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components. Engle and Yoo (1991) derived a VECM

representation for systems in which a simple relation

on multicointegration or a relation corresponding to

the case of b＝2 in the definition of cointegration by

Engle and Granger (1987) is realized as an extension

of GRT, and it was clarified that it results from a

vector autoregeression for I(2) components. Johansen

(1992a), Paruolo (1996) and Engsted and Johansen

(1999) have also studied the VECM for I(2)

components with the derivation of the condition for

the level series forming the VECM to be be I(2).

Among those papers dealing with the VECMs for I(2)

components, Gregoir and Laroque (1993) set up a

representation theorem for a general situation coping

with more complicated multicointegration or various

cases (b＞1) in the definition of cointegration and

derived a generalized VECM representation. The

representation seems to be far from the form to which

the Johansen method can be applied in appearance. In

addition, the explanation on how it is related to the

cointegrating rank was not given. 

The purpose of this paper is to establish another

VECM formulation for the general situation where

GRT does not necessarily hold so that the

１　Introduction

The concept of cointegration defined by Engle and

Granger (1987) and others brought about a significant

change in the model formulation based on vector

autoregressions by picking up the situations in which

individual time series considered are integrated of

order one (I(1)) but some linear combinations of those

are both weakly stationary and invertible (I(0)). Engle

and Granger (1987) derived a vector error correction

model (VECM) for such a situation in their Granger

representation theorem (GRT), emphasizing the

existence of the error correcting term characterized by

the cointegrating rank defined as the number of all the

independent cointegrating relations considered.

Detecting the cointegrating rank is the elementary

among statistical analyses over cointegration, and the

method proposed by Johansen (1988,  1992b)

(Johansen method) is reputed to provide an handy and

desirable estimator for it in the VECM. 

On the other hand, the concept of multicointegration

(or polynomial cointegaration) introduced by Granger

and Lee (1990) compels us to reconsider such VECM

formulation under cointegrated systems of I(1)
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discuss VECM formulation for cointegrated systems.

First, consider the observable k-dimensional vector

time series yt generated by

(1)

where d is a positive integer, ∆＝1－B with B

denoting the backward operator Cj are k×k constant

matrices satisfying

for some ρ＞1, where ||Cj||＝tr (Cj́ Cj)1/2, C0＝Ik with Ik

denoting the k×k identity matrix Ik, {εt} is a sequence

of unobservable k-dimensional random vectors which

are mutually uncorrelated such that E(εt)＝0, E(εtέt)＝

Ω, Ω is positive definite, and the fourth moments of

components of εt are all finite, q is a nonnegative

integer, and µn are k-dimensional constant vectors. We

note that (1) is a VMA process with some

deterministic terms and is expressed based on the

Wold decomposition. Defining the power series C(z)

as 

we make the following assumptions: det C(z)＝0 has

roots either equal to 1 or strictly greater than 1 in

absolute value, neither of the row vectors of C(1) is

zero vector, rank C(1)＝k－r with an integer r

satisfying k－1 ≥ r ≥ 1, there exist some positive

integer m
_

and some power series g(z)＝1＋∑
∞

j＝0
g j z j,

where g j are real numbers, such that det C(z)＝(1－

z)m
_

g(z) and g(1)≠0, and with some positive integer q0,

(y 0́,...y －́q
0
＋1)´ is either O(1) or Op(1), noting that these

are thought to be conventionally imposed for

cointegrated systems. As clarified by (1) and by the

assumption that neither of row vectors of C(1) is zero

vector, the components of ∆dyt are I(0) in the stochastic

parts.1 Also, the assumption that rank C(1)＝k－r is

directly connected with the occurrence of

cointegration in the definition of cointegration by

Engle and Granger (1987) or Banerjee et al. (1993, p.

cointegrating rank is described through some

parameters and to show that determining the

cointegrating rank by the Johansen method is still

valid. We first derive some generalized VECM

representation for this purpose, adopting a vector

moving average (VMA) representation as the data

generating process (DGP) and following a manner that

is different from Gregoir and Laroque (1993). We also

study the situation where the generalized VECM

obtained above itself is adopted as the DGP, and

conversely derive a VMA representation to evaluate

the orders of integration for the data series considered.

It is shown that the cointegrating rank is formulated

explicitly in connection with some parameter of the

representation, unlike the one in the representation

derived by Gregoir and Laroque (1993). Also, based

on this, we establish applicability of the Johansen

method to the general situation, provided that our

representation is formaulated by some finite lag-order

in differences. As shown later, the limiting distribution

of the statistic of Johansen's log-likelihood ratio test

under the null is essentially the same as that for the

conventional case, and the conventional critical points

and the procedure to determine the rank value are also

not altered. Several Monte Carlo experiments also are

executed to illustrate the results obtained theoretically,

and we will observe that the asymptotic desirability of

the method is recognized even under finite samples as

many as 200.

The paper is organized as follows: Section 2

formulates the DGP and the generalized VECM

representation in connection with the cointegrating

rank. The asymptotics of the method as the main

results are presented in Section 3. Section 4 deals with

Monte Carlo experiments. Some concluding remarks

are put in Section 5. The Appendix contains proofs of

theorems in the text.

