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Abstract

We investigate lepton flavor violating (LFV) radiative processes and the relic abundance of
neutralino dark matter in supersymmetric type-I seesaw model. We carefully derive threshold
corrections to the flavor off-diagonal elements of slepton mass matrix and up-type Higgs mass
squared and find that they can be large in the case of large B?V. We examine how the branching
ratios of LF'V radiative decays and the relic abundance of neutralino dark matter can be significantly
affected by the large threshold corrections. Soft scalar mass squared parameter of up-type Higgs
scalar is also affected by the threshold corrections. Since the higgsino mass depends on the mass
parameter for up-type Higgs, the LFV processes and the relic abundance of the neutralino dark
matter are correlated with each other. We show that there are parameter regions where the
predictions of the relic abundance of neutralino dark matter are consistent with WMAP observation
and the branching ratios of LF'V radiative decays are predicted to be testable in future experiments.
We find that the masses of scalar supersymmetric particles are not necessarily small so that the
branching ratios of LF'V decays can be testable in future experiment, which is distinctive feature

of this scenario.

PACS numbers: 11.30.Hv, 11.30.Pb, 12.60Jv, 13.35.Bv, 13.35.Dx, 14.80.Nb, 95.35.4+d



I. INTRODUCTION

Seesaw mechanism has been invented to explain the smallness of observed neutrino masses
relative to those of quarks and charged leptons. Among several varieties of seesaw models,
the simplest version is type-I seesaw model which requires the standard model gauge singlet
right-handed(RH) Majorana neutrinos and the existence of a huge mass scale which can
be near or similar to the scale of grand unification. Supersymmetric(SUSY) version of the
type-I seesaw model not only inherits this feature but also stabilizes the electroweak scale
without fine-tuning, and provides a natural candidate for a dark matter. The neutrino
Dirac type Yukawa couplings in SUSY type-I seesaw model are flavor off-diagonal, which
give rise to neutrino mixing observed by neutrino oscillation experiments. Thanks to those
Yukawa couplings flavor off-diagonal elements of the slepton mass matrix are induced by
radiative corrections even though we take slepton mass matrix to be diagonal at the high
energy scale. These flavor off-diagonal slepton masses can enhance branching ratios for
lepton flavor violating(LFV) decays such as 7 — uvy, 7 — ey and u — ey compared to those
in non SUSY seesaw models [1-7].

In our previous work, we have observed that threshold corrections to Higgs bilinear terms
mediated by RH sneutrino can affect the minimization condition for the Higgs potential and
thus the fine-tuning may be reduced when the mass splitting of RH sneutrinos becomes
large([8]. We have shown that such a large mass splitting can be originated from large value
1

of the B-term for RH sneutrino,

1 .
L= —§BNMRN*2 + h.c..

In addition, we have also shown that those threshold corrections can significantly affect the
relic abundance of the neutralino dark matter in minimal supergravity scenario(mSUGRA).
Thus some of the parameter space excluded by WMAP data in SUSY seesaw model without
the threshold corrections can be consistent with WMAP data when we include the threshold

I The large value of By, (i.e. By > Mgoft ~ B(~ electorweak scale)) can be obtained from the term of

superpotential given by [9],
W:/fﬁmﬁ

with Mr = A (X), By = (Fx)/(X). In the case that (X) ~ 10'® GeV and (Fx) ~ 10?' GeV? which is
the same order of SUSY breaking F-term, By ~ 100 TeV is obtained.



corrections. However, we have not considered the flavor effects generated from the threshold
corrections.

In this paper, we show that the threshold corrections can give rise to sizable contributions
to lepton flavor violating phenomena, and extensively discuss how the branching ratios of
LFV radiative decays are correlated with the relic abundance of neutralino dark matter.
We believe that this observation is new although there are several literatures where the
contributions of B-parameter and threshold corrections to lepton flavor violating phenomena
have been studied [10, 11].

This paper is organized as follows. In section II, we derive the threshold corrections to
Higgs and slepton mass squared parameters by using RGEs for corresponding parameters.
We also calculate the finite terms which are not included in the approach using RGE method.
In section 11, we investigate how the branching ratios of LF'V decays and the relic abundance
of neutralino dark matter are affected by the threshold corrections and correlated with each
other. In section IV, we devote to the numerical calculation and present our results. The
concluding remarks will follow in section V. One-loop RGEs for slepton and Higgs masses

including threshold corrections are presented in appendix.

II. THE THRESHOLD CORRECTIONS

In SUSY type-I seesaw model, flavor off-diagonal elements of SU(2) slepton mass matrix
can arise from radiative corrections mediated by RH neutrinos and sneutrinos even though
the slepton mass matrix is taken to be flavor-diagonal at the high energy scale such as the
GUT scale. These corrections are evaluated with the help of RGEs given in Ref.[2] under the
assumption that soft scalar masses and scalar trilinear couplings are universal at the high
energy scale. When the mass splittings of RH sneutrinos are large, threshold corrections
arisen from integrating out heavy sectors should be taken into account. As we studied in
8], large mass splitting of RH sneutrinos is originated from large value of B-terms for RH
sneutrinos. It turns out from our numerical estimation that those threshold corrections
can dominate over the other radiative corrections to the flavor off-diagonal elements of
SU(2) slepton mass matrix. It is also worthwhile to notice that both radiative corrections
and threshold corrections to the flavor off-diagonal elements of slepton mass matrix can

significantly contribute to Higgs mass squared parameters|[8, 9].



