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ABSTRACT. We show the correspondence between left invariant flat 
projective structures on Lie groups and certain prehomogeneous vec
tor spaces. Moreover by using the classification theory of prehomo
geneous vector spaces, we classify complex Lie groups admitting irre
ducible left invariant flat complex projective structures. As a result, 
direct sums of special linear Lie algebras 5[(2) Ef) 5[(ml) Ef) ••• Ef) 5[(mk) 
admit left invariant flat complex projective structures if the equality 
4 + m~ + ... + m~ - k - 4ml m2 ... mk = 0 holds. These contain 5[(2), 
5[(2) Ef) 5[(3),5[(2) Ef) 5[(3) Ef) 5[(11) for example. 

1. INTRODUCTION 

A fiat projective structure on a manifold is a maximal atlas whose charts 
take values in the projective space and coordinate changes are projective 
transformations (cf. [7]). Our definition exactly agrees with the familiar 
one using projective equivalence classes of connections, which is explained 
in §2 of this paper. A fiat projective structure on a Lie group is said to be left 
invariant if coordinate expressions of left translations are projective trans
formations (see §2). We abbreviate a left invariant fiat projective structure 
to IFPS. Likewise on complex Lie groups we can consider left invariant fiat 
complex projective structures (abbrev. complex IFPS) by taking the com
plex projective space as a model space. Then there arises a natural problem; 
on a given (complex) Lie group, is there a (complex) IFPS or not? Concern
ing this problem, Agaoka [1], Urakawa [20], Elduque [4] proved that a real 
simple Lie group admits an IFPS if and only if its Lie algebra is .sl(n+ 1, R) 
or .su*(2n) (n ~ 1). However concerning real and complex semisimple Lie 
groups, the classification problem is open. 

In this paper by using the theory of prehomogeneous vector spaces, we give 
an answer to this classification problem under one restriction on geometric 
structures called irreducibility (cf. Definition 4.4). Note that IFPSs are 
divided into two groups, that is, irreducible IFPSs and reducible ones. Our 
main theorem is stated in the following form: 
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Theorem 1.1. A complex Lie group admits an irreducible complex IFPS if
and only if its Lie algebra is of the form

sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk)

where a = 2, 3, or 5 (k ≥ 1, mi ≥ 1) and satisfies the equality

(∗∗) a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk = 0.

These Lie algebras include an infinite number of Lie algebras: sl(2), sl(2)⊕
sl(3), sl(2)⊕ sl(3)⊕ sl(11), sl(2)⊕ sl(41)⊕ sl(11), etc. (cf. Remark 1 in §7).

To prove Theorem 1.1, we establish a one-to-one correspondence between
complex IFPSs and prehomogeneous vector spaces, which is a purely alge-
braic object introduced by M.Sato [16]. He called a triplet (G, ρ, V ) a pre-
homogeneous vector space (abbrev. PV) if G is a connected linear algebraic
group over algebraically closed field K and ρ is a rational representation of G
on a finite dimensional K-vector space V such that V admits a Zariski-open
G-orbit. When K is equal to the complex number field, we can naturally
extend the notion of PV to the holomorphic category in our sense (see §5).

For a PV (G, ρ, V ), its infinitesimal form (g, dρ, V ) satisfies the condition
that there exists v ∈ V such that dρ(g)v = V (cf. [10]). We can show that
a complex IFPS induces a Lie algebra representation satisfying the same
condition as that of PVs. In this context we prove that IFPSs correspond
to PVs.

The paper is organized as follows. The first half of the paper, which is
composed of §2-§4, is a geometric preliminary for proving the correspon-
dence between IFPSs and PVs. In §5 we introduce the notion of PV, and
prove this correspondence. In §6 we prepare some important notions of PV
concerning classifications of PVs. Finally in §7 we prove Theorem 1.1 by
using a classification of certain irreducible PVs by Sato and Kimura [17].

2. (G,X)-structures and flat Cartan structures

A flat projective structure on a complex manifold M is a special case
of (G, X)-structures, which will be defined in the following. Let G be a
complex Lie group, and let X be a connected complex homogeneous space
of G. Then by the Liouville theorem (cf. [3, Proposition 1.5.2]), the action of
G on X is locally determined. Namely, for g ∈ G if there exists a nonempty
open subset U of X such that g gives the identity transformation of U , then
g gives the global identity transformation of X. From now on we assume
that G acts on X effectively. Then if g gives a local identity transformation
of X, then g is equal to the unit element of G. Accordingly we identify an
element g of G with the transformation on some open set of X induced by
g. We assume that dim M = dim X.

Definition 2.1 ([7]). A (G,X)-structure on M is a maximal atlas {(Uα,
φα)}α∈A of M such that

(1) φα maps Uα biholomorphically onto an open subset of X.
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(2) For every pair (α, β) with Uα∩Uβ ̸= ∅ and each connected component
C of Uα ∩ Uβ, there exists τ(C; β, α) ∈ G such that φβ ◦ φ−1

α |φα(C)

equals the restriction of τ(C; β, α) to φα(C).

Two atlases are said to be equivalent if they are compatible. Then note
that a maximal atlas corresponds to an equivalence class of an atlas.

In the following we fix a point x ∈ X, and denote the isotropy subgroup
at x by G′. Then we can identify X with the quotient space G/G′. In
order to prove the correspondence between IFPSs and PVs, in this section
we generally show that (G,X)-structures on M correspond to flat Cartan
structures of type G/G′ on M , which will be defined as follows: We denote
the Lie algebra of G by g, and the Lie algebra of G′ by g′.

Definition 2.2 ([11]). Let πP : P → M be a principal G′ bundle, and let ω
be a g-valued 1-form on P . We say that (P, ω) is a Cartan structure of type
G/G′ on M if

(1) R∗
aω = Ad(a−1)ω for a ∈ G′,

(2) ω(A∗) = A for A ∈ g′,
where A∗ is the fundamental vector field corresponding to A.

(3) For u ∈ P , ωu : TuP → g gives a linear isomorphism.

A 1-form ω of a Cartan structure (P, ω) is called a Cartan connection.
A Cartan structure (P, ω) is said to be flat if the equality dω + 1

2 [ω, ω] = 0
holds. Cartan structures (P, ω) and (P ′, ω′) on M are said to be isomorphic
(via identity transformation of M) if there exists a bundle isomorphism
ϕ : P → P ′ such that ϕ∗ω′ = ω, and ϕ induces the identity transformation
of M . We call ϕ an isomorphism of Cartan structures. We denote this
equivalence relation by (P, ω) ∼ (P ′, ω′).

Now (G,X)-structures correspond to isomorphism classes of flat Cartan
structures (P, ω) as follows:

Theorem 2.3. There is a one-to-one correspondence between the set of
(G, X)-structures on M and the set of isomorphism classes of flat Cartan
structures of type G/G′ on M .

Proof. We shall construct a map

Φ : {(G,X)-structure on M} →
{flat Cartan structure of type G/G′ on M}/ ∼ .

Let {(Uα, φα)}α∈A be a (G,X)-structure on M . First we construct a princi-
pal fiber bundle P . As a chart of M let us choose φα : Uα → φα(Uα) ⊂ X.
Then the principal fiber bundle π : G → X = G/G′ induces a principal
fiber bundle π : π−1(φα(Uα)) → φα(Uα). We denote π−1(φα(Uα)) by Ũα.
Through φα we obtain a principal fiber bundle πα : Ũα → Uα. Let ω be
the Maurer-Cartan form of G. Then ω induces a Cartan connection ωα on
Ũα by setting ωα := ω|

eUα
. Hence we obtain a family of Cartan structures

{(Ũα, ωα)}α∈A.
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We denote by τ(C; β, α) a coordinate change φβ ◦ φ−1
α on a connected

component C of Uα ∩Uβ . Let Uγ be another coordinate neighborhood, and
let D and E be connected components of Uβ ∩Uγ and Uγ ∩Uα respectively.
If C ∩ D ∩ E ̸= ∅, then we have τ(D; γ, β)τ(C;β, α) = τ(E; γ, α). This
follows from the fact that the action of G on X is locally determined (see
the beginning of this section). Let g ∈ Ũα, and h ∈ Ũβ . We express g ∼ h if
πα(g) = πβ(h) and h = τ(C; β, α)g on a connected component C of Uα ∩Uβ

containing πα(g). Then this is an equivalence relation in the set
⊔

α∈A Ũα.
Hence we obtain a quotient space P :=

⊔
α∈A Ũα/ ∼. Then note that we

have a natural inclusion ı: Ũα → P . For an element g ∈ Ũα we denote ı(g)
by [g].

We show that P is a principal G′ bundle over M . Let us define a projection
πP : P → M by πP (ı(g)) = πα(g) for g ∈ Ũα, and define a group action of G′

on P by ı(g)a := ı(ga) for a ∈ G′. A local trivialization of P is derived from
that of Ũα with its complex structure. These are well defined and satisfy
the conditions of principal fiber bundles.

Secondly we construct a flat Cartan connection ωP on P . Here note that
any tangent vector at ı(g) of P is given by dı(X) for some X ∈ TgŨα. Now
we define a 1-form ωP on P by ωP (dı(X)) := ωα(X) for X ∈ TgŨα. Then
ωP is well defined. Since ωα is a flat Cartan connection on Ũα, ωP gives a
flat Cartan connection on P . As a result we have obtained a flat Cartan
structure (P, ωP ) of type G/G′ on M .

Finally we show that equivalent atlases of (G,X)-structure induce isomor-
phic Cartan structures. Let two atlases {(Uα, φα)}α∈A and {(Vλ, ψλ)}λ∈Λ

belong to the same (G,X)-structure. Then each atlas on M induces a Car-
tan structures (P, ωP ) and (P ′, ωP ′) respectively. We define a bundle map
f : P → P ′ by f(ı(g)) = ı(τ(C; λ, α) ·g) for g ∈ Ũα and πα(g) ∈ Vλ such that
πα(g) ∈ C ⊂ Uα ∩ Vλ. Then f is well defined, and moreover f is a holomor-
phic bundle isomorphism. We can easily verify that f∗ω′

P = ωP , and that
f induces the identity transformation of M . Hence (P, ωP ) is isomorphic to
(P ′, ωP ′), and consequently we obtain a map Φ: {(G,X)-structure on M}
→ {flat Cartan structure of type G/G′ on M}/ ∼.

Next we shall construct a map

Ψ : {flat Cartan structure of type G/G′ on M}/ ∼ →
{(G, X)-structure on M}.

Let (P, ωP ) be a flat Cartan structure of type G/G′ on M . Let πP : P → M
be its projection. The Maurer-Cartan form ω of G is a g-valued 1-form
satisfying the structure equation dω + 1

2 [ω, ω] = 0, which ωP also satisfies.
Hence for any u ∈ P , there exists a neighborhood U of πP (u) and a bundle
isomorphism f̃ : πP

−1(U) → V , where V is an open subset of G, such that
f̃∗ω = ωP (cf. [3], p.74). Therefore f̃ induces a biholomorphic mapping of
base spaces f : U → π(V ). Suppose that f̃ ′ is another bundle isomorphism
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f̃ ′ : πP
−1(U ′) → V ′ such that πP (u) ∈ U ′, and f̃ ′∗ω = ωP . Let f ′ :

U ′ → π(V ′) be its inducing map. For an element g of G, We denote its left
translation by Lg. Then for a connected component C of U ∩U ′, there exists
a unique element g ∈ G such that f̃ ′ = Lg ◦ f̃ on πP

−1(C) (cf. [3], p.74).
Hence by setting τ(C; U ′, U) := g, the equality f ′ ◦ f−1 = τ(C; U ′, U) holds
on f(C). Consequently we obtain an atlas {(U, f)} of (G,X)-structure on
M .

Next we suppose that flat Cartan structures (P, ωP ) and (P ′, ωP ′) are
isomorphic. Then we can verify that two atlases of (G,X)-structure on M
induced by (P, ωP ) and (P ′, ωP ′) are equivalent. Hence we obtain a map Ψ:
{flat Cartan structure of type G/G′ on M}/ ∼ → {(G, X)-structure on M}.