２　DGP, VECM formulation and cointegrating
rank description

In this paper we will adopt two generalized DGPs to

１ It may suffice to adopt the framework of d＝1 for our purpose, since our study below is automatically applicable to one subject to

this restriction by regarding ∆d－1yt as yt.
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145): There exist γ of size k×(k－r) and ß of size k

×r such that 

rank γ́C(1)＝k－r, ß´C(1)＝0, rank ß＝r,

and at least two of the components of each column of

ß are not zero. Following the above-mentioned

definition, this implies that r corresponds to the

cointegrating rank in the sense that ß´∆d－1yt is weakly

stationary but γ́∆d－1yt is not so.

For the derivation of a generalized VECM

representation under (1), we need to construct some

integrated series of yt by extending the definition of ∆ j

to the case j ≤ 0: 

We now establish: 

Theorem 1: For yt generated by (1), we have the

following representation:

(2)

where α
_

is a column full rank matrix of k×r, m is a

positive integer, ß
_

n are k×r matrices such that rank

[ß
_

ḿ－1,…, ß
_
1́, ß

_
0́]＝r, Hj are k×k constant matrices, µ̌n

for m＋q ≥ n ≥ m costant vectors and are expressed as

linear combinations of µh, and µ̂n for m－1 ≥ n ≥ 1 are

given as some linear combinations of µ̃h, with

Also, Hj satisfy the same convergence condition as that

for Cj if det C(z) is rational, µ̌m+q vanishes if µq is

spanned by the columns of C(1). Moreover, at least

two of the components of each column of 

are not zero for any nonsingular k×k matrix A
_
－1.

(2) is different from the representation derived by

Gregoir and Laroque (1993), and therefore may be

interpreted as another general VECM formaulation for

the general situation where GRT does not necessarily

hold. Note that (2) for the case d＝m＝1 corresponds

to the conventional VECM (and is the same as Gregoir

and Laroque's one under this case). Also, recalling that

the components of ∆dyt are I(0) in the stochastic parts,

we see from (2) that ∑
m－1

n＝0
ß
_

ń∆d－1－nyt－1 consists of some

relations on multicointegration or cointegrating

relations for the case b＞1 in Engle and Granger's

(1987) definition except for the terms constructed

from the initial vectors.

Next, suppose that the observable k-dimensional

vector time series yt considered is generated by 

(3)

where d1 is a positive integer, α
_
1 is a column full rank

matrix of k×r1, r1 is a positive integer less than k, m1

and p1 are positive integer, ß
_
1;n are k×r1 constant

matrices, Hj;1 are k×k constant matrices, {εt} is the

one as given in (1), q is a nonnegative integer and µ
_

n

are k-dimensional constant vectors. Defining the

matrix polynomial A(z) as 

we assume that det A(z)＝0 has roots either equal to 1

or strictly greater than 1 in absolute value, and also

assume that with some nonnegative integer q0, (y 0́,...

y－́q0＋1)´ is either O(1) or Op(1). Moreover, it is assumed

that the frequency of the differencing operations

needed to transform the components of yt into I(0) in

the stochastic parts is identical amnog all the

components. (3) is seemingly similar to (2), although

(3) is a finite lag-order model and possesses no term

on the initial vectors unlike (2). We may convert (3) to

another suitable form in order to relate cointegration

with the parameters appeared in the representation.
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where α
_

i and ß
_

ii are k×ri column full matrices for i＝

0, 1 and r＝r0＋r1. 

３ Johansen method

Given T observations y1,…,yT in (2) or (4), we will

discuss the Johansen method to determine the

cointegrating rank r and its related log-likelihood ratio

test (trace test) statistics. For this purpose, we assume

that Hj＝0 for all j ≥ p＋1 for the case where (1) is

adopted as the DGP. (2) and (4) are then expressed as

a unified form: 

(6)

where q, µ
_

q is a k-dimensional constant vector and µ̂n

are redefined suitably. Note again that the term ∑
q－1

n＝0

t nµ̂ n is defined unless q＝0 .  Furthermore, we

incorporate the case p＝0 into (6) by considering that

Hj are all zero matrices under this case and assume

that Hp≠0 for the case p ≥ 1.

Now, put T
_
＝T－(p＋d) and define the matrices/

vectors Y－1 of size T
_
×k, ∆Y－j of size T

_
×k, τ̌n of

dimension T
_
, τ̂ (n) of size T

_
×(q＋1) as

Y－1＝[∆d－1yp＋d, ∆d－1yp＋d＋1,…, ∆d－1yT－1]´,

∆Y－j＝[∆dyp＋d＋1－j, ∆dyp＋d＋2－j,…, ∆dyT－j]´,

j＝0, 1,…, p,

τ̌n＝((p＋d＋1)n, (p＋d＋2)n,…, T n)´, n＝0,…, q,

τ̂(n)＝[τ̌0,…, τ̌n], n＝0, 1,…, q.