Now, let us derive the threshold corrections to slepton and Higgs masses by integrating
out one-loop RGEs in the case that the mass differences among three generations of RH

sneutrinos are large. The superpotential in SUSY type-I seesaw model is given as

_ _ 1 _
W =YeijHy - LiE; + Y, 5L; - HoN;j + S Mg NiN;j — pHy - Ho,

(1)

and soft SUSY breaking terms are written as

Loy = —mp  BlE; —m3 LIL; —m%  NIN; —m H{Hy —m%, H{H,
+ (mH1H2H1 * H2 + hc)

T N7 T o~ 1 NTH Nk
— (A,j’l]Ll . [{2]\[;< + hC) — <Ae7in1 . LieR,j + hC) — 5 <BZ2jN,L ]\/vJ + hC) (2)

Redefining the chiral superfields, N;, we can take Mp;; to be diagonal as

Mp;j = Mpg;0ij,

(3)

where Mp; are real, positive and assumed to be hierarchical, i.e. Mp; < Mpos < Mp3
Then, in the case of |Bf| < |[Mz,; —

ME 5], the mass eigenvalues of RH sneutrinos are
approximately given as
My = mig g+ Mpi + | B,
MQ- 2

li — N + M}22 |B2|7

Here, the mass eigenstates, Nh,i and Nli are given by

N, = Eeiq)i/Q(Nh,i + iNl,z’)a

*
7

—i®; /2 N Y

= —c¢ Ny —1Ny;), 5
\/5 ( h, l,) ( )
where

®; = arg(B2). (6)

The hierarchical structure of RH neutrino and sneutrino masses is presented in Fig.1. The
flavor off-diagonal part of the mass terms for RH sneutrinos is given as
L= 3 Z (mi,ijNh,zNh,j + sz,z-le,leJ +mj, i]NhZNl] + my, ZJleNh,]> ;
1#]

(7)



where

my .. = Re(m?V ijefi(<1>r<1>j)/2) + Re(ngefi(@M’j)/Z),

mlzij = Re(m?\?,ije_i(q)i_%)ﬂ) — R,e(B%e_i(q)i+(Dj)/2)’
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FIG. 1: Mass hierarchies of RH neutrino and sneutrino masses. Mpg; denote RH neutrino masses

whereas M}y, ; and M;; are heavier and lighter sneutrino masses, respectively

Let us calculate radiative corrections and threshold corrections to the slepton and Higgs
mass squared parameters. We note that there exist two types of contributions, one is the
logarithmic contributions which can be obtained from the RGEs and the other is finite

contributions which are calculated in this paper by the diagrammatic approach.

A. Leading log contributions

The leading log contributions to slepton and Higgs mass squared parameters can be
obtained from RGEs. Let us first consider RGEs for slepton masses and up-type Higgs mass

without taking into account the mass threshold contributions of RH sneutrinos. The explicit



expressions of the RGEs arisen from only the contributions due to the RH neutrinos and
sneutrinos are given by for slepton masses [1, 2]

2

dm= .
(167?2)Qﬁ = 20Y,;mEY, )ij 4+ 2(A5 AL + (ma Y)Y, )y + (Y)Y, m2 )y
+ 2m3, (YY), 9)

and for up-type Higgs mass|[3],

2
dmi,

(16ﬂ2)QW = 2Tr(Yym%Y,) + 2T (Y, m2Y)) + 2m%, Tr(Y;Y,T)

+ 2Tr(AAD). (10)

We assume that soft SUSY breaking parameters are universal at the GUT scale, so that the

following relations are valid,

m? . =m?

_ 2 2 2 L . 2 _ 0 5.,
Lig — "N T mgoij, My, = my, Avi; =AYy, Bjj = ByMpidi;. (11)

By integrating the above RGEs (9,10) between Mp; < @@ < Mgyr, we obtain flavor off-
diagonal slepton masses and the radiative corrections to up-type Higgs masses, and their

approximated expressions are given by

Y*. YT ) M.
2 o v,tk ~ v,kj 2 2 GUT
6ml~/7ij ~ ; 87T2 (AO + 3m0) In ]\4}2’]€ ’ (12)
and
Y* YT~ M
2 viik* vki 2 ) GUT
omiyy, ~ Ek —e (Af +3mg) In e (13)

Here, we have used the fact that when Q? < MIQM the chiral superfield N, decouples, and
thus Y, ;; is set to zero.

Next, let us derive the corrections to the above relations (12,13) originated from RH
sneutrino mass thresholds shown in Fig.1. We split a complex scalar N; to two real scalars
Ny; and Np; as in Eq.(5) and then re-derive RGEs by using the method given in Ref.[12].
The complete results are presented in Appendix A. The terms of the RGEs which contribute



to the derivation of the threshold corrections are written as

2

dms ..
(167)Q—5" 2 2D ViVl Mpy [0(Q7 = Miy) +6(Q% — M) = 20(Q° = M)
k

vik*v,kj

+ Z [Y* AT Tk 4 A;ikakje@k} Mg,
k
X [9<Q2 - M}%k) - 9(Q2 - M?kﬂ

k-1
+ Z Y:ik|3£k|ygkj + Z (Y:ik'Biifke_@kYu:,ij + YufikB§Zfei¢kYuTk'j)
% k=1
X [Q(QQ - Mi%k) - 9(Q2 - Mﬁkﬂ ) (14)

and

2

dm
(167°)Q=5" 2 2D Via¥iuMhy [6(Q7 — Miy) +6(Q7 — M) - 20(Q” - M,)]
i,k

+ 2 Z Re(YZikAZ:m@f@k)MR,k [9<Q2 - M}%k) - 9(Q2 - M?k)}
ik

k-1
+ Z Y:ik|Blgk|Yfki +2 Z Re (Y:sz?ke_@kYZki)
i,k j=1
X [H(QQ - Mi%k) - 9(Q2 - Ml2k)] . (15)
Note that the terms of RGEs given in Eq.(14) and (15) have been derived in the diagonal
basis of Majorana mass matrix My by following the method appeared in [13]. Integrating

the RGEs for the slepton masses given in Appendix A for the region of energy scale, M, fk <