Two maps Φ and Ψ obtained above satisfy Φ ◦ Ψ = Ψ ◦ Φ = id. Hence
Theorem 2.3 has been proved. 2

Remark. Let M be a complex manifold, and let ψ be a biholomorphic map
of M . Let (P, ω) and (P ′, ω′) be flat Cartan structures of type G/G′ on M ,
and let {(Uα, φα)}α∈A and {(U ′

λ, φ′
λ)}λ∈Λ be the induced (G, X)-structures

on M respectively. We say that (P, ω) and (P ′, ω′) are isomorphic via ψ if
there exists a bundle isomorphism ψ̃ : P → P ′ such that ψ̃∗ω′ = ω which
induces ψ. On the other hand we say that {(Uα, φα)}α∈A and {(U ′

λ, φ′
λ)}λ∈Λ

are equivalent via ψ if ψ : M → M satisfies the following condition: for each
connected component C of Uα∩ψ−1(U ′

λ) there exists an element g of G such
that the composite φ′

λ ◦ψ ◦φ−1
α equals g on φα(C). Then we can verify that

(P, ω) and (P ′, ω′) are isomorphic via ψ if and only if {(Uα, φα)}α∈A and
{(U ′

λ, φ′
λ)}λ∈Λ are equivalent via ψ.

Next we shall consider left invariant (G,X)-structures on a complex Lie
group L. For an element a of L we denote the left translation of L by La.

Definition 2.4. A (G,X)-structure {(Uα, φα)}α∈A on L is said to be left
invariant if for any a ∈ L and each connected component C of Uα∩L−1

a (Uβ),
there exists an element g of G such that the composite φβ ◦ La ◦ φ−1

α |φα(C)

equals the restriction of g to φα(C).

In terms of Cartan structures, left invariance is described by the following:

Definition 2.5 ([15]). Let (P, ω) be a Cartan structure of type G/G′ on L.
Then (P, ω) is said to be left invariant if there exists a left action L × P ∋
(a, u) → La

′(u) ∈ P satisfying the following conditions: For any a ∈ L, La
′

is a bundle isomorphism such that πP ◦ La
′ = La ◦ πP and L′

a
∗ω = ω.

Let (P, ω) and (P ′, ω′) be left invariant Cartan structures on L. We
suppose that they are isomorphic as Cartan structures, thus there exists an
isomorphism of Cartan structures ϕ: (P, ω) → (P ′, ω′). Then note that we
have ϕ ◦ L′

a = L′
a ◦ ϕ for a ∈ L.
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Theorem 2.6. There is a one-to-one correspondence between the set of left
invariant (G,X)-structures on L and the set of isomorphism classes of left
invariant flat Cartan structures of type G/G′ on L.

Proof. We show that the maps Φ and Ψ in the proof of Theorem 2.3
preserve left invariance.

Let {(Uα, φα)}α∈A be an atlas of left invariant (G,X)-structure on L.
We suppose that in Theorem 2.3, Φ({(Uα, φα)}) is given by an isomorphism
class of (P, ωP ), where P =

⊔
α∈A Ũα/ ∼ and ωP (dı(X)) = ωα(X) for X ∈

TgŨα. Then for a ∈ L, the left translation La induces a bundle isomorphism
La

′: P → P defined by La
′(ı(g)) = ı((φβ ◦ La ◦ φα

−1) · g) for g ∈ Ũα

and β ∈ A such that aπα(g) ∈ Uβ . Indeed this definition is well defined.
Furthermore we can verify that πP ◦ L′

a = La ◦ πP , and L′
a
∗ω = ω. We

can also show that equivalent atlases of left invariant (G,X)-structure on
L induce isomorphic left invariant Cartan structures on L. Consequently Φ
preserves left invariance.

Next we show that Ψ preserves left invariance. Let (P, ωP ) be a left
invariant flat Cartan structure of type G/G′ on L. Recall that in the proof
of Theorem 2.3 (P, ωP ) induces a set {f̃α : πP

−1(Uα) → G}α∈A such that∪
α Uα∈A = L. Then this set induces an atlas {(Uα, fα)}α∈A of (G,X)-

structure on L. For any a ∈ L there is a bundle isomorphism La
′ : P → P

such that L′
a
∗ωP = ωP , therefore f̃β ◦L′

a ◦ f̃α
−1

preserves the Maurer-Cartan
form ω of G. Hence for each connected component C of Uα∩L−1

a (Uβ), the left
translation f̃β◦L′

a◦f̃α
−1

is given by a unique element g of G on f̃α(πP
−1(C)).

From this fact, we can verify that the induced map fβ ◦La ◦ f−1
α is given by

g on fα(C).
Therefore the atlas {(Uα, fα)}α∈A is left invariant. Since left invariance

is preserved in the equivalence relation of atlases, we can conclude that Ψ
preserves left invariance.

We have proved that two maps Φ and Ψ preserve left invariance. Since
Ψ is an inverse map of Φ, Theorem 2.6 has been proved. 2

Remark. Theorems 2.3 and 2.6 are valid also in the real C∞ category.
Let N be a real manifold. Then we can consider (G, X)-structures and
Cartan structures similarly to the complex case. Concerning Theorem 2.3,
in [3, p.75] it has been stated that a (G, X)-structure exists on N if and
only if there exists a flat Cartan structure of type G/G′ on N .

Here let us consider the projective geometry (PGL(Rn+1), P (Rn+1)) for
example. Then P (Rn+1) is connected and PGL(Rn+1) acts on P (Rn+1)
effectively. Thus we can apply these theorems to (PGL(Rn+1), P (Rn+1))-
structures on a manifold N . Let us fix the point o = [0, · · · , 0, 1] ∈ P (Rn+1),
and denote the isotropy subgroup at o by PGL(Rn+1)o. Then the real
projective space P (Rn+1) is expressed as PGL(Rn+1)/PGL(Rn+1)o.
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In our definition a flat projective structure on N is a (PGL(Rn+1),
P (Rn+1))-structure on N , which corresponds to an isomorphism class of
a flat Cartan structure (P, ω) of type PGL(Rn+1)/PGL(Rn+1)o on N .

On the other hand there is a more familiar definition of flat projective
structures, which is defined to be a projective equivalence class of a projec-
tively flat torsionfree affine connection. In this case we can see that there is a
one-to-one correspondence between the set of projective equivalence classes
of projectively flat torsionfree affine connections on N and the set of isomor-
phism classes of flat Cartan structures of type PGL(Rn+1)/PGL(Rn+1)o

on N by using the results of Tanaka [19] which is quoted in [1, p.131]. Hence
there is also a one-to-one correspondence between the set of (PGL(Rn+1),
P (Rn+1))-structures on N and the set of projective equivalence classes of
projectively flat torsionfree affine connections on N . That is the reason why
we call a (PGL(Rn+1), P (Rn+1))-structure a flat projective structure.

3. Left invariant flat Cartan structures and transitive
embeddings

Let L be a complex Lie group, and let l be its Lie algebra. In this
section we prove that left invariant flat Cartan structures of type G/G′ on L
correspond to certain injective Lie algebra homomorphisms of l to g, which
we call simply transitive embeddings (cf. Theorem 2.3 in [15]). Recall that
dim l = dim g/g′.

Definition 3.1. Let f : l → g be a complex Lie algebra homomorphism.
Then we call f a simply transitive embedding (of l into g) if the induced
linear map f̄ : l → g/g′ is a linear isomorphism.

Remark. Let g−1 be a complementary subspace of g′ in g. We denote
by f−1 the g−1-component of f . Let f : l → g be a complex Lie algebra
homomorphism. Then f is a simply transitive embedding if and only if
f−1(l) = g−1.

Let L be a real Lie group, and let l be its Lie algebra. Then Mendez,
Lopera (Theorem 2.2 in [15]) showed that a left invariant flat real Cartan
structure (P, ω) of type G/G′ on L induces a real Lie algebra homomorphism
f : l → g. The construction of homomorphism f is essentially taken from [1].
In the holomorphic category, we have the same assertion. In the following
we summarize its proof: Let L be a complex Lie group, and let l be its Lie
algebra. Let (P, ω) be a flat (complex) Cartan structure of type G/G′ on a
complex Lie group L. Since (P, ω) is left invariant, there is a left action of L
on P , i.e. L×P ∋ (a, u) 7→ L′

a(u) ∈ P . Let πP : P → L be the projection of
(P, ω). We fix an element ô of P such that πP (ô) is equal to the unit element
e of L. We define a map j : L → P by j(a) = L′

a(ô). Now let us consider
the g-valued 1-form j∗ω on L. The 1-form j∗ω is left invariant, since j is
compatible with the left action of L and L′∗

a ω = ω. Thus we obtain a linear
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map j∗ω : l → g. We denote this linear map by f . Then f is a Lie algebra
homomorphism if and only if (P, ω) is flat.

Furthermore we can show that f is a transitive embedding.

Proposition 3.2. Any left invariant flat Cartan structure (P, ω) of type
G/G′ on L induces a simply transitive embedding f : l → g.

Proof. As we have seen above (P, ω) induces a Lie algebra homomorphism
f = j∗ω : l → g by Theorem 2.2 in [15]. Since the map j : L → P satisfies
π ◦ j = id, we have j∗(TeL)⊕Tôπ

−1(ô) = TôP . Since the Cartan connection
ω gives a linear isomorphism ωô : TôP → g, we have ω(j∗(TeL)) ⊕ g′ = g.
Hence f(l) is isomorphic to g/g′, which implies that the induced linear map
f̄ : l → g/g′ is an isomorphism. Consequently f is a transitive embedding.

2

Definition 3.3. We say that transitive embeddings f1 and f2 are equivalent
if there exists g ∈ G′ such that f2 = Ad(g)f1. We denote this equivalence
relation by f1 ∼ f2.

We denote the equivalence class of a simply transitive embedding f by
[f ].

Lemma 3.4. Isomorphic left invariant flat Cartan structures of type G/G′

on L induce equivalent transitive embeddings.

Proof. Let (Pi, ωi) be a left invariant flat Cartan structure of type G/G′

on L (i = 1, 2). Then by Proposition 3.2 each (Pi, ωi) induces a simply
transitive embedding fi. Now we assume that (P1, ω1) is isomorphic to
(P2, ω2). Then there exists a bundle isomorphism ϕ : P1 → P2 such that
ϕ∗ω2 = ω1, and ϕ ◦ L′

a = L′
a ◦ ϕ. Let ôi be a fixed element of Pi such that

π(ôi) = e. Then there exists g ∈ G′ such that ϕ(ô1) = ô2 · g. The left action
of L on Pi induces a map ji : L → Pi by ji(a) = L′

a(ôi). Then we have
ϕ ◦ j1 = Rg ◦ j2. Hence we have f1 = j∗1ω1 = j∗1ϕ∗ω2 = (Rg ◦ j2)∗ω2 =
Ad(g−1)j∗2ω2 = Ad(g−1)f2.

2

By combining Proposition 3.2 and Lemma 3.4 we obtain a map

Θ : {left invariant flat Cartan structure of type G/G′ on L}/ ∼
→ {transitive embedding f : l → g}/ ∼ .

We denote the equivalence class of a Cartan structure (P, ω) by [(P, ω)].

Proposition 3.5. Θ is bijective.

Proof. First we show that Θ is injective. Let (Pi, ωi) be a left in-
variant flat Cartan structure of type G/G′ on L (i = 1, 2). We suppose
that Θ([(P1, ω1)]) = Θ([(P2, ω2)]). Then by the definition of Θ there exists
g ∈ G′ such that j∗2ω2 = Ad(g)j∗1ω1. We define a map ϕ : P1 → P2 by
ϕ(j1(a)h) = j2(a)gh for h ∈ G′. We prove that ϕ gives an isomorphism
between (P1, ω1) and (P2, ω2). We can easily verify that ϕ ◦ j1 = Rg ◦ j2,
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and ϕ ◦ L′
a = L′

a ◦ ϕ for a ∈ L. Next we show that ϕ preserves Cartan con-
nections. Any tangent vector of P1 can be uniquely expressed in the form
Rh∗(j1∗X + Z∗) where X ∈ TaL, Z ∈ g′ and h ∈ G′. Then ϕ∗ω2(j1∗X) =
ω2(Rg∗j2∗X) = Ad(g−1)j∗2ω2(X) = Ad(g−1)Ad(g)j∗1ω1(X) = ω1(j1∗X).
Moreover for u ∈ P , ϕ∗ω2(Z∗

u) = ω2(ϕ∗Z
∗
u) = ω2(Z∗

ϕ(u)) = Z = ω1(Z∗
u).

Hence
ϕ∗ω2(Rh∗(j1∗X + Z∗)) = Ad(h−1)ϕ∗ω2(j1∗X + Z∗)

= Ad(h−1)ω1(j1∗X + Z∗)
= ω1(Rh∗(j∗X + Z∗)).

