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Abstract

This paper discusses on how the number of independent cointegrating relations known as the cointegrating
rank can be formulated and detected when some finite lag order vector autoregressive (VAR) schemes are
fitted without imposing the assumptions which make the Granger representation theorem (GRT) hold.
Adopting a generalized framework on the data generation processes (DGPs) and theoretically formulating
each of the VAR schemes as a linear least-square predictor, we show that it precisely captures the
cointegrating rank even if the existence of the VAR representation in GRT is not ensured. It is also established
that estimating the rank through direct application of one of the information criteria under any finite lag order
VAR scheme leads to some asymptotic desirability such as the conventional consistency. For finite sample
performances of the estimation procedure proposed, some Monte Carlo experiments are executed, and it is
observed that those are not so far from the asymptotics established theoretically, although affected by the

selection of the scheme fitted or its lag order. We also point out that under finite sample sizes, the schemes

specified by comparatively small lags such as 1 to 3 tend to produce desirable estimation results.

1  Introduction

Among model formulations for a system of
multivariate economic time series, the vector
autoregression (VAR) has been considered to be the
handiest one and applied widely in a large amount of
econometric researches. In most of such VAR
formulations, embodying the empirical belief that
many of time series considered are integrated of some
orders need to be cared. Particularly, numerous
econometric researches have been concentrated on the
situation in which individual time series are integrated
of order 1. Organizing VARs through differencing the
data series considered was the approach adopted
mainly until early 1980's along the prosperity of the
Box and Jenkins methodology.

On the other hand, the concept of cointegration has
been playing an important role in both theoretical and
empirical econometrics since it was formulated by
Engle and Granger (1987) and others. It brought about
a significant change in the VAR model formulation

along with recent development of the inference theory

for integrated processes, emphasizing that the
framework of VARSs in differences is not always valid
and that some linear combinations of individual series
may be weakly stationary.

Following Granger's representation theorem (GRT)
in Engle and Granger (1987), a cointegrated system
whose individual data series is integrated of order 1 is
expressed as a VAR in levels of the data series or an
vector error correction model (VECM) as an
equivalent form, in which such linear combinations
referred as the cointegrating relations as well as first
differences are included with serially uncorrelated
error vectors.! The number of independent
cointegrating relations, called the cointegrating rank,
is essential and indispensable for the model
formulation, parametrization and inferences under the
occurrence of cointegration, particularly under the
VAR approach in which the system consisting of more
than 3 series tends to be considered and consequently
the cointegrating rank may be greater than 1.

Conventionally, the issue of detecting the

cointegrating rank has been dealt with based on the



fitting of data series to a finite lag order (or lag length)
VAR in levels and Johansen's rank test (trace test) (see
Johansen (1988, 1992b)) for estimation of the true
value of the rank. It is also conventional that the VAR
lag order is automatically determined through one of
the information criteria used in the model selection
prior to 'estimation' of the rank. It is widely accepted
that the Akaike information criterion introduced in
Akaike (1973), whose asymptotic evaluation is
established by Shibata (1976) etc., the Bayesian
information criterion originated by Schwartz (1978)
and the criterion in Hannan and Quinn (1979), referred
as AIC, SIC and HQ respectively following the
conventional manner, are examples of such criteria.
Among many researches utilizing such an
information criterion for the lag order selection, Aznar
and Salvador (2002) proposed to apply not Johansen's
rank test but it to estimation of the cointegrating rank
itself. They show that using the criterion which is
established to possess the consistency property in the
conventional statistical analyses such as SIC or HQ,
simultaneous determination of both the rank and the
VAR lag order achieves consistent estimation.
However, those methods including Aznar and
Salvador's one are not available unless the lag order of
the VAR in GRT is finite. As a way to make up this
defect, Shintani (2001) proposed a nonparametric test
which is less powerful than Johansen's rank test
without formulating any VAR scheme. On the other
hand, Saikkonen (1992) considered a VAR whose lag
order is finite but 'large’ as an approximation of the
infinite lag order VAR, in the sense that it increases at
a 'slower rate as the sample size goes to infinity, and
derived such asymptotics as in the Johansen's rank
test. Qu and Perron (2007) discussed the determination
of an optimal lag order based on such a VAR
approximation and one of information criteria,
although the rank estimation using it was not dealt
with. It should be noted that all the approaches stated
above are based on the supposition that GRT holds.
We should not overlook that there are some
cointegrated systems in which the VAR approximation
is insufficient or GRT itself does not hold. As

mentioned in Introduction of Qu and Perron (2007),

such a situation occurs if the data generation process
(DGP) expressed as a vector moving average (VMA)
possesses a root close to one in the VMA
characteristic equation, and a condition/restriction to
rule out the occurrence of polynomial cointegration or
multicointegration, discussed by the literatures such as
Granger and Lee (1990), Engle and Yoo (1991),
Gregoir and Laroque (1993) and Stock and watson
(1993), or noninvertibility/overdifferencing in some
time series system is indispensable for GRT/the VAR
derivation itself, as mentioned in later section. It
should be also recognized that polynomial
cointegration requires another type of VAR
representation, formed in not only in levels but also in
their integrated ones, which is not suitable for
formulating the cointegrating rank (see Theorem 2.1
of Gregoir and Laroque (1993)). Besides, the
exclusion of noninvertibility following from a factor
except overdifferencing must be assumed for GRT,
and recall that even if GRT holds, the VAR is not
always described by a finite lag. A similar matter rises
in the case in which GRT holds and the VAR lag order
is finite as well: it is on whether fitting a VAR scheme
of a lag order smaller than the true one can lead to
effective detection of the true rank.

We can fit our data series to any finite lag order
VAR scheme/model even if the difficulty on GRT
stated above occurs, although formulating a VAR with
serially uncorrelated errors is not expected. Actually,
many empirical researches on cointegration have been
based on such a finite lag order VAR fitting and the
use of one of the information criteria without verifying
whether GRT or the matter raised above is realized or
not. Under such a background, this paper is aroused by
the question whether some meaningful detection for
the cointegrating rank based on a finite lag order VAR
scheme can be achieved or not, provided that such
difficulty on GRT occurs. It may be necessary for
some resolution to consider the theoretical
formulation/implication of a VAR scheme subject to
such a matter, and seeking a procedure for meaningful
and effective estimation of the true rank value under
such a scheme must be examined as well.

The purpose of this paper is to provide a clear



resolution of the matters above, motivated by the
belief that those have been rarely considered in
empirical researches. Supposing the DGP as a VMA,
we seek a theoretical representation for a finite lag
order VAR scheme fitted under the situation where the
matters including the failure of GRT itself may occur.
The usual concept of cointegration will be extended to
one such that such matters are dealt with well. It is
pointed out that the concept of linear least-square
(L1s.) prediction or projection (see Whittle (1983, p.
9) e.g.) provides exact formulation for our purpose:
VAR schemes characterized by finite lags are
interpreted as a l.Ls. predictors. It is shown that the
cointegrating rank is precisely reflected on some
matrix parameter in each of such schemes,
accompanied with the derivation of related theoretical
properties. For estimation of the true rank value, we
propose to adopt one of such information criteria as
the above-mentioned ones as a 'method'. In such a
method we construct the related statistics based on
residual matrices from reduced rank regression on
each of the VAR schemes as in the Johansen's rank
test. What should be emphasized is that unlike the
Johansen's test, the procedure proposed in this paper
only pursues to estimate the rank through the direct
application of one of the information criteria under an
arbitrary finite lag order VAR scheme, whereas
determining an 'optimal' lag order is not needed and
the conventional asymptotics for the Johansen's test
are not established here since the error vectors in the
VAR scheme may be serially correlated. It is
established that using the information criterion under
such a VAR scheme leads to the conventional
asymptotics such as the consistency, similar to those
used in the conventional statistical analyses or the
approach of Aznar and Salvador (2002), emphasizing
that the asymptotic validity holds whatever the VAR
scheme fitted is. It is also noticed that the properties
on the VAR scheme stated above are indispensable for
those asymptotics. Monte Carlo experiments are
executed in some particular examples/DGPs and
sample sizes 100, 200 and 500 in order to investigate
finite sample performances of the criteria mentioned

above. The experimental results reveal that each

criterion strongly depends on the VAR lag order
unlike one claimed by the asymptotics, and it will be
recognized that the results close to the asymptotics are
mostly realized under the schemes by small lags such
as 1 to 3, particularly for some information criterion
such as SIC. Generally, the results brought about by
the information criteria are not unsatisfactory
compared with those through application of Johansen's
test.

The paper is organized as follows. Section 2
formulates the DGP and some preliminary concepts.
The results on the VAR formulation stated in the
above paragraph are in Section 3. Section 4 is used for
presenting the rank estimation procedure and related
information criteria. Asymptotics for the procedure in
Section 4 are established in Section 5. Section 6 deals
with Monte Carlo experiments. The remained issues
including some concluding remarks are discussed in
Section 7. The proofs of lemmas, theorems and a
corollary in the text, together with some preliminary

results, are provided in Appendix.
2 The DGP and some preliminaries

Let us begin our discussion by conventionalizing
some notations appeared in the text. The symbols L
and A are the lag and difference operators defined as
Liu,=u,-; and Nu,=(1—L)’u, for any positive integer j,
with a time series u#,. The determinant of a square
matrix F is denoted as det F, I, denotes the m Xm
identity matrix and ||F]| denotes the Euclidean distance
of F.? In connection with F(z) denoting a power series
of a complex variable z with matrix coefficients
E :j 2 O:

Fo)=XFz,

=0
F(L) and F(1) are defined as

FL=YFL, F1)=XLF,.

j=0 j=0

All power series in the text are defined over the
complex plane and all notations in the text except z are
interpreted as real numbers or vectors/matrices which
consist of components of real numbers.

Next, without losing the natures of the usual



definitions of 7(0) or I(1) time series (see Banerjee
et.al (1993, p. 84) e.g.) and cointegration (see Engle
and Granger (1987) or Banerjee et.al (1993, p. 145)

e.g.), let us extend those to:

Definition 1 A scalar time series 7, with mean
zero and no deterministic component is said to be /(0)
if 7, is weakly stationary with a moving average
(MA) Wold
decomposition and O,(1) property and its partial 3",
7 is of O,(7), and 7, is said to be (1) if its first

representation following the

difference A 7, is of I1(0) for any ¢t > 1 and 7, is of
0,(1).

Definition 2 A n-dimensional vector time series
7, is said to be cointegrated if all the elements of 7,
are of /(1) in stochastic parts and there exists a column
full rank constant (nonrandom) matrix & of nXm such
that the stochastic part of 5’7, plus a m-dimensional
random vector of O,(1) which does not depend upon ¢
is weakly stationary and of O,(1) with a m-
dimensional VMA representation following the vector
version of the Wold decomposition and an integer m
satisfying n—1 > m > 1, and then m and b are called
cointegrating rank and cointegrating matrix

respectively.

Following Definition 1, MA processes are regarded
as 1(0) unless overdifferenced, and other type of
noninvertibility, caused by some root other than 1 in
the MA characteristic equation, is acceptable.’
Similarly, Definition 2 does not ensure that any linear
combination of b'7, is of 1(0) stochastically, unlike the
usual definition of cointegration. In other words, the
situation in which some of the linear combinations of
b'7, are overdifferenced, referred as higher-order
cointegration, is allowable.' It should be also noted
that for the case in which the random vector added is
constant, the stochastic part of 5’7, is weakly
stationary and that VMA representations are
accompanied with purely nondeterministic series or
their covariance matrix which are positive definite.

Consider a k—variates vector time series y, whose

components are of /(1) in stochastic parts. Without

losing generality, the DGP is formulated as a VMA
representation: based on the power series C(z) and
C"(z) given as

Ce) =L+ Cz',
i=1

cemi(- 5 o)

i=

with kX k constant matrices C; such that Zili7||C,-H<
oo for some real number v > 1 and the row vectors of
C(1) are all nonzero, y, as y,=y,—Ey, and {e; t="*",—
1,0, 1,---,} as a sequence of unobservable k— variates
random vectors such that Ee,=0, Ee,e,=A with a
positive definite matrix A and Ee, ;=0 for any

integers 11,

Ay=CL)e=C(1)e+COLY1—L) e,

t=1,2,, (1)
noting that
C)=C(1)+(1—2)COC). @)
From (1) we derive
;,:C(l)(gleh)ﬂﬁso, =1,2+, (3)

where v,=C®(L) e, and &=y,—Ey;— CY(L) e.
Now, put rank C(1)=s and r=k—s with an integer
s such that 1 < s < k. We can find column full rank

constant matrices y , = and ¢ such that

CD)=ryzd, y:kXs, t:5Xs, &;kXs.

Hereafter we impose y,=0,(1) as some suitable initial
condition on y. It is obvious from (3) that all the
elements of y, or all nonzero linear combinations of
y'y. are of I(1). If s<<k (or equivalently r > 1), there
exits a column full rank constant matrix 3 of £ X r such
that 8’y =0, and 8"y, is of O,(1), as clarified by

By=Bvtpc,, =12, “)

following from (3). It is seen from (4) that 8y, is
weakly stationary if either &, is out of consideration
or stronger initial conditions of y, and e, such as y,=
Ey, and e ,=Ee_;, j=0, 1,---, are imposed. Thus, if
s<k, we can consider y, (or y,) cointegrated with the
cointegrating rank » and cointegrating matrix J3,
whereas y, is not so if s=k. For discussion in the
following section, we also provide the following

relation here:



B
v A,

Y'C(L)

L= e |«

In general, y, may possibly possess some

t=1,2,. (5

deterministic trends and drift formed as a ¢ —th order

polynomial of time #, expressed as

Ev= S, =1,2, (6)

with k—dimensional constant vectors j,.° It is in turn

derived from (6) that

g—1

EAy= 2 it/ 1=2,3,, (1)

with g, following from the relation
q—1 q
2= e — =1
Notice that EAy, =" —oit,— Eyy=0(1).
For later discussion, for the case s > 2, partition y

constituting C(1) as

|

with y, of sX1 and y, of sX(s—1). Then we can

v
T
!

Y2

suppose 73 i1, =0, since there exist a column full rank

matrix 7, of sX(s—1) and a nonzero s-dimensional
~

vector 7, such that 75y'%,=0, and note that [ i }y'
12

can be regarded as 7.
3 The VAR Formulation

In this section we shall provide some theoretical
formulation of finite lag order VAR schemes fitted for
the data series considered with properties on the
cointegrating rank. We first mention the VAR
derivation by GRT and the conditions which make it
valid in order to make our VAR formulation be more

noticeable. Under the DGP (1), its derivation requires

}#o

Condition II All the roots of det C(z)=0 are

FCO(1)

Condition IIfs<k,det{ yo)

greater than 1 in absolute values except z=1.
Both conditions are related on the invertibility of
B

{ AT
it. Condition I is put to exclude the existence of

} or /(0) property of any linear combination of

relations of polynomial cointegration as well as
higher-order one. We note that if this is not satisfied,
there exists a weak stationary series as either b/3'(Y -,
y)+bsy "y, or b1 B3~y with nonzero vectors b; of
rX1 and b, of s X1, provided that &, is suitably dealt
with as stated already. It can be easily checked that
Condition I is equivalent to Assumption B3 in
Banerjee et.al (1993, p. 258). Condition II is imposed
to ensure the invertibility on roots other than z=1 in
det C(z)=0 as the VMA characteristic equation of (1).
Notice that cointegration under Definition 2 becomes
the usual one if rank $'C®(1)=r as well as Condition
I holds. For the case s=k, Condition II implies that
all the roots are greater than 1 in absolute values.

We now note that neither Condition I nor II is
necessary for most of the results provided in this paper
(except Theorem 1 (iv), (V) and (vi)), as clarified
later. If Conditions I and II are imposed, GRT leads
to a VAR representation (as a VECM form) from (1)
(see Engle and Granger (1987) or Banerjee et.al (1993,
pp. 258-260) etc.): for t=1, 2,--+,

A =afv Y HAY, e ifs<k (8
i=1

A;t:iHA}_jtﬂ—*—e/ l_.fS:k, (9)
i=1

with « as a column full rank constant matrix of & Xr
such that ¢'a =0, defined only for the case s<k, and
H, of kXk constant matrices.’ It should be noticed that
H, satisfy such a condition on the Euclidean distance
as for C, and that (8)/(9) is generally characterized by
the infinite lag order.