Also, define Ž－1 and M̌ as

Ž－1＝[∆Y－1,…, ∆Y－p, τ̂(q)] if p ≥ 1,

M̌＝IŤ－Ž－1(Ž－́1Ž－1)－1Ž－́1 if p ≥ 1,

M̌＝IŤ if p＝0,

for the case where q＝0 and µ
_
0＝0 and define those as

Ž－1＝τ̂(q) if p＝0,

Ž－1＝[∆Y－1,…, ∆Y－p, τ̂(q)] if p ≥ 1,

M̌＝IŤ－Ž－1(Ž－́1Ž－1)－1Ž－́1

for the other cases. Following the notations Sij used in

Johansen (1988, 1992b, 1996), let us introduce Sij

We also need to derive a VMA representation for this

purpose. These will be provided in the following

theorem: 

Theorem 2: For yt generated by (3), we have the

following representations: 

(4)

where α
_

and ß
_

n are the ones as given in Theorem 1

with r as a positive integer less than k, d is a positive

integer that is not less than d1, m＝m1＋d－d1, p is a

positive integer, Hj are k × k constant matrices such

that

and rank δ
_

´(Ik－∑
p

j＝1
Hj)＝k－r for any k×(k－r)

column full rank matrixδ
_

such thatδ
_
´α

_
＝0, 

(5)

where Cj are k×k constant matrices, the term ∑
q－1

n＝0
t n

µ̌n is defined for the case q ≥ 1 and is removed if q ＝0,

and µ̌n are k-dimensional constant vectors. Also, Cj

satisfy the convergence condition as given in (1), rank

C(1)＝k－r and C(1) µ
_

q vanishes if µ
_

q is spanned by

the columns of α
_ 

in (4).

(5) shows that the components of ∆dyt are I(0) in the

stochastic parts. It is also seen from the result rank

C(1)＝k－r that r corresponds to the cointegrating

rank for ∆d－1yt. Moreover, note that if the deterministic

part is out of consideration, the VECM for I(2)

components in Johansen (1992a) or Johansen (1996, p.

57) corresponds to the case d＝m＝2 in (4) with α
_
, ß

_
0

and ß
_
1 specified as 
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given as

S00＝∆Y0́ M̌∆Y0/T, S11＝Y－́1 M̌Y－1/T,

S01＝∆Y0́ M̌Y－1/T, S10＝S0́1.

Furthermore, let λ̂1 ≥  … ≥  λ̂k be the ordered

eigenvalues of the equation det{λS11－S10S－100 S01}＝0.

A test statistic for the null r＝j and the alternative r ≥

j＋1 is given as 

It should be noted that the value of m is not used in the

construction of the statistic. 

In order to derive the asymptotics for the test

statistic, let the symbols ⇒ and Ws(u) stand for weak

convergence of probability measures on the unit

interval [0, 1] and a s-dimensional standard Brownian

motion of on [0, 1] respectively, and put ψq (u)＝(1,…,

u q )´ , 

Furthermore, define W̃ (u) as Wk－r(u) for the case

where q＝0 and µ
_
0＝0, define it as

for the case where µ
_

q≠0 is spanned by the columns of

α
_

(including the case µ
_

q＝0), and define it as

for the other cases. Next, define ut and vt as ut＝∑
∞

j＝0
Cj

εt and vt＝∑
∞

j＝0
(－∑

∞

i＝j+1
Ci)εt, Also, for the case p ≥ 1,

let ǔt and v̌t－1 denotes the errors from the linear least-

square predictors of ut and vt－1 onto the (Hilbert) space

spanned by ut－j, j＝1,…, p, respectively, and for the

case p＝0, put ǔt＝ut and v̌t－1＝vt－1. Moreover, put

We now set up the following theorem for the test

statistics:

Theorem 3: Suppose yt is generated by (6). Then,

for λ̂h given above, we have:

(¡)

(™)

where ν1 ≥ … ≥ νr are the ordered eigenvalues of

Theorem 3 ensures that the asymptotics of the test

statistics obtained under the conventional VECM are

valid even if (6) is adopted as the DGP and therefore

indicates that the procedure to determine the value of r

in the Johansen method, which is presented in

Johansen (1992b) or Johansen (1996, pp. 98-100),

should be used as it is. Also, for the limiting

distribution given by Theorem 3 (¡), Johansen (1996,

p. 94) describes several special cases: (6.20) for the

case where q＝0 and µ
_
0＝0; (6.21) for the case where

q＝0 and µ
_
0≠0 is not spanned by the columns of α

_
;

and (6.22) for the case where q＝1 and µ
_
1≠0 is not

spanned by the columns of α
_
. We note that these are

used for the examples presented in the following

section. 

４　Examples

In this section, we execute Monte Carlo

experiments on the cointegrating rank determination

based on the Johansen method in several DGPs as

special cases of (6). The purpose of the experiments is

to observe the extent to which the asymptotics

established theoretically in the previous section are

preserved for finite samples. The DGPs presented

below are of 4-variates systems (k＝4) with d＝1, m＝

2, εt as Gaussian with mean zero and covariance

matrix I4 (Ω＝I4) and are classified into two groups
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The values of gh are confined to the ones in the

following cases: Case (5) g3＝1, g4＝g5＝1; Case (6)

g3＝3/5, g4＝g5＝1; Case (7) g3＝1, g4＝1, g5＝0; and

Case (8) g3＝3/5, g4＝1.5, g5＝0. 

