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Abstract 

In order to increase the productivity of software development, a programming environ

ment which supports programming activities should be provided. Recently, an inte

grated programming environment which provides language-oriented facilities through 

an interactive user interface enables the higher level of productivity. However, an 

integrated environment should be constructed for each programming language. 

Since a development of a software strongly depends on the application domain, a 

language and an environment which is adapted to the domain are needed. During a 

software development, many kinds of software objects are created such as requirements, 

designs, programs, test cases, development plans, and management information. A 

software object requires facilities which are specialized to its language. Furthermore, a 

programmer or a project requires a method to customize the environment. In order to 

satisfy these requirements, a meta-programming environment which provides a domain

or language-oriented integrated environment from a description of a language and an 

application domain has been studied on. 

A software is modified frequently by many reasons during its life, including devel

opment and maintenance, and its cost is very large. In particular, maintenance takes a 

major part of total software cost. Cost of modification is mainly caused by side-effects 

of a modification. When a programmer modifies a software he/she must correct a lot 

of side-effects. Most of these corrections may be routine works and also they waste 

creative ability of programmers. 

Above discussion suggests that an automatic correction of side-effects will improve 

the productivity of a software development rapidly. However, no intensive studies on 

the modification support which aims to automate corrections of side-effects can be 

seen. 

This dissertation discusses meta-programming environments, and presents an meta

programming environment MUSE which supports multiple-languages and provides higher 

describable meta-description language based on an object-oriented meta-model. Next, 

an approach to correct side-effects and a modification support system developed on 

MUSE" for a type modification are proposed. 
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IV 
ABSTRACT 

First, in Chapter 1, the background and motivation of the research are summerized. 

In Chapter 2, studies on meta-programming environments are discussed and an 

approach taken in this dissertation is briefly explained. 

In Chapter 3, a meta-programming environment MUSE, is presented. In a software 

development, many kinds of software objects are created. However, most of meta

programming environments can support only one language at one time. MUSE has been 

designed (1) to support multiple kinds of software objects including design languages 

and management information, (2) to provide facilities which are specialized to each kind 

of software objects, and (3) to provide highly describable meta-description language, 

in addition to provide benefits of an integrated programming environment. 

In order to realize these goals, MUSE introduces an active meta-model based on an 

object-oriented concepts. A software object is presented as a collection of objects, and 

an object is an instance of a class to represent one of software components such as 

syntactic elements, declarations, design scheme, files, modules, and test cases. MUSE 

has multiple language knowledge and switches them for each software object. In ad

dition to provide ordinary supported facilities, MUSE provides attribute propagation 

and static semantic checking based on attribute relations, design editing, management, 

and modification support. 

In Chapter 4, a modification support system on MUSE is presented. First, the 

author discusses problems, treatment, and supporting facilities of a modification and 

proposes an approach taken in the system. The target of the system is to automate 

corrections of side-effects in a program caused by a type modification. Side-effects are 

detected by propagating type attributes on an internal representation of a program. 

When a side-effect is detected on an object, the modification support system corrects 

it by replacing the object which causes an inconsistency with another object as follows: 

(1) Find a class which resolves the inconsistency in a class hierarchy. (2) Instantiates 

th founded class. (3) Customize the instantiated object. (4) Replace the original 

objects with the customized object. This approach and the system are realized on 

meta-level. 

Finally, Chapter 5 summarizes the results of the dissertation and some future direc

tions are given. 
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Chapter 1 

Introduction 

To meet the demands to increase the productivity of software development, it becomes 

more important to provide software tools and environments which support program

ming activities. 

1.1 Integrated Programming Environments 

Since needs for software increase, the productivity of software development becomes 

more important. Research on software engineering proposes many philosophies, tech

niques, methodologies, and languages. In order to apply these technologies in actual 

development efficiently, useful software tools based on the software technologies such 

as editors, compilers, interpreters, and debuggers have been developed. These tools 

improve the productivity of software development and the reliability of software. 

From 70's, many works aim to develop a programming environment which integrates 

software tools. A programming environment is not only a set of tools but also pro

vides a framework for combining and cooperating tools in the environment. UNIX1 

[Dolotta 78] is a one of most famous operating system and a programming environment. 

In some cases, the term programming environment means a software system which 

support only one programmer, and the term software development environment is used 

for an environment to support a project team [Dart 87]. And also, the term programmer 

has a restricted meaning, i.e., programmers are those write programs in only coding 

phase. This dissertation, however, use wider definitions . A programming environment 

supports both of a project team and a programmer, and a programmer means a man 

who works in any phases of software development. The term software object is used to 

represent one of documents or information created in a software development such as 

specifications, designs, programs, test cases, and management information. 

1 UNIX ill a trademark of AT&T Bell Laboratoriell. 

1 
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Some commercial programming environments developed on an advanced personal 

workstation have been released from '80s. These are called integrated progmmming en

vironments. Examples of them are Interlisp-D [Teitelman 81], Smalltalk-80 2 [Goldberg 83b], 

Mesa [Sweet 85], Cedar [Swinehart 86], Symbolics/Genera [Walker 87], and ELlS/TAO. 

These are developed for a single programming language and provides rich and sophis

ticated functions for the target language. These are characterized by the following 

features. 

(1) Language-Oriented 

An integrated environment provides rich facilities and tools specialized to a particu

lar programming language. Examples of such tools are structured editor [Barstow 84a]' 

inspector, and file package [Sandewall 78] in Lisp environment and class browser in 

Smalltalk-80. Since an integrated environment is written in the target language itself, 

a programmer can customize the environment and accesses system defined tools and 

functions in the target language level. Furthermore, the command language in the 

en vironment is the same as the target language. The programmer does not need to 

know other languages. On the contrary, UNIX, which is not an integrated environment, 

requires a programmer to learn many programming and command languages such as 

C, MAKE, C-shell, dbx, awmrc3
, Xdefaults\ and Emacs-Lisp. 

(2) Integmtion 

Integration enables programmers to combine software tools in an uniformed way. 

This feature is realized to unify an internal representation of programs which are ac

cessed and shared with software tools in the environment [Delisle 84]. The internal 

representation should be a higher level structure and a data structure of the target lan

guage. Examples of such internal representation are list structure in Lisp environment 

and object hierarchy in Smalltalk-80. The UNIX uniforms structure of files, programs, 

and communication data between processes as a text and byte stream [Kernighan 81], 

but this is a low level structure. 

(3) Interactive 

Recent hardware technology in high performance workstation with a bitmap dis

play and a mouse enables a high-band width interactive communication between an 

environment and a programmer. Some small techniques on a bitmap display such as 

multiple windows, popup and pull-down menus, icons, push-buttons, and scrollbars 

support a more friendly communication. An interactive means that an environment 

2 Smalltalk-80 is a trademark of Xerox Corporation. 

J awmrc is a definition format for awm window manager. 

4 Xdefaults is a resource definition format for XII 



1.2. META APPROACHES IN SOFTWARE ENGINEERING 3 

accepts a user operation at any time and responses to the operation quickly. The first 

interactive programming environment is Interlisp [Dandwall 78J . 

(4) Incremental 

In an incremental environment, a size of programming activities, to which an en

vironment responses, kept as small as possible. An incremental environment checks 

correctness for each of programming activities and updates related data such as inter

nal representation of a program and an execution code, immediately. Since there is no 

inessential works such as compilation and linking, he/ she can concentrates his/her cre

ative works. Usually, a programmer creates a program through an editing, compilation, 

linking, and debugging cycle. In an incremental environment, he/she can create a pro

gram without quitting an editor and without his/her mental context switching. This is 

called modeless programming. Modeless programming strongly depends on integration 

and interactive. 

An incremental syntactic and static semantic checking detects an erroneous status 

of a program for each editing operations. An incremental compilation [Schwartz 84] 

and an interpreter/debugger enable an immediate execution after a break of execution 

and editing operation. The incremental re-execution technique removes unnecessary 

parts of execution for debugging by reusing previous execution data [Karinthi 87J. 

An integrated programming environment has been mainly developed for an interpreter

based language, like Lisp. Recently, many works have been tried to develop an inte

grated programming environment for other compiler-based programming languages, 

such as Ada5 , Pascal, Modula-2, C, and C++. Table 1.1 summarizes history of inte

grated programming environments. 

An integrated programming environment has contributed to increase the produc

tivity of program development. However, it supports only coding phase. To increase 

the total software development productivity, an environment which provides features 

of integrated environment and supports various programming activities in wider range 

of software development phases should be developed. 

1.2 Meta Approaches in Software Engineering 

The term meta has two meaning in software engineering. One is a programming lan

guage which can modify an interpreter of the language. To modify an interpreter is 

called meta-progmmming. Another is a meta-tool and a meta-progmmming environ

ment which can be programmed to meet a particular language and an application 

6 Ada is a tradeIIlark of Ada Joint Program Office. 



4 
CHAPTER 1. INTRODUCTION 

Languages 76 78 80 82 84 86 88 

smalltaJk ~ SmalltaJk-80 

............................ ··········································t····· .. ...... ·· ........................................................ . 

• • 
Interlisp I::. Interlisp-D 

• Genera 

Usp 

.................... ........ ········· .. ········· .. ······················t·········· ............................................................. . 

Mesa • Mesa I • Cedar 

............................ ·· ······ ·· ········ ·· ······ · ·· ·· ··· · ·······r··· · ··~···· · · .. ······· .. ·;··sJ~·~~:~~~~············· · ·· 

Pascal l CPS 

Ada 

C 

• commercial or distributed system 

o research prototype 

o PECAN 

o POE 

o Magpie 

• Gandalf 

o Arcturus 

o DICE 

Table 1.1: History of Integrated Programming Environment 

domain. The target of this dissertation is the later. Each software development phase 

requires software objects written in languages specialized to the phase. So, through 

a software development, many kinds of software objects with a formal syntax and a 

semantics are created. Furthermore, an application domain of software needs a partic

ular language specialized to the domain and a language-oriented environment for the 

language. 

In order to create language-oriented environments easily, meta-environments and 

meta-tools have been researched on. They generate a language-oriented tool or an 

environment from a description of the target language and a domain knowledge. 

A typical meta-tool is a compiler-compiler which generates a compiler from a lan

guage description [Aho 77]. Yacc [Johnson 75] and Bison6 [Donnelly 88] are parser 

generators and Lex [Lesk 75] is a lexical analyzer generator. 

These are used widely on UNIX. Some compiler-compilers for other parts, for ex-

6 Bison is distributed from Free Software Foundation. 
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ample, static semantic checking, optimizing, and code generating, are researched on 

[Aho 86]. Many generators for syntax-directed or language-oriented editors have been 

developed by, e.g., [Donzeau-Gouge 80], [Teitelman 81], [Fischer 84], [Horgan 84]' and 

[Tenma 86]. Generated editors check a syntactic error incrementally. An attribute 

grammar and an incremental attribute propagation technique realizes to incorporate 

an incremental static semantic checking into a generated editor. Most of these edi

tors provide only template-based editing operations. Recent research on incremental 

parsing techniques makes possible to edit a program in textually. 

Emacs 7 [Stallman 81] is a most famous and widely used display-oriented screen 

editor, and it is one of meta-tools. Emacs provides Emacs-Lisp for customizing and 

extending functions in Emacs. Lots of packages have been written n Emacs-Lisp and 

distributed. Packages which are specialized to languages such as Lisp, Fortran, Cobol, 

PLII, C, C++8
, Modula-2, Pascal, Ada, Prolog, roff, and T:EX9 are supported in Emacs. 

Other distributed packages are interfaces of mail systems, news systems, shells, lisp 

interpreters, debuggers, a help system, and so on [Stallman 87]. Emacs is the most 

successful meta-tools and meta-environments. 

From '80s, many meta-programming environments based on language-oriented ed

itors have been developed. A meta-programming environment generates a language

oriented environment from a language-description. A generated environment has fea

tures in integrated programming environment, such as language-oriented, integrated, 

interactive, and incremental, and it supports template-based editing, incremental syn

tactic and semantic checking, and debugging. Then, studies on a meta-programming 

environment aim to support upper phases and to incorporate new functions, such as a 

project and resource management, consistency checking, and transformations, into the 

generated environment. 

In order to support various programming activities and to provide varIOUS func

tions, a meta-programming environment should provide a more describable description 

language for language features and facilities. Emacs-lisp is a typical example of a 

flexible and describable language. However, Emacs is a text-based system and a text 

representation of a software object is a low level of software structure. An advanced 

meta-programming environment should be constructed on a higher level syntactic and 

semantic structure of software representation. And also, it should be based on a pow

erful framework for combining software tools. 

Meta-programming environments will be described in detail in Chapter 2. 

7CNUEmacs is distributed from Free Software Foundation. 

8C++ is distributed from AT&T and Free Software Foundation. 

91EX is a trademark of American Mathematical Society. 
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1.3 Software Modification 

A software is modified many times during its life. It is fact that a major part of 

the software development cost is spent on software modifications. In particular, over 

60% of total software development cost is a maintenance cost which is considered as a 

modification cost. 

A programmer modifies a soft ware by various reasons such as a bug fixes and changes 

of design decisions. In particular, a programmer modifies a software frequently during 

a prototyping and for a software development in a complex and ill-structured applica

tion domain. Furthermore, by modifying a released software, a software for a similar 

specification will be developed cheaper cost. Usually, a programmer, in particular 

a novice programmer, starts from modifying program examples in text books, when 

he/ she meets a new programming language or a new software package. A programmer 

can not avoid software modifications in all software phases. However, unfortunately, 

there are serious problems related to a software modification as follows. 

(1) Side-effects of a modification are occurred and propagated into many parts of 

various software objects. A programmer must correct these side-effects. However, 

these corrections are tedious and maybe routine works. So, these works waste the 

intelligent ability of a programmer and decrease the productivity. Furthermore, 

missing side-effects decreases the reliability of the software. 

