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ABSTRACT

Over the past three decades, the remarkable growth of the semiconduc-
tor industry has been continued, which started from the invention of the
transistor, and now realizes an industry that is all-pervasive in its effect
on modern life. Moore’s law shows a resultant doubling of circuit com-
plexity each year. With the increase of the demand to integrate the whole
system into one VLSI chip, Application Specific Integrated Circuit (ASIC)
has emerged since early 1980s. In addition to the reduction of the design
period and the cost, designing the high performance ASIC with millions of

gate circuits will require a new Computer Aided Design (CAD) method.

This dissertation discusses hierarchical floorplanning for VLSI building
block layout, and proposes a new hierarchical floorplanning method com-

bined with global routing and positioning.

In Chapter 1, the outline of the VLSI layout design is discussed as
a background of hierarchical floorplanning. In particular, placement and

floorplanning in the VLSI layout design are explained in detail.

In Chapter 2, hierarchical floorplanning is explained in detail. First,
conventional hierarchical floorplanning methods are introduced. Then dif-
ficulties of these floorplanning methods are pointed out. Finally, a new
hierarchical floorplanning method combined with global routing and posi-

tioning is proposed, and the outline of this method is mentioned.
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In Chapter 3, some theoretical results concerning the proposed hier-
archical floorplanning method are discussed. The first result is an initial
placement method by the ideal distance, which is a newly introduced con-
cept. The second result is overlap resolution in which relative positions of
modules are preserved. This is formulated as an overlap resolution problem
and proved to be NP — complete. A heuristic algorithm is also given. The
third result is improvement of one dimensional module placement. This is
formulated as the improvement problem and for this problem, an optimum

algorithm and its proof are given.

The proposed hierarchical floorplanning consists of the initial floorplan-
ning and the detailed floorplanning. In Chapter 4, algorithms of each phase
in the initial floorplanning and the detailed floorplanning are explained
with some experimental results, which verify the effectiveness of these al-

gorithms.

In Chapter 5, a prototype system FLORA II, which is constructed
based on the proposed hierarchical floorplanning method, is introduced,
and some experimental results concerning the hierarchical floorplanning
system FLORA 1II are given. Not only floorplans but also final layouts
after global routing is compared with a conventional method.

Finally, the conclusions of this dissertation and the future research works

are discussed in Chapter 6.
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Chapter 1

Introduction

Over the past three decades, the remarkable growth of the semiconduc-
tor industry has been continued, which started from the invention of the
transistor, and now realizes an industry that is all-pervasive in its effect
on modern life. Each time geometries in the physical design of LSI/VLSI
chip are reduced by half, and circuit complexity has potentially increased
by four. Moore’s law shows a resultant doubling of circuit complexity in

each year [Losleben 82].

With the increase of the demand to integrate the whole system into one
VLSI chip, Application Specific Integrated Circuit (ASIC) has emerged
since early 1980s [Iwata 90|. In addition to the reduction of the design
period and the cost, designing the high performance ASIC with millions of

gate circuits will require a new Computer Aided Design (CAD) method.

In the following, the layout design method of VLSI circuits with com-

puter aids is briefly introduced.



1.1 VLSI Layout Design

VLSI design consists of the following 6 designs. (1) In functional design,
a function specification of a VLSI chip is made and validated. (2) In logic
design, this specification is represented by a gate-level circuit consisting
of logic gates such as NANDs or INVERTERs. (3) In device design, a
transistor as a basic element of a circuit is designed. (4) In circuit design, a
transistor-level circuit which implements the gate-level circuit is designed.
(5) In layout design, a mask pattern is designed based on the logic circuit
and the cell library. (6) In testing, test patterns for verifying the function

or performance of the chip are produced and applied to the chip.

The layout design is one of the most difficult and time-consuming tasks
in the VLSI design, and it has emerged as one of the most important
applications of CAD. In order to obtain layouts for very large circuits,

various design styles and strategies of VLSI chip have been proposed.

The gate array approach is one of the most widely used layout styles
for the automation of the custom chip design. In this approach, devices
are placed on the chip in a simple and regular arrangement without wirings
to the other devices, so as to be used in common over the various logic
functions [Ohtsuki 86]. Each logic function is realized as a cell by simply
routing among devices, and a function of the chip is realized by routing

among cells. It takes remarkably short time from the beginning of the chip
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Figure 1.1: Gate array approach.

design to the end of the chip fabrication. But the regular arrangement of
cells in this approach usually makes the redundant layout. An example of

the chip by the gate array approach is shown in Fig. 1.1.

In the standard cell approach, 30 or 40 types of cells which have the
same height are used for various chip design [Ohtsuki 86]. The cells are
arranged in rows, but the width of the wiring channel between the rows
of cells is flexible so that all the connections can be routed completely.
The circuit performance is relatively high, though not to the extent of the
building block approach, which is explained next. An example of the chip

by the standard cell approach is shown in Fig. 1.2.

The building block approach is one of the most widely used hierarchical
layout styles for VLSI layout design. Usually, it is referred to as the general
cell or macro cell layout, which is distinguished from the standard cell

approach. In this building block approach, the whole circuit on a chip
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Figure 1.2: Standard cell approach.

is constructed with predesigned functional modules (blocks), which have
rectilinear shapes and arbitrary sizes, and a routing region [Kani 83|. In
Fig. 1.3, a chip image of the building block approach is shown. In this
figure, p; through pg represent I/O pads, M, through Mj; represent modules,

and the other area represents the routing region.

In this approach, 100% routability can be always achieved if there is no
limitation with respect to the size of routing area [Watanabe 85]. Thus,
the most important goal of the layout design in this approach is to obtain

the smallest chip in short turn-around-time [Kozawa83|, [Markov84].
1.2 Layout in building block approach

The flow of the conventional approach to the VLSI layout design consists
of three stages; placement, routing, and layout verification. Routing is

divided into consecutive two stages; global routing and detailed routing.
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Figure 1.3: Building block approach.

On the other hand, floorplanning has emerged since early 1980s as global
placement which is followed by detailed placement (called positioning). The

details of floorplanning are explained in Chapter 2. (see Fig. 1.4).

A logic circuit, which is an input of the layout design, is usually par-
titioned into modules in the preceding logic design stage. Then the logic

circuit usually consists of a set of modules and a net list.

In the first stage, modules are placed on a rectangular chip, and the

following criteria of the evaluation are adopted.

e Minimization of the estimated wire length (the half perimeter of the

minimum enclosing rectangle for a net)
e Minimization of the number of the nets which cross the cut lines

e Minimization of the number of the nets on the cell borders (the chip

is divided by the grid lines and each divided region on the chip is
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called the cell)

Many approaches to obtaining a good placement have been developed.
Some of these algorithms are briefly explained in the following.

Constructive algorithms:

e In a typical constructive placement method, modules are selected, one
at a time from the modules which are not yet selected, and are placed
so that the wire length is minimum. Once a module is placed on a
certain position, it is not moved. There is another type of constructive
placement which obtains the placement of all modules at a time based
on the force model [Ueda 85]. This model adopts attractive force
to represent the connections between modules and repulsive force to

avoid overlaps.

Iterative improvement algorithms:

Assume that an initial placement of modules is given in advance.

e Pairwise interchange [Watanabe 85]: Two modules are arbitrary se-
lected and they are interchanged. If the placement is improved by

this interchange, it is adopted.

e Force directed relaxation [Ohtsuki 86]: One module is arbitrary se-
lected and the median of the module, which is the position that the

wire length associated to the module is minimum, is calculated and



the module is placed there. If another module exists on that position,

that module is removed and replaced by the same procedure.

e Steinberg method [Watanabe 85]: For a set of modules which are
not connected one another, these modules are replaced so that the
total wire length is minimum. This problem is resolved by using
the maximum matching problem, which is solved in O(|M/|?) by the

network flow algorithm, where |M| is the number of the modules.

In general, a constructive algorithm obtains a solution very fast, and an

iterative algorithm obtains a good solution.

In the second stage, the interconnections among modules are routed
in the routing region. The routing region is usually divided into a set of
rectangular regions, called channels and switchboxes, or a set of L-shaped
regions (Watanabe 85|, [Chen 84]. The terminals around the modules and
I/O pads are connected in these regions. This stage consists of the following
two stages; global routing and detailed routing.

Global routing algorithms:

e In the global routing algorithm for building block approach, the chan-
nels and the switchboxes are represented by the channel graph [Oht-
suki 86] (see Fig. 1.5). On this graph, Steiner trees for each net are
obtained so that the estimated chip size and the total wire length is

minimum. The Steiner tree problem is known to be NP — hard [Gary
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76], and many heuristic algorithms are proposed [Kou 78| [Ohtsuki

86].
Detailed routing algorithms:

e Maze running algorithm [Ohtsuki 86] (see Fig 1.6 (a)): Let a and b
be a pair of terminals of a net. For all cells adjacent to the cell a, the
label “1” is attached. Then for all cells adjacent to the cell labeled
“1”, the label “2” is attached. This procedure is repeated until the
label “k” is attached to the cell b. Then the path is found by tracing

the label in the decreasing order from b.

e Line-search algorithm [Watanabe 85| (see Fig 1.6 (b)): Let a and b be

the terminals of a net located on some intersection point of imaginary
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grids. From a and b vertical and horizontal segments are generated
and expanded until they hit obstacles or the chip boundary. From all
grid points of the lines, new lines are generated and this procedure is
repeated until the line originated from a intersects the line originated

from b.

Channel router [Yoshimura 82] (see Fig. 1.7 (a)): In a channel, termi-
nals of nets are placed on the top and bottom boundaries. All nets in
the channel are routed at a time by the left edge method [Yoshimura
82] or dog-leg router [Deutdch 76]. The reduction of the height of the

channel is the objective.

Switchbox router [Ohtsuki 86] (see Fig. 1.7 (b)): In the switchbox,
terminals of nets are placed all four boundaries. The objective of this

switchbox problem is to achieve 100% routability.

10
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The layout result is usually represented by the geometrical pattern data.
In the third stage of the VLSI layout design, these geometrical data is
checked so as to have no design errors. In the following, two types of the
design errors, which may occur in VLSI layout design, are briefly explained.
(i) Geometrical design error

A particular process technology of VLSI devices has its own geometrical
tolerances, such as minimum spacing between shapes, minimum internal
width of a shape, and so on. A set of such rules is called the geometrical
design rule. Violation of the geometrical design rule usually decreases the
chip manufacturing yield, or results in non-operational VLSI chips.
(ii) Topological errors, or logical errors. The topological errors include
wrong electrical connections between circuit elements, and improper struc-
ture of circuit elements. These errors are often detected as logical errors.

In most cases, these errors are fatal.

As circuit scale increases, a floorplanning process becomes a key process

11



of control in packing density of the object chip. A floorplanner determines
relative positions of modules so that placement and routing will success-
fully be done. In conventional approaches, however, precise estimation of
routability is very difficult since no global routing is actually given by the
floorplanner, and hence a mismatch between two layout stages easily oc-
curs. To alleviate this difficulty, a new floorplanning method which simul-
taneously determines a floorplan, and detailed global routes which directly
correspond to switchboxes and channels, is proposed. In addition, because
precise estimation of routability is possible in the proposed method, shape
and a precise placement of each soft module can be determined simultane-
ously with a floorplan and global routes [Ohmura 90]. The details of this

floorplanning are explained in Chapter 2.

1.3 Organization of Dissertation

This dissertation discusses hierarchical floorplanning for VLSI building
block layout, and proposes a new hierarchical floorplanning method com-

bined with global routing and positioning.

In Chapter 1, the outline of the VLSI layout design is discussed as
a background of hierarchical floorplanning. In particular, placement and

floorplanning in the VLSI layout design are explained in detail.

In Chapter 2, hierarchical floorplanning is explained in detail. First,

12



conventional hierarchical floorplanning methods are introduced. Then dif-
ficulties of these floorplanning methods are pointed out. Finally, a new
hierarchical floorplanning method combined with global routing and posi-

tioning is proposed, and the outline of this method is mentioned.

In Chapter 3, some theoretical results concerning the proposed hier-
archical floorplanning method are discussed. The first result is an initial
placement method by the ideal distance, which is newly introduced. The
second result is overlap resolution in which relative positions of modules are
preserved. This is formulated as an overlap resolution problem and proved
to be NP — hard. A heuristic algorithm is also given. The third result is
improvement of one dimensional module placement. This is formulated as
an improvement problem, and for this problem an optimum algorithm and

the proof of its optimality are given.

The proposed hierarchical floorplanning consists of the initial floorplan-
ning and the detailed floorplanning. In Chapter 4, algorithms of each phase
in the initial floorplanning and the detailed floorplanning are explained
with some experimental results, which verify the effectiveness of these al-

gorithms.

In Chapter 5, a prototype system FLORA II, which is constructed
based on the proposed hierarchical floorplanning method, is introduced,
and some experimental results concerning the hierarchical floorplanning

system FLORA II are given. Not only floorplans but also final layouts

13



after the global routing are compared with the results obtained by a con-
ventional method.
Finally, the conclusions of this dissertation and the future research works

are presented in Chapter 6.

14



Chapter 2

Proposed Floorplanning
Method

This chapter describes the proposed floorplanning method for the VLSI
layout design. Section 2.1 explains the conventional hierarchical floorplan-
ning methods. In Section 2.2, difficulties of the conventional methods are

pointed out. Section 2.3 presents an outline of the proposed method.

2.1 Conventional Methods of Floorplanning

2.1.1 Conventional Floorplanning

Floorplanning is the first stage in the layout of VLSI circuits. In this stage,
the relative positions of the modules to be laid out are determined. Algo-
rithms for the floorplanning are classified into the following 3 types. The
first type includes algorithms in which modules are regarded as points or
squares with the same size [Ueda 85] [Hsu 87] [Kleinhans 88] [Ying 89]. As

an example of such algorithms, a semi-automatic VLSI chip floorplan sys-

15



tem CHAMP [Ueda 85| is briefly introduced. In the paper of CHAMP, the
module level layout design in a hierarchical VLSI layout is called as a chip
floorplan. Given a set of modules and a netlist, the algorithm determines
the center positions of modules, by the attractive and repulsive force method
(AR method), and the subsequent module packing process is performed by

gradually moving and reshaping modules with chip boundary shrinking.

[Example 2.1] An example of the initial placement by AR method is
shown in Fig. 2.1 (a). In Fig. 2.1 (b), (¢), and (d), the intermediate result
1, the intermediate result 2, and the final result of the floorplanning of the
first type are shown, respectively. They are obtained by gradually moving

and reshaping modules with chip boundary shrinking. O

The second type of the floorplanning algorithms is based on a rectan-
gular dual [Maling 82| [Leinwand 84] [Ciesielski 87] [Wimer 88] [Lai 88]. As
an example of such algorithms, the paper [Maling 82| is introduced briefly
in the following. Given a set of modules and a netlist, the algorithm con-
structs macros and their connections in order that macros and the nets are
represented by a planar triangulated graph [Sany 84|, where a macro is the
term given to an implementation of a high-level function. An important
property of the planar triangulated graph is that there exist one or more
rectangular duals which are geometric realizations with rectangular areas
and satisfy the adjacent condition for each graph edge (see Fig. 2.2). Then

for this graph, a rectangular dual which represents the relative positions of

16
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Figure 2.2: Floorplanning process of the second type.

the modules is obtained.

Example 2.2] An example of the planar triangulated graph and its rect-
grap

angular dual are shown in Fig. 2.2 (a) and (b), respectively. O

The third type is based on the min-cut algorithms [Lauther 79| [Tsay
86| [LaPotin 86] [Suaris 89]. As an example of such algorithms, detailed
explanation of the algorithm [Lauther 79] of this type is given as follows.
Throughout the placement algorithm, the layout of a set of modules M
is represented by a pair of mutually dual graphs Gd, = (Vd,, Ed,) and
Gd, = (Vd,, Ed,), where Gd, and Gd, are planar and acyclic directed
graphs containing one source and one sink each (see Fig. 2.3). Parallel
edges are also permitted. There is one-to-one correspondence between the
edges of Gd, and Gd,. Each pair of edges (e?, €!) represents a rectangle

1)

18



with z dimension /(ef) and y dimension I(e) where I(e;) denotes the length
associated with the edge e. Furthermore, each pair of edges is associated
with a subset of modules. The area I(ef) x [(e¥) equals the total area of the

modules in the associated subset.

As inputs, a set of modules M, and a netlist N are given. For each
module M; € M, the area s(M,) is specified. When the algorithm starts,
the two graphs contain one edge each and this pair of edges represents the
set of all modules. The area covered by the modules is assumed to be
quadratic. Therefore {(e¥) = I(€!) = \/m

First, the set of modules is partitioned into two subsets in such a way
that the number of nets incident to modules in different subsets is minimal
and that the difference between total module area in the two subsets does
not exceed a predefined threshold value. In the graph representation this
step corresponds to a splitting of the edge pair into two new edge pairs each
of which represents one of the two subsets. The lengths of the edges in Gd,

are adjusted according to the total cell area in the respective subset.

In the next step the partitioning procedure is applied to both of the
subsets, then the direction of the cut line is changed and the edge lengths

in Gd, are adjusted.

These steps are repeated hierarchically until each edge pair represents

a primitive module.

