" , (3.6)

Q Dkk(t) = Rk(t) (k = 0 1 ... IV - 1) '" , (3.7)

QN-1D(t) = FN-1(t), (3 .8)

QDO(t) = ZN(t). (3.9)

vVe also have qij(S), the LS (Laplace-Stieltjes) transforms of these transition

probabilities:

Tn

q kk+ 1 (S) = a k (S) L [{ C k (j - 1) - C k (j) } b{ (s)] (k = 0, 1 , ... , N - 1),
j=1

(3.10)

q k D k (s) = a k (s) b r; (S) C k (m) (k = 0, 1, . .. , IV - 1), (3. 11)

qDkk(S) = Tk(S) (k = 0,1" " , N - 1), (3.12)

m

q N - 1 D (S) = aN - 1 (S) L [{ eN - 1 (j - 1) - C v - 1 (j) } ~v _. 1], (3. 13)
j=1

65

(3.14)

where ak(s), bk(s), rk(s) and ZN(S) are the LS transforms of Ak(t), Bk(t), Rk(t)

and ZN(t), respectively.

Let us derive the mean recurrence time loo for State 0. If we define

00

Uj(t) = Fj-1(t) * L(Gj(t) * Rj(t))(l) (j = 1,2,·· ., N - 1), (3.15)
l=O

the recurrence time distribution for State () is obtained by

H 00 (t) = Go (t) * Ro (t) + {u 1 (t) * U2 (t) * . . . * UN - 1 (t)} * FN - 1 (t) * Z N (t) ,

(3 .16)

and its LS transform hoo(s) yields loo as follows:

(3 .17)

From the above results, we can derive 1\1j, the expected number of visits

to State j (j = 0,1, ·· · ,N -l,Do,Dl' · ·· ,DN-1, D) per unit time in the

steady-state. Let J\!fj (t) denote the expected number of visits to State j in

an interval of time (0, t] given that it was in State ° at time 0. Vie have

1
lvIo(t) = 1 - f1oo(t) ,

66

(3 .18)

It A () _ Ul (t) * U2 (t) * ... * Uk (t)
i V1k t - .

1 - Hoo(t) ,
(3.19)

1'v! () _ GO(t)
Do t - 1 - H 00 (t) , (3.20)

M D (t) = {U 1 (t) * U2 (t) * . . . * Uk (t)} * G k (t)
k 1 - Hoo(t) , (3.21)

M D(t) = {Ul (t) * U2(t) * ... * uN-d * FN- 1 (t)
1 - Hoo(t) ,

(3.22)

where k = 1,2" " , N - 1. The LS transforms of these equations, mj(s),

yields M j as

1
1'.;1. = lim -M·(t)

J t-+oo t J

Thus, we obtain

ivh = ~ . 1 - Co(m)
loo 1 - Ck(m) ,

(k = 0 1 ... l'l - 1) '" ,

MD = ~ . {I - CO(m)}Ck(m)
k loo 1 - C k (m) ,

(k = 0 1 ... N - 1) '" ,

ltA _ 1 - Co(m)
iVl D - l .

00

(3.23)

(3.24)

(3 .25)

(3.26)

vVe further deri ve the steady-state probabilities for State j, P.i (j = 0, 1, .. . , N­

I, Do, D l ,'" ,D iY - l , D). Let Pj(t) denote the transition probabilities that

the process is in state j at time t gi yen that it was in State 0 at time O. We

have

()
1 - (Fo(t) + Go(t))

Po t = () , 1 - Hoo t
(3.27)

67

()
_ {U 1 (t) * U2 (t) * . . . * Uk (t)} * {I - (Fk (t) + G k (t)) }

Pk t - 1 - Hoo U) , (3.28)

P ()
= Go(t) * (1 - Ro(t))

Do t () , 1 - lIoo t
(3.29)

{Ul (t) * U2(t) * ... * Uk(t)} * Gk(t) * (1 - Rk(t))
PDk (t) = 1 - Hoo(t) , (3.30)

()
_ {U 1 (t) * U2 (t) * . . . * Uk (t)} * F N - 1 (t) * (1 - Z N (t))

PD t - 1 - Hoo (t) , (3.31)

where k = 1,2, ... 1 n - l. Using the formula for the LS transforms of these

equations

(3.32)

we can obtain

m

{I - Co(m)}{ak + bkLCk(j)}

Pk=~· j=l, (k=0,1,···,N-1), (3.33)
loo 1 - Ck(m)

P
D

= ~. {I - CO(m)}Ck(m)ak
k loo 1 - C K (m) ,

(k = 0 1 ... N - 1) ", , (3.34)

1
PD = -l . {I - Co(m) }¢N.

00
(3.35)

Applying the above results, we can derive the availability Au and the

mean time between failures MTBF. From Equation (3.33), Au is given by

N-I

At! = L Pk
k=O

68

~lak + bkLJ=I Ck (j) ~1 Ck(m)(Jk
t:a 1 - Ck(m) + t:a 1 - Ck(m) + cPN

If MDT denote the mean down time, the formulae

A = MTBF
v MTBF + MDT'

and

MTBF + MDT = -N--
1

-1

LMDk+ MD
k=O

yield MTBF as follows:

MTBF = Av(MTBF + MDT)

N-l + b "m C (.) L ak k~j=1 k J
k=O 1 - Ck(m)

lI:l Ck(m) + 1

k=O 1 - Ck(m)

(3.36)

(3.37)

(3.38)

(3.39)

Let us next deri ve the availability in the transient state, Av (t), by apply-

ing a continuous-time Markov chain and the randomization technique [10] to

the previous model. If we assume all the time distributions in the model to

be exponential distributions, stochastic behavior of the system is described

by a continuous-time Markov chain. Though a transient solution is analyt-

ically obtained for several continuous-time Markov chains , we numerically

calculate the solution since the analytical derivation is qui te difficul t for the

Markov chain with many state such as states in our model. The availability

69

in the transient-state, Av(t) , is derived from the transient-state probability

vector obtained.

The state probability \"ector at time t for the continuous-time Markov

chain with 2JV + 1 states,

(3.40)

is transformed by the randornization technique as follows,

oc (J1t)n
7r (t) = L _,_e-At¢(n) ,

n=O n.
(3.41)

where J1 is the maximum absolute value of diagonal elements of the in­

finitesimal generator Q for the continuous-time Markov chain, and ¢(n) is

the state probability vector for a discrete time Markov chain characterized

by a transition probability matrix P which is transformed from the matrix

Q. Using the state probability vector, the availability at time t is given by

N-I

Av(t) = L 7rk· (3.42)
k=O

3.4 Numerical Illustrations

In this section: let us first numerically evaluate the optimum number of suc-

cessful retries, lV s, which maximizes the availability, Av , the mean times

between failures , NITBF, in the steady-state. We next calculate the avail­

abilities, Av(t); in the transient-state for N = Ns and N in the vicinity of

lVs .

70

k+ . Assume that Tkj = P] (k = 0,1,···, N -1;) = 1,2,···;m -1), where

P is a initial probability with which a retry succeeds at first. the mean

time incurred for removing a permanent failure and intermittent failure are

assumed to be al = a2 = ... = aN-l = 1 [hour] and if;N == if; = 1,5,20,50

[hours], respectively. We apply a failure mode ak = 100/(k + 1) [hours]

(k = 0,1" ., ,N - 1) to the mean time between the successful retry and the

failure. We further consider that an overhead for a retry is enough law to

ignore, i.e., bk = ° [hour] (k = 0,1"" ,N - 1).

Table 3.1 shows the optimum number of successful retries, Ns , which

maximizes Au, for if; = 1, P = 50,60,70,80,90,99 [%] and m = 1,2,3,4.

In the case of if; = 5,20,50, the results are shown in Table 3.2, 3.3, 3.4,

respectively. Moreover; the maximized availabilities corresponding to Table

3.1, ... , Table 3.4 are shown in Fig. 3.2, 3.3, 3.4, 3.5, respectively. Table

3.5 similarly shows the optimum number of successful retries, Ns , which

maximizes MTBF, when the parameters are the same as in Table 3.1 . The

maximized MTBF is shown in Fig. 3.6. Note that MTBF is independent

of ak and if;N as is evident from Equation (3.39). From these results, for

instance, we can see that in case if; = 1, m = 2, and P = 90[%], the max-

imized availability 0.9939 is yielded at N = 4, and the maximized MTBF

164.5 [hours] is yielded at 1V = 4.

