
－ 41 －

for integrated processes, emphasizing that the

framework of VARs in differences is not always valid

and that some linear combinations of individual series

may be weakly stationary. 

Following Granger's representation theorem (GRT)

in Engle and Granger (1987), a cointegrated system

whose individual data series is integrated of order 1 is

expressed as a VAR in levels of the data series or an

vector error correction model (VECM) as an

equivalent form, in which such linear combinations

referred as the cointegrating relations as well as first

differences are included with serially uncorrelated

error vectors.1 The number of independent

cointegrating relations, called the cointegrating rank,

is essential and indispensable for the model

formulation, parametrization and inferences under the

occurrence of cointegration, particularly under the

VAR approach in which the system consisting of more

than 3 series tends to be considered and consequently

the cointegrating rank may be greater than 1. 

Conventionally, the issue of detecting the

cointegrating rank has been dealt with based on the

１　Introduction

Among model formulations for a system of

multivariate economic time series, the vector

autoregression (VAR) has been considered to be the

handiest one and applied widely in a large amount of

econometric researches. In most of such VAR

formulations, embodying the empirical belief that

many of time series considered are integrated of some

orders need to be cared. Particularly, numerous

econometric researches have been concentrated on the

situation in which individual time series are integrated

of order 1. Organizing VARs through differencing the

data series considered was the approach adopted

mainly until early 1980's along the prosperity of the

Box and Jenkins methodology. 

On the other hand, the concept of cointegration has

been playing an important role in both theoretical and

empirical econometrics since it was formulated by

Engle and Granger (1987) and others. It brought about

a significant change in the VAR model formulation

along with recent development of the inference theory
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Abstract
This paper discusses on how the number of independent cointegrating relations known as the cointegrating

rank can be formulated and detected when some finite lag order vector autoregressive (VAR) schemes are

fitted without imposing the assumptions which make the Granger representation theorem (GRT) hold.

Adopting a generalized framework on the data generation processes (DGPs) and theoretically formulating

each of the VAR schemes as a linear least-square predictor, we show that it precisely captures the

cointegrating rank even if the existence of the VAR representation in GRT is not ensured. It is also established

that estimating the rank through direct application of one of the information criteria under any finite lag order

VAR scheme leads to some asymptotic desirability such as the conventional consistency. For finite sample

performances of the estimation procedure proposed, some Monte Carlo experiments are executed, and it is

observed that those are not so far from the asymptotics established theoretically, although affected by the

selection of the scheme fitted or its lag order. We also point out that under finite sample sizes, the schemes

specified by comparatively small lags such as 1 to 3 tend to produce desirable estimation results.
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such a situation occurs if the data generation process

(DGP) expressed as a vector moving average (VMA)

possesses a root close to one in the VMA

characteristic equation, and a condition/restriction to

rule out the occurrence of polynomial cointegration or

multicointegration, discussed by the literatures such as

Granger and Lee (1990), Engle and Yoo (1991),

Gregoir and Laroque (1993) and Stock and watson

(1993), or noninvertibility/overdifferencing in some

time series system is indispensable for GRT/the VAR

derivation itself, as mentioned in later section. It

should be also recognized that polynomial

cointegration requires another type of VAR

representation, formed in not only in levels but also in

their integrated ones, which is not suitable for

formulating the cointegrating rank (see Theorem 2.1

of Gregoir and Laroque (1993)). Besides, the

exclusion of noninvertibility following from a factor

except overdifferencing must be assumed for GRT,

and recall that even if GRT holds, the VAR is not

always described by a finite lag. A similar matter rises

in the case in which GRT holds and the VAR lag order

is finite as well: it is on whether fitting a VAR scheme

of a lag order smaller than the true one can lead to

effective detection of the true rank. 

We can fit our data series to any finite lag order

VAR scheme/model even if the difficulty on GRT

stated above occurs, although formulating a VAR with

serially uncorrelated errors is not expected. Actually,

many empirical researches on cointegration have been

based on such a finite lag order VAR fitting and the

use of one of the information criteria without verifying

whether GRT or the matter raised above is realized or

not. Under such a background, this paper is aroused by

the question whether some meaningful detection for

the cointegrating rank based on a finite lag order VAR

scheme can be achieved or not, provided that such

difficulty on GRT occurs. It may be necessary for

some resolution to consider the theoretical

formulation/implication of a VAR scheme subject to

such a matter, and seeking a procedure for meaningful

and effective estimation of the true rank value under

such a scheme must be examined as well. 

The purpose of this paper is to provide a clear

fitting of data series to a finite lag order (or lag length)

VAR in levels and Johansen's rank test (trace test) (see

Johansen (1988, 1992b)) for estimation of the true

value of the rank. It is also conventional that the VAR

lag order is automatically determined through one of

the information criteria used in the model selection

prior to 'estimation' of the rank. It is widely accepted

that the Akaike information criterion introduced in

Akaike (1973), whose asymptotic evaluation is

established by Shibata (1976) etc., the Bayesian

information criterion originated by Schwartz (1978)

and the criterion in Hannan and Quinn (1979), referred

as AIC, SIC and HQ respectively following the

conventional manner, are examples of such criteria.

Among many researches utilizing such an

information criterion for the lag order selection, Aznar

and Salvador (2002) proposed to apply not Johansen's

rank test but it to estimation of the cointegrating rank

itself. They show that using the criterion which is

established to possess the consistency property in the

conventional statistical analyses such as SIC or HQ,

simultaneous determination of both the rank and the

VAR lag order achieves consistent estimation.

However, those methods including Aznar and

Salvador's one are not available unless the lag order of

the VAR in GRT is finite. As a way to make up this

defect, Shintani (2001) proposed a nonparametric test

which is less powerful than Johansen's rank test

without formulating any VAR scheme. On the other

hand, Saikkonen (1992) considered a VAR whose lag

order is finite but 'large' as an approximation of the

infinite lag order VAR, in the sense that it increases at

a 'slower' rate as the sample size goes to infinity, and

derived such asymptotics as in the Johansen's rank

test. Qu and Perron (2007) discussed the determination

of an optimal lag order based on such a VAR

approximation and one of information criteria,

although the rank estimation using it was not dealt

with. It should be noted that all the approaches stated

above are based on the supposition that GRT holds.

We should not overlook that there are some

cointegrated systems in which the VAR approximation

is insufficient or GRT itself does not hold. As

mentioned in Introduction of Qu and Perron (2007),
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resolution of the matters above, motivated by the

belief that those have been rarely considered in

empirical researches. Supposing the DGP as a VMA,

we seek a theoretical representation for a finite lag

order VAR scheme fitted under the situation where the

matters including the failure of GRT itself may occur.

The usual concept of cointegration will be extended to

one such that such matters are dealt with well. It is

pointed out that the concept of linear least-square

(l.l.s.) prediction or projection (see Whittle (1983, p.

9) e.g.) provides exact formulation for our purpose:

VAR schemes characterized by finite lags are

interpreted as a l.l.s. predictors. It is shown that the

cointegrating rank is precisely reflected on some

matrix parameter in each of such schemes,

accompanied with the derivation of related theoretical

properties. For estimation of the true rank value, we

propose to adopt one of such information criteria as

the above-mentioned ones as a 'method'. In such a

method we construct the related statistics based on

residual matrices from reduced rank regression on

each of the VAR schemes as in the Johansen's rank

test. What should be emphasized is that unlike the

Johansen's test, the procedure proposed in this paper

only pursues to estimate the rank through the direct

application of one of the information criteria under an

arbitrary finite lag order VAR scheme, whereas

determining an 'optimal' lag order is not needed and

the conventional asymptotics for the Johansen's test

are not established here since the error vectors in the

VAR scheme may be serially correlated. It is

established that using the information criterion under

such a VAR scheme leads to the conventional

asymptotics such as the consistency, similar to those

used in the conventional statistical analyses or the

approach of Aznar and Salvador (2002), emphasizing

that the asymptotic validity holds whatever the VAR

scheme fitted is. It is also noticed that the properties

on the VAR scheme stated above are indispensable for

those asymptotics. Monte Carlo experiments are

executed in some particular examples/DGPs and

sample sizes 100, 200 and 500 in order to investigate

finite sample performances of the criteria mentioned

above. The experimental results reveal that each

criterion strongly depends on the VAR lag order

unlike one claimed by the asymptotics, and it will be

recognized that the results close to the asymptotics are

mostly realized under the schemes by small lags such

as 1 to 3, particularly for some information criterion

such as SIC. Generally, the results brought about by

the information criteria are not unsatisfactory

compared with those through application of Johansen's

test.

The paper is organized as follows. Section 2

formulates the DGP and some preliminary concepts.

The results on the VAR formulation stated in the

above paragraph are in Section 3. Section 4 is used for

presenting the rank estimation procedure and related

information criteria. Asymptotics for the procedure in

Section 4 are established in Section 5. Section 6 deals

with Monte Carlo experiments. The remained issues

including some concluding remarks are discussed in

Section 7. The proofs of lemmas, theorems and a

corollary in the text, together with some preliminary

results, are provided in Appendix.

２　The DGP and some preliminaries

Let us begin our discussion by conventionalizing

some notations appeared in the text. The symbols L

and ∆ are the lag and difference operators defined as

Ljut＝ut－j and ∆jut＝(1－L) jut for any positive integer j,

with a time series ut. The determinant of a square

matrix F is denoted as det F, Im denotes the m×m

identity matrix and ||F|| denotes the Euclidean distance

of F.2 In connection with F(z) denoting a power series

of a complex variable z with matrix coefficients 

Fj , j ≥ 0:

F(z)＝ Fj z j,

F(L) and F(1) are defined as

F(L)＝ Fj L j, F(1)＝ Fj.

All power series in the text are defined over the

complex plane and all notations in the text except z are

interpreted as real numbers or vectors/matrices which

consist of components of real numbers.

Next, without losing the natures of the usual

∞

∑
j＝0

∞

∑
j＝0

∞

∑
j＝0
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losing generality, the DGP is formulated as a VMA

representation: based on the power series C(z) and

C (1)(z) given as

C(z)＝Ik＋ Ci z i, C(1)(z)＝ (－ Ch) z i,

with k×k constant matrices Cj such that ∑
∞

i＝1
iν

_

||Ci||＜

∞ for some real number ν
＿

≥ 1 and the row vectors of

C(1) are all nonzero, y
＿

t as y
＿

t＝yt－Eyt and {εt; t＝…,－

1, 0, 1,…,} as a sequence of unobservable k－variates

random vectors such that Eεt＝0, Eεtε't＝Λ with a

positive definite matrix Λ and Eεtε't'＝0 for any

integers t≠t',

Δy
＿

t＝C(L)εt＝C(1)εt＋C (1)(L)(1－L)εt,

t＝1, 2,…, (1) 

noting that 

C(z)＝C(1)＋(1－z)C (1)(z). (2) 

From (1) we derive

y
_

t＝C(1)( εh)＋vt＋ξ0, t＝1, 2,…, (3) 

where vt＝C (1)(L)εt and ξ0＝y0－Ey0－C (1)(L)ε0.

Now, put rank C(1)＝s and r＝k－s with an integer

s such that 1 ≤ s ≤ k. We can find column full rank

constant matrices γ, τ and δ such that

C(1)＝γτδ', γ: k×s, τ: s×s, δ; k×s. 

Hereafter we impose y0＝Op(1) as some suitable initial

condition on yt. It is obvious from (3) that all the

elements of y
＿

t or all nonzero linear combinations of 

γ' y
＿

t are of I(1). If s＜k (or equivalently r ≥ 1), there

exits a column full rank constant matrix ß of k×r such

that ß'γ＝0, and ß' y
＿

t is of Op(1), as clarified by

ß' y
＿

t＝ß'vt＋ß'ξ0, t＝1, 2,…, (4) 

following from (3). It is seen from (4) that ß' y
＿

t is

weakly stationary if either ß'ξ0 is out of consideration

or stronger initial conditions of y
＿

t and εt such as y0＝

Ey0 and ε－j＝Eε－j, j＝0, 1,…, are imposed. Thus, if

s＜k, we can consider y
＿

t (or yt) cointegrated with the

cointegrating rank r and cointegrating matrix ß,

whereas y
＿

t is not so if s＝k. For discussion in the

following section, we also provide the following

relation here:

t

∑
h＝1

∞

∑
h＝i＋1

∞

∑
i＝1

∞

∑
i＝1

definitions of I(0) or I(1) time series (see Banerjee

et.al (1993, p. 84) e.g.) and cointegration (see Engle

and Granger (1987) or Banerjee et.al (1993, p. 145)

e.g.), let us extend those to:

Definition 1 A scalar time series ηt with mean

zero and no deterministic component is said to be I(0)

if ηｔ is weakly stationary with a moving average

(MA) representation following the Wold

decomposition and Op(1) property and its partial ∑
t

h＝1

ηh is of Op(t1/2), and ηｔ is said to be I(1) if its first

difference ∆ηｔ is of I(0) for any t ≥ 1 and η０ is of

Op(1).

Definition 2 A n
＿

-dimensional vector time series

η
＿

t is said to be cointegrated if all the elements of η
＿

t

are of I(1) in stochastic parts and there exists a column

full rank constant (nonrandom) matrix b
＿

of n
＿

×m
＿

such

that the stochastic part of b
＿

'η
＿

t plus a m
＿

-dimensional

random vector of Op(1) which does not depend upon t

is weakly stationary and of Op(1) with a m
＿

-

dimensional VMA representation following the vector

version of the Wold decomposition and an integer m
＿

satisfying n
＿

－1 ≥ m
＿

≥ 1, and then m
＿

and b
＿

are called

cointegrating rank and cointegrating matrix

respectively.

Following Definition 1, MA processes are regarded

as I(0) unless overdifferenced, and other type of

noninvertibility, caused by some root other than 1 in

the MA characteristic equation, is acceptable.3

Similarly, Definition 2 does not ensure that any linear

combination of b
＿

'η
＿

t is of I(0) stochastically, unlike the

usual definition of cointegration. In other words, the

situation in which some of the linear combinations of

b
＿

'η
＿

t are overdifferenced, referred as higher-order

cointegration, is allowable.4 It should be also noted

that for the case in which the random vector added is

constant, the stochastic part of b
＿

'η
＿

t is weakly

stationary and that VMA representations are

accompanied with purely nondeterministic series or

their covariance matrix which are positive definite.

Consider a k－variates vector time series yt whose

components are of I(1) in stochastic parts. Without
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t＝1, 2,…. (5) 

In general, yt may possibly possess some

deterministic trends and drift formed as a q－th order

polynomial of time t, expressed as 

Eyt＝ µ̌j t j, t＝1, 2,…, (6) 

with k－dimensional constant vectors µ̌ j.5 It is in turn

derived from (6) that

E∆yt＝ µj t j, t＝2, 3,…, (7)

with µj following from the relation

µj t j＝ µ̌j{t j－(t－1) j}.

Notice that E∆y1＝∑
q
j＝0 µ̌ j－Ey0＝O(1).

For later discussion, for the case s ≥ 2, partition γ

constituting C(1) as

with γ1 of s×1 and γ2 of s×(s－1). Then we can

suppose γ'2 µ̌q＝0, since there exist a column full rank

matrix γ
＿

2 of s×(s－1) and a nonzero s-dimensional

vector γ
_
1 such that γ

_
'2γ'µ̌q＝0, and note that γ'

can be regarded as γ'. 

３　The VAR Formulation

In this section we shall provide some theoretical

formulation of finite lag order VAR schemes fitted for

the data series considered with properties on the

cointegrating rank. We first mention the VAR

derivation by GRT and the conditions which make it

valid in order to make our VAR formulation be more

noticeable. Under the DGP (1), its derivation requires

Condition If s＜k, det ≠0.

Condition All the roots of det C(z)＝0 are

greater than 1 in absolute values except z＝1. 

Both conditions are related on the invertibility of

or I(0) property of any linear combination of

it. Condition I is put to exclude the existence of

q

∑
j＝0

q－1

∑
j＝0

q－1

∑
j＝0

q

∑
j＝0

relations of polynomial cointegration as well as

higher-order one. We note that if this is not satisfied,

there exists a weak stationary series as either b'1ß'(∑
t
h＝1

y
＿

h)＋b'2γ' y
＿

t or b'1ß'(∑
t
h＝1 y

＿

h) with nonzero vectors b1 of

r×1 and b2 of s×1, provided that ξ0 is suitably dealt

with as stated already. It can be easily checked that

Condition I is equivalent to Assumption B3 in

Banerjee et.al (1993, p. 258). Condition Ⅱ is imposed

to ensure the invertibility on roots other than z＝1 in

det C(z)＝0 as the VMA characteristic equation of (1).

Notice that cointegration under Definition 2 becomes

the usual one if rank ß'C (1)(1)＝r as well as Condition

Ⅱ holds. For the case s＝k, Condition Ⅱ implies that

all the roots are greater than 1 in absolute values.

We now note that neither Condition I nor Ⅱ is

necessary for most of the results provided in this paper

(except Theorem 1 (¢), (∞) and (§)), as clarified

later. If Conditions Ⅰ and Ⅱ are imposed, GRT leads

to a VAR representation (as a VECM form) from (1)

(see Engle and Granger (1987) or Banerjee et.al (1993,

pp. 258-260) etc.): for t＝1, 2,…,

∆y
_

t＝αß'vt－1＋ Hi ∆y
_

t－i＋εt if s＜k, (8)

∆y
_

t＝ Hi ∆y
_

t－i＋εt if s＝k, (9)

with α as a column full rank constant matrix of k×r

such that δ'α＝0, defined only for the case s＜k, and

Hi of k×k constant matrices.6 It should be noticed that

Hi satisfy such a condition on the Euclidean distance

as for Ci and that (8)/(9) is generally characterized by

the infinite lag order. 

Apart from formulating the 'pure' VAR such as

(8)/(9), consider the formulation of 'VAR-like/VECM-

like' representations of some finite lag orders under the

case in which neither Condition I nor II is imposed.