It follows that ϕ∗ω2 = ω1, which implies that (P1, ω1) is isomorphic to
(P2, ω2).

Secondly we show that Θ is surjective. Let f : l → g be a simply transitive
embedding. We shall construct a map j : L → P . Fix a linear frame õ at
the unit element e of L. Then a left invariant frame field {La∗õ}a∈L gives
a complete parallelism on L. Hence L has an {e}-structure L̃, i.e. an {e}-
reduction of the frame bundle of L. Let h : L̃ → P be an extension of L̃
by the injective homomorphism {e} → G′. We define a map j̃ : L → L̃ by
j̃(a) = La∗(õ). We denote a composite h ◦ j̃ by j. Then for the natural
projection π we have π ◦ j = id. By using the map j, we construct a left
invariant flat Cartan connection ω on P such that j∗ω = f , following the
proof of Theorem 2.12 in [1]. For a ∈ L any tangent vector at j(a) can
be uniquely written in the form j∗X + A∗ where X ∈ TaL, and A ∈ g′.
We set ωj(a)(j∗X + A∗) := f(X) + A, and extend it to any point of P by
ωj(a)g := Ad(g−1)R∗

g−1ωj(a) for a ∈ L and g ∈ G′. Then (P, ω) gives a flat
Cartan structure of type G/G′, and obviously j∗ω = f .

Next we show that (P, ω) is left invariant. Any point u ∈ P is uniquely
expressed in the form u = j(b)g (b ∈ L, g ∈ G′). We define a map L′

a : P →
P by L′

a(j(b)g) = j(ab)g. Then L′
a gives a bundle isomorphism of P . L′

a

defines a left action of L on P and satisfies π ◦ L′
a = La ◦ π. We can easily

verify that L∗
aω = ω for a ∈ L. Hence (P, ω) is left invariant. If we set

h(õ) = ô, then (P, ω) induces f . Therefore Θ is surjective. 2

Remark. Mendez, Lopera [15, Theorem 2.3] proved the following result:
Let G be a connected and simply connected real Lie group, and let H be a
connected closed subgroup. Let A/B a real homogeneous space satisfying
dimG/H = dimA/B. Let g be the Lie algebra of G, and let a be the Lie
algebra of A, and let b be the Lie algebra of B. Then they proved that there
exists an invariant flat Cartan structure of type A/B on the homogeneous
space G/H if and only if there exists a Lie algebra homomorphism f : g → a

such that f(h) ⊂ b and the induced map f̂ : g/h → a/b is an isomorphism.
By combining Theorem 2.6 and Proposition 3.5 we obtain the following

Theorem:
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Theorem 3.6. There is a one-to-one correspondence between the set of
left invariant (G,X)-structures on a complex Lie group L and the set of
equivalence classes of simply transitive embeddings of l into g.

Remark 1. Kim [9, Theorem 2.4] proved a similar result: A connected
and simply connected real Lie group L admits a (G,X)-structure if and
only if there exists a Lie algebra homomorphism f : l → g satisfying the
following condition: for the isotropy subalgebra gx at some x ∈ X, we have
f(l)∩ gx = 0. This condition is equivalent to the one that f is a Lie algebra
homomorphism of l such that f̄ : l → g/gx is a linear isomorphism for some
x ∈ X.

Remark 2. On a real manifold we can consider (G,X)-structures similarly
to the complex case. Let G be a real Lie group, and X be its connected
homogeneous space. As in the complex case we suppose that G acts on
X effectively. Then all the assertions we have proved are true in the real
C∞ category. Here we explain the relationship between complex geometric
structures and real geometric structures.

Let G be a complex Lie group, and let G′ be its closed complex subgroup.
We assume that G/G′ admits a real form Gr/G′

r. Namely, Gr (resp. G′
r)

is a real Lie group whose Lie algebra is a real form gr (resp. g′r) of g (resp.
g′). Moreover we suppose that Gr/G′

r is connected, and Gr acts on Gr/G′
r

effectively.
Firstly let us consider a left invariant (G,G/G′)-structure on a complex

Lie group L. By Theorem 3.6 we have the corresponding simply transitive
embedding f : l → g. Assume that l has a real form lr, and let Lr be a real
Lie group whose Lie algebra is lr. Furthermore we suppose that f has a real
form fr : lr → gr. Then fr gives a transitive embeding, and therefore Lr

admits a left invariant (Gr, Gr/G′
r)-structure.

Conversely we suppose that a left invariant (Gr, Gr/G′
r)-structure is given

on a real Lie group L. Let f : l → gr be its corresponding simply transitive
embedding. We denote by lC the complexification of l. Let LC be a complex
Lie group having lC as its Lie algebra. Then the complexification fC : lC →
g gives a transitive embedding. Hence LC admits a left invariant (G,G/G′)-
structure.

4. IFPSs and corresponding Lie algebra homomorphisms

Let L be a complex Lie group of dimension n. From now on we con-
sider left invariant flat complex projective structures on L. We abbreviate
a left invariant flat complex projective structure to complex IFPS. We as-
sume that G is the complex projective transformation group PGL(Cn+1) =
GL(Cn+1)/C×I, and G′ is the isotropy subgroup at the point o = [0, · · · , 0,
1] of the complex projective space P (Cn+1). Note that G/G′ is connected
and G acts on G/G′ effectively. A (PGL(Cn+1), P (Cn+1))-structure on a
complex manifold is called a flat complex projective structure. We rewrite
Theorem 3.6 for left invariant flat complex projective structures.

10



Let g be the Lie algebra of G. Then g is isomorphic to sl(Cn+1), which
is decomposed into g−1 ⊕ g′ as follows:

g−1 =
{(

0 u
0 0

)∣∣∣∣ u ∈ Cn

}
,

g′ =
{(

B 0
ξ −trB

)∣∣∣∣ B ∈ gl(Cn), ξ ∈ Cn∗
}

.

Let f : l → g be a Lie algebra homomorphism. Then f is a simply transitive
embedding if and only if f satisfies f(l)en+1 ⊕⟨en+1⟩ = Cn+1 where en+1 is
the (n+1)-th vector of the standard basis. Then from Theorem 3.6 we obtain
a one-to-one correspondence between the set {complex IFPS onL} and the
set {Lie algebra homomorphismf : l → g | f(l)en+1 ⊕ ⟨en+1⟩ = Cn+1}/ ∼ .
Agaoka proved almost the same result in the real case ([1], Theorem 2.12).
He defines a flat projective structure by using not atlases but linear connec-
tions. In [1] a Lie algebra homomorphism f : l → g corresponding to an
IFPS is called a (P)-homomorphism. The condition of (P)-homomorphism
is equivalent to the condition f(l)en+1 ⊕ ⟨en+1⟩ = Rn+1. In the following
we shall describe this condition in a little generalized form. We denote by
π the natural projection π : gl(Cn+1) → gl(Cn+1)/CIn+1. For an element
P of GL(Cn+1) (resp. v of Cn+1) we denote by P (resp. v) its projection
onto PGL(Cn+1) (resp. P (Cn+1)).

Definition 4.1. Let f, g be Lie algebra homomorphisms from l to gl(Cn+1),
and let v, w be vectors of Cn+1. Then we say that (f, v) and (g, w) are
equivalent if there exists P ∈ GL(Cn+1) such that π ◦ g = Ad(P )(π ◦ f) and
w = Pv. We denote this equivalence relation by (f, v) ∼ (g, w).

We denote the equivalence class of (f, v) by [(f, v)]. In the following
lemma an equivalence relation in the latter set is the one in Definition 3.3.

Lemma 4.2. There is a one-to-one correspondence between the set

{(f, v) | f : l → gl(Cn+1) is a Lie algebra homomorphism of l, v ∈ Cn+1

such that f(l)v ⊕ ⟨v⟩ = Cn+1}/ ∼

and the set {f ′ : l → sl(Cn+1) | f ′ is a simply transitive embedding}/ ∼ .

Proof. Let f : l → gl(Cn+1) be a Lie algebra homomorphism and let v
be a vector of Cn+1 such that f(l)v ⊕ ⟨v⟩ = Cn+1. There exists an element
P ∈ GL(Cn+1) such that Pv = en+1. Then the map f ′ := Ad(P )(π ◦ f):
l → sl(Cn+1) is a Lie algebra homomorphism and satisfies f ′(l)en+1⊕⟨en+1⟩
= Cn+1. Hence by setting σ([f, v]) = [f ′] = [Ad(P )(π ◦ f)], we obtain the
map

σ : {(f, v) | f is a Lie algebra homomorphisml → gl(Cn+1), v ∈ Cn+1

such that f(l)v ⊕ ⟨v⟩ = Cn+1}/ ∼ →
{homomorphism f ′ : l → sl(Cn+1) | f ′(l)en+1 ⊕ ⟨en+1⟩ = Cn+1}/ ∼ .
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This map σ is well defined, and clearly surjective. We show that σ is in-
jective. Suppose that σ([f, v]) = σ([g, w]). By definition there exist P , Q
∈ GL(Cn+1) such that σ([f, v]) = [Ad(P )(π◦f)] and σ([g, w]) = [Ad(Q)(π◦
g)]. From the assumption we have A ∈ G′ such that Ad(Q)(π ◦ g) =
Ad(A)Ad(P )(π ◦ f). Hence we have π ◦ g = Ad(Q−1AP )(π ◦ f). We can
easily check that Q−1APv = w, and therefore (g, w) is equivalent to (f, v).
Hence σ is injective. 2

From Theorem 3.6 and Lemma 4.2, we obtain the following:

Theorem 4.3. There is a one-to-one correspondence between the set

{complex IFPS on L} and the set
{(f, v) | f : l → gl(Cn+1) is a Lie algebra homomorphism and v ∈ Cn+1

such that f(l)v ⊕ ⟨v⟩ = Cn+1}/ ∼ .

Remark. In the real case we have the same assertion. The corresponding
condition f(l)v ⊕ ⟨v⟩ = Rn+1 has been obtained by Urakawa [20, p.348].

Definition 4.4. Let {(Uα, ϕα)}α∈A be a complex IFPS on L. We suppose
that {(Uα, ϕα)}α∈A corresponds to an equivalence class [(f, v)] in Theorem
4.3. We say that a complex IFPS {(Uα, ϕα)}α∈A is irreducible (resp. re-
ducible) if f is irreducible (resp. reducible).

5. Prehomogeneous vector spaces and IFPSs

In this section, we explain that a complex IFPS on a Lie group corresponds
to a certain prehomogeneous vector space. The notion of prehomogeneous
vector space is originally introduced by Sato [16] in an algebraic category as
follows: Let G be a connected linear algebraic group over an algebraically
closed field K, and let ρ : G → GL(V ) be its finite dimensional rational
representation on a K-vector space V . In this paper we call this triplet
(G, ρ, V ) an algebraic triplet over K. In [16] the algebraic triplet (G, ρ, V )
is called a prehomogeneous vector space if V has a Zariski-open G-orbit.
We extend the notion of prehomogeneous vector spaces over the complex
number field C to the holomorphic category as follows. In this paper we
assume that an algebraic triplet always means an algebraic triplet over C.
We say that a subset O of C-vector space V is Euclidean-open if O is open
with respect to the Euclidean topology. Let G be a complex Lie group, and
let ρ : G → GL(V ) be a finite dimensional holomorphic representation. We
call this triplet (G, ρ, V ) a holomorphic triplet.

Definition 5.1. Let (G, ρ, V ) be a holomorphic triplet. We call the triplet
(G, ρ, V ) a prehomogeneous vector space (abbrev. PV) if there exists v ∈ V
such that ρ(G)v is Euclidean-open.

Let (G, ρ, V ) be an algebraic triplet over C, and let (g, dρ, V ) be its in-
finitesimal form. Then ρ(G)v is Zariski-open if and only if dρ(g)v = V (cf.
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[10], Proposition 2.2). A point v is said to be generic if v belongs to a
Zariski-open orbit. For a generic point v ∈ V , the isotropy subgroup Gv at
v is called a generic isotropy subgroup. We denote by gv its Lie algebra, i.e.
gv = Lie(Gv) = {X ∈ g | dρ(X)v = 0}. Then dρ(g)v = V if and only if
dimG − dimGv = dimV . These equivalences also hold in the holomorphic
category, which we shall show in the following.

Proposition 5.2. Let (G, ρ, V ) be a holomorphic triplet, and let (g, dρ, V )
be its infinitesimal form. Then

(1) ρ(G)v is Euclidean-open if and only if dρ(g)v = V ,
(2) dρ(g)v = V if and only if dim g − dim gv = dimV .