The number; 1V5 , which maximizes Au increases when a initial probabil­

ity, P, or a prescribed number of retries, m, increase as shcm'n in Table 3.1

71

Table 3.1: The optimum number of successful retries maximizing the avail­
ability for ¢ = 1.

~ 50 60 70 80 90 99

1 1 1 1 2 2 7

2 1 1 2 2 4 15

3 1 2 2 3 5 24

4 1 2 2 3 5 33

Table 3.2: The optimum number of successful retries maximizing the avail­
ability for ¢ = 5.

~ 50 60 70 80 90 99

1 2 3 3 4 5 1 3

2 2 3 4 4 7 2 6

3 3 3 4 5 8 37

4 3 3 4 5 9 48

Table 3.3: T he optimum number of successful retries maximizing the avail­
abili ty for ¢ = 20.

~ 50 60 70 80 90 99

1 4 5 6 7 10 25

2 5 5 7 8 12 41

3 5 6 7 9 13 55
4 5 6 7 9 14 68

Table 3.4: The optimum number of successful retries maximizing the avail­
abili ty for ¢ = 50.

~ 50 60 70 80 90 99

1 6 7 9 11 15 38

2 6 8 10 13 18 58

3 7 8 11 14 19 73

4 7 9 11 14 20 86

72

A 1
V

0.995

m=l
m=2
m=3
m=4

0.985~------+-------~------~------4-·------~1
50 60 70 80 90 99

p

figure 3.2: The maximized availability for ¢ == 1.

73

A 0.99
v

0.98

m=l
m=2
In=3

m=4

, , ,
" I

./~ ,../ '
, I
,'/' /

,'/' /
,,;/ /'

, ,
",,/ /

"./ //
.~/" .,.:;;; /"

" "

0.9~~O------~6~O-------7+0--------8~IO------~91-0------94-'9

P

Figure 3.3: The maximized availability for ¢ = 5.

74

A 0.96
v

0.95

0 . 94

m=l
----- m=2
---m=3
-------------- m=4

, , , , ,

/1
/I,

/f /
/'l/

/1/
"l/

0.93~------~-------+------~--------r-----~1
50 60 70 80 90 99

p

Figure 3.4: The maximized availability for cP = 20.

75

A 0.95
V

0.9

60 70

---- m=l
----- m=2
--- m=3
-------------- m=4

80 90

Figure 3.5: The maximized availability for ¢ = 50.

76

99

P

MTBF 400

m=l
300 m=2

m=3
m=4

200

, ,

, , , ,
, .

,,//

Or-------~~------_+--------~--------+I--------~I
50 60 70 80 90 99

p

Figure 3.6: The maximized MTBF.

77

Table 3.5: The optimum number of successful retries maximizing MTBF.

~ 50 60 70 80 90 99

1 1 1 1 2 2 7

2 1 1 2 2 4 15

3 1 2 2 3 5 24

4 1 2 2 3 5 33

... Table 3.4. The mean time incurred for removing intermittent failures, ¢,

is also tend to enlarge Vs as a whole. In Table 3.1, there is no improvement

in the availability by increasing the prescribed number of retries) in the case

of P = 50[%]. vVhen P increases, the more retries are repeated, the more the

availability becomes high. In Table 3.4 for ¢ = 50) the increase of m brings

the decrease of the availability in P = 50[%]. Such a tendency is observed

in P = 50· . ·90[%]. The availability is just improved in P = 99[%]. These

facts imply that the improvement in the availability can not be expected by

increasing the prescribed number of retries when the mean time incurred for

removing intermittent failures is relatively long or the initial probability P

is not high.

We can similarly see that the effects for MTBF by retries depends on the

initial probability p) from Table 3.5 and Fig. 3.6. When P increases) Ns and

NITBF increase, and these values also increase according as the prescribed

number of retries increases.

78

The result of MTBF is independent of the overhead tim.e for the mainte­

nances as before. The optimum number of successful retries, Ns , for MTBF

coincides with Ns for Au in case cP = 1. We should determine which Ns

is adopted in the maintenance policy, Ns for Au, or Ns for NITBF, taking

account of the operational costs , the application of the system and so on.

We next show the resul ts of the numerical calculations for the availability

in the transient-state Au (t). Though the following examples are discussed

in the case of cP = 5, similar properties are observed in the other cases of cP.

Let us show the availability in the transient-state for N = lVs and N in

the vicinity of lVs , where N s maximizes the availability in the steady-state.

Figure 3.7 shows the behavior of Au (t) for P = 50 [%], N = 1: 2, 3, 4. Figure

3.8 similarly shows the behavior for P = 90[%], N = 3,4,5,6,7. We can

see that the optimum lV which maximizes the availability in the transient­

state does not coincide with the one in the steady-state. In the early phase

of the system operation, particularly, the more N increases, the more the

availability is improved.

"vVe further show the numerical results in varying the prescribed number

of retries. Figure 3.9 shows the behavior of the availability for P = 50[%],

m = 1,2,3,4, where we use lV which maximizes the availabiHty in the steady­

state for each value of m . Figure 3.10 also shows the behavior for P = 90[%],

where the other parameter is situated similarly to Fig. 3.9. In case P =

50[%] ; though the availability at m = 1 is the greatest in the steady-state,

79

0.99

0.98

----N=l
-----·N=2
---N=3

\ \, --------------- N=4

\ \\
\ \\,

\ \\
\ '\\
\ \" ", ~ "--.... '"

""--~----------------
" '-

200

, '--........... ------
'"

400 600

800 1000

t

Figure 3.7: The behaviors of availability Au (t) for P = 50 in varying N
(¢ = 5, m = 1, tis = 2).

80

0.99

0.98

~
----N=3

\~~
, \~

-----·N=4
---N=5

\ '\ i\\
, \\\ \ "

\ \\\
\ \\~'

\ \'~ \ ,\

\ \~\
\ '.'

--------------- N=6
-------N=7

'\

'~ ~..=::;;:::::.--:-- - - - ----=--= . ~ ~~~ ~---", ", -----.-------------

200 400 600 800 1000

t

Figure 3.8: The behaviors of availability Av(t) for P = 90 in varying N
(¢ = 5,m = 1,JVs = 5).

81

the availability at m = 3 is greater than the one at m = 1 for 0 ::; t ::; 180.

In case P = 90[%], the availability at m, = 4 is greater than the others

in the transient-state as well as the steady-state. These results imply that

when the initial probability P is not high, the prescribed number of retries

maximizing the availability in the early phase of the system operation, IS

greater than the one in the steady-state.

On the numerical illustrations above, we have obtained some important

properties of the retry procedure. In particular, it is interesting that the

optimum number of N or m in the steady-state does not always coincide with

the one in the transient state. '-IVe have also seen some results implying that

the more m increases, the more the availability or MTBF increases. From

a practical point of view; however, retries may be limited in the available

number, since the number of m should be determined taking account of the

overhead for a retry which has been ignored in our model.

3.5 Concluding Remarks

In this chapter, we have presented a model for evaluating the effects of time

redundancy by retries. Taking account of the behavior of intermittent and

permanent failures, the system has been assumed to be maintained with

the prescribed number of successful retries. The analysis of the model has

yielded the reliability evaluation in the transient-state as well as the steady­

state.

82

----m=1
-----·m=2
---m=3
--------------- m=4

0.99

0.98

200 400 600 800 1000

t

Figure 3.9: The behaviors of availability Av(t) for P = SO in varying m
(¢ = 5).

83

0.99

0.98

'~\
\Y'.
\\\
\\\
\\\

'----m=l
------·m=2
---m=3
· m=4

\\\
\\\
\\\ ,,'---.- .. _-._•...•. _ __

, " "I~ ____________________ -

~\ "y r ... ----------------
'\:./ '
~,/ ...-.-------------------------------

200 400 600 800 1000

t

Figure 3.10: The behaviors of availability Av (t) for P = 90 in varying m
(¢ = 5).

84

vVe have obtained several important properties of retry procedures from

the analytical or numerical results. The principal results are shown as fol­

lows:

• The improvement in the availability in the steady-state can not be

expected by increasing the prescribed number of retries when the mean

time incurred for removing intermittent failures is relatively long or the

initial probability of successful retry is not high.

• The optimum number of successful retries which maximizes the avail­

ability in the transient-state does not coincide with the one in the

steady-state. Particularly, in the early phase of the systern operation,

the more the number of successful retries increases, the more the avail­

ability in the transient-state is improved .

• When the initial probability of successful retry is not high, the pre­

scribed number of retries, which maximizes the availability in the early

phase of the system operation, is greater than the one in the steady­

state.