[Example 2.3] A chip and its graph representation are shown in Fig. 2.3
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(a) and (b). In Fig. 2.3 (c¢) and (d), an example of slicing floorplans and

its graph representation are shown. O

2.1.2 Hierarchical floorplanning with global routing

In order to obtain a small layout after the routing phase, a floorplanning
method with global routing is proposed in [Dai 87] [Dai 89]. In the following,
this method is briefly introduced. In this paper, a rectangular floorplan is
represented by a rectangular dissection D (see Fig. 2.4 (a)). A rectangular
dissection D can be represented by a graph, called the floorplan graph Gf =
(V1, Ef), where Vf is a set of vertices representing the intersection of D and
there is an edge (v;,v;) in Ef if and only if the intersection corresponding
to v; and the intersection corresponding to v; are adjacent. The inner faces

of Gf are called rooms (see Fig 2.4 (b)).

To represent the adjacency relations between rooms of Gf, the inner
dual graph Gf* = (Vf*, Ef*) of Gf is introduced, where V{* is a set of
vertices representing rooms of Gf, and there is an edge (v;,v;) € Ef* if
the room corresponding to v; and the room corresponding to v; share a

common edge (see Fig. 2.4 (c)).

Since the inner dual graph of a floorplan graph represents the topology
of a floorplan, the global routing is executed on connected subgraphs of the

inner dual graphs. Such subgraph is called global routing graph.

In this method, global routing is executed hierarchically so that the
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Figure 2.3: Floorplanning process of the third type.
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(a) D (b) Gf () of™

Figure 2.4: Floorplan graph.

global routing graph at each level is guaranteed to be a partial 3-tree. The
minimum Steiner tree problem in a partial 3-trees can be solved in linear

time.

Given a set of modules, top-down partitioning is executed and the de-
composition tree is constructed during the partitioning. Then based on
the decomposition tree, bottom-up clustering is executed. At each level of

hierarchy, highly connected blocks are grouped together into large clusters.

After forming a tree by hierarchical clustering of modules, a floorplanner
and global router together perform a top-down traversal of the tree as
follows. Given an overall aspect ratio goal and I/O pad goal, at each level
of the tree, the floorplanner searches a simple library of floorplan templates
and considers all possible room assignments which meet the combined goals

of aspect ratio and I/O pads.

[Example 2.4] Floorplan templates are shown in Fig. 2.5 (a), and a
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hierarchical structure is illustrated in Fig. 2.5 (b). m|

2.2 Difficulties of Conventional Methods

In the conventional approach mentioned in Subsection 2.1.1, the layout
design consists of two consecutive stages, that is, floorplanning and rout-
ing [Watanabe 85|. In the former stage, a floorplanner predicts routabil-
ity among modules so that, in the next stage, routing will successfully be
done on a floorplan determined in the previous stage. However, precise
estimation of routability is very difficult since no detailed routing is actu-
ally given by the floorplanner, and hence a mismatch between two layout
stages easily occurs. To alleviate this difficulty, a hierarchical floorplan-
ning method, which merges floorplanning and global routing together in a
hierarchical fashion, was proposed by W.-M. Dai et al. [Dai 87] [Dai 89|,
which is explained in Subsection 2.1.3. This method gives a global route on
a global routing graph, whose nodes and edges do not directly correspond
to switchboxes and channels of the chip layout (see Fig.2.4 (a)), and hence

the difficulty mentioned above is partly resolved, but still remains.

In this dissertation, a new floorplanning method which simultaneously
determines a floorplan, and detailed global routes which directly correspond
to switchboxes and channels, is proposed [Ohmura 88]. In addition, because
precise estimation of routability is possible in the proposed method, shape

and precise placement of each soft module can be determined simultane-
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Figure 2.5: Floorplan templates.
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ously with floorplan and global routes [Ohmura 90].

[Example 2.5] A floorplan of the proposed hierarchical floorplanning
method is shown in Fig. 2.6. In this figure, the conventional slicing floor-
plan, which represents only the relative positions of modules, is shown in
addition to the floorplan of the proposed method, which consists of the
placement (the shapes and the positions) of the modules and the detailed

global routes. O

2.3 Outline of Proposed Hierarchical Floor-
planning Method

2.3.1 Logic circuit L

In the following, a logic circuit L is explained as preliminaries of the pro-

posed hierarchical floorplanning method.

[Definition 2.1] Let M, P and N be a set of modules, a set of I/O pads and
a netlist (a set of nets), respectively. The logic circuit L which is an input
of the proposed hierarchical floorplanning is defined by 4-tuple L=(M, P,
N, G), where

1. a set of modules M consists of a set of hard modules Mh and a set
of soft modules Ms (M = Mh U Ms), and a set of hard modules Mh
consists of a set of center modules Mc which have week connectivity

to the I/O pads and a set of peripheral modules Mp which have strong
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Figure 2.6: Floorplan of the proposed method.
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connectivity to the I/O pads (Mh= Mc U Mp),

2. for each I/O pad p; € P, its position on the perimeter of the chip is

specified,

3. a set of soft modules Ms is partitioned into a set of groups G = { G,

C Ms |1<1 <k} based on their functions, and

4. for each hard module Mh; € Mh, the shape (specified by a convez
rectilinear polygon, defined later in this section) is given, whereas for
a soft module M's; € Ms, only the area s(Ms;) required to implement

Ms; on the chip is specified. O

[Example 2.6] An example of a logic circuit L = (M, P, N, G) is shown in
Fig. 2.7, where M = Mh U Ms, Mh = Mc U Mp, Mc = {Mc¢,, Mc,}, Mp
= {Mp;|1<i<4),Ms={Ms; | 1<i<23)},N={n;|1<i<55},G
= {Gy, Gy, G3}, G, = {Msy, Mss, Msg, Ms;, Msg, Msyy, Msyy, Msy,,
Msys}, Gy = {Ms,, Msy, Msyg, Msyy, Ms,a, Msys, Msyg, Ms 7}, and G,
= {Msy, Ms3, Ms,3, Ms,4, Ms,s, Msy,}, In this figure, a soft module M's;

is denoted by a circle with its identification number. O

In the design of a VLSI chip, it is useful to utilize modules in an exist-
ing VLSI chip which was already designed. In the proposed floorplanning
method, these modules can be regarded as hard modules, whose shape may
be not only a rectangle but also a convez rectilinear polygon defined as

follows.
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Figure 2.8: Convex rectilinear polygon.

[Definition 2.2] A convez rectilinear polygon is a rectilinear polygon RP
such that for any two points ¢; and ¢, on RP which have the same z or y

coordinates, the segment q,g, is entirely contained in the region surrounded

by RP (see Fig. 2.8). O

2.3.2 Problem formulation

For a module M;, a placement L(Mf;) is defined by the set of coordinates of
the corners. For a set of modules M, a placement L(M) is defined by the
set of L(M;) (M; € M). A new floorplanning problem combined with global

routing and positioning is formulated as follows.

[Floorplanning problen FP] Given a logic circuit L = (M, P, N, G),
find a placement of hard modules P(Mh), a placement of soft modules and
their shape P(Ms), and global routes T(N) so that the following objective
function is minimized.

Objective function: Z = s(chip) (area of the chip)
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2.3.3 Outline of the proposed method

The proposed hierarchical floorplanning method combined with the global
routing and the positioning consists of the following two stages.
Stage 1: The initial floorplanning

Stage 2: The detailed floorplanning

In Stage 1, the placement of the hard modules and the center positions
of the virtual modules are determined. In Stage 2, the virtual modules
are repeatedly partitioned into new virtual modules. The global routes of
the nets are also determined in this stage. The flow chart of the proposed

floorplanning method is shown in Fig. 2.9.

The initial floorplanning (Stage 1) consists of 4 phases. First, a set of
virtual module Mg is constructed from Ms based on the group G, where a
virtual module is a unit to place. Then all hard and virtual modules are
regarded as points, and the positions of these modules are determined in
a hypothetically defined chip boundary using the ideal distance. Then the
shapes for hard modules are given, and the orientation of each hard module
is determined so that the total wire length is minimized. In this phase,
overlaps among modules may occur. Then these overlaps are resolved while
preserving relative positions of modules. Finally, the placement of hard
modules is improved in order to provide the shorter routes (see Section

4.1).
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The detailed floorplanning (Stage 2) consists of 6 phases. First, the
rectilinear region for a set of virtual modules Mg is divided into rectangles,
and a new virtual modules Mv, to be placed in each rectangle is determined
by partitioning Mg. Then initial global routing and initial positioning are
executed. The following phases 4,5, and 6 are repeatedly executed until the
number of modules in a divided rectangle will be less than C, a constant
given by the user (see Section 4.2). An execution of the phases 4 through
6 constructs a new level in this hierarchical design. In Phase 4, divide each
rectangle so that congestion of channels and switchboxes in the next level
of hierarchy is reduced. Then in Phase 5, a global route for each net is
obtained in the corresponding route search region. Finally the shape and

the precise position of each module are determinated in Phase 6.

[Example 2.7] The results after each phase are illustrated in Fig. 2.10.

O
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Chapter 3

Theoretical Results

This chapter presents some theoretical results concerning the initial floor-
planning process in the proposed hierarchical floorplanning method. Sec-
tion 3.1 discusses the initial placement of modules by introducing new con-
cept called the ideal distance. Section 3.2 discusses the overlap resolution
which preserves relative positions among modules. And finally, one dimen-
sional module placement is discussed. Each problem is discussed individu-
ally, and the relation of these algorithms and the initial floorplanning are

explained in Section 4.1.

3.1 Ideal distance
3.1.1 Ideal distance

In this subsection, initial placement of modules is discussed. In initial
placement of modules, usually, the following two stage method is adopted

[Yamada 85]. All modules are assumed to have a square shape with the
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same areas. First, relative positions of modules which are regarded as
points are determined (the relative placement). Then modules are assigned
to slots where slots are the rooms on the chip which are divided by the grid
lines (see Fig. 3.1). In the first stage, several methods based on the physical
model are proposed [Ueda 85] [Yamada 85]. In this relative placement, the
total wire length cannot be used directly as its objective because all points
would be converged into one point if the total wire length was adopted
as objective to be minimized. So, its formulation is not given clearly in
most conventional methods. In addition to these facts, conventional algo-
rithms [Ueda 85] [Yamada 85| give the repulsive force and attractive force
to each pair of modules independently. Then modules are not distributed
uniformly in the chip, and unexpected increase of wire length may occur in
the subsequent assignment to the slot. In the following, the ideal distance
is introduced as a new objective for the relative pacement, in which the
attractive effect and the repulsive effect are uniformly taken into account.
The relative placement method based on the ideal distance is applied to

the initial floorplanning. The details are explained in Section 4.1.

The ideal distance is a distance between two modules. It is calculated
from the connectivity between modules and the chip size. The placement
of modules is changed so that, for each pair of modules, the difference
between the ideal distance and corresponding actual distance between two

nodes is minimized. Then strongly connected modules are placed close by
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Figure 3.1: Chip model

and weakly connected modules are placed far away on the chip.

First, an undirected graph G=(V, E) for the logic circuit L* for virtual
modules M* is introduced.
[Definition 3.1] A connectivity graph is an undirected graph G=(V, E)

such that
e V={M; | M; € M* U P}

e E={(M;, M;) | M;, M; € V, and, N;; # ¢ }, where N;; is a set of
nets between M; and M; (all multi-terminal nets are divided into

two-terminal nets in advance), and

e For each undirected edge (M;, M;) € E, a weight w(M;, M;) = Iil

- 18
Ny

attached. O

[Definition 3.2] The connectivity b;; between M; and M; is defined as
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Table 3.1: ID-matrix.

Mh; | Mh, | Mv, | Mv, | M,
"Mh,| 0] 0.35] 0.38 | 0.24 | 0.54
Mh, 0 0| 0.50 | 0.36 | 0.36
My, 0 0 0| 0.14 | 0.86
M, 0 0 0 0 0.72
Mo, 0 0 0 0 0

the length of the shortest path between two corresponding nodes on the
connectivity graph G=(V, E). O
[Definition 3.3] The tdeal distance dp;; between M; and M; is defined
by multiplying the connectivity between M; and M; by a constant C. The
constant C' is determined so that the length of the longest ideal distance of
all pairs of I/O pads is the same as the length of the half perimeter of the
chip. A matrix Dp=|dp;;| which represents all ideal distance between any

pair of modules is called the ID-matriz. O

[Example 3.1] The ID-matrix Dp for the logic circuit L* for virtual mod-

ules in Fig. 3.1 is shown in Table 3.1. O

A rectangle which satisfies the given aspect ratio and has an estimated

area for a given logic circuit is called the chip region.

3.1.2 Relative placement problem IDP

By introducing ideal distance, the relative placement problem can be for-

mulated as follows.
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[Problem IDP] Given a set of modules M* (which are regarded as points)
and I/O pads P, the ID-matrix Dp=[dp;;], and the chip region A, obtain
the positions of modules in the chip region A so that the following objective
function is minimized.

&= Zfor all ij |dp,-,~ ¥ d"ij| (t#17)
where dr;; is an actual distance between M; and M; (M; and M; € M* U
s o O

The procedure IDA for the problem IDP is shown as follows.

[Procedure IDA]
[Step 1] ¢ « j;

[Step 2] For all modules M*, obtain the Manhattan distance dr,; between

M; and all other modules including I/O pads M; € M* U P;

[Step 3] Move module M; € M* to the following new coordinates. In the
equation, Mt = M* U P.

ZMjEAl+ (dp.,—dr,j)*(.’t]——z,’)/dri]
ol |M|—1

; ZMjeM+ (dpij—dri;)*(y;—y;)/dri;
Ho =Y M1

O

This algorithm can treat modules with different size, very easily. The

application to the modules with different size is discussed in Section 4.1.

Initial placement algorithm IP is described as follows.
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[Algorithm IP]

[Step 1] (Initialize) Place all modules in the chip region P by random
placement method [Watanabe 85| (I/O pads p; € P are fixed around

the chip region in advance);

[Step 2] (Relative placement) Call the procedure IDA to obtain a relative

placement;

[Step 3] If the ratio of improvement is more than the given constant Cy,

then go to Step 2;

[Step 4] (Assignment to the slot) Sort modules on y coordinates, then

divide them into groups corresponding to the row of the chip;

[Step 5] Sort modules in each row on z coordinates, and assign each mod-

ule to the corresponding slot; O
The time complexity of the chip is O(|M[®).

3.1.3 Experimental results

In order to evaluate the algorithm IP, the algorithm IP is implemented
on ECLIPSE MV /4000 of Nippon-Data General with C language. In this
experiment, PI method: Pairwise interchange [Watanabe 85], MC method:
Min-cut [Watanabe 85|, and TP method: Min-cut with terminal propaga-

tion [Dunlop 85] are adopted as conventional methods. Data No.1, No.2,
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--+, No.6 are generated randomly by the computer. Data No.8 is a grid
data [Ueda 85| and Data No.7 is generated by eliminating edges randomly
from Data No.8. Then optimum solutions for Data No.7 and No.8 are
known. Table 3.2 (a) shows the input data and the experimental results of
the proposed method. Table 3.2 (b) shows the experimental results of the
conventional methods for the same data.

From these results, our method decreases the total wire length 6.5% to
Pairwise exchange, 28.8% to Min-cut, and 5.3% to Min-cut with terminal

propagation.

3.2 Overlap resolution

3.2.1 Relative position

After the initial placement of modules which are regarded as points, the
real shapes are given to the modules, and some overlaps among modules
may occur. In the conventional layout method, the overlap resolution is not
formulated, and the optimization of the placement in the previous phase
is not preserved during this step. In this section, the overlap resolution
problem which preserves relative positions among modules is discussed.
The overlap resolution method which preserves relative positions among
modules is applied to the initial floorplanning. The details are explained
in Section 4.1.

The shape of a module M; is assumed to be a convex rectilinear poly-
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Table 3.2: Experiments on ideal distance.

(a) Proposed method

| - Data Proposed method
" No. | |[MT|||N|| Opt. wire | Total wire | CPU time |
| length (X) | length (A) (sec.)
1 1| 16| 43 - 87 6.0
|02 16 | 47 - 92 5.0
| 3| 36291 - 1057 12.7
4 | 36 | 295 = 1071 10.7
5 ‘ 81 | 125 - 220 131.7
| 6] 100|100 - 209 108.3
| 7 96 | 99 99 218 203.5
| 8 96 | 144 144 144 122.1
(b) Conventional method
Data Conventional method
PI method MC method TP method
No. | Total wire | CPU time | Total wire | CPU time | Total wire | CPU time
length ()) (sec.) | length (X) (sec.) | length ()) (sec.)
1 89 7.0 94 ) 35 | 91 1.3
2 90 8.4 98 1.1 93 1.3
3 1042 47.1 1144 5.9 1051 7.0
4 1062 53.0 1155 5.8 1060 7.0
5 220 75.8 429 96.4 219 {h
6 226 39.2 446 77.8 203 90.0
7 194 82.6 452 T2l 219 89.1
8 318 99.6 630 110.5 272 127.6
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gon. L(M;), a placement of M;, is defined by the set of coordinates of all
corner points of M; when the module M; is placed on a zy-plane. L(M), a
placement of M, is defined by the set of all L(M,;) (M; € M).

For all possible relative positions of a pair of modules M; and M, on
a placement L(M) are the following 5 cases: (1) “overlap top left of”, (2)
“overlap bottom left of”, (3) “adjacent and left of”, (4) “adjacent and
below”, and (5) “no relation”.