Let

P(w
_

t | z
 _

t; i; i＝1,…, ň), P(w
_

t | z
 _

t; 0, z
 _

t; i; i＝1,…, ň), 

P(w
_

t | z
 _

t;－1, z
 _

t; 0; z
 _

t; i; i＝1,…, ň), P(w
_

t | z
 _

t;－1, z
 _

t; 0)

or P(w
_

t | z
 _

t;－1)

stand for the l.l.s. predictor of a vector time series w
_

t

onto {z
_

t ; i; i＝m
_

,…, n
_

} as the (Hilbert) space spanned

by vector time series z
_

t ; i,  i＝m
_

,…,  n
_

,  with the

inclusion of the case in which z
_

t ;－1＝1 for all t, m
_

as

∞

∑
i＝1

∞

∑
i＝1
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∆yt－P(∆yt | 1, ∆yt－i; i＝1,…, p)＝εt(p),

∆yt－P(∆yt | 1)＝εt(0) if s＝k, (15)

∆yt＝α(p) ß'yt－1＋ Hi(p)∆yt－i＋ µ
_

j t j＋εt(p)

if s＜k, (16) 

∆yt＝ Hi(p)∆yt－i＋ µ
_

j t j＋εt(p)

if s＝k, (17) 

with the notations introduced on (1) to (7) and (10) to

(13) and k-dimensional vectors µ
_

j satisfying 

µ
_

j t j＝α(p) ß' µ̌ j (t－1) j

－ Hi(p) µj(t－i) j－α(p) ß'ξ0＋ µjt j

if s＜k, and

µ
_

j t j＝－ Hi(p) µj(t－i) j＋ µjt j

if s＝k.

Now, turn our interest to the characterization of α

(p) andεt (p), particularly of the rank value ofα(p) and

the invertibility onεt (p), and those are summarized in:

Theorem 1 Suppose that yt is generated by (1).

Then, with the notations on (1) and (10)/(11), we have

the following results.

(¡) For the case s＜k, rankα(p)＝r. 

(™)εt (p) in (10)/(11) possesses the following

representation

εt(p)＝B(L; p)εt , t＝p＋2, p＋ 3,…, (18) 

where the power series B(z; p) is given as

B(z; p)＝Ik＋ Bi(p) z i,

with constant matrice Bi(p) of k×k such that ∑
∞

i＝1
||Bi

(p)||<∞ for some ν
_
≥ 1, and for the case s＝k, rank

B(1; p)＝k. 

(£) For any column full rank constant matrixδ(p)

of k×s such thatδ'(p)α(p)＝0 is satisfied if and only

if s＜k, there exists a full rank constant matrix τ̃(p) of

s×s such that

δ'(p) B(1; p)＝τ̃(p)δ', 

with B(1; p) in (™) andδ on C(1) in Section 2.

∞

∑
i＝1

q－1

∑
j＝0

q－1

∑
j＝0

max{p, 1}

∑
i＝1

q－1

∑
j＝0

q－1

∑
j＝0

q－1

∑
j＝0

max{p, 1}

∑
i＝1

q

∑
j＝0

q

∑
j＝0

q－1

∑
j＝0

max{p, 1}

∑
i＝1

q

∑
j＝0

max{p, 1}

∑
i＝1

one of －1, 0 or 1 and n
_

as one of －1, 0 or ň such that

n
_
≥ m

_
and ň is a positive integer, formulated as

(Ew
_

t Z
＿

't; m_; n
_) (EZ

＿

t; m
_

; n
_ Z
＿

't; m_; n
_)－1 Z

＿

t; m
_

; n
_, 

with Z
＿

t ; m
_

; n
_ standing for (z

 _
't ; m

_ ,…, z
 _

't ; n
_)'. Now, let us p

be a nonnegative integer, fixed in the sense that it does

not depend upon the sample size T,  unlike in

Saikkonen (1992) or Qu and Perron (2007). For p＝1,

2,…, and t＝p＋2, p＋3,…,

put 

εt(p)＝∆y
_

t－P(∆y
_

t｜ß'vt－1, ∆y
_

t－i; i＝1,…, p) if s＜k, 

εt(p)＝∆y
_

t－P(∆y
_

t｜∆y
_

t－i; i＝1,…, p) if s＝k, 

Following the definition of the l.l.s. predictors, for p

and t given above we have:

∆y
_

t＝α(p) ß'vt－1＋ Hi(p)∆y
_

t－i＋εt(p)

if s＜k, (10)

∆y
_

t＝ Hi(p)∆y
_

t－i＋εt(p) if s＝k, (11) 

with α(p) as a constant matrix of k×r, defined only

for the case s＜k, and Hi(p) of k×k constant matrices.

Similarly, for t＝2, 3,…,

∆y
_

t＝α(p) ß'vt－1＋εt(0) if s＜k, (12) 

letting εt(0)＝∆y
_

t－P(∆y
_

t｜ß'vt－1), and put

∆y
_

t＝εt(0) if s＝k, (13) 

Replacing ∑
p

i＝1
Hi(p) with ∑

i＝1
max{p,1}Hi(p) in (10)/(11)

and defining H1(0)＝0, (12)/(13) can be incorporated

into (10)/(11) as the case p＝0. 

For the purpose of statistical inferences,

representations using ∆yt－i and ß'yt－1 may be more

preferable than those in ∆y
_

t－i and ß'vt－1. The following

lemma states how such a representation is obtained in

connection with (10)/(11) above.

Lemma 1 Suppose that yt (or y
_

t) is generated by (1)

accompanied with (6). Then, for t＝p＋2, p＋3,…, we

have

∆yt－P(∆yt | 1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)＝εt(p),

∆yt－P(∆yt | 1, ß'yt－1－ß'ξ0 )＝εt(0)

if s＜k, (14)

p

∑
i＝1

p

∑
i＝1

小瀧先生  11.3.10 8:54 AM  ページ 46



－ 47 －

(¢) For the case s＜k, suppose that Condition I

holds. Then, for any column full rank constant matrix

ψ of k×r such that δ'ψ＝0, there exists a full rank

constant matrixτ
_

(p) of r×r such that

ψ＝B－1(1; p) α(p)τ
_

(p), 

with rank B(1; p)＝k for B(1; p) in (™). 

(∞) Suppose that Condition Ⅱ as well as Ⅰ holds

for the case s＜k and only Ⅱholds for the case s＝k.

Then, for B(z; p) in (™), all the roots of det B(z; p)＝0

are greater than 1 in absolute values.

(§) For the case s＜k, suppose that Conditions Ⅰ

and Ⅱ hold. Then, for α in (8) and B(1; p) in (™),

α＝B－1(1; p) α(p). 

Theorem 1 (¡) implies that (10) or (16) is regarded

as an acceptable model to formulate cointegration in

the sense that the cointegrating rank is precisely

captured by the parameter of the model, and as

presented in Section 5, it also plays an important role

for estimation of the rank and the asymptotic

evaluation. That Eεt (p)＝0, Eεt (p) v't－1 ß＝0 and Eεt

(p)∆y
_

't－i＝0, i＝1,…, p, may be another favorable

factor, although εt (p) are not ensured to be serially

uncorrelated unlike εt. Based on these matters,

(10)/(11) or (16)/(17) is regarded as a theoretical

representation for the VAR scheme of p-th order.

Notice that neither Conditions Ⅰ nor Ⅱ is needed to

establish rank α(p)＝r. Similarly, without these

conditions, it is ensured by (£) that any linear

combination of δ'(p)εt (p) is of I(0). On the other

hand, (¢) states that Condition I rules out

overdiffencing in the MA representation of εt (p): any

linear combination of εt (p) is of I(0). Moreover, it

should be noted from (∞) that the invertibility of (any

linear combination of) εt (p) itself is ensured by the

combination of Conditions Ⅰ and Ⅱ.

Before completing this section, we state some

relations or properties on α(p), some l.l.s. predictors

and their innovations which contribute to the

derivation of some of the asymptotics and are similar

to ones in Johansen's (1988) Lemma 2:

Corollary 1 Suppose that yt is generated by (1)

with s＜k, put

ut(p)＝∆y
_

t－P(∆y
_

t |Δy
_

t－i; i＝1,…, p),

ζt－1(p)＝vt－1－P(vt－1|Δy
_

t－i; i＝1,…, p),

Ω(p)＝Eεt(p)ε't(p), ∑
00
(p)＝Eut(p) u't(p), 

∑
01
(p)＝Eut(p)ζ't－1(p), ∑

10
(p)＝∑'

01
(p),

∑
11
(p)＝Eζt－1(p)ζ't－1(p),

and letλ1(p) ≥ … ≥ λr(p) be the ordered eigenvalues

of 

( ß'∑
11
(p) ß)1/2 α'(p) ∑

－1

00
(p)α(p) ( ß'∑

11
(p) ß)1/2,

with ß andα(p) on (1) and (10). Then we have:

∑
00
(p)＝ K

_
j(p; 0)ΛK

_
'j(p; 0),

∑
i1
(p)＝ K

_
j(p; i)ΛK

_
'j(p; 1) i＝0, 1, (19) 

with constant matrices K
―

j(p; i) of k×k in

ut(p)＝ K
_

j(p; 0)εt－j, ζt－1(p)＝ K
_

j(p; 1)εt－j,

Ω(p)＝∑
00
(p)－∑

01
(p) ß (ß'∑

11
(p) ß)－1 ß' ∑

10
(p), (20)

Ω(p)＝α(p)＝∑
01
(p) ß (ß'∑

11
(p) ß)－1, (21)

Ω(p)＝1＞λ1(p), λr(p)＞0. (22) 

In connection with (20), notice that Ω(p)＝Λ＋

∑∞
i＝1

Bi (p)ΛB'i (p), followed directly from (18) in

Theorem 1.

４　Information Criteria 

Given T observations y1,…, yT in the DGP (1)

accompanied with (6), we shall discuss a statistical

procedure to estimate the cointegrating rank r. It is

constructed under each of the VAR schemes fitted,

expressed as (10)/(11) or (16)/(17) in the previous

section. For each p, we define the matrices/vectors 

Y－1, ∆Y－i of Ť×k, with Ť＝T－p－1 and－0＝0, τ̌j of

Ť×1, τ̂(q
_

) of Ť×q
_

, with q
_
＝q, q＋1, Z－1(p) of Ť×

(kp＋q), Ž－1(p) of Ť×(kp＋q＋1), ∆Z－1(p) of Ť×kp,

MZ(p), MŽ (p) and M∆Z(p) of Ť×Ť as

Y'－1＝[yp＋1, yp＋2,…, yT－1],

∆Y'－i＝[∆yp＋2－i, ∆yp＋3－i,…,∆yT－i] i＝0, 1,…, p, 

τ̌'j＝((p＋2) j, (p＋3) j,…, T j） j＝0, 1,…, q, 

∞

∑
j＝1

∞

∑
j＝0

∞

∑
j＝1

∞

∑
j＝0
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Ω̂ (0; p)＝S00(p), 

Ω̂ (j; p)＝S00(p)－S01(p) ß̂ (j; p) ß̂ '(j; p)S10(p),

j＝1,…, k－1, 

with

ß̂ (j; p)＝S11－1/2 (p)[ψ̂1(p),…, ψ̂k(p)],

and {CT} is a sequence such that limT→∞ CT＞0 and

limT→∞ ＝0. Notice that the first term T log det Ω̂ (j;

p) of the right-hand side of (23) corresponds to a

quantity on the residual moment matrix from reduced

rank regression or the concentrated log-likelihood,

regarding (10)/(11) as a VAR/VECM of lag order p

and cointegrating rank j and that 2jk＋k2p＋ ＋ in

the second term corresponds to the number of

parameters α(p), ß, Hi(p), i＝1,…, p, Ω(p). Each of

the information criteria yields an estimator of r

through minimization of I(j; p) with respect to j for

each fixed p and CT, and any of such estimators is

denoted as r̂(p) in a unified form, noting that r̂(p) is

realized as an integer producing the minimum of I(j;

p) over the set J＝{0, 1,…, k－1}:

I(r̂(p); p)＝ I(j; p). (24) 

Noting that 

log det Ω̂ (j; p)

＝log{Ij－det ß̂'(j; p)S10(p)S－100 (p)S01(p) ß̂ (j; p)}

＋log det S00(p) 

＝ log{1－λ̂i(p)}＋log det S00(p) 

and adding the quantity not dependent on j

－T log{1－λ̂i(p)}－T log det S00(p)

－(k2p＋ ＋ )CT

to I(j; p), we also derive a simpler form:

I
_
(j; p)＝－T log{1－－λ̂i(p)}＋2jkCT. (25) 

Since obviously minimization of I
＿

(j; p) with respect to

j provides the identical conclusion as that of I(j; p), we

have another definition of r̂(p):

I
_
(r̂(p); p)＝ I

_
(j; p). (26) 

In (23) or (25), each information criterion is

characterized by CT . It should be noted that CT＝2 for

AIC, CT＝log T for SIC and CT＝2 log log T for HQ.

min
j∈J

k

∑
i＝j＋1

k
2

k2

2

k

∑
i＝1

j

∑
i＝1

min
j∈J

k
2

k2

2

CT

T

τ̌(q
_

)＝[τ̌0, τ̌1,…, τ̌q
_
－1],

Z－1(0)＝τ̂ (q), Z－1(p)＝[∆Y－1,…,∆Y－p,τ̂ (q)]

if p ≥ 1, 

Ž－1(0)＝τ̂ (q＋1), Ž－1(p)＝[∆Y－1,…,∆Y－p,τ̂ (q＋1)]

if p ≥ 1,

∆Z－1(p)＝[∆Y－1,…, ∆Y－p] if p ≥ 1, 

MZ(p)＝IŤ－Z－1(p) (Z'－1(p) Z－1(p))－1 Z'－1(p),

MŽ (p)＝IŤ－Ž－1(p) (Ž '－1(p) Ž－1(p))－1 Ž '－1(p), 

M∆Z(p)＝IŤ if p＝0, 

M∆Z(p)＝IŤ－∆Z－1(p) (∆Z '－1(p)∆Z－1(p))－1∆Z '－1(p)

if p ≥ 1. 

We also let M̃ (p) denote one of MZ (p), MŽ (p) or

M∆Z(p), provided that it is not permissible for M̃ (p) to

be MZ (p) unless µ̌q＝C(1)µ̌≠ 0 holds with a k-

dimensinal constant vector µ̌ and that the choice of

M∆Z (p) is allowed if and only if µ̌0＝µ̌1＝…µ̌q＝0

holds. Then, following the notations Sij used in

Johansen (1988, 1992b, 1996), let us define Sij(p) as

S00(p)＝∆Y '0 M̃(p)∆Y0/T,

S01(p)＝∆Y '0 M̃(p)Y－1/T, S10(p)＝S '01(p),

S11(p)＝Y'－1M̃(p)Y－1/T.

Moreover, let λ̂1(p) ≥…≥λ̂k(p) and ψ̂1(p),…, ψ̂k(p)

be the ordered eigenvalues of the equation 

det{λS11(p)－S10(p)S－100 (p)S01(p)}＝0

and the corresponding eigenvectors, and with ρ̂1(p) ≤

…≤ ρ̂k(p) as the ordered eigenvalues of S11(p),

diag{ρ̂1
－1/2 (p),…ρ̂k

－1/2 (p)} denoting the k×k diagonal

matrix and ξ̂1(p),…, ξ̂k (p) as the corresponding

eigenvectors. Then, as seen easily, λ̂1(p),…,λ̂k(p) are

calculated actually as the (ordered) eigenvalues of 

S11－1/2 (p)S10(p)S－100 (p)S01(p)S11－1/2(p).

It should be noted that the above matrix and its

eigenvalues do not depend upon the scale on which y1,

…, yT are measured.

The information criteria adopted in this paper and

related expressions are described in a unified form: 

I(j; p)＝T log det Ω̂ (j; p)＋(2jk＋k2p＋ ＋ )CT,

(23) 

where 

k
2

k2

2
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５　Asymptotics

In order to establish some asymptotic desirability of

r̂(p) in the previous section, εt in (1) are assumed to

be iid with finite fourth moments hereafter in addition

to the supposition put already. We also provide

notations on the Brownian motion: let the symbols |

and Wm(u) stand for weak convergence of probability

measures on the unit interval [0,  1] and a m-

dimensional standard Brownian motion of on [0, 1]

respectively, noting that Wm(u) is distributed

pointwisely for each u as m-variate Gaussian with

mean zero and covariance matrix u Im (for the detailed

definition, see Johansen (1996, p. 241) or Davidson

(1994, pp. 418, 442-443) e.g.), and with q given on

(6), let us regard W
＿

m(u) and ψu(q
_

) on [0, 1] as

W
＿

m(u)＝uq if m＝1, 

Wm(u)＝(uq, W 'm－1(u))' if m＞1

and ψu(q
_

)＝(1, u,…, u q‾－1)', q
_
＝q, q＋1.