In the actual systems, a retry procedure is greatly useful for the compo­

nent of a recovery mechanism as before. Specifying the parameters of our

model statistically, we can roughly estimate the prescribed optimum number

of retries or successful retri es in many situations of the systems , and intro-

85

duce the reasonable strategies for the retry procedures based on the resul ts

above.

References

[1] M. Mukaidono (ed.): Introduction to Highly Reliable Techniques for

Computer Systems, Japanese Standards Association, Tokyo (1988) (in

Japanese).

[2] H. Inose (ed.): Reliable Computer Systems, IPS Japan, Tokyo (1977) (in

Japanese).

[3] K. Yasui, T. Nakagawa and Y. Sawa: "Reliability Analysis of a Com­

puter System with Retry", Trans. IEICE of Japan, Vol. J64-D, No.

8, pp. 788-794 (1981) (in Japanese).

[4] S. Mallela and G. M. Masson: !!Diagllosable Systems for Intermittent

Faults", IEEE Trans. Comput.} Vol. C-27, No.6, pp. 560-566 (1978).

[5] S. Y. H. Su, 1. Koren and Y. K. Malaiya: "A Continuous-Parameter

Markov Model and Detection Procedures for Intermittent Faults",

IEEE Trans. Comput ., Vol. C-27, No.6, pp. 567-570 (1978).

[6] Y. K. Malaiya: "Linearly Correlated Intermittent Failures" , J EEE Trans.

Reliab., Vol. R-31, f\o. 2, pp. 211-215 (1982).

86

[7] K. Yasui and S. Osaki: :: Optimum Inspection Policies for a Computer

System with Intermittent Faults", Trans. IPS Japan, Vol. 30, No.1,

pp. 127-131 (1989) (in Japanese).

[8] T. Nakagawa and S. Osaki: ':\1arkov Renewal Processes with Some Non­

Regeneration Points and Their Applications to Reliability Theory",

Microelectron. Reliab., Vol. 15, pp. 633-636 (1976).

[9] S. M. Ross: Stochastic Processes, John Wiley & Sons, 1I\few York (1983).

[10] D. Gross and D. R. Miller: :'The Randomization Technique as a Mod­

eling Tool and Solution Procedure for Transient Markov Processes",

Oper. Res., Vol. 32, No . 2, pp. 342-361 (1984).

87

Chapter 4

Reliability /Performance
Evaluation for Multi-Pr«:lcessor
Systems from the Vie"WI)oint
of Transaction Assignm(~nts

4 .1 Introduction

The remarkable progress of modern computer technology enables us to make

a large-scale and complex computing system which plays an important role in

our society. Examples of such systems are telephone exchange systems, the

on-line banking systems, vehicle control systems, seat reservation systems,

and so on. A break-down of such systems may be costly, dangerous and

may cause social panic. It is, therefore, of great importance to operate such

computing systems with high reliabi lity.

The fault-tolerant computing systems [1 -4] have been proposed behind

above background. The fault-tolerant computing systerns are the systems

89

which operate with high reliability using the technique of redundancy and/or

maintenance. Several stochastic models for such systems have been pro­

posed, and the reliability evaluations have been discussed [5-8]. For evalu­

ating the fault-tolerant computing systerns, the traditional reliability mea­

sures, such as the availability, the MTBF (Mean Time Between Failures),

are not adequate since such systems assunle not up and down state, but also

several different levels. Therefore, we should propose new reliability and/or

performance measures adequate to evaluate such systems. Several measures

have been proposed [9-12].

Beaudry [9] proposed the performance-related reliability measures, such

as the computation availability and the MCBF (Mean Computation Between

Failures), for such systems. Meyer [10] proposed the performability tak­

ing account of accomplishment levels frolm a user's viewpoint for a multi­

processor system. Gay and Ketelsen [11] proposed the throughput availabil­

ity, the expected system throughput and the expected number of transactions

lost which are measures taking account of reliability, performance and com­

putational demands simultaneously. Nakamura and Osaki [12] classified the

lost jobs caused by processor failure and by cancellation (i.e., overflow of

the arriving jobs). 'vVe will characterize the multi-processor systems using

not only the traditional measures but also reliability/performance measures

above to evaluate the systems.

In this chapter we analyze a rnulLi-processor system which is one of the

90

typical faull-tolerant computing systems , and is also called A Gracefully

Degrading System from its redundant technique. Assuming that the system

is composed of two processors and the buffer(s) (i.e., the storage facility

of the arriving transactions). We propose two models from the viewpoint

of transaction assignment, and obtain analytically the conventional relia­

bility /performance measures for each model applying the Markov renewal

processes [13,14] and queueing theory [15]. We show numerical examples for

evaluating two models from the viewpoint of transaction assignments . We

finally show the impact of transaction assignment on the multi-processor

systems.

4.2 Multi-Processor System Modeling

Consider a multi-processor system which is composed two processors and

the buffer whose maximum storage capacity is 2N. Vie assume that each

processor obeys an exponential failure time distribution with failure rate Al

and an arbitrary repair time distribution G1(t) with mean repair time 1/111'

We assume that a buffer is composed of buffer elements, where each element

obeys an exponential failure time distribution with rate A2 and an arbitrary

repair time distribution G2(t) with mean time 1/112' That is, if a buffer is

composed of lV elements, the exponential failure rate for the buffer is N A2

since it can be considered a series of buffer elements. There is a single repair

facility and repair discipline is first come, first served. A processor or a

. 91

buffer recovers its functioning upon repair completion.

Consider the behavior of the arriving; transactions. The transactions

arrive as a Poisson process with arrival rate AT and form a queue in the

buffer. Each processor performs a transaction exponentially with processing

rate /-LT. The break-down of the processor or the buffer implies that the

existing transactions are lost . In particular, the break-down of a system

implies that all transactions in the syste:m are lost. When the system is

under break-down or is occupied by the transactions of full capacity, the

arriving transactions cannot be accepted (i.e., it is cancelled).

vVe propose the following two models from the viewpoint of transaction

assignments:

Modell: It is composed of two processors and a buffer with maximum

capaci ty 2J\'. The transactions are distributed to each processor after

forming a queue in the buffer.

Model 2: It is composed of two processors and two buffers with maximum

capacity!'/. That is) it is composed of two subsystems, where each

subsystem is cornposed of a processor and a buffer. The arriving trans­

actions are distributed to each subsystem with even probability.

Figure 4.1 shows a configuration of each model. If two processors break

down simultaneously or a buffer breaks down, the system breaks down in

Modell . If a processor or a buffer breaks down, the subsystem breaks down,

92

and if two subsystems break down simultaneously, the system breaks down

in Model 2. The discipline of transaction assignment is uniform for Model

1, and is random for Model 2, respectively [11].

4.3 Modell

Applying Markov renewal processes and queueing theory, we analyze the

above Models. Nakamura and Osaki [12] analysed a multi-processor system

by considering both the behaviors of the processors and of the queue of the

transactions. They derived the exact formulae and approximate formulae by

considering the behaviors to be simultaneous and independent, respectively,

and showed that the approximate formulae are sufficiently precise. vVe apply

this result in our models. That is, we analyse our models by considering both

the behaviors of the processors and of the queue to be independent.

To analyze ~lodel 1, we first define the following states which characterize

the behavior of the system:

State 0 : All units are operating.

State 1: Through state 0, one of the processors breaks down and its repair

starts.

State 2: Through state 1, the remaining processor breaks down (system

break-down) .

93

Processor

2N--
IlU I

Processor
Buffer

(a) Mociel 1

Processor
N

Buffers

Processor
N

(b) Mo(ie12

Figure 4.1: The configuration of the multi-processor system.

94

State 3: Through state 1, the buffer breaks down (systern break-down).

State 4: Through state 0, the buffer breaks down (systern break-down).

The state transition diagram among the states above is shown in Fig. 4.2,

where the number circled denotes a regeneration point and the number

squared denotes a non-regeneration point [14].

2

Figure 4.2: The state transition diagram for Nlodel 1.

Let qij(S) and qi(k)j(S) be the L8 (Laplace-8tieltjes) transforms of one­

step and two-step transition probabilities Qij (t) and Q/k) j (t) ; respectively.