(2) Many modifications change a well-structured software into an ill-structured soft

ware. This decreases the readability and modifiability of the software. In partic

ular, ad hoc corrections such as loopholes, goto statements, type conversions, and 

temporal global variables make impossible further modifications and corrections. 

(3) A modification destroys relationships and consistencies between software objects. 

For example, even if a programmer modifies and corrects a program, the consis

tencies between the program and other software objects such as specifications, 

designs, and test cases may be destroyed. 

In order to resolve these problems, many approaches such as a modular progmmming, 

an object-oriented progmmming, and an automatic progmmming are proposed and used 

in practical. These approaches are effective, however, above problems remain yet. 

A most effective facility of a modification support is an automatic correction of 

side-effects caused in software objects. This facility would resolve above problems and 

increase the prod uctivity and the reliability of a software development. However, there 

have been a few researches on automatic correcting. This dissertation will present 
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a modification support system, which provides automatic corrections in one program 

caused by changes of data types, in Chapter 4. 

1.4 Organization of Dissertation 

This dissertation discusses a meta-programming environment and a modification sup

port system on the environment. The organization of the dissertation is as follows. 

In Chapter 2, studies on meta-programming environments are discussed. An ap

proaches taken in the dissertation is proposed. 

In Chapter 3, a meta-programming environment, MUSE, is presented. MUSE mainly 

supports design and coding phases. It has been designed to support multiple kinds of 

software objects and to provide language-oriented facilities for each software object. In 

order to realize these design goals, MUSE introduces an object-oriented concepts into its 

meta-model and the meta-description language. A software object is represented as a 

collection of objects based on an extended attributed abstract syntax tree. A node of the 

tree is an instance of a class defined in a description of a particular language. A class is 

defined for an element of software object, such as syntactic elements, declarations, files, 

modules, and test cases. Two mechanisms, gate and internal-class, are introduced to 

realize advanced facilities. Facilities provided by MUSE are template-based and design 

editing with an incremental static checking, incremental attribute propagation and 

static semantic checking, management facilities, debugging, and modification support. 

In Chapter 4, a modification support system on MUSE is presented. Following 

discussions of modifications, supporting facilities, and related works, an approach to 

correct side-effects is proposed. Next, the author presents a system developed on the 

proposed approach. The target correction of the system is side-effects caused by a type 

modification in one program. Side-effects are detected by propagating type attributes 

on an internal representation. When a side-effect is detected, the system replaces the 

object with another object of another class which can remove the side-effects. The 

author discusses problems of the presented system and presents some future directions 

of modification support. 

Finally, Chapter 5 summarizes the results of the dissertation and some comments 

on future research are given. 
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Chapter 2 

Overvie"W' of Meta-Progralllming 

Environment Studies 

A meta-programming environment makes it easier to construct a language-oriented en

vironment and to customize the constructed environment. In this chapter, an overview 

of a meta-programming environment is given first, then related works are shown. Fi

nally an approach adopted in this dissertation is briefly explained. 

2.1 On Meta-Programming Environments 

In this section, overview of meta-programming environments is summarized. 

2.1.1 Definition 

There is no definition for a meta-programming environment which is commonly ac

cepted. The author uses a looser definition, a meta-programming environment is an 

environment which can be customized and extended by describing behaviors of the en

vironment in a particular description language provided by the environment. 

In order to create an environment for a particular application domain and a lan

guage, an environment builder writes a description about the target language features 

and the responses for programming activities. This description is one of software knowl

edge called a meta-description, and the language is called a meta-description language . 

2.1.2 Architecture 

Figure 2.1 shows the general architecture of a meta-programming environment. An 

environment builder describes a meta-description which consists of a software scheme 

definition and tool definitions. A software scheme definition defines a syntactic and 

9 
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semantic structure of software objects in a target language. A tool definition specifies 

the behaviors of a software tool on a software object in the target language. 

scheme 
analyzer 

Meta-Programming Environment 

independent part 
of tools from 

meta-description 

Figure 2.1: Architecture of Meta-Programming Environment 

A meta-description is transformed into internal forms, such as event driven tables, 

decision tables, procedures, and frames. A meta-programming environment is con

structed by transformed information and independents part from a meta-description. 

The following are components of a general meta-programming environment. 

(1) Software Scheme Analyzer 

In a meta-programing environment and an integrated programming environment, a 

software object (e.g., a program) is represented as a particular data structure, called 

internal representation. An internal representation represents syntactic and semantic 

structure of a software object. Most of environments use extensions of intermediate 

data of compilers, such as a parse tree and an abstract syntax tree. The tree structure 

represents syntactic structure and the attributes attached with a node of the tree 

represent semantic information. A language syntax and semantics are represented as 



2.1. ON META-PROGRAMMING ENVIRONMENTS 11 

a (software) schema on a particular model of an internal representation called meta

model. The software schema analyzer detects an erroneous updating operation to 

the internal representation and guarantees the correctness by referring to the software 

schema. 

(2) Internal Representation 

This is a software representation which is represented as a particular data structure. 

This representation is shared and accessed by software tools in the meta-programming 

environment. An instance of a representation is based on a particular software schema. 

(3) Software Tools 

These tools are designed to work independent from a meta-description. They work 

on an internal representation and provide facilities for a particular language or domain 

by referring a tool definition. Typical software tools are as follows. 

• A editing tool selects a part of the internal representation and updates it. Most 

of provided editors are template-based language-oriented editors. Recent works 

incorporate an incremental parser for text-oriented editing into the editor. 

• A pretty-printer and an unparser show an internal representation in user friendly 

form such as text representation or a graphical representation. 

• A checker checks correctness of a software object. An incremental syntax checker 

and static semantic checker check the syntactic and static semantic correctness 

for each editing operation. 

• A translator and a code-generator translate an internal representation into another 

representation such as internal representation in other language and object code. 

• A debugger and an interpreter interprets the internal representation and execute 

it. 

• A management tool manages software objects and controls versions and configu

rations. 

It is important that the programmer edits and accesses an internal representation 

only by the provided editor. Other tools are activated through the editor and work on 

the internal representation. 

(4) User Interface 
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User interface manages displayed objects and controls events from the program

mer. This is heavily dependent on the window system, such as Sun View!, X Window 

System2
, and NeWS 3

. 

2.1.3 Meta-Model 

In a meta-programming environment, a data structure of an an internal representa

ti on specifies the behaviors of software tools and communications between tools. This 

structure is called meta-model. Based on the meta-model, a meta-description language 

which describes a syntactic and semantic structure of a target language and behaviors 

of software tools is decided. 

An internal representation on the meta-model should be able to represent syntactic 

and semantic structure of software object in a natural form. Since the representation 

is shared with software tools, it must have all information to work software tools. In 

particular, a syntactic and static semantic correctness of the representation should be 

checked incrementally. Of course, the space and the access cost of the representation 

should be minimized as possible. 

Most of meta-programming environments use a parse tree and an abstract syntax 

tree as a meta-model. A parse tree is an intermediate format of compilers and it is 

generated by parser. A node in a parse tree represents a syntactic element, i.e., terminal 

and non-terminal symbol in BNF (Backus Normal Form). A token which is produced 

by a lexical analyzer places on a leaf node. A meta-environment with an incremental 

parser uses this representation. 

An abstract syntax tree is a more space-efficient representation than a parse tree. 

An abstract syntax tree reduces and takes out unnecessary intermediate non-terminal 

nodes and nodes for tokens from a parse tree. For example, a part of a parse tree 

corresponding to an Ada statement 

if Z then 
y - X' , 
X - O· , 

end if; 

is shown in Fig. 2.2 and a case of an abstract syntax tree is shown in Fig. 2.3. Inter

mediate nodes such as statement and expression are removed. A parse tree and an 

abstract syntax tree represent only syntactic structure of a software object. In order 

to represent a semantic information, attributes which represent semantic information 

1 Sun View is a trademark of Sun Microsystema. 

2X Window SysteIIl is a trademark of MIT . 

3NeWS is a trademark of Sun MicrosysteIIls. 
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such as types of expressions, names of identifiers and variables, and values of literal are 

attached to a node of the tree. 

Figure 2.2: A Parse Tree 

Figure 2.3: An Abstract Syntax Tree 

A software schema for a tree based meta-model is described by defining types of a 

node in the tree, which is shown as a label of node in Fig. 2.2 and Fig. 2.3. Syntax can be 

represented as links of a node and static semantics is represented as attributes attached 

to the node. A definition of a type of a node specifies these links and attributes. 

It is important to decide better meta-model before constructing meta-programming 

environments. For example, in order to construct Ada programming environment 

and supporting software tools, several standard internal representations (e.g., DIAN A 

[Evans 83]) are proposed. 

Tree-based representations are used for a text-based programming language. In 

order to represent a design or diagram-based language and to specify behaviors of 

software tools and communications between software tools, more describable and active 

meta-model is required. 

Recent works use an ER-model, an object-oriented model (e.g., Garden for design 

environment [Reiss 87], SW2 for accessing and managing software objects [Laff 85]), 
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Figure 2.4: A Constructed Language-Oriented Environment 

plan representation in Programmers' Apprentice [Waters 82], and others. 

An object-oriented meta-model which is introduced into the presented meta-programming 

environment will be described in Chapter 3. 

2.2 Construction of Language-Oriented Environments 

Early works of meta-programming environments used to develop construction systems 

for language-oriented environments. At first, the author presents a system organization 

of a constructed environment. A language-oriented environment is generated from 

a. language-description for text-based programming language used in coding phase. 

Describing methods for language features and studies on construction systems are 

presented. 

2.2.1 Constructed Environment 

Figure 2.4 shows a constructed language-oriented environment. This environment sup

ports typical facilities such as template-based editing, syntax and static semantic check

ing, debugging, and code generation. An environment builder describes a language 

description for a target programming language and it is translated into an internal 

form. 

The front-end of the environment is a language-oriented editor (or syntax-directed 
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editor) which checks syntactic correctness in each editing operations and removes an il

legal operation. A programmer updates and focuses an internal representation through 

the editor. A focus means selecting and moving a cursor on a part of the internal rep

resentation. A language-oriented editor can be classified into three classes from the 

view of editing styles. 

Template-Based: The programmer edits a program by using templates except some 

small elements such as names, identifiers, literals, and expressions. 

Text-Only: The programmer edits a program in textually. A text is concerned with 

an internal representation such as a parse tree. An incremental parser parses the 

edited text and updates corresponding parts of the internal representation. 

Complex-Type: The programmer can edit the program by using template and by 

textually. An internal representation is updated incrementally. 

An unparser creates and shows a pretty-printed text representation from the up

dated internal representation. 

The other software tools place on the back-end of the environment. These are 

activated from the language-oriented editor. An incremental syntactic checker checks 

syntactic correctness of the program and cancels the error operations. An attribute 

propagator propagates attributes of nodes and an incremental static semantic checker 

detects static semantic errors such as type and scope errors by checking attributes. 

An interpreter/debugger sets hooks on the internal representation and interprets the 

internal representation and the associated hooks. A code-generator or a translator 

translates the internal representation into other formats such as assemble codes. 

2.2.2 Description of Language Features 

In this section, methods and studies for describing a language features are shown. 

Language features are as follows. 

(1) Syntax 

Syntax of a language is an important feature. Usually, BNF and its extensions are 

used to represent language syntax, i.e., context free grammar. In order to generate 

tokens through a lexical analysis, a regular expression is used. A template-based ed

itor uses the notation of syntax for checking syntactic correctness. An editor with 

incremental parser uses the notation for parsing text and for checking syntax errors. 

Cornell Program Synthesizer (CPS) [Teitelbaum 81] is a template-based editor, and 

the Synthesizer Generator which generates CPSs uses BNF -like syntax [Reps 84a]. 
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Mentor uses the abstract syntax for an abstract representation, i.e., an abstract syntax 

tree, which plays a same role of BNF for a concrete syntax [Donzeau-Gouge 84]. Syend: 

language-oriented editor generator uses a BNF-like notation which is YACC-compatible 

LALR(l) grammar for a multiple-entry parser (i.e., incremental parser) [Horgan 84]. 

SPSG uses XLALR(l) grammar for efficient incremental parsing [Handa 86] 

(2) Static Semantics 
In addition to the syntax, a language gives static semantic constraints such as type 

consistencies and scope constraints. In order to represent static semantics of a program, 

attributes are used. Static semantic errors are detected by propagating attributes and 

by checking whether the propagated attribute satisfies the given constraints or not. In 

order to specify the static semantics, action routines and attribute grammar have been 

used. 

Action Routine: Action routine was used in ALOEGEN4 (A Language-Oriented 

Editor Generator) [CMU84]. An action routine is a procedure which is defined 

in each kinds of node. An action routine is activated by a editing operation 

and it processes some works, including attribute propagation and error checking. 

Though an action routine is powerful, the description cost is large. 

Attribute Grammar: An attribute grammar was proposed in [Knuth 68]. In an 

attribute grammar, attributes are defined for terminal and non-terminal symbol 

of context free grammar, and semantic equations are defined to a production 

rule of the grammar. There are two types of attributes, a synthesized attribute 

(an attribute propagated from right hand side of a production rule to the left 

hand side) and an inherited attribute (an attribute propagated from left hand 

side to the right hand side). Attribute grammar is introduced into compilers 

and compiler-compilers. In order to evaluate attributes incrementally, [Reps84b] 

proposes an incremental attribute propagation algorithm and incorporates it into 

the Synthesizer Generator. Semantic equations are independent of each other and 

are modularized, and it is represented by clear and declarative. 

An attribute grammar is more formalized than action routines, and this describing 

burden is smaller than writing action routines. However, runtime evaluation costs for 

an attribute grammar is larger than action routines. 

After an attribute grammar, some methods are proposed to propagate attributes. 

ARL (Action Routine 1.anguage) in Gandalf is one of attribute grammar [Harbermann 86]. 

For efficient runtime supports, a description written in ARL is translated into action 

.. ALOEGEN is distributed from eMU. 
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routines and daemons. PSG uses more formal method than an attribute grammar. The 

method is based on a context relation and an unification [Bahlke 86]. [Horwitz 86] pro

poses a method which incorporate relational operations into an incremental attribute 

propagation. [Tenma 86] uses message passing between nodes for static semantic check

ing and other operations. 

