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Abstract:  This review concerns stem cells and their relation to intestinal metaplasia.  When gastric regions of mice,
Mongolian gerbils or several strains of rats were irradiated with a total dose of 20 Gy of X-rays given in two fractions,
intestinal metaplasia was only induced in rats.  In addition, it was greatly influenced by rat strain and sex.  Alkaline
phosphatase (ALP) positive metaplastic foci were increased by administration of ranitidine (H2 receptor antagonist),
crude stomach antigens or subtotal resection of the fundus and decreased by cysteamine (gastric acid secretion
stimulator), histamine or removal of the submandibular glands.  Recent studies have shown that Cdx2 transgenic mice
with gastric achlorhydria develop intestinal metaplasia and that in men and animals, Helicobacter pylori (H. pyrlori)
infection can cause intestinal metaplasias that are reversible on eradication.  Our results combined with findings for H.
pylori infection or eradication and transgenic mice suggest that an elevation in the pH of the gastric juice due to
disappearance of parietal cells is one of the principal factors for development of reversible intestinal metaplasia.  When
different organs were transplanted into the stomach or duodenum, they were found to transdifferentiate into gastric or
duodenal mucosae, respectively.  Organ-specific stem cells in normal non-liver tissues (heart, kidney, brain and skin)
also differentiate into hepatocytes when transplanted into an injured liver.  Therefore, stem cells have a multipotential
ability, transdifferentiating into different organs when transplanted into different environments.  Finally, intestinal
metaplasia has been found to possibly increase sensitivity to the induction of tumors by colon carcinogens of the 1,2-
dimethylhydrazine (DMH), azoxymethane (AOM) or 2-amino-1-methyl-6-phenylimidazo[4.5-b]pyridine (PhIP) type.
This carcinogenic process, however, may be relatively minor compared with the main gastric carcinogenesis process
induced by N-methy1-N’-nitro-N-nitrosoguanidine (MMNG) or N-methylnitrosourea (MNU), which is not affected by
the presence of intestinal metaplasia.  The protocol used in these experiments may provide a new approach to help
distinguish between developmental events associated with intestinal metaplasia and gastric tumors.  (J Toxicol Pathol
2010; 23: 115–123)
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Introduction

Throughout adult life, new developmental commitment
of adult stem cells may cause reversible metaplastic conver-
sion to occur in some organs.  For example, ectopic bone for-
mation is common in surgical scars, muscle or walls of
sclerotic arteries1 and squamous metaplasia may appear in
epithelia of the respiratory tract2 or urinary bladder3, 4.  Bar-
rett’s metaplasia of the esophagus develops as a result of
duodenal-esophageal reflex5, and gastric metaplasia in the
duodenum6 is observed with mucosal injury related to active

duodenitis; both are due to greater acid output.
Intestinal metaplasia results from diverted differentia-

tion of gastric stem cells towards cells of small intestine or
colonic phenotypes and is characterized by the presence of
intestinal-type, mucin-containing goblet cells, Paneth cells
and absorptive cells7,8.  It is more prevalent in men than in
women, and an increase with age has been noted9.  The fre-
quency of intestinal metaplasia varies widely in different
countries, areas and races10.  In the stomach, it has been con-
sidered to be a possible precancerous state on the basis of
epidemiological surveys7,10.  Several authors have suggested
that intestinal metaplasia could play a role in the develop-
ment of gastric carcinomas9, but it is not generally termed
precancer because it is common in benign conditions10,11.
Moreover, its pathogenesis remains unclear.  The present
review describes findings on the induction of intestinal meta-
plasia for analysis of its relation to neoplasia, with a focus on
stem cells having a multipotential ability to transdifferentiate
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when transplanted into different environments.

Classification of Intestinal Metaplasia

The small intestinal mucosa has been observed in
human stomachs since the 19th century, and Sugimura et al.
proposed classification into complete and incomplete
types12.  Histochemical and immunochemical stains that
identify enzymes or mucosubstances have provided evi-
dence that metaplastic epithelial cells resemble small or
large intestinal cells.  Teglbaerg and Nielsen13 therefore sub-
divided the types into small intestinal and large intestinal
types using periodate-borohydride/KOH/PAS and alcian
blue pH 2.6-PAS methods.  They suggested that intestinal
metaplasia of the colonic type should have a certain prema-
lignant potential, whereas intestinal metaplasia of the small
intestinal type should merely be of reactive character, with-
out such premalignant potential.  They further described
incomplete intestinal metaplasia to be a hybrid epithelium,
with features of both gastric and intestinal mucosa.  In addi-
tion, intestinal metaplasia has been classified by Jass and Fil-
ipe into three grades, complete or type I in which goblet cells
contain sialomucin, incomplete without sulphomucins (type
IIA) and incomplete with sulphomucins present in the colon
(type IIB), and association with intestinal cancer has been
suggested14.