Apart from formulating the 'pure' VAR such as
(8)/(9), consider the formulation of 'VAR-like/VECM-
like' representations of some finite lag orders under the
case in which neither Condition I nor II is imposed.

Let

P(wi| zii i= 1,00, m),  P(Wi| Zeo, 2o 1= 1,000, 1),
P(V_VI\ Zoty Zeoy Zey i = 1,00, ;l), P(VT//| Zi, Z_/o)
or P %)

stand for the LLs. predictor of a vector time series w,
onto {z,.; i=m," -, n} as the (Hilbert) space spanned

by vector time series z,,, i=m,***, n, with the

inclusion of the case in which z,..,=1 for all ¢, m as



one of —1, 0 or 1 and 7 as one of —1, 0 or 7 such that

n>m and i is a positive integer, formulated as

(EVV,Z[ i i) (EZ[; AL )t Zim iy

with Z..x.» standing for (z".a,*", Z":5)". Now, let us p
be a nonnegative integer, fixed in the sense that it does
not depend upon the sample size 7, unlike in
Saikkonen (1992) or Qu and Perron (2007). For p=1,
2,,and t=p+2,p+3,-,

put

El(p):Ai_P(Ai | ﬁrv/*la A;m‘; i=
=Ay—P(Ay, | Ay i=1,", p)

L, p) ifs<k,
ifs=k,

Following the definition of the l.Ls. predictors, for p

and ¢ given above we have:

85 =a(p) Bt SH P+ (p)
ifs<k, (10)

A;,:;Z’lm(p)Aﬁ,Jra(p) ifs=k (11)

with «(p) as a constant matrix of k£ Xr, defined only
for the case s<k, and H,(p) of kX k constant matrices.
Similarly, for t=2, 3,:*+,

A= a(p) B+ e (0) ifs<t, (12)
letting &,(0)=Ay,—P(Ay, | 8'v,-1), and put
Ay= e(0) ifs=k, (13)

Replacing Y.”_ Hi(p) with Y. ™»iH (p) in (10)/(11)
and defining H,(0)=0, (12)/(13) can be incorporated
into (10)/(11) as the case p=0.

For the purpose of statistical inferences,
representations using Ay,—, and 'y, may be more
preferable than those in Ay, and v, . The following
lemma states how such a representation is obtained in

connection with (10)/(11) above.

Lemma 1 Suppose that y, (or y,) is generated by (1)
accompanied with (6). Then, for t=p+2, p+3,-*+, we

have

Ay = P(Ay, | 1, By = B0, Ay i= 1.+, p)=eup),
Ay =Py, | 1, By =& ) =e(0)

ifs<k, (14

Ay, —P(Ay: | 1, Ayi—i; i=
Ay—P(Ay. | 1)=e.(0)

L p)=e(p),

ifs=k, (15)

max {p, 1

} q
A=a @) Byt X HEAY-+ Y iote )
ifs<k, (16)
A= Y H@Ay-t S+ ep)
ifs=k (17

with the notations introduced on (1) to (7) and (10) to

(13) and k-dimensional vectors u; satisfying

Sa0=a @) f Y1)

max {p, 1}

g-1 g1
=Y HO) Ly —ap) St
if s<k, and
g1 max{p, 1} q—1 g1
Lwt'== 2 Hp) L w—iy+2uwt
if s=k.

Now, turn our interest to the characterization of «
(p) and ¢, (p), particularly of the rank value of «(p) and

the invertibility on ¢, (p), and those are summarized in:

Theorem 1 Suppose that y, is generated by (1).
Then, with the notations on (1) and (10)/(11), we have
the following results.

(1) For the case s<k, rank a (p)=r.

(ii) e.(p) in (10)/(11) possesses the following
representation

e(p)=B(L;p)e, t=p+2,p+ 3, -,

where the power series B(z; p) is given as

(18)

B(z; p)=L+ Y B(p)=",

with constant matrice B,(p) of kXk such that 2:1“3’
(p)l|<© for some v > 1, and for the case s=k, rank
B(l; p)=k.

(iil) For any column full rank constant matrix & (p)
of kX such that J'(p) « (p)=0 is satisfied if and only
if s<k, there exists a full rank constant matrix %(p) of

s X such that
J'(p) B(1; p)= t(p)o",

with B(1; p) in (i) and & on C(1) in Section 2.



(V) For the case s<k, suppose that Condition [
holds. Then, for any column full rank constant matrix
¢ of kXr such that 0'¢ =0, there exists a full rank

constant matrix T(p) of rXr such that

¢=B"(L;p) «(p) T (p),

with rank B(1; p)=k for B(1; p) in (ii).

(V) Suppose that Condition Il as well as I holds
for the case s<k and only I holds for the case s=k.
Then, for B(z; p) in (ii), all the roots of det B(z; p)=0
are greater than 1 in absolute values.

(Vi) For the case s<k, suppose that Conditions I
and I hold. Then, for « in (8) and B(1; p) in (ii),

a =B{(1;p) a(p).

Theorem 1 (i) implies that (10) or (16) is regarded
as an acceptable model to formulate cointegration in
the sense that the cointegrating rank is precisely
captured by the parameter of the model, and as
presented in Section 5, it also plays an important role
for estimation of the rank and the asymptotic
evaluation. That Ee, (p)=0, Ee,(p) v-1 =0 and Ek,
(PAY'-=0, i=

factor, although ¢, (p) are not ensured to be serially

1,:-*, p, may be another favorable

uncorrelated unlike e, Based on these matters,
(10)/(11) or (16)/(17) is regarded as a theoretical
representation for the VAR scheme of p-th order.
Notice that neither Conditions I nor I is needed to
establish rank « (p)=r. Similarly, without these
conditions, it is ensured by (iil) that any linear
combination of J'(p) €, (p) is of 1(0). On the other
hand, (iv) states that Condition I rules out
overdiffencing in the MA representation of ,(p): any
linear combination of ¢, (p) is of 1(0). Moreover, it
should be noted from (v) that the invertibility of (any
linear combination of) e, (p) itself is ensured by the
combination of Conditions I and II.

Before completing this section, we state some
relations or properties on « (p), some l.Ls. predictors
and their innovations which contribute to the
derivation of some of the asymptotics and are similar

to ones in Johansen's (1988) Lemma 2:

Corollary 1 Suppose that y, is generated by (1)

with s<k, put

u(p)=Ay,—P(Ay, | Ay i=1,,p),

Cm(P)=vr =P Ay i=1,, p),
Qp)=Eep)eip).  X,p)=Eu(p) uip),
2P = Eu(p) §ip), X () =X (P),

2P ZELp) §inp),

and let A\(p) >+ > A.(p) be the ordered eigenvalues
of

(BL@P) B ) Xy () «(p) (BL,(0) B)™,

with f3 and « (p) on (1) and (10). Then we have:

%.p)= LK (p: 0) AR p: 0),

%,(0)= YK ) AKp; D) i=0,1, (19)

with constant matrices K;(p; i) of kXk in

)= LK@ 0 e L)~ LK@ D
Q)= ()~ L, P8 B'E, PV ) B, 0. 20)

a(P)=X,P) B BE,P) A (€29)

1> 40p),  A@)>0. (22)

In connection with (20), notice that Q(p)= A +
Y, Bi(p) ABi(p), followed directly from (18) in
Theorem 1.

4 Information Criteria

Given T observations y,,***, y; in the DGP (1)
accompanied with (6), we shall discuss a statistical
procedure to estimate the cointegrating rank r. It is
constructed under each of the VAR schemes fitted,
expressed as (10)/(11) or (16)/(17) in the previous
section. For each p, we define the matrices/vectors
Y ., AY ., of TXk, with T=T—p—1 and—0=0, 7 of
X1, 7 (g) of TXq, with g=g, g+1, Z_\(p) of TX
(kp+q), Z \(p) of TX(kp+q+1), AZ \(p) of TXkp,
My(p), Mz(p) and M,(p) of TX T as

Y= s Yoo s Yol

AYL = [AYpsr—iy AVprs—i* AVr-i]

2=+ p+3) 7

i=0,1,p,
J=0,1,.4q,



t(@=[%, 7, T,

Z 1(0): %(q)r Z 1(p):[AY 17”'=AY m%(q)]

ifp=1,
Z.(0)= 7 (q+1), Z-(p)=[AY-,,* AY_,, 7 (¢+1)]

ifp>1,
AZ_(p)=[AY-,, "+, AY_,] ifp>1,

MAP)=E—Z.(p) (Z':4(p) Z-4(p)) " Z1(p),
Mi(p)=Ti—7-(p) (Z2.(0) Z-:(p))* Z"(p).

MAZ(p):]f lfP:O,
=Ii—AZ \(p) (AZ\(p)AZ_\(p)) 'AZ " (p)
ifp>1.

We also let M (p) denote one of M,(p), Mi(p) or
M.(p), provided that it is not permissible for /7 (p) to
be M,(p) unless g,=C(1)u+ 0 holds with a k-
dimensinal constant vector g and that the choice of
M, (p) is allowed if and only if gy=g,=+1,=0
holds. Then, following the notations S; used in

Johansen (1988, 1992b, 1996), let us define S;(p) as

Su(p)=AY{ M(p)AYYT,
Su(p)=AY{ M(p)Y_ /T,
Sup)=Y", M(p) Y_J/T.

Sm(p) = S()’l (p),

Moreover, let /Ah(p) 2"'2%([)) and g?ll(p),"', g{?,,(p)

be the ordered eigenvalues of the equation

det{ A81(p) = Su(P)Sw (p)Su(p)} =0

and the corresponding eigenvectors, and with p.(p) <
=*< 6.4(p) as the ordered eigenvalues of Su(p),
diag{ p1"* (p),"** o' (p)} denoting the kX k diagonal
matrix and &(p),"*, &:(p) as the corresponding
eigenvectors. Then, as seen easily, A.(p),"**, A«(p) are

calculated actually as the (ordered) eigenvalues of

S ()Su(@)Sw (P)Su(p)Si(p)-

It should be noted that the above matrix and its
eigenvalues do not depend upon the scale on which y;,
+++, yr are measured.

The information criteria adopted in this paper and

related expressions are described in a unified form:

1 p)=Tlog det Q(i; p)+(2k+kp+ 5 +5)Cx,
(23)

where

Q(0; p)=Su(p),
Qs p)=Su(p) —Su(®) B P) B G; P)Sul®),
j: 1’...’ k* 1’

with
B =S @ @) dup)].

and {C;} is a sequence such that lim;.. C;>0 and
limraw% =0. Notice that the first term T log det € (j;
p) of the right-hand side of (23) corresponds to a
quantity on the residual moment matrix from reduced
rank regression or the concentrated log-likelihood,
regarding (10)/(11) as a VAR/VECM of lag order p
and cointegrating rank j and that 2jk+k*p+ % + % in
the second term corresponds to the number of
parameters « (p), 3, Hi(p), i=1,"**, p, Q(p). Each of
the information criteria yields an estimator of r
through minimization of /(j; p) with respect to j for
each fixed p and C;, and any of such estimators is
denoted as 7#(p) in a unified form, noting that 7#(p) is
realized as an integer producing the minimum of (j;

p) over the set J=1{0, 1,---, k—1}:

I(p); p)=min (: p). 24)
Noting that
log det Q(j; p)
=log{l,—det (j; p)Su(p)Si (0)Su(p) B G p)}
+ lOg det Soo(p)

= S log{1— A,(p)} +1log det Su(p)
i=1
and adding the quantity not dependent on j

— T3 log{1— A(p)} — T log det Su(p)
i=1 ) kl r
—(kpt+ L +E)c

to I(j; p), we also derive a simpler form:

T(:p)=—T ¥ log{l——A(p)}+2kC.  (25)

Since obviously minimization of I(j; p) with respect to
j provides the identical conclusion as that of I(j; p), we

have another definition of 7(p):

1(*(p); p)= rgijnf(i; p). (26)

In (23) or (25), each information criterion is

characterized by C; . It should be noted that C,=2 for
AIC, C;=log T for SIC and C;=2 log log T for HQ.



5 Asymptotics

In order to establish some asymptotic desirability of
7(p) in the previous section, ¢, in (1) are assumed to
be iid with finite fourth moments hereafter in addition
to the supposition put already. We also provide
notations on the Brownian motion: let the symbols =>
and W,(u) stand for weak convergence of probability
measures on the unit interval [0, 1] and a m-
dimensional standard Brownian motion of on [0, 1]
respectively, noting that W,(u) is distributed
pointwisely for each u as m-variate Gaussian with
mean zero and covariance matrix u 1, (for the detailed
definition, see Johansen (1996, p. 241) or Davidson
(1994, pp. 418, 442-443) e.g.), and with ¢ given on
(6), let us regard W,(u) and ¢.(q) on [0, 1] as

W, (u)=ue
=(ur, W) ()’

ifm=1,
ifm>1

and ¢(@)=, u, -, u"Y, q=¢q,q+1.

Lemma 2: Suppose that y, is generated by (1)
accompanied with (6), the notations on (1) and
(10)/(11) and the assumption stated above. Then we
have the following asymptotics on S;(p) in Section 4:

Su(P)=2(p) 0, (T, @7

B'Su(p) B=B"2,,(p) B OLT ™), ifs<k, (28)

Su(p) B= a(p) B'Lu(p) B+ OAT %) ifs<k, (29)
SP)Su(p) y D)=

FP)G( [ AW iw)G+ 2 (p) '0(p) 7

as T — © (30)

Su(p) y D7) =
R(Lp:0) FR( [ (G )7:a)G+ 0 07
as T — oo 31
BSup)yDH =
BRp D EP ([ (G Wiw)G+500: 1y
asT— o jfs<k, (32)

D7y Sulp) y ITID) = G( || W)W i(u)du) G

as T — oo

(33)

where & (p) is as in Theorem 1 (iil) with the
corresponding T (p), Y. ;(p) are as in Corollary 1, and
the matrices Di' of sXs, ¥ of kXs, O(p), G, G, K(1,
P, i), E, P and O(p; i), of k Xk, are defined as

Dy \=T 1”2

|

=1

if M(p)=MAp), s=1 and v ji,#0,
0
[s—l

if M(p)=My(p), s>1 and y | i, +0,

otherwise,

T—a+1/2
0

o) =(ZBE) A+ ZBE)A(- X C).

7 =10, y2] if M(p)=Mp) and y | i, #0,

=y otherwise,
G=(3"A0)",
G=ylj, ifMp)=Mp),s=1and y} 1,70,
_ { Vi fq 0 . }
0  AyrG

if M(p)=M,(p), s>1 and ' 1,#0,

=y'y G otherwise,
K(L; p; 0)= L Ki(p; 0), K(L; p; )= L Ki(p; 1),

F=[0(3'0)" ¢ (o' ifs<k,

=5(8"3)" ifs=k,
p=| & 0 <k
“lo wan A
=G if s=k,

0(p: 0)=( LK (p: 0) AC(D)

+XRE0A(-ZC)
0(p: D=(LK(p: D) AC() )
+ LK@ ha(- 1),

where ¢ is a column full rank constant matrix of kXr
such that ¢'6 =0 and ¢'AS8 =0, defined for the case
s<k, W(u) is formulated above, W.(u) is a standard
Brownian motion of r-dimension independent of W(u),

and W(u) is defined as

W) =Wu) if M(p)=M(p),



=) —( [ W) $i(q)du)
([ 9@ plg)du) ' ¢.(q)
if M(p)=M,(p) and y ' j1,%0,

= W)~ [ W) ¢(q)du)
([ 9@ pllq)au) " ¢.(q)
if M(p)=M(p) and y ! j1,=0,

=ww)—( [ W) g+ 1)du)
([ g+ 1) gllg+Dau) gu(g+1)
if M(p)=M:(p),

with W(u) and ¢.q), q=q, q+ 1, formulated above.