Q* < M3, we obtain the threshold corrections as follows:

5fhm%7ij = m%Z](Mfk) - m%U(MF%k)
= 5fh1m%7i]‘ + éthm%ﬂ‘j? (16)
where
5fh1m2i o= # (2Yufikygkjm?v ek T nyikAZ,ij—zZ + Az,ikyszjB—’%k) ; (17)
’ m ’ Mp Mp
5 omE = 3 (BLuBEY, Yo + B BLY W Y ) ! (18)
th2"Vf 1672 £~ mk Pk vim ¥ v k; mk Pk ik vm; MZ,

The terms which contain both A, and B? in Eq.(17) agree with Ref.[11] whereas disagree
with Ref.[10]. The authors of Ref.[11] derived the threshold corrections by using the method

7



of analytic continuation into superspace[14-16] and the author of Ref.[10] derived the cor-
rections by diagrammatic calculation. In the derivation of the above equations, we have
used the following relations,

Mi%k ’Bkk| Nkk 1 |sz‘2

1
Mz, Tz, MR, 2 M,

o), ik _oIBil L oy 1)
fuk M, MZ, ok
Imposing universal condition for the soft SUSY breaking parameters at the GUT scale,

(5thm 1s approximately written as

1
5tth Jij ~ 87szzky kj (mO + AOB?\/) (20>

We note that since B ( # j) are radiatively generated at one-loop level, 5th2m~ are two-
loop contributions. To estimate how large it is, we solve RGE for B given in Eq. (A5) and
then obtain its value around at () = Mp3,
(YY) ok (1 + Opnre) n Meur

87T2 MR’g

(YY) k(1 + G In Mecur
471'2 MR,B ’

B2 (Mps) = By Mgy, | Sk

— AgMpgy (21)

where m < k. We notice that the term proportional to BY, in the RH side of Eq.(21) can
be diagonalized by changing the basis of My into the diagonal basis at () = Mg 3, but the
term proportional to Ag can not be simultaneously diagonalized as proven in appendix C.

Then, the contributions to 5th2m2 are approximately given by

2

M
VY sy + Y, (VY )amYih) | In =2 22
47'('2 ].67'('2 mZ:l Vzm 31 v3;5 + I/,Z3< v tv )3 um]) ]\4}273 ) ( )
which turns out to be much smaller than 5th1m~ , so that we can neglect these contributions.

Similarly, integrating Eq.(15) for the range of the scale, M7, < @Q* < M}, we obtain the

threshold corrections to the Higgs mass m%g given by,

hmH2 NZ8 2t ik sz m0+AOBO) (23)

B. Scheme dependent finite terms

There are also finite terms which are renormalization scheme dependent. We obtain them

by calculating corresponding Feynman diagrams and estimate how large they are. We used

8



MS (DR) scheme to subtract divergences. It turns out that these terms are small compared
to the logarithmic contributions. To derive the scheme dependent terms, we first consider
the divergent diagrams which arise from RH neutrino-sneutrino Yukawa interactions. The
Feynman diagrams relevant to our purpose are shown in Figs.2,3. If we insert more flavor
off-diagonal slepton masses into those diagrams, they can lead to only finite corrections

2 2 . . . .
%ij and My with ¢ # j, which are at

proportional to the mass parameters such as Bw’
most at two-loop level because the mass parameters are radiatively generated at one-loop
level under the assumption that soft masses are universal at the GUT scale.

The one-loop corrections to mQsz are obtained by calculating the diagrams (a)-(c)(g)(h)
in Figs. 2,3. The corrections are composed of two contributions arisen from scalar loops

and fermion loops,

Yii =27

Lzy

(24)

M
e

?l-] )

The scalar loop contributions are given by
S 1 *
_ZEL Jij = 2 ( VzkAl/ ki + Y YukszR k) [12<m%27 Ms,k) + IQ(mg% Ml?k)}
1 et * %
+ 5( l/zkAV i€ Py Au,ikngje ) M [[2(m§2, Mi%k) — I (m3,, M12k>]
1

+ VoY1 (my) + (L4 [/ My ) (M) + (1 [l /M) 1 (M)
1

+ §Yu*z Yuk’ e3 (P )[mhkk’IQ(th7th’>+mlkk’l2(Mlk7Mlk’>

_imil,kk'b(MikaMlz,k') +imiz,k'kl2(M/3,k'aMl2,k) 32 QYI/*'L v} v,kjs (25)

where m3, = [u[* + m},. The last momentum dependent term of Eq.(25) is obtained by

and by keeping the term which

. . 2
expanding —ZE% . with respect to external momenta M2

remains in the limit of large Mg . The loop functions I; and I, are given as,

bty = g [ £E 1

(2m)¢ k2 — m?
2 2
_ il?ﬂ [gl +1-In %} , (26)
dk 1 1
2 2\ _ ~yd-d
Iy(mi,m3) = Q / 2m) k2 — m2 k2 — m3
- 2 2 2 2
? 1 my mi My My
= 1602 {e +1+—m§—m%ln@_—m§—m%1n@ . (27)