95

Then we have

2Al
qo 1 (S) = S + 2 Ao '

2JVA2
q04(S) = --­

s+ 2Ao

qlO(S) = gl (s + AI),

()
Al[1 - gl(S + AI)]

q12 s =1 A '
S T 1\.1

(2) () _ A dg 1 (S) -- 9 1 (S + AI)]
ql 1 s - Al '

(
S) _ 2JVA2[1 - gl(S + AI)]

q13 - S + Al '

(3) () _ 2 JV A2 [g 1 (S) - 9 1 (S + 1\ 1)]
ql 4 S - Al '

q40(S) = g2(S),

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4 .6)

(4.7)

(4.8)

where Ao = Al + 1VA2, Al = Al + 21VA2 ', and gl (s) is the L8 transform of

Gi(t) (i = 1,2).

Let ~i be the unconditional mean neglecting the non-regeneration points

for state i (i = 0,1,4):
1

~o = 2A(~'
1

~1 =-,
/-Ll
1

~4 =-,
/-L2

(4.9)

(4 .10)

(4.11)

and'Tli be the uncondi tional mean not neglecting the non-regeneration points

for state i (i = 0,1,2,3,4):

(i=0,4), (4.12)

96

1 - 91 (AI)
TJl = Al ' (4.13)

A [-.L _ l-g1 (A 1)]

1 J1.1 Al (4.14)

(4.15)

Using the limi ting transition probabilities qij (0), q/k) j (0) and the un-

conditional means ~i' we can obtain the mean recurrence time for all the

regeneration points i (i = 0, 1,4):

D
loa = 1 (2)'

- ql 1
(4.16)

D
III = ,

1 - q04
(4.17)

(4.18)

Applying the above results, we have the following transition probabilities

for all state i (i = 0,1,2,3,4) in the steady-state:

(i=0,1,4), (4.20)

p. -~
t - III (i=2,3) . (4.21)

97

vVe also have the following expected numbers of visits to all state i (i =

0,1,2,3,4) per unit time in the steady-state:

M . - qli
t - III

(i=0,1,4),

(i=2,3).

(4.22)

(4.23)

Let us next consider the behavior of the arriving transactions. The trans­

actions form an M/M/2/2N +2 queue in state 0. Let p}O) denote the steady­

state probability that the number of transactions in system is j in state 0.

Then p}O) (j = 0,1, ... ,21V + 2) is given by

RCO) ________ -::1,---_____ ----;-

° - AT 1 (AT) 2 2N +2 (AT) k ,
1+-+- - +2 L -

/.iT 2 J.1T k=3 2J.1T

(4.24)

(4 .25)

(j = 1, 2, .. . , 2N + 2). (4.26)

The transactions form an M/M/1/21V + 1 queue in state 1. Let pjl) denote

the steady-state probability that the nu:mber of transactions in the system

is j in state 1. Then we have

(4.27)

pCl) = 1
) 21V + 2 (Pl = 1), (4.28)

where PI = AT/flT and j = 0; 1, ... ; 2JV +- 1.

98

Applying the results in Equations (4.20)-(4.28), we can obtain the fol­

lowing reliability/performance measures:

(i) The steady-state availability Av:

(4.29)

(ii) MTBF (Mean Time Between Failures):

(4.30)

(iii) The computation availability Ac [9]:

(4.31)

(iv) The expected system throughput Tp [11]:

(0) Pl (1)

(
(0))

T p = 2fLT 1 - Po - -2- Po + fLT (1 - Po) Pl· (4.32)

(v) The expected number of lost jobs by cancellation per unit time in the

steady-state; Cj [12]:

(4.33)

Note that the following identity holds:

(4.34)

99

4.4 Model 2

Just similar to Model 1, we define the following states for Model 2:

State 0: All units are operating.

State 1: Through state 0, one of the processors breaks down and its repair

starts. The system is operating as degrading the remaining subsystem

function.

State 2: Through state 1, the remaining processor breaks down (system

break-down).

State 3: Through state 1, the operating buffer breaks down (system break­

down).

State 4: Through state 0, one of the buffers breaks down and its repalr

starts. The system is operating as degrading the remaining subsystem

function.

State 5: Through state 4, the remaining buffer breaks down (system break­

down).

State 6: Through state 4, the operating processor breaks down (system

break-down) .

The state transition diagTam among the states above is shown in Fig. 4.3.

100

3

5

Figure 4.3: The state transition diagram for Model 2.

101

Let qij (s) and q/k) j (s) be the L8 transforms one-step and two-step tran­

sition probabilities Qij(t) and Q/k)j(t), respectively. Then we have

2Al
qOl (s) = s + 21\0 ' (4.35)

2N'\2
q04 (s) = s + 21\0 ' (4.36)

qlO(S) = 91 (s + 1\0), (4.37)

q12(S) =
Al [1 - 91 (s + 1\0)]

(4.38)
s+ Ao

,

ql (2) 1 (s) = A d91 (s) - 91 (s + AD)]
(4.39)

AD
,

qI3(S) =
1VA2[1 - 91 (s + 1\0)]

(4.40)
s + AD

,

Ql(3)4(S) = N A2[91(S) -. 91(S + 1\0)]
(4.41)

AD
,

q40(S) = 92(S + 1\0), (4.42)

() _ N A2[1 - 92(S + AD)]
(4.43) q45 s - + '\ ' S 1 0

q4(5)4(S) = N A2[92(S) _. 92(S + 1\0)]
(4.44)

AD
,

Q46(S) =
Ad1 - 92(S + 1\0)]

(4.45)
s + AD

,

Q4 (6) 1 (s) = Ad92(S) - 92(S + 1\0)]
(4.46)

AD

Let ~i be the unconditional mean neglecting the non-regeneration points

for state i (i = 0; 1,4):

1
~o = 2Ao'

102

(4.4 7)

1
6=-,

/.11

1
~4 =-,

j.12

(4.48)

(4.49)

and T/i be the unconditional mean not neglecting the non-regeneration points

for state i (i = 0,1,2,3,4,5,6):

T/o = ~o, (4.50)

(4.51)

T/2 = Ao ' (4.52)

N)' [-.L _ 1-91 (Ao)]
2 Ji.l Ao

(4.53)

(4.54)

(4.55)

T/6 = Ao . (4.56)

Using the limiting transition probabilities qij, q/k)j and the unconditional

means ~i' we can obtain the mean recurrence time for all the regeneration

point i (i = 0,1,4):

(4.57)

(4.58)

103

(4.59)

where

Applying the above results, we have the following transition probability

for state i (i = 0: 1, ... ,6) in the steady-state:

(4.61)

p. =~
t III

(i=2,3), (4.62)

p. =~
t 144

(i==5,6). (4.63)

We also have the following expected number of visits to state i (i = 0, 1, ... ,6)

per unit time in the steady-state:

1
i'vf. = -

t iii
(i=0,1,4),

(i==2,3),

(i = 5,6) .

(4.64)

(4.65)

(4.66)

Let us next consider the behavior of the arriving transactions. The trans-

actions fonn an \ If/M/1/N + 1 queue with arrival rate AT/2 in each subsys­

tem in state O. Let p}O) denoLe the steady-state probability that the number

104

of transactions in the subsystem is j in state O. Then we have

p~O) = (1 - P2)p~
J 1 _ p~+2 (4.67)

p~O) = _1_
J N + 2 (P2 = 1), (4.68)

where P2 = ATI2/LT and j = 0,1"", N + 1. The transactions form an

M/m/1/1'l + 1 queue with arrival rate AT in the remaining subsystem in

state 1 or 4. Let p?) denote the steady-state probability that the number

of transactions in the subsystem is j in state 1 or 4. Then we have

(4.69)

p(l) = _1_
J N + 2

(PI = 1), (4.70)

where j = 0, 1, ... , 1'/ + 1.

Applying the results in Equations (4.61)-(4.70), we can obtain the fol-

lowing reliability Iperformance measures:

(i) The steady-state availability Av:

(4.71)

(ii) NITBf:

NITBF = Av
M2 + M3 + M5 + M6

(4.72)

(iii) The computation availability Ac:

(4.73)

105

(iv) The expected system throughput Tp :

(4.74)

(v) The expected number of lost jobs by cancellation per unit time in the

steady-state ; GJ :

(4.75)

Note that the following identity holds:

(4.76)

4. 5 Numerical Illustrations

Let us numerically compute the reliability/performance measures obtained

in the preceding sections. Applying the appropriate values to all the param-

eters, we can derive the following results of the numerical examples. These

results hold even in the case where the parameters vary in the ordinary range.

Assume that the arbitrary repair time distribution is a gamma distribution

of order 2:

(4.77)

Let us discuss a case in which the buffers cannot break-down, i.e., /\2 = o.

In this case; the stochastic behaviors of each model are identical since the

behavior of the systern is jusL the behavior or the two processors. Note

106

that Av , NITBF and Ac are entirely identical for each model, respectively.