Lemma 2: Suppose that yt is generated by (1)

accompanied with (6), the notations on (1) and

(10)/(11) and the assumption stated above. Then we

have the following asymptotics on Sij(p) in Section 4:

S00(p)＝∑
00
(p)＋Op (T－1/2), (27)

ß'S11(p) ß＝ß'∑
11
(p) ß＋Op(T－1/2), if s＜k, (28)

S01(p) ß＝α(p) ß'∑11(p) ß＋Op(T－1/2) if s＜k, (29)

δ'(p)S01(p)γD－1
T ) |

τ̃(p)Ǧ ( dWs(u)W̃'s(u))G̃＋τ̃(p)δ'Q(p)γ
_

as T →∞　if s＜k, (30)

S01(p)γD－1
T ) |

K
_
(1; p; 0) F̌ P

_
( ( )W̃'s(u))G̃＋Q

_
(p; 0)γ

_

as T →∞　if s＜k, (31)

ß'S1111(p)γD－1
T ) |

ß'K
_
(1; p; 1) F̌P

_
( ( )W̃'s(u))G̃＋ß'Q

_
(p; 1)γ

_

as T →∞　if s＜k, (32)

dWs(u)
dWr(u)

dWs(u)
dWr(u)

D－1
T (γ'S11(p)γ/T )D－1

T ) | G̃( W̃s(u)W̃ 's(u)du)G̃
as T →∞　if s＜k, (33) 

where δ (p) is as in Theorem 1 (£) with the

corresponding τ̃ (p), ∑ ij(p) are as in Corollary 1, and

the matrices DT
－1 of s×s, γ

＿

of k×s, Q(p), Ǧ, G̃, K
＿

(1,

p, i), F̌, P
＿

and Q
＿

(p; i), of k×k, are defined as

DT
－1＝T－q＋1/2 if M̃(p)＝MZ(p), s＝1 andγ'1 µ̌q≠0,

DT
－1＝

if M̃(p)＝MZ(p), s＞1 andγ'1 µ̌q≠0, 

DT
－1＝Is otherwise,

Q(p)＝( Bj(p))ΛC'(1)＋ Bj(p)Λ(－ C'h),

γ
＿

＝[0, γ2] if M̃(p)＝MZ(p) andγ'1 µ̌q≠0, 

γ＝γ otherwise,

Ǧ＝(δ'Λδ)1/2,

G̃＝γ'1 µ̌q if M̃(p)＝MZ(p), s＝1 andγ'1 µ̌q≠0, 

G̃＝

if M̃(p)＝MZ(p), s＞1 andγ'1 µ̌q≠0,

G̃＝γ'γτǦ otherwise,

K
＿

(1; p; 0)＝ K
＿

j(p; 0), K
＿

(1; p; 1)＝ K
＿

j(p; 1),

F̌ ＝[δ(δ'δ)－1, ψ(ψ'ψ)－1] if s＜k,

F̌ ＝δ(δ'δ)－1 if s＝k,

P
＿

＝ if s＜k,

P ＝Ǧ if s＝k, 

Q
_

(p; 0)＝( K
_

j(p; 0))ΛC'(1)

＋ K
_

j(p; 0)Λ(－ C'h),

Q
_

(p; 1)＝( K
_

j(p; 1))ΛC'(1)

＋ K
_

j(p; 1)Λ(－ C'h),

where ψ is a column full rank constant matrix of k×r

such that ψ'δ＝0 and ψ'Λδ＝0, defined for the case

s＜k, Ws(u) is formulated above, Wr(u) is a standard

Brownian motion of r-dimension independent of Ws(u),

and W̃s(u) is defined as

W̃s(u)＝Ws(u) if M̃(p)＝MΔZ(p),

∞

∑
h＝j

∞

∑
j＝1

∞

∑
j＝1

∞

∑
h＝j

∞

∑
j＝1

∞

∑
j＝1

∞

∑
j＝1

∞

∑
j＝0

∞

∑
h＝j

∞

∑
j＝1

∞

∑
j＝1
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Λ or (γ'1 µ̌q)2 as well as those, the functions are

asymptotically scale invariant to all the inputs in the

sense that for any nonzero real number c
 _

, the

asymptotics of fj (c
 _
Λ) or fj (c

 _
(γ'1 µ̌q)2, c

 _
Λ) formulated

by convergence in probability or weak convergence of

probability measure are equal to those of fj (Λ) or fj

((γ'1 µ̌q)2, Λ) respectively, 1 ≥ j ≥ k.

Notice on Lemma 3 (¡) that for sufficient large T,

∞＞－log{1－λ̂1(p)} ≥…≥－log{1－λ̂r(p)}＞0,

which follows from (22) of Corollary 1, (A.36) and

(A.37) in the proof of Lemma 3. We also note that

rank α(p)＝r of Theorem 1 (¡) is indispensable for

the derivation of (－log{1－λ̂j(p)})－1＝Op(1), j＝1,

…, r, as clarified in the proof of Lemma 3. Similarly,

rank δ'(p)B(1; p)＝s of Theorem 1 (£) is needed for

the derivation of (™), although (－T ∑
j

h＝r＋1
log{1－λ̂h

(p)})－1＝Op(1) is unnecessary for the main results

stated below. Moreover, we may expect (£) to have

effects as some boundary to the first term of (25)

expressed as－T ∑
k

h＝j＋1
log{1－λ̂h (p)}, although

neither ensured to be free of all the nuisance

parameters nor required directly for the main results

below. We now attain to:

Theorem 2: Suppose yt is generated by (1) with the

same supposition as in Lemma 2. Then, for r̂ (p)

chosen by (26) in Section 4, we have:

Pr (r̂(p)＝r)＝1 if CT＝∞, (34) 

Pr (r̂(p) ≥ r)＝1 if CT＜∞, (35) 

with the notation Pr (･) denoting the probability.

Following the above theorem, r̂(p) chosen by an

information criterion satisfying limT→∞CT＝∞ such as

SIC or HQ converges to r with probability one, and

for r̂ (p) under a criterion characterized by limT→∞

CT＜∞such as AIC, the probability of underestimating

r tends to zero as T increases, although overestimation

of r possibly occurs with nonzero probability. These

properties of consistency and overestimability are

completely conformed to the conventionality

including Aznor and Salvador (2002) on the

lim
T→∞

lim
T→∞

lim
T→∞

lim
T→∞

W̃s(u)＝W
_

s(u)－( W
_

s(u)ψ'u(q)du)
･( ψu(q)ψ'u(q)du)－1ψu(q)

if M̃(p)＝MZ(p) andγ'1 µ̌q≠0, 

W̃s(u)＝Ws(u)－( Ws(u)ψ'u(q)du)
･( ψu(q)ψ'u(q)du)－1ψu(q)

if M̃(p)＝MZ(p) andγ'1 µ̌q＝0, 

W̃s(u)＝Ws(u)－( Ws(u)ψ'u(q＋1)du)

W̃s(u)＝･( ψu(q＋1)ψ'u(q＋1)du)－1ψu(q＋1)

if M̃(p)＝MŽ (p), 

with W
＿

s(u) andψu(q
_

), q
_
＝q, q＋1, formulated above.

Note in (30) to (32) above that if M̃ (p)＝MZ(p), s＞1

and γ'1 µ̌q≠0, the first column vectors of τ̃(p)δ'Q(p)

γ
＿

, Q
＿

(p; 0)γ
＿

and ß' Q
＿

(p; 1)γ
＿

are zero. We also notice

in Lemma 2 that if εt(p)＝εt(i.e., Hi＝0 for ∀i ≥ p＋1

in (8)), Q(p)＝0 holds since B(z; p)＝Ik (i.e., Bi(p)＝0

for ∀i ≥ 1), and it is seen that τ̃(p)＝Is for δ(p) such

that δ'(p)δ(p)＝δ'δ. Then the limiting distribution of

the trace of Tδ'(p)S01(p)γ(γ'S11(p)γ)－1γ'S10(p)δ(p)

is equal to one for Johansen's rank test (under the

null), diversified by M̃(p) or µ̌j.

Lemma 3: Suppose that yt is generated by (1) with

the same supposition as in Lemma 2. Then, for λ̂j(p)

given in Section 4, we have:

(¡) For the case s＜k and j＝1,…, r, 

(¡) －log{1－λ̂j(p)}＝Op(1),

(¡) (－log{1－λ̂j(p)})－1＝Op(1). 

(™) For j＝r＋1,…, k,

(™) －T log{1－λ̂h(p)}＝Op(1),

(™) (－T log{1－λ̂h(p)})－1＝Op(1).

(£) Putting

(£) －log{1－λ̂j(p)}＝f
j
(Λ)

j＝1,…, r,

(£) －T log{1－λ̂r＋h(p)}＝fr＋h ((γ'1 µ̌q)2, Λ)
if M̃(p)＝MZ(p) andγ'1 µ̌q≠0, 

(£) ＝fr＋h (Λ) otherwise, h＝1,…, s,

as some functions whose inputs are either elements of

j

∑
h＝r＋1

j

∑
h＝r＋1
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determination of cointegrating rank.

６　Monte Carlo Experiments

In this section we execute Monte Carlo experiments

on the cointegrating rank estimation based on the

methods such as AIC, SIC and HQ under each of

several finite lag order VAR schemes and the DGPs as

special cases of (1). The main purpose of the

experiments is to observe to what extent the

asymptotics established theoretically in the previous

section are preserved for finite samples. The DGPs in

Examples 1-3 below are of 4-variates systems (k＝4 in

(1)) with εt as Gaussian with mean zero and

covariance matrix I4 (i.e., Λ＝I4), and it is assumed

that y－j＝ε－j＝0, j ≥ 0, µ̌i＝0, i ≥ 2, and µ̌0＝0, with

the supposition that either µ̌1＝0 or µ̌1＝C(1) µ̌≠0

holds, implying that ß' y
_

t－1＝ß'vt－1 in (4) and that the

only allowable deterministic trend is one for q＝1 in

(6). Each example consists of four DGPs identified by

f and g as scalar parameters, provided that whether the 

DGP possesses a deterministic trend or not is decided

by the value of g. It will be also explained that the

DGP can be converted to a special cases of (1),

although not provided in a direct form as (1). On the

other hand, we suppose that p as the VAR lag order

takes 8 as the value at its maximum under each

estimation method: p possibly takes integers from 0 to

8. For each DGP, p and estimation method, an

estimate of the cointegrating rank r as a realized value

of r̂(p) is produced. Calculating Sij (p) in Section 4, we

adopt M̃ (p)＝MZ(p) for the case µ̌q≠0 with q＝1 (or

µ0≠0), provided that

Z－1(0)＝τ̂(1), Z－1(p)＝[∆Y－1,…,∆Y－p, τ̂(1)]

if p ≥ 1, 

and M̃ (p)＝M∆Z(p) for the case µ0＝0. Throughout all

of examples/DGPs, we ran 10, 000 replication of

experiments, and pseudo normal random variables

were adopted as elements of εt for actual calculation

of the estimates under 100, 200 and 500 of the sample

size T in each experiment. The method of estimating r

based on a consecutive application of Johansen's rank

tests (see Johansen (1996, p. 71) e.g.), simply denoted

as JT or JT*, was adopted as well as the information

criteria, For the critical values under the cases M̃(p)＝

M∆Z (p) and M̃ (p)＝M∆Z (p), we follow Johansen's

(1996) Table 15.1 and 15.3 respectively.7 All of the

estimators including those based on Johansen's tests

are denoted as r̂(p).

Example 1: The DGP is: for t＝1, 2,…,

∆yt＝C(1)εt＋ (I4－C(1)－0.8I4L)εt＋µ0,

(35) 

where

with f＝0.8, 1.6 and g＝0, 1. It is obvious that (35) is

converted to a special case of (1). For any f, the VMA

characteristic equation of (35) possesses a pair of

complex-conjugate roots less than 1 in absolute

values, indicating that Condition Ⅱ is not satisfied

and noting that other roots either greater than 1 in

absolute values or equal to 1. It is obvious that C(1) is

of rank 3, in other words, the cointegrating rank is 1.

We can also see that Condition I holds, constructing ß

and γ based on the eigenvectors of C(1)C(1)' and

noting that C(1)(1) is given as

in view of (35).

Example 2: The DGP is: for t＝1, 2,…,

∆yt＝{fγδ'εt＋ {I4－fγδ'

－(I4－0.3ß( ß'ß)－1γ'γδ')L}εt＋µ0, (36) 

where

(1－L) 
(1－0.7L)

(1－L) 
(1－0.8L)
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with f＝0.8, 1.6 and g＝0, 1. (37) is a finite lag order

VAR. Notice that the constant vector µ̌ as g＝1 is

linearly independent of fα
_

. We see that the roots of

the VAR characteristic equation

det{－fα
_ 

ß'z＋(1－z)(I4－ Hi zi)}＝0

are either equal to 1 having multiplicity 3 or greater

than 1 in absolute values. It can be also checked that

Assumption A3 in Banerjee et.al (1993, p. 147), which

is analogous to their Assumption B3 referred in

Section 3, is satisfied, constructing δ and α in a

manner similar to for ß and γ in Example 1. These

results ensures that (37) can be converted to a special

case of (1) with the cointegrating rank 1 and that (37)

is the VAR in GRT (see Banerjee et.al (1993, pp. 148-

150) e.g.). On the other hand, in view of (1－L)µ̌＝0

and ß'µ0＝0 etc., it is derived that (I4－∑3
i＝1

HiLi)µ0＝µ̌.

Based on this, (37) is converted to a special case of (8) 

as α＝fα
_

.

The tables below show relative frequency (or

probability) distributions for the estimators produced

from JT, JT*, AIC, SIC and HQ as the methods,

provided that JT and JT* correspond to 0.05 and 0.01

significant levels respectively. For each method, lag

order (VAR scheme) and sample size, we tabulate the

relative frequencies classified into three events,

corresponding to the occurrence of underestimation,

correct or consistent estimation, and overestimation on

the true rank value, denoted by the notations 'U', 'C'

and 'O' respectively. The numerical values in each row

are the relative frequencies for one method, one

scheme and three sample sizes. The first column of

each table lines up 0, 1,…, 8 for p , and in Tables 5

and 6, 3 as the true VAR lag order is suffixed by ＋. 

Now, let us survey finite sample performances of

these estimation methods through the tables

3

∑
i＝1

with f＝1.6, 2.4 and g＝0, 1. We easily see that (36) is

a special case of (1), similar to the case of (35). Since

C(1)＝fγδ', it is obvious that the cointegrating rank is

of 2 with ß as the cointegrating matrix. The VMA

characteristic equation of (36) does not satisfy

Condition Ⅱ owing to the existence of a pair of

complexconjugate roots. On the other hand, noting

that

C(1)(z)＝{I4－fγδ'－(I4－0.3ß(ß'ß)－1γ'γδ')z}

/(1－0.7z), 

C(2)(z)＝{I4－ß(ß'ß)－1γ'γδ'＋(0.7/0.3)fγδ'}

/(1－0.7z)

in (2) and C(1)(z)＝C(1)(1)＋(1－z)C(2)(z), it follows that

(1/f)γ'C(1)－ß'C(1)(1)＝0 and rank {(1/f)γ'C(1)(1)－

ß'C(2)(1)}＝2. These results indicates the occurrence of

polynomial cointegration in the sense that any linear

combination of (1/f)γ' y
_

t－ß'(∑
t

h＝1
y
_

h) is of I(0), i.e.,

the situation in which Condition I is unsatisfied.

Example 3: The DGP is: for t＝1, 2,…,

∆yt＝fα
_

ß'yt－1＋ Hi∆yt－i＋µ̌＋εt, (37) 

where

3

∑
i＝1
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comparatively. The frequency that each method

selects the true value strongly depends on the VAR

scheme/the value of p under T＝100 or 200, unlike the

large sample ones established in the previous section.

It is recognized that the increase of p tends to cause

underestimation more frequently although to what

extent it appears depends on the method/DGP. The

case in which a finite lag order VAR is exactly one in

GRT such as in Example 3 seems to produce relatively

good results throughout all the methods. The

performances of SIC and HQ are better than that of JT

or JT* throughout all the DGPs if any of suitable lag

orders in the sense that those are able to exhibit the

ability is adopted. In most of the methods and DGPs

except SIC in Example 3, the results for p＝0 are far

from being satisfactory mainly owing to the

occurrence of overestimation. AIC tends to

overestimate the true rank than SIC or HQ, in concord

with the conventional on the information criteria. SIC

achieves accurate estimation with high frequencies

under p＝1 to 3, but its performance is noticeably poor

under p＝6 to 8 and T＝100 or 200, as clarified by the

occurrence of underestimation with high frequencies.

HQ seems to show the best performance among all the

methods on the whole if T is as many as 100 or 200.

On the other hand, as T attains to about 500, SIQ

shows remarkably accurate estimation with relative

frequencies close to one and it is robust for the

selection of p.

７　Discussion

We have discussed the issue of detecting the

cointegrating rank based on finite lag order VAR

schemes which are not derived from GRT and the

information criteria. It was established that based on

the result that the rank of α(p) in (10)/(11) or

(16)/(17) as the coefficient matrix associated with the

cointegrating relations is equal to the cointegrating

rank, estimating the rank by the direct application of

each of the information criteria can achieve the

conventional asymptotic desirability such as the

consistency under any VAR scheme even if the lag

order p is arbitrarily given.

Monte Carlo experiments in the previous section

generally show that the results on estimation brought

about by the information criteria are better than those

of Johansen's rank test, particularly under DGPs in

which GRT does not hold and the sample size T

attaining to 200. Observing the experiments wholly,

HQ seems to be favorable under T less than 200. On

the other hand, the results for T equal to 500 reflect the

asymptotics considerably, although those for p＝0 are

not necessarily so in most cases. The accuracy of the

rank test is controlled by the significance level

constraint even if it exhibits its asymptotics. The

superiority of SIC or HQ under T＝500 is far more

noticeable compared with one for T＝100 or 200. In

particular, SIC sufficiently shows the consistency

property, and as a result, under T as many as 500, SIC

may be strongly recommended.

However, as observed in Monte Carlo experiments,

several theoretical conclusions for large samples are

not necessarily tenable under such finite sample size

as T＝100 or 200. Then the performance of each

information criterion is different according to the

VAR scheme or its lag order denoted as p: some lag

order schemes lead to the true rank with high

frequencies, whereas others do not. We can also read

that any method possesses a tendency to select of a

smaller rank value as p increases, and it is guessed that

the effect of ß'yt－1 on the behavior of ∆yt is absorbed

by that of ∆yt－i, i＝1,…, p, as p is not so small and T is

not large, resulting in the weakness of the effect.

Similarly, the unsatisfactory results for p＝0 may be

caused by that －log{1－λ̂j＋1(0)} is considerably

large in comparison with 2kCT even for j ≥ r. Note that

this is not peculiar to the situation in which GRT does

not hold such as Example 1 or 2. We should not

overlook that even when GRT holds and the VAR lag

order is finite, the asymptotics do not sufficiently

appear under such finite samples, as observed for

Example 3.

The selection of an 'optimal' VAR lag order

(including the true lag order for such cases as Example

3) may be significant, particularly under T as many as

100 or 200, as stated above. It is well-established

based on the information criteria if GRT holds and T is
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Eet＝0 and Ee2t＝σ＜∞.
４ The term higher-order cointegration is used for the case

that b＞1 and d＝1 in Engle and Granger's (1987)

definition of cointegration.
５ For the coefficient vector of µ̌q t q as the deterministic trend

of the highestorder, it is often supposed that µ̌ q＝C(1)µ̌,

with a k-dimensional constant vector µ̌. This implies that

as yt is cointegrated, µ̌ q t q as well as the stochastic ones

C(1) (∑t

h＝1
εh) is removed in ß'yt, as seen by (4) and (6).