The fermion loop contributions are calculated with the fermion loop diagrams by keeping

external momenta assumed to be small compared to Mg, so as to derive the contributions



from wave function renormalization. The results are expressed as

3
. \ |u]?
s, = =23k, (14 i) Bt -, 2
1 Rk

where Eg _is momentum dependent part given as

)

3 . 2

. i 1 My,
I PR ( byl ) +O(MzY). (29)
k=1

The explicit form of —i3; ;. is shown in Appendix B. Then, the quadratic parts of effective

Lagrangian for sleptons L; can be written in MS (DR) scheme as follows,

L = Qa9 L0 L

2 kmax 2 kmax kmax kmax T * T
= (2 () + 2 (QF) 4 aliym 4 6wy VL, (30)

where the contributions of the loop diagrams mediated by heavy neutrino superfields, Ny ~

Ny are included and the parameters are given by

max

(ki) w1 M,
max =0 — Y —Y VDL (In—= —1), 31
L’Lj (Q ) J kz:; 1672 v,ik ll,kj( n Q2 ) ( )
2(Fmax) R Mz,
max 2 _ * T * T * T 2 )
mﬂ,ij (Q ) - ]_67'('2 |:Z<AV 'LkAV N + Yl/ Yl/ k]mHQ + Yz/ Yz/ kg Nk;k) In Q2
k=1
kmax 2 2
max(Mz ., Mz .,
T Z Y:ikYVTk’jm?V,kk’ In : R’]; Ruk)}? (32)
k#k',1 Q
1 kmax klnax
(kmax) . *
5SD in,ij - 1672 Z( zlzkAu kj + Yu k]mHg + Z v, m?(f,k:k’% (3?))
k=1 k'=1
1 kmax
(kmax) 2 _ * T 2 * T 2% T 2
551 m Z/,ij _ 167’(’2 Z |:2YZ/Z’€YZ/ kj N ,kk (YVZkAV ij + Auzk’YV k]B )MRk (34>

k=1
Note that 55Dm2i i and 551m2i ;; are the scheme dependent and independent finite terms,

respectively. One can normalize the kinetic term in canonical form by replacing L; as,
NETal Ry § (35)
Ln] J n-
With the replacement, the effective Lagrangian is written as,

Ll = 0,L70"L;
_ ( 1 2(kmax) 1

—_— _— ~(kmax) kmax (kmax *
\/%(k’max) mix \/Z_i(kmax) + 5m + 5SD m + 5 ) L L (36)
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Now let us apply the matching condition at the scale Q) = Mpgy,... to two effective theories,
one of which contains the superfields, N; ~ Ny . . and the other contains only Ny ~ Ny, .
The effective Lagrangian with the k... active superfields should be the same as the one with

the knax — 1 active superfields at the matching scale;

efr.?.ax (Q MR kmax) - ef‘r?dx (Q - R krnax) (37)

Then we can derive threshold corrections for the soft breaking mass for sleptons and for the

Higgs particle. Applying the matching condition at Q* = M3, , we obtain the relation,

1 1

2 kmax_l k‘max—l 2 kmax kmax_l

mil( ) (MRakmax) = /ZE( ) \/—(kmax m ( ) (MRJi‘max) \/Z_~(kmax) \ Zfl( )
L

b olmm? sl N2
b gl gkt (3%)
Here, we have used the relation,
5m%(kmaX) (MRykmax) = 5m%(kma)(7l) (MRykmax) * (39>
Inserting the wave function renormalizations given as,
k'max 2
1 M
frlhmax) _ 5 E R S | RE _q 40
ZLn] nj p 3972 v,nk V,kj( n QQ )’ ( )
kmax 2
1 Mg
—| = dm+ Y, Y (In—2= — 1), 41
\/Z—E(kmax) . ; 327.(.2 ,k ,k ( QQ ) ( )
1 1 M}
frlbma) = | 54—y YT (Jgg —Lekmax 4 42
ZL /Zf/(k"max_l) ’L] N —I— 327r2 l/,zkmax VvknlaX]( Og Q2 )’ ( )

into Eq.(38), we finally obtain

Q(kmax _1)
m ~
Lyij (

V,ikmax = V,kmaxn L,nj

2(kimax)(M . 1 |: * T Q(krr}ax)(

MRJ‘»‘max) = mi i Rykmax) W

2(kmax) * T 1 * T
+ mL in (MRJﬂmax ) Yl/,nkmax sz/7 kmaxj] - 1672 Yu,ikmax sz/7 kmaxJ m]\ﬁkmax Kmax

R,kmax)

+ Ar. AT + Y Y m

14 kaax v kmax] 'Lkmax v kmax] 2

max_1 max_l

+ Y g E m> Wi o

Vlkmax V k/ N kmaxk/ Vlk N, kkmax V,kmaxJ
k'=1

* T 2
_|_ 1671—2 |:2YV77;kmax vikmaxj mN,kmakaax
1
* T 2% T 2
_|_ ( Vyikmax AV7kmaxj Bkmakaax + AV kaax YV kmaxj Bkmakaax) MR k ? (43)

11



where we use ij = ByMpg,0;; and both scheme dependent and independent threshold
corrections are included. If By is larger than the other soft breaking parameters, i.e., By >
A,,mg, the scheme dependent terms in second bracket in Eq.(43) are smaller than the
scheme independent terms in third (final) bracket in Eq.(43). Therefore we can neglect the
scheme dependent terms for the numerical analysis. We notice that the scheme independent
terms are the same as those obtained from RG analysis given by Eq.(17).