Figure 4.4 shows the dependence of N on C j for each model, where)'1 =

0.001, 111 = 1 i AT = 15000 and I1T = 10000. The more N increases: the

more C j decreases for each model, and C j of Modell always is less than

that of Model 2. From this numerical example, the uniform assignment (i.e.,

Modell) is superior to the random assignment (i.e., Model 2) as Gay and

Ketelsen showed [11]. Note that the behaviors of Cj and Tp are symmetrical,

since identi ty Equation (4 .34) or (4.76) hold. Hence, the two measures are

equivalent in the evaluation.

Let us next discuss a case in which the buffers can break down, i.e.,

A2 > O. In this case: the stochastic behaviors of each model are not identical

since the configurations of each model are different. Figure 4.5 shows the

values of Av in varying I\T for each model, where all the parameters are

specified just same as in Fig. 4.4 and A2 = 0.0001, 112 = 1. \Nhen N

increases, Av of each model decreases and, in particular, Av of Model 2 is

al ways greater than that of Model 1. vVe can obtain a sirnilar result with

respect to N[TBF . Figure 4.6 shows the values of Ac in varying N for each

model, where all the parameters are specified just same as in Fig. 4.5 . The

increase in buffers causes the decrease in Ac. When N increases, the decrease

in Ac of Nlodel 2 is al ways less than that of Modell. These facts show that

Model 2 is superior to Model 1 from the viewpoint of fault-tolerance.

Figure 4.7 shows the dependence of N on Cj for each model , where all

107

c] 800

700

600

500

400

300

200

100

0
0 10

Model 2

Modell

20 30 40 50

N

Figure 4.4: The dependence of the capacity of the buffer N on the CJ for
"\2 = o.

108

Av 1r-~~--------------------------~-------------

0.99

0.98

0.97 Modell

0.96

0.95+--------4--------~------~~------~1------~1
o 10 20 30 40 50

N

Figure 4.5: The dependence of the capacity of the buffer lV on the Av for

A2 = 0.0001.

109

A 20000
c I"""IIII~--

19900

19800

19700

Modell
19600

19500~------~---------+--------~1~-------+1--------~1
o 10 20 30 40 50

N

Figure 4.6: The dependence of the capacity of the buffer N on the Ac for
'\2 = 0.0001.

110

the parameters are specified just same as in Fig. 4.5. When N is small, Cj of

Model 1 is less than that of :vrodel 2. However, when N is large, Cj of Model

1 is greater than that of Model 2. The turning position is N = 16. This

measure shows the trade-off between reliability and performance in varying

N. When N increases, the reliability decreases as shown in Fig. 4.5 and the

performance increases as shown in Fig. 4.4. The trade-off yields the critical

value of N which minimizes C j . The critical value of lV is 11 and 23 for

Models 1 and 2, respectively. It is obvious that the critical value of N of

Model 2 is greater than that of Nlodel 1 because of its fault-tolerance. From

the above results, the random assignment (i.e.) Model 2) is superior to the

uniform assignment (i.e., lVlodel 1) when the value of N is high.

4.6 Concluding Remarks

In this chapter) we have discussed a multi-processor systern composed of two

processors and the buffer(s) and proposed two models fron1 the viewpoint of

transaction assignments. \Ve further have compared two models using the

numerical examples of the reliability/performance measures and shown the

characteristics of each model.

In general, the reliability and performance of the con1puting system is

mutually contradictory. For instance) a massive redundant system can attain

the high reliability by sacrificing the high performance. From this viewpoint,

a multi-processor system should be recomrnended for both of reliability and

111

C
j

800

700

600

500

400

300

200

100

Model 2

0+---------~-------4---------+1--------~1 ------~I
o 10 20 30 40 50

N

Figure 4.7: The dependence of the capacity of the buffer N on the CJ for
A2 = 0.0001.

112

performance. We have proposed two models from the viewpoint of transac­

tion assignments. We have shown some fruitful conclusions. That is, when

the storage capacity of the buffer is small, the uniform assignment of Model

1 is better than the random assignment of Model 2, and , conversely, when

the storage capacity is large, the random assignment is better than the uni­

form assignment. From a practical point of view, this implies that we should

compose the two unit multi-processor system by two independent buffers for

a large scale application such as on-line transaction processing.

It seems that we can expand our models as follows: Modell is composed

of m processors and a buffer with maximum capacity ml'l. Model 2 is com­

posed of m processors and m buffers with maximum capacity JV. However,

it is too difficult to analyze these extended models by applying Markov re­

newal processes and queueing theory. Some particular assumptions must be

made, e.g., a two-out-of-m: F system.

The assertion of the above conclusions are based on our models and nu­

merical computations. In particular) under the assumption of Model 2, one

buffer can overflow although the other buffer is able to accept the arriving

transactions. This fact may not fit an actual situation, however it is too

difficult to analyze Model 2 taking account of such a si tuation. Compar­

isons should be done more precisely by applying the existing and forthcom­

ing sophisticated techniques. Our assertion is a first stage of mathematical

modeling for reliabili ty / performance evaluation.

113

References

[1] A. A vizienis: "Fault-Tolerant Systern" , IEEE Trans . Comput .: Vol. C-

25,1\0. 12, pp. 1304-1311 (1976).

[2] D. P. Siewiorek and R. S. Swarz (eds.): The Theory and Practice of

Reliable System Design, Digital Press , Bedford, Massachusetts (1982).

[3] A. Avizienis and J. C. Laprie: "Dependable computing: From concepts

to design diversiti: : Proc. IEEE, Vol. 74, No.5 , pp. 629-638 (1988).

[4] A. Avizienis, H. Kopetz and J. C. Laprie (eds.): The Evolution of Fault­

Tolerant Computing, Springer-Verlag, Wi en (1988) .

[5] E. D. S. Silva and H. R. Gail: "Calculating Availability and Performabil­

ity Measures of Repairable Computer Systems Using Randomization",

1. ACAf, Vol. 36, :\0. 1: pp . 171-193 (1989).

[6] A. Costes: C. Landrault and J. C. Laprie: "Reliability and Availability

Models for Maintained Systems Featuring Hardware Failure and De­

sign Faults", IEEE Trans. Comput ., Vol. C-27, No.6, pp. 548-560

(1978) .

[7] Y. Vv. \'g and A. Avizienis: "A Unified Reliability Model for Fault­

Tolerant Computers", IEEE Trans . Comput., Vol C-29, No. 11, pp.

1002-1011 (1980) .

114

[8] S. Osaki and T. Nishio: Reliability Evaluation of Some Fault- Tolerant

Computer Architectures, Springer-Verlag, Berlin (1980).

[9] M. D. Beaudry: "Performance-Related Reliability Measures for Comput­

ing Systems", IEEE Trans. Comput., Vol. C-27, No.6, pp. 540-547

(1978) .

[10] J. F. \lIeyer: "On Evaluating the Performability of Degradable Com­

puting Systems", IEEE Trans. Comput., Vol. C-29, No.8, pp. 720-

731 (1980).

[11] F. A. Gay and M. L. Ketelsen: "Performance Evaluation for Gracefully

Degrading Systerns", in Proc. 9th FTCS, Madison, vVisconsin, pp. 51-

58 (1979).

[12] M. Nakamura and S. Osaki: ::Performance/Reliability Evaluation of a

Multi-Processor System with Computational Demands," Int. J. Sys­

tem Sci ., Vol. 15, No.1, pp. 95-105 (1984).

[13] T. Nakagawa and S. Osaki: "Stochastic Behavior of a Two-Unit Standby

Redundant System", IJVFOR, Vol. 12, No.1, pp. 66-77 (1974).

[14] T. Nakagawa and S. Osaki: (:Markov Renewal Processes with Some

Non-Regeneration Points and Their Applications to Reliability The­

ory", A1icroelectron. Reliab., Vol. 15 , pp. 633-636 (1976).

115

[15] L. Kleinlock: Queueing Systems; Volum e I: Theory, John vViley and

Sons , New York (1975).

116

Chapter 5

A Reliability Evaluation
Software Package Tool for
Markov Models with Many
States

5.1 Introduction

It is of great interest and importance to operate a computing system with

h igh reliabil ity and performance [1,2] . To evaluate such a system, we should

derive analytically and/or numerically reliability/performance measures by

formulating a stochastic model of the system [3-5]. A continuous-time

Markov chain is one of the most powerful stochastic processes to analyze

the system. In particular, we are very much interested in a continuous-time

Markov chain with many states since modeling a Markov chain yields many

states in practice [6]. vVe develop a software package tool for calculating the

transient state probabilities for a continuous-time iVlarkov chain with many

117

states. Several performance/reliability measures can be calculated by using

the state probabilities.