(3) Semantics, Interpretation, and Code- Generation 

Semantics of a programming language is an execution or an interpretation of a pro

gram written in the language. A construction system supports one interpreter and the 

interpreter traverses an internal representation for executing. When the interpreter vis 

its a node, it accesses the semantic description associated with the node and executes 

it. A code-generator works as similar to an interpreter. CPS provides an assemble lan

guage for interpretation. PECAN provides a high level semantic description language 

for incremental code-generation [Reiss 84a]. PSG supports a functional language to 

generate language-specific debugging system [Bahlke 87]. 

Usually, debugging operations are realized in a language-independent way. For 

setting breakpoints and tracings, a debugging operation attaches a pre-defined language 

independent hook into a node of the internal representation. In addition to evaluate 

the semantic description, an interpreter/debugger evaluates attached hooks. 

(4) Format or Unparsing Scheme 

An unparsing scheme is used by an unparser or a pretty-printer to translate an 

internal representation into a more friendly representation such as a pretty-printed 

text and a diagram. A behavior of an unparser (or a pretty-printer) is similar to an 

interpreter. 

2.2.3 Construction Systems 

Many construction systems for language-oriented environments are developed with a 

language-oriented editor. Synthesizer Generator generates CPSs for Pascal-like pro

gramming languages. This environment supports template-based editing, incremental 

syntactic checking, and incremental static semantic checking based on an attribute 

grammar. Mentor can support multi-lingual documents based on an abstract repre

sentation and an interactive tree manipulation language Mentol [Donzeau-Gouge 84]. 

The Gandalf project aims to develop a construction system for generating environ

ments which support (1) program construction, (2) configuration management, and (3) 

version control. For realizing these facilities, ALOEGEN, ARL, and action routines are 

developed. Generated ALOEs are used as front-end of the environment. Subprojects 

of Gandalf create prototype environments; GNOME [Garlan 84] and SMILE. 
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PECAN provides editing and debugging facilities for Pascal-like languages on an 

advanced workstation. The main advantage of PECAN is its user interface. By using 

bitmap display of a workstation, it provides multiple view of programs and status of 

execution, for example, syntax-directed editor, symbol table display, data type display, 

expression display, flow graph display, NS-chart display, command history display, and 

execution view [Reiss 84b). 
PSG (Programming System Generator) generates language-oriented programming 

environments from a formal definition of a programming language. It introduces a 

context relation, which represent a context of a program, and an unification for prop

agating attributes. 

2.3 Directions of Meta-Programming Environments Studies 

In this section, recent studies on meta-programming environments and future directions 

are summarized. 

2.3.1 Supporting Upper Phases 

The target phase of construction systems for language-oriented environments is only 

coding phase. However, a software is developed through various phases. In particular, 

upper phases such as requirements analysis, requirements specification, system design, 

and program design phases are more important than coding phase. 

In order to support design phases, many design techniques are proposed. These 

techniques propose several kinds of diagram-based languages, such as dataflow di

agram, data structure diagram, finite-state diagram, petri-net, Entity-Relationship 

(ER), structure chart, state transition diagram, and so on. An environment to sup

port design phases should provide design editors for creating designs and checkers for 

checking correctness and consistencies of created designs. 

A meta-environment to support design phases should be able to define a graphical 

design language. The definition consists of syntax, semantics, formats, and operations 

on a design. An interpreter or a simulator which executes a design helps a programmer 

to design a better software system quickly through a prototyping. A commercial CASE 

(Computer Aided s.oftware Engineering) environment, StP (S.oftware ihrough Pictures) 

provides six graphical editors and a project database [Wasserman 86]. Though StP 

provides a customizing method, it is impossible to create a graphical editor for a new 

design language. Metaview is a meta system for CASE environment which can be 

enhanced and changed. It provides a language to specify a specification scheme on 

ER-model [Sorenson 88]. 
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Garden proposes a conceptual progmmming methodology. The programmer cus

tomizes or creates a design language (and a method) for a particular application do

main, before he/she designs a software in the domain. Garden provides an object

oriented language to specify a design editor and an execution of a design written in the 

specified design language [Reiss 87]. 

For supporting more upper phases, i.e., requirement analysis or requirements acqui

sition phase, some knowledge-based tools are proposed. By interacting clients, these 

tools create a formalized and concrete specification from ambiguous client's require

ments. However, these tools are not working in practical and the applicable application 

area is very narrow. These tools need domain specific knowledge gotten by analyzing 

the application domain. 

2.3.2 Supporting between Software Objects 

In addition to support each development phases or one software object, supporting 

facilities between phases and between software objects are needed. Examples of such 

facilities are management facilities, transformations, and consistency checking. 

Management 

Several management facilities such as resource management, configuration manage

ment, version control, plan management, and project management exist. To real

ize management facilities, management tools, a languages for describing management 

information, and a software database are studied on. A project-centered software 

database has all software objects created in the project and provides functions to 

project members and software tools. Such functions are access control, version con

trol, and dependency controls. Furthermore, a software database is required to provide 

active functions, i.e., a manager can define an action which is activated automatically 

when a specific event or a situation is occurred. 

A language for management specifies a management information such as software 

configurations, access lists, version structure, and a development plan. From the view 

point of a meta-environment, a management language can be realized by a meta

description. In order to realize management facilities in a meta-environment, a mech

anism which can relate to different kinds of software objects should be introduced into 

the meta-model. 

Examples of widely used management tools are Make [Feldman 79], sees [Allman 86], 

and ReS [Tichy 86] on UNIX. In particular, Make provides a language to specify de

pendencies and rules between files and suffixes. Gandalf is a meta-programming envi-
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ronment to provide management facilities. 

Process Programming 

Concerning plan management, process programrrung is proposed and environments 

based on the process programming are researched on. A manager writes a program, 

which represents a sequence of activities of software development, called process pro

gram. According to a process program, an environment can activate software tools and 

checks software objects automatically. Examples of environments based on the process 

programming are [Huff 88], Arcadia [Tayler 86], and Tame [Bashili 87]. 

Transformation 

A transformation is useful to enhance the productivity of a software development. In a 

meta-programming environment, transformations change an internal representation of 

a language into one of the other languages. This is realized by giving transformation 

rules between two representations. 

Consistency Checking 

A consistency checker detects inconsistencies between different kinds of software ob

jects. PegaSys supports consistency checking between (dataflow) designs and (Ada) 

programs. In addition to the definitions of elements in a design language and a pro

gramming language, PegaSys uses the first-ordered logical formula with the elements 

which represents semantics of the elements. By deducting logical formula generated 

from designs and programs, inconsistencies among them are detected [Moriconi 86]. 

2.3.3 Intelligent Programming Environments 

Recent research aims to develop a programming environment with more advanced 

facilities. In particular, intelligent programming environment and an intelligent pro

gramming assistant are studied on [Barstow 84b]. The widely accepted definition of 

an intelligent programming environment is an environment which automates (parts of) 

programming activities by using software knowledge. Since an intelligent environment 

uses software knowledge, it can be customizable and programmable by changing the 

knowledge. There are four types of software knowledge which are researched in the 

intelligent environments [Ramanathan 88]. 

l. Software Object: This is a knowledge about software objects. Knowledge about a 

language is included this type of knowledge. Transformation rules and consistency 
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rules are also included. 

2. Development Process: This is a knowledge about a software development process 

and programming activities. A process program is one of process knowledge. 

3. Software Tools: Since an intelligent assistant automatically activates software 

tools, knowledge about usages and functions of software tools is needed. 

4. User: It is useful for a programmer to provide help messages and checking levels 

which are specialized to the skill level of the programmer. These facilities needs 

an information about a particular programmer. 

Some of above knowledge are used in intelligent environments. However, in partic

ular, formalization and usage of 2-4 is a current topics of Software Engineering and 

Artificial Intelligence. They are not used in an actual environment. 

The Programmer's Apprentice project in MIT is a famous research of an intelligent 

assistant. This project aims to develop theory of programming and to automate the 

programming activities. The key ideas of the project are as follows. 

• Assistant Approach: The system assists programmers by automating detailed and 

routine works rather than a full automatic programming. 

• Cliches: These are knowledge about fragments of a program. 

• Plan: This is a knowledge representation of a program on which the assistant 

works. 

The project has been developed several demonstration system, e.g., KBE [Rich 78], 

[Waters 82], KBEmacs [Waters 85], Requirements Apprentice and Design Apprentice 

[Rich 88]. 

PROUST detects bugs in a program by using knowledge about programming the

ory and bugs [Johnson 85]. CHI project is a research on a knowledge-based software 

environment based on a wide-spectrum language V for describing knowledge about 

software objects and software processes [Smith 85]. 

These environments use knowledge about software objects. In particular, knowledge 

of fragments of software objects, such as code skeletons, design scheme, and algorithms 

are used. These are called as intelligent macros. An intelligent macro consists of 

a name, an invariable part, variable parts, constraints, and so on. A programmer 

creates a software objects by combining these macros. According to the constraints 

and contexts of an intelligent macro, it automatically customizes itself by changing and 

filling a variable part. 
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Table 2.1: History of Meta-Tools and Meta-Environments 

Table 2.1 summanzes the history of meta-tools and meta-programming enVIron

ments. 

2.4 An Approach to Development Meta-Programming En

vironment 

As discussed in above sections, a meta-programming environment must have benefits of 

an integrated programming environment and provide editing, incremental syntactic and 

static semantic checking, incremental attribute propagation, and debuggingj execution 

faci lities through a friendly user interface. Furthermore, as shown in Section 2.3, an 

ad vanced meta-programming environment should provide facilities to 
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(1) support various types of software objects, 

(2) manage software objects, 

(3) support design languages, and 

( 4) accept intelligent macros. 

These facilities should be realized on meta level, and language dependent parts of them 

should be written in a highly describable meta-description language. From the view 

point of enhancing the software development costs, 

(5) modification support facilities 

should be realized. Since a modification causes side-effects on various kinds of software 

objects, a modification support must be realized on a meta-level and realized language 

independently. 

In this dissertation, a meta-programming environment MUSE (Multiple Language 

s.upport Environment) [Tsubotani 87], [Tenma 88] and a modification support system 

on MUSE [Tenma gOa] are presented. 

In order to realize (1)-(5), an active meta-model with highly describable and mod

ularized meta-description language are needed. MUSE introduced a meta-model which 

is based on an object-oriented concepts. The system architecture is designed to sup

port and to manage multiple kinds of software objects. (1) is realized by changing 

language knowledge for each type of software objects. (2) needs a mechanism to rep

resent relationship between software objects. MUSE introduces a context and a gate 

on the object-oriented meta-model. (3) is realized by supporting design editors and 

a describing method for defining syntax, semantics, and format of a diagram-based 

design language. (4) is stated by using the object-oriented meta-model and its meta

description language. MUSE will be described in detail in Chapter 3. 

As an advanced facility of MUSE, limited facilities for (5) are realized. The modi

fication support system corrects parts of a program which are side-effected by a mod

ification of data types. The system is based on basic facilities of MUSE, an attribute 

propagation and a class hierarchy. The modification support system will be described 

in detail in Chapter 4. 



24 CHAPTER 2. OVERVIEW OF META-PROGRAMMING ENVIRONMENT STUDIES 



Chapter 3 

A Meta-Programming 

Environment, MUSE 

In this chapter, a meta-programming environment MUSE is presented. 

3.1 Design Goals 

MUSE is a meta-programming environment which aims to support design and coding 

phases. The first goal of MUSE is to provide benefits of an integrated programming 

environment such as language-oriented, integration, interactive, and incremental. In 

addition to these features, MUSE is design to realize the following goals. 

(1) Supporting Various Kinds of Software Objects 

During a software development, various kinds of software objects, which are docu

ments and information with formal syntax, such as specifications, designs, programs, 

test cases, management information, and development plans are created. Each software 

object requires language-oriented facilities for it. However, most of meta-programming 

environments can support only one language at one time. For supporting another lan

guage, another meta-description and a construction of language-oriented environment 

is needed. In addition to support language-oriented facilities for one software object, 

MUSE realizes facilities for supporting multiple software objects. 

(2) Supporting Design Phases 

In design phases, software objects are represented as diagrams, such as flow chart, 

dataflow chart, data structure diagram, and petri-net diagram. In order to manipu

late these representations, MUSE should be able to support editing and manipulating 

facilities for these diagrams. The meta-description language of MUSE should provide a 

method to represent syntax, semantics, and format of a diagram- based design language. 

25 



26 CHAPTER 3. A META-PROGRAMMING ENVIRONMENT, MUSE 

Software Tools 
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Figure 3.1: System Organization of MUSE 

(3) IIigh Level Meta-Description Language 

In a meta-programming environment, a development of a meta-description is Im

portant. Extensibility, modifiability, and modularity are required to the language. 

MUSE makes it possible to add higher level facilities by using basic mechanisms of the 
meta-description language. 

3.2 System Architecture 

In this section, the system organization of MUSE is described from two points of view 

such as a software module view and a data management view. 

3.2.1 Software Modules 

Figure 3.1 shows the system organization of MUSE. MUSE consists of following software 
modules. 
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(1) Window Manager 

The window manager provides the multiple window based user interface. This man

ages window objects and its contents, and handles events given from the programmer. 

When the window manager receives an event, it activates a particular function associ

ated to it. Figure 3.2 shows an example of user interface of MusE. There are several 

kinds of window objects such as editors, panels, menus, message regions, buttons, and 

formatted text shown in the editors. In this example, boldface parts, i.e., a box in 

a design editor and a (make-class ... ) in a template editor means that they are 

focused and selected now. This is similar to a cursor position in a display-oriented 

editor. 

(2) Software Tools 

Tt·,1 Echl P.ult·1 

D, ·' 1'111 P.ult'l 

~_---,I ~I __ ~ 

~_---,I ,-I __ -' 

Figure 3.2: User Interface of MUSE 

MUSE has following software tools. 