Similarly, one can obtain the threshold corrections for bilinear part of the Higgs field Hs.
Calculating the diagrams (d)(e)(f)(i) in Figs. 2,3, we get one-loop corrections to m¥, which

are divided by two contributions as follows. The scalar loop contributions are given by

-5Os 1 *
—ZEHQ = 2 ( VzkAukz + Y Y MR k) |:]2(m%’iia Mi?,k) + ]2( my i Ml k)}
1 —i * i
5( VzkAukz P + A Y ki€ (I)k)MRk |:I2( Lu> Mh k) IQ( Lu’ Mlk)]

v,

1
+ 5 ik Y, m[ﬂl( ) + 11<Mi3,k) + Il(Mzz,k)]

E : 2
+ 20 k]ijzI2( Ly f/,jj)

i#]
1 T  L(®p—,, 2 2 2 2 2 2
+ §Y:ikYu,k/i€2( k=) My e L2 (M, o, M3 1) +ml,kk’12(Mlk7Ml 3)

+ imizzl,k’kIQ(Mi%,kUMl%k) _imil,kk/IQ(Mili%k’)] +1 397 QY:mYum- (44)

The fermion loop contributions are given by

—i%}, = —22 VYol (Mg ) —i%h, (45)
where
Y4 : i e v o2 f—1, 1 Mlg%,k -1
1%y, = £ 167T2Yy,ikYy,kip € —|—§—ln 02 + O(Mpy). (46)

The explicit expression of the total contributions to m7, is shown in Eq.(B2). Then the

effective Lagrangian for Higgs (H>) field is given as,

Ll = 240, Hy0" Hy

_ (memax <Q2) + 6mH2max (QQ) + 5 kly)nax mH2 + 6 kmax mi[2> H2TH2 (47)
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where

k‘max 1 M2
ZHy (Q2) =1- Z 1672 Yu*zkYV k‘l(]‘n QQ - 1) (48>
k=1
2(kmax) 2 1 kmax * * 2 Mévk
Ho (Q ) = 1672 Z(A kAV ki + Y YV k] + YV Zk‘YV ki N7kk) In QQ
k=1
Fmax 2 max (M ., M3 )
+ Z vyt N,kk’ In QQ ’ (49)
k#£Kk'1
1 kmax kmax
kmax * *
5gD )mHz = - 1672 Z(AV,lk’AZ:k)’L + Yu,ikYV, + Z I/Zk) k’ mN k;k/) (5())
k=1 k=1
(kmax) 1 kmax A A* B 1
651 mHz - 167T2 Z 2YV zkYV k1T N Kk ( v,ik sz + sz kk)MRk
k‘Zl tl
2
Kmax lo —m?2  log —4&*
—_ Z Z 1 YTk»m% *k L’” g LJj Lo & m%u (51)
2 tv kgt it vi 2 2 :
k=1 | i#j 167 ’ Mg~ ML

Using Eq.(47), one can obtain the soft mass of up-type Higgs including scheme dependent

and independent threshold corrections as follows,

2(kmax_]-) . 2(k’max) 1 k T
mHQ (MR7kmax) - mHQ (MRykmax) ]' - 16 ZYV,iktylaxYV,kmaxi
(kmax) 2 (kmaxfl) k'max 2 (kmaxfl) 2
+ 08 Imiy, — 0T mY, + 64rImy, — o M,

_ Q(kmax) 1 k T
- mH2 (MRvkmaX) 1 o 167T2 YV,ik’maxYV,kmaxi

1
s A AT+ Vit Y g™

167T2 Vﬂkmax v kmaxl v ”Lkmax Vukmax] L,ji
kmax— Kmax—
T
+ Y ik E : Y v,k mN Fomak! T § : kaN kkmaqu,kmaxi
k=1
1
* T 2 * T 2
+ Yy7ikmaxYV7kmaximN7kmakaax:| + 167T2 |:2YV7ikmaXYy7kmaxim]v7kmakaax
1
* T 2% T 2
+ (Yy7ikmaxAV7kmaxiBkmakaax + AV lkdeYV7kmaxinmakaax) M
R,kmax
M2 M?
m?2 . log —fifmax ;2 ]og —Limax
1 L.jj ms L,ii ms
o § YT 7,n/2~ Y* L,jj L.ii
16 9~ V,kmaxJ L,ji V,ikmax m% _ %
i#£j L.jj L

(52)

Here, similar to the case of slepton masses, the scheme dependent terms are smaller than

the scheme independent terms.
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FIG. 3: Contributions from fermionic degrees of freedom