We adopt the randomization technique [7] for calculating the transient

state probabilities as well as the steady-state probabilities. It is assumed

that the transient state probabilities converge the steady-state probabilities

as time tends to infinity under certain assumptions. In principle, it is possible

to calculate the transient and steady state transition probabilities. However,

it is quite difficult to do so if there are many states such as some hundreds

or thousands of states.

For our software package tool, we specify the initial state probability vec­

tor 7r(O). Once the initial state probability vector 7r(O) is specified, we can

calculate the transient state probability vector 7r(t) at time t . However, it

is quite difficult in advance to identify when the transient state probability

vector converges to the steady-state probability vector with enough preci­

sion. vVe propose a new idea of calculating the convergence time ts of the

steady-state probability in advance from the knowledge of the randomization

technique.

In this chapter; we discuss our software package tool and its applications.

In Subsect. 5.2, we discuss the randomization technique for calculating the

transient solutions as well as the steady-state solutions for a continuous­

time Markov chain with many states . vVe propose a new idea of the con­

vergence time which will be implemented in our software package tool. We

118

further present two examples of maintenance policies for a computing sys­

tem in Subsect . 5.3, and show how our software package tool is useful. The

first example is maintenance policies based on retries for a computing sys­

tem, which has been discussed in Chapter 3. Calculating the transient and

steady-state availabilities, we can obtain the effective maintenance policies.

The second example discusses maintenance policies for a hardware and soft­

ware system. We propose two software maintenance policies for a two-unit

hardware system and compare them.

5.2 Mathematical Preliminaries

5.2.1 Randomization Technique

Let us briefly sketch the randomization technique (see Ross [6], pp 141-183).

There are several techniques of calculating the exponential of matrix [8],

since they are quite famous as the eigen value problems of the matrices.

Consider a continuous-time Markov chain with jV states. Let

(5.1)

be the state probabili ty vector at time t, where the initial state vector

(5.2)

is prespecified. Let Q be the, infini tesimal generator for the continuous-time

119

Markov chain . Then: the matrix differential equation is given by

d7r(t) = ()Q
dt 7r t , (5.3)

where the initial condition 7r(O) is given. Note that each element of the

infini tesimal generator is gi ven by

.. = lim P{X(t + 6.t) = jIX(t) = i}
qt] 6. t--+O 6. t '

N

qii = - I:: qij· (i = j)
iij

(i i= j)

It is easy to solve the Matrix Differential Equation (5.3). \Ve have

7r(t) = 7r(O)eQt

= 7r(O)[I + f (Q?n],
n=l n.

where I is an identity matrix.

(5.4)

(5.5)

(5 .6)

Specifying J1 such that J1 = maxi Iqi I, we transform the matrix Q into

the matrix P:

P=Q/J1+I. (5 .7)

vVe notice that the matrix P is a transition probability matrix and the

properties of all states are preserved under the Transformation (5 .7) . Intro­

duce the n-step transition probability vector ¢(n) for a discrete-time Markov

chain with transition probability rnatrix P. That is,

¢(O) = 7r(O), (5.8)

120

¢(n + 1) = ¢(n)P. (n ~ 0) (5.9)

Substituting Equation (5.7) into Equation (5.6), we have

7f(t) = f {(At?n e- l1t . ¢(n)}.
n=O n.

(5.10)

The right-hand side of Equation (5.10) is the infinite series of the product

of the probability rnass function of the Poisson distribution with parameter

At and the n-step transition probability ¢(n).

In practice, instead of infinite series in Equation (5.10) , we adopt the

finite series
T(e:,t) (At)n

7fe:(t) = I: {-I e- l1t . ¢(n)}
n=O n.

(5.11)

where
k (At)n

T(c, t) = min[k : I: _,_e- l1t > 1 - c].
n=O n.

(5.12)

and c is an acceptable error which is enough small. Applying Equation

(5 .11) with the prespecified acceptable error, we can calculate 7fe:(t), which

is the transition probability vector at time t with enough precision. Figure

5.1 shows an illustration of how to calculate 7fe:(t).

5.2.2 Steady-State Solution

If the continuous-time Markov chain under consideration is regular, there

exists the steady-state probability vector 7f whose solution is given by

7fQ = 0, (5.13)

121

e-A.t ¢(n)
n!

~- / r- I--

r-~r-- -- --r-r-
r--

r-
"'"""

>-

r-
~ --~ -

- -
~ I--

f-
l-

I--
I-- I-

->- I-

-I--
I-~

~---I- 1-"'"""
~- -

1-1-
1--

>-- -I- 1->-","""

o 1 2 ... At

Figure 5.1: An illustration of how to calculate 1f€. (t) .

122

--
T(£,t)

n

where

N

L7fi = 1,
i=l

(5.14)

(5.15)

In principle : it is analytically easy to solve the Linear Simultaneous Equa­

tions in (5 .13) and (5.14). However, if we consider many states such as

several hundreds or thousands of states, we have to consider the efficient

method of solving equations (5.13) and (5.14) numerically.

As shown in Equation (5.10), we have to calculate ¢(n). It is easier

to obtain the steady-state vector ¢ = limn --+ oo ¢(n) since the properties of

all states are preserved both for the discrete-time Markov chain and the

continuous-time Markov chain. That is

lim 7r(t) = lim ¢(n).
t--+oo n--+oo

(5.16)

It is evident that ¢ = ¢P. Multiplying ¢ for both sides of Equation (5.7),

we have

¢Q= 0, (5.17)

and Li Oi = 1, which is a unique steady-state vector 7r . Let ns be the min­

imum step number in which ¢(ns) approximates ¢ with enough precision.

That is,

(5.18)

123

where ns is the minimum number of the step n such that

[maxj lcPj (n) - cPj(n - 1) 1] < C2 ,

¢ = {91, cP2, ... , cP N } .

(5.19)

(5.20)

Note that 62 is an acceptable error which is prespecified and enough small.

From these facts, we can calculate ¢(ns) instead of 7r. For the randomization

technique, we have to calcula te ¢(n) with enough steps which is approxi­

mately regarded as the steady-state. vVe should apply ¢(ns) in practice.

5.2.3 Convergence Time of Steady-State Solutions

The randomization technique is available for calculating the transient solu­

tions for continuous-time Markov chain. However, it involves an important

and difficult problem of identifying when the transient solution converges

to the steady-state solution with enough precision . Otherwise , we have to

calculate the transient solution by applying the randomization technique in

Equation (5.10) which is enormous calculations as time tends to infinity.

Let ts denote the convergence time such that

(5.21)

Then we should calculate n(t) for 0 :::; t :::; t s. If we have to calculate n(t)

for t > ts , we should use n instead of n (t) in order to avoid the unnecessary

calculation .

124

From Equation (5.18), we assume

¢(n) = 'IT (5.22)

where n ~ ns· If ts satisfies 'IT(t s) ~ 'IT, almost all the probability mass

functions of the Poisson distribution with parameter !1ts is distributed on n

such that n ~ ns. That is,

(5.23)

Hence we have the following approximate equation

(5.24)

Let ts satisfy

(5.25)

(see Fig. 5.2), where !1t s and .J !1ts are the mean and standard deviation of

the Poisson distribution with parameter 11ts , and k is a positive real constant.

Solving ts in Equation (5.25), we have

2ns + k2 + k.Jk2 + 4ns
Ls = 2/1 '

(5 .26)

125

That is, ts is expressed in terms of ns. In other words, once ns and k are

specified, we can obtain ts in Equation (5.26). Let us consider how to specify

a constant k in Equation (5.25) or (5 .26). It is well-known that the Poisson

distribution is approximated by the normal distribution when the parameter

I1ts is enough large. Noting this fact, we have

180 1 t 2

f(Ce- 2 dt = 0.9999864 .
-4 V 27r

(5.27)

In practice, if we assume that k = 4, Equation (5.23) is approximated by

cc (/lt)n L ~ e- Ats = 0.9999864 .
n=ns n.

(5.28)

which is a good approximation from the viewpoint of round error.

We summarize the convergence time ts. Once ns is specified by calcu-

lating ¢(ns) which is approximately the steady-state probability vector, we

can calculate ts from Equation (5.26). That is, if t > ts, we should use

7r = ¢ instead of calculating 7r (t) for each t. \Ve emphasize that ts can be

calculated in advance when we implement the randomization technique in

our software package tool.