First, the center of a module is introduced in order to define the overlap
between modules. For each module M;, consider the point obtained as the
average of zy-coordinates of corner points of M;. If this point is inside of
M;, the center of M; is defined by this point. If this point is outside of
M;, the center of M; is defined by the nearest (left most, and bottom most,
if necessary) corner points of M; from this point by Manhattan distance

[Watanabe 85]. In the following, the center of M, is denoted by (cz;, cy;).

[Definition 3.4] For a pair of modules M; and M; on L(M), M, is said to
overlap top left of M; if both the conditions 3.1 (a) and 3.1 (b) are satisfied,
and M; is said to overlap bottom left of M; if both the conditions 3.4 (a)
and 3.4 (c) are satisfied.

(Condition 3.4)

(a) There exists a line £ which satisfies the following 1 - 4.

1. £ is a line which is parallel to z axis.
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Figure 3.2: Overlapped and adjacent.

2. £ crosses at right angle with two edges of M, (assume that the

cross points are A and B, and the z-coordinate of A is less than

that of B).

3. £ crosses at right angle with two edges of M; (assume that the
cross points are C and D, and the z-coordinate of C is less than

that of D).

4. For the cross points A, B, C, and D described in (2) and (3), C

1s between A and B or A is between C and D.

(b) [czi < cz; or [cz; = czj and ¢ < j]| and [cy; > cy; or [cy; = cy,; and

$ > I

(¢) [cz; < czj or [cz; = cz; and, ¢ < j]] and [cy; < cy; and [cy; = cy; and

£ < 7l O

[Example 3.2] An example of overlapped modules M; and M; are shown

in Fig. 3.2. In this figure, M; overlaps top left of M;. a
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[Definition 3.5] M; is said to be adjacent and left of M; if a pair of
modules M; and M, which are not overlapped each other, satisfies the
following condition 3.5.

(Condition 3.5) There exists £’ which satisfies the following (1)-(3).
(1) 2 is a segment which is parallel to z (y) axis.

(2) 2 crosses at right angle with an edge of M; and an edge of M. As-
sume that the cross points with edge of M; and M; are E and F,

respectively, and the z (y) coordinates of E is less than that of F.

(3) For arbitrary M,, (m # j, k) which has the center such that cz; <
Ty < czk (cy; < cym < cyi), £ does not cross the edge of M,,

without the parallel edge to y(z) axis, or end point of an edge.

O
Next, adjacency point is defined for a pair of modules which are adjacent

each other.

[Definition 3.6] For a pair of modules M; and M, assume that M, is
adjacent and left of (below) M. Then pay attention to the segment ¢
which is shortest and has minimum y (z) coordinates in all the segments
satisfying the condition 3.2. Adjacency point of M; (M;) to My (M;) is
defined by E (F'), which is the intersection point of this segment £’ and the
edge of M; (M;). Intersection points on E and F are denoted by (azj,

ay;x) and (azy;, ayk;), respectively. 0
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[Example 3.3] An example of a pair of modules M; and My, which are
adjacent, is shown in Fig.3.2. In this figure, M; is adjacent and left of M;.
E and F are the adjacency points of M; to M and M; to M;, respectively.

O

[Definition 3.7] For moving operations of each module in L(M), only
parallel displacement is allowed. If the following conditions 3.7 (a) and (b)
are satisfied, L(M)’ is said to preserve relative positions in L(M).

(Condition 3.7)

(a) For a pair of modules M; and M; in L(M) such that M; overlaps top
left (bottom left) of M, the orders on the z axis and y axis of centers

are preserved on L(M)’.

(b) For a pair of modules M; and M; in L(M) such that M; is adjacent and
left of (below) M;, the orders on z axis (y axis) of adjacency points

are preserved in L(M)’.

3.2.2 Problem ORP

A given placement is called the initial placement L;y(M), and a placement
after the resolution is called the final placement Lp(M).
Manhattan distance between centers of M; and M; € M such that M,

overlaps top left or bottom left of M; in L(M) is denoted by d(M;, M;|L(M)).
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The area of the minimum rectangle which contains all the modules in L(M)
is denoted by A(L(M)).

In addition a set of pairs of modules M; and M;, such that M; overlaps
top left or bottom left of M; in L(M), is denoted by OL(L(M)), where
OL(L(M)) = {(M;, M;)|M;, M; € M, and, M; overlaps top left or bottom
left of M;,}.

[Definition 3.8] The Mowving distance (Manhattan distance) from L;(M)
to Lp(M) is defined as follows.
D(Li(M), Lr(M)) = Z(M,-,M,)EOL(L[(IVI)) | d(Mi;Mj|LF(M))
— d(M;, M;| 1.(M)) | O
A problem of resolving overlaps of convex rectilinear modules is defined

as follows.

[Problem ORP] Given a set of modules M (convex rectilinear polygon),

L;(M) in which overlaps of modules exist and, two positive constants c,

and c,, obtain Lp(M) which satisfies the following condition (i) and (ii),

and minimize z = ¢;- D(L;j(M),Lp(M)) + c2 - A(Lp(M)).

(Condition i) OL(Lp(M)) = ¢

(Condition ii) Lp(M) preserves relative positions in L;(M). O
Lr(M), which is a solution of the problem ORP, preserves relative po-

sitions in L;(M) and the sum of the moving distance from L;(M) to Lg(M)

and area of Lp(M) is small. Then the optimization of area and relative

positions among modules is reflected to the final placement.
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3.2.3 NP-hardness of ORP

The computational complexity of the problem ORP is given as follows.
In the proof of NP — hardness of the problem ORP, the problem 3-PAT,
which is known to be N P-complete, is shown to be reducible to the decision

problem DR corresponding to the subproblem of the problem ORP.

[Problem 3-PAT] A positive integer E, a set F = {fi|1 < k < 3m}, size
s(fx) for each fi € F, where s( fi) is a positive integer, E/4 < s(fi) < E/2,
(X s,er s(fx) = mE), are given as inputs. Is there partition Fy, F3, - -, F,,,
|F,| =3 (1 <y < m)of F which satisfies the following condition P1 ?
(Condition P1) > cp, s(fi) = E (1 <y <m) O
As a subproblem of the problem ORP, consider the problem in which
the shape of modules is restricted to rectangles and the conditions that ¢,
=0, ¢, = 1 are added. The decision problem DR for this problem is defined
as follows.
[Decision problem DR] A set of rectangular modules M, initial place-
ment of modules L;(M), constant C, are given as inputs. Is there final
placement Lp(M) of M which satisfies the following conditions D1 - D3 ?
(D1) OL(Le(M)) = ¢
(D2) Lp(M) preserves relative positions in L;(M)
(D3) A(Lr(M)) < C O
In the following, the width and the height of a module M; are denoted

by w(M;) and h(M;), respectively. For simplicity, the placement of M; is
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denoted by L(M;) = (=, v;), utilizing the coordinates (z;,y;) of the bottom

left corner of the rectangular module M;.

[Lemma 3.1] The decision problem DR is NP — complete.
(Proof) It is trivial that the decision problem DR belongs to the class N P.
The polynomial transformation from the problem 3-PAT to the problem
DR is shown as follows. As an instance, assume that a positive integer E,
a set F = {fi|1 <k < 3m} and the size s(fi) for each f; are given. Based
on this, an instance of the problem DR is constructed as the following (i)
- (iii).
(i) Let Mo and M; be {Mp, My, My, Mg} and {M;|1 < k < 3m},
respectively. Then a set of modules M is constructed by M = My U M;.
The width and the height of each rectangular module are constructed

as follows. w(Mgp) = 16mE, h(Mp) = 4mE, w(Mr) = 16mE, h(Mry)

Il

40mE, w(My) = 8mE, h(ML) = 4mE, w(Mg) = 4(2m — 1)E, h(Mg) =
4mE, w(My) = 4s(fx), h(M;) = 4E.

(ii) The initial placement of modules L;(M) is constructed as follows (see
Fig. 3.3). Li(Mp) = (0,0), Li(Mr) = (0,6mE), Li(M) = (2mE,3mE),
Li(Mg) = (4(m+1)E,mE), Li(M;) = (12mE+ Y, 4s(fi), 14mE +4(k—
1)E).

(iii) C = 768 (mE)>.

The above transformation can be executed in polynomial time on [M]|.

In the following, equivalency of the instance of the problem 3-PAT and the

49



46mE
o5
26mE 4 M My O
"
6mE
3mE- M
R
mE 1 Mg

omE 4(m+1)E 1 2mE 16mE

Figure 3.3: Initial placement Li(M).

instance of the problem DR is proved.

First, assume that the solution of the problem 3-PAT is true. Then,
there exists partition of F which satisfies the condition P1. Assume this
to be {F\,F, -, F,.}, Fy ={ fay-1)+= | 1 < z < 3 }. Without loss of
generality, module Mj(,_y)4, corresponding to fs(y—1)+. is denoted by M.
The placement of My, Mp, My, My,andMp is constructed as follows (see
Fig. 3.4 and Fig. 3.5, where Fig. 3.5 shows the detailed placement of the
region denoted by oblique lines in Fig. 3.4), i.e.:

Lr(Mr) = (0,8mE), Lp(Mp) = (0,0), Lp(ML) = (0,4mE), Lp(Mg) =
(4(2m + 1)E,4mE), Lp(M]) = (8mE+ (i<, 45(fay—1)+i), 4mE + 4(y —
1)E))

It is obvious that Mg, My, My, andMp are not overlapped each other
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Figure 3.5: Optimum placement of M.
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(see Fig. 3.4). Similarly, each M; is not overlapped (see Fig. 3.4). Next,
it is shown that module My is not overlapped with other modules. The
height and the width of the region surrounded by Mg, My, M and My are
4E and 4mE. The width of the region of M placed as mentioned above
is 3.s,er, 4s(fi) = 4E. In addition, the height of the region of M is 4mE
because the height of each M is 4E. Then each M can be placed without
overlaps as Fig.3.4, and the condition D1 is satisfied.

Next, it is shown that relative positions are preserved. For the relative
positions for Mg, My, My, Mg, and M} on L;(M), only the following (1)-(8)
hold. (For (M, M}), (Mg, M), (My, My), relative position does not hold).
(1) Mr overlaps top left of each My. (2) My overlaps top left of Mg. (3)
M overlaps top left of Mp. (4) M overlaps bottom left of Mr. (5) Mp
overlaps bottom left of Mg. (6) My is adjacent and below My. (7) Mp is
adjacent and below Mr. (8) Mp is adjacent and below M;.

Consider the modules My and M on the initial placement (Fig.3.3). My
overlaps top left of each M. On the final placement (Fig. 3.4), the coor-
dinates of the center of My are czy = 8mE, cyr = 28mE. The coordinates
of the center of each M}, are 8mE < czy < 4(2m+1)E, 4mE < cy, < 8mE
(Fig. 3.5). Therefore czp < czy ; cyr > cyx, and relative positions are
preserved. Preservation of relative positions for other modules is shown
similarly, and the condition D2 is satisfied.

Moreover, the condition D3 is also satisfied because A(Lp(M)) = 768
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(mE)?, C = 768 (mE)?. Therefore, the solution of the instance of Problem
DR is true.

Next, assume that the instance of the problem DR is true. First, it is
shown that only the placement shown in Fig. 3.4 satisfies the condition D1
- D3. Because C = 768 (mE)?,

A(L(M)) < 768(mE)? (1)
must be satisfied by the condition D3. By the condition D2, concerning

with the coordinates of the centers and the adjacency points,

cxr < CIy (2)
cyr < cyr (3)
CTr < CTR (4)
cyr < CYL (5)
Ty, < CTp (6)
cyp < cyr (7)
crxp < cxr (8)
cyr < cyr (9)
czp < CTg (10)
cyp < cyr (11)
aypr < AYrR (12)
aypr < ayrp and (13)
aypr < ayrp (14)

must be satisfied.
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First, consider Mg, My, M, which satisfy the condition D1. From (12)
and (13), Mg and Mp must be placed below Mr on final placement without
overlaps. From (16) and (11), regarding with Mgr and Mp, two cases, that
Mp is placed left of My and Mg is placed below Mp, is considered. For

the first case,

h(Lr(M))

vV

h(Mr) + maz{h(Mg), h(Mp)}

[V

44mE,

=
=~
i
5
vV

maz{w(Mr), w(Mg) + w(Mp)}

vV

4(6m — 1)E,

A(Lr(M)) = h(Lp(M)) * w(Lp(M))
= 176(6m — 1)mE*

> 768(mE)*

then, it contradicts the assumption that (1) is satisfied.

On the other hand, for the second case,

h(Lr(M)) > h(Mr)+ h(Mg)+ h(Mp)

> 48mE(15)

w(Lp(M)) > maz(w(Mr),w(Mg),w(Mp))

> 16mE(16)
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A(Lr(M)) = h(Lr(M)) * w(Lr(M))

> 768(mE)*(17)

then, (1) is satisfied if and only if the equal signs in the expressions (15)-(17)
are valid (see Fig. 3.4).

Next, consider M} which satisfies D1. M must be placed next to Mp,
and they must be placed below Mr and above Mp in order to satisfy (1).
From (4), My can be placed only left of Mg, and My, Mg can not be placed
outside the width of Mr and Mg (see Fig. 3.4).

Next, consider M; which satisfies the condition D1. From (3) and (14),
M, must be placed in the region below My and above Mg, and from (2) and
(8), M} must be placed right of M. Now, the width of Mr minus the width
of My and My (i.e. the sum of the width of the region shown by oblique
lines in Fig. 3.4) is4E. And the height of the region shown by oblique lines
is 4mE. Then, M, is placed within the region that has the width 4E and
the height 4mE. The total area of My is ¥, cr 4s(fi) * 4mE = 16(mE)>.
This is the same as the total area of the region 4E x 4mE = 16(mkE)>.
Therefore My, Mg, and M; must be placed between Mz and Mp, and with
no dead space. My must be placed left of Mg and M;. Then the left edges
of My, My, and Mg are aligned.

Therefore, only the placement shown in Fig. 3.4 is basically allowed
in order to satisfy the conditions D1-D3. But M; has the following three

ways to be placed into the region shown as oblique line: (1) all M; are
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placed between My and My (see Fig. 3.4), (2) all My are placed right of
Mg, (3) M, are placed left and right of Mg. In the following, the case (1)
is discussed, but the cases (2) and (3) can be discussed in the same way.
Based on the placement of Fig. 3.4 (placement of M} shown by oblique
lines), determine the partition of F'. From above discussion, M are placed
with no dead space in the region that the width is 4F and the height
is 4mE. Because the height of each M, is 4E, and the width is 4s(fi)
(E < 4s(fr) < 2E), M, are placed on m rows. And for each row, just
3 modules are placed. Then, if there are 3 modules b,, b3 and b, in the
yth row (1 < y < m), F, is constructed as F, = { f,, f3, f, }. Because
Y1, 4s(fix) < 4E, the condition P1 is satisfied, and the solution of the
problem 3 — PAT is true. O
[Theorem 3.1] The problem ORP is NP — hard. O

3.2.4 Heuristic algorithm ORA

A heuristic algorithm for the problem ORP (Algorithm ORA) is explained.
Two weighted digraph G,(L(M)) = (V,, E,) and G,(L(M)) = (V,, E,)
are introduced, in order to represent the relation of positions of modules
on L(M).
[Definition 3.9] Given a placement L(M), the placement graph in z direc-
tion for L(M) and imaginary modules M, and Mg, where M; and Mg are
left to L(M) and right to L(M) respectively, are defined by the following
weighted digraph G4(L(M)) = (V,, E,).
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(i) Vy =M U {M;, Mz}

(i) Ex = {(M;, M) | M;, M; € V,, and, | M; is adjacent and left of M;,
or, M; overlaps top left or bottom left of M; | }

(iii) For each directed edge (M;, M;) € E,, a weight is attached as a la-

bel. This label is represented by w,(M;, M;), the value of this is

determined as follows.

Method of determination of a label: Consider the line £ which is parallel
to z axis and intersect the edge of M; and M;. Among the edges which
intersect the line £, the value of the left most edge on M;, and the right
most edge on M; are assumed to be z,(7), andz,(1). And AL = z,(7) - z(1)
(AZ takes minus value). Then w,(M;, M;) is the minimum value of AZ for
all possible line £. O
[Definition 3.10] Given a placement L(M), the placement graph in y
direction for L(M) and imaginary modules Mg and Mr, where My and Mr
are below L(M) and above L(M) respectively, are defined by the following
weighted digraph Gy(L(M)) = (Vy, E,), like Definition 3.9. O
[Example 3.4] An initial placement L;(M) and introduced four imagi-

nary modules are shown in Fig. 3.6. The corresponding placement graph

G4 (L;(M)) is shown in Fig. 3.7 0

Algorithm ORA consists of the following three phases. In Phase 0, for

the given initial placement L;(M), the placement graph and sets OL, and
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Figure 3.6: Initial placement.

Figure 3.7: Placement graph G;(M).
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OL, are constructed. OL, and OL, are partition of a set OL(L(M)), and
jwy (M;, M)}, OLy(L(M)) = OL(L(M)) - OL,(L(M)).