We have proposed three different types of intestinal
metaplasia from our experience with animal experiments15,
one with goblet cells in the gastric mucosa (Type A, Fig. 1);
another with intestinal-type crypts without Paneth cells
(Type B, Fig. 2); and the last with intestinal-type crypts with
Paneth cells (Type C, Fig. 3).  Recently, Tsukamoto et al.16

reported intestinal metaplasia to be divided into two major
types, a gastric and intestinal (GI) mixed type and a solely
intestinal type (I) type, using gastric and intestinal cell mark-
ers.

X-ray Induced Intestinal Metaplasia and Its 
Properties

Dosing of X-ray on induction of intestinal 
metaplasia17–19

No intestinal metaplasia was induced by four X-ray
doses of 1 Gy, but appreciable lesions were noted with six X-
ray doses of 5 Gy for a total dose of 30 Gy.  An increase in
intestinal metaplasia was induced by two X-ray doses of 10
Gy each at a 3-day interval for a total dose of 20 Gy, but no
gastric tumors appeared after 12 months.  However, gastric
tumors were induced after a single X-irradiation dose of 20
Gy, and the incidence was increased with two 20 Gy doses
given at an interval of 1 week.  In contrast, the incidence of
intestinal metaplasia was decreased.  Thus, these results pro-

Fig. 1. Goblet cells with gastric mucosa (Type A).  Alcian blue-PAS
staining, ×200.  Round and ultramarine stained goblet cells
were found in PAS-positive (pink) gastric glands.

Fig. 2. Intestinal crypt without Paneth cells (Type B).  Alcian blue-
PAS staining, ×200.  PAS-negative glands have many goblet
cells but no Paneth cells at the bottom.

Fig. 3. Intestinal crypt with Paneth cells (Type C).  Alcian blue PAS
staining, ×200.  Arrows: Paneth cells.
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vide evidence that the best induction of intestinal metaplasia
was two X-ray doses of 10 Gy each at a 3-day interval for a
total dose of 20 Gy in 5-week-old male rats.

Sequential development of intestinal metaplasia by X-
ray exposure in rats17

Goblet cells in the gastric mucosa (Type A) appeared 1
week after irradiation of two X-ray doses of 10 Gy with a 3-
day interval.  Intestinal-type crypts without Paneth cells
(Type B, Fig. 4) were seen 2 weeks after irradiation, and
Paneth cells (Type C) were finally observed at the bottom of
intestinal-type crypt with the brush border an upper part of
the crypts 8 weeks after irradiation.  Crypts that had alkaline
phosphatase (ALP) activity (Fig. 5) were also seen around 8
weeks after irradiation.

Strain and spices differences
Strain differences in the susceptibility of rats to induc-

tion of intestinal metaplasia by X-irradiation were examined
using gastric regions of 5-week-old male rats irradiated with
a total dose of 20 Gy of X-rays given in two equal fractions
separated by 3 days.  Upon sacrifice at 6 months after the last
irradiation, the number of intestinal metaplastic crypts posi-
tive for ALP was highest in Donryu rats and lowest in
Copenhagen rats20.  Morphologically, the numbers of crypts
with intestinal metaplasia in the glandular stomachs of Don-
ryu, Wistar, SD and F344 rats were higher than in ACI
(MNNG-sensitive strain), Buffalo and Copenhagen rats21.
Intestinal metaplasia was more frequently observed in the
pyloric glands than in the fundic glands.  The results demon-
strate that induction of intestinal metaplasia by X-irradiation
is greatly influenced by the strain of rat.  However, intestinal
metaplasia was not induced in mice17 and Mongolian
gerbils22 using the same irradiation protocol.