For each of the above DGPs, we ran 10000

simulations using a sample size of 200 (T＝200),

adopting pseudo normal random variables for the

components of εt to produce the test statistics needed

for the Johansen method. In each DGP, the test

statistics are constructed based on the true value of p,

which is 1, 2 or 3. The aim of the experiments is to

obtain the relative frequency for the Johansen method

to make a correct decision on the value of r over

10000 simulations for each DGP. Two values for it are

calculated for each DGP according to the tests

executed consecutively at both 5% and 1%

significance levels. For the critical values, we follow

Johansen's (1996, pp. 214-216) Tables 15.1, 15.3 and

15.5, which correspond to the cases g1＝g2＝0, g1＝1,

g 2＝ 0 and g1＝ 0,  g 2＝ 1 respectively.2 The

experimental results are reported in Table 1, and the

figures in the table are expressed as percentiles.

As observed in the table, the frequency that the

method detects the true value of r is sufficiently close

to the theoretical one (1 minus the significance level)

for all the DGPs, indicating that the asymptotics

established in the previous section are sufficiently

tenable for the sample size of T＝200 as far as those

DGPs are concerned. 

according to the value of r: r＝1 for the first group

and r＝2 for the second one. All the DGPs are

constructed so that y－j＝0 for any j ≥ 0, q＝0 or 1, µ̂0

is constant, both µ
_
1 and µ̂ 0 are not spanned by the

columns of α
_
, and the roots of det A(z)＝0 are either

greater than 1 in absolute values or equal to 1 for each

DGPs. Also, for any t ≥ 1, the DGPs included in each

group are expressed in a unified VECM form:

where g1 and g2 are parameters to administer the

existence of deterministic terms and are set to be

either 1 or 0 and µ
_
＝ (1, 0, 0.5, 1)´ . We note that yt

possesses no deterministic term (q＝0 and µ
_
0＝0) if

g1＝g2＝0, it possesses only a linear trend (q＝0 and

µ
_
0≠0) if g 1＝1 and g2＝0 ,  it possesses only a

quadratic trend (q＝1, µ
_
1≠0 and µ̂0＝0) if g1＝0 and

g2＝1, and the case g1＝g2＝1 is not dealt with.

The matrices α
_
, ß

_
0, ß

_
0 and Hj are also described by

the parameters gh for h＝3, 4, 5, 6 below, and those for

the first group are given as 

The values of gh are confined to the ones in the

following cases: Case (1) g3＝1, g4＝－1, g5＝g6＝0;

Case (2) g3＝1, g4＝1, g5＝g6＝0; Case (3) g3＝0,

g4＝－1, g5＝1, g6＝0; and Case (4) g3＝－1, g4＝－1,

g5＝g6＝1. 

Those for the second group are

2 This paper does not adopt more accurate critical values in MacKinnon et al. (1999) since 1% critical values are not available. 
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５　Concluding remarks 

We have been discussed the valid derivation of

some VECM representation for the general situation in

which the conventional VECM is not derived and

some applicability of the Johansen method to

determine the cointegrating rank to the situation. In

the VECM representation derived in this paper, the

cointegrating rank was explicitly described as the rank

(or the column size) of some coefficient matrix for the

generalized error correcting term. It was also

established theoretically that the the use of Johansen

method in the conventional manner leads to essentially

the same asymptotics for the rank determination as the

ones for the conventional VECM due to the form of

the representation. It is enforced by the performance

of the method for several examples and a sample size

of 200, based on the satisfactory results of the

experiments in the previous section.

Some semiparametric and nonparametric

approaches to the rank determination may be

sometimes considered as measures against some

limitation of the Johansen method. For the case in

which the valid derivation of the conventional VECM

is ensured but its lag-order is infinite, Saikkonen

(1992) and Qu and Perron (2007) have discussed the

applicability of the Johansen method based on a finite

lag-order approximation of the infinite lag-order or the

determination of an optimal lag-order. On the other

hand, Shintani (2001) proposed some nonparametric

tests for the rank determination without formulating

any vector autoregression scheme. The issues on how

such these methods can be applied to the general

situation and what alterations should be made need to

be discussed formally. We will leave these issues to

future research and only state that the Johansen

method is always useful for the cointegrating rank

detection within the framework of finite lag-order

vector autoregressions. 
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Appendix

Proof of Theorem 1 By the assumptions for

C(z), we see that there uniquely exists a combination

of a power series G(z)＝Ik＋∑
∞

j＝1
Gjzh of k×k matrices

Gj and a nonnegative integer n
_

such that

where adj C(z) denotes the adjoint matrix of C(z).

Putting A(z)＝G(z)/g(z) and m＝m
_
－n

_
, it is obvious

that A(z)C(z)＝(1－z)mIk holds and that A(z) is

expressed as

where Aj are k×k matrices satisfying the same

convergence condition as for Cj.

Next, for n＝0, 1,…, m, put
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results from 

noting that

In other words, Fn and Gn satisfying the former

necessarily satisfy the latter. As a result, we can see

that all the relations in (A.4) result from F0ß´C(0)(1)＝

0, which requires that r
_
＝r.

Next, define the k×k matrices A
_

(m－n)(1) and Hj for

n＝1,…, m and for j ≥ 1 and the power series H(z) as

those satisfying

It is now easy to see that there exist some column full

rank matrices α
_

and ß
_

n of size k×r such that

(A.5)

It can be also shown that

(A.6)

Note that the matrices α
_

, ß
_

m－1－n and Hj satisfy the

condition as given in the statement of the lemma.