• template editor 

• design editor 

• attribute evaluator 

• class browser 
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• filer 

• debugger 

• modification support system 

These tools works on an internal representation of software object. 

(3) Class Manager and Class Space 

The class manager manages language knowledge in the class space. It provides 

access functions to the language knowledge for software tools. A language-knowledge 

is generated from a meta-description. 

(4) Object Manager and Object Space 

The object manager manages internal representations of software objects. The rep

resentation is based on an attributed abstract syntax tree. It provides access functions 

and basic editing operations to software tools. It plays a role of software scheme an

alyzer described in Section 2.1. The object space consists internal representations of 

loaded software objects. A loaded internal representation is displayed in an editor. The 

object manager is realized as an interpreter of an object-oriented language. 

(5) Translator 

The translator transforms a meta-description into an internal format used in the 

class space. 

A programmer selects a part of displayed software object. and then gives an oper

ation by clicking a button in the command menu. The given event is translated into 

a corresponding command by the window manager. The command sends messages to 

the focused node through the object manager. The class manager searches a method 

from the class space and returns it, and the object manager evaluates the returned 

method. The method achieves the operation by activating functions provided from 

software tools and by sending messages to other nodes. After finishing the operation, 

if needed, an unparser updates the window object in an editor. 

3.2.2 Data Management View 

This subsection describes the data management architecture which realizes multiple 

language support. Figure 3.3 shows the data management architecture of MUSE. From 

the view point of the programmer, a software object is shown in a template editor or 

a design editor. All operations to the software object is invoked through the editor. 
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Figure 3.3: Data Management in MUSE 
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One editor in the window object space corresponds to one context object in the 

object space, and a context object has one internal representation and related infor

mation about it. A context object is created for a unit of software object such as a 

module and a program. This is also a file unit for saving and loading. The object 

space has several context objects. A context object is connected to a node of another 

internal representation in another context object with gate which will be described in 

Section 3.3. 

A context object is associated with one module in the class space. An operation to 

the software object is processed by referring information in the associated module. A 

module is an internal form of a meta-description, and it has a set of classes and other 

language-dependent information. Usually, one module is defined to one language. A 

module can export its classes to other modules. Other modules can import and use the 

exported classes from other modules. In t.his example, Lisp module and directory 

module import classes exported from system module. 

The data management architecture described above realizes multiple language sup

ports and provides language-specific facilities for each software object. 
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3.3 Object-Oriented Meta-Model 

A meta-model is a most important decision to design a meta-programming environ

ment . Since the target software objects of MUSE are various, the meta-description 

language should have a capability to represent them. To decrease the describing cost, 

the reusability and modularity of the meta-description language are required. 

In order to satisfy above requirements, MUSE introduces a meta-model based on 

an object-oriented concepts [Goldberg 83a]' An object-oriented language is highly 

modularized and inheritance mechanism realizes a high reusability. 

3.3.1 Internal Representation of Software Object 

An internal representation of software object is based on an attributed abstract syntax 

tree. Each node of the tree is a object which is instantiated from one of class defined 

in a meta-description, i.e., a module. By adding links which connects any two nodes 

of the tree, an internal representation composes a network structure. 

Figure 3.4 shows an internal representation corresponding to a part of Lisp program 

(svref C+ i j) <form». 

type' integer 

type' integer 

••••• 11,.. ....... 
ded 

type' integer 

struct-link 

Figure 3.4: Internal Representation of Lisp Program 

Figure 3.5 shows (a) an part of internal representation of dataflow design and (b) 
its diagram representation. 

A node in an internal representation represents one of software units which compose 

a software object such as syntactic elements, program fragments, design elements, 
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name' X 

name ' a name' A name ' b name' B name ' c 

-----II.,~ struct-Iink 

---~~p.,...~ semantic-link 

(a) Internal Representation 

Process: X 

(b) Diagram Representation 

Figure 3.5: Internal Representation of Dataflow Design 

skeletons, and algorithm units. A label of a node represents a name of the class 

which the node belongs to. A node has struct links, semantic links, and attributes . A 

struct link connects two nodes and represents a parenti child relationship. Struct links 

compose the tree structure, i.e., an abstract syntax tree. A semantic link connects two 

nodes in any position. An attribute, shown as underlined text in Fig. 3.4 and Fig. 3.5, 

represents a properties of a node such as type of expressions, name of identifiers and 

variables, and value of the literal. 

This representation can applicable to text-based context free language, diagram 

based design language, and other formalized complex information. 

3.3.2 Meta-Description Language 

A meta-description for a particular language defines a module. A module consists of a 

module declaration, class definitions, and some descriptions specified for some software 

tools. Class definitions define the syntax and semantics of the target language. 

Figure 3.6 is an example of module declaration for a Lisp module. In this example, 

name of the module is Lisp, and the module imports classes which are exported from 

system module ( : import-module). Imported classes are visible in this module. The 

export field (: export-class) all shows that all classes defined in this module are 
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exported. The root class part (: root) Lisp-root is a name of class which is a root 

node of an internal representation. The context field (: context) Lisp-context is a 

class of context object. 

(defmodule Lisp 

: import-module 

: export-class 

:root 

: context 

(system) 

all 

Lisp-root 

lisp-context) 

Figure 3.6: An Example of Module Definition 

A class is defined for one of units which constructs a software object in the target 

language. In this module, a class is defined to a system function in Lisp. Figure 3.7 is 

an example of class definition. This defines a class which defines a function svref in 

Lisp module. The node of this class is a root node in Fig. 3.4. Following are contents 

of a class definition. 

(1) Name 

(defclass svref 

: super (form) 

:struct «index :class form :range (1 1)) 

(vector :class form :range (1 1))) 

: attribute «type :default t) 

(type-const :default t)) 

: class-attribute «format ... ) 

(relation ... ) .. . ) 

: method «run 0 ... ) (trace 0 ... ) 
(stop-at () ... ) ... ) 

: probe «(vector type) 0 ... ) ... )) 

Figure 3.7: Definition of svref Class 

The name of a class. 

(2) SupercZasses 

When an OR syntax rule 

L ::= R1 I R2 
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exits in the abstract syntax of the target language, L must be defined as a superclass 

of R1 and R2. A class inherits (3)-(8) from its superclasses . An override is allowed to 

restrict constraints of inherited properties. 

(3) Struct links 

A link is a instance variable which value is a node. In particular, a struct link is 

used to represent syntactic relationship . A struct link and a semantic link is defined 

as a same format. It is defined by a name, a linkclass, and a range. A linkclass limits 

classes which can be connected with the link. The connected class must be a subclass 

of the linkclass. A range gives lower and upper limitations of number of links. In 

Fig. 3.7, a node which is connected with index link of svref class must be an instance 

of subclass of form class. Of course, the form class is included. The number of index 

link must be over and equal to 1 and under and equal to 1, so it is just 1. A struct 

link is decided from a production rule in the abstract syntax of the target language. 

For example, an production rule 

<dolist> ::= (dolist «var> <list> [<result>]) {<form>}) 

creates four struct links of dolist class as shown in Table 3.1. Ranges 0 .. 1 and 

1 .. infi (infinity) correspond to the optional [] and repetition {} in BNF meta-rules, 

respectively. (2) and (3) decides the syntax of the target language and they are used 

to guarantee the syntactic correctness. 

name Ilinkclass range 

var variable 1..1 

list form 1..1 

result form 0 .. 1 

body form 1 .. infi 

Table 3.1: Struct-Links of dolist Class 

(4) Semantic links 
A semantic link connects a node with another node in any position. A semantic link 

represents any relationship between nodes except for syntactic relationships. Examples 

of semantic links are links from a variable to its declarations and its reverse directions, 

l.e., 

(decl :class declaration :range (1 1)) and 

(use :class variable :range (0 infi)). 
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In Fig. 3.7) there is no semantic links. 

(5) Attributes 
An attribute definition defines an instance variable which value is not a node. This 

is used to represents properties of a node. In Fig. 3.7) a type attribute with default 

value t is defined. (3)-(5) correspond to instance variables of Smalltalk-80. 

(6) Class Attribute 

A class attribute corresponds to a class variable of Smalltalk-80. It is defined for 

giving information which is static an unique to the class. In particular, information 

which is accessed by software tools is defined as a class attribute. Examples of class 

attributes are format, attribute relation, copy-rule, etc. These will be described in 

detail in Section 3.4. In Fig. 3.7, class attributes are omitted. 

(7) Methods 

A met hod is a proced ure invoked by a message from the programmer and from other 

nodes. A message is sent through a link. A message expression 

«- 'index 'evaluate) 

IS sent to a node which is connected to a index link and the message activates the 

method evaluate of the node. 

(8) Probes 

A probe is a kind of daemon in frame representation, and it is similar to the active 

value of LOOPS l
. A probe consists of (a) target-link: a name of link, (b) target-items: 

names of links and attributes which are defined in linkclass of the target-link, and (c) 
body: a body of procedure. The body is activated automatically when one of the target

it ms of a node connected with the target-link is updated. When a probe is activated, 

three arguments, which are node which has the probe, target node connected to the 

target-link, and old value of the target item, are passed to the probe. A probe defined 

in Fig. 3.7 is activated when a type attribute of node connected with the vector link 

is updated. 

3.3.3 Gate 

In order to manage different kinds of software objects, a gate is introduced into the 

basic meta-model. A gate is used first in Mentor [Donzeau-Gouge 84]. Figure 3.8 

shows an example of gate. A gate itself is a node of subclass of gate class. A gate 

1 LOOPS is a object-oriented system on lnterlisp-D. 
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has a special semantic link which is connected to another software object. A language 

of connected software object may be different from the language which the gate node 

belongs to. This example shows a gate node which is a second version of module B in 

a proj ect management information written in project management language. The 

gate is connected with a Lisp program written in Lisp. 

Context Object 

Lisp Program 

gate 

Figure 3.8: An Example of Gate 

By selecting a gate node and sending open message, an editor for the connected 

software object is created as following steps. 

(1) The programmer focuses a gate node. 

(2) The programmer sends a message open by selecting menu item which represents 

method list of the focused node (Fig. 3.9). 

(3) The object manager loads an internal representation of software object and its 

context object from the file system into the object space by a filer. 

(4) If a module of the loaded software object does not exist, the class manager loads 

the module from the file system into the class space by a filer (Fig. 3.10). Then, 

the class manager associates the context object and the module. 

(5) An editor corresponding to the loaded software object is created and displayed 

(Fig. 3.11). 

By introducing gate, the environment builder can creates a language to manage 

software objects and realizes management facilities on MUSE. A gate and a context 

are implemented as classes defined in the system module. 
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version1 
version2 

~_----JI I focus 

Figure 3.9: Open Gate - Select Gate -

Window Object Space 

template-editor 

Class Space 

project 
management 

module 

template-editor 

context 

Lisp 
program 

Lisp 
Module 

Figure 3.10: Open Gate - Load Internal Representation and Module -
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I quit 

(defun test (X Y) 
(setf (cdr X) 

(* 20 V))) 

I quit I I focus 

Figure 3.11: Open Gate - Open New Editor -

3.3.4 Internal-Class 
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In a software development, many items such as processes, data structures, modules, 

functions, procedures, and variables are declared. There is no difference between an 

access to a declared item and a language-defined syntactic element. For example, 

function calls of language-defined functions and user-defined functions are same in 

Lisp. 

However, in most of meta-programming environments, an access to a declared item 

is realized as a syntactic element with a name attribute which has name of the declared 

item. For example, a call for function X represents a node of function-call class with 

name attribute X. However, a function call for system defined function svref is realized 

as a node of svref class. This realization is not a natural. 

To realize these accesses naturally, MUSE introduces the concepts of internal-class. 

A declaration creates a class with its name of declared item called an internal-class. 

In this case, the declaration of function X creates an internal class X dynamically. An 

access to X (function call of X) is represented as an instantiation of X class. An internal 

class is memorized into a symbol-table attribute of scope class or its subclasses. 

Syntactic elements with an unique scope such as modules, procedures, functions, and 

blocks are defined as subclasses of scope class. 

Figure 3.12 shows (a) a declaration of function test, (b) a function call of test, 

and ( c) a definitions of its internal class. An internal class is defined as a subclass of 

function-call class. 

Because some declared items such as procedures and functions have a structure, an 
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internal class for them should have struct links. In this case, test class has two struct 

links corresponding to arguments of the function. An internal-class is generated by a 

probe of declaration class. This probe is activated when the programmer sets a name 

attribute to an identifier node. In this case, when a name attribute of identifier node 

is set on test, a probe of defun class, 

:probe (((id name) ... ) ... ) 

is activated and creates the internal-class test. 

(defun test (a ikey b) ... ) 

(a) Definition of test 

(test <form> :key <form» 

(b) Function Call of test 

(defclass test 

: super 

:struct 

... ) 

(function-call) 

((a :class form) 

(b :class form :range (0 1)) 

(c) Internal Class of test 

Figure 3.12: An Example of Internal-Class 

By introducing an internal-class, a syntactic checking and a static semantic checking 

become more easily, because information for checking is declared into an internal-class 

clearly and the checking mechanism for an internal-class is same as for other cases. 

From the view point of software tools and the object manager, an internal class is 

same as a class defined in a module. However, the running costs and description costs 

to write a probe consider to increase. 

3.4 Facilities Provided by MUSE 

This section describes facilities provided by software tools in MUSE and presents the 

definition formats for each software tools. 

3.4.1 Template-Based Editing 

l\IUSE provides a pure template-based editor. The editor activates basic editing op

erations directly. Figure 3.13 shows a organization of the editor. The basic editing 
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/_ ........................... \ 
class difi nitions I template editor 

~ dataflow/activate 

~ access 

Figure 3.13: Configuration of Template-Editor 

opera tions are as follows. 

Replace: This operator takes one argument, class name. This operation replaces 

a class of the focused node with a node of the given class. After replacement, 

attributes and links of a replaced node which has the same name with the given 

class's are copied into the new node (Fig. 3.14). 