Proof. The assertion (2) is obvious. We prove the assertion (1).
We define a map ϕ : G → V by ϕ(g) = ρ(g)v. Then its differential

dϕ : g → V is given by dϕ(X) = dρ(X)v. We suppose that ρ(G)v is
Euclidean-open in V . The map ϕ induces the map ϕ̄ : G/Gv → V by
ϕ̄(gGv) = ρ(g)v. Its differential dϕ̄ : g/gv → V is given by dϕ̄(X) = dρ(X)v.
Since the homogeneous space G/Gv is biholomorphic to ρ(G)v through ϕ̄,
the differential dϕ̄ : g/gv → V is a linear isomorphism. Hence we have
dρ(g)v = V .

Next we suppose that dρ(g)v = V . Then dϕe : TeG → V is surjective. For
any g ∈ G, the differential dϕg : TgG → V is given by dϕg = ρ(g)L−1

g
∗
dϕe,

where Lg
∗ is the pull back by the left translation Lg. Hence dϕg is surjective,

and there exists a neighborhood Ug of g such that ϕ(Ug) is Euclidean-open
in V . Since G =

∪
g∈G Ug and ϕ(G) =

∪
g∈G ϕ(Ug), we can conclude that

ρ(G)v is Euclidean-open in V . 2

Remark. Let (G, ρ, V ) be an algebraic triplet over C. Then (G, ρ, V ) can
be regarded as the holomorphic triplet (cf. [5, Ch.1, Sect. 6]), and (G, ρ, V )
of each category induces the same infinitesimal form. Hence (G, ρ, V ) is
a PV in the holomorphic category if and only if (G, ρ, V ) is a PV in the
algebraic category. Thus the notion of PV in the holomorphic category is
an extension of that in the algebraic category over C.

From now on we consider PVs in the infinitesimal category, and unless
otherwise stated we always assume that Lie algebars and their representa-
tions are defined over the complex number field C. Let (g, f, V ) be a triplet
composed of a Lie algebra g and its representation f on V . In this paper
we say that (g, f, V ) is an (infinitesimal) PV if there exists v ∈ V such that
f(g)v = V in view of Proposition 5.2. We also call such an element v a
generic point. Note that all generic elements form a Euclidean-open set of
V . We say that (g, f, V ) is algebraic if it is a differential of some algebraic
triplet (G,F, V ) over C. Then note that an algebraic triplet (g, f, V ) is an
(infinitesimal) PV in our sense if and only if (G,F, V ) is a PV in the alge-
braic category. A triplet (g, f, V ) is said to be irreducible if f is irreducible,
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and said to be faithful if f is faithful. In the following we denote the gen-
eral linear Lie algebra by gl(n) instead of gl(Cn). When h is a subalgebra
of gl(n), we denote the identity representation h → gl(n) of h by Λ1, and
denote its dual representation by Λ∗

1.
In Theorem 4.3 we showed that a complex IFPS on L corresponds to an

equivalence class [(f, v)], where f : l → gl(n+1) is a Lie algebra representa-
tion and satisfies f(l)v ⊕ ⟨v⟩ = Cn+1. Let Λ1 be the identity representation
of gl(1), and extend the representation f to the tensor product f⊗Λ1. Since
the tensor product Cn+1 ⊗C is linearly isomorphic to Cn+1, we obtain the
extended representation f ⊗ Λ1 : l ⊕ gl(1) → gl(n + 1). Then we have
f ⊗ Λ1(l ⊕ gl(1))v = Cn+1 and therefore (l ⊕ gl(1), f ⊗ Λ1, C

n+1) is a PV.
Note that for any non-trivial representation α : gl(1) → gl(1), the tensor
product f ⊗ α also gives a PV. Here we introduce the following notion:

Definition 5.3. Let α be a non-trivial representation gl(1) → gl(1), and let
(l⊕ gl(1), f ⊗ α, V ) be a PV. Then Then we say that (l⊕ gl(1), f ⊗ α, V ) is
a PV of type IFPS if it satisfies dim l + 1 = dimV .

Remark. Let α and β be non-trivial representations gl(1) → gl(1). Then
note that the triplet (l ⊕ gl(1), f ⊗ α, V ) is a PV of type IFPS if and only
if (l ⊕ gl(1), f ⊗ β, V ) is a PV of type IFPS. In the following we frequently
use the identity representation Λ1 as a non-trivial representation of gl(1).
By the definition if a PV (l⊕ gl(1), f ⊗ α, V ) is of type IFPS, then f ⊗ α is
faithful.

By the above consideration, if (f, v) satisfies f(l)v ⊕ ⟨v⟩ = Cn+1, then
(l⊕gl(1), f⊗Λ1, V ) is a PV of type IFPS and v is a generic point. Conversely
if (l⊕ gl(1), f ⊗Λ1, V ) is a PV of type IFPS and v is its generic point, then
(f, v) satisfies f(l)v ⊕ ⟨v⟩ = Cn+1. Therefore from Theorem 4.3 we have
the following corollary: Let L be a complex Lie group, and let l be its Lie
algebra.

Corollary 5.4. There is a one-to-one correspondence between the set {
complex IFPS on L } and the set { (f ⊗ Λ1, v) | (l ⊕ gl(1), f ⊗ Λ1, V ) is a
PV of type IFPS, v is a generic point of V }/ ∼.

Remark. A representation f ⊗ Λ1 is irreducible if and only if f is irre-
ducible. Hence an irreducible complex IFPS corresponds to an equivalence
class [(f ⊗ Λ1, v)] such that f ⊗ Λ1 is irreducible.

We can consider PVs also in the real C∞ category, and we have the same
assertions from Proposition 5.2 to Corollary 5.4.

Example. Let us consider a triplet (a): (gl(2), 3Λ1, V ), where 3Λ1 is the
3-symmetric product of Λ1, and therefore we have dim V = 4 (see [17, p.47]
about this example). Then 3Λ1 is expressed by matrices as follows:

3Λ1(
(

α β
γ δ

)
) =


3α β 0 0
3γ 2α + δ 2β 0
0 2γ α + 2δ 3β
0 0 γ 3δ

 .
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By taking (1, 0, 0, 1) as a generic point, it is easily seen that the triplet (a)
is a PV. Moreover both gl(2) and 3Λ1 are decomposed into sl(2)⊕gl(1) and
3Λ1⊗Λ1, and dim gl(2) = 4 = dimV . Therefore the triplet (a): (sl(2)⊕gl(1),
3Λ1 ⊗Λ1, V (4)) is of type IFPS. This fact implies that SL(2, C) admits an
(irreducible) complex IFPS.

6. Some notions on Prehomogeneous vector space

In Theorem 1.1 we classify complex Lie groups admitting an irreducible
complex IFPS. To prove Theorem 1.1 it is sufficient to classify irreducible
PVs of type IFPS from Corollary 5.4. In this section we prepare some notions
on PV useful for classifications of PVs. Especially we introduce two notions
of castling transform and isomorphism, which were already considered in the
algebraic category in [17] by using the terminology of algebraic groups. We
prove some properties on these concepts needed later for our classification.

Sato ([17, p. 37]) proved the following proposition in the algebraic cate-
gory. We denote by V (n) an n-dimensional vector space, and denote by Λ1

the identity representation of gl(n).

Proposition 6.1. Let f be a representation of a complex Lie algebra h
on V (m). For any n satisfying m > n ≥ 1, the following conditions are
equivalent.

(1) (h ⊕ gl(n), f ⊗ Λ1, V (m) ⊗ V (n)) is a PV.
(2) (h⊕ gl(m−n), f∗⊗Λ1, V (m)∗⊗V (m−n)) is a PV, where f∗ is the

dual representation of f .

Generic isotropy subalgebras of these PVs have the same dimensions.

Proof. The idea of the proof is based on that of Proposition 7 in [17].
First we deduce (2) from (1). Suppose that (h⊕gl(n), f ⊗Λ1, V (m)⊗V (n))
is a PV. Then there exists w ∈ V (m) ⊗ V (n) such that

f ⊗ Λ1(h ⊕ gl(n))w = V (m) ⊗ V (n).

We identify V (m) ⊗ V (n) and V (m) ⊕ · · · ⊕ V (m)︸ ︷︷ ︸
n

. Then we note that

f ⊗ Λ1(H,A) x = f(H) x + x tA

for x = (v1, · · · , vn) ∈ V (m) ⊗ V (n), H ∈ h, A ∈ gl(n). We fix a basis
{e1, . . . , en, en+1, . . . , em} of V (m) such that w is expressed as (e1, · · · , en).
We denote its dual basis by {e∗1, . . . , e∗n, e∗n+1, . . . , e

∗
m}. When we set w⊥ :=

(e∗n+1, · · · , e∗m), w⊥ gives a vector of V (m)∗⊗V (m−n). From the assumption
we have

f ⊗ Λ1(h ⊕ gl(n))w = f(h)
(

In

0

)
+

(
In

0

)
gl(n) =

(
gl(n)

M(m − n, n)

)
,
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where M(m − n, n) denotes the set of (m − n) × n matrices. Hence f(h) =(
∗ ∗

M(m − n, n) ∗

)
, which implies that f∗(h) =

(
∗ M(n,m − n)
∗ ∗

)
.

Therefore we have

f∗ ⊗ Λ1(h ⊕ gl(m − n))w⊥

=
(

∗ M(n,m − n)
∗ ∗

)(
0

Im−n

)
+

(
0

Im−n

)
gl(m − n)

=
(

M(n,m − n)
∗

)
+

(
0

gl(m − n)

)
= V (m)∗ ⊗ V (m − n).

Secondly to deduce (1) from (2), it suffices to apply the result we have
just obtained to this case.

Next we show that (h ⊕ gl(n))w is isomorphic to (h ⊕ gl(m − n))w⊥ . Let
(H,A) be an element of h ⊕ gl(n) such that f(H) is of the form f(H) =(

B C
D E

)
. Then f ⊗ Λ1(H, A) w = f(H) w + w tA =

(
B
D

)
+

(
tA
0

)
.

Hence (H,A) ∈ (h⊕gl(n))w if and only if D = 0, B + tA = 0. Thus we have

(h ⊕ gl(n))w

= {(H,A) ∈ h ⊕ gl(n) | f(H) =
(

−tA ∗
0 ∗

)
}

∼= {H ∈ h | f(H) =
(

∗ ∗
0 ∗

)
}.

Likewise

(h ⊕ gl(m − n))w⊥

= {(H, A′) ∈ h ⊕ gl(m − n) | f∗(H) =
(

∗ 0
∗ −tA′

)
}

= {(H, A′) ∈ h ⊕ gl(m − n) | f(H) =
(

∗ ∗
0 A′

)
}

∼= {H ∈ h | f(H) =
(

∗ ∗
0 ∗

)
}.

Therefore (h ⊕ gl(n))w
∼= (h ⊕ gl(m − n))w⊥ . 2

We call the transformation (1) ←→ (2) a c-transformation in this paper.
We can easily verify that c-transformations preserve irreducibility by us-
ing the following fact: let (g1, f1, V1) and (g2, f2, V2) be irreducible triplets.
Then the tensor product f1 ⊗ f2 is irreducible if and only if both f1 and f2

are irreducible.
Now let us consider the triplet (h ⊕ gl(n), f ⊗ Λ1, V (m) ⊗ V (n)) which

satisfies dim h+n2 = mn. This triplet is equal to the the triplet (h⊕sl(n)⊕
gl(1), f ⊗ Λ1 ⊗ Λ1, V (m) ⊗ V (n) ⊗ V (1)). In this context if this triplet is
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of type IFPS, then the c-transformation of this triplet gives again a PV of
type IFPS. Indeed

(h ⊕ gl(n), f ⊗ Λ1, V (m) ⊗ V (n))

is c-transformed into the triplet

(h ⊕ gl(m − n), f∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)),

which is equal to

(h ⊕ sl(m − n) ⊕ gl(1), f∗ ⊗ Λ1 ⊗ Λ1, V (m)∗ ⊗ V (m − n) ⊗ V (1)).

Since we have dim h + (m − n)2 = m(m − n), it follows that the last triplet
is of type IFPS.