On the other hand, using the expansion for C(z)

when b＝1 in (A.1), (1) is written as

Noting that ∑
t

h＝ 1
∆ dyh＝ ∆ d－ 1yt－ ∆d－ 1y0,  it is

straightforward from this that

(A.7)

where

Note that µ̌q+1＝µq. By induction on b, we can derive

(A.8)

noting that µ̌q+b;b＝µq. Putting εt(0)＝εt, noting that

εt(n)＝(1－B)m－nεt(m), n＝0, 1,…, m－1,

and using the expansion for C(z) when b＝m in (A.1),

(A.8) when b＝m is rewritten as

(A.9)

Note that µ̌q+m;m＝µq. Premultiplying both sides of (A.8)

by A(B), we can obtain

(A.10)
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with some positive integer p. We then have the

expression required for A(z).

For the derivation of (5), recall the nature of det

A(z). It ensures the existence of G(z) such that

where Gj are k×k matrices and ň is a nonnegative

integer. Put C(z)＝G
_
(z)/g

_
(z), and define C(n) and C

_
0; m－1

as given in the proof of Theorem 1. It is now trivial to

see that

from which follows that (A.2) and (A.3), in which m

is replaced by m̌－ň, hold. This, together with (A.11),

requires that m̌－ň＝m. Also, let C(z)＝∑
∞

j＝0
Cj with

some k×k constant matrices Cj. C(z) given above is

rational due to the condition of the roots of g
_

(z)＝0.

This ensures that Cj satisfy the convergence condition

as given in (1). Moreover, it is asserted by (A.2) that

rank C(0)(1) A(m)(1) ≥ k－r, therefore, rank C(1) ≥ k－r.

Now, suppose that rank C(1)＞k－r. This implies that

there exist some integer ř less than r, γ̌ of size k×

(k－ř) and ß̌ of size k×ř such that

By using argument similar to those used for the

derivation of (A.5) in the proof of Theorem 1 and [ ß̌,

γ̌] instead of [ ß, γ], it can be led to that

which contradicts the definition of r in (A.12). Thus it

is established that rank C(1)＝k－r. Premultiplying

both sides of (A.10) by C(B), using that C(B) A(B)＝

(1－B)m Ik and that d1－m1＝d－m, and defining µ̌n as

the ones satisfying

(5) follows. It is also obvious from the assumption for

where µ̌ n are constructed suitably from µ̌ n;m.  t

Substituting the right-hand side of (A.6) in which z is

replaced by B for A(B) in (A.10) and recalling the

natures of dt(n) and µ̃n, it is easy to obtain (2). If det

C(z) is rational, g(z) given above must be so. Noting

this, the condition of the roots of g(z)＝0, together

with this and the convergence condition for Cj, ensures

that Hj satisfy the same convergence condition as that

for Cj. It is also obvious that µ̌m＋q＝A(1) µq, which

implies that µ̌m+q vanishes if µq is spanned by the

columns of C(1). Moreover, if the components of one

row of

for some nonsingular k×k matrix A
_
－1 are zero except

one, it contradicts the fact that the components of ∆dyt

are I(0) in the stochastic parts. Thus the result required

for the lemma is derived.

Proof of Theorem 2 First, note that there exists

some positive integer m̌ and some polynomial g
_

(z)

such that det A(z)＝(1－z)m̌ g
_

(z) and g
_

(1)≠0. Also,

define A(n)(z) as given in the proof of Theorem 1. By

the same manner as that used for establishing the

equivalence between (A.10) and (2) in the proof of

Theorem 1, we see that (3) is written as

(A.11)

If it is satisfied that δ
_
1́ (Ik－∑

p

j＝1
Hj)＝k－r1 for any

k×(k－r1) column full rank matrix δ
_
1 such that δ

_
1́α

_
1

＝0, (3) itself can be regarded as (4). If it is not so, it

can be shown that rank [A(m1)(1),…, A(1)(1), A(0)(1)]＜k.

However, since det A(z)＝(1－z)m̌g
_

(z) and g
_

(1)≠0,

there must exist some integer m greater than m1 such

that

rank [A(m－1)(1),…, A(1)(1), A(0)(1)]≡r＜k,

rank [A(m)(1),…, A(1)(1), A(0)(1)]≡k, (A.12)

which ensures that there exist α
_

and ß
_

n as given in

Theorem 1. (4) can be then obtained by using the

argument used for the equivalence between (A.10) and

(2) again and (A.4) and by putting d＝d1－m1＋m and
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the components of yt that neither of the row vectors of

C(1) is zero vector. Moreover, we see from C(1)

A(1)＝0 that C(1)α
_
＝0, which implies that C(1) µ

_
q

vanishes if µ
_

q is spanned by the columns of α
_
. Thus

the proof is completed.