Insert/ Append: Insert and append take no argument. These create a new link and 

a connected node before (insert) or after (append) the focused node. 

Create: This operation takes one argument, a name of struct link. This operation 

creates a link of the given argument on the focused node and a connected node. 

Delete: This operation deletes a subtree of focused node. 

Set-Attribute: This operation takes two arguments, a name of attribute and a value. 

This operation sets the given value into the given attribute of the focused node. 

Before activating these operators, the editor checks syntactic correctness of the 

operation . If editing operation violates the constrains of struct links, it causes a syntax 

error. When an error is detected, an error message is shown to the programmer and the 

operation is canceled. This checking guarantees the syntactic correctness of software 

object to other software tools. This is important to work software tools safety, because 

software tools is designed under the syntactic correctness of an internal representation. 
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(loop (if ...... ) 
(setq ... 

... ) ) 

replace 

(dolist «var> dorm» 
(if ...... ) 
(setq ...... )) 

Figure 3.14: Editing Operation - Replace -

3.4.2 Design Editing 

Figure 3.15 shows the organization of a design editor in MUSE. Editing commands 

of the design editor, such as move, add/delete node, connect/disconnect, and set 

label are associated to the basic editing operations as described in the previous sub

section. 

When the programmer inputs a design editing operation, the design command an

alyzer activates basic editing operations corresponding to the command. This corre

spondency is defined in the design editor description and the design format. Some 

commands such as move and resize do not call basic operations. Before calling basic 

operations, the analyzer checks the syntactic correctness. If the operation is not correct 

syntactically, the operation is canceled. Otherwise, basic operations are activated and 

they updates the internal representation. 

After updating the internal representation, the design command updates design 

objects in the window object space. A design object corresponds to a graphical object 

displayed in the design editor. There are three types of design object, node, connector, 

and port. Figure 3.16 shows design objects in Fig. 3.5. Process X, process A, and 

process B are nodes. a, b, and c are connectors. A connector connects two nodes. A 

port places on the edge of a node and attaches a connector to the node. 

A design editor description is defined in one module. It gives basic relationships 

b tween an internal representation and a design object. It is used to interpret a design 

diting operation into basic editing operations. Because correspondency between a 

node in an internal representation and a design object depends on a design language, 

this description is required. For example, in some cases, a node corresponds to a design 

object node, but in other cases, a node may correspond to a connector. 

Figure 3.17 is an example of design editor description in a dataflow language. 

A struct description (: struct) shows that a parenti child relationship between two 

nodes in the internal representation corresponds to a contain relationship between 
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~ access 

~ dataflow/activate 

data 

internal 
representation 

Figure 3.15: Configuration of Design Editor 
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two nodes in design objects. A node description (: node) shows that a node in an 

internal representation corresponds to a node or a connector. A command description 

(: command) decides a semantic-links which are created by design editor command 

connect. 

A design format is defined for each class definition. This information decides re

lationships between an instance of the class and a corresponding design object. This 

information is used to interpret the design command to the class. Figure 3.18 is an 

example of design format for process class in dataflow language. The design format 

shows that a node of process class corresponds to a node in design object. The shape 

of the design object is box and its label is a name attribute of the node in an internal 

representation. Two port definitions : in-port and : out-port represent that these 

ports correspond semantic link input and output, respectively. 

3.4.3 Attribute Propagation and Static Semantic Checking 

An attribute evaluation and propagation is important to represent context sensitive 

information and static semantics. In particular, type checking is a most typical static 

semantic checking. Some meta-programming environments use an attribute grammar 
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n.QQji coo o ector 
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Figure 3.16: Design Object in Dataflow Design 

(defdesigneditor data-flov 

:struct contain 

:semantic connector 

:object (node connector) 

:command «connect 

«$1 :class process :semantic «output $3))) 

($2 :class process :semantic «input $3))) 

($3 :class dataflov :semantic «from $1) 

(to $2)))))) 

Figure 3.17: Design Editor Description 

or its extensions. Others are an action routine, a context relation, and a message 

passlng. 

To reduce the description costs, MUSE uses an attribute relation which is similar to 

the context relation in PSG. The attribute relation propagates both real value of an at

tribute and its constraint. A constraint propagation is mainly used in the modification 

support system. An attribute relation is defined as a class attribute and it is parsed 

into probes and methods. An example of attribute propagation and type checking is 

described as follows. 

Figure 3.19 is an attribute relation for type attribute in svref class and Table 3.2 is 

its table format. A propagate equation (: propagate) represents a propagation scheme 

of type attributes. An element of the equation corresponds to a node connected to a 

link in link description (: link). A constmint description (: constraint) represents 

constraints for type attributes of connected nodes. The pseudo link self indicates the 

node itself. 

The second elements of the propagation equation (simple-vector $x $y) shows 
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(defclass process 

: super box 

:struct ((sub :class element :range (0 infi))) 

: semantic ((input :class dataflow :range (0 infi)) 

(output :class dataflow :range (0 infi))) 

:attribute ((name))) 

(defdesign process 

(node :shape box 

: label (attribute name) 

: node ((struct sub)) 

: in-port ((semantic input)) 

:out-port ((semantic output)))) 

Figure 3.18: A Design Format 

(relation type 

: link (index vector self) 

: propagate ((mod $x)) 

(simple-vector $x $y) 

$y) 

:constraint ((mod infi) 

(simple-vector (mod infi) t) 

t)) 

Figure 3.19: Attribute Relation of svref Class - Lisp -

43 

that the type is simple-vector and its dimension and element type are same as variable 

$x and $y, respectively. Two variables $x and $y show index and element type of 

a node connected to the vector link are same as type attributes of nodes connected 

to index link and the node itself, respectively. And also, these variables represent 

bidirectional propagation of type attributes. 

A constraint part gives constraints which the attribute must satisfy. A type at

tribute of a node connected to vector link must be a simple-vector type and its 

index type must be a positive value (mod). The constraint t accepts all types. At

tributes are updated for each editing operation incrementally. When a constraint error 

is detected, all propagated attributes and the editing operation is canceled. 

In order to check the type correctness, information about the type hierarchy of the 

target language is defined in a module. In particular, a programming language which 

has a type hierarchy, such as Ada and CommonLisp, requires information for checking 



44 CHAPTER 3. A META-PROGRAMMING ENVIRONMENT, MUSE 

link \I index vector I self I 
propaga tion (mod $x) (simple-vector $x $y) $y 

constraint (mod infi) ( simple-vector (mod infi) t ) t 

Table 3.2: Attribute Relation of svref Class - Table format -

type constraints. 

Figure 3.20 is a part of a definition of type hierarchy for CommonLisp. A type X 

satisfy a type constraint Y which is a superclass of the type X. For example, a type 

simple-vector satisfies the constraint vector and the type vector satisfies the con

straint array and t. A subtype satisfies a type constraint which is a subtypes of the 

type in CommonLisp. But, this is not allowed in Ada. 

The following describes a simple example of type attribute propagation. At first, 

<form> 

is replaced by svref class. The result is 

(svref <form> <form». 

(def-type-hierarchy Lisp 

(t 

(list 

(a-list) 

(cons)) 

(array 

(vector 

(simple-vector) 

... ) 
... )) 

... ) 

Figure 3.20: Definition of Type Hierarchy in Lisp 

The corresponding internal representation is shown in Fig.3.21. Type-const at

tributes of nodes connected to index and vector links are set to constraints field of 

attribute relation of svref. A type-const attribute is a constraint for a type attribute 

given from its context. If a type attribute does not satisfy a type-const attribute, 

this type causes a type constraint error. Next, the programmer replaces the second 
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<form>, which is a node connected to vector link, with a node of internal-class A, 

which has a type (simple-vector (mod 8) fixnum). The result program is 

(svref <form> A) 

type:t 

type-coost;(mod 10m 

type: t 

type-const . t 

type:t 

type-coost; 
(slmple-yector (mod lof!) 1) 

Figure 3.21: Example of Attribute Propagation 

Since, type of A satisfies the type-const (simple-vector (mod infi) t), this 

replacement is acceptable. The corresponding internal representation is shown in 

Fig. 3.22. By matching type attribute of node A and the second part of propaga

tion equation (simple-vector $x $y), variables $x and $y bind values (mod 8) and 

fixnum, respectively. The value of $x is propagated into a type-const attribute of 

a node connected to the index link. The value of $y is propagated into the type at

tribute of svref node. Since a type attribute is a synthesized attribute and the type 

attribute of svref node is decided, the value of $y is set into the type attribute. Vice 

versa, the value of $x is set into a type-const attribute. The propagated attributes 

satisfy their constraint. 

type-coost: 
(mod 8) 

(simple-vector $x $y) 

propagation rule 

Figure 3.22: Example of Attribute Propagation 
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3.4.4 Software Management 

A software development project requires the management facilities for managing the 

many software objects. By defining a language to manage software objects and by using 

gates, management facilities such as project management, configuration management, 

and version control can be realized. 

For example, to define a language which defines nodes as compilation units and 

semantic links as dependencies, the language can provide configuration management 

facilities such as MAKE. Figure 3.23 shows an internal representation of a management 

information. Module B and module C depend a module A, and they refer the exported 

information from A. When a module A is modified and the exported information IS 

updated, module B and module C should be re-checked and re-compiled. A probe 

((depend export) ... ) 

of the module class can achieve this process automatically. 

Management facilities realized in a language-oriented environment can avoid unnec

essary operations. For example, MAKE recompiles a program in which a comment 

is modified. Management on a language-oriented system can avoid this unnecessary 

works, because it can recognize comments. 

name: B 

export: '" 
name: C 

export: ... 

Figure 3.23: Management Facility 

3.4.5 Debugging and Code-Generation 

The debugger and interpreter are realized by writing executing and simulating meth

ods for a program and a design language. In order to reduce description costs, MUSE 

supports an execution system with debugging facilities. It interprets pseudo assemble 

codes written in a class attribute. This pseudo code can be applied to a Pascal-like 

language. Code-generation is realized by methods and pseudo codes in class defini

tions, and the code-generator on MUSE generates SOA codes [Tsubotani 86]. These 

are described in detail in [Tsubotani 88]. 
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3.5 Remarks 

This chapter described a meta-programming environment 11 SE which aims to sup

port design and coding phases. By writing meta-descriptions in the meta-description 

language, the environment builder can built an integrated environment for a particular 

language. 

In the design goals of MUSE, language-specific facilities and the design editing func

tions are realized. And also, features of an integrated programming environment are 

provided. Software tools in MUSE share the internal representation of software ob

jects. The template-based and design editor provide the uniform user interface and 

playa front-end of other software tools. Facilities provided by MUSE are editing fa

cilities, incremental syntactic and static semantic checking, debugging, management, 

and modification support. However, from the view point of inter-phases supporting, 

transformations and inconsistency checking between different kinds of software objects 

are necessary. The transformation may be achieved by providing transformation rules. 

Inconsistency checking will be realized by adding a logical notation into the meta

description language and creating its interpreter. 

The object-oriented meta-model is better for describing various kinds of software ob

jects than other static models. Furthermore, the modularity and reusability is higher. 

However, the description cost of methods and probes is not so high. So, some for

mal describing notations for particular software tools such as an attribute relation, 

design formats, and unparsing scheme are supported. These description formats can 

be created only by analyzing and formalizing behavior model of software tools. 

In order to increase the usability of MUSE, more quick response of the environment 

is needed and an incremental parser should be incorporated into. 
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Chapter 4 

A Modification Support System on 

MUSE 

This chapter presents a modification support system on MUSE. At first, software mod

ification and supporting facilities are discussed. Next, the author presents an approach 

and the system behaviors. Problems and some future directions of a modification 

support studies are discussed. 

4.1 On Software Modification Supporting Facilities 

A software modification is that the programmer updates a part of a software. In this 

chapter, the author considers a software modification and supporting facilities for a 

modifica tion. 

4.1.1 Problems in Software Modification 

As discussed in Section 1.3, a software object is modified many time during its life. A 

software is modified by various reasons, such as 

• changes of clients' requirements, 

• bug fix, 

• changes of design decisions, 

• enhancements of capabilities of software system, and 

• porting the system, 

in the development and the maintenance. 

49 
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Before discussing the problems of software modification, programming activities 

needed after a software modification are shown in Fig. 4.1. When a client of a system 

offers new requirements, a programmer must add functions to designs. Creations and 

updates of designs require corrections of related designs and programs. These works 

cause side-effects and need further corrections on them. 

requirements 

designs 

programs 

test cases 
and 
results 

• new 

add and 
update 

u- side-effects 

add and 
update 

side-effects 

11---.. .. II 
Illi1 .. till 
D .. D 

<ill) side-effects 

add, update 
and execution 

Figure 4.1: Activities after a Software Modification 

In addition to these corrections, the programmer should check and correct docu

ments, manuals, and test cases. In particular, in order to check the correctness of the 

modification, new test cases and executions of them are necessary. 

The programmer must deal with these works after each software modification. A 

modification support aims to reduce burdens of programming activities caused by a 

software modification. 

Concerning a software modification, there are following problems. 

1. Side-Effects 
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A modification causes a lot of side-effects on the modified software object and other 

software objects. So, the programmer should correct these side-effects. However, 

these corrections are tedious and may be routine works, and waste the intelligent 

ability of the programmer. A correction is not an essential work. Unfortunately, 

moreover, a correction itself may cause side-effects. Furthermore, a programmer 

misses to correct side-effects frequently. This decreases the reliability of the soft-

ware. 

2. Breaking Software Structure 

Many modifications on a software object breaks a structure of it. Modifications 

change well-structured software object into ill-structured one. This decreases the 

reliability and the productivity of a software development. In particular, an ad 

hoc correction on a small piece of a software object such as loopholes, type conver

sions, and unnecessary global variables, and a breaking visibilities make further 

modifications difficult. Furthermore, such corrections may cause unrecognizable 

errors. 