5.3 Applications

5.3.1 Maintenance Policies for a Computing System
with Retries

In this subsection, we discuss rnaintenance policies for a computing system

with retries; by applying our software package tool. This model has already

126

e-;\t ¢ (n)
n!

~ /
'" "-

'" "-
"-

f-. --"-
t'-- f- r-

'" f-

t'-- - ~

'"
f- f-

"- f-

"- - -
'" - - -
~ - ----

f-

_f-
f-f-f-

-- ->->-
-f--

o 1 2 ...

F igure 5.2: The Poisson distribu tion and the discrete-time Markov chain at

t ime ts.

127

n

been discussed in Chapter 3, and is further simplified here.

It is generally considered that a computing system has two kinds of faults

from the viewpoint of maintenance [9]. One is an intermittent fault that is

only occasionally present. The other is a permanent fault that is continuous

and stable. In order to avoid the system downs caused by the intermittent

faults, the computing system execute retries several times. \Ve present a

maintenance policy based on retries for a computing system.

We assume that for a fault occurrence in the system, if retries are ex­

ecuted and do not succeed, we identify the fault as a permanent fault and

remove the fault, and if retries are executed and succeed, we identify the fault

as an intermittent fault, and remove the fault after the same actions are ob­

served lV times. Let the constant failure rate, repair rate for a permanent

fault be A and /-Lo, respectively, and let the repair rate for an intermittent

fault be /-L1, and the failure rate is assumed to be proportional to the num­

ber of successful retries. Let pk+1 be the probability with which the retry

is successful after k times successful retries.

The state transition diagram is shown in Fig. 3, where each state is

defined in the following:

State 0 The system is operating.

State k : Success of retries are observed k times.

State Dk Repair for a permanent fault starts (system down) .

128

State D : Success of retries are observed N times and the repair for an

intermittent fault starts (system down).

J.11

Figure 5.3: The state transition diagram of the computer system.

We can obtain the instantaneous availability Av(t) as follows:

N-I

Av(t) = L Pk(t), (5.29)
k=O

where Pk(t) is the state probability at time t.

Specifying all the parameters, we can numerically calculate the instan-

taneous availability Av(t) . Let A = 0.01, /-Lo = 1, /-L = 0.2, and P = 0.9. We

further specify parameter AT = 1 rv 20. Using our new idea in our software

package tool, it is shown that the steady-state availability Av attains the

129

maximum 0.976 at N = 5 among all possible N. The convergence time ts at

N = 5 is 596. Therefore, we should calculate the transient state availabilities

for 0 :S t :::; 600.

Figure 5.4 shows the transient state avail abi li ty Av (t). It is interesting

that the more N increases, the more the availability Av(t) increases, for

o :::; t :::; 230, in contrast with the steady-state availability.

/

N=SN=3

N=10

/

1.00

.95

ts for N=5

.90~------~----~------~------~------~----~1------I I I
o 100 200 300 400 500 600

t

Figure 5.4: The behavior of Av(t) for each lV.

130

Referring to the above results, we can conclude that we should repair

and remove the intermittent fault after successes of retries are observed 5

times, in operation of the system for a long term. However, in operation of

the system for a short term like for 0 ::; t ::; 200, we should not repair the

intermittent fault.

5.3.2 Maintenance Policies for a Hardw·are-Software
System

In this subsection we discuss a two-unit hardware system, propose two soft-

ware maintenance policies [4], and compare them. Considering maintenance

for a computing system from the viewpoint of software error detection, we

present the following model.

A hardware system is composed of two units. The system can function if

only one of the two units functions . Each unit is assumed to be repairable,

and the constant failure rates and maintenance rates for each unit are as-

sumed to be Aa and /La, respectively.

vVe assume that any software error causes the systern down, and that

there are N software errors latent at the installation of the software system.

The detection time of each software error is assumed to be exponentially

distributed and its detection rate is also constant and proportional to the

remaining number of errors (see Jelinski and lvIoranda [10]). Let As and

/J,s be the detection and maintenance rate for each software error. It is

131

assumed that there is a single repair or maintenance facility. Here a repair

or maintenance is assumed perfect. All the states of the system are defined

as follows.

State On A system starts operating.

State In A hardware failure of a unit takes place and its repair starts.

State 2n : Through state In, a hardware failure of the remaining unit takes

place (system down).

State 3n : Through state On, a software error takes place (system down).

State 4n : Through state In, a software error takes place (system down).

Here n denotes the number of remaining error at that time: where n =

0,1"" ,N.

We are now ready to introduce the following software maintenance poli­

cies through state 4n .

Modell: After the repair completion of hardware, the software mainte­

nance starts.

Model 2 : The software maintenance starts even if the repair of hard ware is

interrupted; the interrupted hardware repair restarts after the software

error rnaintenance completion.

132

From the above definitions, for Model 1 the process can move to state 3n

from state 4n , and for Model 2 the process can move to state In-l from state

4n . The state transition diagram is shown in Fig. 5.5.

I

I~

~A,2~
As J.1s "

--- Modell ---- Model 2

Figure 5.5: The state transition diagram for each model.

vVe can obtain the instantaneous availability Av(t) as follows:

N

Av(t) = IJPOk(t) + P1k(t)] (5.30)
k=O

where POk (t) or P1k (t) is the state probability at time t.

Specifying all the parameters, we can numerically calculate the instan-

taneous availability Av(t) . Let JV = 10 , As = 0.02, /-Ls = 0.05 , Ao = 0.05 ,

133

1.0

.9

.8

.7

.6

.5

and /10 = 0.025. Since ts for Modell is 1003 and ts for Model 2 is 871 by

our software package tool, we should calculate the transient probabilities for

o ::; t ::; 1000.

Figure 5.6 shows the availability Av (t). Just after the installation, the

availability is settling, and attains the minima 0.54 and 0.67 for Models 1

and 2, respectively. It is obvious that the availability of Model 2 is better

and approaches stability faster than that of Model l.

o

Model 2

~ I

I
ts for Model 2

100 200

Model 1.

300 400
I

500 600
I I
700 800

Figure 5.6: The behavior of Av(t) [or each model.

134

ts for Model 1

I I
I

900 1000

t

5.4 Concluding Remarks

In this chapter, we have discussed the randomization technique for calcu­

lating the transient solutions as well as the steady-state probability for a

continuous-time Markov chain. Two models of maintenance policies for a

computing systern are presented by applying our software package tool. Our

software package tool is useful in a case where the Markovian model for a

computing system has many states such as two examples above. In particu­

lar , the convergence time ts is of great importance to calculate the transient

probability solutions in practice. Our analytical results for convergence time

is of great use for analyzing such a computing system, since it is difficult to

identify when the transient solution converges to the steady-state solution

in advance. Our software package tool implemented the analytical results

on convergence time is of great use to calculate reliability/performance mea­

sures for a computing system in practice.

References

[1] A. Avizienis: "fault-Tolerant System", IEEE Trans. Comput., Vol. C-

25, No. 12, pp. 1304-1312 (1976).

[2] D. P. Siewiorek and R. S. Swarz (eds.): The Theory and Practice of

Reliable System, Design, Digital Press, Bedford, Massachusetts (1982).

135

[3] S. V. Makam and A. Avizienis: "ARIES: A Reliability and Life-Cycle

Evaluation Tool for Foult-Tolerant System", in Proc. 12th FTCS,

Santa YIonica, California, pp. 267-274 (1982).

[4] A. Avizienis and J. C. Laprie: "Dependable Computing: From Concepts

to Design Diversity", Proc. IEEE, Vol. 74, No.5, pp. 629-638 (1986).

[5] J. Arlat, K. Kanoun and J. C. Laprie: "Dependability Evaluation of

Software Fault-Tolerance", in Proc. 18th FTCS, Tokyo, pp. 142-147

(1988).

[6] S. M. Ross: Stochastic Processes, John Wiley and Sons, New York

(1983).

[7] D. Gross and D. R. ~\1iller: "The Randomization Technique as a Mod­

eling Tool and Solution Procedure for Transient Markov Processes",

Oper. Res., Vol. 32, No. 2, pp. 343-361 (1984).

[8] C. Moler and C. Van Loan: "Nineteen Dubious Ways to Compute the

Exponential of Matrix", SIAM Rev., Vol. 20, No. 10, pp. 801-836

(1978).

[9] S. Y. H. Su, 1. Koren and Y. K. Malaiya: "A Continuous-Parameter

YIarkov Model and Detection Procedures for Intermi ttent Faul ts" ,

IEEE Trans. CompuL. , Vol. C-27, No.1, pp. 567-570 (1978).