Example. Let us illustrate the c-transformations by using the example
(a) in §5. The triplet (a): (gl(2), 3Λ1, V (4)) is naturally identified with
(sl(2) ⊕ gl(1), 3Λ1 ⊗ Λ1, V (4) ⊗ V (1)). Hence by a c-transformation of the
triplet (a) we obtain the triplet (sl(2)⊕ gl(3), 3Λ∗

1 ⊗Λ1, V (4)∗⊗V (3)). This
triplet is equal to (sl(2)⊕ sl(3)⊕ gl(1), 3Λ∗

1 ⊗Λ1 ⊗Λ1, V (4)∗⊗V (3)⊗V (1)),
which is of type IFPS.

Definition 6.2 ([10, p.245]). Two triplets (g, ρ, V ) and (g′, ρ′, V ′) (not nec-
essarily PVs) are said to be isomorphic if there exists a Lie algebra isomor-
phism σ: ρ(g) → ρ′(g′) and a linear isomorphism τ : V → V ′ satisfying
σ ◦ ρ(X) = τρ(X)τ−1 for any X ∈ g. Then we write (g, ρ, V ) ∼= (g′, ρ′, V ′).

Note that when (g, ρ, V ) and (g′, ρ′, V ′) are isomorphic, they are said to
be strongly equivalent in [17, p.36]. Moreover in [17, p.36], the isomorphism
of triplets is defined by using the terminology of algebraic groups as follows:
let (G, ρ, V ) and (G′, ρ′, V ′) be algebraic triplets. Then we denote (G, ρ, V )
∼= (G′, ρ′, V ′) if there exists a rational isomorphism σ: ρ(G) → ρ′(G′) and a
linear isomorphism τ : V → V ′ satisfying σ ◦ρ(g) = τρ(g)τ−1 for any g ∈ G.
Clearly by differentiating σ, we obtain the isomorphism dσ: (Lie(G), dρ, V )
→ (Lie(G′), dρ′, V ′), and we have (Lie(G), dρ, V ) ∼= (Lie(G′), dρ′, V ′) in the
above sense.

For example, let (g, ρ, V ) be an arbitrary triplet. We denote the natural
inclusion ρ(g) ↪→ gl(V ) by ı. Then obviously we have (g, ρ, V ) ∼= (ρ(g), ı, V ).

Note that the isomorphism ∼= is an equivalence relation. We call the
equivalence class of (g, ρ, V ) an isomorphism class of (g, ρ, V ), and denote it
by [(g, ρ, V )]. We here introduce a new concept. Let h and h′ be subalgebras
of g and g′ respectively. We say that ρ(h) corresponds to ρ′(h′) (via σ) if
σ(ρ(h)) = ρ′(h′).

Remark. Consider two isomorphic triplets (g, ρ, V ) ∼= (g′, ρ′, V ′). Then
we have the following:
(1) If (g, ρ, V ) is a PV, then (g′, ρ′, V ′) is also a PV.
(2) If (g, ρ, V ) is irreducible, then (g′, ρ′, V ′) is also irreducible.
However note that g and g′ are not necessarily isomorphic as Lie algebras.

We use the following proposition in §7.
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Proposition 6.3. Let (G, ρ, V ) and (G′, ρ′, V ′) be algebraic triplets, and let
(g, dρ, V ) and (g′, dρ′, V ′) be the induced triplets respectively. If (g, dρ, V ) ∼=
(g′, dρ′, V ′), then we have (G, ρ, V ) ∼= (G′, ρ′, V ′).

Proof. Since ρ is a rational representation and G is a connected algebraic
group, its image ρ(G) is also a connected linear algebraic subgroup of GL(V )
(cf. [6, p.102]). Thus ρ′(G′) is also one of GL(V ′). From the assumption,
there exists a Lie algebra isomorphism σ: dρ(g) → dρ′(g′) and a linear
isomorphism τ : V → V ′ such that σ(dρ(X)) = τdρ(X)τ−1 for X ∈ g.

Now we define the map σ̃: ρ(G) → GL(V ′) by σ̃(ρ(g)) = τρ(g)τ−1 for
g ∈ G. Then σ̃ is a rational isomorphism, and its differential dσ̃ is equal
to σ. Thus the image σ̃(ρ(G)) is a connected linear algebraic subgroup
of GL(V ′). Moreover its Lie algebra is σ(dρ(g)) = dρ′(g′), it follows that
σ̃(ρ(G)) = ρ′(G′). Hence (G, ρ, V ) ∼= (G′, ρ′, V ′). 2

Here we prove some elementary properties on isomorphism of triplets we
shall use later.

Proposition 6.4.
(1) Suppose that (g, f, V ) ∼= (g′, f ′, V ′) and (h, g, W ) ∼= (h′, g′,W ′). Then

(g ⊕ h, f ⊗ g, V ⊗ W ) ∼= (g′ ⊕ h′, f ′ ⊗ g′, V ′ ⊗ W ′).
(2) Let (g⊕ h, f ⊗ g, V ⊗W ) and (g′⊕ h′, f ′⊗ g′, V ′⊗W ′) be irreducible

triplets. Suppose that these triplets are isomorphic and f ⊗ g(g)
corresponds to f ′ ⊗ g′(g′). Then (g, f, V ) ∼= (g′, f ′, V ′).

(3) Consider faithful triplets (g, ρ, V ) and (g′, ρ′, V ′). If these triplets
are isomorphic, then g is isomorphic to g′ as a Lie algebra.

(4) Let α and β be non-trivial representations gl(1) → gl(1). Then
(gl(1), α, V (1)) is isomorphic to (gl(1), β, V (1)).

(5) Let h be a semisimple Lie algebra. Then any triplet (h, ρ, V ) is iso-
morphic to its dual (h, ρ∗, V ∗).

Proof. (1) From the assumption there exist isomorphisms ϕ : f(g) →
f ′(g′), ψ : g(h) → g′(h′), and linear isomorphisms τ : V → V ′, υ : W → W ′

such that ϕ ◦ f(X) = τf(X)τ−1 and ψ ◦ g(Y ) = υg(Y )υ−1 for X ∈ g and
Y ∈ h. We define a map

ϕ ⊗ ψ : f ⊗ g(g ⊕ h) → f ′ ⊗ g′(g′ ⊕ h′)

by f(X) ⊗ IW + IV ⊗ g(Y ) 7→ ϕ ◦ f(X) ⊗ IW ′ + IV ′ ⊗ ψ ◦ g(Y ). Then this
mapping is well defined, and we can easily check that this is a Lie algebra
isomorphism. Moreover for X, Y ∈ g ⊕ h,

ϕ ⊗ ψ ◦ f ⊗ g(X,Y ) = ϕ ◦ f(X) ⊗ IW ′ + IV ′ ⊗ ψ ◦ g(Y )
= τ ⊗ υ(f ⊗ g(X, Y ))(τ ⊗ υ)−1.

Hence we obtain our claim.

(2) From the assumption, we have (g⊕h, f⊗g, V ⊗W ) ∼= (g′⊕h′, f ′⊗g′, V ′⊗
W ′). Hence there exist an isomorphism σ : f ⊗ g(g ⊕ h) → f ′ ⊗ g′(g′ ⊕ h′)
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and a linear isomorphism τ : V ⊗ W → V ′ ⊗ W ′ such that

σ(f(X) ⊗ IW + IV ⊗ g(Y ))τ(x) = τ((f(X) ⊗ IW + IV ⊗ g(Y ))(x))

for (X,Y ) ∈ g⊕h and x ∈ V ⊗W . Since f ⊗ g(g) corresponds to f ′⊗ g′(g′),
σ is restricted to the isomorphism f(g) ⊗ IW → f ′(g′) ⊗ IW ′ . Let ı be the
natural isomorphism f(g) → f(g) ⊗ IW defined by f(X) 7→ f(X) ⊗ IW

for X ∈ g, and let ı′ be the natural isomorphism f ′(g′) → f ′(g′) ⊗ IW ′

defined by the same way. We denote by the same symbol σ the composite
of isomorphisms

f(g) → f(g) ⊗ IW → f ′(g′) ⊗ IW ′ → f ′(g′),

which is equal to ı′−1 ◦ σ ◦ ı.
Let {e1, · · · , en} be a basis of W . Since (g, f, V ) is irreducible, (g, f ⊗

IW , V ⊗e1) is an irreducible g-submodule of V ⊗W . Then we have the natural
g-isomorphism ϕ : V → V ⊗ e1 defined by ϕ(v) = v ⊗ e1. Since f(g) ⊗ IW

is isomorphic to f ′(g′) ⊗ IW ′ via σ and we have σ(f(X) ⊗ IW )τ(v ⊗ e1) =
τ(f(X)⊗IW (v⊗e1)) for X ∈ g and v ∈ V , it follows that (g′, f ′⊗IW ′ , τ(V ⊗
e1)) is also an irreducible g′-submodule of V ′ ⊗ W ′. Let {e′1, · · · , e′n′} be a
basis of W ′. Then V ′ ⊗W ′ is decomposed into the direct sum of equivalent
irreducible g′-submodules V ′ ⊗ e′1 ⊕ · · · ⊕ V ′ ⊗ e′n′ . We note that f ′(g′) is
reductive with at most one-dimensional center {λIV ′ | λ ∈ C} because f ′ is
irreducible (cf. [17, p.2]). Thus concerning the triplet (g′, f ′⊗IW ′ , V ′⊗W ′),
its image f ′ ⊗ IW ′(g′) = f ′(g′) ⊗ IW ′ is reductive whose center is contained
in {λIV ′⊗W ′ | λ ∈ C}. It follows that (g′, f ′ ⊗ IW ′ , V ′ ⊗ W ′) is completely
reducible. Since (g′, f ′ ⊗ IW ′ , τ(V ⊗ e1)) is an irreducible g′-submodule of
V ′⊗W ′, there exists a g′-isomorphism τ(V ⊗ e1) → V ′⊗ e′1 since V ′⊗W ′ is
the direct sum of equivalent irreducible g′-submodules V ′⊗e′1⊕· · ·⊕V ′⊗e′n′

as stated before.
This gives the sequence of g′-isomorphisms

τ(V ⊗ e1) → V ′ ⊗ e′1 → V ′,

and we denote the composite of these by ψ. By using ψ let us consider the
composite ψ ◦ τ ◦ ϕ, which gives a linear isomorphism V → V ′. Then for
X ∈ g and v ∈ V , we have

σ(f(X))ψ ◦ τ ◦ ϕ(v) = ψ(σ(f(X) ⊗ IW )τ ◦ ϕ(v))
= ψ ◦ τ(f(X) ⊗ IW (ϕ(v)))
= ψ ◦ τ ◦ ϕ(f(X)v).

Hence (g, f, V ) ∼= (g′, f ′, V ′).

(3) From the assumption there exists a Lie algebra isomorphism σ :
ρ(g) → ρ′(g′). We set ϕ := ρ′−1 ◦ σ ◦ ρ, then ϕ gives a Lie algebra iso-
morphism from g to g′.

(4) Since α(gl(1)) = β(gl(1)) = gl(1), immediately we obtain our claim.
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(5) The triplet (h, ρ, V ) is isomorphic to the algebraic triplet (ρ(h), ı, V ).
We prove this fact in Proposition 7.1, which we explain later. Thus there ex-
its an algebraic triplet (H̃, ı̃, V ) such that its infinitesimal form is (ρ(h), ı, V ).
Then it has been proved that (H̃, ı̃, V ) is isomorphic to its dual (H̃, ı̃∗, V ∗)
(cf. [10, p.245]). Since the infinitesimal form of (H̃, ı̃∗, V ∗) is equal to
(ρ(h), ı∗, V ∗), by differentiation we have (ρ(h), ı, V ) ∼= (ρ(h), ı∗, V ∗). More-
over this triplet (ρ(h), ı∗, V ∗) is isomorphic to (h, ρ∗, V ∗). Hence we have
(h, ρ, V ) ∼= (h, ρ∗, V ∗). 2

By combining two notions isomorphism and c-transformation, a castling
transform is defined in [17]. This is an important tool for classification of
irreducible PVs.

Definition 6.5 ([17, p.39]). Two triplets (g, ρ, V ) and (g′, ρ′, V ′) (not nec-
essarily PVs) are said to be castling transforms of each other when there
exist a triplet (g̃, ρ̃, V (m)) and a positive number n with m > n ≥ 1 such
that

(g, ρ, V ) ∼= (g̃ ⊕ sl(n), ρ̃ ⊗ Λ1, V (m) ⊗ V (n))

and
(g′, ρ′, V ′) ∼= (g̃ ⊕ sl(m − n), ρ̃∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)).

A triplet (g, ρ, V ) is said to be reduced if there is no castling transform
(g′, ρ′, V ′) of (g, ρ, V ) with dimV ′ < dimV .