3. Breaking Consistency 

A modification may break relationships and consistencies between software ob

jects. For example, even if a programmer corrects only one program, the correc

tion may break consistencies between the program and related designs. Usually, a 

software is developed by a project team which consists of many persons, and the 

developer and the maintenance person of the software are different. These facts 

make corrections more difficult. 

These problems are serious, and decrease the productivity and reliability of a soft

ware development. In order to remove above problems, a systematic approach to 

support a software modification should be studied. 

4.1.2 Reducing Modification Cost 

A modification needs many programming activities. In order to reduce the costs for a 

modification, several approaches are proposed and used. There are 

• object-oriented programming, 

• modular programming, 

• automatic programming, 

• configumtion management, and 
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• supporting facilities to correct side-effects. 

These are effective and cooperative approaches. 

An object-oriented programming limits the area of side-effects narrow. A modifica

tion in a method does not propagate side-effects outside of the method. The dynamic 

binding of an activated method realizes the polymorphism of a message passing. Re

cently, some languages introduce object-oriented facilities such as Objective-C, C++, 

new Flavors, LOOPS, and CLOS (CommonL.isp Object System). 

In a modular programming, a programmer creates a program as a set of modules. 

A module has an interface, which specifies an exported information and an imported 

information between other modules, and a body which specifies the implementation of 

the module. A package in Ada and a module in Modula-2 are examples of module. A 

module does not propagate side-effects caused by a modification of the body to outside 

of the module. 

An automatic programming aims to create an executable code from a non-executable 

description automatically. Because programs are generated from a specification, cor

rections of programs are not necessary. However, an application domain of automatic 

programming is very narrow. There is no complete general purpose automatic pro

gramming system. An example of configuration management, MAKE, removes works 

for recompilation of programs after a modification. It works on according to the de

scription of dependencies between programs. 

An automatic correction of side-effects caused by a modification will reduce costs of 

software modification rapidly. This approach resolves the problem (1) and maybe (2) 

and (3). However, this has not been researched except for a few works. A modification 

support system presented in this dissertation aims to realize the automatic correction 

of side-effects. There are several facilities to help corrections of side-effects, such as 

( a) detecting side-effects, 

(b) ad vice for corrections, 

(c) automatic corrections, and 

(d) checking correctness of corrections. 

Furthermore, from another points of view, these facilities are divided into supporting 

(i) in one software object, 

(Ii) between same kinds of software objects, and 

(iii) between different kinds of software objects. 

The targets of the presented system are (a) and (c) in (i). 
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correction 

p' 

Figure 4.2: DAG in TMM 

4.1.3 Related Works 

A few works try to automate corrections caused by a modification. TMM [Arango 86] 

in Draco project [Freeman 87] is a maintenance support system. TMM uses a DAG 

(Directed Acyclic Graph) which represents possible decisions in a particular domain 

as shown in Fig. 4.2. A node in DAG represents an abstract level of a program. This 

example is a DAG in a sort algorithm domain. An edge represents a refinement from 

an abstract level to a concrete level. The program P uses r1, r2 (Use -HeapSori), and 

r3. The programmer changes a design decision r2 into the r2' (Use-QuickSort). TMM 

reverses design decisions to the least £ommon ~bstraction (LCA). In this example, the 

decisions go up from node n4 to the node n2. Next, selects another design decisions 

from LCA. The result program is P' on node n6 which uses r1, r2', and r3. These 

processes are executed automatically. TMM reduces modification costs, however a 

complete domain analysis and construction of DAG are needed. Cost of these works 

will be large. 

KBEmacs (Knowledge-Based Emacs) in Programmer's Apprentice project uses a 

cliche and a plan. Figure 4.3 is a cliche for file_enumeration. A role (enclosed by 

{}) is a kind of placeholder and constraints filed gives constraints to roles. A cliche 

represents a fragment of a program code. A plan is a knowledge representation of 

a program based on dataflow and controlflow. A modification to text representation 

is reflected into the corresponding plan. KBEmacs evaluates properties on the plan, 
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and by using constraints in a cliche) some roles are filled and replaced automatically. 

This function realizes the automatic corrections) but they are limited and in ad hoc 

realization [Waters 85]. 

clich FILE_ENUMERATION is 

primary roles FILE; 

described roles FILE; 

begin 

comment "enumerates the records in {the file}"; 

constraints 
RENAME (" DATA_RECORD" • SINGULAR_FORM( {the file}); 

DEFAULT({the file_name}, 

CORRESPONDING_FILE_NAME({the file}); 

end constraints; 

FILE: {}; 

DATA_RECORD: {}; 

FILE := {the input file}: 

OPEN(FILE. IN_FILE, {the file_name}); 

while not {END_OF_FILE, the empty_test} (FILE) loop 

{READ, the element_accessor} (FILE, DATA_RECORD); 

{DATA_RECORD, the output data_record}; 

end loop; 

CLOSE(FILE) : 

exception 
when DEVICE_ERROR I END_ERROR I NAME_ERROR I STATUS_ERROR => 

CLOSE(FILE); PUT("Data Base Inconsistent"); 

when others => CLOSE(FILE); raise; 

end FILE_ENUMERATION; 

Figure 4.3: The cliche file_enumeration 

4.1.4 Treatment of Modification 

In order to treat a modification well) formalization of a software modification and 

properties of a modification is needed. The key feature of a modification is a pro

grammer)s intention of a modification) UWhy he/she modifies a software object?" and 

design decisions on the software object. Following are view points of treatment of a 

modifica tion. 

(1) Software Representation 

A software representation) on which a modification support system works, should be 

able to represent semantics of a program well. Text representation is unconventional 
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for a modification support system. An attributed abstract syntax tree can represent 

syntax, but it is not sufficiently. A better representation is needed. Knowledge-based 

software representations are studied, but widely accepted representation is not devel

oped yet. 

(2) Software Components 

This is a target unit by a modification operation. This unit is also the unit treated by 

supporting system. In order to realize better supporting, sizes of software components 

should be a higher abstraction level. A support system can not treat a modification in 

character level. But, it will be able to treat a modification in algorithmic level. This 

suggests that a programmer makes a software object by combining semantical software 

components. A modification is performed on such components. 

(3) Side-~1Tects 

In order to detect side-effects of a modification, the system should represent the side

effects. A context and static semantics can be represented as attributes. An attribute 

propagation will be able to realize computing side-effects in a software object. 

(4 ) Modification Operations J Direction of Modification 

A semantical editing operation helps a high level of treatment of a modification. 

For example, an abstraction command 

add a new member AGE to record type PERSON 

is higher than editing commands in characters. By defining detailed corrections special

ized to each higher level operations, a system will provide better supporting facilities. 

In particular, it is important that an operation represents a direction of a modification 

such as inserting guards, enhancing speed/ space, dividing cases, and changing magni

tude to set. However, a tradeoff between the description costs and the capability of the 

system exists. In the presented system, from the view point of generality, it provides 

and supports only few basic template-based editing commands. 

4.2 An Approach to Correction of Side-Effects 

This section presents a method to correct side-effects caused by a modification. Fig

ure 4.4 shows an overview of the approach. This approach works on an internal repre

sentation in MUSE. Each node represents one of software component such as algorith

mic fragments, design scheme, functions, and declared items. A node has properties 

to represent syntax and semantics of the component, and also a node has constraints 
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from neighboring components, such as type-const attributes and linkclass constraints. 

Before a modification, all node satisfy its constraints. 

( programmer) 

(1) Modify 
replace S to S' 

(3) detect 
constraints error 

on 0 

Internal Representation 

(5) customize C' 
and replace C with C' 

Figure 4.4: An Approach to Correct Side-Effects 

When a programmer modifies a software object by changing a component in the 

internal representation, the modification destroys the consistency of the software by 

changing properties of a component. Changed properties are propagated to other 

components. When a property of a component breaks its constraints, the component 

which ca used a side-effect should be corrected. 

The correction is achieved by replacing the side-effected component with another 
component which removes all inconsistencies on the component. This correction prob

lem is divided into two subproblems, (1) searching a new software component and (2) 

replacing an old component with new one. 

To search a component from a component base, following information is used. 

(i) constraints given from neighbor components, 

(ii) decisions on an old component, and 

(iii) directions of the modification. 

The searched component should satisfy (i) for removing inconsistencies. The author 

thinks that a correction is achieved by customizing the previous programmers' decisions 

to meet the intention of a modification. So, a founded component should have a role 

which is moved to (iii) from (ii). 
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There are two types of corrections as shown in Fig. 4.5. A correction should be 

achieved to meet t he upda ted new properties or constraints by the modification. A 

correction must not change the new property or new constraint. Because, they can 

be regarded as t o represent an intention of modification. In case Fig. 4.5 (a), the 

propagated or changed new properties of component A do not satisfy constraints from 

components Band C. In this case, a component which gives constraints to A should 

be replaced. The new component m us t give constraints which the component A can 

accept. 

satisfy(A-pl 8-cl & C-cl) = rRUE 
staisfy(A-p2 8-cl & C-cl) = FALSE 

C) A-p1 -> A-p2 

C7 ",-C2 
C) C) 

(a) 

satjsfy(A-pl 8-cl & C-cl) = rRUE 
stajsfy(A-pl 8 -c2 & C-c2) - FALSE 

C) 
B-c1-> B-CY ~-C1-> C-c2 

C) U 
(b) 

Figure 4.5: Two Types of Side-Effects 

Otherwise, case (b), constraints given from Band C are changed and an inconsistency 

occurs. This case requires the replacement of component A. 

After finding a new component, the approach replaces the old component with 

the new one. However, the old component has many properties. The replacement 

must not remove these properties. They are copies indirectly through transforma tions 

according to the correspondences between the old component and the new one as shown 

in Fig. 4.6. This process is called component customization in this dissertation . 

To summarize this approach, following key points should be considered a nd decided 

to develop a system based on this approach . 

• software representation 
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0 
correction 

~ (9 
correspondencies 

a .. a 

b .. b' 

c 

~ .. e 
d 

Figure 4.6: Component Customization 

• representation of properties of a component 

• method to propagate properties and constraints of node 

• method to search a component in a component base 

• method of component customization 

4.3 System Organization 

This section presents the system organization and algorithms of a modification support 

system developed on MUSE. 

4.3.1 Design Goals 

The modification support system developed on MUSE IS designed for the following 

design goals and lirriltations. 

(1) A utomatic Correction 

The system detects and corrects side-effects automatically. The system does not 

provide the advice facility and does not check the correctness of the modification. 

(2) Language Independence 

A modification and a correction are caused in various languages. The system sep

arates the language-dependent part of the system from other language-independent 

parts. The language-dependent part is given from a meta-description. This enhances 

the extendability and the customizability of the system. 

(3) Descript~on Costs 

Minimize an increase of a meta-description costs by introducing the modification 

support. 
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(4) Target Modification and Constraints 

The target modification of the presented system is a type modification in a pro

gram written in a programrrling language. Because a type is an important semantical 

property of a program, and a type and its propagation is well formalized as shown in 

Section 2.2. In addition to the type constraints, the system treats syntactic inconsis

tencies, i.e., linkclass constraints. 

(5) Directions of Modification 

The system does not treat the direction of a modification. Because, it is difficult to 

formalize directions and it needs large number of modification operations. Directions 

of a modification should be incorporated into the future system. 

(6) Range of Propagation 

Further lirrlitation of the system is range of a propagation of side-effects. Of course, 

side-effects are propagated to other software objects. However, the system treats prop

agation in only one program. Because, propagations between software objects need 

heavy costs. 

Based on above design goals and limitations, following design decision are decided. 

The software representation is the internal representation of MUSE. This is important 

for cooperating and communicating the system with other software tools in MUSE such 

as editors, a syntactic checker, a static semantic checker, and an attribute propagator. 

For representing properties, type attributes on nodes are used. For representing 

constraints, type-const attributes and link constraints are used. Type attributes and 

type-const attributes are propagated according to the attribute relation. 

In order to realize component customization, a copy-rule is introduced into a class 

(component) definition. This shows correspondecies between properties of the class 

and properties of its superclass. 

4.3.2 Algorithmic Behaviors 

Figure 4.7 shows the organization of the modification support system. Software mod

ules enclosed by a dotted lines are components of a modification support system . 

• An attribute propagator propagates attributes from the modified node . 

• A type checker checks the correctness of propagated attributes. These two tools 

are also used for checking static semantics of a program. When the checker detects 

an inconsistency, it activates an automatic corrector. 
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retrieve 

old 
subtree 

new 
subtree 

component ~ 
customizer 

automatic corrector 

modification support system 

....................... component base ..................................... .. 

Figure 4.7: Organization of Modification Support System 

• A component retriever decides the replaced node at first. Next, it searches a 

class with constraints in the component base, i.e., class hierarchy, for the target 

programming language . 

• A component customizer instantiates a node from the searched class and it cus

tomizes the node by copying properties of the replaced node. 

Before a modification, all nodes of an internal representation satisfy linkclass con

straints and type constraints. Figure 4.8 shows an example of internal representation 

and its related attribute relation. In this case, a programmer replaces node C with 

node C J • The command sends a message to a replace method defined in class C' . The 

ac tivated method replaces the node and propagates type and type-canst attributes. 

A side-effect is detected by checking type constraints. A node on which a side-effect is 

detected should be corrected. 

As described in Section 4.2 , when an inconsistency occurs between a new attributes 

and its constraints, a node which gives the constraint is corrected. Otherwise, when an 

inconsistency occurs between an old attribute and its new constraints, the node which 

has an old attribute is corrected. The following is the steps of the activated method. 
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(a) Internal Representation 

link name self 1 ... n 

propagation 

constraint 

(b) Attribute Relation of Co 

Figure 4.8: An Example of Modification 

Figure 4.9 shows an algorithm of a general replace method. 

Step 1: Replace C with C'. 

Step 2: An attribute propagator sets type constraint attributes to nodes connected 

with C' according to the attribute relation of C' shown in Fig. 4.8. In Fig. 4.9, 

link(k) means that a node connected with the k-th link in an attribute relation. 