136

[10] Z. Jelinski and P. B. Moranda: "Software Reliabilty Research') , in Sta­

tistical Computer Performance Evaluation, W. Freiberger (ed .), Acca­

demic Press, New York, pp. 465-484 (1972).

137

Chapter 6

Conclusion

This dissertation has been discussed configuration and recovery techniques

for fault-tolerant computing systems. We have presented stochastic models

for the techniques to evaluate performance and/or reliability, and discussed

a numerical calculation method for reliability evaluation.

In Chapter 2, database recovery has been discussed. First, a model

evaluating the recovery mechanism has been presented in order to treat the

changing of a failure rate of the system with time. In this model, one cycle

has been described as the interval from the start of the system operation to

the completion of recovery action after the failure. Impacts of checkpoint

intervals on the availability for one cycle has been estimated analytically or

numerically. Secondly, a model evaluating the recovery mechanism has been

presented in the situation where the road of the system varies with time

in a shape of' a cycle. The density of checkpoint generations, measured in

unit of update pages, has been derived so as to minimize the expected total

139

overhead to completion of a phase.

In Chapter 3, we have been discussed a model for evaluating the improve­

ment on reliability by retries. This model has assumed to manage the system

maintenance with prescribed number of successful retries, taking account of

the behavior of intermittent and permanent failures. The availability and

the mean time between failures in the steady-state, and the availability in

the transient-state have been evaluated analytically and numerically.

In Chapter 4, we have discussed multi-processor systems which have been

assumed to be composed of two processors and buffer(s). Two models have

been proposed from the viewpoint of transaction assignment, and have been

compared using the reliability/performance measures.

Finally, Chapter 5 has discussed a reliability evaluation software package

tool for a system formulated by a continuous-time Markov chain with many

states. The randomization technique, which calculates a transient solution

for the Markov chain, has been used to develop the software package tool.

We have further introduced a new idea of identifying when the transient

solution converges to the steady-state solution in advance. Two examples of

maintenance models for a compu ter system have been shown by our software

package tool.

The main contributions obtained in the dissertation are shown as follows:

(1) A new formula of the system availability for evaluating a database re­

covery mechanisrn is derived in the situation where the failure rate of

140

the system changes with time. Moreover, assuming a constant failure

rate, a formula of the optimum checkpoint interval for a database re-

covery mechanism is derived as a generalized version of the one for

a endless job processing. Numerical examples of these formulae ex­

plain that the rnean time to the failure is the dominatinCT cause of the o

optimum checkpoint interval more than the shape of the failure rate

variation.

(2) In the situation where load of the database system changes with time,

a new model is proposed for determining the sequence of checkpoint

generations measured in unit of update pages so as to minimize the

expected total overhead. \Vhile the previous works discussing such

situations have presented the algorithms with enormous calculation, an

analytically efficient result obtained here yields the optimum sequence

relati vely easily.

(3) A maintenance policy for a computer system is presented, which re­

moves intermittent failures with prescribed number of successful re-

tries. This model enables us to evaluate the reliability in the transient-

state as well as the steady-state.

(4) The impacts of transaction assignment on reliabili ty /performance eval­

uation of multi-processor systems are examined. The analytical and

numerical results imply that when the storage capacit:y of the buffer

141

is small , the uniform assignment is better than the random assign­

ment , and, conversely, when the storage capacity is large, the random

assignment is better than the uniforrn assignment.

(5) A new idea is presented to identify when the transient solution of a

continuous-time Markov chain converges to the steady-state solution

in advance. Once the initial state probability vector and the infinites­

imal generator of the Markov chain are specified , we can calculate the

convergence time ts , and can restrict the calculation for the transient

solution 7r(t) to the range of 0 ~ t ~ ts.

Most results derived in this dissertation are analytical results. Thus,

we can numerically evaluate the models relatively easily, specifying each

parameter of the results. In the numerical illustrations of this dissertation,

we have discussed the mean time to the failure, the mean overhead time for

the maintenance, and so on, based on the results in the References [3, 10] of

Chapter 1.

Generally, in a mathematical modeling, including a stochastic modeling,

various restrictions are imposed on composing a model, comparing with

a simulation modeling. However, once the modeling can be implemented,

a mathematical modeling rather becomes an advantage of a computation

treatment: a sensitivity test, and so on.

Vie finally shows the future research works concerned with the configura-

142

tion and recovery techniques for fault-tolerant computing systems as follows:

• Fuzzy checkpoints or other advanced checkpoints for a database recov­

ery mechanism (Reference [2] of Chapter 2) should be also discussed,

which we have not treated. Adoption of these checkpoints will grad­

ually increase in the actual systems, since they have the advantage of

low overhead during normal operations .

• An e\'aluation model for a recovery mechanism in a distributed sys­

tem: in which their databases are brought to consistent states after the

failure (Reference [25] of Chapter 1), should be examined. Our mod­

els in this dissertation have focused the attention on an independent

database.

• The failure modes of the intermittent failures should be further studied.

In particular, we have not obtained the reasonable description for the

situation where an intermittent failure turns into a permanent failure.

• Two models for two unit multi-processor systems presented in this

dissertation may be the first stages of modeling for generalized multi­

processor systems, that is, a tightly coupled multi-processor system and

a loosely coupled multi-processor system. These systems could be ex­

arnined by sorne evaluation technique for reliability/performance.

• Some approach for a Lota! system modeling is expected to develop,

143

which can take account of some or all configuration and recovery

techniques, fault detection techniques, diagnosis techniques, simulta­

neously.

These works seem to involve many problems to be solved. In particular,

the evaluation for a recovery mechanism in a distributed database system

is presumed to yield very complicated models , since the system has a net­

work which causes the delay and/or interrupt of the data communication.

The first approach for the above works will be a simplified description of

each system component, and selections of the dominating components of

the evaluation measures in construction of the models.

111

PUBLICATIONS LIST OF THE AUTHOR

[1] S. Osaki and S. Fukumoto: "Derivation of the Convergence Time of the

Limiting Probabilities for a Markov Process", Trans . IEICE of Japan,

Vol. J71-A , No.4, pp. 1062-1065 (1988) (in Japanese).

[2] S. Fukumoto and S. Osaki: "Numerical Calculation of Transient Solu­

tions for a Markov Process with Many States", in Abstract of The First

Conference of the Association of Asian-Pacific Operational Research

Societies, p. 2'7, Seoul (1988).

[3] S. Osaki, H. Ohshimo and S. Fukumoto: "Effect of Software Mainte­

nance Policies for a Hardware-Software System", Int. J. System Sci.,

Vol. 20 , No . 2, pp. 331-338 (1989) .

[4] S. Fukumoto and S. Osaki: "Maintenance Policies Based on Retries for

a Computer System": Trans. IEICE of Japan, Vol. J73-D-I, No.2,

pp . 161 -169 (1990) (in Japanese) .

[5] Satoshi Fukumoto and Shunji Osaki: "A Software Package Tool for

Markovian Computing NIodels and Its Applications" , in Proc. of the

IEEE International Phoenix Conference on Computers and Commu­

nications, pp . 872-873, Phoenix, Arizona (1990).

[6] S. fukumoto, N. Kaio and S. Osaki: "Optimal Checkpoin t ing Policies

145

Using the Checkpointing Density", Trans. IPS Japan, Vol. 31, No.6,

pp. 887-893 (1990) (in Japanese).

[7] H. Ohshimo, S. Fukumoto and S. Osaki: "Reliability/Performance Eval­

uation for Multisystems from the Viewpoint of Job Assignments",

Trans. IEICE oj Japan, Vol. E-73, No.8, pp. 1257-1263 (1990) .

[8] S. Fukumoto, N. Kaio and S. Osaki : "Evaluation for a Database Recov­

ery Action with Periodical Checkpoint Generations'; , IEICE Trans. of

Japan, Vol. E-74, No.7, pp. 2076-2082 (1991).

[9] S. Fukumoto and S. Osaki: "A Software Package Tool for Markovian

Computing Models with Many States: Principles and Its Applica­

tions", Stochastic Processes and Their Applications, edited by M. J .

Beckmann, fv1. N. Gopalan and R. Subramanian, Lecture \iotes in

Economics and Mathematical Systems, Springer-Verlag, Heidelberg,

pp. 222-231 (1991).

[10] S. Fukumoto, N. Kaio and S. Osaki: "A Study of Checkpoint Gener­

ations for a Database Recovery wlechanism" , to appear in Computers

fj Mathematics with Applications (1992).

146

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086