Note that if two triplets (g, ρ, V ) and (g′, ρ′, V ′) are isomorphic, then
(g, ρ, V ) is reduced if and only if (g′, ρ′, V ′) is reduced.

Similarly to the case of isomorphism ∼=, originally castling transform is
defined by using the terminology of algebraic groups (see [17, p.39]). Con-
cerning Definition 6.5, let us consider the transformations:

(1) (g̃ ⊕ sl(n), ρ̃ ⊗ Λ1, V (m) ⊗ V (n))
(2) (g̃ ⊕ sl(m − n), ρ̃∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)),

and

(1)∗ (g̃ ⊕ sl(n), ρ̃ ⊗ Λ∗
1, V (m) ⊗ V (n)∗)

(2)∗ (g̃ ⊕ sl(m − n), ρ̃∗ ⊗ Λ∗
1, V (m)∗ ⊗ V (m − n)∗).

We call each transformation (1) ←→ (2), (1)∗ ←→ (2)∗ an sc-transformation.
Now concerning a triplet (g̃⊕sl(n), ρ̃⊗Λ1, V (m)⊗V (n)), suppose that there
exist a Lie algebra l and its representation f : l → gl(V (m)) such that g̃ =
l⊕gl(1) and ρ̃ = f ⊗α, where α is a non-trivial representation gl(1) → gl(1).
We suppose that this triplet is a PV. Then from (1) and (4) of Proposition
6.4,

(l ⊕ gl(1) ⊕ sl(n), f ⊗ α ⊗ Λ1, V (m) ⊗ V (1) ⊗ V (n))

is isomorphic to

(l ⊕ gl(1) ⊕ sl(n), f ⊗ Λ1 ⊗ Λ1, V (m) ⊗ V (1) ⊗ V (n)).
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It follows that by Proposition 6.1

(1) (g̃ ⊕ sl(n), ρ̃ ⊗ Λ1, V (m) ⊗ V (n)) is a PV if and only if

(2) (g̃ ⊕ sl(m − n), ρ̃∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)) is a PV.

Moreover by the same way we can show that (1)∗: ρ̃ ⊗ Λ∗
1 is a PV if and

only if (2)∗: ρ̃∗⊗Λ∗
1 is a PV. Hence as before we see that a PV of type IFPS

is transformed into another PV of type IFPS by any sc-transformation.

Definition 6.6 ([17, p.39]). Two triplets (g, ρ, V ) and (g′, ρ′, V ′) are said to
be castling equivalent when one is obtained from the other by a finite number
of castling transforms. We call this equivalence class a castling class.

For any triplet (g, ρ, V ), since dim V is finite, its castling class has at least
one reduced triplet. Furthermore we can prove that the castling class of an
irreducible triplet contains only one reduced triplet up to isomorphism. For
the proof see [17, p.39]. By applying the same argument of [17, p.39] to the
infinitesimal category, we obtain the assertion. Actually we do not use this
result, and we omit its proof here.

We use the following assertions in §7 to determine all triplets castling
equivalent to a reduced one.

Proposition 6.7. Let (g, ρ, V ) be a faithful irreducible triplet. Then for any
castling transform (g′, ρ′, V ′) of (g, ρ, V ), there exists an sc-transformation
of (g, ρ, V ) isomorphic to (g′, ρ′, V ′).

Proof. From the assumption there exists a triplet (g̃, ρ̃, V (m)) such that

(g, ρ, V ) ∼= (g̃ ⊕ sl(n), ρ̃ ⊗ Λ1, V (m) ⊗ V (n)) and

(g′, ρ′, V ′) ∼= (g̃ ⊕ sl(m − n), ρ̃∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)).
Then by the definition of isomorphism of triplets, there exist an isomorphism
σ : ρ̃ ⊗ Λ1(g̃ ⊕ sl(n)) → ρ(g) and τ : V (m) ⊗ V (n) → V such that

σ(ρ̃(X) ⊗ In + Im ⊗ Y )τ(v) = τ((ρ̃(X) ⊗ In + Im ⊗ Y )(v))

for (X,Y ) ∈ g̃ ⊕ sl(n) and v ∈ V (m) ⊗ V (n). Now we claim that there
exists a (reductive) ideal h of g such that g = h ⊕ sl(n) and σ(ρ̃ ⊗ Λ1(g̃)) =
ρ(h) and σ(ρ̃ ⊗ Λ1(sl(n))) = ρ(sl(n)). First since ρ is faithful, we have the
sequence of isomorphisms of Lie algebras

g → ρ(g) → ρ̃ ⊗ Λ1(g̃ ⊕ sl(n))

given by σ−1 ◦ ρ. Next we observe that ρ̃ ⊗ Λ1(g̃ ⊕ sl(n)) is equal to the
direct sum of Lie algebras ρ̃(g̃)⊗ In ⊕ Im ⊗ sl(n). Therefore by putting h =
(σ−1 ◦ ρ)−1(ρ̃(g̃) ⊗ In), we obtain a decomposition g = h ⊕ sl(n). Moreover
we can easily see that σ(ρ̃⊗Λ1(g̃)) = ρ(h) and σ(ρ̃⊗Λ1(sl(n))) = ρ(sl(n)).
Then there exist irreducible representations f : h → gl(V (k)) and g : sl(n) →
gl(V (l)) such that ρ = f⊗g (cf. [10, p.236]). Hence (g, ρ, V ) = (h⊕sl(n), f⊗
g, V (k) ⊗ V (l)). Note that σ is restricted to the isomorphisms ρ̃ ⊗ Λ1(g̃) →
f ⊗ g(h) and ρ̃ ⊗ Λ1(sl(n)) → f ⊗ g(sl(n)). Then by (2) in Proposition 6.4,
we have (g̃, ρ̃, V (m)) ∼= (h, f, V (k)) and (sl(n), Λ1, V (n)) ∼= (sl(n), g, V (l)),
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thus especially m = k and n = l. Since g is an irreducible representation
of sl(n) with degree n, g is equivalent to the identity representation Λ1 or
its dual Λ∗

1. Therefore (g, ρ, V ) = (h ⊕ sl(n), f ⊗ Λ(∗)
1 , V (m) ⊗ V (n)(∗)).

Thus (g, ρ, V ) can be sc-transformed into the triplet: (a) (h ⊕ sl(m − n),
f∗⊗Λ(∗)

1 , V (m)∗⊗V (m−n)(∗)). Since (h, f, V (m)) ∼= (g̃, ρ̃, V (m)), we have
(h, f∗, V (m)∗) ∼= (g̃, ρ̃∗, V (m)∗). On the other hand (sl(m − n), Λ∗

1, V (m −
n)∗) ∼= (sl(m − n), Λ1, V (m − n)) from (5) of Proposition 6.4. Hence the
triplet (a) is isomorphic to (g′, ρ′, V ′) by (1) in Proposition 6.4. Therefore
the proposition follows. 2

Since sc-transformations preserve faithfulness of triplets, we have the fol-
lowing:

Corollary 6.8. Let (g, ρ, V ) be a faithful irreducible triplet. Suppose that
a triplet (g′, ρ′, V ′) is castling equivalent to (g, ρ, V ). Then there exists a
triplet obtained by a finite number of sc-transformations from (g, ρ, V ) which
is isomorphic to (g′, ρ′, V ′).

7. Classification of irreducible PVs of type IFPS

In this section we shall prove Theorem 1.1. For this purpose it is sufficient
to classify isomorphism classes of irreducible infinitesimal PVs of type IFPS
(g, f, V ) by Corollary 5.4 and (3) in Proposition 6.4. Here Sato and Kimura
[17] have classified isomorphism classes of reduced irreducible PVs (G,F, V )
in the algebraic category. In the following we show that by differentiating
isomorphism classes of reduced irreducible algebraic PVs (G,F, V ), we can
directly obtain a classification of isomorphism classes of reduced irreducible
infinitesimal PVs (in the holomorphic category). First we show the following
proposition:

Proposition 7.1.
(1) Let h be a semisimple Lie algebra. Then for any triplet (h, ρ, V ), the

triplet (ρ(h), ı, V ) is algebraic.
(2) Let g be a Lie algebra, and let f : g → gl(V ) be a irreducible repre-

sentation. Then the triplet (f(g), ı, V ) is algebraic.

Proof. (1) First we show that ρ(h) is algebraic, i.e., there exists a con-
nected semisimple linear algebraic group H̃ ⊂ GL(V ) such that Lie(H̃) =
ρ(h). To see this, let H be a simply connected complex Lie group with Lie
algebra h, and let ρ̃ be the representation H → GL(V ) such that dρ̃ = ρ.
Then H is algebraic and ρ̃ is a rational representation (cf. [5, p.30-31]).
Therefore ρ̃(H) is a connected linear algebraic group (cf. [6, p.102]), and its
Lie algebra is ρ(h). Then the inclusion ı̃ : ρ̃(H) ↪→ GL(V ) is a rational rep-
resentation of ρ̃(H), and dı̃ is equal to the inclusion ı: ρ(h) ↪→ gl(V ). Hence
(ρ̃(H), ı̃, V ) is an algebraic triplet whose infinitesimal form is (ρ(h), ı, V ).
Since this triplet (ρ(h), ı, V ) is isomorphic to (h, ρ, V ), we obtain our claim.
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(2) From the assumption f(g) is a reductive Lie algebra with at most
one-dimensional center. First we consider the case that f(g) is semisimple.
Then from the claim (1), the triplet (f(g), ı, V ) itself is algebraic.

Next we consider the case that f(g) has a one dimensional center ⟨IV ⟩.
Now we denote the semisimple part of f(g) by h, hence we have f(g) =
h ⊕ ⟨IV ⟩. Then from the claim (1) there exists a connected linear algebraic
group H whose Lie algebra is h. Concerning the connected algebraic group
H×GL(1), we define the map Λ1⊗Λ1: H×GL(1) → GL(V ) by Λ1⊗Λ1(a, λ)
= λa. Then this is an algebraic group homomorphism, therefore its image
Λ1 ⊗Λ1(H ×GL(1)) is a connected linear algebraic group of GL(V ) (cf. [6,
p.102]). By differentiating Λ1 ⊗ Λ1, we obtain a Lie algebra representation
Λ1 ⊗ Λ1: h ⊕ gl(1) → gl(V ). Hence the image Λ1 ⊗ Λ1(H × GL(1)) has the
Lie algebra Λ1 ⊗ Λ1(h ⊕ gl(1)), and this is equal to f(g). Consequently we
obtain the algebraic triplet (Λ1 ⊗Λ1(H ×GL(1)), ı, V ) whose infinitesimal
form is equal to (f(g), ı, V ). 2

Now let us examine that the set of isomorphism classes of reduced irre-
ducible infinitesimal PVs (in the holomorphic category) is given from the
set of isomorphism classes of reduced irreducible algebraic PVs. To see this
we define the map

∆ : {reduced irreducible algebraic PV (G,F, V )}/∼= →
{reduced irreducible infinitesimal PV (g, f, V )}/∼=

by differentiation, i.e., ∆([(G,F, V )]) = [(Lie(G), dF, V )]. Then we can
verify that this map is well defined. Here we show that a reduced triplet is
mapped into a reduced triplet: let (G,F, V ) be a reduced irreducible triplet,
and we put (g, f, V ) := (Lie(G), dF, V ). We assume that (g, f, V ) is not
reduced, thus there exists a triplet (g̃, ρ̃, V (m)) and a positive number n
with m > n ≥ 1 such that

(g, f, V ) ∼= (g̃ ⊕ sl(n), ρ̃ ⊗ Λ1, V (m) ⊗ V (n))

and mn > m(m − n). The last triplet is isomorphic to the triplet

(a) (ρ̃(g̃) ⊕ sl(n), ı ⊗ Λ1, V (m) ⊗ V (n)).

Since ρ̃ is irreducible, by (2) in Proposition 7.1 (ρ̃(g̃), ı, V (m)) is algebraic,
i.e., there exists an algebraic triplet (G̃, ı̃, V ) whose infinitesimal form is
(ρ̃(g̃), ı, V (m)). Now let Λ1 : SL(n) → GL(n) be the identity representation
of SL(n), and we consider the triplet

(A) (G̃ × SL(n), ı̃ ⊗ Λ1, V (m) ⊗ V (n)).