Sex differences23,24

The influence of sex hormones on induction of intesti-
nal metaplasia was examined in 5-week-old Crj/CD rats of
both sexes.  At the age of 4 weeks, animals were gonadecto-
mized, and some groups of rats were given either testoster-
one or dimethyl estradiol (DES).  One week after the
operation, they were irradiated with two 10-Gy doses of X-
rays to the gastric region at a 3-day interval for a total of 20
Gy.  At termination of the experiment at 6 months after X-
irradiation, the incidence of intestinal metaplasia with ALP-
positive foci in males was significantly higher than in
females, the orchidectomized males or the orchidectomized
plus DES-treated rats.  On the other hand, the incidence of
intestinal metaplasia with ALP-positive foci in normal
females appeared to be lower than in the ovariectomized
females and was increased in rats by treatment with test-
osterone and decreased by treatment with DES.  These
results suggested a promoting role for testosterone in the
development of intestinal ALP-positive lesions and indi-
cated considerable heterogeneity between intestinal sub-
types.

Genetic Alteration

Maintenance of intestinal differentiation appears to
depend on the presence of Cdx2, an intestine-specific tran-
scription factor, and loss Cdx2 expression leads to focal gas-
tric differentiation in the colon25.  In contrast, aberrant
expression of Cdx2 in the upper gastrointestinal tract is a key
event in the pathogenesis of Barrett’s esophagus26 and intes-
tinal metaplasia in the stomach27.  Cdx2 expression corre-
lates with development of intestinal metaplasia28, and the
levels in the corpus lesser curvature significantly decrease
after eradication of Helicobacter pylori (H. pylori)29.  Cdx130

and Cdx231 are major transcription factors in the develop-
ment of intestinal metaplasia, which is supported by trans-

Fig. 4. Gastric mucosa differentiating into an intestinal crypt.  Alcian
blue-PAS staining, ×200.   Arrow: One side is PAS-positive
gastric gland and in other hand intestinal type crypt.

Fig. 5. Alkaline phosphatase active stomach.
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genic mouse studies, which have shown that ectopic
expression of either Cdx1 or Cdx2 in the gastric epithelium is
sufficient to induce a metaplastic conversion32,37.  It is con-
sidered that Cdx2 is a master regulator of the intestinal dif-
ferentiation program.

Judd et al.33 reported that N/K-ATPase-deficient
(Atp4a(–/–)) transgenic mice with gastric achlorhydria and
hypergastrinemia develop incomplete intestinal metaplasia.
Silberg et al.27 found that ectopic expression of Cdx2 in the
gastric epithelium is sufficient to cause transdifferentiation
of the gastric mucosa into intestinal-type cells.  They also
found that sucrose isomaltase (SI) was not activated in the
transgenic mouse stomach.  Mutoh et al.32 reported that all of
the gastric mucosal cells except enterochromaffin-like cells
were completely replaced by intestinal-type cells, including
goblet cells and absorptive cells, in another transgenic
mouse strain in which Cdx2 was expressed in parietal cells
under the control of the H+/K+-ATPase promoter.  In this
case, parietal cells disappeared after approximately 6 weeks,
and the pH in the stomach increased from 2 to more than 7.
Differentiation of intestinal-type cells may be induced not
only by the expression of Cdx2, but also by the loss of pari-
etal cells in the transgenic stomach, as reported by Mutoh et
al.32.  Li et al.34 found that GIF-11 Runx3+p53+ cells
expressed SI when cultured and showed that some Runx3–/–

mouse gastric epithelial cells differentiated into intestinal-
type cells that expressed Cdx2.  Thus, Fukamachi et al.35

suggested that gastric epithelium cells can differentiate into
intestinal-type cells, probably due to expression of Cdx2
when the function of Runx3 is impaired.  In contrast, Yuasa
et al. reported that X-irradiation-induced intestinal metapla-
sia is not associated with alterations of the H-ras, K-ras and
p53 genes36.

Helicobacter pylori Infection

The discovery of H. pylori in adult patients by Marshall
and Warren37 was a major event in modern gastroenterology
and was honored with the Nobel Prize in 2005.  The WHO
has classified H. pylori as a group I carcinogen for gastric
carcinomas, and infected individuals have a two to eight
times higher risk of stomach tumor development than the
general population.  Correa38,39 suggested that chronic gastri-
tis, gastric atrophy, intestinal metaplasia, dysplasia and gas-
tric cancer develop stepwise.  Eradication of H. pylori
infection produces a marked increase in the regression rate
of precancerous lesions and the relative risk of gastric atro-
phy and intestinal metaplasia39.  Ito et al. followed up 22
patients in whom H. pylori had been eradicated 5 years pre-
viously and confirmed that glandular atrophy is reversible in
both the gastric corpus and antrum40.  They also demon-
strated increased gastric acidity accompanied by an
improvement of gastric atrophy 1 year after eradication41.
Kashiwagi reported that the grade of reflux esophagitis
improved in a 3-year follow-up group and that reflux esoph-
agitis that develops after H. pylori eradication therapy rarely
becomes a long-term clinical problem in patients who com-