Note in (30) to (32) above that if M (p)=M,(p), s>1
and y 1 /1,70, the first column vectors of 7(p) 6 'O(p)
7, 0(@p; 0)7 and 8'O(p; 1) 7 are zero. We also notice
in Lemma 2 that if e,(p)=e,(i.e., H=0 for V,>p+1
in (8)), O(p)=0 holds since B(z; p)=I (i.e., B.(p)=0
for V. > 1), and it is seen that 7(p)=1, for ¢ (p) such
that 6'(p) 0 (p)=0'0. Then the limiting distribution of
the trace of T3'(p)Su(p) 7 (7 @) 7) " 'Su(p) & (p)
is equal to one for Johansen's rank test (under the
null), diversified by M(p) or .

Lemma 3: Suppose that y, is generated by (1) with
the same supposition as in Lemma 2. Then, for A(p)

given in Section 4, we have:

(1) For the case s<kandj=1,"-,r,
—log{1— 4,(p)} =0,
(—logfl— A,(p)}) *=0,(D).

(ii) Forj=r+1,*, k,

_ T,,:Z,:/H log{l— A(p)}=0,1),

(=7 3 togt1= L)1) = 0,0,
(ili) Putting
—log{l— A,(p)} =/ (M)
j:1,"‘, 7,
—Tlog{l— AP} =fiun (71 i) A)
if M(p)=M(p) and y | j1, %0,
h=1,",s,

otherwise,

= (A)

as some functions whose inputs are either elements of

A or (y! fi,)? as well as those, the functions are
asymptotically scale invariant to all the inputs in the
sense that for any nonzero real number c, the
asymptotics of f; (¢ \) or f; (¢ (y{ fi,)%, ¢ \) formulated
by convergence in probability or weak convergence of
probability measure are equal to those of f; (\) or f
((y 1) A) respectively, 1 >j > k.

Notice on Lemma 3 (1) that for sufficient large T,
00> —log{l— A\(p)} ==—log{l— A.(p)} >0,

which follows from (22) of Corollary 1, (4.36) and
(4.37) in the proof of Lemma 3. We also note that
rank o (p)=r of Theorem 1 (1) is indispensable for
the derivation of (—log{1— 4,(p)})'=0,(1), j=1,
-++, 1, as clarified in the proof of Lemma 3. Similarly,
rank 8'(p)B(1; p)=s of Theorem 1 (iii) is needed for
the derivation of (ii), although (=7 Y/ log{1— A,
(p)})":(),,(l) is unnecessary for the main results
stated below. Moreover, we may expect (iii) to have
effects as some boundary to the first term of (25)
expressed as— 1T Z::ﬁllog{l— Ax(p)}, although
neither ensured to be free of all the nuisance
parameters nor required directly for the main results

below. We now attain to:

Theorem 2: Suppose y, is generated by (1) with the
same supposition as in Lemma 2. Then, for /(p)

chosen by (26) in Section 4, we have:

lim Pr(F(p)=n=1  if lim C;=oc0,

(34)

lim Pr(A(p)>r)=1  if lim C;<oo, (35)

with the notation P, (+) denoting the probability.

Following the above theorem, #(p) chosen by an
information criterion satisfying lim;-..C;=©° such as
SIC or HQ converges to » with probability one, and
for 7(p) under a criterion characterized by limr..
Cr<oosuch as AIC, the probability of underestimating
r tends to zero as T increases, although overestimation
of 7 possibly occurs with nonzero probability. These
properties of consistency and overestimability are
completely conformed to the conventionality

including Aznor and Salvador (2002) on the



determination of cointegrating rank.

6 Monte Carlo Experiments

In this section we execute Monte Carlo experiments
on the cointegrating rank estimation based on the
methods such as AIC, SIC and HQ under each of
several finite lag order VAR schemes and the DGPs as
special cases of (1). The main purpose of the
experiments is to observe to what extent the
asymptotics established theoretically in the previous
section are preserved for finite samples. The DGPs in
Examples 1-3 below are of 4-variates systems (k=4 in
(1)) with e, as Gaussian with mean zero and
covariance matrix /; (i.e., A =1,), and it is assumed
that y_,=e =0, >0, 4=0, i > 2, and =0, with
the supposition that either &4 =0 or 4 =C(1) g0
holds, implying that 3"y,—1 =8, in (4) and that the
only allowable deterministic trend is one for g=1 in
(6). Each example consists of four DGPs identified by
fand g as scalar parameters, provided that whether the
DGP possesses a deterministic trend or not is decided
by the value of g. It will be also explained that the
DGP can be converted to a special cases of (1),
although not provided in a direct form as (1). On the
other hand, we suppose that p as the VAR lag order
takes 8 as the value at its maximum under each
estimation method: p possibly takes integers from 0 to
8. For each DGP, p and estimation method, an
estimate of the cointegrating rank r as a realized value
of 7(p) is produced. Calculating S;(p) in Section 4, we
adopt M (p)=MLp) for the case i,#+0 with ¢g=1 (or
1o+ 0), provided that

Z(0)= (1), Z.(p)=[AY-1, AT, T(D)]
ifp=1,

and M (p)=M.(p) for the case u,=0. Throughout all
of examples/DGPs, we ran 10, 000 replication of
experiments, and pseudo normal random variables
were adopted as elements of ¢, for actual calculation
of the estimates under 100, 200 and 500 of the sample
size T in each experiment. The method of estimating r
based on a consecutive application of Johansen's rank

tests (see Johansen (1996, p. 71) e.g.), simply denoted

as JT or JT*, was adopted as well as the information
criteria, For the critical values under the cases M(p)=
M,,(p) and M (p)=M.,(p), we follow Johansen's
(1996) Table 15.1 and 15.3 respectively.” All of the
estimators including those based on Johansen's tests

are denoted as 7(p).

Example 1: The DGP is: for t=1, 2,--+,

a-o

Ay=C() e+ (I,i—C(1)—0.8LL) e+ o,

(1—0.8L)
(35)
where
1 -2 0 0
. 1
c) = 0.3 0 0 e
-1 2 f o0d4f
—0.15 —=0.5 0.5f 0.2f
0.8¢g 0.8g
0 0.24g
1o = C(1) - ’
0 —0.8¢
0 —0.12¢g

with /=0.8, 1.6 and g=0, 1. It is obvious that (35) is
converted to a special case of (1). For any £, the VMA
characteristic equation of (35) possesses a pair of
complex-conjugate roots less than 1 in absolute
values, indicating that Condition II is not satisfied
and noting that other roots either greater than 1 in
absolute values or equal to 1. It is obvious that C(1) is
of rank 3, in other words, the cointegrating rank is 1.
We can also see that Condition I holds, constructing /3
and y based on the eigenvectors of C(1)C(1)’ and
noting that C(1) is given as

0 2 0 0
—03 0 0 0
—0.81,}/0.2
1 - 1—f —04f 1/
015 05 —05f 1—0.2f
in view of (35).

Example 2: The DGP is: for =1, 2,-++,
. , 1-L N
Ay={fy0'e (oo 170
—(L=0.38(8B) 7'y )L} et s, (36)

where



, (1 —01 -1 005
T2 1 2 —os5 )
gy o_ (L0 0 04

0 03 03 —07)°
1010
;o
F= <0 10 2)’
0.8¢ 1.84fg
1o ~0.824
po = [y = f9
0.69 —1.84fg
1.4g 0.412fg

with f=1.6, 2.4 and g=0, 1. We easily see that (36) is
a special case of (1), similar to the case of (35). Since
C(1)=f7yd", it is obvious that the cointegrating rank is
of 2 with /8 as the cointegrating matrix. The VMA
characteristic equation of (36) does not satisfy
Condition II owing to the existence of a pair of
complexconjugate roots. On the other hand, noting

that

Co@) = L—fyo'—(L—0.36018) 1 y'yd')z}

/(1—0.7z2),
CO)={L—BPBB) 1y 'yo'+(0.7/0.3)y "}
/(1—0.72)

in (2) and C(z)=CY(1)+ (1 —z)C?(2), it follows that
Apy'c)y—p'Cc®1)=0 and rank {(1/f)y'CH(1)—
B'C?(1)} =2. These results indicates the occurrence of
polynomial cointegration in the sense that any linear
combination of (1/f) y v, —B'(X,_, ») is of 1(0), i.e.,

the situation in which Condition I is unsatisfied.

Example 3: The DGP is: for =1, 2,---,

_ 3
A= aflyt L HAytite, 37
i=1
where
a = (-02,-02, -0.5, —0.2),
“gl = (17 17 171)7
0 02 02 02
- 0 0 02 02 7
0 05 0 05
02 02 02 0
0 0 02 02
H = 0 0 0 02 )
0 0 0 0
02 02 0 0

0 0 0 02
"0 = 0 00 O ’
0 00 0
02 00 0
& = (0.8g,0,06g, 14g),

with /=0.8, 1.6 and g=0, 1. (37) is a finite lag order
VAR. Notice that the constant vector g as g=1 is
linearly independent of fa . We see that the roots of

the VAR characteristic equation
_ 3
det{—fa pz+(1—z)(L— L Hz)} =0
i=1

are either equal to 1 having multiplicity 3 or greater
than 1 in absolute values. It can be also checked that
Assumption 43 in Banerjee et.al (1993, p. 147), which
is analogous to their Assumption B3 referred in
Section 3, is satisfied, constructing 6 and « in a
manner similar to for § and y in Example 1. These
results ensures that (37) can be converted to a special
case of (1) with the cointegrating rank 1 and that (37)
is the VAR in GRT (see Banerjee et.al (1993, pp. 148-
150) e.g.). On the other hand, in view of (1—L)a=0
and f3'uy=0 etc., it is derived that (£, —}*_ H.L)uo= fi.
Based on this, (37) is converted to a special case of (8)

as « =fa.

The tables below show relative frequency (or
probability) distributions for the estimators produced
from JT, JT*, AIC, SIC and HQ as the methods,
provided that JT and JT* correspond to 0.05 and 0.01
significant levels respectively. For each method, lag
order (VAR scheme) and sample size, we tabulate the
relative frequencies classified into three events,
corresponding to the occurrence of underestimation,
correct or consistent estimation, and overestimation on
the true rank value, denoted by the notations 'U', 'C'
and 'O' respectively. The numerical values in each row
are the relative frequencies for one method, one
scheme and three sample sizes. The first column of
each table lines up 0, 1,-+-, 8 for p , and in Tables 5
and 6, 3 as the true VAR lag order is suffixed by *.

Now, let us survey finite sample performances of

these estimation methods through the tables



comparatively. The frequency that each method
selects the true value strongly depends on the VAR
scheme/the value of p under 7=100 or 200, unlike the
large sample ones established in the previous section.
It is recognized that the increase of p tends to cause
underestimation more frequently although to what
extent it appears depends on the method/DGP. The
case in which a finite lag order VAR is exactly one in
GRT such as in Example 3 seems to produce relatively
good results throughout all the methods. The
performances of SIC and HQ are better than that of JT
or JT* throughout all the DGPs if any of suitable lag
orders in the sense that those are able to exhibit the
ability is adopted. In most of the methods and DGPs
except SIC in Example 3, the results for p=0 are far
from being satisfactory mainly owing to the
occurrence of overestimation. AIC tends to
overestimate the true rank than SIC or HQ, in concord
with the conventional on the information criteria. SIC
achieves accurate estimation with high frequencies
under p=1 to 3, but its performance is noticeably poor
under p=6 to 8 and 7=100 or 200, as clarified by the
occurrence of underestimation with high frequencies.
HQ seems to show the best performance among all the
methods on the whole if T is as many as 100 or 200.
On the other hand, as T attains to about 500, SIQ
shows remarkably accurate estimation with relative
frequencies close to one and it is robust for the

selection of p.

7 Discussion

We have discussed the issue of detecting the
cointegrating rank based on finite lag order VAR
schemes which are not derived from GRT and the
information criteria. It was established that based on
the result that the rank of a (p) in (10)/(11) or
(16)/(17) as the coefficient matrix associated with the
cointegrating relations is equal to the cointegrating
rank, estimating the rank by the direct application of
each of the information criteria can achieve the
conventional asymptotic desirability such as the
consistency under any VAR scheme even if the lag

order p is arbitrarily given.

Monte Carlo experiments in the previous section
generally show that the results on estimation brought
about by the information criteria are better than those
of Johansen's rank test, particularly under DGPs in
which GRT does not hold and the sample size T
attaining to 200. Observing the experiments wholly,
HQ seems to be favorable under T less than 200. On
the other hand, the results for T equal to 500 reflect the
asymptotics considerably, although those for p=0 are
not necessarily so in most cases. The accuracy of the
rank test is controlled by the significance level
constraint even if it exhibits its asymptotics. The
superiority of SIC or HQ under 7=500 is far more
noticeable compared with one for 7=100 or 200. In
particular, SIC sufficiently shows the consistency
property, and as a result, under 7 as many as 500, SIC
may be strongly recommended.

However, as observed in Monte Carlo experiments,
several theoretical conclusions for large samples are
not necessarily tenable under such finite sample size
as T=100 or 200. Then the performance of each
information criterion is different according to the
VAR scheme or its lag order denoted as p: some lag
order schemes lead to the true rank with high
frequencies, whereas others do not. We can also read
that any method possesses a tendency to select of a
smaller rank value as p increases, and it is guessed that
the effect of 'y, on the behavior of Ay, is absorbed
by that of Ay,—,, i=1,"**, p, as p is not so small and T is
not large, resulting in the weakness of the effect.
Similarly, the unsatisfactory results for p=0 may be
caused by that —log{l— A,:,(0)} is considerably
large in comparison with 2kC; even for j > r. Note that
this is not peculiar to the situation in which GRT does
not hold such as Example 1 or 2. We should not
overlook that even when GRT holds and the VAR lag
order is finite, the asymptotics do not sufficiently
appear under such finite samples, as observed for
Example 3.

The selection of an 'optimal' VAR lag order
(including the true lag order for such cases as Example
3) may be significant, particularly under 7 as many as
100 or 200, as stated above. It is well-established

based on the information criteria if GRT holds and T is



large, particularly for the case in which the lag order
of the VAR in GRT is finite. For the infinite lag order
case, Qu and Perron (2007) adopted not fixed p but p;
such that limy..p;= 0 and lim;..p; /T =0, i.c., a
lag order which increases at a slower rate than 7"* as T
goes to o, as the upper boundary for the lag orders
considered. In view of this, it may be reasonable to
select p either equal or less than such a number as the
boundary: the number is guessed to be at most 4 for
T7=100, 5 for 7T=200, 7 for T=500, noting that
100"#=4.64159, 200"#=5.848, 500*=7.9372.
Generally, the asymptotics in Section 5 are not
established under p which is 'large' in the sense that it

is not fixed but increases as T goes to ©°, and the

undesirable results of the experiments under such lag
orders as 4 to 8 seem to be owing to this. Under the
general situation in which GRT is not ensured to hold,
finding the optimal one or establishing a valid
procedure to achieve it is not easy even if T is large
and left to the future research.

The issue of inferring other parameters in (10)/(11)
or (16)/(17) after the rank is determined was not
discussed in this paper. It will not be so difficult to
show that under each scheme, using reduced rank
regression substituted by the estimated rank value
leads to some consistent estimation, since the rank can
be consistently estimated as discussed above.
However, constructing some practical hypothesis tests
on those may not be easy unlike in Johansen (1992a),
since it seems to be difficult to derive asymptotic
distributions which are free of nuisance parameters in
consequence of the existence of serial correlation of
the error vectors. We will leave the formal discussion

to future research.

FOOTNOTES

' Even some models/schemes with serially correlated error
vectors may be referred to as those using the term VAR
afterwards in this paper.

Following Davidson (1994, p. 23), ||F]|= {Zklzlf'f,}“ with
¢; as the j—th diagonal element of F of kX k.