６ We use the common notation for Hi in both (8) and (9),

although not necessarily identical in values. We may

interpret (8) and (9) to be nested models within the

framework of hypothesis testing for the cointegrating rank

like Johansen's test. A similar matter is applied to other

notations presented later such as Hi(p) in (10) and (11).
７ This paper does not adopt more accurate critical values in

MacKinnon et.al (1999) since 1% critical values are not

available. 
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Appendix

Proof of Lemma 1: Suppose s＜k. It is trivial by

the definition of l.l.s. prediction that

P(E∆yt－i |1)＝E∆yt－i, ∀i ≥ 0,

P(E ß'yt－1 | 1)＝E ß'yt－1, (A.1)

and that

P(∆y
_

t－i | 1)＝0 ∀i ≥ 0, P(ß'vt－1 | 1)＝0. (A.2)

Noting

P(∆yt－i | 1)＝P(∆y
_

t－i |1)＋P(E∆yt－i | 1) ∀i ≥ 0,

P(ß'yt－1－ß'ξ0 | 1)＝P(ß'vt－1 |1)＋P(Eß'yt－1 | 1),

(A.1) and (A.2) lead to

∆yt－i－P(∆yt－i | 1)＝∆y
_

t－i, ∀i ≥ 0,

ß'yt－1－ß'ξ0－P(ß'yt－1－ß'ξ0 |1)＝ß'vt－1. (A.3)

It follows from the first relation of (A.2) as i＝0 and

(A.3) that

P(∆y
_

t | 1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)

＝P(∆y
_

t | ß'vt－1, ∆y
_

t－i; i＝1,…, p). (A.4)

Since obviously

P(∆yt | 1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)

＝P(∆y
_

t | 1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)

＋P(E∆yt |1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)
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H
_

p＋1(p)＝[ ]Hp(p)[ß(ß'ß)－1, 0] p ≥ 1.

Then, with Wt andη
_

t(p) given above and εt(p) in (10),

we have:

Wt＝ H
_

i(p)Wt－i＋η
_

t(p), (A.5)

Ik－ H
_

i(p)＝[ ][－α(p),

(Ik－ Hi(p))γ(γ'γ)－1], (A.6)

α(p)＝－[ ]－1(Ik－ H
_

i(p))[ ], (A.7)

η
_

t(p)＝[ ]εt(p). (A.8)

Proof: It suffices to show only the case p ≥ 1 since

the case p＝0 are trivial.

Using

ß'∆y
_

t－i＝ß'∆vt－i, Ik＝ß(ß'ß)－1ß'＋γ(γ'γ)－1γ',

and multiplying [ß, γ]' to both sides of (10), we obtain

[ ] ∆y
_

t＝[ ](α(p)＋H1(p) ß( ß'ß)－1) ß'vt－1

＋ [ ] (Hi(p)－Hi－1(p)) ß( ß'ß)－1ß'vt－i

＋ [ ] Hi(p)γ(γ'γ)－1γ∆y
_

t－i

－[ ] Hp(p) ß( ß'ß)－1ß'vt－p－1＋[ ]εt(p).

Using ß'∆y
_

t－1＝ß'∆vt－1 again in the above relation with

some arrangements leads to

Wt＝ H
_

i(p)Wt－i＋[ ]εt(p). (A.9)

It is easy to see

P(Wt | ß'vt－p－1, Wt－i; i＝1,…, p)

＝P(Wt | ß'vt－1, ∆y
_

t－i; i＝1,…, p),

which, together with P(ß'vt－1 | ß'vt－1, ∆y
_

t－i; i＝1,…,

p)＝ß'vt－1 as the nature of the l.l.s. prediction, ∆vt＝∆y
_

t

and the definition of εt(p), derives (A.8). (A.5) follows

immediately after (A.8) is used in (A.9).

For (A.6), using the definitions of H
＿

i(p) and noting

[－α(p) z, 0]

ß'
γ'

p＋1

∑
i＝1

ß'
γ'

ß'
γ'

ß'
γ'

p

∑
i＝1

ß'
γ'

p

∑
i＝2

ß'
γ'

ß'
γ'

ß'
γ'

Ir

0
p＋1

∑
i＝1

ß'
γ'

p

∑
i＝1

ß'
γ'

p＋1

∑
i＝1

p＋1

∑
i＝1

ß'
γ'

and

P(E∆yt | 1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)＝E∆yt,

from (A.4) we derive

P(∆yt | 1, ß'yt－1－ß'ξ0, ∆yt－i; i＝1,…, p)－E∆yt

＝P(∆y
_

t | ß'vt－1, ∆y
_

t－i, i＝1,…, p).

If s＝k, by a similar manner

P(∆yt | 1, ∆yt－i; i＝1,…, p)－E∆yt

＝P(∆y
_

t |∆y
_

t－i; i＝1,…, p).

(14) or (15) of the lemma is only a direct consequence

of the above relation for each case of s, and (16) and

(17) are derived straightforwardly by substituting 

∆yt－i－∑
q－1

j＝0
µj(t－i) j, i＝0, 1,…, p, and ß'yt－1－ß'∑

q
j＝0

µ̌j(t－1) j－ß'ξ0 for ∆y
_

t－i, i＝0, 1,…, p, and ß'vt－1 in

(10) and (11) respectively.

Next, with the notations on (1), define the k-

dimensional series Wt－i, i＝0, 1,…, and η
_

t(p) as

Wt－i＝ , η
_

t(0)＝Wt－P(Wt | ß'vt－1),

η
_

t(p)＝Wt－P(Wt | ß'vt－p－1, Wt－i; i＝1,…, p), if p ≥ 1

if s＜k and

Wt－i＝∆y
_

t－i, η
_

t(0)＝Wt,

η
_

t(p)＝Wt－P(Wt | Wt－i; i＝1,…, p), if p ≥ 1

if s＝k. Note that η
_

t(p)＝εt(p) if s＝k.

The following two lemmas are used in the proof of

Theorem 1:

Lemma A.1 For the case s＜k, with ß, γ, α(p) and

Hi(p) on (1) or (10), let H
＿

i(p) be k × k matrices

constructed as

H
＿

1(p)＝[ ]([ß(ß'ß)－1＋α(p), 0]

H1(p)＝＋H1(p)[ß(ß'ß)－1, γ(γ'γ)－1]),

H
_

i(p)＝[ ](Hi(p)[ß(ß'ß)－1, γ(γ'γ)－1]

H1(p)＝－Hi－1(p) [ß(ß'ß)－1, 0]),
i＝2,…, p, p ≥ 2,

ß'
γ'

ß'
γ'
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＝－α(p)ß'L/(1－L)[ß(ß'ß)－1(1－L), γ(γ'γ)－1],

we obtain

(Ik－ H
_

i(p) Li)Wt

＝[ ](－α(p) ß'L/(1－L)＋Ik－ Hi(p) Li

・[ ß( ß'ß)－1(1－L), γ(γ'γ)－1]Wt,

which requires

Ik－ H
_

i(p)z i

＝[ ][－α(p) z, 0]＋[ ](Ik－ Hi(p) z i)

＝・[ ß( ß'ß)－1(1－z), γ(γ'γ)－1].

Substituting 1 for z in the above equation is followed

immediately by (A.6). (A.7) is only a direct

consequence of (A.6).

Putting

H̃i(p)＝Hi(p), i＝1,…, p, p ≥ 1, H̃p＋1(p)＝0

for the case s＝k, it is obvious that (A.5) holds for any

s.

Lemma A.2 For H
＿

i (p) given in Lemma A.1 and

subsequent statement, all the roots of

det (Ik－ H
_

i(p) z i)＝0

are greater than 1 in absolute values.

Proof: For p ≥ 1 and i＝0, 1, define Wt－i(p) of

(kp＋r)×1, η̌t(p) of (kp＋r)×1, H
＿

(p) of (kp＋r)×

(kp＋r) and Ȟ(p) of k (p＋1)×k (p＋1) as

η̌t(p)＝[η
_

't, 0,…, 0]',

p＋1

∑
i＝1

p

∑
i＝1

ß'
γ'

ß'
γ'

p＋1

∑
i＝1

p

∑
i＝1

ß'
γ'

p＋1

∑
i＝1

with

H
_

p＋1; 1(p)＝H
_

p＋1[ ]＝－[ ]Hp(p) ß( ß'ß)－1,

Then it is easy to see

det (Ik－ H
_

i(p) z i)＝det (Ik (p＋1)＋Ȟ(p) z). (A.10)

It also follows that

det (Ik(p＋1)－Ȟ(p) z)＝det (Ikp＋r－H
＿

(p) z). (A.11)

On the other hand, put

Wt－i(0)＝ß'vt－i i＝0, 1, η̌t(0)＝[Ir, 0]η
_

t(0),

H
＿

(0)＝Ir＋ß'α(0)

if s＜k and

Wt－i(0)＝Wt－i＝∆y
_

t－i i＝0, 1,

η̌t(0)＝η
_

t(0)＝εt(0), H
＿

(0)＝0

if s＝k in order to incorporate the case p＝0 into the

framework using W
＿

t(p). If s＜k, note

det (Ik－H
＿

1(0) z)＝det (Ir－H
＿

(0) z)

in view of Lemma A.1.

Using the notations above, (A.5) is rewritten as

Wt(p)＝H
＿

(p)Wt－1(p)＋η̌t(p). (A.12)

It is easy to see in view of (1) to (5) that Wt－i(p) is

p＋1

∑
i＝1

ß'
γ'

Ir

0
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b'1RW(0; p)＝(z1b'1－z2b'2)RW(1; p),

b'2RW(0; p)＝(z1b'2＋z2b'1)RW(1; p),

which requires that either b1≠0 and z1b1－z2b2≠0 or

b 2≠0 and z 1b 2＋z2b 1 holds. Noting that (z 1b'1－

z2b'2)RW (0; p) (z1b1－z2b2) and b'1RW(0; p)b1 are the

variances of (z 1b'1－ z 2b'2)Wt (p) and b'1Wt－ 1(p)

respectively and that (z1b'1－z2b'2)RW (1; p)b1 is the

covariance of those series, we have

|(z1b'1－z2b'2)RW(1; p)b1 | 2

≤ (z21b'1RW(0; p)b1＋z22b'2RW(0; p)b2

≤ －2z1z2b1RW(0; p)b2)(b'1RW(0; p)b1).

Similarly,

|(z1b'2＋z2b'1)RW(1; p)b2 | 2

≤ (z21b'2RW(0; p)b2＋z22b'1RW(0; p)b1

≤ ＋2z1z2b1RW(0; p)b2)(b'2 RW(0; p)b2).

In view of the restriction on bi and the properties of the

series stated above, we see that at least one of the

above two inequalities holds strictly (i.e., one of the

sign ≤ can be replaced by ＜). Consequently,

(b'1 RW(0; p)b1＋b'2 RW(0; p)b2)

＜(z21＋z22)(b'1 RW(0; p)b1＋b'2 RW(0; p)b2),

which requires |z|＞1.

Proof of Theorem 1: (A.7), together with rank

(Ik－∑
p＋1

i＝1
H
＿

i (p))＝k following from Lemma A.2,

immediately leads to (¡).

For (™), put H
＿

(z; p)＝Ik－∑
p＋1

i＝1
H
＿

i(p) z i. Then (A.5) is

written as

H
＿

(L; p)Wt＝η
_

t (p),

and it follows from (5)/(1) and (A.8) that

εt (p)＝[ ]－1H_(L; p)[ ]εt ,

if s＜k, (A.14)

εt (p)＝H
＿

(L; p)C(L)εt. if s＝k. (A.15)

Putting

B(z; p)＝[ ]－1H_(z; p)[ ] if s＜k,

B(z; p)＝H
＿

(z; p)C(z) if s＝k

and noting that H
＿

(0; p)＝C(0)＝Ik, C(1)(0)＝Ik－γτδ',

ß'C(1)(z)
γ'C(z)

ß'
γ'

ß'C(1)(L)
γ'C(L)

ß'
γ'

weakly stationary, purely nondeterministic and

ergodic with mean zero. Therefore, we can let

RW(0; p)＝EWt－1(p)W't－1(p), RW(1; p)

RW(0; p)＝EWt(p)W't－1(p)

with the existence of the inverse of RW(0; p). Since E

η̌t(p)W't－1(p)＝0 by definition, it follows from (A.12)

that

H
＿

(p)＝RW(1; p)RW
－1(0; p),

which, together with (A.10) and (A.11), implies that

the equation

det (Ik－ H
_

i(p) z i)＝0

is equivalent to

det (RW(0; p)－RW(1; p) z)＝0. (A.13)

Now, consider z satisfying (A.13). Suppose that z is

nonzero and real, noting that (A.13) does not hold for

z＝0. Then there exists a (kp＋r)×1 real vector b≠0

satisfying

b'(RW(0; p)－RW(1; p) z)＝0,

which leads to

Since z－1 is exactly the first-order autocorrelation

coefficient of b'Wt(p) which is is weakly stationary,

purely nondeterministic and ergodic with mean zero, it

must be satisfied that |z|＞1.

Next, suppose that z and z
 _

are a pair of complex-

conjugate roots of (A.13). Then we can find (kp＋r)×

1 complex vector b and b
＿

satisfying

b'(RW(0; p)－RW(1; p) z)＝0,

b
＿

'(RW(0; p)－RW(1; p) z
 _

)＝0.

With i denoting the imaginary, (kp＋r)×1 real vectors

bj and real numbers zj (j＝1, 2) such that bj≠0 for at

least one j and z2≠0, we can let

b＝b1＋ib2, z＝z1＋iz2.

Since both real and imaginary parts of b'(RW(0; p)－

RW(1; p) z) must be zero, we have

p＋1

∑
i＝1
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the supposition on Ci in (1) and rank H
＿

(1; p)＝k by

Lemma A.2, it is easy to see that all the requirements

for (™) are satisfied.

For (£), to obtain the result for the case s＝k is

trivial since B(1; p)＝H
＿

(1; p)C(1) in the proof of (™).

For the case s＜k, with regard to (10), define A(z; p)

as

A(z; p)＝－α(p) ß'z＋(1－z)(Ik－ Hi(p) z i)
A(z; p)＝－α(p) ß'＋(1－z) A(1)(z; p),

with A(1)(z; p)＝Ik＋α(p) ß'－∑
p

i＝1
Hi(p) z i. Recalling

that ß'vt＝ß'(y
_

t－ξ0), noting that (1－L) ξ0＝ξ0－ξ0＝

0 and using (18), (10) is written as for t＝p＋2, p＋3,

…,

A(L; p) (y
_

t－ξ0)＝B(L; p)εt. (A.16)

On the other hand, based on both sides of (3)

multiplied by A(L; p),

A(L; p)(y
_

t－ξ0)

＝A(L; p)(C(1)＋(1－L)C(1)(L))( εh).

Recalling that ß'C(1)＝0, the above relation is

converted to

A(L; p)(y
_

t－ξ0)

＝(A(1)(L; p)C(1)－α(p) ß'C(1)(L))εt

＋A(1)(L; p)C(1)(L)(1－L)εt, (A.17)

Equating the right-hand sides of (A.16) and (A.17), we

obtain

B(z; p)＝A(1)(z; p)C(1)－α(p) ß'C(1)(z)

B(z; p)＝＋(1－z)A(1)(z; p)C(1)(z),

which is followed by

B(1; p)＝A(1)(1; p)γτδ'－α(p) ß'C(1)(1).

In view of the definition of A(1)(1; p), we see from the

above relation that for any δ(p) satisfying the

requirements for (£),

δ'(p)B(1; p)＝δ'(p)(Ik－ Hi(p))γτδ'. (A.18)

On the other hand, (A.6), together with Lemma A.2,

requires that

rank [α(p), (Ik－ Hi(p))γ]＝k,
p

∑
i＝1

p

∑
i＝1

t

∑
h＝1

p

∑
i＝1

which ensures that there exist P－111 and P12 as s×s full

rank and r×s matrices respectively such that

(Ik－ Hi(p))γ＝δ(p) P－111＋α(p) P12.

This in turn implies that

δ'(p)(Ik－ Hi(p))γ

is full rank. Since τ is also full rank by definition, it

is established that

rankδ'(p)(Ik－ Hi(p))γτ＝s.

Putting

τ̃ (p)＝δ'(p)(Ik－ Hi(p))γτ,

(A.18), together with the rank value of τ̃ (p) derived

above, completes the proof of (£).

Next, move to the proof of (¢). The construction of

B(z; p) in the proof of (™), together with Lemma A.2,

implies that rank B(1; p)＝k if and only if Condition

Ⅰ is satisfied. This, together with the form of δ(p)

satisfying the requirements for (£), establishes that ψ

takes the form required for (¢).

It is easy to establish (∞) in view of the construction

of B(z; p) in the proof of (™) and Lemma A.2 as well

as Conditions Ⅰ and Ⅱ.

For (§), with regard to (8), define A(z) as

A(z)＝－αß'z＋(1－z)(Ik－ Hi z i).

Noting A(z) above, A(z; p) in the proof of (£) and B(z;

p) in (™), for t＝p＋2, p＋3,…, (8) and (10) are

written as

A(L) y
_

t＝εt, (A.19)

A(L, p) y
_

t＝B(L; p)εt. (A.20)

Based on (A.20) and the validity of B－1(z; p)

established in (∞), we have the following

representation:

B－1(L; p) A(L; p) y
_

t＝εt. (A.21)

It follows from (A.19) and (A.21) that

A(1)＝B－1(1; p) A(1; p). (A.22)

Since A(1)＝－αß' and A(1; p)＝－α(p)ß' in virtue of

(8), A(z) above, and A(z; p) in the proof of (£),

∞

∑
i＝1

p

∑
i＝1

p

∑
i＝1

p

∑
i＝1

p

∑
i＝1
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( ß'∑
11

ß)－1/2 ß' ∑̌ 
11

ß( ß'∑
11

ß)－1/2

are positive definite, which implies (22).