To prove Theorem 3, we set up the following three

lemmas: 

Lemma A.1 Suppose that the same conditions as

given in Theorem 3 hold. Also, for the case p ≥ 1, let

the linear least-square predictor of ut onto the space

spanned by ß´vt－1, ut－j, j＝1,…, p,

and for the case p＝0, let the linear least-square

predictor of ut onto the space spanned by only ß´vt－1

be α(0) ß´vt－1, where ut and vt are defined in the text,

α(p) is ak×r constant matrix and Hi(p) are k×k

constant matrices. Then:

where Rv is given in the text,

with

Proof It suffices to give the proof for the case p ≥

1, since it is trivial to prove the lemma for the case

p＝0. Note that vt＝C(1)(B)εt for C(1)(z) given in the

proof of Theorem 1, that ut and ß´vt correspond to the

ones obtained by removing the deterministic parts and

the terms on the initial vectors from ∆dyt and ß´∆d－1yt

and that

where ε
_

t; p is the error from the prediction stated in the

lemma. Also, by the standard statistics for weakly

stationary, ergodic time series and deterministic trends

(Banerjee et al. (1993) and Johansen (1988, 1996)

e.g.),

We note the following facts: It is not required that the

weakly stationary, ergodic series in the above results

are I(0), and some linear combinations of vt and ut are

overdifferenced. By arranging these results suitably or

from (6), it is not difficult to obtain the desired results.

Lemma A.2 Suppose that the same conditions as

given in Lemma A.1 hold with p ≥ 1. Also, define the k

× k matrices H
_

j(p) as the ones satisfying

and then define the k-dimensional series Wt and η
_

t(p)

as

Then we have

Proof The lemma is easily established by putting

z＝1 in the definitions for H
_

j(p). 

Lemma A.3 Suppose that the same conditions as

given in Lemma A.2 hold. Then we have rank α(p)＝ r.

Proof Consider the case p ≥ 1. Since ß´ut＝ß´∆vt,

it is also obvious that the space spanned by [v t́－j ß, u t́－j

γ], j＝1,…, p, and ß´vt－p－1 is equal to the one spanned

by ß´vt－1, ut－j, j＝1,…, p. Based on this, it is easy to
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Also, the first equation of (A.12) is rewritten as

(A.15)

Noting that Wt(p) is weakly stationary, purely

nondeterministic and ergodic with mean zero and

putting

RW(0)＝E{Wt－1(p) Wt́－1(p)},

RW(1)＝E{Wt(p) Wt́－1(p)},

using the property of η̌t(p) stated in (A.13), (A.14) and

(A.15), it can be shown that det{Ik－∑
p＋1

j＝1
H
_

j(p) z j}＝0

is equivalent to

det{RW(0)－RW(1) z}＝0. (A.16)

Now, consider z satisfying (A.16). Suppose that z is

nonzero and real, noting that (A.16) does not hold for

z＝0. Therefore, there must exist some (kp＋r)-

dimensional real vector b≠0 satisfying 

b´{RW(0)－RW(1) z}＝0,

which leads to

Since z－1 is exactly the first-order autocorrelation

coefficient of b´Wt(p) that is weakly stationary,

ergodic with mean zero, it must be satisfied that |z|＞1.

Next, suppose that z and z
_

are a pair of complex-

conjugate roots of (A.16). Then we can find (kp＋r)×

1 complex vector b and b
_

satisfying

b´{RW (0)－RW (1) z} ＝0, b
_
´{RW (0)－RW (1) z

_
}＝0.

With i denoting the imaginary, (kp＋r)-dimensional

real vectors bj and real numbers zj ( j＝1, 2) such that

bj≠0 for at least one j and z2≠0, we can let 

b＝b1＋ib2, z＝z1＋iz2.

Since both real and imaginary parts of b´{RW (0)－RW

(1) z} must be zero, we have

check that

(A.13)

Next, define Wt－j (p) of size (kp＋r)×1, η̌t(p) of

dimension (kp＋r), H
_
(p) of size (kp＋r)×(kp＋r) and

Ȟ(p) of size k(p＋1)×k(p＋1) as

where

We then see that

(A.14)

since
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{b 1́RW (0) b1}2＝|(z1b 1́－z2b 2́) RW (1) b1|2,

{b 2́RW (0) b2}2＝|(z1b 2́＋z2b 1́) RW (1) b2|2. (A.17)

This requires that either b1≠0, z1b1－z2b2≠0 or b2≠0,

z1b2＋z2b1 holds, recalling that bj≠0 for at least one j.

Noting that (z1b 1́－z2b 2́) RW (0) (z1b1－z2b2) and b 1́RW (0)

b1 are the variances of (z1b 1́－z2b 2́) Wt (p) and b 1́Wt－1(p)

respectively and that (z1b 1́－z2b 2́) RW (1) b1 is the

covariance of those series, we have 

|(z1b 1́－z2b 2́) RW (1) b1|2

≤ {(z1b 1́－z2b 2́) RW (0) (z1b1－z2b2)} (b 1́RW (0) b1) 

＝{z21 b 1́RW (0) b1＋z22 b 2́RW (0) b2

－2 z1 z2 b1 RW (0) b2} (b 1́RW (0) b1).

Similarly,

|(z1 b 2́＋z2 b 1́) RW (1) b2|2

≤ {z21 b 2́ RW (0) b2＋z22 b 1́ RW (0) b1

＋2z1 z2 b1 RW (0) b2} (b 2́ RW (0) b2).

By combining these with (A.17), it is led to that

b 1́ RW (0) b1 ≤ z21 b 1́ RW (0) b1＋z22 b 2́ RW (0) b2

－2 z1 z2 b1 RW (0) b2,

b 2́ RW (0) b2 ≤ z21 b 2́ RW (0) b2＋z22 b 1́ RW (0) b1

＋2 z1 z2 b1 RW (0) b2.