In Phase 1, overlaps of pairs of modules which belong to OL, are re-
moved by moving modules in z direction. The obtained placement is called
the intermediate placement Ly(M). In Phase 2, overlaps of pairs of mod-
ules which belong to OL, are removed by moving modules in y direction,
and obtain final placement Lp(M).

Algorithm ORA is shown as follows.

[Algorithm ORA|]
(Phase 0)

[Step 1] For the initial placement L;(M), construct two placement graphs
G4 (Li(M)) = (Vix, Ery), Gy(Li(M)) = (Viy, Ery), and obtain the sets
OL,, OLy;

(Phase 1 : Resolution in x direction)

[Step 2] Among edges (M;, M;) € Ey, for all (M;, M) € OLy, the weight

we, (M}, My) is set to 0 ;

[Step 3] Calculate the length £,; of the shortest path from My to each M;
on G,(L;(M)), and
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move each M; to z direction for the length £,;. The obtained inter-

mediate placement is denoted by Ly(M).
(Phase 2 : Resolution in y direction)
[Step 4] For Ly(M), construct the placement graph Gy(Las(M)).

[Step 5] For Gy(Ly(M)) = (Vmy, Engy) and Gy(Ly(M)) = (Vyy, Eyy), con-
struct the placement graph G'y(Ly(M)) = (Vyr, Enyr) as follows.
VMy’ - VMy — Vly, EMy' = EMy ) Ely- ;

The weight wpys,(M;, M}) is determined as follows.

1. If (M;, My) € Eyy - Enyy, and wy, (M, My) < 0 then wyg, (M;, My)
= CYr - CY;

2. If (M;, M;) € Eiy N Engy, and wy, (M;, My) > 0, and wyg, (M, M) >
0 then wary(Mj, My) = min{wr,(M;, M), war, (M;, My)}

3. If (M, My) € Ejy, N Enyy, and wyy, (M, M) < 0, and wag, (M, M) >
0 then wps, (M;, M) = min{cyx - cyi, war, (M;, Mi)}

4. otherwise wysy (M;, My) = war, (M;, My)

[Step 6] Calculate £, the shortest path from Mp to each M; on G}, (Ly(M)),
move each M; to y direction for £,;. The obtained placement is the

final placement Lp(M); O

'In a special case, a direct edge has different direction on Gy (Ly(M)) and Gy (Li(M)).
In this case, move the module to the place where this has no edge on Gy (Ln(M)), then
go to Step 4. There is no effect to the computational complexity.
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[Example 3.5] Consider the example of the algorithm. In Phase 0, the
placement graph Gy(L;(M)) shown in Fig. 3.7, and OL, and OL, are
obtained. The intermediate placement obtained in Phase 1 is shown in
Fig. 3.8. Finally, the final placement Lr(M) obtained in Phase 2 is shown
in Fig. 3.9.

Algorithm ORA obtains the feasible solution in O(m?), where m is the
number of nodes, which construct modules, in L;(M).

In order to evaluate the performance of the proposed heuristic algo-
rithm, the algorithm ORA is implemented in the C language on an ECLIPSE
MV /4000 (0.6MIPS) of Nippon:Data General. The results of the experi-
ments are summerized in Table 3.3 and Table 3.4. Input data is randomly
generated both the shape (convex rectilinear polygon) and initial place-

ments for them.
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Table 3.3: Experimental result 1.

Data Opt. | Algorithm ORA | Ratio

No.| M| | |V|| Z, Z | CPU time | Z/2,
(sec.)

ERENE IR AR 1.39 1.15

| 2 4 26 79 | 101 1.63 1.28

3 4 30 26 28 LB7 1.08

4 5 34 29 38 2.21 1.31

5 5 38 36 39 2.31 1.08

62




Table 3.4: Experimental result 2.

Data Algorithm ORA
‘No. | M| [[V] CPU time
(sec.)

6, 20| 98 4.382 L
7| 25124 5.680
8| 30150 7.797
9| 35178 9.318
10 | 40 | 206 9.993

In Table 3.3, the comparison between the solution z obtained by the
algorithm ORA and the optimum solution z;, as an evaluation of the algo-
rithm ORA for small data, where |M| is the total number of modules, and
|V| is the total number of nodes which construct the modules. 2z and 2,
are the value of objective function, and the optimum solution obtained by
branch and bound method, respectively, when ¢; = 1, ¢, = 1. From Table
1, the difference from the optimum solution is within only 18% .

In Table 3.4, the cpu time of the algorithm ORA for practical data is
shown. |[M| and |V| are the same as those in Table 3.3. For 40 modules,
the solution is obtained within 10 seconds, that is a practical time.

From the result of experiments, the algorithm ORA is considered to be

an efficient heuristic algorithm.

63



3.3 One Dimensional Module Placement

3.3.1 Problem MPP

In VLSI layout design for building blocks, to place I/O modules which are
placed in the peripheral area of the chip optimally is important to obtain
a small chip. In this subsection, an improvement of the placement of those
I/O modules is discussed. The algorithm for this problem is applied to the
initial floorplanning. The details are explained in Section 4.1.

As a basic research for the improvement of the placement, the following
assumptions are made. The shape of all peripheral modules is a rectan-
gle, and those modules are placed on the z axis. In the following, these
peripheral modules are simply called modules and denoted by M. The po-
sitions of other modules and I/O pads are fixed, and these fixed terminals
are called ezternal terminals. A set of external terminals is denoted by Te.
At first, each net n; € N is assumed to consists of two terminals, but it is
extended to multi-terminals later in this subsection. A logic circuit LC for
the problem in this subsection is represented by 3-tuple LC=(M,Te,N).

In the following, a one dimensional module placement on z axis for the
logic circuit LC = (M, Te, N) is considered. When M; € M is placed on
r axis, the z coordinate of the left side of M; is represented by L(M;).
Assume that modules M; € M are placed according to the increasing order
of their subscripts. Then the placement of M is represented by L(M) =

(z1,Z2,  ,Z,). The coordinates of the left most side and the right most
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side of L(M) are represented by LB(L(M)) = z;, RB(L(M)) = z,, + w(M,,).
Because one dimensional placement of modules is discussed, the wire length
of a net n; in terms of the half perimeter, which is often utilized in VLSI
placement design, is represented by the difference of the z coordinates of
two terminals of n;, and it is denoted by Zz(n;). The wire length of the
net n; with a weight ¢; is denoted by ¢; - Zz(n;).

[Problem MPP] A logic circuit LC=(M,Te,N), and an initial placement
Li(M) of modules are given as inputs. Each net n; € N consists of two
terminals, one of which is a terminal ¢; of a module and the another is an
external terminal te;. In the initial placement L;(M), modules are placed
on z axis according to the order of M;, M,, ---, M,, from left. Then find
the placement L(M) on z axis which satisfies the following conditions i)
and ii), and minimizes the objective function Z=3", o ¢;- Zz(n;), where ¢;
is the weight of the net n; and Zz(n;) is the distance of two terminals on z
axis.

(Condition i) Modules are not overlapped each other.

(Condition ii) Order of modules on the x axis is preserved.

[Example 3.6] For an example of the problem MPP, the initial placement
L;(M) with Z= 185 is shown in Fig. 3.10 (a). For this initial placement, the
final placement with the objective function Z= 175 is shown in Fig. 3.10
(b). O
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Figure 3.10: Example of Problem MPP.
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3.3.2 Optimum algorithm MPA

In the following, the algorithm MPA for the problem MPP is explained.
First, a concatenated module which is an important concept to describe the
algorithm is explained. A sequence of modules which are placed with no
space between them can be regarded as a hypothetical module. This module
is called the concatenated module and denoted by CM < j k > = {M;,
My, -+ Mk} if it consists of k modules from M. Next, a terminal
sorted sequence is explained. D(te;) is the z coordinate of the external
terminal te;, and d(¢;) is the relative z coordinate of the corresponding
terminal ¢; of CM < j,k > from its left side. Then [ for CM < 5,k > is
defined by D(te;) — d(t;). The terminal sorted sequence for CM < j, k >
is a sequence of [; which is sorted in nondecreasing order, and is denoted

by lejx> = (1), lx(2); - ) lx(r)), where 7 is the number of the nets.

In the following, the placement of a subset M’ = {M;, M., -,
M1} (1 <37 <j+k < m)of Mis denoted by L(M’) = (z;, zj41,
.-+, Tj4k—1), where each z; is the z coordinate of the left side of the module
M; in L(M’). And the objective function related to the nets which connect
the modules in M’ is denoted by Z(L(M’)). The algorithm MPA is shown
as follows. The precise description of the procedure PLM and BP in MPA

is shown in Fig. 3.11.

[Algorithm MPA]
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[Step 1] For all M; € M, execute the following Step 2 - Step 3.
[Step 2] Regard M; as CM < 1,1 >, and construct I; ;5 for CM < 1,1 >;

[Step 3] Calculate L(CM < r,w >) by calling the procedure PLM(CM <

LIS (P u—1=14); |

The algorithm MPA obtains the placement L(M;) according to the or-
der of M;, M,, ---, M,,, as follows. Consider M; to be a concatenated
module CM < 1,1 >. Then calculate the terminal sorted sequence I.; ;>
for CM < 1,1 >, and call the procedure PLM. PLM(CM < 1,1 >) returns
the placement P(CM < r,w >) of the concatenated module CM < r,w >
(r+w — 1 =1) which includes CM < 1,1 >, while repeating the following

operations.

In the following the operations in the procedure PLM is explained, first.
Then the operations in the procedure BP which is called by the procedure
PLM is explained. Given a concatenated module CM < j,k >, the pro-
cedure PLM returns the placement which minimizes the objective function
for CM < 7,k > and a set of concatenated modules PM which are already
placed. Let us assume that the right most concatenated module in PM to
be CM < ryu > (r+u = j). If there does not exist CM < r,u > mentioned
above, the procedure PLM determines the placement of CM < 7,k > by
the procedure BP, and it halts. In the following, the case that there exists

CM < r,u > mentioned above is explained.
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Procedure PLM(CM < j,k >)
begin
P(CM < j,k>) — BP(CM < j,k >);
/* Let CM < r,u > be the right most
concatenated module in PM. */
if LB(P(CM < j,k >)) < RB(P(CM < r,u >)) then
begin
PM « PM - {CM < r,u>};
Construct CM < r,w > (w=u+k) by concatenating
CM<r,u>and CM < j,k >;
Update I, »> by merging I, > and l¢;k>;
P(CM < ry,w >) = PLM(CM < r,w >);
return P(CM < r,w >)
end
else
begin
PM « PM U {CM < j,k >};
return P(CM < r,w >)
end
end

Procedure BP(CM < j,k >)

begin

/* Let l(jf,k) = (lx(l)) S lr(r))
be a terminal sorted sequence of CM < 7,k > */

Obtain the subscript 7(q) such that
Ccx)F -+ Fexig) = (Cri)t -+ Fex(r) / 25
return I (q)

end

Figure 3.11: Procedure PLM and BP
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First, obtain the placement L(CM < j,k >) for CM < j,k > by the
procedure BP independently of concatenated modules in PM. Then the
following two cases occur.

i) LB(L(CM < j,k >)) < RB(L(CM < r,u >))

First, remove CM < r,u > from PM. Then obtain the new concatenated
module CM < r,w > (w = u + k) by concatenating CM < r,u > and
CM < j,k >. Next, obtain the terminal sorted sequence I, ,> for CM <
r,w > by merging l,,> and Ic;z>. Finally, obtain the placement L(CM <
r,w >) of CM < r,w > which includes CM < j,k > by repeatedly calling
the procedure PLM, and return L(CM < r,w >).

ii) LB(L(CM < j,k >)) > RB(L(CM < r,u >))
Add CM < j,k > to PM, and return L(CM < r,w >).

Next, the operations in the procedure BP is explained. Given a concate-
nated module CM < j,k >, the procedure BP obtains the subscript n(q)
which satisfies the following condition C1, by the terminal sorted sequence.
Then return L(CM < j,k >) = l;(q) as the placement of CM < 7,k >.
[Condition C1] n(g) (1 < g < 7, where 7 15 the number of terminals
of CM < j,k >) is the minimum subscript which satisfies the following
inequality.

Cr(1) T Cx(2) + + Ca(g) 2 (Cx(r) + Cxz) +** + Cx(r))/2

[Example 3.7] Assume that M;, M,, -, M; are already placed as CM <

1,3 >, CM < 4,1 >, CM < 5,3 > by Algorithm MPA. And now M; is

70



placed as CM < 8,1 >. The weights of nets are cg=2, co=5, c2=c,3=3,
and 1 for other nets. Figure 3.12 (a) shows the placement P(CM < 8,1 >)
which is determined by the Procedure BP. Since LB(P(CM < 8,1 >)
< RB(P(CM < 5,3 >), the procedure concatenates these modules and
obtains CM < 5,4 > (Fig. 3.12 (b)). Repeat these steps and finally

P(CM < 4,5 >) is obtained as the result of PLM(CM < 8,1 >) (Fig. 3.12
(c)). O

3.3.3 Optimality of MPA

Next, the time complexity of the algorithm MPA is explained. The pro-
cedure BP takes O(|N]|) time. The procedure PLM without the procedure
BP and the portion which calls PLM itself, takes also O(|N|) time. Because
PLM calls BP and PLM itself at most 2 x |[M| - 1, whole PLM takes O(|N|-
|[M|) time. The calculation of terminal sorted sequences takes O(|N|-log|N|).
Then the time complexity of the algorithm MPA is O(|N| - (M| + log|N|)).

In the following, the correctness of the algorithm MPA is proved. For
L(CM < j,k >), let a=LB(L(CM < j,k >)). Then Z(L(CM < j, k >)) is
represented as fla) by the terminal sorted sequence I ;.

fla)= Crqy) + la—lxl+ - +Cx(r) - [a—lx(r)] e fl)

[Lemma 3.2] For the terminal sorted sequence of CM < j,k >, there
exists m(q) in Condition C1), and for this n(q), f(«) is i) decreasing if

a<ly(y), ii) nondecreasing if Lr(g) <lr(g41), 1il) increasing if (4, <.
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(Proof) fla) is represented by the following expressions.

br) < @ < bLggny  (0<k< 1)

fle) = (Cxay+  +Crr))— (Crran)+ - +Cr(n)) + Ki -+ +(2)
(lro) = —00, lr(41) = 00, Ky is a constant which is determined by the
weights of nets, and the positions of terminals of modules and external
terminals.)

It is obvious that m(q) which satisfies Condition C1 exists. Next, the
following i), ii), and iii) for m(q) are proved.

i) If a<ly(g): the inequalities k<q, and (Cr)+ - -+Crx)) < (Crkgy)+- -+
Cr(-)) hold regarding the coefficient of  in the equation (2). Then f(«) is
decreasing.

ii) If L)< a<ly(g41): the equality k=q, and the inequality (Cr()+ - -+Cx(y)
< (Crg+1)+ - - *+Cx(r)) Cx(r)) hold regarding the coefficient of  in the equa-
tion (2). Then f(a) is nondecreasing.

iii) If ly(g41)< a: f(a) is increasing because of the same reason of i). O
Lemma 3.2 leads to the following Theorem 3.2.
[Theorem 3.2] For CM < j,k >, Procedure BP returns the placement
L(CM < j,k >) which minimizes Z(L(CM < 3,k >)).

[Lemma 3.3] Assume that the placement L(M) with minimum Z(L(M))
is given for a set of modules M = {M;,M,,---, M, }, where u > 1. If
modules are concatenated and placed, the following i) and ii) hold (Fig.

3.13).
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Figure 3.13: L/’(M) in Lemma 3.3.

i) For the constant £b>LB(P(M)), the placement L;(M) in which M;, M,,
-+, M, are concatenated, and which satisfies LB(L;(M)) = £b, is the op-
timal among the placement L;’(M) which satisfies LB(L,’(M)) > ¢b. And

Z(L,;(M)) is non-increasing as £b.

ii) For the constant rb<RB(L(M)), the placement L,(M) in which M, M,, - -

M, are concatenated, and which satisfies RB(L,(M)) = rb, is the opti-
mal among the placement L,’(M) which satisfies RB(L,’(M)) < rb. And

Z(L,(M)) is nondecreasing as rb.

(Proof) i) Consider the placement L/(M) of M;,M,, - -, M, in which
there are spaces between modules, and which satisfies LB(L,’(M))> ¢b.
We show that this placement can be transformed to the placement L;(M)
in which all modules are concatenated and LB(L;(M))=¢b, without increas-
ing Z(L(M)). Now, CMa is the concatenated module which is placed right
to the right most space. From Lemma 3.2, Z(L(CMa)), which is the ob-

jective function of CMa in L(M), is nondecreasing or increasing when it
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is placed right of LB(L(CMa)). Now, LB(L(CMa))<LB(L;’ (CMa)), then
Z(L;(M)) does not increase when CMa is moved to left and concatenated
with the left module.

For all spaces, repeat this from right. Then L;’(M) can be transformed
to the placement in which modules are concatenated and which satisfies
LB(L;(M))=£b, without increasing the objective function.