III. LEPTON FLAVOR VIOLATING DECAYS AND THE RELIC ABUNDANCE
OF NEUTRALINO DARK MATTER

As we have seen in the previous section, the threshold corrections to slepton and Higgs
masses can be so large that they dominate over the RGE running effects which are ap-
proximately expressed in Eq.(12) and (13). In this paper, for our numerical calculation,
we consider so called minimal supergravity scenario(mSUGRA) where gaugino masses, soft
scalar masses and scalar trilinear couplings are universal at the GUT scale. In particular, we
investigate the relic abundance of neutralino dark matter in the focus point region[17-19],
which is one of the regions where the relic density is consistent with WMAP observation.
In the region, the lightest supersymmetric particle (LSP) is a mixture state of bino and hig-
gsino and the annihilation cross section for LSP is enhanced due to the appropriate portion
of the higgsino component. In the seesaw model without threshold corrections, the focus

point region is significantly affected by the neutrino Yukawa sector and shift to the energy
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scale far from electroweak scale when the right-handed Majorana masses are sufficiently
large [20-22]. In SUSY type-I seesaw model based on mSUGRA, the radiative corrections
drive the up-type Higgs mass squared to be more negative than that in MSSM if we do not
include the threshold corrections. This feature is due to the presence of RH neutrino and
sneutrino sectors. In this case, the higgsino mass |u| is larger than that in MSSM, too. This
in turn leads to larger relic abundance of neutralino dark matter compared to that in MSSM
for fixed values of the soft scalar masses due to the small portion of the higgsino components
in the LSP. However, if we include large threshold corrections mentioned above, the up-type
Higgs mass squared is driven to be less negative which leads to smaller |u|. Therefore the
portion of higgsino in the lightest neutralino state becomes large, and the right amount
of relic abundance of neutralino dark matter consistent with WMAP observation can be
obtained even in the parameter space of MSSM excluded by WMAP data [8].

Since the threshold corrections mentioned above produce flavor off-diagonal slepton
masses, they are new additional source of lepton flavor violating phenomena. Since large
threshold corrections lead to large flavor off-diagonal slepton masses, we anticipate that the
amplitude of lepton flavor violating processes such as 7 — puy, 7 — ey and 4 — ey can
be enhanced due to the new source of lepton flavor violation. Therefore there exists a ten-
sion between the branching ratio of LF'V decays and the relic abundance of neutralino dark
matter.

Higgsino mass parameter p is determined by the minimization condition of the Higgs

potential given as,

lmQ _ _| |2 + m%‘h (m2Z> B m2H2(m2Z> tan2ﬁ (53)
27 K tan? 3 — 1
In the limit of large tan 3, this condition can be written as
1
L —Juf? — iy (). (54
The radiative corrections to m?,, are given as,
VYo ki Maur

where the first two terms of RH side are the threshold corrections and the last term is the
RG running effect. We see from Eq.(55) that in the case of the large threshold corrections

to mj,, the first two contributions to ém7, dominate over the last one and thus Higgsino
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mass parameter |p|? becomes small. This lowers the abundance of neutralino dark matter
compared to that of MSSM. From the constraint from WMAP observation, we can obtain
the allowed parameter space.

Now, let us consider the radiative LFV decays and investigate how they are related with
the relic abundance of neutralino dark matter. Branching ratios of the radiative LFV decays
are approximately given by [3]

o’ |m%z k

2 8
G(F ms

BR(l; — l;y) ~ tan® 3, (56)

where my is average SUSY scalar mass. For numerical calculations, we have used the com-
plete formulas which are given by Eq.(51) in Ref.[2]. As we can see from Eq. (56), the
branching ratios of the LF'V decays are proportional to |mi ij|2. Including the threshold

corrections, m?2 Li; can be approximately written as

l/l v, M
~.4NZ ik ’”[ 24+ AoBY — (A2 +3m2)In ]\Z%U: . (57)

Here, the first two terms of RH side are the threshold corrections given in Eq.(20). The
last term comes from the RG running effects which is obtained by integrating out RGEs for
m%’ij. Because the relative sign is opposite, both contributions cancel each other when their
contributions are comparable. As the B becomes large, the first two terms gets dominant
over the last term. It is worthwhile to notice that the size of BY, is limited by the constraints

from the experiments.

IV. NUMERICAL CALCULATION

In this section, we present our numerical calculations of the relic abundance of the neu-
tralino dark matter and the branching ratio of the LF'V decays. For our numerical calcula-
tions, we use the micrOMEGAs package[23, 24] for the relic abundance and the SuSpect[25]
for RGE running of soft SUSY breaking parameters with appropriate modification. Then
we compare our numerical results with the experimental ones. We use the following up-
per bound for the branching ratio of the LFV decays : BR(7 — uy) < 4.4 x 1078 [26],
BR(T — ev) < 3.3 x 107 [26] and BR(u — ev) < 1.2 x 107 [27].

The WMAP observation leads to the relic abundance of the cold dark matter, Qcpash?
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given by|[28],
Qcpuh® = 01117001 (20).

For numerical calculations, we need to parameterize the neutrino Dirac Yukawa couplings
in terms of light neutrino masses and mixing. From the superpotential, the Lagrangian for

the neutrino sector is given as,

 R— 1 e 1— c
L= —éyfkizv,gzi - Hy — §Ymkl§ - HyNE — 5J\f};JwR,kJ\q{g + h.c.. (58)

After integrating out the heavy Majorana neutrinos, one obtains the dimension five operator.