plete the treatment successfully42.
Wyatt et al. found that foci of gastric metaplasia in the

duodenal epithelium were an acquired change and were
more common in men, perhaps because of their greater acid
output, and suggested that mucosal injury is related to active
duodenitis43.  Ford et al. provided evidence that H. pylori
eradication with acid suppression improves healing of
duodenal ulcers compared with acid suppression alone44.
However, Hobsley et al. reported that duodenal ulcers could
recur after eradication of H. pylori infection45,46.  Thus, in
human beings, H. pylori infection can cause reflux esophagi-
tis, intestinal metaplasia in the glandular stomach and duode-
nal ulcers, but after eradication, all these lesions can recur.

In 1996, Hirayama et al. described a Mongolian gerbil
model of human H. pylori infection with the bacteria detect-
able throughout a 12-month period and the resultant chronic
active gastritis, peptic ulcers and intestinal metaplasia
resembling lesions apparent in humans47.  H. pylori infection
in itself does not induce gastric tumors in Mongolian
gerbils48,49.  Heterotopic proliferative glands, which finally
included Paneth cells induced by H. pylori infection in the
stomachs of Mongolian gerbils, were obviously reduced,
with few remnants after eradication of H. pylori50,51.  The
researchers considered that metaplastic and heterotopic pro-
lifetice glands are reversible on eradication.  Mizoshita et al.
suggested that intestinal metaplasia induced by H. pylori
infection in Mongolian gerbils is a paracancerous phenome-
non rather than a premalignant condition and that its infec-
tion may trigger intestinalization of both stomach cancers
and non-neoplastic mucosa52.

Therefore, there are data suggesting that cancer and
intestinal metaplasia arise from different cell lineages, such
that intestinal metaplasia may not be a precursor lesion but
rather a marker of increased risk53.

Mechanisms of Induction of Intestinal Metaplasia
and Roles of Stem Cells

 The esophagus epithelium can undergo metaplastic
change to become the gastric or duodenal epithelium1,5,54,55,
the  gas t r ic  epi thel ium can become the  in test inal
epithelium56,57, and vice versa1,6,58 and the large intestinal
epithelium can change to become the small intestinal
epithelium59–61 under the influence of different gastrointesti-
nal tract diseases.  Thus, tissue differentiation in the gas-
trointestinal tract appears to be malleable.  Wyatt et al.43

found that foci of gastric metaplasia in the duodenal epithe-
lium were an acquired change and again were more common
in men, suggesting a relation for mucosal injury with active
duodenitis.

The development of intestinal metaplasia with ALP-
positive foci has been shown to be increased by administra-
tion of ranitidine, an H2 receptor antagonist24, or a crude
stomach extract19 and by pyloroplasty or pyloroplasty plus
vagotomy62.  On the other hand, intestinal metaplasia is
decreased by cysteamine24, which stimulates gastric acid
secretion, and histamine or removal of the submandibular
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glands63.  A close relationship between the fundic pH and
ALP-positive foci exists, and subtotal resection of the fundus
increases the development of intestinal metaplasia induced
by X-irradiation as assessed in terms of ALP-positive foci
and total intestinal metaplasia64.  The fact that goblet cells
are observed in the pylorus until 7 days of age and then dis-
appear by 14 days of age is in line with the concurrent
decrease in the pH value with the increase in the number of
parietal cells65.

On the other hand, as described above, metaplasia may
disappear with H. pylori eradication and appears in Cdx2
transgenic mice due to decrease in acid output.  Therefore,
taking all of the available findings into account, our working
hypothesis is as follows: elevation of the gastric juice pH due
to disappearance of parietal cells is one of the principal fac-
tors responsible for the development of intestinal metaplasia
from gastric stem cells, and this process is reversible (Fig. 6).
In other words, it is considered that stem cells in intestinal
metaplasia may newly differentiate into the gastric mucosa
under acidic conditions.