It is obvious that the objective function is nondecreasing as £b. In the

case of ii), it can be proved like i). m|

[Lemma 3.4] For two subsets of modules Ma = {M;, M, 1;, M, s, -, M, .},

Mb = {M;p, Miger1, Miser2y s Migoqr—a} (1 £ j £ j4s=1<j+s47-1
< m) of a set of modules M = {M;,M,,---, M,,}, assume that the op-
timal placements La(Ma) and Lb(Mb), which satisfy the condition C2,
are given independently. If Ma and Mb are concatenated as CM< j7,s >
and CM< j + s,t > in La(Ma) and Lb(Mb), there exists the placement
L(MauUMBDb) which consists of CM< 7, s+t > as a placement of MaUMb(Fig.
3.14).
[Condition C2] LB(Lb(Mb))<RB(La(Ma)) O
(Proof) Assume that for M’=MaUMBb, the optimal placement P’(M’),
which does not consist of CM< j,s +t >, is given. We show that this
can be transformed to the placement L(M’) in which all modules are con-
catenated without increasing Z(L’(M’)).

i) RB(L’(Ma))<LB(Lb(Mb)): From the above assumption, Lb(Mb) is
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Figure 3.14: P’(M) in Lemma 3.4.

the optimal placement. Then L’(M’) can be transformed to the placement
in which L’(Mb) equals to Lb(Mb) without increasing Z(L’(Mb)). Assume
that rb=LB(Lb(Mb)). Because rb<RB(La(Ma)) (from Condition C2), it
can be transformed to the placement L(M’) in which Ma is concatenated
to Mb without increasing Z(L’(Ma)).

ii) RB(L’(Ma)) > LB(Lb(Mb)): From the above assumption, La(Ma)
is the optimal placement. As i), L(Ma) is transformed to La(Ma). Assume
that b = RB(L’(Ma)). Because ¢b > LB(Lb(Mb)), it can be transformed
to the placement L(M’) in which Mb is concatenated to Ma as i).
[Theorem 3.3] Algorithm MPA obtains an optimal solution of Problem
MPP. O
(Proof) Consider Ma={M, }. For a subset Ma C M, the algorithm MPA ob-
tains the solution so that Z(L(Ma)) is minimum (from Theorem 3.2) because

Z(L(CM< 1,1 >))=Z(L(M,)). Assume that Ma= {M,, M,, -, M,_,}, and
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MPA can obtain the placement so that Z(L(Ma)) is minimum. Based on
the above assumption, the optimal placement L(Ma) of Ma is given. And
we show that when MPA places M;, the placement with minimum Z(L(Ma
U{M,})) is obtained, for Ma U{M,} = {M,, M, -- -, M;}. Algorithm MPA
calls the procedure PLM for CM< 7,1 >.

1) When there exists a concatenated module which is already placed, and
LB(L(CM < j,k >))<RB(L(CM < r,u >)) for CM < r,u > which is
placed right most:

In the optimal placement L(Ma), CM < r,u >, which is placed right
most and consists of M, = {M,, M, ,, -, M;_,}, is minimum with Z(L({M, }))
From Theorem 3.2. Then there exists the placement which is minimum with
Z(M, U {M;}) from Lemma 3.4.

CMc< r,w > is obtained by concatenating these modules. For the place-
ment L(CM< r,w >) with minimum Z(L(CM< r,w >)) is minimum with
Z(L(M, U {M;})). Repeat this discussion until there is no overlaps. Then
the placement with minimum Z(L(M)) is obtained.

2) Because Z(L({M;})) is minimum, Z(P(M)) is also minimum. O

3.3.4 Extension of Problem MPP

First, the following limitation is added to the problem MPP. The modules
are allowed only in the placement region, [z;, z,] which is given as input.
[Problem MPP1] The problem MPP1 is defined by modifying the prob-

lem MPP so that the placement region [z, z,| is given as its input. O
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In the algorithm MPA1 for the problem MPP1, the procedure BP in
the algorithm MPA is substituted by the following procedure BP1. In the
procedure BP1, for the concatenated module CM < j,k >, the placement
L(CM < j,k >) is firstly obtained by the procedure BP. Regarding this
placement,

i) if LB(L(CM < 3,k >)) < z;, L(CM < 3,k >)=z,

ii) if z, < RB(L(CM < j,k >)), L(CM < 7,k >)=z, - w(CM < j,k >),
iii) otherwise, output L(CM < 5,k >).

[Theorem 3.4] The algorithm MPAI1 obtains the optimal solution of the
problem MPP1. a
(Proof) From Lemma 3.2, it is trivial that the procedure BP1 obtains the
optimum placement, which minimizes the Z(L({M;})), for the module M;.
Then by the same discussion in the proof of Theorem 3.2, The algorithm
MPA1 obtains the optimum solution of the problem MPP1. O

Because the procedure BP1 has the same time complexity of the pro-
cedure BP, the time complexity of the algorithm MPA1 is O(|N| - (|]M| +

log|N|)), which is the same complexity of the algorithm MPA.

Next, each net is extended to the multi-terminal net. The problem is
formulated as follows.
[Problem MPP2] For the problem MPP2, the logic circuit LC=(M,Te,N)
in the problem MPP1 is extended as follows. M and Te are same as those

in the problem MPP1. It is assumed that N represents the netlist of multi-
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terminal nets which connect modules and 'externa,l terminals. The problem
MPP2 is defined as an extension of the algorithm MPP1, as mentioned
above. O
[Theorem 3.5] The problem MPP2 is reducible to the problem MPP1 in
polynomial time. O
(Proof) In this proof, only the following transformations are given. The
first translation is from the multi-terminal net n; in the problem MPP2
to the four two-terminal nets including the net between modules. The
second transformation is from the net between modules to the two nets, each
of which connects the external terminal and the terminal of the module.

Assume that a multi-terminal net n; which connects external terminals and

terminals of modules is given (see Fig. 3.15).

It is assumed that the left most external terminal and terminal of a
module are te, and t,, respectively, and the right most external terminal

and terminal of a module are te, and {,, respectively. Then four two-

terminal nets n( ) nt(-z), n'(-3), and nfq are constructed as follows (see Fig.
3.15 (b)).
n) = te,, tey, ni? = te,, t,, ni® = te,, ty, 0 =1, L.

Between the wire length Zz(n;) of the net n; in the problem MPP2

and the wire lengths Z:c(n X , Zz(n; &

<y Zz(n, ) the following equation
holds.

Zz(n (”) + Zz(n [2)) + Zz(n®) + Zz(nE")) =2 Zz(n;)
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It is trivial that to minimize Zz(n;) equals to minimize Zz(n}-”) +

Zx(ni-z)) + Zz(nf-s))w + Zz(nf—‘”).
Next, it is assumed that the net nf”, which connects terminals of two
modules, is given. Then the two nets nf-s) and nf-e), each of which connect

the external terminal and the terminal of the module, are constructed as

follows (see Fig 3.15 (c)).

nf-s) = 1y, lep, n® =

: tugdty.

(4

Between the wire length Z:c(nf-“)) of the net n!* and the wire lengths

Zx(nf.s)), Zx(ngs)), the following equation holds.

Il

Zz(n{) + Zz(n!") = (D(te.) - D(te,)) + Zz(n\")

(4)

(5
i \

It is trivial that to minimize Zz(n") equals to minimize Zz(n!”) +

Zz(nl%).

These transformations can be executed in a constant time for each net
in the problem MPP2, then the problem MPP2 can be reducible to the
problem MPP1. O

The time complexity of the problem MPP2 is the same as that of the
problem MPP1.

For the problem MPP1, the wire length minimization problem which in-
cludes the y coordinates as well as the z coordinates is considered. Assume
that each net is a two-terminal net, which connects the external terminal
and the terminal of the module, and that the river routing [0] is adopted

as a routing model (see Fig. 3.16). This problem is formulated as the
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following Problem MPP3.

[Problem MPP3]| Problem MPP3 is defined as the problem that the ob-
jective function L(n;) = L,(n;) + y is substituted for L,(n;) in Problem
MPP1, where y is a distance between the modules and the external termi-
nals (separation). a
[Theorem 3.6] There exists an algorithm which solves Problem MPP3
optimally in O(|N|? - (M| + log|N|)).

(Proof) According to the paper [0], the routing is possible for the given
separation y if and only if D(te;yy) - D(t;) > y. As the external terminals are
fixed, the above inequality can be transformed to the following ineqation
on each terminal ¢; for a given separation y in O(|N]|) time; oy < t; <
Bi. This inequality can be transformed again to the following inequality on
each module M; in O(|N]) time; 7, < LB(P(M;)) < §;.

Problem MPP1, in which the placement region for each module is given
as input, can be solved optimally in O(|N|- (M| + log|N|)). The separation
y takes the value between 0 and | N |. By executing the minimization of
wire length on z coordinates for the all possible values of y, the placement
with minimum wire length on the river routing model can be obtained in
O(INJ* - (I]M] + log|N[)). O

Finally, the wire length minimization problem such that the initial place-

ment is not given is considered. This problem is formulated as the following

Problem MPP4.
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Figure 3.16: River routing.

[Problem MPP4] A logic circuit LC=(M,Te,N) and the placement region
[z, z,] for modules is given as inputs.

Each net n; € N consists of two terminals, one of which is a terminal
t; of a module and the another is an external terminal te;. Then find
the placement L(M) on z axis which satisfies the following condition i and
condition ii, and minimizes the objective function Z=3", oy ¢;-Zz(n;), where
c; is the weight of the net n; and Zz(n;) is the distance of two terminals
on z axis.
(Condition i) Modules are not overlapped each other. (Condition ii) Mod-
ules are placed in the placement region.
[Theorem 3.7] Problem PM4 is NP-complete.

(Proof) See Appendix. O
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Chapter 4

Hierarchical Floorplanning
with Global Routing and
Positioning

This chapter describes the heuristic algorithms of the hierarchical floorplan-
ning with global routing and positioning. The proposed method consists
of the following two stages: the initial floorplanning (Stage 1) and the
detailed floorplanning (Stage 2). Section 4.1 describes the algorithms of
the initial floorplanning, and Section 4.2 describes the algorithms of the

detailed floorplanning.

4.1 Initial Floorplanning (Stage 1)

An initial floorplan consists of a rectangle which represents a chip, a place-
ment L(Mh) of hard modules Mh and center points of virtual modules Mv
in the rectangle. For a given logic circuit, the initial floorplanning de-

termines such an initial floorplan. It consists of the following 4 phases:
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the placement of module centers (Phase 1), the determination of module
orientations (Phase 2), the resolution of overlaps (Phase 3), and the im-
provement of module placement (Phase 4). These four phases are explained

in 4.1.1 - 4.1.4, respectively.

[Initial floorplanning]

Input: Logic circuit L

[Phase 1] Placement of module centers (Subsection 4.1.1);

[Phase 2] Determination of module orientations (Subsection 4.1.2);
[Phase 3] Resolution of overlaps (Subsection 4.1.3);

[Phase 4] Improvement of module placement (Subsection 4.1.4);
Output: Initial floorplan

4.1.1 Placement of module centers (Phase 1)

As inputs, a logic circuit L and the rectangle (called chip region R), which
satisfies the given aspect ratio and has the area of (1 + ) times the total
area of all modules, are given where v is a constant. First, a set of virtual
modules Mvg= { Mwv; } is constructed based on the group G such that each
Muv; € Mvg consists of a set of soft modules in the corresponding group

G,. Then the hard modules and virtual modules are regarded as points in
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this phase. These points are placed by the algorithm based on the ideal
distance described in Section 3.1.
[Problem of Phase 1 in Stage 1] Given a logic circuit L (all modules
are regarded as points), the ID-matrix Dp=[dp;;], and the chip region A,
obtain the positions of modules M= Mh U Mvg in the chip region A so that
the following objective function is minimized,
2= for att ij |dpsj — drij| (2 # 7)
where dr;; is an actual distance between M; and M; (M; and M; € M* U
P). O
Using the procedure IDA in Section 3.1, the algorithm of Phase 1 in

Stage 1 is given as follows.

[Algorithm of Phase 1 in Stage 1]

[Step 1] (Initialize) Construct a set of module Mvg based on the group
G;

[Step 2] Place all modules in the chip region R by the random placement
method [Watanabe 85]. (I/O pads p; € P are assumed to have already

been fixed around the chip region);

[Step 3] (Relative placement) Obtain a relative placement by calling the

procedure IDA;

[Step 4] If the ratio of improvement is more than the given constant C,

then go to Step 2; 0
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Figure 4.1: The result after Phase 1.

[Example 4.1] The result after Phase 1 is shown in Fig. 4.1.

4.1.2 Determination of module orientations (Phase 2)

A set of hard modules Mh consists of a set of peripheral modules Mp and a
set of center modules Mc. In Phase 2 and Phase 3 of Stage 1, the placement

of center modules and virtual modules are determined, while the peripheral

modules are ignored until Phase 4.

After the determination of positions of modules by the ideal distance
method, actual shapes are given to the center modules, and orientations of
them are determined. In order to reduce the computation time, a heuristic

method is proposed which determines the orientation of each hard module
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independently according to the wire lengths incident on it. While choosing
the optimal orientation of each module from 8 possible types, other modules
are regarded as points.

[Problem of Phase 2 in Stage 1] Given a set of hard modules Mh
and the center positions of modules M in the chip region R, obtain the
orientations for hard modules such that the total wire length is minimized.

O

The algorithm of Phase 2 in Stage 1 is shown as follows.
[Algorithm of Phase 2 in Stage 1]

[Step 1] For all center modules Mc; € Mc, execute the following Step 2

and Step 3;

[Step 2] Place a center module Mc; so that the center of it is on the

corresponding position obtained by Phase 1;

[Step 8] Choose the optimal orientation from 8 possible types so that the

wire length for Mc¢; is minimum,;

[Step 4] Give the square shape to each virtual module with the area of
a times the area for it (a < 1), and place them so that the centers
of them are located on the corresponding positions obtained by the

algorithm of Phase 1; O
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Figure 4.2: Possible orientations.

[Example 4.2] Possible orientations for Mc, and M¢, at Phase 2 are

shown in Fig. 4.2. O

4.1.3 Resolution of overlaps (Phase 3)

Generally, there may exist overlaps among convex rectilinear shaped center
modules Mc and small square shaped virtual modules in the result of Phase
2. These overlaps must be resolved. Furthermore, to avoid the unexpected
increase of wire length for some nets, relative positions among these mod-
ules should be preserved during the overlap resolution. In addition to the
problem defined in Section 3.3 which preserves relative positions among

modules while resoluting overlaps, a given aspect ratio must be satisfied
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in this problem of Phase 3. In the algorithm of Phase 3, the algorithm
ORA is used as a procedure. In the algorithm ORA, pairs of modules in
OL, are resolved first by moving modules along x axis. The relative po-
sitions are not broken in this phase. While preserving relative position,
pairs of modules in OL, are resolved secondly by moving modules along y
axis. Depending on the moving distance to resolve an overlap, the pair of
overlapped modules belongs to OL, or OL,. The details are explained in

Section 3.2.

By exchanging the elements of OL, and OL,, the aspect ratio of the
obtained chip can be modified to satisfy the given aspect ratio. Then
consider the sequence Sx of the subset of OL,, and the sequence Sy of the
subset of OL,. In the following, the construction of the sequence Sx is

explained.

First, the elements (M;, M;) of OL, are sorted in the nondecreasing
order of the value |w,(M;, M;) — w,(M;, M;)|. Then the | M | elements
from the top of this sequence are chosen. Next, these | M | elements are
sorted in the nonincreasing order of the value w,(M;, M;) + w,(M;, M;).
Then Sx is defined to be this sequence. Sy is defined in the same way. The

i th element of Sx (or Sy) is denoted by sz; (or sy;).

In the algorithm of Phase 3, overlaps are resolved by the procedure
ORA which consists of the phase 1 and the phase 2 of the algorithm ORA

in Section 3.2. Then for all the modules which are already placed, the
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aspect ratio (the height / the width) of the minimum enclosing rectangle
is calculated. If this aspect ratio is less than the given aspect ratio, an
element of OL, is moved to OL, according to the sequence Sx. And if the

obtained aspect ratio is not improved, the element is moved back to OL,.

If the obtained aspect ratio is greater than the given aspect ratio, the
operation, in which OL, and OL,, and, Sx and Sy in the above explana-
tion are exchanged, is executed. These operations are executed for all the

elements of Sx or Sy.

[Problem of Phase 3 in Stage 1] Given a set of modules M (convex recti-
linear polygon), L;(M) in which overlaps of modules exist and, two positive
constants ¢, and c¢,, obtain Lp(M) which satisfies the following condition
(i) and (ii), and minimize z = ¢;- D(L;(M),Lp(M)) + ¢, - A(Lp(M)).
(Condition i) OL(Lp(M)) = ¢
(Condition ii) Lp(M) preserves relative positions in Li(M). )
The algorithm of Phase 3 in Stage 1 is shown as follows. The procedure
ORA which is used in the algorithm is the phase 1 and the phase 2 of the

algorithm ORA given in Section 3.2.
[Algorithm of Phase 3 in Stage 1]
(Phase O : Initialize)

[Step 1] For the initial placement L;(M), construct the two placement
graph G,(L;(M)) = (VIz,EIZ)) and G,(L/(M)) = (VIwEIy);
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[Step 2] Obtain the sets OL,, OL, of module pairs which are overlapped

each other; i « 1;
(Phase 1 : Initial resolution)

[Step 3] Remove overlaps among modules by the procedure ORA and

store the value of the objective function to the variable: OBJECT;

[Step 4] Calculate the aspect ratio Rf of the minimum enclosing rectangle

of all the modules;
[Step 5] If Rf < R then go to Step 6; else go to Step 10;
/*RE< R */
[Step 6] If i < | M | then go to Step 7; else go to Step 14;
[Step 7] LAST « OBJECT; remove sz; from OL, and put it in OL,;

[Step 8] Remove overlaps among modules by the procedure ORA and
store the value of the objective function to the variable: OBJECT; i

— 1+1;

[Step 9] If OBJECT < LAST then i = i+1, and go to Step 6; else remove
sz; from OL, and put it back in OL,;

/*Rf>R */
[Step 10] If i < |M | then go to Step 11; else go to Step 14;

93



o

Elw
o

B

Mp1
PouMp3 Mc 1 Mp4“p5
My3|Ye2| Mo
Plff zl L—J_ nPc
lo‘18 p~7

Figure 4.3: The result after Phase 3.