1 L
Lox = +5(5 H2>Yu,jkM—MYu,ki(li - Hy), (59)

The mass terms for the left-handed light neutrinos are given by
1=
L= —QVLMVVL + h.c., (60)

where the left-handed light neutrinos v are presented in the flavor eigenstate, v’ =

(Ve, Yy, v-), and M, denotes the neutrino mass matrix written as
(My)i = YoMy Yy (HS)" (61)
The neutrino mass matrix M, can be diagonalized by the unitary matrix U, as follows:
U'M,U, = diag(my,1, my2, my3) = M,p. (62)
The unitary matrix U, can be identified to Uysys, defined by

—10
C12€C13 S12€13 s1ze”"

— ) )
Umns = —512C23 — C12523513€""  C12C23 — S12523513€" 523C13

i6 6
512523 — C12€23513€ —C12523 — 512C€23513€ C23C13

xdiag (e"1/2, e*2/? 1) . (63)

where 0, ay, oy are CP-violating phases, ¢;; = cos(6;;) and s;; = sin(6;;) with mixing angles

0;;. The current experimental values and bounds for the mixing angles are

sin?(2015) = 0.87 & 0.03, sin®(20y3) > 0.92, sin*(26;3) < 0.19. (64)
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Since we do not consider the CP-violation, the phases are set to zero. In our numerical
calculations, we take 015 = 0.6, sin 3 = cosfy3 = 1/\/§ and sinfy3 = 0. It is well known
that the neutrino Dirac Yukawa matrix can be written in terms of Uy;ng and the diagonal

forms of the mass matrices as follows [3];

VI = () g VMl MUl (65)

where R is a complex orthogonal matrix. We assume that R = 1 for the sake of simplicity
in our numerical calculations.

The combination (Y;'Y,");; can be written as

. 1
VoY) = —5UnamuMe U} . (66)

(H3)

Assuming that neutrino masses are subject to normal hierarchy, we can take

(ml/h my2, mu?)) - (Ou \/Amgla \/Amgl + Am%Q)? (67>

where Am3, and Am3, are mass difference of neutrinos, and their experimental results are
Am3, = (7.57£0.20) x 107°eV? and Am2, = (2.43+£0.13) x 10~3eV>. We also assume that
Mp1 < Mpo < Mps. In this case,
1
VoY)~ s
(H3)

Thanks to sinfyz = 0, (Y;Y,7)13 < (VY. )a3. As we can see from eq.(??), this implies

Uu,¢3mu3MR,3U,13j- (68)

that m?2 . < m?

%13 723 Therefore, we anticipate that BR(7 — ey) < BR(7 — u7y) despite the

current experimental bounds are of same order. So, we do not present BR(7 — e7) in this
work.

Fig.4 shows how both the relic relic abundance and the branching ratios of the LF'V decays
simultaneously depend on the parameter BY, when light neutrino masses are hierarchical. We
take universal soft scalar mass mg to be 1TeV. Here, note that lightest SUSY particle is the
lightest neutralino. We also take tan 3 = 5(10) in the upper (lower) panels. The other input
values of the parameters we take are presented in the caption of Fig.4. The left(right) two
panels in Fig.4d BR(T — uvy) (BR(u — ev)) vs. the relic abundance as a function of BY is
shown. In each panels, green solid and red dotted curves present the branching ratio of LEV
and the relic abundance of the lightest neutralino, respectively. The gray dotted (upper) and

blue solid (lower) horizontal lines show the current upper bound on the branching ratio from
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experiments and the relic abundance of the dark matter obtained from WMAP, respectively.
When BY; is so large that the prediction of ,h? fit to the observed abundance of the dark
matter, BR(T — py) and BR(u — e7y) are predicted to be quite large. In this case, the
prediction of BR(7 — py) almost reaches to the experimental bound. Although there will
be a chance to probe the LFV decays in the case of large value of BY in future experiments,
the size of BY is limited by constraint coming from the relic abundance of neutralino dark
matter. In Fig.5, we also show how the branching ratios of LFV depend on the universal
soft scalar mass mg. Here, there exist the valleys where the branching ratios are extremely
suppressed, which are occurred due to cancellation between RG running effects and the
threshold corrections. This is expected from Eq.(57), since the sign of the contribution from
RG running effect to the soft SUSY breaking terms for slepton is opposite to the threshold
correction. Therefore as mg increases, the large threshold correction from BY; is cancelled
and branching ratios for LE'V become small. As can be seen from Fig. 5, the dotted (dashed)
line starts from the point corresponding to my = 700(1400) GeV below which electroweak
symmetry is not radiatively broken due to too large corrections to m?2 7, In the case of large
BY such as 400 ~ 600 TeV, the branching ratio for 7 — pvy and g — ey become so sizable
that the LFV decay could be detected even when my is larger than 1TeV.

In the case of inverted hierarchy, three neutrino masses are given as

(Mg, My1, Mys) = (Mys, \/my?) + Am?)? Am21, \/mu3 + Am32) (69)

and m,3 < my1 < mys. The threshold corrections to dm3;, is proportional to Tr(Y;Y,").

Tr(YYT) is approximately given as
Tr(Y,Y,)) ~ [(|Uu,12|2 + [Up22? + Uy ol )Mo Mp o
+(\Unasl? + Unsaf®)musMas | / (HS)®. (70)

In the case of my3/m,es < Mpa/Mps, the first term in Eq.(70) is dominant. The ratio of
Tr(YYT) in the inverted hierarchy to that in the normal hierarchy is

Te(Y Y./ Te (YY) )YNOR ~ Mpo/Mps. (71)

Therefore threshold corrections to m3;, are much smaller than in the normal hierarchy case.
This leads to rather larger abundance of the neutralino dark matter. On the other hand,

the term (Y;Y'),, is written as
(YY), = UsaaU 5y 2 My o/ (HS > (72)
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This term is obviously larger than that in the normal hierarchy. In particular, for m,3 ~ 0,

(V) (7Y

21

~ 10. (73)

Therefore we naively expect that BR(j — e7y) becomes larger by 2 order of magnitude than
that in the normal hierarchy for the same value of BY. As a result, it becomes difficult
to satisfy the constraint from the current bounds on BR(u — e) and the relic abundance
simultaneously.