Then this is algebraic because G̃×SL(n) is naturally regarded as a connected
linear algebraic subgroup of GL(m+n), and ı̃⊗Λ1 is a rational representation
of G̃ × SL(n). Moreover by differentiating the triplet (A), we obtain the
triplet (a). Since the triplet (a) is isomorphic to (g, f, V ), by Proposition 6.3
we have (G,F, V ) ∼= (G̃×SL(n), ı̃⊗Λ1, V (m)⊗V (n)). Hence (G̃×SL(m−n),
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ı̃∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)) is a castling transform of (G,F, V ). From the
hypothesis we have mn > m(m−n), and therefore (G,F, V ) is not reduced.
This is a contradiction. Hence we conclude that (g, f, V ) is reduced.

Now we claim that ∆ is bijective. We first show that ∆ is injective. Sup-
pose that ∆([(G, F, V )]) = ∆([(G′, F ′, V ′)]). Then their infinitesimal forms
(Lie(G), dF, V ) and (Lie(G′), dF ′, V ′) are isomorphic. Hence by Proposition
6.3, we have (G,F, V ) ∼= (G′, F ′, V ′). Therefore ∆ is injective.

Next we show that ∆ is surjective. Let (g, f, V ) be a reduced irreducible
infinitesimal PV. Then the triplet (g, f, V ) is isomorphic to (f(g), ı, V ), and
by (2) in Proposition 7.1 this triplet is algebraic. Hence there exists an
algebraic triplet (G̃, ı̃, V ) whose infinitesimal form is (f(g), ı, V ). Now sup-
pose that (G̃, ı̃, V ) is not reduced, thus there exists a castling transform
(G̃′, ı̃′, V ′) of (G̃, ı̃, V ) such that dimV ′ < dimV . Then by differentiating
these triplets, we obtain a castling transform (Lie(G̃′), dı̃′, V ′) of (g, f, V ).
This is a contradiction. Hence (G̃, ı̃, V ) is a reduced irreducible algebraic
triplet whose infinitesimal form is (f(g), ı, V ). Since (G̃, ı̃, V ) is a PV, ∆ is
surjective.

Hence we conclude that ∆ is bijective.

Now we begin our classification. Note that any irreducible PV of type
IFPS is isomorphic to a PV of type IFPS of the form (l ⊕ gl(1), ρ ⊗ Λ1, V )
because (gl(1), α, V (1)) is isomorphic to (gl(1), Λ1, V (1)) and we have (1) in
Proposition 6.4. Furthermore its image ρ ⊗ Λ1(l ⊕ gl(1)) is a reductive Lie
algebra with one dimensional center because ρ⊗Λ1 is faithful(cf. the remark
after Definition 5.3). Hence we shall investigate only such PVs. Here we
note that isomorphism classes of reduced irreducible algebraic PVs (G, ρ, V )
with one-dimensional center are classified in [17, p.141]. By differentiating
the triplets in the classification [17, p.141], we obtain a classification of
isomorphism classes of reduced irreducible (infinitesimal) PVs. From this
classification we choose all reduced irreducible PVs of type IFPS, then we
can obtain a classification of isomorphism classes of reduced irreducible PVs
of type IFPS. The result is the following:

(a) (gl(1) ⊕ sl(2), Λ1 ⊗ 3Λ1, V (1) ⊗ V (4))
(b) (gl(1) ⊕ sl(3) ⊕ sl(2), Λ1 ⊗ 2Λ1 ⊗ Λ1, V (1) ⊗ V (6) ⊗ V (2))
(c) (gl(1) ⊕ sl(5) ⊕ sl(4), Λ1 ⊗ Λ2 ⊗ Λ1, V (1) ⊗ V (10) ⊗ V (4))

Here nΛ1 is the n-th symmetric product of Λ1, and Λ2 is the second exterior
product of Λ1.

Now let us consider the triplet of the form

(h, τ, W ) = (gl(1)⊕ sl(a)⊕ sl(a−1), Λ1⊗Λ⊗Λ1, V (1)⊗V (2a)⊗V (a−1)),

where a is a positive integer and Λ is an irreducible representation of sl(a)
with degree 2a. Then the above triplets (a)-(c) are equal to the triplets
(h, τ, W ) for a = 2, 3, or 5 where Λ is the corresponding irreducible repre-
sentation. Note that sl(1) = 0.　
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In order to complete our classification, it is sufficient to determine all
triplets castling equivalent to the above triplets (a)-(c). For this purpose we
shall prove Proposition 7.2. In the following we assume that mi is a positive
natural number.

Proposition 7.2. Let a be 2, 3, or 5. Let (g, ρ, V ) be an arbitrary triplet.
Then (g, ρ, V ) is castling equivalent to the above triplet (h, τ, W ) if and only
if (g, ρ, V ) is isomorphic to a triplet of the form

(♯) (gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk), Λ1 ⊗ Λ ⊗ Λ1 ⊗ · · · ⊗ Λ1︸ ︷︷ ︸
k

,

V (1) ⊗ V (2a) ⊗ V (m1) ⊗ · · · ⊗ V (mk)) (k ≥ 1)

which satisfies

(∗∗) a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk = 0.

Proof. Note that for the triplet (h, τ, W ), we have dim gl(1) ⊕ sl(a) ⊕
sl(a− 1) − dim V (1)⊗ V (2a)⊗ V (a− 1) = 0. By replacing a− 1 with m1,
we obtain the equality (∗∗) a2 + m2

1 − 1 − 2am1 = 0.
We claim that any triplet castling equivalent to (h, τ,W ) is isomorphic to

a triplet of the form (♯) satisfying (∗∗). Then first note that (h, τ,W ) itself
satisfies the condition (♯) and (∗∗). In the following we prove our claim by
induction on the number of sc-transformations.

Now from the hypothesis of induction, we consider a triplet (g, ρ, V ) sat-
isfying the condition (♯) and (∗∗), i.e., (g, ρ, V ) is isomorphic to the triplet

(h′, τ ′,W ′) = (gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk),
Λ1 ⊗ Λ ⊗ Λ1 ⊗ · · · ⊗ Λ1, V (1) ⊗ V (2a) ⊗ V (m1) ⊗ · · ·V (mk))

and satisfies (∗∗). Let (g′, ρ′, V ′) be a castling transform of (g, ρ, V ). Then it
suffices to prove that (g′, ρ′, V ′) is isomorphic to a triplet satisfying (♯) and
(∗∗) again. Note that (g′, ρ′, V ′) is also a castling transform of (h′, τ ′,W ′).
Then by Proposition 6.7, there exists an sc-transformation (h̃′, τ̃ ′, W̃ ′) of
(h′, τ ′, W ′) such that (h̃′, τ̃ ′, W̃ ′) ∼= (g′, ρ′, V ′). Concerning (h′, τ ′,W ′) there
are at most k ways of sc-transformations, however by the symmetry of
m1, · · · ,mk we may assume that (h̃′, τ̃ ′, W̃ ′) is given by the triplet

(gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk−1) ⊕ sl(2am1 · · ·mk−1 − mk),
Λ∗

1 ⊗ Λ∗ ⊗ Λ∗
1 ⊗ · · · ⊗ Λ∗

1 ⊗ Λ1,

V (1)∗ ⊗ V (2a)∗ ⊗ V (m1)∗ ⊗ · · · ⊗ V (mk−1)∗ ⊗ V (2am1 · · ·mk−1 − mk)).

Then we have

a2 + m2
1 + · · · + m2

k−1 + (2am1 · · ·mk−1 − mk)2 − k

− 2am1m2 · · ·mk−1(2am1 · · ·mk−1 − mk)
= a2 + m2

1 + · · · + m2
k − k − 2am1m2 · · ·mk

= 0.
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Hence (h̃′, τ̃ ′, W̃ ′) satisfies the equality (∗∗). Moreover from the claims (1),
(4), (5) of Proposition 6.4, (h̃′, τ̃ ′, W̃ ′) is isomorphic to a triplet of the form
(♯). Since (h, τ, W ) satisfies the conditions (♯) and (∗∗), by induction any
triplet castling equivalent to (h, τ, W ) satisfies the conditions (♯) and (∗∗)
again.

Next we prove the converse. Let (g, ρ, V ) be a triplet isomorphic to the
following triplet

(g′, ρ′, V ′)
= (gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk), Λ1 ⊗ Λ ⊗ Λ1 ⊗ · · · ⊗ Λ1,

V (1) ⊗ V (2a) ⊗ V (m1) ⊗ · · · ⊗ V (mk))

satisfying the equality (∗∗). We may assume 2 ≤ m1 ≤ m2 ≤ · · · ≤ mk

without loss of generality. We show that this triplet (g′, ρ′, V ′) is castling
equivalent to (h, τ, W ).

If k = 1, the equality (∗∗) becomes a2 + m2
1 − 1 − 2am1 = 0. The

left side of the equality is equal to (a − m1)2 − 1. Hence the solution of
the equality (∗∗) is m1 = a ± 1. The corresponding triplets are given by
(gl(1) ⊕ sl(a) ⊕ sl(a − 1), Λ1 ⊗ Λ ⊗ Λ1, V (1) ⊗ V (2a) ⊗ V (a − 1)) and
(gl(1)⊕sl(a)⊕sl(a+1), Λ1⊗Λ⊗Λ1, V (1)⊗V (2a)⊗V (a+1)). The former
is equal to (h, τ, W ), and the latter is a castling transform of (h, τ,W ) by
claims (1), (4), (5) of Proposition 6.4. Hence (g′, ρ′, V ′) is castling equivalent
to (h, τ, W ).

Next we investigate the case k ≥ 2. The following lemma plays a crucial
role. The proof of this lemma will be given below.

Lemma 7.3. Let k be a natural number such that k ≥ 2, and let a and mi

(1 ≤ i ≤ k) be integers satisfying 2 ≤ a ≤ 5 and 2 ≤ m1 ≤ m2 ≤ · · · ≤ mk.
Suppose that the equality (∗∗) a2 + m2

1 + · · ·+ m2
k − k − 2am1m2 · · ·mk = 0

holds. Then we have 0 < 2am1m2 · · ·mk−1 − mk < mk.

Now by an sc-transformation of the given triplet (g′, ρ′, V ′), we can obtain
the triplet

(g′′, ρ′′, V ′′)
= (gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · sl(mk−1) ⊕ sl(2am1 · · ·mk−1 − mk),

Λ∗
1 ⊗ Λ∗ ⊗ Λ∗

1 ⊗ · · · ⊗ Λ∗
1 ⊗ Λ1,

V (1)∗ ⊗ V (2a)∗ ⊗ V (m1)∗ ⊗ · · · ⊗ V (mk−1)∗ ⊗ V (2am1 · · ·mk−1 − mk)).

Then by Lemma 7.3, we have dimV ′′ < dimV ′. Since dim V ′ < ∞, by a
finite number of sc-transformations, we can arrive at a triplet of the same
form as that of (g′, ρ′, V ′) with some mi = 1, i.e.

(gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(1) ⊕ · · · ⊕ sl(mk),

Λ(∗)
1 ⊗ Λ(∗) ⊗ Λ(∗)

1 ⊗ · · · ⊗ Λ(∗)
1 ⊗ · · · ⊗ Λ(∗)

1 ,

V (1)(∗) ⊗ V (2a)(∗) ⊗ V (m1)(∗) ⊗ · · · ⊗ V (1)(∗) ⊗ · · · ⊗ V (mk)(∗)).
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Thus the number of sl(mi)-components decreases to k − 1. Since k is finite,
by a finite number of sc-transformations we arrive at a triplet isomorphic
to (gl(1) ⊕ sl(a) ⊕ sl(m1), Λ1 ⊗ Λ ⊗ Λ1, V (1) ⊗ V (2a) ⊗ V (m1)). Since
sc-transformations and a last isomorphism of triplets keep the equality (∗∗),
this triplet also satisfies (∗∗). Hence by the consideration in the case k = 1,
(g′, ρ′, V ′) is castling equivalent to (h, τ, W ). Therefore (g, ρ, V ) is also
castling equivalent to (h, τ, W ), which proves Proposition 7.2. 2

Proof of Lemma 7.3. Let k be a natural number satisfying k ≥ 2, and
let a and mi (1 ≤ i ≤ k) be arbitrary integers satisfying the inequalities
2 ≤ a ≤ 5, 2 ≤ m1 ≤ m2 ≤ · · · ≤ mk, and the equality

(∗∗) a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk = 0.

First we show that 0 < 2am1 · · ·mk−1 − mk. We assume that 2am1

· · ·mk−1 ≤ mk. Then 2am1 · · ·mk−1mk ≤ m2
k. Hence

a2 − k + m2
1 + · · · + m2

k ≤ m2
k.