[Step 11] LAST < OBJECT; remove sy, from OL, and put it in OL,;

[Step 12] Remove overlaps among modules by the procedure ORA and
store the value of the objective function to the variable: OBJECT; i

— i+1;

[Step 13] If OBJECT < LAST then i «+ i+1, and go to Step 10; else

remove sy; from OL, and put it back in OL,; i « i+1; go to Step 10;

[Step 14] end. O

[Example 4.3] The result after Phase 3 is shown in Fig. 4.3. a
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4.1.4 Improvement of module placement

Now consider the minimum enclosing convex rectilinear polygon for the
placement of center modules and virtual modules. In this phase, these
modules are regarded as one hypothetical module which has a rectilinear
shape (see fig 4.5). In this phase, the initial placement of peripheral modules
Mp is determined, and the placement of the hypothetical module and the

peripheral modules are improved so that the total wire length is minimum.

First, the initial placement for peripheral modules is explained. Periph-
eral modules have strong connectivity with I/O pads and their orientation
to the boundary of the chip is fixed. The total width of these modules is

assumed to be less than the total length of the chip boundaries.

According to the center positions obtained in Phase 1, the peripheral
modules are placed along the chip boundaries so that all peripheral modules

have no overlap. The procedure IPP is described as follows.
[Procedure IPP]

[Step 1] Let the nearest peripheral module from the bottom left corner of
the chip to be Mp}. Then let the j th peripheral module from Mp)

in counterclockwise around the center of the chip to be Mpj;

[Step 2] Divide the set of peripheral modules into four groups as follows.
For the first group, the sum of the width of peripheral modules in

the group is as wide as possible within WA x LB/LC, where WA is
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total width of the peripheral modules, LC is the total length of the
chip boundaries, and LB is the width of the bottom boundary. The
second, the third. and the forth groups are determined in the same

way;
[Step 3] Place these peripheral modules along the corresponding bound-

aries with no overlap; O

Next the improvement of the placement of these peripheral modules
and the hypothetical module are explained. By extending the algorithm
MPA given in Section 3.3, all the placement of the peripheral modules
on the four boundaries of the chip are improved optimaly by Procedure
4MPA, which is described as follows. The placement region which is on the
bottom, right, top, or left boundaries of the chip is denoted by [z, z,| for

each concatenated module.

[Procedure 4MPA]

[Step 1 | For all M; € M, execute the following Step 2 - Step 4;
[Step 2 | CM < 1,1 > = M;;

[Step 3 | Construct I.; ;> for CM < 1,1 >;

[Step 4 | Calculate P(CM < r,w >) by calling the procedure 4APLM(CM <

11>, [zhz,]) (r+w-—1=1); a
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Procedure 4PLM(CM < j, k >, [z, z,])
begin
P(CM < j,k >) «— 4BP(CM < j,k >, |71, z,]);
/* Let CM < r,u > be the right most
concatenated module in PM. */
if CM < j,k > is next to z; then
begin
if z; — RB(L(CM < r,u >)) < Ch and
L(CM < r,u>) — z; < Ch then
begin
Choose one according to the objective function;
(i) PM — PM — {CM < r,u >)};
P(CM < r,u >) = 4PLM(CM < r,u >, [z, z, — Ch])
P(CM < 3,k >) = P(CM < 3,k >);
(ii) P(CM < r,u >) = P(CM < r,u >);
P(CM < j,k >) = 4BP(CM < j, k >, [z; + Ch, z,|)
end
else
begin
PM — PM U {CM < j,k >};
return P(CM < r,w >)
end
end
else
begin
if LB(P(CM < j,k >)) < RB(P(CM < r,u >)) then
begin
PM « PM — {CM < r,u >};
Construct CM < r,w > (w=u+k) by concatenating
CM<ru>and CM < j,k >;
Update I, > by merging I, > and [ >;
P(CM < ryw >) = PLM(CM < r,w >, [z}, z,]);
return P(CM < r,w >)
end
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else
begin
PM « PM U {CM < j,k >};
return P(CM < r,w >)
end
end
end

Procedure 4BP(CM < j,k >, [z}, z,])
begin
/* Let lejr> = (lxr)s -5 lx(r)
be a terminal sorted sequence of CM < j,k > */
Obtain the subscript 7(g) such that
Cr()F -+ FCrle) 2 (Cr)F - +Cx() / 25
if LB(L(CM < j,k >)) < i, then L(CM < j, k >)=z;;
if z, < RB(L(CM < 7,k >)), then
L(CM < j,k >)=z, - w(CM < 5,k >);
return L(CM < j,k >);
end

Figure 4.4: Procedure 4PLM and 4BP.
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Using the algorithm MPA, the placement of the hypothetical module

Mth can be improved by Algorithm CA, which is described as follows.

[Procedure CA]

[Step 1] Improve the placement of the hypothetical module on z coordi-
nates by calling the procedure MPA and obtain the new placement

L,(Mth);

[Step 2] Improve the placement of the hypothetical module on y coordi-
nates by calling the procedure MPA and obtain the new placement
L,(Mth);

[Step 3] Output (L,(Mth),L,(Mth));

By calling the procedure IPP, 4MPA and CA, the placement of all hard
modules is improved so that the total wire length is minimum.
[Problem of Phase 4 in Stage 1] Given a set of peripheral modules Mp

and the center positions of them in the chip region R, obtain the placement

of peripheral modules such that the total wire length is minimized. O

The algorithm of Phase 4 is described as follows.

[Algorithm of Phase 4 in Stage 1]

[Step 1] Obtain the initial placement of the peripheral modules by calling
the procedure IPP;
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[Step 2] Z,4 = 0o, L(M) = L;(M);

[Step 3] Improve the placement of the peripheral modules Mp by the pro-
cedure 4MPA.

[Step 4] Improve the placement of the hypothetical module Mth by the

procedure CA.
[Step 5] Calculate Z,,.,, for the obtained placement;
[Step 6] If ((Zoia - Znew) / Zota) > 7 then Zyg = Z,y and go to Step 2;

[Step 7] Output L(M);

[Example 4.4] The result after Phase 4 is shown in Fig. 4.5. O

4.2 Detailed floorplanning (Stage 2)

The detailed floorplanning consists of the detailed floorplanning at the level
0 and the detailed floorplanning at the level i (1 < i < k). The detailed
floorplanning at the level O consists of the initial partitioning, the initial
global routing, and the initial positioning. The detailed floorplanning at
the level 1 consists of the routing-based partitioning, the hierarchical de-
tailed global routing, and the hierarchical positioning. In Subsection 4.2.1,
some preliminaries are explained for introducing the hierarchy in the de-
tailed floorplanning. In Subsection 4.2.2, each algorithm in the detailed

floorplanning at the level O is described, and the problem at the level i is
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Figure 4.5: The result after Phase 4.

formulated. The algorithms of the detailed floorplanning at the level i are

described in Subsection 4.2.3, 4.2.4, and 4.2.5, respectively.

[Detailed floorplanning]

Input An initial floorplan

(Detailed floorplanning at the level 0) (Subsection 4.2.1)
[Phase 1] Initial partitioning;

[Phase 2] Initial global routing;

[Phase 3] Initial positioning;
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(Detailed floorplanning at the level i) Repeat Phase 4 - Phase 6 until
the number of the soft module in each virtual module at the level i is

less than the given constant C;
Input: A detailed floorplan at the level 0 (defined in Subsection 4.2.2)
[Phase 4] Routing-based partitioning (Subsection 4.2.3);
[Phase 5] Hierarchical detailed global routing (Subsection 4.2.4);
[Phase 6] Hierarchical positioning (Subsection 4.2.5);
Output: A detailed floorplan

4.2.1 Preliminaries on hierarchy

First, a set of modules at the level 0 and a chip region in the level 0 are
defined.

[Definition 4.1] For a set of modules M = Mh U Ms and a set of virtual
modules Mg which are constructed in the initial floorplanning, the set of
module My at the level 0 and the chip region Ry in the level 0 are defined
respectively by the set of modules Mh U Mv, and the rectangle region which
satisfy the following condition A.

(Condition A) (a) Mv, is a set of modules which are refinements of modules
in Mg, where Mg is a set of virtual modules which are constructed in the
initial floorplanning. (b) The rectangle is divided into several regions, and

each divided region in the chip region has ono to one correspondence with
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the module M; € My, and has the area more than or equal to (1 + 7) -
s(M;), where v is a constant. (c) The shape of the divided region for the
hard module Mh; € Mh is a convex rectilinear polygon, and that for the

virtual module Mv; € My, is a rectangle. O

For a set of modules M;_; at the level i-1 and the chip region R,_; in
the hierarchical floorplanning, a set of modules M; is defined as the set
of modules which are obtained by dividing the shape and the area of the
virtual modules which have soft modules more than k. The chip region
which is divided into several regions corresponding to the obtained M;, is
denoted by R;. Each divided region in R, for the module M; is denoted by
R;(M;). The rectangular routing region which corresponds to each division
line of R; is called the channel, the cross region of the channels, which
corresponds to the cross point of the division lines of R;, is called the
switchbozr. Each channel can be divided into two routing region by the
division line of R;. Each divided routing region is called the subchannel

(see Fig. 4.6).

R, can be represented by the channel graph and the coordinates of the
nodes of the graph. The channel graph G; = (V,, E;) is an undirected graph
such that
V; = { v | v is a node which corresponds to the switchbox }

E; = { e| e is an edge which corresponds to the channel }
For each edge e € E; in the channel graph G; = (V;, E;), a weight I(e) is
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attached, which is the length of the channel of e. Assume that the channel
e is adjacent to R;(M;) and R;(M;). For the corresponding subchannels of
channel e, weights k,(e) and pn,(e) (s = R;(M;), or R;(M;)) are attached.
They are the capacity of the subchannel and the number of nets passing
through the subchannel. For each channel e, k(e) and pn(e) are defined by

the sum of those for the corresponding subchannels.

In this channel graph G; = (V;, E;), a subset of nodes which are on the
boundaries of R;(Mwv;) the virtual module Mv; are denoted by Vb(Mw;).
[Definition 4.2] Given a channel graph G; = (V;, E;), and Vb(Mv;) for
all virtual modules Mv; € Mv,, the global routing graph at the level 1 is

defined by the following weighted undirected graph Gg; = (Vg,;, Eg,).

1. Vg = Untjemy, v(Mvj) U V;, where v(Mv;) is a new node which

corresponds to the region for Mv; € Mv,.

2. Egi = Untojemv; E(Mv;) U E;, where E(Mv;) = { (v(M;),v) | v €
Vb(Mu,) }.

3. The weight w(e;) for each edge ¢; € Eg; is
w(ex) = Cy (C4 >> r(er)) (ex € E(Mvy)
w(er) = r(ex)) (otherwise)
where r(ex) = Cy - l(ex)+ Cz - pn(ex)+ Cs - (pn(er) —k(ex)),

Cy, C,, -+, Cy are constants. O
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Figure 4.6: A channelgraph and its global routing graph.

[Example 4.5] An example of the channel graph G; = (V;, E;), and the
corresponding global routing graph Gg;, = (Vg;, Eg;) are shown in Fig. 4.6.

O

For a virtual module Mv; € Mv;, the terminals of the soft modules in
Mv; are represented by the hypothetical one terminal. For a set of modules
M; = Mv; U Mh and the netlist N in logic circuit L, the netlist N; at the
level i is defined by the all nets n € N which connect the same terminals of
the modules of M; and I/O pads. N; is a set of all nets at the level i. The

weight of the net n € N; is t, if n corresponds to t nets in N.

For each net n at the level i, the global route is T;(n) on the global
routing graph Gg; = (Vgi, Eg;) is defined by the tuple T;(n) = (Vi(n),
E;(n)), where
Vi(n) = { v € Vg | v is a node which corresponds to the switchbox that n

passes through }
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Ei(n) = { e € Eg | e is an edge which corresponds to the channel that n
passes through }
In general, T;(n) is a Steiner tree on Gg;. A set of global routes at the

level i is denoted by T;.

Next, the positioning graph at the level 1 is defined as follows.
[Definition 4.3] Given a channel graph G; = (V;, E;) at the level i, the
vertical positioning graph Gpv,=(Vpv;, Epv,) at the level ¢ is a directed
graph with weights, where
1) Vpv,= { v|v corresponds to the maximal subset of horizontal channels e
€ E;in G; }

ii) Epv,= Ea U Eb, where Ea and Eb are the sets of edges defined as follows.
If there exist R;(M;), - - -, R;(M}) between horizontal channels on G;, which
correspond to the nodes u, v € Vpv,, corresponding edges ¢;, - - -, ex between
u and v are defined. A set of these edges is denoted by Ea. If there does not
exist such R,;(M;) and there exists a vertical channel e, between horizontal
channels which correspond to u and v, the corresponding edge e, between

u and v is defined. A set of these edges is denoted by Eb. O

[Definition 4.4] The horizontal positioning graph Gph,=(Vph,,Eph;) at

the level i1 is defined as in Definition 4.1. O
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4.2.2 Detailed floorplanning at the level 0 (Phase 1,2,3)

For a given initial floorplan, the detailed floorplanning at the level 0 deter-
mines the detailed floorplan at the level 0, which consists of (1) A channel
graph Gy and its coordinates, (2) A set of modules M; = Mh U Myv,, (3)
A placement of modules L(M;), (4) A netlist Ny, and (5) A set of global
routes Ty. After initial floorplanning, hard modules Mh; € Mh are already
placed and a rectilinear region (it may have holes) may still remains, which
contains the center positions of virtual modules Mv; € Mvg, where Mvg
is a set of virtual modules constructed in the initial floorplanning based
on the group G. To partition this rectilinear region into rectangles, initial
partitioning is executed as follows. Rectilinear region for virtual modules in
Mvg is divided into rectangles by extending the boundaries for hard mod-
ules Mh; € Mh. Then according to the ratio of areas of rectangles, each
virtual module Mv; € Mvg is partitioned. A set of obtained virtual mod-
ules is denoted by Mv,. Then each virtual module Mv; € My, is assigned
to the rectangle so that the virtual modules My, € Mv,, which correspond
to the original virtual module Mv; € Mvg, is placed around the center
position of Mvy, which is obtained by the initial floorplanning.

[Problem of Phase 1 in Stage 2] Given a set of modules M = Mh U
Mvg and their placement, obtain the set of modules M, at the level 0 and
the chip region R at the level 0 which satisfy the condition A in Definition

4.1. O
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The algorithm of Phase 1 in Stage 2 is shown as follows.

[Algorithm of Phase 1 in Stage 2]

[Step 1] For all concave points of rectilinear polygon which consists of
boundaries of Mh; € Mh and the chip in clockwise order around the

center of the chip, execute the following Step 2 - Step 4.

[Step 2] Extend the boundary of Mh; horizontally and vertically (the ex-
tended portion is called the segment), until it crosses another bound-

ary or segment.

[Step 3] Delete the longer segment which is extended horizontally or ver-

tically.

[Step 4] Partition virtual modules Mv; € Mv, into virtual modules My
and Mwv; by min-cut method [Fiduccia 82] according to the ratio of
areas for all rectangles obtained in Step 2 (the obtained set of modules

in Mvy);
[Example 4.6] The result after Phase 1 is shown in Fig. 4.7. O

After the assignment of virtual modules Mv; € Mv, to all rectangular
areas, tnitial global routing is executed. For virtual modules in a rectan-
gle, the positions of terminals are not fixed, and they are represented by
one virtual terminal which is assumed to be located in the center of the

rectangle.
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Figure 4.7: The result after Phase 1.

[Problem of Phase 2 in Stage 2] Given a netlist N and the global
routing graph Ggy, obtain the netlist Ny at the level 0 and the set of global

routes T, such that the total wire length of the global routes is minimized.
O

The algorithm of Phase 2 in Stage 2 is shown as follows. In step 3, each

Steiner tree is obtained by the algorithm in [3].

[Algorithm of Phase 2 in Stage 2]

[Step 1] For all edges e in Ggy = (Vgo, Ego), w(e) = 0;

[Step 2] w(e) = I(e), and for each net n € Ny, calculate a(n) which is the
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length of the minimum Steiner tree whose Steiner points are {v(Mw;)

| Mv; contains a terminal of the net n};

[Step 3] Sort the nets n; € Ny according to the nondecreasing order of the
length of the Steiner tree obtained in Step 2. The obtained sequence

is denoted by Ay;

[Step 4] Update w(e) to C,-l(e)+ C;---pn(e) +C; - (pn(e) — k(e)), where

C,,C,, C; are constants.