For example, both 7, =e,+e-1and 7.=e—1.2e, are of
1(0) in spite of their noninvertibility, where {e} is a

sequence of serially uncorrelated random variables with

Ee=0and E¢}= o <0,

The term higher-order cointegration is used for the case
that »>1 and d=1 in Engle and Granger's (1987)
definition of cointegration.

For the coefficient vector of 1,7 as the deterministic trend
of the highestorder, it is often supposed that g,=C(1)z,
with a k-dimensional constant vector g. This implies that
as y, is cointegrated, zi,¢¢ as well as the stochastic ones
[6@)) (Z'h:l e/,) is removed in /3y, as seen by (4) and (6).
We use the common notation for H; in both (8) and (9),
although not necessarily identical in values. We may
interpret (8) and (9) to be nested models within the
framework of hypothesis testing for the cointegrating rank
like Johansen's test. A similar matter is applied to other
notations presented later such as H;(p) in (10) and (11).
This paper does not adopt more accurate critical values in
MacKinnon et.al (1999) since 1% critical values are not

available.
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Appendi x

Proof of Lemma 1: Suppose s<k. It is trivial by
the definition of 1.Ls. prediction that

P(EAy—|))=EAy—, V¥.>0,
PE Sy D=E Sy, (4.1
and that
P&y D=0 V.20, P@Bv|1)=0. (4.2
Noting

P(Ay, | 1)=P(Ay, | )+ P(EAy, |1) V>0,
P(By =& 1)=P(B, 1| 1)+ PEBY, 1| 1),

(4.1) and (4.2) lead to

Ayz—i_P(Awa l)szﬁi, V> 0:

By =& PRy =& )= (4.3)

It follows from the first relation of (4.2) as i=0 and
(A4.3) that

P(A;t‘ 1,/3')/171—/3'50’ Ayﬁi; l:1,,p)
=P(AVIBYs, Ay =1, p). (4.4)
Since obviously
P(Ay| L, By 1 — & Ay, i=1,, p)
:P(Aﬁ\ 1,,/3y1—1*‘ﬁ’50’ Ay;—,; i:1,"',p)

+P(EAY| L, By —B'&, Ay i=1,", )



and

P(EAy.| 1, B =", Ay i=1,"+, p)=EAy,
from (4.4) we derive
P(Ay| 1, By =360, Ay i=1,+, p)— EAy,
=P(Ay| Vi1, Ay i=1,""", ).
If s=k, by a similar manner
P(Ay| 1, Ay i=1,"*, p)—EAy,

=P(Ay| Ay i=1,, p).

(14) or (15) of the lemma is only a direct consequence
of the above relation for each case of s, and (16) and
(17) are derived straightforwardly by substituting
Ay — X0, w(t—iy, i=0, 1+, p, and By — 'Y~
A(t—1)—,
(10) and (11) respectively.

'&, for Ay,—,, i=0, 1,-*-, p, and B'v,—, in

Next, with the notations on (1), define the k-

dimensional series W, ,, i=0, 1,-*, and 7,(p) as

B

W= _
{ v A

} o (OY=W =PI,

2P)=W—PW|BVipr, Wiy i=1,,p), ifp>1
if s<kand

We'i= Ay, 7(0)=W,
7(P)=W—PWI|W.;i=1,,p)ifp=1
if s=k. Note that 7,(p)=e.(p) if s=k.

The following two lemmas are used in the proof of

Theorem 1:

Lemma A.1 For the case s<k, with 3, v, « (p) and
H{(p) on (1) or (10), let H(p) be k X k matrices

constructed as
e =2 [+ « 2.0
+H@BBB " v 7)),
Ao=[2 Jmeses . v 6

—H,(p) [BB) ", 0]),

i=2,,p, p>2,

Ao =[2 Jmowes 0 pz1

Then, with W, and 7.(p) given above and &,(p) in (10),
we have:

Pl

W= L H@W-+9.p),
o
(L= EH6) 767 @)

«w=—[%] =zAe)g}

(4.5)

p+l

Ii— ;1‘7,([1):

A.7)

%(p):[/j',] &(p). (4.8)

Proof: It suffices to show only the case p > 1 since
the case p=0 are trivial.
Using

BAy-=B A, L=RBEE) Bty ()Y
and multiplying [, y]'to both sides of (10), we obtain

)= ) o s )
+% [ﬁy] (H(p)—Hi(p) BCB) ™,
+5 L)1y oy
- [ﬁy] Hy(p) BCBBY B +[ﬁy Lo

Using 8'Ay,-1=/3"Av,-, again in the above relation with

some arrangements leads to

pt1 _ ,
W= zH,(p)m,+[ﬁy ,]5[@). o)
i=1
It is easy to see
P(W‘ﬁ'\/ﬁp,l, VVr,,; l:].,,p)
=P(W,| V-1, Ay—i; i=1,", p),
which, together with P(8'v, 1|V, Aprs i=1,",

p)=p"v1 as the nature of the 1.Ls. prediction, Av,=Ay,
and the definition of «,(p), derives (4.8). (4.5) follows
immediately after (4.8) is used in (4.9).

For (4.6), using the definitions of H,(p) and noting

[~ a(p)z 0]



== a(PLA=DBER) A=L), y ('7) 'L

we obtain

(.= A L)W,
=[/’;,](f « () BN — L)+ I — él—l,(p)L'
C[BBR) ALY, v (' y) W,

which requires

L= ”f H(p)z'
2wz 0+ 2 1= £ =)
AR A=), v ()7
Substituting 1 for z in the above equation is followed

immediately by (4.6). (4.7) is only a direct

consequence of (4.6).

Putting

H(p):H(p)7 izl’u'apa pzl, [jlp‘l(p):()

for the case s=k, it is obvious that (4.5) holds for any

S.

Lemma A.2 For H.(p) given in Lemma A.1 and

subsequent statement, all the roots of

p+1

det (L— X, H(p)z')=0
i=1
are greater than 1 in absolute values.
Proof: For p > 1 and i=0, 1, define W,._,(p) of

(kp+r)X1, 7V71(p) of (kp+r)X1, H(p) of (kp+r)X
(kp+r) and H(p) of k(p+1) X k(p—+1) as

Wi
Wi_iza
Wiilp) = : if s<k,
Wtfz'fp+1
ﬂ’vtfifp
Wi
Wisioa ‘
Wi_i(p) = . if s=k,
Wicispan

7(p)=[71 0,01,

Hi(p) : prl(p) Hp(p) Hp+1:1(p)
[k
H(p)=
0 I 0
I. 0
if s<k,
with

A=A [ )= [2 [ ssm.

H(p) H,1(p) Hyp)
_ Iy,
H(p) =
0o, 0
if s=k,
Hi(p) -+ Hya(p) Hy(p) Hypr(p)
Iy
H(p)=
0 I 0
I

Then it is easy to see

det (1,— EFL@)zf):det (v +Hp)z).  (A10)
It also follows that

det (L, — H(p)z)=det (I,.,— H(p)z). (A.11)
On the other hand, put

l':

Wl 0=
HO)=1+"a (0)

0,1, 7(0)=[I, 0]7.0),

if s<k and

Wei(O)y=W_=Ay.-, i=0,]1,
;]/(O): ;1(0): E/(O): H(O):O

if s=k in order to incorporate the case p=0 into the

framework using W,(p). If s<k, note
det (1,— H,(0) ) =det (1,— H(0)2)

in view of Lemma A.1.

Using the notations above, (4.5) is rewritten as
W.(p)=Hp)W,(p)+ 7.p). (4.12)

It is easy to see in view of (1) to (5) that W,._,(p) is



weakly stationary, purely nondeterministic and

ergodic with mean zero. Therefore, we can let

Rw(0; p)=EW _((p)W,-(p), Rw(1; p)
=EW.()Wi-(p)

with the existence of the inverse of Ry(0; p). Since E
7.(P)W.-(p)=0 by definition, it follows from (4.12)
that

ﬁ(p) :Rw(l§ P)Rﬁl(o; ),

which, together with (4.10) and (4.11), implies that
the equation

P+l

det (1,— X H(p)z')=0
i=1
is equivalent to

det (Rw(0; p)—Rw(1; p)2)=0. (4.13)

Now, consider z satisfying (4.13). Suppose that z is
nonzero and real, noting that (4.13) does not hold for
z=0. Then there exists a (kp+7r)X1 real vector b+0
satisfying

b'(Rw(0; p)—Ru(1; p)2)=0,

which leads to

1 b Rw(l;p)b.
Y Rw(0;p) b
Since z ! is exactly the first-order autocorrelation
coefficient of b'W,(p) which is is weakly stationary,
purely nondeterministic and ergodic with mean zero, it
must be satisfied that |z| >1.
Next, suppose that z and z are a pair of complex-
conjugate roots of (4.13). Then we can find (kp+r) X

1 complex vector b and b satisfying

b'(Rw(0; p)—Rw(1; p)2)=0,

With i denoting the imaginary, (kp+r) X1 real vectors
b; and real numbers z (j=1, 2) such that 5,0 for at

least one j and z,#+ 0, we can let
b=b,+ib,,

z=ztiz.

Since both real and imaginary parts of 5'(R»(0; p)—

Ry(1; p)z) must be zero, we have

biR(0; p)=(z:b1—zb))Ru(1; p),
béRw(O; D)= (Zlb2,+zzb1')RW(1; D),

which requires that either 5,+0 and z:6,—z:b,F0 or
b,#+0 and zb,+z,b, holds. Noting that (z:b]—
205)Rw(0; p) (z:01—z:b,) and bIRW(0; p)b, are the
variances of (z\bi— z:b5)W.(p) and bW, (p)
respectively and that (z:b{—z:b5)Rw(1; p)b: is the

covariance of those series, we have

(26! —zb9)Ru(1; p)bu|”
< (28b1R(0; p)by+ZbIR(0; p)b.
—222,b:Ry(0; p)b) (bR (0; p)by).

Similarly,

[(z:b:+2b1)Rw(1; p)b2|*
< (bR (0; pYbat22b1 Ry (0; p)by
+ 22,25, Ry (0; p)b)(b Ry(0; p)by).

In view of the restriction on b, and the properties of the
series stated above, we see that at least one of the
above two inequalities holds strictly (i.e., one of the

sign < can be replaced by <). Consequently,

(b1 Rw(0; p)by + b3 Ry (0; p)bs)
<(28+25)(b! Rw(0; p)b,+ b5 Ry(0; p)b2),

which requires |z| > 1.

Proof of Theorem 1: (4.7), together with rank
(Ik—Z’::H,-(p)):k following from Lemma A.2,
immediately leads to (1).

For (ii), put H(z; p)=15,—Y" H/(p)z". Then (4.5) is

written as
H(L; p)W:= 7.(p),

and it follows from (5)/(1) and (4.8) that

cor= 7] Aw P e
ifs<k, (4.14)
e(p)=H(L; p)C(L) «.. ifs=k. (4.15)
Putting
CN— B = [BCY2) -
B(Za P) }” H(Z, p) y ,C(Z) lfS<k,
=H(z; p)C(2) ifs=k

and noting that F(0; p)=C(0)=1, C"(0)=Ik—y o',



the supposition on C; in (1) and rank H(1; p)=k by
Lemma A.2, it is easy to see that all the requirements
for (ii) are satisfied.
For (iii), to obtain the result for the case s=k is
trivial since B(1; p)=H(1; p)C(1) in the proof of (ii).
For the case s <k, with regard to (10), define A(z; p)

as
A p)=— a () fzH (=2~ LH(p)z)
== a(p)B'+1—2) A%z p),
with A%(z; p)=1L+ a (p) f'—Y."_ Hi(p)z'. Recalling
that 8v,='(y,— &), noting that (1 —L) &=§&— &=
0 and using (18), (10) is written as for t =p+2, p+3,

s

A(L; p) = §0)=B(L; p) e (4.16)
On the other hand, based on both sides of (3)
multiplied by A(L; p),

AL PG~ )
=4 p)COFA=DED)(X ).

Recalling that 8'C(1)=0, the above relation is

converted to

A(L; )y — &)
=492 p)C)— « (p) FCUL)) €,
+AYL; p)COLY1—L) e, (A4.17)

Equating the right-hand sides of (4.16) and (4.17), we

obtain

B(z; p)=A4"(z; p)C(1) ~ a (p) B'C(2)
+(1—2)4%Gz; p)C(2),

which is followed by
B(1; p)=A49(1; p)y 70" a (p) f'CH(1).

In view of the definition of AV(1; p), we see from the
above relation that for any o (p) satisfying the

requirements for (iii),
SPIBL =0 pL— LH(p)y w0t (419)

On the other hand, (4.6), together with Lemma A.2,

requires that

rank [ a (p), (Ik - é H:(P)) 7] =k,

which ensures that there exist Pi! and P, as s Xs full

rank and »X's matrices respectively such that
(L= SHE) 7= 00) P+ « () Pe.
This in turn implies that
@1 S HE)y

is full rank. Since 7 is also full rank by definition, it

is established that

rank 6’(p)(ka iH(p))y T=5s.

Putting
F=0p) i~ LHE) =

(4.18), together with the rank value of 7 (p) derived
above, completes the proof of (iii).

Next, move to the proof of (iv). The construction of
B(z; p) in the proof of (ii), together with Lemma A.2,
implies that rank B(1; p)=k if and only if Condition

I is satisfied. This, together with the form of J(p)
satisfying the requirements for (iii), establishes that ¢
takes the form required for (iv).

It is easy to establish (v) in view of the construction
of B(z; p) in the proof of (ii) and Lemma A.2 as well
as Conditions I and II.

For (vi), with regard to (8), define A(z) as
4@)=— apz+(1—2(h— S Hz).

Noting A(z) above, A(z; p) in the proof of (iii) and B(z;
p) in (ii), for t=p+2, p+3,---, (8) and (10) are

written as

A(L) ;/:517
A(L, p)y=B(L; p) e

(4.19)
(4.20)

Based on (4.20) and the validity of B !(z; p)

established in (v), we have the following

representation:

B(L; p) A(L; p) y=e.. (4.21)
It follows from (4.19) and (4.21) that

AL)=B"(1;p) A(1; p). (4.22)

Since A(1)=—a ' and A(1; p)= — « (p)f' in virtue of
(8), A(z) above, and A(z; p) in the proof of (iii),



multiplying both sides of (4.22) from right by —
SB(BB) ! provides the result for (vi).

Proof of Corollary 1: For the purpose of
simplicity, we shall write )’ (p) as Y. hereaafter.
Based on the definitions of u,(p) and &,-.(p), we easily
find kX k constant matrices K;(p; i) stated, which
immediately leads to (19). In view of the definition of

L.Ls. prediction,

(4.23)
(4.24)

u(p)=ep) T P(Ay| B'E -1(p)),
BEAD)= T )T PSY u(p)),

where
é:f 1(p):Vf 1_P(Vr I‘A;r z;i:O, 1;'"7P)y

with the notice that £ &, (p)u/(p)=0. Noting that
EAyi §i(p) =0 and EAy.—, ui(p)=0, i=1,", p,

we also see

PAY IS E () = Pu(p) B E-(p))
=L BBL PR p), (4.25)
P(SV| (@) =P(B'E ()| w(p))

:ﬁ ,zmz golu’(p)' (A 26)

Then (20) follows immediately from (4.23) and
(4.25). Evaluating the predictions of all the terms of
(10) onto {Ay, ;; i=

For the remainder of the proof, put

1,--+, p}, (21) can be also derived.

S =EE () E ).

Evaluating the covariance matrices of both sides of
(4.24) and using (21) in (4.26), we have

B B=RE BB, B P)Y a(p) B, B
(4.27)

Since u.(p), 8'¢.-\(p) and B'E,\(p) are purely nondeter-
ministic in terms of Wold decomposition, } , Z;OI,
BB andﬁ'iuﬁ are all positive definite. Putting this
with (4.27) and rank « (p)=r together, we see that
ﬁ’zuﬁ—ﬁ'inﬁ is positive definite as well, and thus it
is established that both

L=(BE B BS, BOBE B

and

(BB BE BB L

are positive definite, which implies (22).