Proof of Lemma 2: We first note that this lemma

can be proved in the same manner as in the

counterparts of Johansen (1988, 1995) essentially,

although not applicable directly to some of the results.

In the proof we shall state only the 0outline under the

case M̃(p)＝MZ (p) which is expected to be more

complicated. For the purpose of simplicity, let us write

Sij(p) and MZ(p) as Sij and MZ respectively, and suppose

that i below can be any integer in {0, 1,…, p} unless

specified newly. Let ∆Y
＿

－i,  E
＿

0 and S－1 be Ť×k

matrices, given as

∆Y
＿
1
－i＝[∆y

_
p＋2－i, ∆y

_
p＋3－i,…, ∆y

_
T－i],

E
＿

'0＝[εp＋2, εp＋3,…, εT],

S'－1＝[ εh, εh,…, εh],

let ∆Z
＿

－1(p) and Mτ̂ be Ť×pk and Ť×Ť matrices

respectively, given as

∆Z
＿

－1(p)＝[∆Y
＿

－1,…,∆Y
＿

－p],

Mτ̂＝IŤ－τ̂(q)D－1
T (q)(D－1

T (q)τ̂'(q)τ̂ (q)D－1
T (q))－1

D－1
T (q)τ̂'(q),

with the (q＋1)×(q＋1) matrix

D－1
T (q)＝diag{T－1/2, T－3/2,…, T－q＋1/2},

and put

Ỹ '－1＝C(1)(S '－1＋µ̌τ̌'q).

Next, for i, i'＝0, 1,…, p, let w̌ t－i and ǔ t－i' denote

any linear combination of ∆y
_

t－i, vt－i, vt－i(p), εt－i, εt(p)

and (∆y
_

't－1,…, ∆y
_

't－p). Note that any of those series is

weakly stationary and ergodic with mean zero and that

therefore there exist constant matrices K̃ j; w such that 

w̌ t－i＝∑
∞

j＝0
K̃ 

j; wεt－i－j. Letting

W̌ '－i＝[w̌p＋2－i, w̌p＋3－i,…, w̌T－i],

Ǔ '－i'＝[ǔp＋2－i', ǔp＋3－i',…, ǔT－i'］

and Ỹ－1＝(S－1＋τ̌q µ̌') C'(1) and noting

T－1

∑
h＝1

p＋2

∑
h＝1

p＋1

∑
h＝1

multiplying both sides of (A.22) from right by －

ß(ß'ß)－1 provides the result for (§).

Proof of Corollary 1: For the purpose of

simplicity, we shall write ∑
ij
(p) as ∑

ij
hereaafter.

Based on the definitions of ut(p) and ζt－1(p), we easily

find k×k constant matrices K
＿

j (p; i) stated, which

immediately leads to (19). In view of the definition of

l.l.s. prediction,

ut(p)＝εt(p)＋P(∆y
_

t | ß'ζt－1(p)), (A.23)

ß'ζt－1(p)＝ß'ζ̌t－1(p)＋P( ß'vt－1 | ut(p)), (A.24)

where

ζ̌t－1(p)＝vt－1－P(vt－1 |∆y
_

t－i; i＝0, 1,…, p),

with the notice that Eζ̌t－1(p)u't(p)＝0. Noting that

E∆y
_

t－i ζ't－1(p) ß＝0 and E∆y
_

t－i u't(p)＝0, i＝1,…, p,

we also see

P(∆y
_

t | ß'ζt－1(p))＝P(ut(p)| ß'ζt－1(p))

P(∆yt | ß'ζt－1(p))＝∑
01

ß( ß'∑
11

ß)－1 ß'ζt－1(p), (A.25)

P( ß'vt－1 | ut(p))＝P( ß'ζt－1(p)| ut(p))

P( ß'vt－1 | ut(p))＝ß'∑
10
∑
－1

00
ut(p). (A.26)

Then (20) follows immediately from (A.23) and

(A.25). Evaluating the predictions of all the terms of

(10) onto {∆y
_

t－i; i＝1,…, p}, (21) can be also derived.

For the remainder of the proof, put

∑̌ 
11
＝Eζ̌t－1(p)ζ̌ 't－1(p).

Evaluating the covariance matrices of both sides of

(A.24) and using (21) in (A.26), we have

ß'∑
11

ß＝ß' ∑̌ 
11

ß＋ß'∑
11

ßα'(p)∑
－1

00
α(p) ß'∑

11
ß.

(A.27)

Since ut(p), ß'ζt－1(p) and ß'ζ̌t－1(p) are purely nondeter-

ministic in terms of Wold decomposition, ∑
00

, ∑
－1

00
,

ß'∑
11

ß and ß' ∑̌
11

ß are all positive definite. Putting this

with (A.27) and rank α(p)＝r together, we see that

ß'∑
11

ß－ß' ∑̌
11

ß is positive definite as well, and thus it

is established that both

Ir－( ß'∑
11

ß)－1/2 ß' ∑̌ 
11

ß( ß'∑
11

ß)－1/2

and
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MZ＝Mτ̂ if p＝0,

MZ＝Mτ̂－Mτ̂∆ Z
＿

－1(p)(∆ Z
＿

'－1(p) Mτ̂∆Z
＿

－1(p))－1
∆Z
＿

'－1(p) Mτ̂ if p ≥ 1,

we can see from (1), (3), (16) and the constructions of

Sij that evaluating the asymptotics of the quantities

W̌ '－i Mτ̂ Ǔ－i' /T, W̌ '－i Mτ̂ τ̌q /T q＋1/2,

(∆Z
＿

'－1(p) Mτ̂∆ Z
＿

－1(p)/T)－1, E
＿

'0 Mτ̂Ỹ－1γD－1
T /T,

D－1
Tγ'Ỹ'－1 Mτ̂ Ỹ－1γD－1

T /T 2,

(W̌'0－W̌ '－1) Mτ̂ Ỹ－1γD－1
T /T,

suffices for the required results. It is not so difficult to

achieve it since these quantities are constructed only

by weakly stationary and ergodic time series,

deterministic trends and partial sums and the well-

known statistical theory can be easily utilized for

those. In fact, deriving the results

W̌'－iτ̌j /T j＋1/2＝Op(1),

(D－1
T (q)τ̂'(q)τ̂ (q)D－1

T (q))－1＝O(1),

S '－1τ̌j /T j＋3/2＝Op(1),

(W̌'0－W̌'－1)τ̌j /T j＋1/2＝Op(T－1/2), ∀j ≥ 0, (A.28)

related on the deterministic terms is trivial and the

standard statistical theory for weakly stationary and

ergodic processes, together with (A.28), shows that

W̌'－i Mτ̂ Ǔ－i' /T＝W̌'
－iǓ－i' /T＋Op(T－1)

W̌'－i Mτ̂ Ǔ－i' /T＝Rw̌ ǔ(i'－i)＋Op(T－1/2), (A.29)

where Rw̌ ǔ(i'－i)＝Ew̌ t－i ǔ't－i'. It also follows from

(A.29) that

(∆Z
＿

'－1(p) Mτ̂∆Z
＿

－1(p)/T)－1＝Op(1).

However, there are some points it should be explained

particularly for the framework in this paper. One

notice should be turned to that not conventional εt but

εt (p) are used to construct some quantities. As a

related matter, we will pay attention to the asymptotic

property of (W̌'0－W̌'－1) Mτ̂ Ỹ－1γD－1
T /T: we see that E w̌

t－iε't becomes Ǩ0; wΛ if i＝0 and 0 if i ≥ 1. It is also

obvious that

(W̌'0－W̌'－1) S－1C'(1)γ
＿

/T

＝{w̌T ( ε'h)/T}C'(1)γ
＿

－{w̌p＋1 ( ε'h)/T}C'(1)γ
＿p

∑
h＝1

T－1

∑
h＝1

－( w̌tε't /T)C'(1)γ
_
.

Thus it follows from (A.28), (A.29) and the definitions

of Mτ̂, Ỹ－1, γ
＿

and D－1
T that

(W̌'0－W̌'－1) Mτ̂ Ỹ－1γD－1
T /T

＝－Ǩ0; wΛC'(1)γ
＿

＋Op(T－1/2). (A.30)

On the other hand, it is established by Park and

Phillips (1988, 1989) etc. that as T increases,

τ̃ (p)δ'εt/ | τ̃ (p)Ǧ dWs(t/T),

C(1)εt/ |γdWs(t/T),

εt/ | F̌ P
_ ( ),

γ'C(1) ( εh＝)/ |γ'γǦ Ws(t/T),

For the case γ'1C(1) µ̌≠0, it is also shown that as T

increases,

D－1
Tγ' C(1){( εh)＋t qµ̌}/

＝γ
_
' C(1)( εh)/ ＋Op(T－q＋1/2)

＋(γ'1C(1) µ̌) (t q/T q, 0)' | G̃ W
_

s(t/T).

Based on the above results, we obtain

τ̃ (p)(δ' E
_

'0 Mτ̂ Ỹ－1γD－1
T /T) |

τ̃ (p)Ǧ ( dWs(u) W̃'s(u)) G̃

as T→∞, (A.31)

C(1) (E
_

'0 Mτ̂ Ỹ－1γD－1
T /T) |

γτǦ ( dWs(u) W̃'s(u)) G̃

as T→∞, (A.32)

E
_

'0 Mτ̂ Ỹ－1γD－1
T /T |

F̌ P
_

( ( ) W̃'s(u)) G̃

as T→∞, (A.33)

D－1
Tγ' Ỹ'－1Mτ̂ Ỹ－1γD－1

T /T 2|

G̃( W̃s(u) W̃'s(u)du) G̃

as T→∞, (A.34)

All the results required for the lemma follow from

(A.28) to (A.34).

Proof of Lemma 3: Similar to Lemma 2, the

dWs(u)
dWr(u)

t－1

∑
h＝1

t－1

∑
h＝1

t－1

∑
h＝1

dWs(t/T)
dWr(t/T)

T－1

∑
t＝p＋1
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＝0 (A.38)

Following an argument similar to used in the proof of

(¡) and putting

B̃T (µ)＝D－1
Tγ'S10S－100 S01 ß( ß'S10S－100 S01 ß)－1

ß'S10S－100 S01γD－1
T＋ µ－jOp(T－j),

(A.38) accompanied by (28) and (32) establishes that

{Tλ̂r＋h(p)}－1, h＝1,…, s, are the roots of the

det{D－1
Tγ'S11γD－1

T /T－µD－1
Tγ'S10S－100 S01γD－1

T

＋µB̃T (µ)}＝0.

Putting

Q̂＝(D－1
Tγ'S11γD－1

T /T)－1/2 D－1
Tγ'S10S－100

{Ik－S01 ß( ß'S10S－100 S01 ß)－1ß'S10S－100 }

･ S01γD－1
T (D－1

Tγ'S11γD－1
T /T )－1/2

and letting ν̃r＋1;T(p),…,ν̃r＋s; T(p) denote the eigenvalues

of Q̂ , it follows that

{Tλ̂r＋h(p)}－1＝{ν̃r＋h;T (p)}－1＋Op(T－1)

h＝1,…, s, (A.39)

similar to (A.36). It is ensured from (27) to (29), (30)

and (33) that that Q̂ and Q̂ －1 are of Op(1). This,

together with (A.39), completes the proof of (™).

For (£), put

Q̌＝(ß'S11 ß)－1/2 ß'S10S－100 S01 ß(ß'S11 ß)－1/2.

It is obvious that λ̃j(p), j＝1,…, r, are the eigenvalues

of Q̌. Since Q̌ is asymptotically scale invariant to Λ

and Q̂ is in a similar condition in view of (19) and

Lemma 2, we attain to the required result via (A.36)

and (A.39).

Proof of Theorem 2: By definition we have

Pr (r̂(p)＜r)＝ Pr (r̂(p)＝j)

Pr (r̂(p)＜r) ≤ Pr (I
_
(j; p) ≤ I

_
(r; p))

Pr (r̂(p)＜r)＝ Pr ( ≥

－ log{1－λ̂i(p)}).

Recalling that －log{1－λ̂1(p)}≥…≥－log{1－λ̂r(p)}

r

∑
i＝j＋1

2(r－j)kCT

T
r－1

∑
j＝0

r－1

∑
j＝0

r－1

∑
j＝0

∞

∑
j＝1

results claimed by (¡) and (™) are essentially the same

as in Johansen's (1988) Lemma 4 and 6 except that

this lemma is under more general suppositions and

shall be proved using arguments similar to in such

lemmas. First, notice that the equation det{λS11－S10

S－100 S01}＝0 is equivalent to

(A.35)

In view of (27) and (31) to (33), λ satisfying (A.35)

must be a root of either

det{λD－1
Tγ'S11γD－1

T /T＋Op(T－1)}＝0

or

det{λß'S11 ß－ß'S10 S－100 S01 ß＋T－1 G̃ T (λ)}＝0,

with

G̃T (λ)＝T{ λ2－jOp(T－j)

＋ λ1－jOp(T－j)＋ λ－jOp(T－j)}.

This implies that λ̂r＋h(p)＝Op(T－1), h＝1,…, s. Letting

λ̃j(p), j＝1,…, r, be the roots of detf{λß'S11 ß－ß'S10

S－100 S01 ß}＝0, it is not so difficult to show that

λ̂j(p)＝λ̃j(p)＋Op(T－1) j＝1,…, r. (A.36)

Using (20), (21) and (27) to (29) and recalling λj(p) in

Corollary 1, it is also established that

λ̃ 
j(p)＝λj(p)＋Op(T－1/2) j＝1,…, r. (A.37)

(A.36) and (A.37), together with (22), ensures that (¡)

holds.

For (™), notice that

{Tλ̂k(p)}－1 ≥{Tλ̂k－1(p)}－1 ≥ … ≥ {Tλ̂1(p)}－1

are the ordered eigenvalues of the equation

∞

∑
j＝1

∞

∑
j＝1

∞

∑
j＝1
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＞0, we see

Pr ( ≥ － log{1－λ̂i(p)})

≤ Pr ( ≥ －log{1－λ̂r(p)}.

Since limT→∞ ＝0 by definition, it must be required

by Lemma 3 (¡) that

Pr ( ≥ － log{1－λ̂i(p)})＝0

j＝0,…, r－1

Hence

Pr (r̂(p)＜r)＝0, (A.40)

which implies (35).

On the other hand,

Pr(r̂(p)＞r)＝ Pr (r̂(p)＝j)

Pr(r̂(p)＞r) ≤ Pr (I
_
(j; p) ≤ I

_
(r; p))

Pr(r̂(p)＞r)＝ Pr (－ T log{1－λ̂i(p)}

≥ 2(j－r)k CT).

In view of Lemma 3 (™),

Pr (－ T log{1－λ̂i(p)}≥ 2(j－r)k CT)＝0
(A.41)

must hold if limT→∞ CT＝∞. (A.41), together with

(A.40), implies (34).

j

∑
i＝r＋1

k－1

∑
j＝r＋1T→∞

lim

j

∑
i＝r＋1

k－1

∑
j＝r＋1

k－1

∑
j＝r＋1

k－1

∑
j＝r＋1

T→∞
lim

r

∑
i＝j＋1

2(r－j)kCT

TT→∞
lim

CT
T

2kCT

T

r

∑
i＝j＋1

2(r－j)kCT

T
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Table 1 

DGP : (35) with g＝0 in Example 1; M̃(p)＝M∆Z(p) in Sij(p) 

f＝0.8 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O  

0

JT 0 0.1399 0.8601 0 0.1777 0.8223 0 0.2199 0.7801

JT* 0 0.2282 0.7718 0 0.2884 0.7156 0 0.3295 0.6705

AIC 0 0.1042 0.8958 0 0.1377 0.8623 0 0.1685 0.8315

SIC 0 0.5994 0.4006 0 0.7408 0.2592 0 0.8585 0.1415

HQ 0 0.2978 0.7022 0 0.4058 0.5942 0 0.5241 0.4759

1

JT 0.0002 0.3964 0.6034 0 0.4745 0.5255 0 0.5357 0.4643

JT* 0.0023 0.5447 0.453 0 0.6254 0.3746 0 0.6771 0.3229

AIC 0 0.3293 0.6707 0 0.3961 0.6039 0 0.4611 0.5389

SIC 0.0199 0.8858 0.0943 0 0.9422 0.0578 0 0.9757 0.0243

HQ 0 0.6362 0.3638 0 0.7467 0.2533 0 0.8252 0.1748

2

JT 0.0093 0.5718 0.4189 0 0.6659 0.3341 0 0.7166 0.2834

JT* 0.0452 0.709 0.2458 0 0.8104 0.1896 0 0.8483 0.1517

AIC 0 0.511 0.489 0 0.5941 0.4059 0 0.647 0.353

SIC 0.2479 0.7385 0.0136 0.0002 0.9918 0.008 0 0.9987 0.0013

HQ 0.0038 0.8381 0.1581 0 0.9065 0.0935 0 0.949 0.051

3

JT 0.0208 0.5912 0.388 0 0.6906 0.3094 0 0.731 0.269

JT* 0.0954 0.7068 0.1978 0.0003 0.8321 0.1676 0 0.8608 0.1392

AIC 0 0.5528 0.4472 0 0.6232 0.3768 0 0.6587 0.3413

SIC 0.4614 0.535 0.0036 0.0069 0.9898 0.0033 0 0.9993 0.0007

HQ 0.0223 0.877 0.1007 0 0.9293 0.0707 0 0.955 0.045

4

JT 0.0341 0.5355 0.4304 0.0001 0.6499 0.35 0 0.698 0.302

JT* 0.1265 0.6494 0.2241 0.0013 0.8084 0.1903 0 0.8401 0.1599

AIC 0.0003 0.5193 0.4804 0 0.5909 0.4091 0 0.6261 0.3739

SIC 0.5377 0.4604 0.0019 0.0494 0.9482 0.0024 0 0.9989 0.0011

HQ 0.0528 0.8446 0.1026 0 0.9219 0.0781 0 0.9485 0.0515

5

JT 0.0452 0.4993 0.4555 0.0004 0.6422 0.3574 0 0.7021 0.2979

JT* 0.1391 0.6172 0.2437 0.0064 0.7992 0.1944 0 0.8402 0.1598

AIC 0.0017 0.5003 0.498 0 0.5819 0.4181 0 0.6296 0.3704

SIC 0.5713 0.426 0.0027 0.1552 0.8431 0.0017 0 0.9989 0.0011

HQ 0.0826 0.8104 0.107 0.0005 0.9174 0.0821 0 0.9534 0.0466

6

JT 0.0556 0.4827 0.4617 0.0029 0.6575 0.3396 0 0.7396 0.2604

JT* 0.1584 0.6001 0.2415 0.0238 0.7996 0.1766 0 0.8675 0.1325

AIC 0.0048 0.5031 0.4921 0 0.598 0.402 0 0.6699 0.3301

SIC 0.6008 0.3966 0.0026 0.3185 0.6805 0.001 0 0.9996 0.0004

HQ 0.1115 0.7887 0.0998 0.0048 0.9315 0.0637 0 0.966 0.034

7

JT 0.0565 0.4645 0.479 0.0116 0.676 0.3124 0 0.7883 0.2117

JT* 0.1594 0.5912 0.2494 0.0557 0.7946 0.1497 0 0.9054 0.0946

AIC 0.0057 0.4958 0.4985 0.0001 0.6343 0.3656 0 0.723 0.277

SIC 0.5916 0.405 0.0034 0.4727 0.5267 0.0006 0.0004 0.9993 0.0003

HQ 0.1176 0.7778 0.1046 0.019 0.9334 0.0476 0 0.9764 0.0236
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Table 1 (Continued)