Stem Cells

When gastric t issue was transplanted into the
duodenum66, pepsinogen-positive chimeric glands with gob-
let cells appeared in the grafts.  Esophageal grafts trans-
planted into the glandular stomach or duodenum similarly
transdifferentiate into the mucosa of these respective sites.
Moreover, we also founded that pieces of ear (skin), bladder,
trachea, diaphragm, pyloric gland and forestomach from 8-
week-old male GFP-F344 rats, when transplanted into the
duodenums of F344 strain rats demonstrated goblet cells
with alcian-blue PAS-positive mucin and brush borders with
ALP67.  A GFP-positive duodenal mucosa was observed in
all cases by immunohistochemical staining.  Moreover, the
GFP-positive cells were found to have the GFP transgene by
PCR analysis.  In the duodenum, the microenvironment

might thus be conducive to the development of metaplasia if
it is associated with an increase in proliferation.  As a result,
the bladder, trachea, ear (skin), diaphragm, pyloric gland and
forestomach tissue of the F344 rat contained stem cells that
have multipotential ability for differentiation when trans-
planted into different environments.

Adult stem cells have been reported in several tissue
sources, including the central nervous system68, bone
marrow69, retina70, brain71, hair follicle72, inner ear73, adipose
tissues74, oral mucosal epithelium75, liver76, skeletal muscle77

and skin78.  Heart, kidney, brain and skin pieces from male
F344 transgenic rats carrying the GFP gene, when trans-
planted into F344 rats one day after intraperitoneal injection
of carbon tetrachloride, transdifferentiate into hepatocytes79.
Thus, tissue stem cells have multipotential ability.  Other
examples of extensive plasticity include the in vivo differen-
tiation of a bone marrow population enriched for hematopoi-
etic stem cells into mature hepatocytes in the livers of
rodents80,81 and derivation of hepatocytes from bone marrow
cells in mice after radiation-induced myeloablation82.  Such
differentiation of bone marrow cells into mature cells of the
liver has also been reported to occur in humans83,84.
Together with the data presented here, the available findings
indicate that mammalian stem cells persist in various organs
and that such cells can be induced to undergo other organ
differentiation with an appropriate microenvironment.  Our
experimental system with its unique feature of the GFP
marker has clear advantages compared with previous animal
models.

Correlation Between Intestinal Metaplasias and
Gastric Tumors

The colonic mucosa transplanted into the fundic gland
lacks susceptibility to typical gastric carcinogens, MNNG85

or MNU given orally54, but is sensitive to a colonic carcino-
gen, DMH86.

The incidences of gastric tumors against the frequency
of intestinal metaplasia with or without Paneth cells per rat
yielded a significant inverse relationship87,88, suggesting that
the development of intestinal metaplasia and gastric tumors
might be independent responses to treatment with MNNG or
MNU.  However, induction of an intestinal metaplastic
mucosa in the glandular stomach by X-rays was associated
with a greater tendency for tumorigenesis in response to
DMH or AOM89–91, in contrast to the non-susceptible normal
gastric mucosa.  Transplant experiments such as those
reported here can be of assistance in clarifying the role of the
microenvironment in determining the risk of tumorigenesis.

The number of intestinal metaplasias with ALP-posi-
tive foci induced by X-rays in the Donryu rats was decreased
by the treatment with AOM, but aberrant crypt-like foci
appeared within some of the affected areas, with the appear-
ance of cystic structures with pyknotic nuclei exhibiting
binding of anti-8-hydroxyguanosine antibodies91.  Thus, it
would appear that areas of intestinal metaplasia with or with-
out Paneth cells induced by X-irradiation might be suscepti-

Fig. 6. Working hypothesis for induction of intestinal metaplasia.
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ble to colonic carcinogen damage.  When male F344 rats
were X-irradiated and AOM was injected and PhIP given by
intragastric intubation 16 weeks after the first dose92, tumors
in the pylorus of the glandular stomach were observed in 4 of
29 animals in the X-rays+AOM group and 4 of 25 animals
receiving X-rays+PhIP after 12 months.  No such lesions
were found in the chemical or X-ray alone groups.  Intestinal
metaplasia and induced tumors were found to be positive for
Cdx2 by histochemistry.  In summary, the presence of intes-
tinal metaplasia, with or without Paneth cells, may increase
the sensitivity of the stomach to the induction of tumors by
carcinogens like DMH, AOM and PhIP, but not MNNG or
MNU.  The results are compatible with the conclusion that
intestinal metaplasias are targets of DMH-type carcinogens
in the normal gastric mucosa (Fig. 7).  The protocol used in
our studies may provide a new approach to distinguish
between developmental events associated with intestinal
metaplasia and gastric tumors.
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