Proof of Lemma 2: We first note that this lemma
can be proved in the same manner as in the
counterparts of Johansen (1988, 1995) essentially,
although not applicable directly to some of the results.
In the proof we shall state only the Ooutline under the
case M(p)=M.(p) which is expected to be more
complicated. For the purpose of simplicity, let us write
S;(p) and M(p) as S; and M, respectively, and suppose
that i below can be any integer in {0, 1,-*-, p} unless
specified newly. Let AY_,, E, and S-, be TXk

matrices, given as

AYL,= [A)_/p+2—i, Aypﬂ—,,' o A}r—,],

Ei=[ept2, €y, €1,

p+1 p+2

st=[Ten Yew
W=l a1

-1
Z 5/7]5

h=1

let AZ \(p) and M: be TXpk and T X T matrices

respectively, given as

AZ \(p)=[AY-,, ", AY ],

Me=1r= 2 (@D 79D (@) #@) F (@D (@) *

D7(q) 7(9),

with the (g +1) X (g + 1) matrix

D*Tl(q) :dl'ag{Tfl/Z’ T*.?/Z,. . ., T*q‘f’l/?} N
and put

r=cy(s+i).

Next, for i, i'=0, 1,*-, p, let w,—, and 1, denote
any linear combination of Ay,—;, vi—i, viei(p), €i—» &(p)
and (Ay/-1,'**, Ay/,). Note that any of those series is
weakly stationary and ergodic with mean zero and that
therefore there exist constant matrices K., such that

vvvﬁ,:ziok/;“ ;. Letting

W—’i:[WpHﬁ, Wpt3—is" " erf],
o= Uproiy Uprs—in"""s MT—;’]

and ¥,=(S_,+ 7, ') C'(1) and noting



M;=M: ifp:(),
=M:—M:AZ(p)AZ'(p) M:AZ (p))!

AZ'\(p) M: ifp>1,

we can see from (1), (3), (16) and the constructions of

S; that evaluating the asymptotics of the quantities

W' M:U T, W' M: t,/T",
(AZ'\(p) M:A Z(p)/T) ™, E§M:¥-,y DT,
D4y V' M: Y,y DHT?,
(Wi—W') M: ¥,y DT,

suffices for the required results. It is not so difficult to
achieve it since these quantities are constructed only
by weakly stationary and ergodic time series,
deterministic trends and partial sums and the well-
known statistical theory can be easily utilized for

those. In fact, deriving the results

Wz, /T2 =0,1),
(D(9) #(9) # (@D (g) =0(D),
S HITH2=041),

(Wi— W) /T 2=0 T %), Vj=0, (4.28)

related on the deterministic terms is trivial and the
standard statistical theory for weakly stationary and

ergodic processes, together with (4.28), shows that

W' M: U JT=W' U ./T+ 0T

=Rai(i'— i)+ O(T ™), (4.29)

where Rii(i'—i)=Ew,u/-. It also follows from
(4.29) that

(AZ'\(p) Mz AZ - (p)/T)*=0,(1).

However, there are some points it should be explained
particularly for the framework in this paper. One
notice should be turned to that not conventional ¢, but

e(p) are used to construct some quantities. As a
related matter, we will pay attention to the asymptotic
property of (W{— W"\) M: Y_,y D;/T: we see that E w
. ¢! becomes Ko, A if i=0 and 0 if i > 1. It is also

obvious that
(Wi—wn) s,y 7 /T

= {wr(ge;)mc’(lﬁ — i ( z e)TIC) Y

h=1

—('S W ey

t=p+1
Thus it follows from (4.28), (4.29) and the definitions
of Mz, Y ., v and D that

(Wi—W") M: ¥,y D/T

=—Ku, AC(1)y +O,(T 7). (4.30)

On the other hand, it is established by Park and
Phillips (1988, 1989) etc. that as T increases,

F(P)8'e T = T (p)GAWT),
C(De VT = ydW,HT),

dWt/T) )

e/NT j>ﬁ]3(dW,(t/T)
y'C(1) (Zl &=)IVT = y'y GWUT),

For the case y{C(1) g¥0, it is also shown that as 7

increases,

Dy COI( B e+ e/ VT

= }_,r C(l)(,g €h)/ VT +0,(T o7
+(y1CQ) @) (¢/T+, 0)' => G W(H/T).

Based on the above results, we obtain

TN S'ESM: Y. yD T =
)G ( [ dww) Wiw) G
asT— oo, (4.31)
C(1) (E{ M: Y-, yDHT) =
y <G ( [ dmw) Wiw) G
as T — o0, (4.32)

E{M:Y ,yD}T=>

F}_’( /O‘(dW(u)

dm(u)) Wiu) G

as T — 20, (4.33)

Dy V. M: YV yD AT =
G( [ () Wiuydu) G
as T— o0, (4.34)

All the results required for the lemma follow from
(4.28) to (4.34).

Proof of Lemma 3: Similar to Lemma 2, the



results claimed by (1) and (ii) are essentially the same
as in Johansen's (1988) Lemma 4 and 6 except that
this lemma is under more general suppositions and
shall be proved using arguments similar to in such
lemmas. First, notice that the equation det{ A.S;,—S

So Soi} =0 is equivalent to

det{\ { B'Sup ﬁ/Sn'YD{"l/TI/Q }

Dr'y'Sup/T'? Di'y'SuyDy'/T

_ B'S10550 So1 3
D7y 8105 Son B/ T2

B'S10Se0 Sory Dyt /T2 —0
D;l’}/SloS&)ISOl"y’D;I/T o

(4.35)

In view of (27) and (31) to (33), A satisfying (4.35)

must be a root of either
det{ AD+ y'Syy D7 /T+O,(T 1)} =0
or
det{ AB'Si B—L'Sio Sot S 4T G 1(2)} =0,
with
Gr(N=T{ 3 270,
+ X AI0T )+ X A 0T ).

This implies that A Wp)=0,(T "), h=1,", 5. Letting
A,(p), j=1,"++, r, be the roots of detf{ A8'Sy f—S'Sw
So S B} =0, it is not so difficult to show that

Ap)=A,)+0T Y j=1,r (4.36)

Using (20), (21) and (27) to (29) and recalling A;(p) in
Corollary 1, it is also established that

A= Ap)HOT ) j=1r (4.37)

(4.36) and (4.37), together with (22), ensures that (i)
holds.

For (ii), notice that

(TA@)} 2T A} ' 2 2 {T Ap)}

are the ordered eigenvalues of the equation
I T
Dy'y'Sup/T DTl”/Sn“/DTl/T
8’10500 Son B B'S10500 So1v D7
{D}lq/SwS&}Smﬁ D}l“/slos(i)lsm”/D?l}

=0 (4.38)

Following an argument similar to used in the proof of

(1) and putting

Br(u)=D7 7SSl So B B'Si0 St Sor )"
/J),SwSoolSol}’D 7+ g,u O(T),

(4.38) accompanied by (28) and (32) establishes that
{T/Al,.ﬂ(p)}’l, h=1,-+-, s, are the roots of the

det{D7 7'Su ‘nyrl/TfluDirl Y 'S10S0¢ Sox }’D771
+ uBr ()} =0.

Putting

O=(D+7 'Sy DAIT) 2 D7 7'Siy S
{4e—Sor B(S3"S10Sod Sor 8) 'S0 o }
* Si }’Di'/l(Di'r1 Y 'S }/Df,-'/T)flr2

and letting J,417(p),"**, ¥+, 7(p) denote the eigenvalues

of 0, it follows that

{TA(p)} = { 5o (p)} '+ OLT )
h=1s, (4.39)

similar to (4.36). It is ensured from (27) to (29), (30)
and (33) that that O and O ! are of O,(1). This,
together with (4.39), completes the proof of (ii).

For (iii), put

O=(B'Su B) " B'S1y.Sod S B(B'S11 JB) .

It is obvious that A,(p), j=1,--, r, are the eigenvalues
of 0. Since O is asymptotically scale invariant to A
and O is in a similar condition in view of (19) and
Lemma 2, we attain to the required result via (4.36)
and (4.39).

Proof of Theorem 2: By definition we have

Pr(F(p)<r)= Z Pr (7(p)=j)
< z; Pr(1G: p) <175 p))

>

5 pp (LG

—miﬂlog{l— A0)).

Recalling that —log{1— A(p)}>-->—log{l—A,(p)}



>0, we see

2(r—HkC;
T

Pr( > = ¥ log{l— A(})

5Pr(2kTC" > —log{l— A.(p)}.

Since limpw%r =() by definition, it must be required
by Lemma 3 (1) that

tim py (2 ECr

T—>c0

> = % log{1= A(p)})=0
J=0,,r—1
Hence
lim Pr((p) <r) =0, (4.40)

which implies (35).
On the other hand,

PHE@)>N= T Pr()=))

< ilPr(T(j;p)Sf(r;p))
=% Pr(= 3 Tlogll= 20}
> 2(— Pk Cy).
In view of Lemma 3 (ii),
lim 3 Pr(= 3 Tlog{l=A(p)}= 26—k C;)=0
(441

must hold if lim;... C;=00. (4.41), together with
(4.40), implies (34).



Table 1
DGP : (35) with g=0 in Example 1; M(p)=M,,(p) in S;(p)

JT 0.0452 0.4993 0.4555 0.0004 0.6422 0.3574
JT* 0.1391 0.6172 0.2437 0.0064 0.7992 0.1944
5 AIC 0.0017 0.5003 0.498 0 0.5819 0.4181
SIC 0.5713 0.426 0.0027 0.1552 0.8431 0.0017
HQ 0.0826 0.8104 0.107 0.0005 0.9174 0.0821

0.7021 0.2979
0.8402 0.1598
0.6296 0.3704
0.9989 0.0011
0.9534 0.0466

IT 0.0556 0.4827 0.4617 0.0029 0.6575 0.3396
JT* 0.1584 0.6001 0.2415 0.0238 0.7996 0.1766
6 AIC 0.0048 0.5031 0.4921 0 0.598 0.402
SIC 0.6008 0.3966 0.0026 0.3185 0.6805 0.001
HQ 0.1115 0.7887 0.0998 0.0048 0.9315 0.0637

0.7396 0.2604
0.8675 0.1325
0.6699 0.3301
0.9996 0.0004
0.966 0.034

IT 0.0565 0.4645 0.479 0.0116 0.676 0.3124
JT* 0.1594 0.5912 0.2494 0.0557 0.7946 0.1497

0.7883 0.2117
0.9054 0.0946

/=038 =100 T=200 T=500
p 7(p) 8] C (6] 8] C O U C (0]
IT 0 0.1399 0.8601 0 0.1777 0.8223 0 0.2199 0.7801
JT* 0 0.2282 0.7718 0 0.2884 0.7156 0 0.3295 0.6705
0 AIC 0 0.1042 0.8958 0 0.1377 0.8623 0 0.1685 0.8315
SIC 0 0.5994 0.4006 0 0.7408 0.2592 0 0.8585 0.1415
HQ 0 0.2978 0.7022 0 0.4058 0.5942 0 0.5241 0.4759
JT 0.0002 0.3964 0.6034 0 0.4745 0.5255 0 0.5357 0.4643
JT* 0.0023 0.5447 0.453 0 0.6254 0.3746 0 0.6771 0.3229
1 AIC 0 0.3293 0.6707 0 0.3961 0.6039 0 0.4611 0.5389
SIC 0.0199 0.8858 0.0943 0 0.9422 0.0578 0 0.9757 0.0243
HQ 0 0.6362 0.3638 0 0.7467 0.2533 0 0.8252 0.1748
JT 0.0093 0.5718 0.4189 0 0.6659 0.3341 0 0.7166 0.2834
JT* 0.0452 0.709 0.2458 0 0.8104 0.1896 0 0.8483 0.1517
2 AIC 0 0.511 0.489 0 0.5941 0.4059 0 0.647 0.353
SIC 0.2479 0.7385 0.0136 0.0002 0.9918 0.008 0 0.9987 0.0013
HQ 0.0038 0.8381 0.1581 0 0.9065 0.0935 0 0.949 0.051
IT 0.0208 0.5912 0.388 0 0.6906 0.3094 0 0.731 0.269
JT* 0.0954 0.7068 0.1978 0.0003 0.8321 0.1676 0 0.8608 0.1392
3 AIC 0 0.5528 0.4472 0 0.6232 0.3768 0 0.6587 0.3413
SIC 0.4614 0.535 0.0036 0.0069 0.9898 0.0033 0 0.9993 0.0007
HQ 0.0223 0.877 0.1007 0 0.9293 0.0707 0 0.955 0.045
IT 0.0341 0.5355 0.4304 0.0001 0.6499 0.35 0 0.698 0.302
JT* 0.1265 0.6494 0.2241 0.0013 0.8084 0.1903 0 0.8401 0.1599
4 AIC 0.0003 0.5193 0.4804 0 0.5909 0.4091 0 0.6261 0.3739
SIC 0.5377 0.4604 0.0019 0.0494 0.9482 0.0024 0 0.9989 0.0011
HQ 0.0528 0.8446 0.1026 0 0.9219 0.0781 0 0.9485 0.0515
0
0
0
0
0
0
0
0
0
0
0
0

7 AIC 0.0057 0.4958 0.4985 0.0001 0.6343 0.3656 0 0.723 0.277
SIC 0.5916 0.405 0.0034 0.4727 0.5267 0.0006 0.0004 0.9993 0.0003
HQ 0.1176 0.7778 0.1046 0.019 0.9334 0.0476 0 0.9764 0.0236




Table 1 (Continued)

JT | 00523 04399 05078 | 00245 06813  0.2942 0 0.822 0.178
IT* | 0.1476 0.57 0.2824 | 00967 07702  0.1331 0 09263 0.0737
AIC | 00051 04636 05313 | 00002 06544  0.3454 0 0.7636  0.2364
SIC | 05541 04421 00038 | 05779 04219 00002 | 00107 09893 0
HQ | 01122 07668 0121 | 00504 09146  0.035 0 09869 00131

=16 T=100 =200 =500
7(p) 18] C O U C (0] 18] C (0]

IT 0 02372 07628 0 02852  0.7148 0 03322 0.6678
IT* 0 0.3567  0.6433 0 04125 05875 0 04593 05407
AIC 0 0.1836  0.8164 0 0.2248  0.7752 0 0.265 0.735
sIC 0 07073 0.2927 0 0.8241  0.1759 0 09119 0.0881
HQ 0 04247 05753 0 05312 0.4688 0 06354 03646
JT | 00002 03831 06167 0 0.432 0.568 0 04777 05223
JT* | 00025 0526 04715 0 05785 04215 0 0.619 0.381
AIC 0 0.3208  0.6792 0 0.3637  0.6363 0 0.407 0.593
SIC | 00199 08856  0.0945 0 09335  0.0665 0 0.9695  0.0305
HQ 0 0.6221 03779 0 07132 0.2868 0 07885 02115
JT | 00075 04988 04937 0 05829 04171 0 0.6277  0.3723
JT* | 00354 06512 0.3134 0 07273 0.2727 0 0.7647 02353
AIC 0 04424 05576 0 05064 0.4936 0 0.5483 04517
SIC | 02212 07591 00197 | 00001 09836  0.0163 0 0.9945  0.0055
HQ | 00026 07862 02112 0 08475 0.1525 0 09031 0.0969
JT | 00155 05543 04302 0 0.6526  0.3474 0 0.7029  0.2971
JT* | 00824 06749 02427 | 00001 08013  0.1986 0 0.8371  0.1629
AIC 0 05136 0.4864 0 05834 04166 0 0.6279 03721
SIC | 04204 05729 00067 | 00056 09882  0.0062 0 09984  0.0016
HQ | 00173 08537  0.129 0 0.9091  0.0909 0 0.9469  0.0531
JT | 00316 05298 04386 0 0.6598  0.3402 0 07233 0.2767
JT* | 0112 06561 02319 | 00009 08223  0.1768 0 0.8556  0.1444
AIC | 00004 0511 04886 0 05992 04008 0 0.6488  0.3512
SIC 0.51 04869 00031 | 00426 09549  0.0025 0 0.9991  0.0009
HQ | 00482 08407 01111 | 00001 0928  0.0713 0 0.9586  0.0414
JT | 00405 05081 04514 | 00005 06709  0.3286 0 0.7414 02586
JT* | 01318 06302 0238 | 00057 08261  0.1682 0 0.871 0.129
AIC | 00012 05084  0.4904 0 0.6088 03912 0 0.6694  0.3306
SIC | 0557 04391 00039 | 01506 0848  0.0014 0 09992 0.0008
HQ | 00771 08205 01024 | 00003 09307  0.069 0 0.965 0.035
JT | 00508 04925 04567 | 00034 06808  0.3158 0 0.7745  0.2255
JT* | 01546 06092 02362 | 00259 08229  0.1512 0 0.8963  0.1037
AIC | 00047 05062 04891 0 0.6228  0.3872 0 0.7057  0.2943
SIC | 05902 04077 00021 | 03157 06834  0.0009 0 0.9999  0.0001
HQ | 01039  0.7961 0.1 0.0056 09426  0.0518 0 09749 0.0251