[Step 5] According to the sequence Ay, repeat the following Step 6 for all

nets n € Ny;

[Step 6] Obtain the minimum Steiner tree. And based on this tree, define
the global route by Ty(n) = (Vo(n), E¢(n)). For each e € Ey(n), pn(e)

= pn(e) + 1;

After the initial global routing, the width of each channel can be es-
timated. Then, the shape and the precise position of each module which
minimizes the chip area is calculated (the initial positioning).

[Problem of Phase 3 in Stage 2] Given a channel graph Gy at the level
0, their coordinates, and the global routes Tj, Obtain the placement L(M,)
and updated coordinates of Gy. O

The initial positioning algorithm of Phase 3 in Stage 2 is the same as

the algorithm of the hierarchical positioning. This algorithm is given in

Section 4.2.5.
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Figure 4.8: The result after Phase 3.

After the detailed floorplanning at the level 0, the routing-based parti-
tioning, the hierarchical detailed global routing, and the hierarchical posi-
tioning (the detailed floorplanning at the level i) are executed repeatedly
until the number of modules contained in each divided rectangle will be less
than a given constant C. These three phases are explained in the following

subsections.

[Example 4.7] The result after Phase 3 is shown in Fig. 4.8. O

After the Phase 3 in Stage 2, the channel graph G;_; and its coordi-
nates, a set of modules My, the netlist N;_,, and the global routes T, ,

are determined. The problem of the detailed floorplanning at the level i is

111



formulated as follows.

[Problem of the detailed floorplanning at the level i]
Input:

1) A channel graph G;_; and its coordinates

3) A netlist N;_,

(1)
(2) A set of modules M;_, = Mh U Mv,_,
(3)
(4) A set of global routes T;_,
Output:
(1) A channel graph G, and its coordinates
(2) A set of modules M; = Mh U My,
(3) A placement of modules L(M;)
(4) A netlist N;
(5)

5) A set of global routes T;

Objective function:
Z = (the area of R;) O
The algorithm for this problem consists of three phases: Phase 4, Phase
5, and Phase 6. These phases are complicated and it is difficult to formulate
the problem for each phase, independently. In the following subsections,

each phase is described.
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4.2.3 Routing-based partitioning (Phase 4)

In the conventional method, the topology of channel graph is determined
only by the relative positions of modules, although it greatly affects the
global routes. In the proposed method, which combines floorplanning, de-
tailed global routing, and positioning together in a hierarchical fashion, new
channels which correspond to the division lines of modules are created so
that the congestion of the channels and the switchboxes in the next level
of hierarchy is reduced. In the following, we explain how to create new

channels.

For each rectangle R;_;(Muw;) for virtual modules Mv; € Mv,_, in the
floorplan in leve i-1, let the sets of edges which correspond to top (or bot-
tom, left, right) side of R;_;(Mwv;) be Et (or Eb, El, Er). For the weight
pn,(e) of each subchannel, nt = ¢ - A - max ,eg { pns(e) }, where A is a
width of the wiring grid and c is a constant. nb, nl, and nr are defined in
the same way as nt. For Et in G;_;, the set of corresponding edges in G,
is represented by Et’. A new channel which divides R;(Muv,) horizontally
(vertically) is denoted by e, (e,). The created rectangles are represented
by R;,(Muv,) and R;(Mwv), and the former is assumed to be placed above
or left to the latter. The area of R;(Mw,) is denoted by S(R;(Mv,)).

[Procedure CUT]

[Step 1] For given Ri(M;), if M; is a hard module or a virtual module
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which contains less than or equal to k soft modules, then go to Step
6;

[Step 2] If nt+nb is greater than nl4nr, divide R;(Mwv;) so that
S(Ri(Mv;)) / S(Ri(Mv;)) = nb / nt;
else go to Step 4;

[Step 3] For each subchannel of R;,(Mv,) (represented by s), k,(e) = nt/2
(e = e, or e € EY’), k,(e) = nl (e € EI’), k,(e) = nr (e € Er’). For
each subchannel of R;(Mwv,), determine the weights in the same way.
Then update each I(e);

[Step 4] Divide R;(Mwv;) so that
S(Ri{(Mv;)) / S(R:(Mv;)) = nr / nl;

[Step 5] For each subchannel of R;(Muv,) (represented by u), k.(e) = nl/2
(e = e, or e € ED), k,(e) = nt (e € Et’), k,(e) = nb (e € Eb’). For

each subchannel of R;(Mwv;), determine the weights in the same way.

Then update each [(e);
[Step 6] For R;_,(M,) (represented by w), k,(¢) = nz (e € Ez’). Then

update each I(e);

In the following, the procedure PART, which partitions the virtual mod-
ules Mv; € in R;_;(Mv;) into two virtual modules Mv, and My, is ex-

plained.
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Figure 4.9: Routing-based partitioning.

[Procedure PART]

[Step 1] For the net n; at the level i-1 which connects the virtual mod-

ule Mwv;, find the passing through switchbox s; on the periphery of
Ri_(Mv,);

[Step 2] On this switchbox s, put the hypothetical terminal of the net
Mk;

[Step 8] Partition virtual module Mv; € in R;—,(Mv;) into two virtual

modules Mv, and Mwv, according to the ratio of S(R;(Mwv,) and

S(Ri(Mw;) by the min-cut method [Fiduccia 82];

[Step 4] Divide the shape of each virtual module Mv; € Mv,_, (rectangle)
in the same direction of the division line of R;(Mv;) (the shape of M,

and My are obtained);

115



[Example 4.8] Assume that the net n; which connects the soft module x

passes through the switchbox s; around the rectangle R; ;(Mwv;). Then,

Mo, is partitioned into two subsets Mv, and Mw;, so that the number of

the cut line is minimized. If s; is below the e, x is contained in Mv;, when

Muv; is partitioned (see Fig. 4.9). O
The algorithm of phase 4 in the stage 2 is shown as follows.

[Input] (1) a channel graph G,_; and its coordinates (2) a set of modules
M;_; (3) a set of global routes T;_;
[Output] (1) a channel graph G; (weights I(e) and k,(e), except pn,(e))

(2) a set of modules M;

[Algorithm of Phase 5 in Stage 2]

[Step 1] For each rectangle R; in which the virtual module Mwv; at the
level i-1 is placed, call the procedure DIV and obtain the two subdi-
vided rectangles R, (R;) and R, (R,).

[Step 2] Partition soft modules which constitute the virtual modules Mv,
into two new virtual modules Mv, (Mv;) and Mv, (Mv,), by calling
the procedure PART.

We call this partitioning method of the virtual modules the routing-

based partitioning.

The simulation experiments are done to compute the routing-based par-

titioning with the partitioning method which is based on only the number
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Table 4.1: Experiments on routing-based partitioning.

Proposed Min—cut :
Input data mefhod i Ratio
No,| n |msfmh|h| ¢ 8 ! s | w a
1119125012 |5 29| 10.3] 31| 10 47 540 82
2] 31912502 [5| 1L 6( 40.9] 1L 7| 42 5[0 31f 3 80
3]1249 149313 |6]103 1| 363 4|103 3| 369 4|0 21} 163
411296 {350|12 4307, 1]1002 4]321 2|110L 3|4 39 & 98
5|1258 [479]2 [5]353 6 [1175 5{359, 0{1209 3| 1 49| 2 80
611296 [481|2 |5]407, 6 (1316, 2|416, 9[1235 6] 2 236, 52
711208 |489]2 |5]346, 7 {1144 51355 11182 3]2 37| 3 20

n:number of nets  h:maximum level of hierarchy
ms:number of soft modules & (x1044) :wire length

mh:number of hard modules s (x104A2) :chip area
w (% :improvement on % a (%) : improvement on s

of the cuts [Fiduccia 82]. The input data and the results are shown in
Table 4.1. The results show that the area of the floorplan obtained by
the proposed method is smaller by 2.1% (ave.), and the total length of the
global routing obtained by our method is also smaller by 2.6% (ave.). The

effectiveness of the proposed method is verified by this experiments.

4.2.4 Hierarchical detailed global routing (Phase 5)

In our method, the global routes which directly correspond to the chan-
nels and the switchboxes are determined simultaneously with floorplanning.
These routes are called the detailed global routes in order to distinguish the

rough global routes for floorplanning used in the layout system [Dai 86].
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(a) Level i—1 (b) Level i

Figure 4.10: Division of the net.

The hierarchical detailed global routing is executed repeatedly with the
routing-based partitioning and the hierarchical positioning. In order to ex-
ecute the global routing hierarchically, the hierarchy is given to the nets in

our method.

Assume that N;_; = { ny, n,, - -+, n, } and the net n; € N;_; connects
some virtual modules at the level i-1. Then at the level i, each virtual
module is partitioned into two new virtual modules, and the net n; is also
divided into a subset N = { ny, n, -+, nf } C N;. Then the netlist N, is

represented by N} UN? U --. U NZ.

[Example 4.9] An example of the net division is shown in Fig. 4.10. In

this example, the net n; at the level i-1 is divided into 6 nets n}, n?, ---

7 ’

n} at the level i. 0

In order to refer the global route determined in the previous level of
hierarchy, each global route for the net at the level i is searched in a sub-

graph of the global routing graph Gg;, which is constructed around the
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global route of the corresponding net at the level i-1 (called the reference
line). This subgraph is referred to as the route search region. By introduc-
ing the route search region, the computation time of the global routing can

be reduced.

In general, there exist several optimal global routes for one net. In the
proposed method, one of the optimal route is selected, and based on this
route the division lines of modules is determined. If another optimal route
is selected, a different result of module partition might be obtained. By
restricting the route search region around the reference line, one optimal
route is succeeded to the next level of hierarchy, and the correspondence

between the global routes and the floorplan holds.

The minimum chip size may be obtained if the route search region is
moderately restricted around the route which was obtained in the previous
level of hierarchy. In order to verify this effect, simulation experiments
are executed as follows. The reduction of the computation time is also

expected.

Table 2 shows the experimental results of the total chip area and com-
putation time where the types of the route search region are changed. In
the experiment, route search region is restricted by the following Type 1 -

Type 4, and compared by Type 5 which is not restricted.

e Type 1: channels around the modules which are adjacent to the ref-

erence line.
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Figure 4.11: The route search region.

e Type 2: in addition to type 1, channels around the modules which

are adjacent to type 1.

e Type 3: in addition to type 2, channels around the modules which

are adjacent to type 2.

e Type 4: in addition to type 3, channels around the modules which

are adjacent to type 3.
e Type 5: all channels in the global routing graph.
[Example 4.10] An example of a reference line and the corresponding
route search region (Type 1) are shown in Fig. 4.11. O

The experimental results of the route search region is shown in Table 4.2.
The results show that the total chip area is maximally reduced by 2.16%

(ave.) when the route search region is set to Type 3. The computation
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Table 4.2: Experiments on route search region.

Chip area (X104/12) CPU time (sec.)

Type Datza No, : Ave X 1Datza No.3 Ave X
Typel (3, 71{ 8, 20] 88, 1[+3, 75% | 96] 150] 716|-59. 8%
Type2 |3, 76| 7. 89| 82, 7|+0, 77% [128] 190] 1042 |—46, 3%
Type3|3. 47| 7. 73| 83, 7[—2. 16% |160| 240| 1308|-32, 5%
Type4 [3. 53| 8, 00| 82. 8(—0, 81% |184] 273| 1636|—21. 0%
Type5 |3, 65| 7. 95| 82, 8] —— |209| 316] 2635 ——

AveX: (Type i — Type 5 / Type 5

time is reduced by 32.5% (ave.) in this case. Thus, it is concluded that
setting the route search region to Type 3 makes it possible to obtain the

minimum chip area as well as to reduce the computation time.

Next, the algorithm of Phase 5 in Stage 2 and some definitions for the
algorithm are explained as follows. Assume that the sequence which is
obtained by sorting the nets n € N; according to the nondecreasing order
of the length of the Steiner tree is denoted by A;, and that the 7 th net
nx(j) € Ni—y in the sequence A;_, at the level i-1 is simply denoted by n;.
Then for a subset of nets at the level i which is obtained by dividing n; at
the level i-1, the sequence which is obtained by sorting these nets according
to the nondecreasing order of the length of the Steiner tree is denoted by

B! = (n},n%, -, nf).

[Input] (1) a channel graph G; (weights I(e) and k,(e), except pn,(e)) (2)
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a netlist N;_; (3) a set of global routes T;_;
[Output] (1) a channel graph G; (weight pn,(e)) (2) a netlist N; (3) a set

of global routes T,

[Algorithm of Phase 5 in Stage 2]

[Step 1] Obtain the sequence A,;_; from N,_y;
[Step 2] Construct N; by dividing n; € N,;_y;
[Step 3] From N;, construct B! for each n; € N,_y;

[Step 4] Construct Gg; from G; and let w(e) be C, - l(e) + C> - - - pn(e)

+C; - (pn(e) — k(e)), where Cy, C,, C; are constants;

[Step 5] According to the sequence A,;_;, repeat the following Step 6-8 for

all nets n; € N;_q;

[Step 6] By referencing the net n; € N,_;, construct the route search

region of the type 3 on the global routing graph Gg;;

[Step 7] According to the sequence B{, repeat the following Step 8 for

each net n in Bl

[Step 8] Obtain the minimum Steiner tree, and based on this tree, define
the global route by T;(n) = (Vi(n), Ei(n)); For each e € E;(n), pn(e)

= pn(e) + 1;
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[Step 9] Divide each pn(e) to the corresponding subchannels pn,(e) and
pn,(e) according to the ratio of k,(e) and k,(e), where u and w

represent R;(Mwv;) and R;(Muwy) for e, respectively.
4.2.5 Hierarchical positioning (Phase 6)

After the hierarchical detailed global routing of level i, each virtual module
Muv; € Mv; is reshaped and the coordinates of G; are updated in order to
reduce the dead space. First, the procedure RE, which reshapes the virtual
modules, is explained. The width and the height of Mv; are represented
by wm and hm, respectively. Consider the region (generally, it is a rectilin-
ear polygon) that A - pn,(e) (s= Ri(Mv;)) is deleted from each boundary
of R;(Mv;). The maximum rectangle in this region is referred to as the
placeable regin of Mv;. The width and the height of the placeable region
is denoted by wp and hp, respectively. Whenever the procedure is called,

wm < wp and hm < hp hold.

[Procedure RE]

1. Case wp = wm and hp = hm: As Mwv; corresponds to the edge on

the longest path on Gpv; and Gph;, Mv; is no reshaped;

2. Case wp < wm and hp = hm: As Mv; corresponds to the edge on
the longest path on Gpv;, Mv; is reshaped such that wp = wm and

hp < hm;
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3. Case wp = wm and hp < hm: As Mwv, corresponds to the edge on
the longest path on Gph;, Mv, is reshaped such that wp < wm and

hp = hm; O

The algorithm of Phase 6 in Stage 2 is shown as follows.

[Input] (1) a channel graph G; (2) a set of modules M;
[Output] (1) a channel graph G, (weights {(e)) and its coordinates (2) a

netlist N; (3) a placement L(M;)
[Algorithm of Phase 6 in Stage 2]

[Step 1] Construct the positioning graphs Gpv; = (Vpv,, Epv,), Gph; =
(Vph,, Eph;);

[Step 2] Obtain the placement of modules L(M;) by the compaction method

[Asano 86];
[Step 3] Repeat Step 4 - 6 until the chip size is not changed;

[Step 4] Obtain the subset of modules Mb C Mv;, which corresponds to

the edge Eb;
[Step 5] Reshape Mv; € Mb by the procedure RE;

[Step 3] Obtain the coordinates of G;, the weight I(¢e), and the placement

L(M;) by the compaction method [Asano 86];
[Step 7] Calculate the capacity k(e) of each channel e;
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Table 4.3: Experiments on hierarchical positioning.

lnguk duta popsriotpioosneidng ggrs]ﬁnitolr? ;1 r?gl] hakia

No.| n [ms|mh|h| % S 9 s | w a
1] 120(203|2 [3| 44.6| 109 8| 53 6] 127. 7|16, 7| 14 1
2| 468|100{2 |4]126, 1| 637, 7128 7| 686, 2] 20 7 1
3] 468 (200f2 5179 8] 749 2203 4| 749, 2/1L6] Q.0
415201562 |4(186.6| 77L 1|193 4] 776, 7| 35 Q7
51 600|16112 |5]200, 5| 7941|202 7| 84L6[ L1 56
6 771(197)2 |5(362 2|1166, 3|410. 3|11216, 7{1L 7| 4 2
71115012991 2 151687, 2 {1677, 0{ 703 61667 1] 2 3| —0. 6

This hierarchical positioning is compared by the positioning which is
applied only once as the final phase of the design. The input data and
the results are shown in Table 4.3. The results show that the area of the
floorplan obtained by our method is smaller by 4.4% (ave.), and the total
length of the global routing obtained by our method is also smaller by 7.0%

(ave.). The effectiveness of our method is verified by this experiments.