8

JT 0.0523 0.4399 0.5078 0.0245 0.6813 0.2942 0 0.822 0.178

JT* 0.1476 0.57 0.2824 0.0967 0.7702 0.1331 0 0.9263 0.0737

AIC 0.0051 0.4636 0.5313 0.0002 0.6544 0.3454 0 0.7636 0.2364

SIC 0.5541 0.4421 0.0038 0.5779 0.4219 0.0002 0.0107 0.9893 0

HQ 0.1122 0.7668 0.121 0.0504 0.9146 0.035 0 0.9869 0.0131

f＝1.6 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.2372 0.7628 0 0.2852 0.7148 0 0.3322 0.6678

JT* 0 0.3567 0.6433 0 0.4125 0.5875 0 0.4593 0.5407

AIC 0 0.1836 0.8164 0 0.2248 0.7752 0 0.265 0.735

SIC 0 0.7073 0.2927 0 0.8241 0.1759 0 0.9119 0.0881

HQ 0 0.4247 0.5753 0 0.5312 0.4688 0 0.6354 0.3646

1

JT 0.0002 0.3831 0.6167 0 0.432 0.568 0 0.4777 0.5223

JT* 0.0025 0.526 0.4715 0 0.5785 0.4215 0 0.619 0.381

AIC 0 0.3208 0.6792 0 0.3637 0.6363 0 0.407 0.593

SIC 0.0199 0.8856 0.0945 0 0.9335 0.0665 0 0.9695 0.0305

HQ 0 0.6221 0.3779 0 0.7132 0.2868 0 0.7885 0.2115

2

JT 0.0075 0.4988 0.4937 0 0.5829 0.4171 0 0.6277 0.3723

JT* 0.0354 0.6512 0.3134 0 0.7273 0.2727 0 0.7647 0.2353

AIC 0 0.4424 0.5576 0 0.5064 0.4936 0 0.5483 0.4517

SIC 0.2212 0.7591 0.0197 0.0001 0.9836 0.0163 0 0.9945 0.0055

HQ 0.0026 0.7862 0.2112 0 0.8475 0.1525 0 0.9031 0.0969

3

JT 0.0155 0.5543 0.4302 0 0.6526 0.3474 0 0.7029 0.2971

JT* 0.0824 0.6749 0.2427 0.0001 0.8013 0.1986 0 0.8371 0.1629

AIC 0 0.5136 0.4864 0 0.5834 0.4166 0 0.6279 0.3721

SIC 0.4204 0.5729 0.0067 0.0056 0.9882 0.0062 0 0.9984 0.0016

HQ 0.0173 0.8537 0.129 0 0.9091 0.0909 0 0.9469 0.0531

4

JT 0.0316 0.5298 0.4386 0 0.6598 0.3402 0 0.7233 0.2767

JT* 0.112 0.6561 0.2319 0.0009 0.8223 0.1768 0 0.8556 0.1444

AIC 0.0004 0.511 0.4886 0 0.5992 0.4008 0 0.6488 0.3512

SIC 0.51 0.4869 0.0031 0.0426 0.9549 0.0025 0 0.9991 0.0009

HQ 0.0482 0.8407 0.1111 0.0001 0.9286 0.0713 0 0.9586 0.0414

5

JT 0.0405 0.5081 0.4514 0.0005 0.6709 0.3286 0 0.7414 0.2586

JT* 0.1318 0.6302 0.238 0.0057 0.8261 0.1682 0 0.871 0.129

AIC 0.0012 0.5084 0.4904 0 0.6088 0.3912 0 0.6694 0.3306

SIC 0.557 0.4391 0.0039 0.1506 0.848 0.0014 0 0.9992 0.0008

HQ 0.0771 0.8205 0.1024 0.0003 0.9307 0.069 0 0.965 0.035

6

JT 0.0508 0.4925 0.4567 0.0034 0.6808 0.3158 0 0.7745 0.2255

JT* 0.1546 0.6092 0.2362 0.0259 0.8229 0.1512 0 0.8963 0.1037

AIC 0.0047 0.5062 0.4891 0 0.6228 0.3872 0 0.7057 0.2943

SIC 0.5902 0.4077 0.0021 0.3157 0.6834 0.0009 0 0.9999 0.0001

HQ 0.1039 0.7961 0.1 0.0056 0.9426 0.0518 0 0.9749 0.0251
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7

JT 0.0539 0.4609 0.4852 0.0109 0.6912 0.2979 0 0.8068 0.1932

JT* 0.1525 0.5872 0.2603 0.055 0.8073 0.1377 0 0.9191 0.0809

AIC 0.0044 0.4852 0.5104 0.0001 0.6436 0.3563 0 0.7443 0.2557

SIC 0.5756 0.4209 0.0035 0.4611 0.5384 0.0005 0.0004 0.9994 0.0002

HQ 0.1114 0.78 0.1086 0.0194 0.9402 0.0404 0 0.9832 0.0168

8

JT 0.0507 0.4344 0.5149 0.0244 0.6855 0.2901 0 0.824 0.176

JT* 0.1405 0.5723 0.2872 0.0935 0.7795 0.127 0 0.9317 0.0683

AIC 0.0045 0.4576 0.5379 0.0002 0.6561 0.3437 0 0.7651 0.2349

SIC 0.5425 0.4516 0.0059 0.5689 0.4308 0.0003 0.0106 0.9894 0

HQ 0.1059 0.7664 0.1277 0.0484 0.9165 0.0351 0 0.9889 0.0111

Table 1 (Continued)

Table 2

DGP : (35) with g＝1 in Example 1; M̃(p)＝MZ(p) as q＝1 in Sij(p)

f＝0.8 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.1852 0.8148 0 0.231 0.769 0 0.2893 0.7107

JT* 0 0.3166 0.6834 0 0.3755 0.6245 0 0.4444 0.5556

AIC 0 0.0723 0.9277 0 0.0954 0.9046 0 0.1224 0.8776

SIC 0 0.6085 0.3915 0 0.7655 0.2345 0 0.8897 0.1103

HQ 0 0.2761 0.7239 0 0.388 0.612 0 0.5232 0.4768

1

JT 0.0005 0.5092 0.4903 0 0.6171 0.3829 0 0.6904 0.3096

JT* 0.009 0.6737 0.3173 0 0.7639 0.2361 0 0.8116 0.1884

AIC 0 0.2749 0.7251 0 0.3707 0.6293 0 0.4533 0.5467

SIC 0.0168 0.9003 0.0829 0 0.959 0.041 0 0.9833 0.0167

HQ 0 0.6322 0.3678 0 0.7673 0.2327 0 0.8562 0.1438

2

JT 0.0232 0.6798 0.297 0 0.7822 0.2178 0 0.83 0.17

JT* 0.1009 0.7533 0.1458 0 0.895 0.105 0 0.9179 0.0821

AIC 0 0.4531 0.5469 0 0.5566 0.4434 0 0.6265 0.3735

SIC 0.2097 0.7802 0.0101 0 0.9948 0.0052 0 0.9994 0.0006

HQ 0.0031 0.8309 0.166 0 0.9166 0.0834 0 0.9528 0.0472

3

JT 0.0516 0.6633 0.2851 0 0.7699 0.2301 0 0.8127 0.1873

JT* 0.1774 0.6973 0.1253 0.0006 0.8924 0.107 0 0.9109 0.0891

AIC 0.0001 0.4777 0.5222 0 0.5534 0.4466 0 0.5995 0.4005

SIC 0.398 0.599 0.003 0.0047 0.9928 0.0025 0 0.9994 0.0006

HQ 0.0168 0.8695 0.1137 0 0.9252 0.0748 0 0.9537 0.0463

4

JT 0.0631 0.5735 0.3634 0.0004 0.6855 0.3141 0 0.741 0.259

JT* 0.1865 0.639 0.1745 0.0048 0.8383 0.1569 0 0.8683 0.1317

AIC 0.0002 0.4121 0.5877 0 0.4619 0.5381 0 0.5089 0.4911

SIC 0.4785 0.5191 0.0024 0.0422 0.9535 0.0043 0 0.9985 0.0015

HQ 0.0383 0.8286 0.1331 0 0.894 0.106 0 0.9352 0.0648
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Table 2 (Continued)

5

JT 0.0625 0.4968 0.4407 0.0024 0.6212 0.3764 0 0.6965 0.3035

JT* 0.1713 0.6146 0.2141 0.0128 0.7872 0.2 0 0.8467 0.1533

AIC 0.0009 0.348 0.6511 0 0.3977 0.6023 0 0.4645 0.5355

SIC 0.492 0.5026 0.0054 0.1247 0.8713 0.004 0 0.9984 0.0016

HQ 0.0535 0.7866 0.1599 0.0004 0.8746 0.125 0 0.9264 0.0736

6

JT 0.0623 0.463 0.4747 0.006 0.5955 0.3985 0 0.6968 0.3032

JT* 0.1732 0.5783 0.2485 0.0307 0.755 0.2143 0 0.8483 0.1517

AIC 0.0012 0.3158 0.683 0 0.3772 0.6228 0 0.4632 0.5368

SIC 0.4903 0.5021 0.0076 0.2681 0.7298 0.0021 0 0.9987 0.0013

HQ 0.0651 0.7503 0.1846 0.0043 0.866 0.1297 0 0.9331 0.0669

7

JT 0.0634 0.4337 0.5029 0.0126 0.5947 0.3927 0 0.7226 0.2774

JT* 0.1565 0.56 0.2835 0.058 0.7423 0.1997 0 0.8717 0.1283

AIC 0.0011 0.2849 0.714 0 0.3814 0.6186 0 0.4926 0.5074

SIC 0.4659 0.5218 0.0123 0.3941 0.6035 0.0024 0.0005 0.9985 0.001

HQ 0.064 0.7225 0.2135 0.0143 0.8717 0.114 0 0.9466 0.0534

8

JT 0.0565 0.3956 0.5479 0.0262 0.5899 0.3839 0 0.7592 0.2408

JT* 0.1388 0.5388 0.3224 0.0971 0.7167 0.1862 0.0001 0.897 0.1029

AIC 0.0007 0.2586 0.7407 0.0001 0.3943 0.6056 0 0.5313 0.4687

SIC 0.413 0.5685 0.0185 0.4987 0.4998 0.0015 0.0075 0.9921 0.0004

HQ 0.0558 0.6844 0.2598 0.0303 0.8702 0.0995 0 0.9612 0.0388

f＝1.6 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.5573 0.4427 0 0.6572 0.3428 0 0.7095 0.2905

JT* 0 0.7191 0.2809 0 0.7917 0.2083 0 0.8283 0.1717

AIC 0 0.3346 0.6654 0 0.4235 0.5765 0 0.5024 0.4976

SIC 0 0.921 0.079 0 0.9658 0.0342 0 0.9811 0.0189

HQ 0 0.6824 0.3176 0 0.8044 0.1956 0 0.8701 0.1299

1

JT 0.0018 0.6352 0.363 0 0.6906 0.3094 0 0.7133 0.2867

JT* 0.0164 0.7654 0.2182 0 0.7988 0.2012 0 0.8112 0.1888

AIC 0 0.4161 0.5839 0 0.4733 0.5267 0 0.5124 0.4876

SIC 0.0176 0.9322 0.0502 0 0.9655 0.0345 0 0.9812 0.0188

HQ 0 0.7483 0.2517 0 0.8093 0.1907 0 0.8548 0.1452

2

JT 0.0329 0.6804 0.2867 0 0.7547 0.2453 0 0.7809 0.2191

JT* 0.1256 0.7266 0.1478 0 0.8601 0.1399 0 0.8757 0.1243

AIC 0 0.5039 0.4961 0 0.5515 0.4485 0 0.5862 0.4138

SIC 0.192 0.7964 0.0116 0 0.9901 0.0099 0 0.9967 0.0033

HQ 0.002 0.8324 0.1656 0 0.8833 0.1167 0 0.916 0.084

3

JT 0.0563 0.6667 0.277 0 0.7544 0.2456 0 0.7935 0.2065

JT* 0.1804 0.6878 0.1318 0.0007 0.874 0.1253 0 0.8939 0.1061

AIC 0 0.4992 0.5008 0 0.5418 0.4582 0 0.5795 0.4205

SIC 0.3604 0.6356 0.004 0.0035 0.9916 0.0049 0 0.9984 0.0016

HQ 0.0125 0.8645 0.123 0 0.9057 0.0943 0 0.9421 0.0579
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Table 2 (Continued)

Table 3

DGP : (36) with g＝0 in Example 2; M̃(p)＝ M∆Z(p) in Sij(p)

4

JT 0.0592 0.5824 0.3584 0.0004 0.6827 0.3169 0 0.7288 0.2712

JT* 0.1799 0.6503 0.1698 0.003 0.8356 0.1614 0 0.8701 0.1299

AIC 0.0002 0.4246 0.5752 0 0.4572 0.5428 0 0.5077 0.4923

SIC 0.4497 0.5481 0.0022 0.0372 0.9591 0.0037 0 0.9987 0.0013

HQ 0.033 0.8314 0.1356 0 0.8903 0.1097 0 0.941 0.059

5

JT 0.0563 0.5017 0.442 0.0018 0.6033 0.3949 0 0.6753 0.3247

JT* 0.1604 0.6215 0.2181 0.009 0.784 0.207 0 0.8426 0.1574

AIC 0.0009 0.3516 0.6475 0 0.3861 0.6139 0 0.4463 0.5537

SIC 0.482 0.514 0.004 0.1187 0.8769 0.0044 0 0.9987 0.0013

HQ 0.0473 0.7922 0.1605 0.0003 0.8726 0.1271 0 0.9312 0.0688

6

JT 0.0596 0.4519 0.4885 0.0041 0.565 0.4309 0 0.6649 0.3351

JT* 0.1614 0.5844 0.2542 0.0225 0.7526 0.2249 0 0.8349 0.1651

AIC 0.0008 0.304 0.6952 0 0.3572 0.6428 0 0.4389 0.5611

SIC 0.4798 0.5126 0.0076 0.2611 0.7362 0.0027 0 0.999 0.001

HQ 0.0622 0.7493 0.1885 0.0043 0.8679 0.1278 0 0.9364 0.0636

7

JT 0.0578 0.421 0.5212 0.0108 0.556 0.4332 0 0.6758 0.3242

JT* 0.1441 0.5593 0.2966 0.0488 0.7278 0.2234 0 0.8475 0.1525

AIC 0.001 0.2704 0.7286 0 0.3511 0.6489 0 0.4486 0.5514

SIC 0.45 0.5371 0.0129 0.3773 0.6203 0.0024 0.0005 0.9988 0.0007

HQ 0.0568 0.7202 0.223 0.013 0.8681 0.1189 0 0.9479 0.0521

8

JT 0.0535 0.3977 0.5488 0.0222 0.5696 0.4082 0 0.7144 0.2856

JT* 0.13 0.5418 0.3282 0.0841 0.7133 0.2026 0 0.875 0.125

AIC 0.0009 0.2475 0.7516 0 0.3625 0.6375 0 0.4797 0.5203

SIC 0.3923 0.5876 0.0201 0.4855 0.5124 0.0021 0.0071 0.9925 0.0004

HQ 0.0505 0.6745 0.275 0.0274 0.8647 0.1079 0 0.9594 0.0406

f＝1.6 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.3912 0.6088 0 0.4226 0.5774 0 0.4412 0.5588

JT* 0 0.5408 0.4592 0 0.5669 0.4331 0 0.5881 0.4119

AIC 0 0.5591 0.4409 0 0.5864 0.4136 0 0.608 0.392

SIC 0 0.9242 0.0758 0 0.9505 0.0495 0 0.9772 0.0288

HQ 0 0.7635 0.2365 0 0.822 0.178 0 0.8628 0.1372

1

JT 0 0.7626 0.2374 0 0.815 0.185 0 0.8503 0.1497

JT* 0 0.8866 0.1134 0 0.922 0.078 0 0.943 0.057

AIC 0 0.8986 0.1014 0 0.929 0.071 0 0.9496 0.0504

SIC 0.0011 0.9972 0.0017 0 0.9997 0.0003 0 0.9999 0.0001

HQ 0 0.9807 0.0193 0 0.9916 0.0084 0 0.9985 0.0015
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Table 3 (Continued)