Table 1 (Continued)

JT 0.0539 0.4609 0.4852 0.0109 0.6912 0.2979 0 0.8068 0.1932
IT* 0.1525 0.5872 0.2603 0.055 0.8073 0.1377 0 0.9191 0.0809

7 AIC 0.0044 0.4852 0.5104 0.0001 0.6436 0.3563 0 0.7443 0.2557
SIC 0.5756 0.4209 0.0035 0.4611 0.5384 0.0005 0.0004 0.9994 0.0002
HQ 0.1114 0.78 0.1086 0.0194 0.9402 0.0404 0 0.9832 0.0168
JT 0.0507 0.4344 0.5149 0.0244 0.6855 0.2901 0 0.824 0.176
JT* 0.1405 0.5723 0.2872 0.0935 0.7795 0.127 0 0.9317 0.0683

8 AIC 0.0045 0.4576 0.5379 0.0002 0.6561 0.3437 0 0.7651 0.2349
SIC 0.5425 0.4516 0.0059 0.5689 0.4308 0.0003 0.0106 0.9894 0
HQ 0.1059 0.7664 0.1277 0.0484 0.9165 0.0351 0 0.9889 0.0111

Table 2
DGP : (35) with g=1 in Example 1; M(p)=My(p) as ¢g=1 in S;(p)
/=08 =100 7=200 =500

p | Ap) U C 0 U C ) U c 0
IT 0 0.1852 0.8148 0 0.231 0.769 0 0.2893 0.7107
JT* 0 0.3166 0.6834 0 0.3755 0.6245 0 0.4444 0.5556

0 AIC 0 0.0723 0.9277 0 0.0954 0.9046 0 0.1224 0.8776
SIC 0 0.6085 0.3915 0 0.7655 0.2345 0 0.8897 0.1103
HQ 0 0.2761 0.7239 0 0.388 0.612 0 0.5232 0.4768
JT 0.0005 0.5092 0.4903 0 0.6171 0.3829 0 0.6904 0.3096
JT* 0.009 0.6737 0.3173 0 0.7639 0.2361 0 0.8116 0.1884

1 AIC 0 0.2749 0.7251 0 0.3707 0.6293 0 0.4533 0.5467
SIC 0.0168 0.9003 0.0829 0 0.959 0.041 0 0.9833 0.0167
HQ 0 0.6322 0.3678 0 0.7673 0.2327 0 0.8562 0.1438
T 0.0232 0.6798 0.297 0 0.7822 0.2178 0 0.83 0.17
IT* 0.1009 0.7533 0.1458 0 0.895 0.105 0 0.9179 0.0821

2 AlIC 0 0.4531 0.5469 0 0.5566 0.4434 0 0.6265 0.3735
SIC 0.2097 0.7802 0.0101 0 0.9948 0.0052 0 0.9994 0.0006
HQ 0.0031 0.8309 0.166 0 0.9166 0.0834 0 0.9528 0.0472
JT 0.0516 0.6633 0.2851 0 0.7699 0.2301 0 0.8127 0.1873
JT* 0.1774 0.6973 0.1253 0.0006 0.8924 0.107 0 0.9109 0.0891

3 AIC 0.0001 04777 0.5222 0 0.5534 0.4466 0 0.5995 0.4005
SIC 0.398 0.599 0.003 0.0047 0.9928 0.0025 0 0.9994 0.0006
HQ 0.0168 0.8695 0.1137 0 0.9252 0.0748 0 0.9537 0.0463
JT 0.0631 0.5735 0.3634 0.0004 0.6855 0.3141 0 0.741 0.259
JT* 0.1865 0.639 0.1745 0.0048 0.8383 0.1569 0 0.8683 0.1317

4 AIC 0.0002 0.4121 0.5877 0 0.4619 0.5381 0 0.5089 0.4911
SIC 0.4785 0.5191 0.0024 0.0422 0.9535 0.0043 0 0.9985 0.0015
HQ 0.0383 0.8286 0.1331 0 0.894 0.106 0 0.9352 0.0648




Table 2 (Continued)

JT | 00625 04968 04407 | 00024 06212  0.3764 0 0.6965  0.3035
JT* | 01713 06146 02141 | 00128  0.7872 0.2 0 0.8467  0.1533
5 | AIlC | 0.0009 0.348 0.6511 0 03977 0.6023 0 04645  0.5355
SIC | 0492 05026 00054 | 01247 08713 0.004 0 09984  0.0016
HQ | 00535 07866  0.1599 | 0.0004  0.8746 0.125 0 09264  0.0736
IT | 00623 0.463 04747 0.006 05955  0.3985 0 0.6968  0.3032
JT* | 01732 05783 0.2485 | 0.0307 0.755 0.2143 0 0.8483  0.1517
6 | AIC | 00012 03158 0.683 0 03772 0.6228 0 04632 0.5368
SIC | 04903 05021  0.0076 | 0.2681  0.7298  0.0021 0 09987  0.0013
HQ | 00651 07503  0.1846 | 0.0043 0.866 0.1297 0 09331 0.0669
JT | 00634 04337 05029 | 00126 05947  0.3927 0 07226 0.2774
JT* | 0.1565 0.56 0.2835 0.058 07423 0.1997 0 08717 01283
7 | AIC | 00011  0.2849 0.714 0 03814  0.6186 0 04926  0.5074
SIC | 04659 05218 00123 | 03941 06035  0.0024 | 00005  0.9985 0.001
HQ | 0.064 07225 02135 | 00143 08717 0.114 0 0.9466  0.0534
JT | 00565 03956 05479 | 00262 05899  0.3839 0 0.7592  0.2408
JT* | 01388 05388 03224 | 00971 07167 01862 | 0.0001 0.897 0.1029
8 | AIC | 00007 02586  0.7407 | 0.0001 03943  0.6056 0 05313 0.4687
SIC | 0413 05685  0.0185 | 04987 04998  0.0015 | 0.0075 09921  0.0004
HQ | 00558  0.6844 02598 | 0.0303 08702  0.0995 0 09612  0.0388
=16 7=100 T=200 =500
p | #p) U C o U C o) U C 0
IT 0 05573 04427 0 06572 0.3428 0 0.7095  0.2905
IT* 0 0.7191  0.2809 0 0.7917  0.2083 0 08283  0.1717
0 | AlC 0 03346  0.6654 0 04235 05765 0 05024 04976
sIC 0 0.921 0.079 0 0.9658  0.0342 0 09811  0.0189
HQ 0 06824  0.3176 0 0.8044  0.1956 0 0.8701  0.1299
JT | 00018  0.6352 0.363 0 06906  0.3094 0 07133 0.2867
JT* | 00164 07654  0.2182 0 0.7988  0.2012 0 0.8112  0.1888
1 AIC 0 04161 05839 0 04733 05267 0 05124 04876
SIC | 00176 09322 0.0502 0 0.9655  0.0345 0 09812 0.0188
HQ 0 0.7483  0.2517 0 0.8093  0.1907 0 0.8548  0.1452
JT | 00329 06804  0.2867 0 0.7547  0.2453 0 0.7809  0.2191
JT* | 01256 07266  0.1478 0 0.8601  0.1399 0 0.8757  0.1243
2 AIC 0 05039  0.4961 0 05515  0.4485 0 05862 04138
sIC | 0.192 0.7964  0.0116 0 09901  0.0099 0 09967  0.0033
HQ | 0.002 0.8324  0.1656 0 0.8833  0.1167 0 0.916 0.084
JT | 00563  0.6667 0.277 0 0.7544  0.2456 0 0.7935  0.2065
JT* | 01804 06878 01318 | 0.0007 0.874 0.1253 0 0.8939  0.1061
3 | alc 0 04992 0.5008 0 05418 0.4582 0 05795  0.4205
SIC | 03604  0.6356 0.004 0.0035 09916  0.0049 0 09984 00016
HQ | 00125  0.8645 0.123 0 0.9057  0.0943 0 09421  0.0579




Table 2 (Continued)

IT 0.0592 0.5824 0.3584 0.0004 0.6827 0.3169 0 0.7288 0.2712
JT* 0.1799 0.6503 0.1698 0.003 0.8356 0.1614 0 0.8701 0.1299

4 AIC 0.0002 0.4246 0.5752 0 0.4572 0.5428 0 0.5077 0.4923
SIC 0.4497 0.5481 0.0022 0.0372 0.9591 0.0037 0 0.9987 0.0013
HQ 0.033 0.8314 0.1356 0 0.8903 0.1097 0 0.941 0.059
IT 0.0563 0.5017 0.442 0.0018 0.6033 0.3949 0 0.6753 0.3247
JT* 0.1604 0.6215 0.2181 0.009 0.784 0.207 0 0.8426 0.1574

5 AIC 0.0009 0.3516 0.6475 0 0.3861 0.6139 0 0.4463 0.5537
SIC 0.482 0.514 0.004 0.1187 0.8769 0.0044 0 0.9987 0.0013
HQ 0.0473 0.7922 0.1605 0.0003 0.8726 0.1271 0 0.9312 0.0688
JT 0.0596 0.4519 0.4885 0.0041 0.565 0.4309 0 0.6649 0.3351
JT* 0.1614 0.5844 0.2542 0.0225 0.7526 0.2249 0 0.8349 0.1651

6 AIC 0.0008 0.304 0.6952 0 0.3572 0.6428 0 0.4389 0.5611
SIC 0.4798 0.5126 0.0076 0.2611 0.7362 0.0027 0 0.999 0.001
HQ 0.0622 0.7493 0.1885 0.0043 0.8679 0.1278 0 0.9364 0.0636
IT 0.0578 0.421 0.5212 0.0108 0.556 0.4332 0 0.6758 0.3242
JT* 0.1441 0.5593 0.2966 0.0488 0.7278 0.2234 0 0.8475 0.1525

7 AIC 0.001 0.2704 0.7286 0 0.3511 0.6489 0 0.4486 0.5514
SIC 0.45 0.5371 0.0129 0.3773 0.6203 0.0024 0.0005 0.9988 0.0007
HQ 0.0568 0.7202 0.223 0.013 0.8681 0.1189 0 0.9479 0.0521
IT 0.0535 0.3977 0.5488 0.0222 0.5696 0.4082 0 0.7144 0.2856
IT* 0.13 0.5418 0.3282 0.0841 0.7133 0.2026 0 0.875 0.125

8 AIC 0.0009 0.2475 0.7516 0 0.3625 0.6375 0 0.4797 0.5203
SIC 0.3923 0.5876 0.0201 0.4855 0.5124 0.0021 0.0071 0.9925 0.0004
HQ 0.0505 0.6745 0.275 0.0274 0.8647 0.1079 0 0.9594 0.0406

Table 3
DGP : (36) with g=0 in Example 2; M(p)= My(p) in S;(p)
=16 =100 =200 T=500

p | #p) U C 0 U C 0 U C 0
JT 0 0.3912 0.6088 0 0.4226 0.5774 0 0.4412 0.5588
JT* 0 0.5408 0.4592 0 0.5669 0.4331 0 0.5881 0.4119

0 AIC 0 0.5591 0.4409 0 0.5864 0.4136 0 0.608 0.392
SIC 0 0.9242 0.0758 0 0.9505 0.0495 0 0.9772 0.0288
HQ 0 0.7635 0.2365 0 0.822 0.178 0 0.8628 0.1372
JT 0 0.7626 0.2374 0 0.815 0.185 0 0.8503 0.1497
JT* 0 0.8866 0.1134 0 0.922 0.078 0 0.943 0.057

1 AIC 0 0.8986 0.1014 0 0.929 0.071 0 0.9496 0.0504
SIC 0.0011 0.9972 0.0017 0 0.9997 0.0003 0 0.9999 0.0001
HQ 0 0.9807 0.0193 0 0.9916 0.0084 0 0.9985 0.0015

|
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I



Table 3 (Continued)

JT | 00004 08603  0.1393 0 08891  0.1109 0 0.9047  0.0953
JT* | 0.0058 09521  0.0421 0 09699  0.0301 0 0972 0.028
AIC 0 09674  0.0326 0 09769  0.0231 0 09782 0.0218
SIC | 03228 06772 0 0 1 0 0 1 0
HQ | 00068 09917  0.0015 0 0.999 0.001 0 0.9997  0.0003

IT 0.017 08225  0.1605 0 08615  0.1385 0 0.8781  0.1216
JT* | 00803 08704  0.0493 0 09567  0.0433 0 09586  0.0414
AIC | 00051 09566  0.0383 0 09651  0.0349 0 0.9661  0.0339
SIC | 07369  0.2631 0 0.0077 09923 0 0 1 0
HQ | 01143 08842  0.0015 0 09985  0.0015 0 0.9986  0.0014

IT | 0.1094 0.734 0.1566 | 00002 08522  0.1476 0 0.8667  0.1333
ITE | 02822 06706 0.0472 0.002 09468  0.0512 0 0.95 0.05
AIC | 00517 009111  0.0372 0 0.959 0.041 0 0.9597  0.0403
SIC | 09252  0.0748 0 0.1965  0.8035 0 0 0.9999  0.0001
HQ | 0.395 06035 00015 | 000490 09926  0.0025 0 09977  0.0023

JT | 01997 06527 01476 | 00067  0.8481  0.1452 0 0.8674  0.1326
JT* | 04261 05301  0.0438 | 0.0276 09228  0.0496 0 0.9506  0.0494
AIC | 01172 08509 00319 | 00012 09575  0.0413 0 09582 0.0418
SIC | 09572  0.0427  0.0001 | 05648 04351  0.0001 | 0.0006 09993  0.0001
HQ | 05661 04325  0.0014 | 0.0546 09432  0.0022 0 09977 0.0023

JT | 02218 06357 01425 | 00161 08561  0.1278 0 0.8811  0.1189
T | 0438 05226  0.0394 | 00659 08935  0.0406 0 09589 0.0411
AIC | 01433 08276 00291 | 00046 09621  0.0333 0 09677  0.0323
SIC | 09451 0.0549 0 0.7391  0.2609 0 0.0036  0.9964 0
HQ | 00167 05595  0.4238 0.133 0.8654  0.0016 0 0.9988  0.0012

JT | 02179 06407 01414 | 00309  0.8651 0.104 0 09085  0.0915
JT* | 0424 05352 00408 | 01122 08585  0.0293 0 09751 00249
AIC | 01418 08251  0.0331 | 00102 09672  0.0226 0 09811  0.0189
SIC | 09209  0.0701 0 08196  0.1804 0 0.0218 09782 0
HQ | 05545 04446 00009 | 02102  0.7894  0.0004 | 0.0001 09994  0.005