[Example 4.11] The final result for the input of Example 2.7 is shown in
Fig. 4.12. O
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Figure 4.12: Final result.
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Chapter 5

Evaluation of New
Floorplanning Method

5.1 Hierarchical Floorplanning System
FLORA 11

Based on the hierarchical floorplanning method which combines global rout-
ing and positioning presented in this dissertation, a prototype floorplanning
system FLORA II was implemented in the C language on an AV310 work-
station (20 MIPS)

To evaluate this system, FLORA II has been compared with the con-
ventional method which consists of a Min-cut method [Fiduccia 82] and a
global router [Kou 78]. The characteristics of seven test data (Data No.1
- No.7) are summarized in Table 5.1 (Data No.8 is explained in the next
section), where n is the number of the nets, ms is the number of the soft
modules, mh is the number of the hard modules, and h is the highest level

of the hierarchy. The results are also summarized in Table 5.1, where [ is
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the total wire length, s is the chip area. CPU time (sec.) for each data is

also listed in the table.

The results show that the wire length is reduced by 14.7% (ave.), and at
the same time, the area of the chip is reduced by 4.1% (ave.), respectively.
The area of the chip is optimized including the routing area in FLORA 1I,
whereas the area of the chip is increased during the global routing in the
conventional method because the conventional floorplanner cannot predict
the presice routability. The floorplans obtained by the proposed method
and the conventional method for the data No.4 are shown in Fig. 5.1 and

Fig. 5.2, respectively.

Compared to the conventional method, FLORA II takes about three
times longer CPU tome. But even for Data No.7, which is the largest data,

it takes only 52 minute., which is considered to be practical.

These results lead to the conclusion that the proposed method can ob-

tain a better floorplan than the one produced by the conventional method.

There is another merit of the new approach. The proposed method
gives a set of detailed global routes to a given net list, and thus detailed
routers (channel routers, etc.) can easily be applied to the result of the

floorplanner to perform detailed routing.
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Table 5.1: Experimental results.

Input data FLORA 1I CO;Ziﬁééonal
No,| n |ms|mh|{h| ¢ s |sec] ¢ S sec,
1112012032 |3| 44 6| 109, 8| 46| 59 1| 115 9] 32
2| 468 [100|2 {4]126, 1] 637 7| 312|155 5| 704 6| 113
3| 468120012 |5{179 8| 749 2| 804[234 5| 752 9| 224
41520156]2 (4]186, 6| 771 1| 436{195 3| 784 5| 155
51 600 (1612 |5{200, 5| 794, 1| 920|249, 0| 844, 4| 207
6| 7711197|2 |5(362 21166, 3|1417{409 01219, 4| 397
711150 (2992 |5(687, 21677 0f3144|687 81703, 4 {1028
81 12020312 §31 6201 13721 — | 73 6] 143 1] =
[ i | D
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Fig. 5.1: Floorplan by the proposed method.
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5.2 Extension to the total layout system

The prototype floorplanning system FLORA II was extended to the total
layout system, referred to as FLORA II*, by adding the terminal positioner
[Ohmura 90], the channel router [Chen 86|, and the switchbox router [Rivest

82] [Lin 89).

In the proceeding [Ohmura 90a], the terminal positioning problem is
formulated as the minimization problem on the total wire length of nets
between switchboxes and terminals under certain conditions. This prob-
lem is optimally solved by applying the algorithm discussed in Section 3.3
with some modifications. The positions of terminals affect the width of
each routing area, and in this algorithm, the width of each routing area
may sometimes increase, and the dead spaces may occur. One of the fu-
ture research is to develop another algorithm to determine the terminal

positions.

The original channel router in [Chen 86] is a gridless router. This chan-
nel router is modified and implemented so that the detailed routing can be

executed on the grid model which is assumed by FLORA IIt.

Two swichbox routers [Rivest 82] [Lin 89] are implemented in FLORA
IT*. The first one is used to execute the initial switchbox routing. Then

several nets are ripped up and rerouted by the switchbox router [Lin 89].

Figures 5.3 and 5.4 show the final layout by the FLORA II* and the
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conventional method mentioned in Section 5.1 after the same detailed rout-
ing for data No.1, respectively. The chip area is 137.2 x 10* A? and the
total wire length is 62.0 x 10* A by the proposed method, while by the con-
ventional method, the chip area is 143.1 x 10* A\? and the total wire length
is 75.6 x 10* A (see Data No.8 in Table 5.1). These results lead to the con-
clusion that FLORA II produces a better floorplan than the conventional

one by comparing the final layout after the detailed routing.
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Chapter 6

Conclusions

This dissertation has discussed hierarchical floorplanning for the VLSI lay-
out design in building block approach. First, existing conventional floor-
planning methods are briefly explained, and their drawbacks are pointed
out. Secondly, a floorplanning problem is formally defined. Then a hier-
archical floorplanning method, which merges floorplanning, global routing,
and positioning together in a hierarchical fashion, is proposed to overcome
these drawbacks. Thirdly, some related theoretical results are discussed.
Fourthly, heuristic algorithms which are based on the theoretical results
are proposed for the hierarchical floorplanning method with global routing
and positioning. Each algorithm which plays an important role in the pro-
posed floorplanning method is evaluated independently by the simulation
experiments and verified its effectiveness. Finally, a prototype floorplanning
system FLORA II based on the floorplanning method with global routing

and positioning is developed on an AV310 workstation, and it is evaluated
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by the simulation experiments on several data.

The main contributions of the study discussed in this dissertation are
summarized as follows.
(1) Hierarchical floorplanning method combined with global routing and

positioning

A hierarchical floorplanning method, which merges floorplanning and
global routing together in a hierarchical fashion, was firstly proposed by
W.-M. Dai et al. [Dai 86|. For this method, some drawbacks are pointed
out, and a new floorplanning method which simultaneously determines a
floorplan, detailed global routes which directly correspond to switchboxes
and channels, and positioning is proposed in this dissertation, to overcome
the drawbacks. By applying the proposed floorplanning method, a VLSI
chip with small area and short wire length can be obtained.

(2) Theoretical results

Concerning the initial floorplanning process in the proposed hierarchical
floorplanning the following theoretical results are obtained.

Ideal distance: For conventional initial placement methods of modules
[Ueda 85| [Yamada 85|, in which modules are regarded as points, several
drawbacks are pointed out, and a concept called the ideal distance is intro-
duced, in which the attractive effect and the repulsive effect are uniformly
taken into account. Based on this concept, a heuristic algorithm is proposed

and its effectiveness is verified by the simulation experiments.
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Overlap resolution: During the overlap resolution phase, the optimal-
ity of the placement obtained in the previous phase should be preserved.
This problem is formulated as an overlap resolution problem which pre-
serves relative positions among modules, and proved to be NP-hard. Then
a heuristic algorithm is proposed, and its effectiveness is verified by the
simulation experiments.

One dimensional module placement: In VLSI layout design for building
blocks, to place I/O modules optimally in the peripheral area of the chip is
important to obtain a small chip. Placement problem for I/O modules is
formulated as an improvement problem of one dimensional module place-
ment, and an optimum algorithm of O(|N| - (|M| + log|N|)) computation
time is proposed, where |N| is the number of nets and |M| is the number of
modules. The correctness of the algorithm is proved, and some extension
of the problem is also discussed.

(3) Proposal of the algorithms

In order to realize a proposed hierarchical floorplanning method, the
following algorithms are proposed.

The routing-based partitioning: In our method, new channels which cor-
respond to the division lines of modules are created so that the congestion
of channels and switchboxes in the next level of hierarchy is reduced. This
method is evaluated by the simulation experiments, and its effectiveness is

verified.
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The hierarchical detailed global routing: By giving hierarchy to the nets,
and searching each global route on a global routing graph in a restricted
region which is constructed around the corresponding route in the previous
level of hierarchy, one of the optimal routes is succeeded from the previ-
ous level of hierarchy, and the correspondence between the global routes
and the floorplan holds. The reduction of the computation time is also
expected. This method is evaluated by the simulation experiments, and its
effectiveness is verified.

The hierarchical positioning: In the proposed hierarchical positioning,
the shapes of soft modules are adjusted to reduce dead spaces at each level
of hierarchy. This method is applicable only in our floorplanning method,
because floorplanning, global routing, and positioning are merged in a hier-
archical fashion. This method is evaluated by the simulation experiments,
and its effectiveness is verified.

(4) Application of the hierarchical floorplanning method with global routing
and positioning

A prototype hierarchical floorplanning system FLORA II based on the
proposed method is developed on an AV310 workstation, and is applied to
several large data. From the results of the simulation experiments, the con-
clusion that the proposed hierarchical floorplanning method is sufficiently

useful from a practical point of view is obtained.

Finally, future research works for the VLSI hierarchical floorplanning in
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building block approach are discussed briefly.
(1) Development of the terminal positioner

After the proposed hierarchical floorplanning with global routing and
positioning, the terminal positions of each net on the boundaries of soft
modules must be determined instead of hypothetical terminals. In the
reference [Ohmura 90aj, a terminal positioning algorithm is proposed, in
which the total wire length is minimized. By this method, however, each
channel width is not optimized, and the area of the final layout may have
dead space. Then, it is necessary to develop a new terminal positioning
algorithm that minimizes the width of each channel.
(2) Improvement of the total layout system

The hierarchical floorplanning system FLORA II is extended to the to-
tal layout system by adding a conventional channel router and two conven-
tional switchbox routers. Generally, it is difficult to complete the routing
in a switchbox, and unexpected increase of chip area may occur during de-
tailed routing. Replacing these channel router and the switchbox routers
by more effective L-shaped channel [Dai 85] router, the problem mentioned
above is reduced. A compaction which allows jog insertion is also effective
to reduce dead space. In FLORA II, the following new positioning algo-
rithm has the possibility to reduce the area of the floorplan and the final
layout. In the hierarchical positioning, the topology of the global routing

graph is preserved in order not to change the global routes at the same
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level of hierarchy. By allowing the change of the topology of the global
routing graph, and rerouting the global routes in the phase of hierarchical
positioning, dead spaces may be reduced. In FLORA II, predesigned hard
modules are allowed to have convex rectilinear polygons. But for virtual
modules in each level of hierarchy, only the rectangular shapes are allowed.

Introduction of the L-shaped soft module may also be effective.

140



Appendix: NP-hardness of Problem
MPP4

[Problem MPP4] A logic circuit LC=(M,Te,N) and the placement region
[z1, z,| for modules are given as inputs.

Each net n; € N consists of two terminals, one of which is a terminal
t; of a module and the another is an external terminal te;. Then find
the placement L(M) on z axis which satisfies the following condition i and
condition ii, and minimizes the objective function Z=3%, oy ¢;-Zz(n,), where
¢; is the weight of the net n; and Zz(n;) is the distance of two terminals
on z axis.
(Condition i) Modules are not overlapped each other.

(Condition ii) Modules are placed in the placement region.

NP-hardness of this Problem MPP4 is proved as follows. In this proof,
scheduling problem SS5 [0], which is known to be NP-complete, is shown to
be reducible to the decision problem DP corresponding to the subproblem
of Problem MPP4.

[Problem SS5]
Inputs:

1) aset of tasks T={¢; |1 <i<|T|}

(1)

(2) a length [(¢;) for each t; € T
(3) a weight we(t;) for each ¢, € T
(4)

4) a deadline dd(¢;) for each ¢; € T
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(5) a positive integer K
Question:

Is there a one-processor schedule o for T which satisfies the following
condition R1 7
(Condition R1)

Vrera(o(ts) +1(t) — dd(ti)) - we(t;) < K,

where Ta= { ¢; | t; € T, and, o(t;) + I(t;) > dd(¢;) }

As a subproblem of Problem MPP4, the problem in which [z, z,| is
restricted to [0, Lim]. The desision problem DR for this problem is defined
as follows.

[Problem DP]
Inputs:

(1) a set of modules M= { M; |1 <i<|M]|}

(2) a width w(M;) for each M; € M

(3) a set of terminals T(M;) = { tmg,_, tmy; } for a module M;, and
the relative z coordinates d(tm,) for each tm,; € T(M;)

(4) a set of external terminals Te= { te; | 1 < i< | Te | }, and the z
coordinates L(te;) for each te; € Te

(5) a netlist N (n; = { tm,, te; }, where n; €N)

(6) a weight ¢(n;) for each n; € N
(7) the placement region [0, Lim]
(8)

8) a positive integer C
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Question:
Is there a placement L(M) on z axis which satisfies the following con-
ditions C1 - C3 7
(Condition C1) Modules are not overlapped each other.
(Condition C2) Modules are placed in the placement region [0, Lim].
(Condition C3) Yas.enr |L(M:) — Ltesi—1)| - c(nai—1) +|L(M;) + w(M;) —
L(tez)| - c(ng) < C
[Lemma A.1] Decision problem DR is NP-complete.
(Proof) It is trivial that decision problem DR belongs to the class NP.
Polynomial transformation from Problem SS5 to Problem DR is shown.
Assume that the inputs (1) - (5) are given as an instance of Problem SS5.
Based on this, an instance of Problem DR is constructed as follows:
(1) a set of modules M = { M; |t, € T }
(2) a width w(M;) = I(t;)
(3) a set of terminals T(M;) = { tmg;_y, tmy; }, where d(tmy,;_,) is 0
and d(tmy;) is I(t;).
(4) a set of external terminals Te = { te; | 1 < i< | Te | }, where
L(tegi—1) is —dd;), L(tey;) is dd;),
(6)a netlist N ={ n; | 1 <i<|N|}, where n; = { tm,, te;.
(6) a weight c(ngi—1)= c(nq)= we(t;).
(7) Lim = (K / min { we(t;) } ) + max { dd(t) }
(8)

8) a positive integer C = ¥, cr,(2dd(t;) — I(t;)) - we(t;) + 2 - K
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Assume that the solution of Problem SS5 is true. A schedule o which
satisfies the condition R1 exists. Then L(M;) = o(t;) (t; € T).

First, the condition C1 is considered. It is obvious that the placement
L(M;) > 0. From the condition R1, the following inequalities hold.

(o(t:) + 1(t:) — dd(t:)) - we(ts) < K,

o(t;) + I(t;) — dd(t;) < K/min{we(t;)} (t; €T)

o(t;) + U(t:)) < (K/min{we(t;)} + maz{dd(ts)} (t; €T, ty €T)

< Lim
Then the condition C1 is satisfied.

Next, the condition C2 is considered. It is obvious that the condition
C2 is satisfied.

Finally, the condition C3 is considered. From the condition R1, the
following inequality holds.

Lrera(o(ti) +1(t:) — dd(ti)) - we(t:) < K,

where Ta= { ¢; | t; € T, and, o(¢;) + I(¢;) > dd(t;) } - (1)

On the other hand, the left part of the inequality of the condition C3
can be transformed as follows.

Vngient |L(M;) — Lteaii)| - ¢(n2i1) +[L(M;) + w(M;) — L(tez)| - c(nai)
<0 D)

Let A= [L(M;) — L{tezis)| - c(nsi-s) +L(M:) + w(M;) — L{tes)] - c(nas),

Q= { M; | M; € M, and L(M;) + w(M;) > L(tey) }, and

Q = { M; | M; € M, and L(M,) + w(M;) < L(tey) }.
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Then the left part of the inequality (2) in represented as follows.

(left part) = Ypreq A + Laeo A - (3)
Because ¢(ng;—;)= c¢(no;), the first term of the right part of the equation
(3) is transformed as follows.

Cameq A = Daeq (L(Mi) — Litezi ) —L(Mi) — w(M;) + L(tex)) - c(na)

= Taea (Lites) = Litess—s) ~w(M)) - e(nz)

The second term of the right part of the equation (3) is transformed as
follows.

Cameq A = Laeq (L(M:) —Litesi—t) +L(M;) +w(M;) — L(tex)) - ¢(n2:)

=Y areo (—L(tex) — Litesioy) + w(M;) +2 - L(M;)) - c(n)

=Laeq (L(tex) — Litesi1) — w(M)) - c(nai)

+Yaseq (—2 - Ltes) + 2 - w(M;) 42 - L(M;)) - c(n2)
=V meq (L(tear) — Litezioi) — w(Mi)) - c(na)
+2 - Lareq (L(Mi) + w(M;) — L(tex)) - c(nai)
Then
(left part) = Xpreo A + Xareo A
= aem (L(teai) — L(tezioi) — w(M)) - ¢(na)
+2 - Yareq (L(M;) + w(M;) — L(tey)) - c(ng)
This equation can be transformed as follows.
(left part) = Xer (2-dd(t:) — I(t:)) - we(t:)
+2 - Ypera (0(8:) + 1(t:) — dd(t:)) - we(t:)

From the equation (1) and the construction of the instance of Problem DR,
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this equation is transformed to the following inequality.
(left part) < ¥ cra(2dd(t;) — I(t:)) - we(t;) + 2 - K
< C (=(right part))
Then the condition C3 holds. Therefore, the solution of the instance of the
problem DP is true.
Next, assume that the instance of Problem DR is true. Then the con-
dition C3 holds.
(left part) = ¥y ep (2 - dd(t;) — I(t)) - we(t;)
+2 - Lera (o(t:) +1(2:) — dd(ty)) - we(ty)
(right part) = ¥ era(2dd(t:) — I(t:)) - we(ts) + 2 - K
As (left part) < (right part),
Crera(o(ti) +1(t:) — dd(t:)) - we(t:) <K,
where Ta= { t; | t; € T, and, o(t;) + I(¢;) > dd(¢;) }
Then the condition R1 holds. Therefore, the solution of the instance of
the problem SS5 is true.
[Theorem A.1l] Problem MPP4 is NP — hard. O
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