A type-const is a constraint attribute for type attribute and constraint (C' , 

k) is a value of k-th constraint field in the attribute relation of class C' . 

Step 3: A type checker checks type consistencies on the children nodes. When an 

inconsistency is detected, it calls an automatic corrector and corrects the node. 

Since a correcting operation itself contains modification operations, the correction 

will cause further automatic corrections. 

These three steps update and correct children nodes of C, and types of them are 

elaborated. Next, type attribute of C' is decided according to the propagation field of 

the attribute relation. 

After deciding the type attribute of C' , a probe which looks at the type attribute of 

C J is activated automatically. The probe computes side-effects and corrects nodes. In 

Fig. 4.9, a probe defined in A is activated. It propagates type attributes and corrects 

itself and neighbor nodes except to C'. Figure 4.10 shows the algorithm of general 

probe which is activated by updating a type of a target node. If necessary, an automatic 
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replace method 

replace-node(C. C') 

for i := 1 - n 

link(i).type-const 

for i := 1 - n 

constraint(C'. k) 

if update(link(i).type-const) then 

if not satisfy(link(i).type. link(i).type-const) then 

correct(link(i. link(i).type-const)) 

for i := 1 - n 

env := unify(propagate(C', i), link(i).type) 

self.type := assign(propagate(C', self), env) 

Figure 4.9: Algorithm of Replace Method 

probe(target, type) 

if update(target.type) then 

if not satisfy(target.type, constraint (A, target)) then 

correct(self. target. type) 

Figure 4.10: Algorithm of Probe 

corrector replaces A with A J which can accepts a type of C J • This correction propagates 

type attributes to nodes connected with AJ and corrects the connected nodes. 

By replacing an old node on which an inconsistency occurs with a new node which 

resolves the inconsistency error, the old node is corrected. The term old node is used 

to represent a node on which an inconsistency occurs. There are four types of incon

sistencies as shown in Fig. 4.11. 

(a) Node A is new, and its link constraints (linkclass) of 1 is not a superclass of X. X 

should be replaced with a subclass of the linkclass. 

(b) Node B is new and it does not satisfy the linkclass of 1. X should be replaced 

with a class which linkclass accepts B. 

(c) Node C has new type constraint C-const and the node X has type X-type which 

does not satisfy the constraint C-const. The node X should be replaced with a 

node which has a type satisfying the constraint C-const. 
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subclass(X, 
Iinkclass(X, I» 

(a) 

subtype(type(X), C-const) or 
supertype(type(X), C-const) 

(c) 

subclass(A, 
Iinkclass(X, I)) 

(b) 

supertype( 
type-const(X, I), 
B-type) 

type' 8-type 

Figure 4.11: Inconsistency and Retrieve Constraints 

63 

(d) Node D has new type D-type, a node X which gives a constraint through a link 

l should be replaced with a node which gives constraints on which a node D can 

accept. 

Since a programmer selects a class in a class hierarchy for creating a program, the 

position of the class in the class hierarchy can be regarded as the role of the class. So, 

the component retriever searches a class which satisfies constraints toward superclasses 

of the class of old node which should be replaced. Then, it searches a class, which fits 

the constraints at most, toward the subclasses of the founded superclass. For saving 

the previous programmer's decisions on the old node, the component customizer copies 

properties of the old node into the new node instantiated from the best fit subclass. 

Steps of an automatic correction is described as follows and Fig. 4.12 shows algo

ri thrns of the correction. 

Step 1: A component retriever searches a class which satisfies the given constraint 

from the old class to its superclasses. In Fig. 4.12, the function resolve returns 

TRUE, when the class c satisfies the constraints. 

Step 2: A component customizer instantiated a node from the founded superclass 

and copies properties of old node into the newly instantiated node according to the 

copy-rule. A copy-rule is defined as one of class-attribute. A copy-rule represent 

correspondences between properties of the node and properties of its superclass. 

For example, a copy-rule shown in Fig. 4.13 represents a-list link of push-a-list 
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correct(node, constraints) 

cl := search-super(class-of(node), node, constraints) 

temp := customize(node, cl) 

c2 := search-sub(cl, node, constraints) 

new := customize(temp, c2) 

replace-node (node , new) 

search-super(class, node, constraints) 

for c := supers(class) 

if resolve(node, c, constraints) then 

return c 

else 

search-super(c, node, constraints) 

search-sub(class, node, constraints) 

if not resolve(class, node, constraints) then 

return FALSE 

subs(class) for c 

if cs search-sub(c, node, constraints) then 

return cs 

return class 

customize(old, class) 

new := instantiate(class) 

for k := properties(old) 

if i := same-name (class , k) or i 

new.i := old.k 

copy-rule(class, k) then 

Figure 4.12: Algorithm of Correction 
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class corresponds to a data link of push-data class . This mapping is used to 

change the old node into more abstract node. In Fig. 4.12, same-name shows 

that there is a property i in a new class which name is same as a name of k, 

and copy-rule shows that there is a property i which can be mapped into k by a 

copy-rule. 

(defclass add-a-list 

:super (add-data) 

:class-attr ( 

... ) 

(copy-rule (add-data ((link data)(link a-list)) 

... ) 

.:..:..:.l 
.:..:..:.l 

Figure 4.13: Copy-Rule of add-a-list Class 

Step 3: A component retriever searches a class which satisfy constraints more accu

rate from the superclass to its subclasses. This step finds a more efficient and a 

more concrete class than the superclass. 

Step 4: The component customizer instantiates a node of the found class in Step 3, 

and copies properties from a node customized in Step 2 to the newly instantiated 

node in Step 4. 

These steps changes an inconsistent part of a program into a corrected part of a pro

gram. 

4.4 System Behaviors 

In this section, behaviors of the modification support system is described. 

4.4.1 Corrections for a Type Modification 

Figure 4.14 shows an example of a CommonLisp program. The function def-a-list 

defines a subtype of a-list (associate list) named relation. A cons pair in the 

relation type consists of a symbol type (key and car part) and t type (value and cdr 

part ). 
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(def-a-list <data> nil 

:key 'symbol 

:value It) 

(defvar <data> nil 

:type 'relation) 

(defun add-data (key value) 

(push (cons key value) <data») 

(defun get-data (key) 

(cdr (assoc key <data»)) 

Figure 4.14: An Example of Lisp Program 

In order to enhance access speed to <data>, a programmer replaces a-list type 

with hash type. He/she moves the cursor in the template-editor onto def-a-list 

and inputs a command: replace def-hash. This modification requires corrections as 

follows. 

• nil is the initial value of a-list, but an initialization of hash is (make-hash-table). 

• In the function definition get-data, an access to an a-list data, (cdr (assoc 

key <data») must be replaced with an access to a hash data, (gethash key 

<data» . 

• In the function definition add-data, a store to an a-list data, (push (cons key 

value) <data» must be replaced with an store to a hash data, (setf (gethash 

key <data» value), 

Figure 4.15 shows the result of corrected program after above three corrections. A 

modified part and modified part and corrected parts are represented as underlined 

texts. 

Editing Operation 

Figure 4.16 shows parts of an internal representation which corresponds to Fig. 4.14. 

Each node has a type attribute and a type-const attribute. The editing command ac

tivates a replace method of def-hash and it replaces def-a-list node with def-hash 

node. 
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(def-hash 'relation 

:key 'symbol 

:value t) 

(defvar <data> (make-hash-table) 

:type 'relation) 

(defun add-data (key value) 

(sett (gethash key <data» value)) 

(defun get-data (key) 

(gethash key <data») 

Figure 4.15: A Corrected Program 

Customization of Subtree 

67 

N ext, the component custornizer IS activated. It copies attributes and links from 

dei-a-list to def-hash according to the copy-rule. In this case, def-hash and 

def-a-list have three links with the same name, i.e., id, key-type, and value-type. 

By copying properties, syntactic errors and type inconsistencies are fixed. A correction 

of the modified node changes children nodes and it causes further corrections. These 

processes corrects all nodes in the subtree of the modified node. 

Attribute Propagation 

After the corrections of the subtree, side-effects on parent nodes and nodes connected 

by semantic links are detected and corrected. Table 4.1 shows the attribute relation of 

def-hash. The type attribute of def-hash is set to the result of 

(hash "evaluation of \$x" "evaluation of \$y")}. 

In this case, $x binds a type attribute of the node connected to the key link, and 

$y binds a type attribute of the node connected to the value link. These variables 

represent bidirectional propagation of attributes by pattern matching. 

The attribute propagator propagates type attributes and type-const attributes by 

referring attribute relations. Figure 4.17 shows propagation of type attributes. 

1. The type attribute of def-hash node is set to (hash symbol t) and type-const 

is set to t. t is the most super type in CommonLisp type hierarchy. So, the type 

attribute satisfies the type-const attribute. 
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type: (a-list symbol t) 
type-const t 

type: t 
type-const : 
(a-list symbol t) 

type: (a-list symbol t) 
type-cons t: t 

type : t 
type-cons t: 
(a-list symbol t) 

type: (a-list symbol t) 
type-const: t 

type: symbol 
type-const: t 

type: nil 
type-const: t 

type:t type: t 
type-const: symbol type-const: t 

type: t 
type-const: t 

type: (a-list symbol t) 
type-const: (a-list t t) 

Figure 4.16: Internal Representation of Original Program 

link class II self id key-type value-type 

propaga tion (hash $x $y) (hash $x $y) $x $y 

constraints (hash t t) t t t 

Table 4.1: Attribute Relation of def-hash 
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2. In the same way, type attributes of id, key-type, value-type are set to t, 

symbol, and t, respectively. 

3. By changing type attribute of def-hash, the relation node which connects def-hash 

node by a semantic link updates a type attribute of itself. 

4. This updating activates a probe of defvar node and it updates type attributes 

of itself and id node. These occur no inconsistency. 

5. This updating updates type attributes of <data> node in the function definitions 

add-data and get-data. Figure 4.17 shows only a part of add-data. 

6. The type and type-const attributes of <data> in the function add-data are 

set to (hash symbol t) and (a-list t t), respectively. This causes a type 

inconsistency, because hash is not a subtype or supertype of a-list. This requires 

replacement of push-cons which gives constraints to the type of <data> node. 

Retrieve Component to Superclass 

To remove the inconsistency, the component retriever searches a class with the con

dition, that is, which can store a data into a hash with symbol key. This can be 

represented as retrieve constraint explicitly. In this case, there is a retrieve constraint 

given from relationships between a type and a type-const attributes, 

(sub-or-super ((link a-list) (attribute type-const)) 

((link a-list) (attribute type))). 

This means that a type-const attribute of the node connected the a-Ii st link must 

be a super or subtype of a type attribute of the node which is connected the a-list 

link. In this case, ((link a-list) (attri bute type)) is evaluated and replaced with 

(hash t t). So, this constraint is evaluated into 

(sub-or-super ((link a-list) (attribute type-const)) (hash t t)). 

The retrieving is started from push-cons class to its superclasses, because a superclass 

gives looser constraints. Figure 4.18 shows a part of the class hierarchy of CommonLisp. 

First, add-a-list is examined, but it does not satisfy retrieve constraints. There

fore, the retriever tries to examine add-data which is more superclass of add-a-list. 

The retriever applies the copy-rule to the retrieve constraint. Because add-a-list 

class has a copy-rule to the superclass add-data, 

(add-data ((link data)) (link a-list))) 
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Figure 4.17: Attribute Propagation after a Modification 

superclass 

subclass 

Figure 4.18: Component Class Hierarchy of Lisp 
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between a-list link and data-list. This represents a mapping from a a-list link 

of add-a-list class to a data link of add-data class. The new retrieve constraint to 

add-data which is applied by the above copy-rule is 

(sub-or-super ((link data) (attribute type-const)) 

(hash t t)). 

The add-data class satisfies this condition, because hash which is given from constraint 

field of the attribute relation is a subtype of t type. These relationships are given in 

the language description as shown in Fig. 3.20. When a class is retrieved, the retriever 

calls the custornizer. 

Component Customization to Superclass 

The component customizer transforms the push-cons node and its properties into the 

retrieved add-data node and its properties. This process is shown in Fig. 4.19. 

First, the customizer transforms push-cons into add-a-list. Attributes and links 

with the same name, such as type, type-const, key, value and a-list are copied 

from push-cons to add-a-list directly. Second, add-a-list is transformed into the 

add-data. Attributes and struct links key and value are copied directly, but a link 

a-list can not be copied. The custornizer transforms this link into data link according 

to the copy rule of add-a-list, 

(add-data ((link data)) (link a-list))). 

Retrieve Component to Subclass 

The class add-data is a common and more abstract class which add something into 

the data with key. But, this is not executable and not concrete. In order to get more 

concrete and executable class, the retriever is activated again. The retriever searches 

a class which satisfies the retrieve constraints more accurate from the superclass to its 

subclasses. In this case, at first, the retriever examines all direct subclasses of add-data. 

The add-hash satisfies the retrieve condition more accurately. The constraint for 

add - hash class is 

(sub-or-super ((link hash) (attribute type-const)) (hash t t)). 

This is already applied to a copy rule of add-hash class, 

(add-data ((link data)) ((link hash))). 

An accurately means that the distance of two types in type-hierarchy is smaller. For 

example, the distance of hash and hash is 0 and the distance of hash and t is 1. 
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copy-rule: 
«link data) 
(link a-II51» 

(5) 

type' (hash symbol 1) 

type-coo st· t 

Figure 4.19: Customization from add-cons to add-data 

After all examines, the retriever selects the most accurate class, and then continues 

retrieving in subclasses of the selected class. In this case, add-hash is selected, and it 

has no subclasses. The retriever calls the customizer and gives add-hash class to the 

customizer. 