=24 7=100 =200 T=500
#(p) U C o U C 0 U C 0

T 0 06121  0.3879 0 0.6548  0.3452 0 0.6816  0.3184
IT* 0 0.7536  0.2464 0 07932 0.2068 0 0.8198  0.1802
AIC 0 0.7774 02226 0 08153  0.1847 0 0.8386  0.1614
SIC 0 0.9866  0.0134 0 09961  0.0039 0 0.9994  0.0006
HQ 0 09251  0.0749 0 09569  0.0431 0 0.978 0.022

JT 0 0.8794  0.1206 0 09126  0.0874 0 0.9268  0.0732
IT* 0 09659  0.0341 0 09756  0.0244 0 09833 0.0167
AIC 0 09723 0.0277 0 0.98 0.02 0 09876  0.0124
SIC | 0.001 0.999 0 0 1 0 0 1 0
HQ 0 09974  0.0026 0 09993 0.0007 0 1 0
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Table 3 (Continued)

JT 0 0.8493 0.1507 0 0.8732 0.1268 0 0.8839 0.1161
JT* 0.0003 0.948 0.0517 0 0.9568 0.0432 0 0.9595 0.0405
AIC 0 0.9596 0.0404 0 0.9659 0.0341 0 0.9666 0.0334
SIC 0.0709 0.9291 0 0 1 0 0 1 0
HQ 0.0003 0.9967 0.003 0 0.9978 0.0022 0 0.9989 0.0011

IT 0.0022 0.8175 0.1803 0 0.8359 0.1641 0 0.8461 0.1539
JT* 0.0133 0.9192 0.0675 0 0.9341 0.0659 0 0.942 0.058
AIC 0.0003 0.9458 0.0539 0 0.9459 0.0541 0 0.9506 0.0494
SIC 0.4211 0.5788 0.0001 0.0001 0.9999 0 0 0.9999 0.0001
HQ 0.017 0.9783 0.0047 0 0.9958 0.0042 0 0.9968 0.0032

JT 0.0442 0.7816 0.1742 0 0.829 0.171 0 0.8489 0.1511
JT* 0.1525 0.7869 0.0606 0.0003 0.9315 0.0682 0 0.9374 0.0626
AIC 0.0146 0.9359 0.0495 0 0.9432 0.0568 0 0.9479 0.0521
SIC 0.843 0.157 0 0.0508 0.9491 0.0001 0 0.9998 0.0002
HQ 0.1987 0.7979 0.0034 0.0006 0.9947 0.0047 0 0.9954 0.0046

JT 0.1153 0.7299 0.1548 0.0001 0.8495 0.1504 0 0.8619 0.1381
JT* 0.2835 0.663 0.0535 0.0038 0.9403 0.0559 0 0.9464 0.0536
AIC 0.0493 0.9086 0.0421 0.0001 0.9539 0.046 0 0.9559 0.0441
SIC 0.9063 0.0937 0 0.2703 0.7296 0.0001 0 0.9999 0.0001
HQ 0.3726 0.6254 0.002 0.008 0.9878 0.0042 0 0.9973 0.0027

JT 0.1473 0.7271 0.1256 0.0031 0.8921 0.1048 0 0.9032 0.0968
JT* 0.3421 0.6231 0.0348 0.0153 0.954 0.0307 0 0.9706 0.0294
AIC 0.0741 0.8976 0.0283 0.0002 0.9755 0.0243 0 0.9775 0.0225
SIC 0.9014 0.0986 0 0.4701 0.5298 0.0001 0 1 0
HQ 0.4375 0.5615 0.001 0.0288 0.9701 0.0011 0 0.9995 0.0005

JT 0.1544 0.7342 0.1114 0.0067 0.9093 0.084 0 0.9295 0.0705
JT* 0.3379 0.6336 0.0285 0.0308 0.9504 0.0188 0 0.9859 0.0141
AIC 0.0816 0.8959 0.0225 0.0014 0.9837 0.0149 0 0.9891 0.0109
SIC 0.8741 0.1259 0 0.5926 0.4074 0 0.0004 0.9996 0
HQ 0.4315 0.5679 0.0006 0.0622 0.9375 0.0003 0 1 0

JT 0.146 0.7253 0.1287 0.0131 0.8987 0.0882 0 0.9254 0.0746
JT* 0.3213 0.6418 0.0369 0.0584 0.9195 0.0221 0 0.9853 0.0147
AIC 0.0838 0.8845 0.0317 0.0041 0.9769 0.019 0 0.9882 0.0118
SIC 0.8505 0.1495 0 0.698 0.302 0 0.0077 0.9923 0
HQ 0.4089 0.5896 0.0015 0.1198 0.8801 0.0001 0 1 0




Table 4
DGP : (36) with g=1 in Example 2;

M(p)=M,(p) as g=1 in S;(p)

/=16 7=100 =200 =500
p #(p) U C O 8] C (6] U C O
JT 0 0.0896 0.9104 0 0.0964 0.9036 0 0.0929 0.9071
JT* 0 0.1929 0.8071 0 0.1962 0.8038 0 0.194 0.806
0 AIC 0 0.1455 0.8545 0 0.1499 0.8501 0 0.1478 0.8522
SIC 0 0.7299 0.2701 0 0.7871 0.2129 0 0.8706 0.1294
HQ 0 0.3989 0.6011 0 0.4552 0.5448 0 0.5324 0.4676
JT 0 0.5343 0.4657 0 0.6149 0.3851 0 0.6806 0.3194
IT* 0 0.7258 0.2742 0 0.7867 0.2133 0 0.8396 0.1604
1 AIC 0 0.649 0.351 0 0.7182 0.2818 0 0.774 0.226
SIC 0.0017 0.9854 0.0129 0 0.9966 0.0034 0 0.9996 0.0004
HQ 0 0.8889 0.1111 0 0.9493 0.0507 0 0.9815 0.0185
IT 0.0001 0.8123 0.1876 0 0.883 0.117 0 0.9246 0.0754
JT* 0.0019 0.9278 0.0703 0 0.9641 0.0359 0 0.9802 0.0198
2 AIC 0 0.8806 0.1194 0 0.9351 0.0649 0 0.9605 0.0395
SIC 0.0849 0.914 0.0011 0 0.9999 0.0001 0 1 0
HQ 0.0004 0.9834 0.0162 0 0.9975 0.0025 0 0.9993 0.0007
IT 0.0114 0.877 0.1116 0 0.9379 0.0621 0 0.9578 0.0422
JT* 0.0489 0.9144 0.0367 0 0.9827 0.0173 0 0.9884 0.0116
3 AIC 0.0012 0.9295 0.0693 0 0.9657 0.0343 0 0.9766 0.0234
SIC 0.3272 0.6725 0.0003 0.0002 0.9998 0 0 1 0
HQ 0.0212 0.9721 0.0067 0 0.9992 0.0008 0 0.9993 0.0007
IT 0.0615 0.8328 0.1057 0.0003 0.9359 0.0638 0 0.9526 0.0474
JT* 0.1785 0.7871 0.0344 0.0014 0.9783 0.0203 0 0.9844 0.0156
4 AIC 0.0103 0.921 0.0687 0 0.9603 0.0397 0 0.9706 0.0294
SIC 0.5972 0.4025 0.0003 0.0243 0.9757 0 0 1 0
HQ 0.0955 0.898 0.0065 0.0007 0.9969 0.0024 0 0.9987 0.0013
IT 0.1393 0.7384 0.1223 0.0059 0.9179 0.0762 0 0.941 0.059
JT* 0.3191 0.6392 0.0417 0.0142 0.9588 0.027 0 0.978 0.022
5 AIC 0.0286 0.8879 0.0835 0.0012 0.9484 0.0504 0 0.9621 0.0379
SIC 0.783 0.2168 0.0002 0.1407 0.8593 0 0.0001 0.9999 0
HQ 0.2272 0.7642 0.0086 0.0107 0.9866 0.0027 0 0.9982 0.0018
IT 0.2097 0.6385 0.1518 0.0236 0.8882 0.0882 0 0.9331 0.0669
JT* 0.3992 0.5448 0.056 0.0599 0.9053 0.0348 0.0001 0.9728 0.0271
6 AIC 0.0569 0.8387 0.1044 0.0051 0.935 0.0599 0 0.955 0.045
SIC 0.8361 0.1634 0.0005 0.3996 0.6004 0 0.0047 0.9953 0
HQ 0.3564 0.6341 0.0095 0.0491 0.9475 0.0034 0.0001 0.9978 0.0021
IT 0.2118 0.6021 0.1861 0.0548 0.8441 0.1011 0.0004 0.9298 0.0698
JT* 0.3917 0.5369 0.0714 0.1262 0.8389 0.0349 0.0007 0.975 0.0243
7 AIC 0.0766 0.7972 0.1262 0.0148 0.9186 0.0666 0.0001 0.9557 0.0442
SIC 0.823 0.1769 0.0001 0.5798 0.4202 0 0.0203 0.9796 0.0001
HQ 0.3803 0.6051 0.0146 0.1206 0.8762 0.0032 0.0012 0.9968 0.002




Table 4 (Continued)

T 0.196 0.578 0.226 | 00876 0799 01134 | 00013 09339  0.0648
JT* | 03674 05431 00895 | 01834 07849 00317 | 00034 0977 0019
AIC | 00794 07641 01565 | 00241 09045 00714 | 00002 09602  0.0396
SIC | 0795 02044 00006 | 06752 03248 0 0.0619 09381 0
HQ | 03667 06119 00214 | 01927 08034 00039 | 00049 09942  0.0009

=24 T=100 =200 =500
f(p) U C O 18] C (6] 18] C (6]
T 0 03329 0.6671 0 0.3691  0.6309 0 0.398 0.602
IT* 0 05182 04818 0 0.5508 04492 0 05934 04066
AIC 0 04568  0.5432 0 04878 05122 0 05254 04746
siC 0 0.9417  0.0583 0 09769  0.0231 0 0.9935  0.0065
HQ 0 07512 0.2488 0 0.8329  0.1671 0 0.8959  0.1041
IT 0 08252 0.1748 0 0.8901  0.1099 0 09127 0.0828
IT* 0 09353 0.0647 0 09683 0.0317 0 09764 0.0236
AIC 0 08972  0.1028 0 0.943 0.057 0 09574 0.0426
SIC | 00022 09972 0.0006 0 1 0 0 1 0
HQ 0 09861  0.0139 0 09979  0.0021 0 0.9996  0.0004
JT | 00008 09223  0.0769 0 09464  0.0536 0 09539 0.0461
JT* | 00082 09697  0.0221 0 09849  0.0151 0 09846  0.0154
AIC 0 09552 0.0448 0 0.968 0.032 0 09728 0.0272
SIC | 01006 08991  0.0003 0 1 0 0 1 0
HQ | 00011 09947  0.0042 0 0.999 0.001 0 0.9988  0.0012
JT | 00177 09066  0.0757 0 09394  0.0606 0 09419 0.0581
JT* | 00744 09004  0.0252 0 09784 0.0216 0 09784 0.0216
AIC | 00014 09463  0.0523 0 09589 0.0411 0 0.9616  0.0384
SIC | 03586 06413 00001 | 00011  0.9989 0 0 1 0
HQ | 00246 09698  0.0056 0 09968 0.0032 0 0.9976  0.0024
JT | 00823 08191 00986 | 00017 09228  0.0755 0 09332 0.0668
JT* | 02291 0737 00339 | 00033 0964  0.0327 0 09723 0.0277
AIC | 00108 09202 0069 | 00001 0945  0.0549 0 09543 0.0457
SIC | 06625 03373 00002 | 00396  0.9604 0 0 0.9999  0.0001
HQ | 01157 0876 00083 | 00024 09921  0.0055 0 09968  0.0032
JT | 01486 07286 0.1228 | 00068 09093  0.0839 0 0.933 0.067
JT* | 03234 06329 00437 | 00171 09499  0.033 0 09724 0.0276
AIC | 00295 08834 00871 | 00019 09383  0.0598 0 09546 0.0454
SIC | 07725 02272 00003 | 01808 08189  0.0003 | 00007 09992  0.0001
HQ | 02304 0759 00106 | 00136 09816  0.0048 0 09972 0.0028
JT | 01868 06708 01424 | 00207 08984  0.0809 0 0.946 0.054
JT* | 03652 05833 00515 | 00505 09241 00254 | 00001 09831  0.0168
AIC | 00525 08486 00989 | 00047 09419  0.0534 0 09676  0.0324
SIC | 07887 02111  0.0002 0.37 0.63 0 0.0048  0.9952 0
HQ | 03148 06749 00103 | 0043 09547 00023 | 00001 0999  0.0009




Table 4 (Continued)

JT 0.1839 0.6383 0.1778 0.038 0.863 0.099 0.0003 0.9357 0.064
IT* 0.3479 0.5907 0.0614 0.0919 0.8801 0.028 0.0009 0.9842 0.0149

7 AIC 0.0642 0.8106 0.1252 0.0114 0.9211 0.0675 0.0001 0.9643 0.0356
SIC 0.7728 0.2272 0 0.5009 0.499 0.0001 0.0173 0.9827 0
HQ 0.3257 0.6614 0.0129 0.0883 0.9079 0.0038 0.0014 0.9983 0.0003
JT 0.1656 0.5977 0.2367 0.0568 0.8026 0.1406 0.0008 0.8952 0.104
IT* 0.3106 0.5915 0.0979 0.1297 0.8219 0.0484 0.003 0.9656 0.0314

8 AIC 0.0606 0.7733 0.1661 0.0161 0.8801 0.1038 0 0.9288 0.0712
SIC 0.7432 0.2557 0.0011 0.599 0.4008 0.0002 0.0476 0.9524 0
HQ 0.3149 0.6624 0.0227 0.1455 0.8487 0.0058 0.0045 0.9943 0.0012

Table 5
DGP : (37) with g=0 in Example 3; M(p)=My(p) in Sy(p)
/=038 =100 =200 7=500

p | Ap) U C 0 U C 0 U C 0
JT 0.0002 0.5676 0.4322 0 0.5236 0.4764 0 0.493 0.507
JT* 0.0026 0.7717 0.2257 0 0.7147 0.2853 0 0.683 0.317

0 AIC 0 0.4769 0.5231 0 0.4432 0.5568 0 0.4121 0.5879
SIC 0.0441 0.9457 0.0102 0 0.9895 0.0105 0 0.9922 0.0078
HQ 0 0.8548 0.1452 0 0.8499 0.1501 0 0.867 0.133
JT 0 0.7865 0.2135 0 0.7922 0.2078 0 0.7807 0.2193
JT* 0 0.9148 0.0852 0 0.9096 0.0904 0 0.9057 0.0943

1 AIC 0 0.7027 0.2973 0 0.7052 0.2948 0 0.696 0.304
SIC 0 0.9969 0.0031 0 0.9983 0.0017 0 0.9993 0.0007
HQ 0 0.9462 0.0538 0 0.964 0.036 0 0.9733 0.0267
JT 0.0006 0.8763 0.1231 0 0.9004 0.0996 0 0.9062 0.0938
JT* 0.0063 0.9572 0.0365 0 0.9725 0.0275 0 0.9737 0.0263

2 AIC 0 0.8215 0.1785 0 0.8472 0.1528 0 0.8505 0.1495
SIC 0.0241 0.9754 0.0005 0 0.9998 0.0002 0 1 0
HQ 0 0.9838 0.0162 0 0.9937 0.0063 0 0.9965 0.0035
IT 0.0159 0.8686 0.1155 0 0.9181 0.0819 0 0.9341 0.0659
IT* 0.0892 0.8789 0.0319 0 0.9807 0.0193 0 0.986 0.014

3+ AlIC 0.0001 0.8346 0.1653 0 0.8775 0.1225 0 0.8944 0.1056
SIC 0.2787 0.7211 0.0002 0.0004 0.9995 0.0001 0 1 0
HQ 0.0071 0.9805 0.0124 0 0.9965 0.0035 0 0.9986 0.0014
T 0.107 0.7538 0.1392 0 0.9133 0.0867 0 0.9324 0.0676
IT* 0.2984 0.6615 0.0401 0.0008 0.9747 0.0245 0 0.9842 0.0158