3

JT 0.0004 0.8603 0.1393 0 0.8891 0.1109 0 0.9047 0.0953

JT* 0.0058 0.9521 0.0421 0 0.9699 0.0301 0 0.972 0.028

AIC 0 0.9674 0.0326 0 0.9769 0.0231 0 0.9782 0.0218

SIC 0.3228 0.6772 0 0 1 0 0 1 0

HQ 0.0068 0.9917 0.0015 0 0.999 0.001 0 0.9997 0.0003

4

JT 0.017 0.8225 0.1605 0 0.8615 0.1385 0 0.8784 0.1216

JT* 0.0803 0.8704 0.0493 0 0.9567 0.0433 0 0.9586 0.0414

AIC 0.0051 0.9566 0.0383 0 0.9651 0.0349 0 0.9661 0.0339

SIC 0.7369 0.2631 0 0.0077 0.9923 0 0 1 0

HQ 0.1143 0.8842 0.0015 0 0.9985 0.0015 0 0.9986 0.0014

5

JT 0.1094 0.734 0.1566 0.0002 0.8522 0.1476 0 0.8667 0.1333

JT* 0.2822 0.6706 0.0472 0.002 0.9468 0.0512 0 0.95 0.05

AIC 0.0517 0.9111 0.0372 0 0.959 0.041 0 0.9597 0.0403

SIC 0.9252 0.0748 0 0.1965 0.8035 0 0 0.9999 0.0001

HQ 0.395 0.6035 0.0015 0.0049 0.9926 0.0025 0 0.9977 0.0023

6

JT 0.1997 0.6527 0.1476 0.0067 0.8481 0.1452 0 0.8674 0.1326

JT* 0.4261 0.5301 0.0438 0.0276 0.9228 0.0496 0 0.9506 0.0494

AIC 0.1172 0.8509 0.0319 0.0012 0.9575 0.0413 0 0.9582 0.0418

SIC 0.9572 0.0427 0.0001 0.5648 0.4351 0.0001 0.0006 0.9993 0.0001

HQ 0.5661 0.4325 0.0014 0.0546 0.9432 0.0022 0 0.9977 0.0023

7

JT 0.2218 0.6357 0.1425 0.0161 0.8561 0.1278 0 0.8811 0.1189

JT* 0.438 0.5226 0.0394 0.0659 0.8935 0.0406 0 0.9589 0.0411

AIC 0.1433 0.8276 0.0291 0.0046 0.9621 0.0333 0 0.9677 0.0323

SIC 0.9451 0.0549 0 0.7391 0.2609 0 0.0036 0.9964 0

HQ 0.0167 0.5595 0.4238 0.133 0.8654 0.0016 0 0.9988 0.0012

8

JT 0.2179 0.6407 0.1414 0.0309 0.8651 0.104 0 0.9085 0.0915

JT* 0.424 0.5352 0.0408 0.1122 0.8585 0.0293 0 0.9751 0.0249

AIC 0.1418 0.8251 0.0331 0.0102 0.9672 0.0226 0 0.9811 0.0189

SIC 0.9299 0.0701 0 0.8196 0.1804 0 0.0218 0.9782 0

HQ 0.5545 0.4446 0.0009 0.2102 0.7894 0.0004 0.0001 0.9994 0.0005

f＝2.4 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.6121 0.3879 0 0.6548 0.3452 0 0.6816 0.3184

JT* 0 0.7536 0.2464 0 0.7932 0.2068 0 0.8198 0.1802

AIC 0 0.7774 0.2226 0 0.8153 0.1847 0 0.8386 0.1614

SIC 0 0.9866 0.0134 0 0.9961 0.0039 0 0.9994 0.0006

HQ 0 0.9251 0.0749 0 0.9569 0.0431 0 0.978 0.022

1

JT 0 0.8794 0.1206 0 0.9126 0.0874 0 0.9268 0.0732

JT* 0 0.9659 0.0341 0 0.9756 0.0244 0 0.9833 0.0167

AIC 0 0.9723 0.0277 0 0.98 0.02 0 0.9876 0.0124

SIC 0.001 0.999 0 0 1 0 0 1 0

HQ 0 0.9974 0.0026 0 0.9993 0.0007 0 1 0
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2

JT 0 0.8493 0.1507 0 0.8732 0.1268 0 0.8839 0.1161

JT* 0.0003 0.948 0.0517 0 0.9568 0.0432 0 0.9595 0.0405

AIC 0 0.9596 0.0404 0 0.9659 0.0341 0 0.9666 0.0334

SIC 0.0709 0.9291 0 0 1 0 0 1 0

HQ 0.0003 0.9967 0.003 0 0.9978 0.0022 0 0.9989 0.0011

3

JT 0.0022 0.8175 0.1803 0 0.8359 0.1641 0 0.8461 0.1539

JT* 0.0133 0.9192 0.0675 0 0.9341 0.0659 0 0.942 0.058

AIC 0.0003 0.9458 0.0539 0 0.9459 0.0541 0 0.9506 0.0494

SIC 0.4211 0.5788 0.0001 0.0001 0.9999 0 0 0.9999 0.0001

HQ 0.017 0.9783 0.0047 0 0.9958 0.0042 0 0.9968 0.0032

4

JT 0.0442 0.7816 0.1742 0 0.829 0.171 0 0.8489 0.1511

JT* 0.1525 0.7869 0.0606 0.0003 0.9315 0.0682 0 0.9374 0.0626

AIC 0.0146 0.9359 0.0495 0 0.9432 0.0568 0 0.9479 0.0521

SIC 0.843 0.157 0 0.0508 0.9491 0.0001 0 0.9998 0.0002

HQ 0.1987 0.7979 0.0034 0.0006 0.9947 0.0047 0 0.9954 0.0046

5

JT 0.1153 0.7299 0.1548 0.0001 0.8495 0.1504 0 0.8619 0.1381

JT* 0.2835 0.663 0.0535 0.0038 0.9403 0.0559 0 0.9464 0.0536

AIC 0.0493 0.9086 0.0421 0.0001 0.9539 0.046 0 0.9559 0.0441

SIC 0.9063 0.0937 0 0.2703 0.7296 0.0001 0 0.9999 0.0001

HQ 0.3726 0.6254 0.002 0.008 0.9878 0.0042 0 0.9973 0.0027

6

JT 0.1473 0.7271 0.1256 0.0031 0.8921 0.1048 0 0.9032 0.0968

JT* 0.3421 0.6231 0.0348 0.0153 0.954 0.0307 0 0.9706 0.0294

AIC 0.0741 0.8976 0.0283 0.0002 0.9755 0.0243 0 0.9775 0.0225

SIC 0.9014 0.0986 0 0.4701 0.5298 0.0001 0 1 0

HQ 0.4375 0.5615 0.001 0.0288 0.9701 0.0011 0 0.9995 0.0005

7

JT 0.1544 0.7342 0.1114 0.0067 0.9093 0.084 0 0.9295 0.0705

JT* 0.3379 0.6336 0.0285 0.0308 0.9504 0.0188 0 0.9859 0.0141

AIC 0.0816 0.8959 0.0225 0.0014 0.9837 0.0149 0 0.9891 0.0109

SIC 0.8741 0.1259 0 0.5926 0.4074 0 0.0004 0.9996 0

HQ 0.4315 0.5679 0.0006 0.0622 0.9375 0.0003 0 1 0

8

JT 0.146 0.7253 0.1287 0.0131 0.8987 0.0882 0 0.9254 0.0746

JT* 0.3213 0.6418 0.0369 0.0584 0.9195 0.0221 0 0.9853 0.0147

AIC 0.0838 0.8845 0.0317 0.0041 0.9769 0.019 0 0.9882 0.0118

SIC 0.8505 0.1495 0 0.698 0.302 0 0.0077 0.9923 0

HQ 0.4089 0.5896 0.0015 0.1198 0.8801 0.0001 0 1 0

Table 3 (Continued)
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Table 4

DGP : (36) with g＝1 in Example 2; M̃(p)＝MZ(p) as q＝1 in Sij(p)

f＝1.6 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.0896 0.9104 0 0.0964 0.9036 0 0.0929 0.9071

JT* 0 0.1929 0.8071 0 0.1962 0.8038 0 0.194 0.806

AIC 0 0.1455 0.8545 0 0.1499 0.8501 0 0.1478 0.8522

SIC 0 0.7299 0.2701 0 0.7871 0.2129 0 0.8706 0.1294

HQ 0 0.3989 0.6011 0 0.4552 0.5448 0 0.5324 0.4676

1

JT 0 0.5343 0.4657 0 0.6149 0.3851 0 0.6806 0.3194

JT* 0 0.7258 0.2742 0 0.7867 0.2133 0 0.8396 0.1604

AIC 0 0.649 0.351 0 0.7182 0.2818 0 0.774 0.226

SIC 0.0017 0.9854 0.0129 0 0.9966 0.0034 0 0.9996 0.0004

HQ 0 0.8889 0.1111 0 0.9493 0.0507 0 0.9815 0.0185

2

JT 0.0001 0.8123 0.1876 0 0.883 0.117 0 0.9246 0.0754

JT* 0.0019 0.9278 0.0703 0 0.9641 0.0359 0 0.9802 0.0198

AIC 0 0.8806 0.1194 0 0.9351 0.0649 0 0.9605 0.0395

SIC 0.0849 0.914 0.0011 0 0.9999 0.0001 0 1 0

HQ 0.0004 0.9834 0.0162 0 0.9975 0.0025 0 0.9993 0.0007

3

JT 0.0114 0.877 0.1116 0 0.9379 0.0621 0 0.9578 0.0422

JT* 0.0489 0.9144 0.0367 0 0.9827 0.0173 0 0.9884 0.0116

AIC 0.0012 0.9295 0.0693 0 0.9657 0.0343 0 0.9766 0.0234

SIC 0.3272 0.6725 0.0003 0.0002 0.9998 0 0 1 0

HQ 0.0212 0.9721 0.0067 0 0.9992 0.0008 0 0.9993 0.0007

4

JT 0.0615 0.8328 0.1057 0.0003 0.9359 0.0638 0 0.9526 0.0474

JT* 0.1785 0.7871 0.0344 0.0014 0.9783 0.0203 0 0.9844 0.0156

AIC 0.0103 0.921 0.0687 0 0.9603 0.0397 0 0.9706 0.0294

SIC 0.5972 0.4025 0.0003 0.0243 0.9757 0 0 1 0

HQ 0.0955 0.898 0.0065 0.0007 0.9969 0.0024 0 0.9987 0.0013

5

JT 0.1393 0.7384 0.1223 0.0059 0.9179 0.0762 0 0.941 0.059

JT* 0.3191 0.6392 0.0417 0.0142 0.9588 0.027 0 0.978 0.022

AIC 0.0286 0.8879 0.0835 0.0012 0.9484 0.0504 0 0.9621 0.0379

SIC 0.783 0.2168 0.0002 0.1407 0.8593 0 0.0001 0.9999 0

HQ 0.2272 0.7642 0.0086 0.0107 0.9866 0.0027 0 0.9982 0.0018

6

JT 0.2097 0.6385 0.1518 0.0236 0.8882 0.0882 0 0.9331 0.0669

JT* 0.3992 0.5448 0.056 0.0599 0.9053 0.0348 0.0001 0.9728 0.0271

AIC 0.0569 0.8387 0.1044 0.0051 0.935 0.0599 0 0.955 0.045

SIC 0.8361 0.1634 0.0005 0.3996 0.6004 0 0.0047 0.9953 0

HQ 0.3564 0.6341 0.0095 0.0491 0.9475 0.0034 0.0001 0.9978 0.0021

7

JT 0.2118 0.6021 0.1861 0.0548 0.8441 0.1011 0.0004 0.9298 0.0698

JT* 0.3917 0.5369 0.0714 0.1262 0.8389 0.0349 0.0007 0.975 0.0243

AIC 0.0766 0.7972 0.1262 0.0148 0.9186 0.0666 0.0001 0.9557 0.0442

SIC 0.823 0.1769 0.0001 0.5798 0.4202 0 0.0203 0.9796 0.0001

HQ 0.3803 0.6051 0.0146 0.1206 0.8762 0.0032 0.0012 0.9968 0.002
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Table 4 (Continued)

8

JT 0.196 0.578 0.226 0.0876 0.799 0.1134 0.0013 0.9339 0.0648

JT* 0.3674 0.5431 0.0895 0.1834 0.7849 0.0317 0.0034 0.977 0.0196

AIC 0.0794 0.7641 0.1565 0.0241 0.9045 0.0714 0.0002 0.9602 0.0396

SIC 0.795 0.2044 0.0006 0.6752 0.3248 0 0.0619 0.9381 0

HQ 0.3667 0.6119 0.0214 0.1927 0.8034 0.0039 0.0049 0.9942 0.0009

f＝2.4 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.3329 0.6671 0 0.3691 0.6309 0 0.398 0.602

JT* 0 0.5182 0.4818 0 0.5508 0.4492 0 0.5934 0.4066

AIC 0 0.4568 0.5432 0 0.4878 0.5122 0 0.5254 0.4746

SIC 0 0.9417 0.0583 0 0.9769 0.0231 0 0.9935 0.0065

HQ 0 0.7512 0.2488 0 0.8329 0.1671 0 0.8959 0.1041

1

JT 0 0.8252 0.1748 0 0.8901 0.1099 0 0.9127 0.0828

JT* 0 0.9353 0.0647 0 0.9683 0.0317 0 0.9764 0.0236

AIC 0 0.8972 0.1028 0 0.943 0.057 0 0.9574 0.0426

SIC 0.0022 0.9972 0.0006 0 1 0 0 1 0

HQ 0 0.9861 0.0139 0 0.9979 0.0021 0 0.9996 0.0004

2

JT 0.0008 0.9223 0.0769 0 0.9464 0.0536 0 0.9539 0.0461

JT* 0.0082 0.9697 0.0221 0 0.9849 0.0151 0 0.9846 0.0154

AIC 0 0.9552 0.0448 0 0.968 0.032 0 0.9728 0.0272

SIC 0.1006 0.8991 0.0003 0 1 0 0 1 0

HQ 0.0011 0.9947 0.0042 0 0.999 0.001 0 0.9988 0.0012

3

JT 0.0177 0.9066 0.0757 0 0.9394 0.0606 0 0.9419 0.0581

JT* 0.0744 0.9004 0.0252 0 0.9784 0.0216 0 0.9784 0.0216

AIC 0.0014 0.9463 0.0523 0 0.9589 0.0411 0 0.9616 0.0384

SIC 0.3586 0.6413 0.0001 0.0011 0.9989 0 0 1 0

HQ 0.0246 0.9698 0.0056 0 0.9968 0.0032 0 0.9976 0.0024

4

JT 0.0823 0.8191 0.0986 0.0017 0.9228 0.0755 0 0.9332 0.0668

JT* 0.2291 0.737 0.0339 0.0033 0.964 0.0327 0 0.9723 0.0277

AIC 0.0108 0.9202 0.069 0.0001 0.945 0.0549 0 0.9543 0.0457

SIC 0.6625 0.3373 0.0002 0.0396 0.9604 0 0 0.9999 0.0001

HQ 0.1157 0.876 0.0083 0.0024 0.9921 0.0055 0 0.9968 0.0032

5

JT 0.1486 0.7286 0.1228 0.0068 0.9093 0.0839 0 0.933 0.067

JT* 0.3234 0.6329 0.0437 0.0171 0.9499 0.033 0 0.9724 0.0276

AIC 0.0295 0.8834 0.0871 0.0019 0.9383 0.0598 0 0.9546 0.0454

SIC 0.7725 0.2272 0.0003 0.1808 0.8189 0.0003 0.0007 0.9992 0.0001

HQ 0.2304 0.759 0.0106 0.0136 0.9816 0.0048 0 0.9972 0.0028

6

JT 0.1868 0.6708 0.1424 0.0207 0.8984 0.0809 0 0.946 0.054

JT* 0.3652 0.5833 0.0515 0.0505 0.9241 0.0254 0.0001 0.9831 0.0168

AIC 0.0525 0.8486 0.0989 0.0047 0.9419 0.0534 0 0.9676 0.0324

SIC 0.7887 0.2111 0.0002 0.37 0.63 0 0.0048 0.9952 0

HQ 0.3148 0.6749 0.0103 0.043 0.9547 0.0023 0.0001 0.999 0.0009
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Table 4 (Continued)

Table 5

DGP : (37) with g＝0 in Example 3; M̃(p)＝M∆Z(p) in Sij(p)

7

JT 0.1839 0.6383 0.1778 0.038 0.863 0.099 0.0003 0.9357 0.064

JT* 0.3479 0.5907 0.0614 0.0919 0.8801 0.028 0.0009 0.9842 0.0149

AIC 0.0642 0.8106 0.1252 0.0114 0.9211 0.0675 0.0001 0.9643 0.0356

SIC 0.7728 0.2272 0 0.5009 0.499 0.0001 0.0173 0.9827 0

HQ 0.3257 0.6614 0.0129 0.0883 0.9079 0.0038 0.0014 0.9983 0.0003

8

JT 0.1656 0.5977 0.2367 0.0568 0.8026 0.1406 0.0008 0.8952 0.104

JT* 0.3106 0.5915 0.0979 0.1297 0.8219 0.0484 0.003 0.9656 0.0314

AIC 0.0606 0.7733 0.1661 0.0161 0.8801 0.1038 0 0.9288 0.0712

SIC 0.7432 0.2557 0.0011 0.599 0.4008 0.0002 0.0476 0.9524 0

HQ 0.3149 0.6624 0.0227 0.1455 0.8487 0.0058 0.0045 0.9943 0.0012

f＝0.8 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0.0002 0.5676 0.4322 0 0.5236 0.4764 0 0.493 0.507