By the restriction on bi and the properties of the series

stated above, at least one of the above two inequalities

must hold strictly. By adding each of both

sides of the first inequality to those of the second one,

we attain to

{b 1́ RW (0) b1＋b 2́ RW (0) b2}

＜(z21＋z22){b 1́ RW (0) b1＋b 2́ RW (0) b2},

which requires that |z|＞1.

Thus all the roots of det{Ik－∑
p＋1

j＝1
H
_

j(p) z j}＝0 must

be greater than 1 in absolute values, which, together

with Lemma A.2, implies that the result required for

the lemma holds for the case p ≥ 1. Since it is trivial to

obtain the result for the case p＝0, we can now finish

the proof.

Proof of Theorem 3 We first note that this

theorem is essentially the same as the counterparts of

Johansen (1988, 1996) and many part of the proof can

be proved by the same manner as used for such ones.

However, several matters need to be proved here.

Now, put

Ě 0＝[εp＋d＋1, εp＋d＋2,…, εT]´,

let C(1) be γδ́  for some k×(k－r) column full rank

matrices γ and δ. Also, without loss of generality,

for the case where µ̌q is not spanned by the columns of

α
_

and k－r＞1, let us partition γ as

for some k-dimensional vector γ1 and k×(k－r－1)

matrix γ2 such that γ́1 C(1) µ̌q≠0 and γ́2 C(1) µ̌q＝0.

Moreover, note that Sij are obtained by removing the

deterministic parts and the terms on the initial vectors.

By (1)/(5) and (A.8) in the proof of Lemma A.1 and

using the elementary of Brownian motion and the

asymptotics for I(1) series (Park and Phillips (1988,

1889), Banerjee et al. (1993) or Johansen (1988, 1996)

e.g.) in addition to the statistics for weakly stationary,

ergodic time series and deterministic trends mentioned

in the proof of Lemma A.1, it can be established that

(A.18)

ß´S11 ß＝ß´Rv ß＋Op(T－1/2),

(ß´S11 ß)－1＝(ß´Rv ß)－1＋Op(T－1/2), (A.19) 

S00＝Ru＋Op(T－1/2), S－100＝R－1u ＋Op(T－1/2),

Ě 0́ M̌Ě 0＝Ω＋Op(T－1/2), (A.20) 

(ß´S11γ) ĎT
－1＝Op(1), (S01γ) ĎT

－1＝Op(1). (A.21) 

where ĎT and G̃ are defined as 

Ik－r and (γ́C(1) Ω C(1)´γ)1/2

respectively if µ̌q is spanned by the columns of α
_

,

those are defined as 

T q＋3/2 and |γ́C(1) µ̌q|

respectively if µ̌q is not spanned by the columns of α
_

and k－r＝1, and those are defined as
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Hence, 

(A.27)

for some δ
_

as given in (A.22) or (A.24). Moreover, it

is easily checked that M S00 M̂＝M̂, in other words, 

which leads to

It follows from this, (A.20) and (A.22) that

(A.28)

Putting (A.18), (A.24), (A.27) and (A.28) together, we

see that the limiting distribution of ∑
k－r

h＝1
ν̂h becomes

the one stated by (™). It is also obvious from this and

(A.26) that λ̂r＋h＝Op(T－1) for h＝1,…, k－r, which

leads to

－T log{1－λ̂r＋h}＝Tλ̂r＋h＋Op(T－1) h＝1,…, k－r. 

The result required for (¡) follows from this, (A.26)

and the result on the limiting distribution of ∑
k－r

h＝1
ν̂h

established above.

For (™), note that ß´Rv ß has full rank, since ß´ǔ t is

not degenerated. Also, from the nature of the linear

least-square prediction, we have

α(p)＝Ruv ß ( ß´Rv ß)－1, (A.29) 

which, together with Lemmas A.1 and A.3, ensures

that 1＞ν1 ≥ … ≥ νr＞0. Moreover, letting ν̃1 ≥ … ≥

ν̃r be the ordered eigenvalues of the equation

det{λß´S11 ß－ß´S10 S－100 S01 ß},

it follows from Lemma A.1, (A.19), (A.20) and (A.29)

that 

ν̃j＝νj＋Op(T－1/2), j＝1, … , r. (A.30)

On the other hand, it is trivial to see that the roots of

the equation det{λS11－S10S－100 S01}＝0 are equivalent to

those of

respectively otherwise, and Ω, Rv and Ru are given in

the text. It is also led to automatically from (6) that

(A.22)

(A.23)

where δ
_

is a k×(k－r) column full rank matrix such

that δ
_
´α

_
＝0 and ß

_
and S21 are given in Lemma A.1.