4 AIC 0.0017 0.8067 0.1916 0 0.8651 0.1349 0 0.893 0.107
SIC 0.6717 0.3283 0 0.0349 0.965 0.0001 0 1 0
HQ 0.0983 0.8893 0.0124 0 0.9958 0.0042 0 0.9984 0.0016




Table 5 (Continued)

JT | 0185 06624 01521 | 00025 09019  0.0956 0 09296  0.0704
JT* | 04206 05383  0.0411 0.02 09548 0.0252 0 09825  0.0175
5 AIC | 00113 07862  0.2025 0 0.8533  0.1467 0 0.8877  0.1123
SIC | 08116  0.1884 0 02423 0.7577 0 0 1 0
HQ | 02253 07632 00115 | 0.0016 09939  0.0045 0 0.999 0.001
JT | 02391 05893 01716 | 00152  0.8809  0.1039 0 09266 00734
JT* | 0.4869 0.465 0.0481 | 0.0797 08925  0.0278 0 09812 0.0188
6 AIC | 00228 07593  0.2179 0 0.8449  0.1551 0 0.8839  0.1161
SIC | 08651  0.1349 0 05115 04885 0 0 1 0
HQ | 03212 06659 00129 | 00161 09791  0.0048 0 0.9985  0.0015
JT | 02488 05495  0.2017 | 00389  0.8472  0.1139 0 09222 0.0778
JT* | 04841 04588  0.0571 | 0.1624  0.8058  0.0318 0 09818 00182
7 | AIC | 00316  0.7284 0.24 0.0003 08354  0.1643 0 08789 0.1211
SIC | 08748 01251  0.0001 | 0.6934  0.3066 0 0.0003  0.9997 0
HQ | 03614 06225 00161 | 0.0509  0.9451 0.004 0 09982  0.0018
JT | 02352 05364 02284 | 00738  0.8072 0.119 0 09203 0.0797
JT* | 04625 04601 00774 | 02428  0.7253  0.0319 0 0.981 0.019
8 | AIC | 00331 07017 02652 | 0.0004 08279  0.1717 0 08785  0.1215
SIC | 08503 01496 00001 | 07974  0.2026 0 0.0069 09931 0
HQ | 0.357 06236 00194 | 01139 08823  0.0038 0 09985  0.0015
=16 =100 =200 =500
p | ) U C o U C o) U C o
T 0 06388 0.3612 0 0.6033  0.3967 0 05695  0.4305
IT* 0 0.8274  0.1726 0 0.7812  0.2188 0 0.7512  0.2488
0 AIC 0 0.547 0.453 0 05151 04849 0 04801 05199
sIC 0 0.993 0.007 0 0.9944  0.0056 0 0.9946  0.0054
HQ 0 0.8887  0.1113 0 0.8907  0.1093 0 0.9009  0.0991
T 0 0.791 0.209 0 0.7985  0.2015 0 07882  0.2118
T* 0 09118 0.0882 0 0912 0.088 0 0.9069  0.0931
1 AIC 0 07089  0.2911 0 0.7104  0.2896 0 07023 0.2977
sIC 0 0.9974  0.0026 0 0.9986  0.0014 0 09993 0.0007
HQ 0 09429 0.0571 0 0.9655  0.0345 0 0.973 0.027
T 0 0.8746  0.1254 0 0.8995  0.1005 0 09075  0.0925
JT* | 0.0007 0.962 0.0373 0 09714  0.0286 0 09737 0.0263
2 AIC 0 0.8207  0.1793 0 0.8471  0.1529 0 0.8507  0.1493
SIC | 0.004 09958  0.0002 0 09999  0.0001 0 1 0
HQ 0 09835  0.0165 0 0.9935  0.0065 0 0.9962  0.0038
JT | 00053 08804  0.1143 0 0.919 0.081 0 09349 0.0651
JT* | 00377 09324 0.0299 0 09788 0.0212 0 09858  0.0142
3+ | AIC 0 0.8289  0.1711 0 08772 0.1228 0 0.8944  0.1056
SIC | 01398  0.8601  0.0001 0 0.9998  0.0002 0 1 0
HQ | 0.0016 0.986 0.0124 0 0.9964  0.0036 0 0.9986  0.0014
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Table 5 (Continued)

JT 0.0469 0.8131 0.14 0 0.9157 0.0843 0 0.9328 0.0672
JT* 0.1703 0.7878 0.0419 0.0005 0.9747 0.0248 0 0.9838 0.0162

4 AIC 0.0004 0.8084 0.1912 0 0.8689 0.1311 0 0.8945 0.1055
SIC 0.4523 0.5477 0 0.0103 0.9896 0.0001 0 1 0
HQ 0.037 0.9506 0.0124 0 0.9959 0.0041 0 0.9987 0.0013
IT 0.089 0.7538 0.1572 0.0007 0.9055 0.0938 0 0.9296 0.0704
JT* 0.2426 0.714 0.0434 0.0075 0.9676 0.0249 0 0.982 0.018

5 AIC 0.0028 0.7909 0.2063 0 0.8566 0.1434 0 0.8886 0.1114
SIC 0.5699 0.43 0.0001 0.1006 0.8994 0 0 1 0
HQ 0.0949 0.8912 0.0139 0.0005 0.9947 0.0048 0 0.9992 0.0008
IT 0.1026 0.7155 0.1819 0.0047 0.8935 0.1018 0 0.9261 0.0739
JT* 0.2528 0.6899 0.0573 0.0297 0.9437 0.0266 0 0.9813 0.0187

6 AIC 0.0063 0.7588 0.2349 0 0.8475 0.1525 0 0.8839 0.1161
SIC 0.5761 0.4238 0.0001 0.251 0.749 0 0 1 0
HQ 0.1221 0.8598 0.0181 0.0032 0.992 0.0048 0 0.9987 0.0013
IT 0.091 0.69 0.219 0.0118 0.8781 0.1101 0 0.9245 0.0755
IT* 0.2227 0.7011 0.0762 0.0555 0.9136 0.0309 0 0.9816 0.0184

7 AIC 0.0061 0.7201 0.2738 0 0.8376 0.1624 0 0.8807 0.1193
SIC 0.5434 0.4563 0.0003 0.3547 0.6453 0 0 1 0
HQ 0.115 0.8583 0.0267 0.0125 0.9826 0.0049 0 0.9985 0.0015
IT 0.0715 0.6701 0.2584 0.0169 0.8643 0.1188 0 0.9207 0.0793
IT* 0.1783 0.7213 0.1004 0.075 0.8937 0.0313 0 0.9825 0.0175

8 AIC 0.0056 0.6883 0.3061 0 0.8305 0.1695 0 0.8777 0.1223
SIC 0.4776 0.5215 0.0009 0.4121 0.5879 0 0.0007 0.9993 0
HQ 0.0965 0.8658 0.0377 0.024 0.9703 0.0057 0 0.9986 0.0014

Table 6 Relative frequency Distribution for r(p) under Example 3
DGP : (37) with g=1 in Example 3; M(p)=M,(p) as ¢g=1 in S,(p)
=08 =100 =200 T=500

p | ip) U C 0 U C 0 U C 0
T 0.0015 0.5397 0.4588 0 0.45 0.55 0 0.3871 0.6129
IT* 0.0088 0.7517 0.2395 0 0.6583 0.3417 0 0.5933 0.4067

0 AIC 0 0.2741 0.7259 0 0.2158 0.7842 0 0.1745 0.8255
SIC 0.0382 0.9325 0.0293 0 0.9646 0.0354 0 0.9764 0.0236
HQ 0 0.7267 0.2733 0 0.7038 0.2962 0 0.7237 0.2763
IT 0 0.7199 0.2801 0 0.7152 0.2848 0 0.7161 0.2839
JT* 0 0.882 0.118 0 0.8706 0.1294 0 0.8716 0.1284

1 AIC 0 0.4461 0.5539 0 0.4425 0.5575 0 0.4308 0.5692
SIC 0 0.9881 0.0119 0 0.9951 0.0049 0 0.9989 0.0011
HQ 0 0.8503 0.1497 0 0.8836 0.1164 0 0.9228 0.0772
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Table 6 (Continued)

JT | 00091 08398  0.1511 0 08739 0.1261 0 0.8919  0.1081
JT* | 00396 09161  0.0443 0 09625  0.0375 0 09722 0.0278
2 | AIC 0 06188 0.3812 0 0.6507  0.3493 0 06736 0.3264
SIC | 00698 09292 0.001 0 0.9998  0.0002 0 1 0
HQ | 0001 09465  0.0525 0 09748 0.0252 0 09911  0.0089
JT | 00861 07904  0.1235 0 0.9095  0.0905 0 09333 0.0667
JT* | 02385 07238 00377 | 00006 0975  0.0244 0 0.9853  0.0147
3+ | AIC | 00008  0.6546  0.3446 0 07124 0.2876 0 07559  0.2441
SIC | 03625 06371 00004 | 0.0028  0.9972 0 0 1 0
HQ | 00283 09347  0.037 0 09844 0.0156 0 09961  0.0039
JT | 01943 06716 01341 | 00044 0894  0.1016 0 09206 0.0704
JT* | 0407 05561  0.0369 | 00198 0954  0.0262 0 09835  0.0165
4 | AIC | 0003 06308  0.3662 0 06941  0.3059 0 0.7456  0.2544
SIC | 0609 03906 00004 | 00905 09094  0.0001 0 1 0
HQ | 01007 08591  0.0402 | 00007 09813  0.018 0 09964  0.0036
JT | 02288 06125 0587 | 00223 08711  0.1066 0 0.9279  0.0721
JT* | 04493 05047 0046 | 00918  0.8778  0.0304 0 09816  0.0184
5 | AIC | 00054 0595  0.3996 0 0.68 0.32 0 0.7366  0.2634
SIC | 06769 0323 00001 | 0326 06739  0.0001 0 1 0
HQ | 01476  0.803  0.0494 | 00066 09746  0.0188 0 0.9954  0.0046
IT 0.228 05903 01817 | 00623 08249 01128 0 09245 00755
JT* | 04337 05051 00612 | 01952 07744  0.0304 0 09812 0.0188
6 | AIC | 00074 05534 04392 | 00002 06622  0.3376 0 0.7386  0.2614
SIC | 06795 03195 0001 | 05446  0.4554 0 0.0001  0.9999 0
HQ | 01597 07801  0.0602 | 0.033 09471  0.0193 0 0.9946  0.0054
JT | 01852 05842 02306 | 01056 07778  0.1166 0 09224 0.0776
IT* | 0.3729 0.54 0.0871 | 02838  0.6844  0.0318 0 0.98 0.02
7 | AIC | 00069 04989 04942 | 0.0006  0.6546  0.3448 0 0.7317  0.2683
SIC | 06201 03781  0.0018 | 0.6499 0.35 0.0001 | 0.0044  0.9956 0
HQ | 01402  0.7798 0.08 0.0744 09078  0.0178 0 09952  0.0048
JT | 01341 05709 0295 | 01413 07357  0.123 0 09217 0.0783
JT* | 02797 05998 01205 | 0322 06404  0.0376 | 0.0008 09797  0.0195
8 | AIC | 00045 04338 05617 | 00014  0.6488  0.3498 0 07351 0.2649
SIC | 05253 04698  0.0049 | 0678  0.3214 0 0.04 0.96 0
HQ | 01028 07818 01154 | 0.1143 08661  0.0196 0 09952 0.0048
=16 =100 7=200 7=500
p #(p) U C O U C (0] U C (6]
IT 0 05931 0.4069 0 04995  0.5005 0 04351 0.5649
IT* 0 0.7954  0.2046 0 07072 0.2928 0 0.6477 03523
0 | AlC 0 03211 0.6789 0 0.2521  0.7479 0 0.2085  0.7915
sIC 0 09822 0.0178 0 09828  0.0172 0 0.988 0.012
HQ 0 07763 0.2237 0 0.7618  0.2382 0 0.7808 02192




Table 6 (Continued)

1 IT 0 0.7075 0.2925 0 0.7022 0.2978 0 0.702 0.298
IT* 0 0.8693 0.1307 0 0.8631 0.1369 0 0.8642 0.1358
AIC 0 0.4384 0.5616 0 0.4327 0.5673 0 0.4221 0.5779
SIC 0 0.9874 0.0126 0 0.9943 0.0057 0 0.9986 0.0014
HQ 0 0.8456 0.1544 0 0.8799 0.1201 0 0.9192 0.0808
2 JT 0.0007 0.8336 0.1657 0 0.865 0.135 0 0.8854 0.1146
IT* 0.005 0.9443 0.0507 0 0.9575 0.0425 0 0.9685 0.0315
AIC 0 0.6031 0.3969 0 0.6374 0.3626 0 0.6635 0.3365
SIC 0.0056 0.993 0.0014 0 0.9998 0.0002 0 1 0
HQ 0.0001 0.9436 0.0563 0 0.9716 0.0284 0 0.9906 0.0094
3* IT 0.0317 0.8408 0.1275 0 0.9087 0.0913 0 0.9338 0.0662
IT* 0.1195 0.8424 0.0381 0 0.9752 0.0248 0 0.9847 0.0153
AIC 0.0001 0.6526 0.3473 0 0.712 0.288 0 0.754 0.246
SIC 0.1901 0.8094 0.0005 0.0001 0.9998 0.0001 0 1 0
HQ 0.0051 0.9568 0.0381 0 0.9856 0.0144 0 0.9962 0.0038
4 IT 0.1263 0.7355 0.1382 0.001 0.8995 0.0995 0 0.9317 0.0683
IT* 0.3013 0.6571 0.0416 0.0069 0.9678 0.0253 0 0.983 0.017
AIC 0.0012 0.6359 0.3629 0 0.7005 0.2995 0 0.7474 0.2526
SIC 0.4712 0.5284 0.0004 0.028 0.9718 0.0002 0 1 0
HQ 0.0514 0.906 0.0426 0 0.9845 0.0155 0 0.9959 0.0041
5 IT 0.1578 0.681 0.1612 0.0089 0.8852 0.1059 0 0.9285 0.0715
IT* 0.3414 0.6083 0.0503 0.0423 0.9278 0.0299 0 0.9818 0.0182
AIC 0.0022 0.5977 0.4001 0 0.6849 0.3151 0 0.7383 0.2617
SIC 0.5289 0.4705 0.0006 0.1812 0.8187 0.0001 0 1 0
HQ 0.0916 0.8535 0.0549 0.0022 0.9772 0.0206 0 0.9955 0.0045
6 IT 0.1411 0.66 0.1989 0.0268 0.8589 0.1143 0 0.9255 0.0745
JT* 0.2988 0.6271 0.0741 0.1072 0.8585 0.0343 0 0.9816 0.0184
AIC 0.0039 0.548 0.4481 0 0.6632 0.3368 0 0.7404 0.2596
SIC 0.499 0.4989 0.0021 0.3317 0.6683 0 0 1 0
HQ 0.089 0.8393 0.0717 0.011 0.9683 0.0207 0 0.9945 0.0055
7 IT 0.1017 0.6331 0.2652 0.0406 0.8331 0.1263 0 0.9237 0.0763
JT* 0.2236 0.6699 0.1065 0.1414 0.8199 0.0387 0 0.9801 0.0199
AIC 0.0019 0.472 0.5261 0.0002 0.648 0.3518 0 0.7306 0.2694
SIC 0.4224 0.5747 0.0029 0.3891 0.6109 0 0.0005 0.9995 0
HQ 0.0677 0.8297 0.1026 0.0233 0.9548 0.0219 0 0.9954 0.0046
8 IT 0.0664 0.5926 0.341 0.0546 0.8035 0.1419 0 0.9207 0.0793
JT* 0.1541 0.6908 0.1551 0.1541 0.8005 0.0454 0.0003 0.9798 0.0199
AIC 0.0017 0.4049 0.5934 0.0001 0.6281 0.3718 0 0.732 0.268
SIC 0.3344 0.6591 0.0065 0.4111 0.5889 0 0.0072 0.9928 0
HQ 0.0418 0.8076 0.1506 0.0344 0.9398 0.0258 0 0.9954 0.0046