JT* 0.0026 0.7717 0.2257 0 0.7147 0.2853 0 0.683 0.317

AIC 0 0.4769 0.5231 0 0.4432 0.5568 0 0.4121 0.5879

SIC 0.0441 0.9457 0.0102 0 0.9895 0.0105 0 0.9922 0.0078

HQ 0 0.8548 0.1452 0 0.8499 0.1501 0 0.867 0.133

1

JT 0 0.7865 0.2135 0 0.7922 0.2078 0 0.7807 0.2193

JT* 0 0.9148 0.0852 0 0.9096 0.0904 0 0.9057 0.0943

AIC 0 0.7027 0.2973 0 0.7052 0.2948 0 0.696 0.304

SIC 0 0.9969 0.0031 0 0.9983 0.0017 0 0.9993 0.0007

HQ 0 0.9462 0.0538 0 0.964 0.036 0 0.9733 0.0267

JT* 0.0063 0.9572 0.0365 0 0.9725 0.0275 0 0.9737 0.0263

SIC 0.0241 0.9754 0.0005 0 0.9998 0.0002 0 1 0

＋3＋

JT 0.0159 0.8686 0.1155 0 0.9181 0.0819 0 0.9341 0.0659

AIC 0.0001 0.8346 0.1653 0 0.8775 0.1225 0 0.8944 0.1056

HQ 0.0071 0.9805 0.0124 0 0.9965 0.0035 0 0.9986 0.0014

JT* 0.2984 0.6615 0.0401 0.0008 0.9747 0.0245 0 0.9842 0.0158

SIC 0.6717 0.3283 0 0.0349 0.965 0.0001 0 1 0

2

JT 0.0006 0.8763 0.1231 0 0.9004 0.0996 0 0.9062 0.0938

AIC 0 0.8215 0.1785 0 0.8472 0.1528 0 0.8505 0.1495

HQ 0 0.9838 0.0162 0 0.9937 0.0063 0 0.9965 0.0035

JT* 0.0892 0.8789 0.0319 0 0.9807 0.0193 0 0.986 0.014

SIC 0.2787 0.7211 0.0002 0.0004 0.9995 0.0001 0 1 0

4

JT 0.107 0.7538 0.1392 0 0.9133 0.0867 0 0.9324 0.0676

AIC 0.0017 0.8067 0.1916 0 0.8651 0.1349 0 0.893 0.107

HQ 0.0983 0.8893 0.0124 0 0.9958 0.0042 0 0.9984 0.0016
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Table 5 (Continued)

5

JT 0.1855 0.6624 0.1521 0.0025 0.9019 0.0956 0 0.9296 0.0704

JT* 0.4206 0.5383 0.0411 0.02 0.9548 0.0252 0 0.9825 0.0175

AIC 0.0113 0.7862 0.2025 0 0.8533 0.1467 0 0.8877 0.1123

SIC 0.8116 0.1884 0 0.2423 0.7577 0 0 1 0

HQ 0.2253 0.7632 0.0115 0.0016 0.9939 0.0045 0 0.999 0.001

6

JT 0.2391 0.5893 0.1716 0.0152 0.8809 0.1039 0 0.9266 0.0734

JT* 0.4869 0.465 0.0481 0.0797 0.8925 0.0278 0 0.9812 0.0188

AIC 0.0228 0.7593 0.2179 0 0.8449 0.1551 0 0.8839 0.1161

SIC 0.8651 0.1349 0 0.5115 0.4885 0 0 1 0

HQ 0.3212 0.6659 0.0129 0.0161 0.9791 0.0048 0 0.9985 0.0015

7

JT 0.2488 0.5495 0.2017 0.0389 0.8472 0.1139 0 0.9222 0.0778

JT* 0.4841 0.4588 0.0571 0.1624 0.8058 0.0318 0 0.9818 0.0182

AIC 0.0316 0.7284 0.24 0.0003 0.8354 0.1643 0 0.8789 0.1211

SIC 0.8748 0.1251 0.0001 0.6934 0.3066 0 0.0003 0.9997 0

HQ 0.3614 0.6225 0.0161 0.0509 0.9451 0.004 0 0.9982 0.0018

8

JT 0.2352 0.5364 0.2284 0.0738 0.8072 0.119 0 0.9203 0.0797

JT* 0.4625 0.4601 0.0774 0.2428 0.7253 0.0319 0 0.981 0.019

AIC 0.0331 0.7017 0.2652 0.0004 0.8279 0.1717 0 0.8785 0.1215

SIC 0.8503 0.1496 0.0001 0.7974 0.2026 0 0.0069 0.9931 0

HQ 0.357 0.6236 0.0194 0.1139 0.8823 0.0038 0 0.9985 0.0015

f＝1.6 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.6388 0.3612 0 0.6033 0.3967 0 0.5695 0.4305

JT* 0 0.8274 0.1726 0 0.7812 0.2188 0 0.7512 0.2488

AIC 0 0.547 0.453 0 0.5151 0.4849 0 0.4801 0.5199

SIC 0 0.993 0.007 0 0.9944 0.0056 0 0.9946 0.0054

HQ 0 0.8887 0.1113 0 0.8907 0.1093 0 0.9009 0.0991

1

JT 0 0.791 0.209 0 0.7985 0.2015 0 0.7882 0.2118

JT* 0 0.9118 0.0882 0 0.912 0.088 0 0.9069 0.0931

AIC 0 0.7089 0.2911 0 0.7104 0.2896 0 0.7023 0.2977

SIC 0 0.9974 0.0026 0 0.9986 0.0014 0 0.9993 0.0007

HQ 0 0.9429 0.0571 0 0.9655 0.0345 0 0.973 0.027

2

JT 0 0.8746 0.1254 0 0.8995 0.1005 0 0.9075 0.0925

JT* 0.0007 0.962 0.0373 0 0.9714 0.0286 0 0.9737 0.0263

AIC 0 0.8207 0.1793 0 0.8471 0.1529 0 0.8507 0.1493

SIC 0.004 0.9958 0.0002 0 0.9999 0.0001 0 1 0

HQ 0 0.9835 0.0165 0 0.9935 0.0065 0 0.9962 0.0038

＋3＋

JT 0.0053 0.8804 0.1143 0 0.919 0.081 0 0.9349 0.0651

JT* 0.0377 0.9324 0.0299 0 0.9788 0.0212 0 0.9858 0.0142

AIC 0 0.8289 0.1711 0 0.8772 0.1228 0 0.8944 0.1056

SIC 0.1398 0.8601 0.0001 0 0.9998 0.0002 0 1 0

HQ 0.0016 0.986 0.0124 0 0.9964 0.0036 0 0.9986 0.0014
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Table 5 (Continued)

Table 6 Relative frequency Distribution for r^(p) under Example 3

DGP : (37) with g＝1 in Example 3; M̃(p)＝MZ(p) as q＝1 in Sij(p)

4

JT 0.0469 0.8131 0.14 0 0.9157 0.0843 0 0.9328 0.0672

JT* 0.1703 0.7878 0.0419 0.0005 0.9747 0.0248 0 0.9838 0.0162

AIC 0.0004 0.8084 0.1912 0 0.8689 0.1311 0 0.8945 0.1055

SIC 0.4523 0.5477 0 0.0103 0.9896 0.0001 0 1 0

HQ 0.037 0.9506 0.0124 0 0.9959 0.0041 0 0.9987 0.0013

5

JT 0.089 0.7538 0.1572 0.0007 0.9055 0.0938 0 0.9296 0.0704

JT* 0.2426 0.714 0.0434 0.0075 0.9676 0.0249 0 0.982 0.018

AIC 0.0028 0.7909 0.2063 0 0.8566 0.1434 0 0.8886 0.1114

SIC 0.5699 0.43 0.0001 0.1006 0.8994 0 0 1 0

HQ 0.0949 0.8912 0.0139 0.0005 0.9947 0.0048 0 0.9992 0.0008

6

JT 0.1026 0.7155 0.1819 0.0047 0.8935 0.1018 0 0.9261 0.0739

JT* 0.2528 0.6899 0.0573 0.0297 0.9437 0.0266 0 0.9813 0.0187

AIC 0.0063 0.7588 0.2349 0 0.8475 0.1525 0 0.8839 0.1161

SIC 0.5761 0.4238 0.0001 0.251 0.749 0 0 1 0

HQ 0.1221 0.8598 0.0181 0.0032 0.992 0.0048 0 0.9987 0.0013

7

JT 0.091 0.69 0.219 0.0118 0.8781 0.1101 0 0.9245 0.0755

JT* 0.2227 0.7011 0.0762 0.0555 0.9136 0.0309 0 0.9816 0.0184

AIC 0.0061 0.7201 0.2738 0 0.8376 0.1624 0 0.8807 0.1193

SIC 0.5434 0.4563 0.0003 0.3547 0.6453 0 0 1 0

HQ 0.115 0.8583 0.0267 0.0125 0.9826 0.0049 0 0.9985 0.0015

8

JT 0.0715 0.6701 0.2584 0.0169 0.8643 0.1188 0 0.9207 0.0793

JT* 0.1783 0.7213 0.1004 0.075 0.8937 0.0313 0 0.9825 0.0175

AIC 0.0056 0.6883 0.3061 0 0.8305 0.1695 0 0.8777 0.1223

SIC 0.4776 0.5215 0.0009 0.4121 0.5879 0 0.0007 0.9993 0

HQ 0.0965 0.8658 0.0377 0.024 0.9703 0.0057 0 0.9986 0.0014

f＝0.8 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0.0015 0.5397 0.4588 0 0.45 0.55 0 0.3871 0.6129

JT* 0.0088 0.7517 0.2395 0 0.6583 0.3417 0 0.5933 0.4067

AIC 0 0.2741 0.7259 0 0.2158 0.7842 0 0.1745 0.8255

SIC 0.0382 0.9325 0.0293 0 0.9646 0.0354 0 0.9764 0.0236

HQ 0 0.7267 0.2733 0 0.7038 0.2962 0 0.7237 0.2763

1

JT 0 0.7199 0.2801 0 0.7152 0.2848 0 0.7161 0.2839

JT* 0 0.882 0.118 0 0.8706 0.1294 0 0.8716 0.1284

AIC 0 0.4461 0.5539 0 0.4425 0.5575 0 0.4308 0.5692

SIC 0 0.9881 0.0119 0 0.9951 0.0049 0 0.9989 0.0011

HQ 0 0.8503 0.1497 0 0.8836 0.1164 0 0.9228 0.0772
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Table 6 (Continued)

2

JT 0.0091 0.8398 0.1511 0 0.8739 0.1261 0 0.8919 0.1081

JT* 0.0396 0.9161 0.0443 0 0.9625 0.0375 0 0.9722 0.0278

AIC 0 0.6188 0.3812 0 0.6507 0.3493 0 0.6736 0.3264

SIC 0.0698 0.9292 0.001 0 0.9998 0.0002 0 1 0

HQ 0.001 0.9465 0.0525 0 0.9748 0.0252 0 0.9911 0.0089

＋3＋

JT 0.0861 0.7904 0.1235 0 0.9095 0.0905 0 0.9333 0.0667

JT* 0.2385 0.7238 0.0377 0.0006 0.975 0.0244 0 0.9853 0.0147

AIC 0.0008 0.6546 0.3446 0 0.7124 0.2876 0 0.7559 0.2441

SIC 0.3625 0.6371 0.0004 0.0028 0.9972 0 0 1 0

HQ 0.0283 0.9347 0.037 0 0.9844 0.0156 0 0.9961 0.0039

4

JT 0.1943 0.6716 0.1341 0.0044 0.894 0.1016 0 0.9296 0.0704

JT* 0.407 0.5561 0.0369 0.0198 0.954 0.0262 0 0.9835 0.0165

AIC 0.003 0.6308 0.3662 0 0.6941 0.3059 0 0.7456 0.2544

SIC 0.609 0.3906 0.0004 0.0905 0.9094 0.0001 0 1 0

HQ 0.1007 0.8591 0.0402 0.0007 0.9813 0.018 0 0.9964 0.0036

5

JT 0.2288 0.6125 0.1587 0.0223 0.8711 0.1066 0 0.9279 0.0721

JT* 0.4493 0.5047 0.046 0.0918 0.8778 0.0304 0 0.9816 0.0184

AIC 0.0054 0.595 0.3996 0 0.68 0.32 0 0.7366 0.2634

SIC 0.6769 0.323 0.0001 0.326 0.6739 0.0001 0 1 0

HQ 0.1476 0.803 0.0494 0.0066 0.9746 0.0188 0 0.9954 0.0046

6

JT 0.228 0.5903 0.1817 0.0623 0.8249 0.1128 0 0.9245 0.0755

JT* 0.4337 0.5051 0.0612 0.1952 0.7744 0.0304 0 0.9812 0.0188

AIC 0.0074 0.5534 0.4392 0.0002 0.6622 0.3376 0 0.7386 0.2614

SIC 0.6795 0.3195 0.001 0.5446 0.4554 0 0.0001 0.9999 0

HQ 0.1597 0.7801 0.0602 0.0336 0.9471 0.0193 0 0.9946 0.0054

7

JT 0.1852 0.5842 0.2306 0.1056 0.7778 0.1166 0 0.9224 0.0776

JT* 0.3729 0.54 0.0871 0.2838 0.6844 0.0318 0 0.98 0.02

AIC 0.0069 0.4989 0.4942 0.0006 0.6546 0.3448 0 0.7317 0.2683

SIC 0.6201 0.3781 0.0018 0.6499 0.35 0.0001 0.0044 0.9956 0

HQ 0.1402 0.7798 0.08 0.0744 0.9078 0.0178 0 0.9952 0.0048

8

JT 0.1341 0.5709 0.295 0.1413 0.7357 0.123 0 0.9217 0.0783

JT* 0.2797 0.5998 0.1205 0.322 0.6404 0.0376 0.0008 0.9797 0.0195

AIC 0.0045 0.4338 0.5617 0.0014 0.6488 0.3498 0 0.7351 0.2649

SIC 0.5253 0.4698 0.0049 0.6786 0.3214 0 0.04 0.96 0

HQ 0.1028 0.7818 0.1154 0.1143 0.8661 0.0196 0 0.9952 0.0048

f＝1.6 T＝100 T＝200 T＝500

p r̂(p) U C O U C O U C O

0

JT 0 0.5931 0.4069 0 0.4995 0.5005 0 0.4351 0.5649

JT* 0 0.7954 0.2046 0 0.7072 0.2928 0 0.6477 0.3523

AIC 0 0.3211 0.6789 0 0.2521 0.7479 0 0.2085 0.7915

SIC 0 0.9822 0.0178 0 0.9828 0.0172 0 0.988 0.012

HQ 0 0.7763 0.2237 0 0.7618 0.2382 0 0.7808 0.2192

小瀧先生-表  11.3.10 8:56 AM  ページ 76



－ 77 －

Table 6 (Continued)

1 JT 0 0.7075 0.2925 0 0.7022 0.2978 0 0.702 0.298

JT* 0 0.8693 0.1307 0 0.8631 0.1369 0 0.8642 0.1358

AIC 0 0.4384 0.5616 0 0.4327 0.5673 0 0.4221 0.5779

SIC 0 0.9874 0.0126 0 0.9943 0.0057 0 0.9986 0.0014

HQ 0 0.8456 0.1544 0 0.8799 0.1201 0 0.9192 0.0808

2 JT 0.0007 0.8336 0.1657 0 0.865 0.135 0 0.8854 0.1146

JT* 0.005 0.9443 0.0507 0 0.9575 0.0425 0 0.9685 0.0315

AIC 0 0.6031 0.3969 0 0.6374 0.3626 0 0.6635 0.3365

SIC 0.0056 0.993 0.0014 0 0.9998 0.0002 0 1 0

HQ 0.0001 0.9436 0.0563 0 0.9716 0.0284 0 0.9906 0.0094

＋3＋ JT 0.0317 0.8408 0.1275 0 0.9087 0.0913 0 0.9338 0.0662

JT* 0.1195 0.8424 0.0381 0 0.9752 0.0248 0 0.9847 0.0153

AIC 0.0001 0.6526 0.3473 0 0.712 0.288 0 0.754 0.246

SIC 0.1901 0.8094 0.0005 0.0001 0.9998 0.0001 0 1 0

HQ 0.0051 0.9568 0.0381 0 0.9856 0.0144 0 0.9962 0.0038

4 JT 0.1263 0.7355 0.1382 0.001 0.8995 0.0995 0 0.9317 0.0683

JT* 0.3013 0.6571 0.0416 0.0069 0.9678 0.0253 0 0.983 0.017

AIC 0.0012 0.6359 0.3629 0 0.7005 0.2995 0 0.7474 0.2526

SIC 0.4712 0.5284 0.0004 0.028 0.9718 0.0002 0 1 0

HQ 0.0514 0.906 0.0426 0 0.9845 0.0155 0 0.9959 0.0041

5 JT 0.1578 0.681 0.1612 0.0089 0.8852 0.1059 0 0.9285 0.0715

JT* 0.3414 0.6083 0.0503 0.0423 0.9278 0.0299 0 0.9818 0.0182

AIC 0.0022 0.5977 0.4001 0 0.6849 0.3151 0 0.7383 0.2617

SIC 0.5289 0.4705 0.0006 0.1812 0.8187 0.0001 0 1 0

HQ 0.0916 0.8535 0.0549 0.0022 0.9772 0.0206 0 0.9955 0.0045

6 JT 0.1411 0.66 0.1989 0.0268 0.8589 0.1143 0 0.9255 0.0745

JT* 0.2988 0.6271 0.0741 0.1072 0.8585 0.0343 0 0.9816 0.0184

AIC 0.0039 0.548 0.4481 0 0.6632 0.3368 0 0.7404 0.2596

SIC 0.499 0.4989 0.0021 0.3317 0.6683 0 0 1 0

HQ 0.089 0.8393 0.0717 0.011 0.9683 0.0207 0 0.9945 0.0055

7 JT 0.1017 0.6331 0.2652 0.0406 0.8331 0.1263 0 0.9237 0.0763

JT* 0.2236 0.6699 0.1065 0.1414 0.8199 0.0387 0 0.9801 0.0199

AIC 0.0019 0.472 0.5261 0.0002 0.648 0.3518 0 0.7306 0.2694

SIC 0.4224 0.5747 0.0029 0.3891 0.6109 0 0.0005 0.9995 0

HQ 0.0677 0.8297 0.1026 0.0233 0.9548 0.0219 0 0.9954 0.0046

8 JT 0.0664 0.5926 0.341 0.0546 0.8035 0.1419 0 0.9207 0.0793

JT* 0.1541 0.6908 0.1551 0.1541 0.8005 0.0454 0.0003 0.9798 0.0199

AIC 0.0017 0.4049 0.5934 0.0001 0.6281 0.3718 0 0.732 0.268

SIC 0.3344 0.6591 0.0065 0.4111 0.5889 0 0.0072 0.9928 0

HQ 0.0418 0.8076 0.1506 0.0344 0.9398 0.0258 0 0.9954 0.0046
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