Moreover, from (A.23) and using the elementary of

Brownian motion and the asymptotics for I(1)

mentioned above again, we have 

(A.24)

For the derivation of (¡), notice that (Tλ̂k)－1 ≥ … ≥

(Tλ̂1)－1 are the ordered eigenvalues of the equation

(A.25)

Now, put 

and let ν̂k－r ≥ … ≥ ν̂1 denote the ordered eigenvalues

of the equation 

By using (A.18) to (A.21) in (A.25), it can be shown

that

(A.26)

On the other hand, Lemma A.1 ensures that

It is also easy to check that＝M̂´＝M̂, M̂S01 ß＝0 and

ß´S10 M̂＝0. These results, together with Lemma A.1,

imply that α
_

´M̂＝Op(T－1/2) and M̂α
_
＝Op(T－1/2).
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It follows from this, Lemma A.1 and (A.18) to (A.21)

that 

λ̂j＝ν̃j＋Op(T－1/2) j＝1, … , r. (A.31)

By combining (A.31) with 1＞ν1 ≥ … ≥νr＞0 and

(A.30), (™) is established.
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TABLE 2

Relative Frequency of detecting the true value of r: The 1st Group

DGP＼Test Q̂ j Q̂＊; j LR P(k, j) P＊(k, j)

KT 4 8 4 8

VMA: c1＝c2＝c3＝c4＝1.5, c5＝0 and c6＝c7＝c8＝c9＝0.56

T＝200

r＝0 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

r＝0 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

VMA: c1＝c2＝c3＝c4＝0.2, c5＝0 and c6＝c7＝c8＝c9＝－0.48

T＝200

r＝0 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

r＝0 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

VMA: c1＝1.5, c2＝c4＝0.9, c3＝0.4, c5＝0.5,

c6＝0.56, c7＝c9＝0.2 and c8＝0.2

T＝200

r＝0 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

r＝0 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

In all the tables, figures indicate percentiles, and KT is required only for P(k, j) and P＊(k, j).

TABLE 1 

Relative Frequency of a Correct Determination of r

Significance Level: 5％ Significance Level: 1％

DGP g
1
＝0 g

1
＝1 g

1
＝0 g

1
＝0 g

1
＝1 g

1
＝0

g
2
＝0 g

2
＝0 g

2
＝1 g

2
＝0 g

2
＝0 g

2
＝1

Case (1) 93.72 93.16 92.69 98.43 98.46 98.52

Case (2) 93.55 93.48 92.66 98.6 98.49 98.32

Case (3) 93.96 93.22 92.75 98.68 98.46 98.46

Case (4) 93.41 92.89 92.96 98.48 98.57 98.44

Case (5) 93.2 93.14 92.35 98.61 98.35 98.2

Case (6) 93.23 92.83 93.64 98.45 98.34 97.4

Case (7) 94.18 94.01 93.59 98.9 98.66 98.5

Case (8) 93.71 93.85 93.67 98.6 98.64 98.32
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TABLE 3

Relative Frequency of detecting the true value of r: The 3rd Group

DGP＼Test Q̂ j Q̂＊; j LR P(k, j) P＊(k, j)

KT 4 8 4 8

q＝1: c1＝c2＝c3＝c4＝0.6, c5＝0 and c6＝c7＝c8＝c9＝0

T＝200

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝1: c1＝c2＝c3＝c4＝－0.6, c5＝0 and c6＝c7＝c8＝c9＝0

T＝200

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝2: c1＝c2＝c3＝c4＝1.0, c5＝0 and c6＝c7＝c8＝c9＝0.24

T＝200

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝2: c1＝c2＝c3＝c4＝1.5, c5＝0 and c6＝c7＝c8＝c9＝0.56,

T＝200

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝2: c1＝1.5, c2＝c4＝0.9, C3＝0.4, c5＝0.5,

c6＝0.56, c7＝c9＝0.2 and c8＝0.2

T＝200

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

TABLE 3 (Continued)

Relative Frequency of detecting the true value of r: The 3rd Group

DGP＼Test Q̂ j Q̂＊; j LR P(k, j) P＊(k, j)

KT 4 8 4 8

q＝2: c1＝1.5, c2＝0.9, c3＝0.4, c4＝－0.4, c5＝0.5,

c6＝0.56, c7＝c9＝0.2 and c8＝0

T＝200

r＝2 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52
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TABLE 4

Relative Frequency of detecting the true value of r: The 4th Group

DGP＼Test Q̂ j Q̂＊; j LR P(k, j) P＊(k, j)

KT 4 8 4 8

q＝1: c1＝c2＝c3＝c4＝0.6, c5＝0 and c6＝c7＝c8＝c9＝0

T＝200

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝1: c1＝c2＝c3＝c4＝－0.6, c5＝0 and c6＝c7＝c8＝c9＝0

T＝200

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝2: c1＝c2＝c3＝c4＝1.0, c5＝0 and c6＝c7＝c8＝c9＝0.24

T＝200

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝2: c1＝c2＝c3＝c4＝1.5, c5＝0 and c6＝c7＝c8＝c9＝0.56,

T＝200

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

q＝2: c1＝1.5, c2＝c4＝0.9, c3＝0.4, c5＝0.5,

c6＝0.56, c7＝c9＝0.2 and c8＝0.2

T＝200

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52

TABLE 4 (Continued)

Relative Frequency of detecting the true value of r: The 4th Group

DGP＼Test Q̂ j Q̂＊; j LR P(k, j) P＊(k, j)

KT 4 8 4 8

q＝2: c1＝1.5, c2＝0.9, c3＝0.4, c4＝－0.4, c5＝0.5,

c6＝0.56, c7＝c9＝0.2 and c8＝0

T＝200

r＝1 93.72 93.16 92.69 98.43 98.46 96.4 98.52

T＝500

93.72 93.16 92.69 98.43 98.46 96.4 98.52
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