Therefore

0 ≥ a2 − k + m2
1 + · · · + m2

k−1 ≥ a2 − k + 4(k − 1) > 0.

This is a contradiction. Hence we have 0 < 2am1 · · ·mk−1 − mk.
Secondly we show that 2am1m2 · · ·mk−1 − mk < mk. Now assume that

mk ≤ 3a. Then since k ≥ 2 and a ≥ 2, we have mi ≤ 2a2k−1 − 2. Thus we
can use Lemma 2 in [17, p.42], and we have

m2
1 + · · · + m2

k − 2am1m2 · · ·mk ≤ 22k − 2a2k.

Substituting this inequality into (∗∗) we have

0 = a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk

≤ a2 − k + 22k − 2a2k

= a2 − 2k+1a + 3k.

The last expression is negative if k ≥ 2 and 4 −
√

10 < a < 4 +
√

10, thus
especially for 2 ≤ a ≤ 5. This is a contradiction. It follows that mk > 3a.
To prove the inequality 2am1m2 · · ·mk−1 −mk < mk we consider two cases:
(i) k = 2 and (ii) k ≥ 3.
(i) First we show that m2 > m1 + a. Now suppose that m2 ≤ m1 + a. Then
by (∗∗)

0 = a2 + m2
1 + m2

2 − 2 − 2am1m2

≤ a2 + m2
1 + m2

2 − 2 − 2a(m2 − a)m2

≤ a2 − 2 + (−2a + 2)m2
2 + 2a2m2

≤ a2 − 2 − am2
2 + 2a2m2

= a2 − 2 − am2(m2 − 2a).
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Since m2 − 2a > a, this expression is less than

a2 − 2 − a2m2 < −a2 − 2 < 0.

This is a contradiction, and therefore m2 > m1 + a. Next we show the
inequality 2am1−m2 < m2, which is equivalent to am1 < m2. Now suppose
that am1 ≥ m2. Then by (∗∗) we have

0 = a2 + m2
1 + m2

2 − 2 − 2am1m2

≤ a2 − 2 + m2
1 + m2

2 − 2m2
2

= a2 − 2 + m2
1 − m2

2.

Since m2 > m1 + a, this expression is less than

a2 − 2 + m2
1 − (m1 + a)2

= −2 − 2am1 < 0.

This is a contradiction, and therefore we have 2am1 − m2 < m2.
(ii) Consider the case k ≥ 3. First we prove mk > a

2 (k − 1)mk−1. Now
suppose that mk ≤ a

2 (k − 1)mk−1. Then by (∗∗)

0 = a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk

≤ a2 − k + m2
1 + · · · + m2

k − 4
k − 1

m1 · · ·mk−2m
2
k.

Here
4

k − 1
m1 · · ·mk−2 ≥ 4

k − 1
2k−2 =

2k

k − 1
≥ k + 1. Hence

a2 − k + m2
1 + · · · + m2

k − 4
k − 1

m1 · · ·mk−2m
2
k

≤ a2 − k + m2
1 + · · · + m2

k − (k + 1)m2
k

≤ a2 − k − m2
k.

Since mk > 3a > a, we have a2 − k − m2
k < a2 − k − a2 < 0. This is a

contradiction. Hence mk > a
2 (k − 1)mk−1.

Next assume that 2am1 · · ·mk−1 − mk ≥ mk, then 2am1 · · ·mk ≥ 2m2
k.

By applying this inequality to (∗∗), we have

0 = a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk

≤ a2 − k + m2
1 + · · ·m2

k−1 − m2
k.

By mk > a
2 (k − 1)mk−1, the last expression is less than

a2 − k + m2
1 + · · ·m2

k−1 −
a2

4
(k − 1)2m2

k−1

≤ a2 − k − (k − 1)(
a2

4
(k − 1) − 1)m2

k−1

≤ a2 − k − ((k − 1)(a2(k − 1) − 4).

Finally by k ≥ 3, we have

0 ≤ a2 − k − 2(2a2 − 4) = −3a2 − k + 8 < 0.
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This is a contradiction, and therefore 2am1m2 · · ·mk−1 − mk < mk. 2

Remark. Even if a and mi are real numbers satisfying 2 ≤ a ≤ 5 and
2 ≤ m1 ≤ m2 ≤ · · · ≤ mk, we have the same assertion as that of Lemma 7.3

Now we claim that a triplet (g, ρ, V ) is isomorphic to an irreducible PV of
type IFPS if and only if (g, ρ, V ) is castling equivalent to one of the triplets
(a)-(c). To see this, first note that a triplet (g, ρ, V ) is isomorphic to an
irreducible PV of type IFPS if and only if (g, ρ, V ) is castling equivalent
to a reduced irreducible PV of type IFPS. This follows from the fact that
sc-transformations preserve being an irreducible PV of type IFPS and from
Corollary 6.8. Furthermore any reduced irreducible PV of type IFPS is
isomorphic to one of the triplets (a)-(c). Therefore we obtain our claim.

Thus by applying Proposition 7.2 to the case that (h, τ, W ) is equal to
one of the triplets (a)-(c), we have the following:

Corollary 7.4. Let k and mi be positive natural numbers. A triplet (g, ρ, V )
is isomorphic to an irreducible PV of type IFPS if and only if it is isomorphic
to a triplet of the form

(gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk),
Λ1 ⊗ Λ ⊗ Λ1 ⊗ · · · ⊗ Λ1︸ ︷︷ ︸

k

,

V (1) ⊗ V (2a) ⊗ V (m1) ⊗ · · · ⊗ V (mk))

which satisfies the equality

(∗∗) a2 + m2
1 + · · · + m2

k − k − 2am1m2 · · ·mk = 0,

where a = 2, 3, or 5, and

Λ =

 3Λ1 (a = 2)
2Λ1 (a = 3)
Λ2 (a = 5)

.

Remark. If a triplet (g, ρ, V ) is a PV of type IFPS, then dim g = dimV .
This equality gives (∗∗). Indeed

dim gl(1) ⊕ sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk) = a2 + m2
1 + · · · + m2

k − k,

and
dimV (1) ⊗ V (2a) ⊗ V (m1) ⊗ · · · ⊗ V (mk) = 2am1m2 · · ·mk.

By combining Corollaries 5.4, 7.4 and the claim (3) in Proposition 6.4,
we complete the proof of Theorem 1.1.

Remark 1. Let a be a natural number such that a ≥ 2. We denote a
solution of (∗∗) by (a;m1, . . . ,mk), which geometrically corresponds to a
complex IFPS on a Lie group SL(a)×SL(m1)×· · ·×SL(mk). We say that
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a solution (a; m1, . . . , mk) is essential if mi ̸= 1 for all i. Then for any k we
can see that the equation (∗∗) has an essential solution by induction. First
if k = 1, the equation (∗∗) has the solutions (a; a ± 1). Next we suppose
that the equation (∗∗) has an essential solution (a; m1, . . . , mk). We may
assume that it satisfies 2 ≤ m1 ≤ · · · ≤ mk. When we add sl(1) to the
tail of the Lie algebra sl(a) ⊕ sl(m1) ⊕ · · · ⊕ sl(mk), there are (k + 1)-ways
of sc-transformations of this Lie algebra. Namely an sc-transformation of
(a; m1, . . . , mk) at the i-th position for 1 ≤ i ≤ k is given by

(a; m1, . . . , mi−1, 2am1 · · ·mi−1mi+1 · · ·mk − mi,mi+1, . . . , mk),

and for i = k + 1 is given by

(a; m1, . . . , mk, 2am1 · · ·mk − 1).

We note that castling transformation of (a;m1) at the first position is
given by (a; 2a − m1). We have already seen that any sc-transformation
of (a;m1, . . ., mk) gives again a solution of (∗∗). Since we can easily verify
that 2am1 · · ·mk − 1 > mk ≥ 2 for the case i = k + 1, there exists an
essential solution for any k ≥ 1.

For example let us consider the solution (2; 3), which corresponds to a
complex IFPS on SL(2) × SL(3). If we castling transform (2; 3) at the
second position, we obtain (2; 3, 11). Likewise from (2; 3, 11) we obtain (2;
3, 11, 131).

Furthermore even if we fix the number of sl-components k (≥ 2), the
equation (∗∗) has an infinite number of solutions as follows: As we have
already showed that there exists at least one non-trivial solution (a; m1, . . .,
mk). Then by an sc-transformation of (a; m1, . . . ,mk) at the i-th position
(1 ≤ i < k), we obtain

(a; m1, . . . , mi−1, 2am1 · · ·mi−1mi+1 · · ·mk − mi, mi+1, . . . , mk).

Then this gives a new solution of (∗∗) since 2am1 · · ·mi−1mi+1 · · ·mk−mi >
mk. For example if we castling transform (2; 3, 11) at the first position, we
obtain (2; 41, 11). Likewise from (2; 11, 41) we obtain (2; 153, 41).

Remark 2. In Theorem 1.1 we have repetition of Lie algebras admitting
an IFPS between the cases a = 2 and a = 3. For example (2; 3) and (3; 2),
(2; 3, 11) and (3; 2, 11), etc. To exclude the repetition, we need the following
extra condition: for any solution (3;m1, . . . , mk) we require mi ̸= 2 for all
i. To see this, first we see that by the extra condition we can avoid the
repetition. Indeed we can verify that the set of all solutions of (∗∗) with
a = 2, the one with a = 3, the one with a = 5 are disjoint.

To begin with the whole solutions of the cases a = 2 and a = 3 obviously
does not intersect because of the extra condition.

Next we verify that the whole solutions of the cases a = 2 and a = 5
does not intersect as follows: By the proof of Proposition 7.2, any solution
(2; m1, . . . , mk) of (∗∗) is castling equivalent to (2; 1). Let us express a
solution obtained by a castling transformation from (2;m1, . . . , mk) at the

30



i-th position as (2; m1, · · · , mi−1, m′
i, mi+1, · · · , mk). Then for the case

i = k we obtain a solution (2;m1, . . . , mk−1,m
′
k) such that m′

k < mk by
Lemma 7.3. On the other hand for other cases i ̸= k, we have mk < m′

i by
the above consideration.

Now let us apply this argument to a concrete case. We note that all
solutions obtained by castling transformations from (2; 1) is (2; 3), and those
from (2; 3) are (2; 1) and (2; 3, 11). Thus concerning any new solution (2;
m1, . . . , mk) castling equivalent to (2; 3, 11), we have mi > 11 for all i. Hence
concerning any solution (2; m1, . . . , mk) castling equivalent to (2; 1), we have
mi ̸= 5 for all i. Therefore we do not have repetition between the cases a = 2
and a = 5. Similarly we can verify the other case.

By a similar argument we can verify that any solution (3;m1, . . . ,mk)
contains at most one component mi such as mi = 2, and in this case changing
positions of mi (= 2) and 3 gives us again the solution (2; m1, · · · , mi−1,
3, mi+1, · · · , mk), which is belonging to the solutions of the case a = 2. It
follows that the set of all solutions of (∗∗) with the condition that a = 2, 3,
or 5 does not change even if we add the extra condition.

Remark 3. Concerning Theorem 1.1 we can also obtain an infinite number
of real semisimple Lie groups admitting an irreducible IFPS. Indeed the
triplets obtained in Corollary 7.4 have real forms

(gl(1, R) ⊕ sl(a,R) ⊕ sl(m1, R) ⊕ · · · ⊕ sl(mk,R),
Λ1 ⊗ Λ ⊗ Λ1 ⊗ · · · ⊗ Λ1,

V (1) ⊗ V (2a) ⊗ V (m1) ⊗ · · · ⊗ V (mk)).

Hence by Remark 2 after Theorem 3.6, real forms SL(a,R)× SL(m1,R)×
· · ·×SL(mk, R) satisfying (∗∗) a2 +m2

1 + · · ·+m2
k −k−2am1m2 · · ·mk = 0

admit an irreducible IFPS. Here recall that in [1], [20], [4], real simple Lie
groups admitting an IFPS were classified, and as a result only sl(n + 1, R)
and su∗(2n) (n ≥ 1) admit an IFPS. To obtain this result, Aagoka [1] con-
structed a reducible IFPS on sl(n + 1,R) and su∗(2n) (n ≥ 1), moreover an
irreducible IFPS on sl(2,R). That is why in Theorem 1.1 the complexifica-
tion of sl(n + 1, R) (n ≥ 2) does not appear.
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