Component Customization to Subclass 

The customizer copies properties of add-data node into add-hash node. Figure 4.20 

shows this process. As the same processing, the function definition of get-data in 

Fig. 4.14 is corrected into the function definition in Fig. 4.15. By replacing a node 

as above steps, attributes of the newly placed node are computed, and if necessary, 

side-effects are propagated to the neighbor nodes, except to a node which is corrected 

already, i.e., <data> nodes. Of course, some of them cause inconsistencies and auto

matic corrections. 
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type: (hash symbol tl 
type-cons!, (hash t 1\ 

Figure 4.20: Customization from add-data to add-hash 

4.4.2 A Correction in More Complex Case 

73 

The author shows a little more complex case of component customization. An original 

program consists 

(cdr (assoc 'age <data»). 

a-list which is a type of variable <data> is changed into the struct-person type. 

The above form must be corrected to the next form 

(person-age <data». 

Figure 4.21 shows a customization In this correction. The get-a-list node IS 

replaced with access-key node which is retrieved with a retrieve constraint 

(sub-or-super ((link data) (attribute type-const)) struct-person) 

and a copy-rule 

(access-key ((link data)) ((link a-list))). 

Next, the retriever examines the subclasses of access-key class. A person-age 

class has a copy-rule 

(access-key ((link key) (attribute name)) ((class-attr key))) 

and retrieve constraint which is defined in the class definition of person-age explicitly. 

This is 
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I to 
, superclass 

copy-rule: 
«(link key) 

(attribute name» 
(class-attribute key)) 

type" person 
type-const" person 

copy-rule: 
((link data) 
(link a-list» 

Figure 4.21: Custornization from get-a-list to person-key 
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(equal ((class-attr key)) ((link key) (attribute name)) 

:when (super access-key)) 

So, the retrieve constraints are 

(equal ((class-attr key)) age) and 

75 

(sub-or-super ((link data) (attribute type-const)) struct-person). 

The person-age class satisfies these retrieve constraints and the customizer transforms 

access-key node into the person-age node. In this customization, key link is red uced . 

4.4.3 Corrections for Syntactic Constraints 

Above examples shows side-effects and corrections related to types. This subsection 

shows corrections for syntactic errors, i.e., inconsistencies of linkclass constraints. An 

example of an original program is 

(when <cond> 

<bodyl> 

<body2», 

and a programmer replaces when node with if node. Then, body links which are 

<bodyl> and <body2> are copied into then part of if node by using copy-rules from 

when class to boolean-cond class and boolean-cond class to if class. The result 

program IS 

(if <cond> 

(progn <bodyl> <body2») 

nil). 

The next example is an inconsistency between a new node and its parent node, i.e., 

a child node breaks a linkclass constraint given from it.s parent node. Figure 4.22 shows 

a process of this correction. A part of an original program is 

(setq X (list ... )) 

and a programmer replaces the symbol X with (cdr X). The function setq takes a 

symbol class as the first argument. So, the customizer replaces this fragment with an 

abstract class <set>. Next, the abstract fragment is transformed into the setf node. 

This class can take one of place functions as a first argument, such functions are car, 

cdr, svref) aref, and gethash. The corrected program is 

(setf (cdr X) (list ... )). 
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, 
Inconsistency 

Figure 4.22: Automatic Correction for Link Constraints 

4.5 Remarks 

Since a cost for modification is very large, a modification support system increases the 

productivity of software development rapidly. In particular, an automatic correction 

of side-effects frees the programmer from routine works after a modification. 

This chapter presents an approach which automates corrections of side-effects and 

a modification support system based on the approach. This approach bases on a 

software representation which is composed by software components and an attribute 

propagation. An automatic correction is realized by retrieving component in a class 

hierarchy with a retrieve constraints. The retrieved component is customized according 

to copy-rules and it replaces the original component. 

Since the system is realized language independent, a builder can realize the mod

ification support facilities for a particular language by describing a meta-description. 

An increase of description cost to introduce the modification support is not so large. 

Only, copy-rules and retrieve constraints are required in addition to an original meta

description. 

The approach and the system are applicable to wide domains. The presented ap

proach can treat a modification and work on any size of components. 

However, some problems remain as follows. 

1. This system works for type modifications, but this is not completely. For example, 
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in Fig. 4.15, a correction of initialization is impossible in the current system. The 

reason of this impossibility is a lack of initializing components. If nil component 

and make-hash-table component are defined as subclasses of an initialize 

component, this correction will become possible. 

2. The current system can not treat side-effects of a modification which does not 

change type attributes. In this case, the system supports only customization and 

corrections for nodes in the subtree of the modified node. 

3. A correctness of automatic correction is important, but it is not guaranteed. The 

current system notifies the programmer before and after the correction for each 

correction. 

4. The system can not avoid a loop dependency of corrections. 

Some future directions of modification support are discussed as follows. 

Target Modification 

The current target is type modification only. To treat other types of modifications on 

the presented approach, other attributes and constraints such as assertions, data flow, 

and control flow are needed. Furthermore, more semantical representation of a pro

gram, such as a plan representation of Programmer's Apprentice, should be developed 

for more advanced facilities. 

Support between Different Kinds of Software Objects 

During a software development, various kinds of software objects are created and mod

ified. In order to keep consistencies between various software objects, supporting facili

ties between different kinds of software objects should be provided. This will be realized 

to memorize decisions between two software objects in form of refinement rules. The 

modification support system should customize such memorized decisions to meet the 

programmer's intention of a modification. 

Support between Software Objects 

The current system can treat only one software object. Of course, a software system 

consists of many software objects. However, there is a problem concerning a modifica

tion support between software objects, "When does the system propagate side-effects?" 

The current system propagates side-effects immediately. But, in a large software sys

tem, this approach is not practical, because the propagation costs becomes very large. 



78 CHAPTER 4. A MODIFICATION SUPPORT SYSTEM ON MUSE 

To solve this problem, a delayed propagation should be supported. This consists two 

solutions as follows. 

1. Propagation before Editing: 

Before a programmer edits a software object, the system searches all depending 

software objects and propagates side-effects from them. Then, the modification 

support system corrects the target module. 

2. Runtime Propagation: 

The system collects side-effects before the software object is executed or edited. 

Then, the system corrects the module according to the corrected side-effects. This 

approach corrects executing data in addition to program codes. The author calls 

these facilities as a runtime modification support. This facility is useful for debug

ging and should be supported in an interactive environment such as Smalltalk-80 

and Lisp environment. Because these environments are always in active, a pro

grammer will not want to stop the environment and to remove lots of objects in 

it. 

These solutions need a formalization of side-effects and a formalization of direction 

of a modification. A modified software object remembers a list of modifications, side

effects, and directions of modifications. Furthermore, a method to reduce and to remove 

overridden side-effects in the list is needed. 

Based on the above discussions, our research group is now developing a next mod

ification support system, an object-oriented environment with runtime modification 

support. It is characterized as follows. 

At first, the target language is typed and constrained object-oriented language. Since 

side-effects are limited in an object-oriented language, the system can concentrate only 

important side-effects between classes. Since a software unit is only class, the system 

considers only constraints and relationships between classes and objects. 

Second, the system aims to provide a runtime modification support facilities. The 

next system does not immediately propagate side-effects outside of a class. When an 

object receives a message and its time stamp is older than one of its class, the system 

corrects the object before evaluating a method. But, if superclasses of the class or its 

related classes are updated, the class is corrected before correcting the object. 

Third, to treat a direction of a modification, the system limits modification opera

tions to a class. A class is updated only by sending a message defined in a meta-class 

of the target class. 
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Lastly, a programmer can define any constraints between objects in the class defini

tion. This will help to correct objects. Now, the research group design and implement 

the next system. However, many problems remain yet. 
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Chapter 5 

Conclusions 

In order to increase the productivity of software development, an integrated program

ming environment supports programming activities. To construct an integrated en

vironment for a particular language and to adapt the environment for a particular 

application domain, meta-programming environments have been studied on. In addi

tion to support coding activities, recent works on meta-programming environment aim 

to realize facilities for various activities on meta level. In particular, a modification 

support will increase the productivity rapidly and frees programmers from non-creative 

works. 

An approach to develop a meta-programming environment and an approach to cor

rect side-effects caused by a modification have been discussed in this dissertation. A 

meta-programming environment MUSE which is based on an object-oriented meta

model is proposed. A modification support system to correct side-effects for type 

modifications is proposed and designed on MUSE. 

In Chapter 1, researches on software tools and environments based on the software 

engineering technologies and backgrounds of this research was discussed. In particu

lar, integrated programming environments, meta-approaches, and problems of software 

modifications are discussed. 

In Chapter 2, studies on meta-programming environments are outlined. A language

oriented environment and description method for language features are presented. Fol

lowing the discussions on recent studies on meta-environments, an approach to con

struct a meta-programming environment is proposed. 

A meta-programming environment MUSE based on the object-oriented meta-model 

was presented in Chapter 3. MUSE can provide language-oriented facilities for each 

various kinds of software object by switching language knowledge. A software object is 

represented as a collection of objects, and an object is instantiated from a class defined 

in a meta-description. A class is defined for one of various software units. Attributes of 
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an object and their constraints are propagated according to the declarative description, 

attribute relation. A gate makes it possible to define a language for management 

facilities . By defining languages for formatted documents and information written 

in t he MUSE meta-description language, the environment builder can provide various 

advanced facilities which work on the document. 

A modification support system, presented in Chapter 4, corrects type inconsistencies 

and linkclass inconsistencies caused by a modification automatically. A correction is 

realized by replacing a node on which an inconsistency occurs into another component 

which removes inconsistencies. This is achieved by retrieving a new component in 

the class hierarchy by using retrieve conditions. Component customization is done by 

copying the original properties into the new component. 

The design and implementation of the meta-programming environment has been 

described in detail. By using the prototype system, language-oriented facilities for 

Pascal, Lisp, dataflow, simple management, and simple spread-sheet are implemented. 

In particular, for Lisp, a modification support facilities are realized by adding copy

rules and retrieve constraints. Through these implementations, the effectiveness of this 

approach, and the advantage of the object-oriented meta-model, was confirmed. 

Further researches are needed on the following issues. 

(1) Supporting Facilities between Software Objects 

These facilities such as inconsistency checking and transformation can increase the 

productivity and the reliability. These are realized by transformation and consistency 

rules and its evaluators. 

(2) Incorporating Other Kinds of Software Knowledge 

In particular, knowledge about software process will make it possible to activate soft

ware tools automatically. In order to realize a modification support between different 

phases and different kinds of software objects, a process knowledge and transformation 

tools will be useful for representing programmer's decisions between different kinds of 

s ftware objects. 

(3) A utomatic Correction between Software Objects 

To realize modification support between software objects, a method for delayed 

propagation of side-effects should be developed. In particular, a runtime modification 

support mechanism, which propagates side-effects and corrects executing data at run

time, makes programmers possible to update the developing and executing environment 

itself without suspending it. 



Appendix A 

A Prototype Systelll 

MUSE can work on workstations which has KCl (KYoto Common1.isp), C, and X Win

dow Version 11 Release 2 and 3. Current MUSE works on Sun31 with SunOS4.02 

and Luna with U niOS-B3. Major parts of MUSE is written in KCl and window inter

face is written in C. A meta-description language is realized as a surface language of 

KCl. Some system functions are realized in system-defined class written in the meta

description language. Gate, context, declaration, and scope are realized as classes 

definitions. 

Program size of MUSE is over 11,000 lines of KCl and 1,500 lines of C and C++. 

The total size of executable module is over 2M bytes. Number of lines and classes of 

meta-descriptions are shown in Table A. 1. 

name classes lines 

Ada 123 1835 

ComrnonLisp 64 1673 

DataFlow 13 157 

Pascal 96 1697 

Project Management 7 96 

Root 16 236 

Spread-Sheet 3 99 

system 4 109 

Table A. 1: Sizes of Meta-Descriptions 

1 Sun3 is a tradeIllark of Sun Microsystems. 

2SunOS is a trademark of Sun Microsystem.s. 

3UniOS is a trademark of OMRON Corporation. 
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Appendix B 

Syntax of Meta-Description 

Language 

The context-free syntax of the meta-description language presented in Chapter 3 I S 

described using a simple extension of Backus Normal Form. 

module - module definition class_definition_part 

module_definition ::= 

(defmodule module_identifier 

[:import (module_name {module_name})] 

[:export (class_name {class_name})] 

[:context class_name] 

[:root class_name]) 

class_definition {class_definition} 

class_definition: := 

(defclass class_identifier 

[:super (class_name {class_name})] 

[:struct (link_specification {link_specification} 

[:inherit nil])] 

[:semantic (link_specification {link_specification} 

[:inherit nil])] 

[:attribute (attribute_specification 

{attribute_specification} 

[:inherit nil])] 
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[:class-attr class_attribute_body] 

[:method (method_definition {method-definition})] 

[:probe (probe_definition {probe_definition})] ) 

link_specification::= (link_identifier :class class_name 

[:range range_constraint]) 

range_constraint::= (integer integer) I :0-1 I :O-i I :1-i 

attribute_specification ::= 

(attribute_identifier [:default lisp_expression]) 

class_attribute_body::= 

([(format format_definition)] 

[(relation relation_definition)] 

[(condition condition_definition)] 

[(copy-rule copy_rule_definition)] 

{class_attribute_specification}) 

format_definition ::= format_header format_body 

format_header::= (simple format_type) I (complex format_type) 

format_type typeA I typeB I typeC I typeD 

string I (struct link_name) 

(attribute attribute_name) 

relation_definition (relation {relation}) 

relation ::= (attribute_name 

(:link (link_name {link_name}) 

:prop (prop_var {prop_var}) 

:const (attribute_value {attribute_value}))) 
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condition_definition (condition {condition}) 

condition ::= (predicate location location) 

location ({node_location} location_end) 

node_location::= (link link_name) {(link link_name)} 

(attribute attribute_name) 

(class class_name) 

copy_rule ::= (class_name node_location node_location) 

class_attribute_specification ::= 

(class_attribute_identifier lisp_expression) 

method_definition ""= (method_identifier lambda_expression) 

probe_definition: := 

((link_name attribute_name) lambda_expression) 
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