When the neutrino masses are almost degenerate, i.e. my,; ~ mys ~ my3, (YV*YVT)gl
is larger than that in the normal hierarchy, which makes the prediction of BR(u — ev)
in this case substantially enhanced compared to the normal hierarchical case, and thus
the constraint of BR(u — e7y) becomes more severe when we consider the constraint of
the relic abundance simultaneously. We present the branching ratios of the LFV decay
p — e and the relic abundance of the lightest neutralino as functions of BY, in Fig.6. The
different figures correspond to different values of tan 3. As tan (3 increases, larger value of
BY is preferred to accommodate both BR(u — ev) and the relic abundance of dark matter

candidate.

V. CONCLUSION

We have investigated the LF'V radiative decays and the relic abundance of the neutralino
dark matter in the SUSY seesaw model. We have carefully derived the threshold corrections
to the flavor off-diagonal elements of slepton mass matrix and up-type Higgs mass squared
and found that they can be so large in the case of large BY, that the branching ratios of the
LFV decays and the relic abundance of neutralino dark matter can be significantly affected.
Our numerical results show that there are parameter regions where the prediction of the
relic abundance of neutralino dark matter is consistent with WMAP observation and the
branching ratios of LFV radiative decays can be enhanced so as for them to be probed in
future experiments [29, 30]. Although the origin of such large BY is unclear, if such large
B-term exists, the branching ratios of LE'V decays are significantly enhanced even when my
is not small. Therefore, the masses of scalar supersymmetric particles are not necessarily
small so that the branching ratios of LF'V decays can be testable in future experiment, which

is distinctive feature of this scenario.
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FIG. 4: The branching ratios of LF'V decays and the relic abundance of the lightest neutralino are
shown as functions of BY, with hierarchical neutrino mass case. Two left panels show BR(T — u)
vs. the relic abundance and two right panels show BR(yu — e7) vs. the relic abundance. In each
panel, green solid and red dotted curves represent the corresponding branching ratio and the relic
abundance of the lightest neutralino, respectively. The gray dotted (upper) and blue solid (lower)
straight lines represent the upper bound on the branching ratio given by experiments and the
abundance of the dark matter obtained from WMAP, respectively. We take (Mg 1, M2, Mr3) =
(1019,10'2,10')GeV and tan 3 = 5 for upper two panels and tan 3 = 10 for lower two panels. We

also take mo = 1TeV, Ag = 300GeV, m; /o = 300GeV and u > 0.
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APPENDIX A: RENORMALIZATION GROUP EQUATION

In this appendix, we present one-loop renormalization group equations for SU(2) slepton
masses and Higgs mass squared parameters including the threshold effects. The one-loop
RGE for the parameter Bizj is also presented. Here, we have omitted the same contributions

as in MSSM. The RGEs for SU(2) slepton masses are given by

2

dms
Lij .
(16W2)QW] = Z N kk ukg Z zk:’m N,k'k Vk)j +Y, zkmN kk/YuTk:’ )
k k=1
X [Q(Qz - Mi%k;) + 9(Q2 - Mzzkﬂ

+ Z [Ai zkA:?Fkg + m22Yzz*zkYka]} [8(Q2 — M}%k) +6(Q* — M?kﬂ

*
Y ka

- 2‘“’ Zyu*zkYVTkj MIQ%,IC)

+ Z [Yu*zky kzk’mL gy M sz/Yu*k’k: ij:| 0(Q*> — Mz,,)
Kok

+ 2 Z Yu*zkYVTij2 [‘%QZ — M}?k) +0(Q* - Mle) —20(Q° — MIQM)]

+ Z [Yu*zkAlj;k] i + A* l/k] Z(I)k} MR,k
k

X [8(Q2 - M}%k) - 9(Q2 - M?k)}
+ Z Vzk:‘BNk|MRk v,kj Z k’Bk’keiz(kaVTk] + Y:ikBl?:lt’eiq)kYVj,jk’j)

k k'=1

x [0(Q° = Mp,) — 0(Q* — M), (A1)
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where m3, = m¥, + |u|>. The RGEs for Higgs mass squared parameters are given by

dm?
2 H. * T
(167T )Q dQ2 - Z zk;mN kk l/kz + Z V,ij N]k uk:z + Y, zkmN k]YV]l)

X [ (Q* - Mh k)t 9(Q2 - Mlk)]

+ Z(Yy mmL iju*jk) [9(Q2 — Mi%k) +0(Q* — Ml2k>]
ijk

+ Z(AizkAZkz) [ (QQ - Mi%,k) + Q(QQ - Mlg,k)}

+ 2mH2 Z Yl/*zkYVTkz Mé,k)

+ 2 Z Yy*zkYVTkzMQ [Q(Q - Mi?,k) + 9(Q2 - Mlz,k) - 20(Q2 - M]%,k:)]

+ 2 ZRG VzkAV W€ T Mk [0(Q% — Mg ) —0(Q% — MP))

+ Z Vzk’BNk‘MRk an_'_QZR‘e YV*Z]B?]C 7Z(I>kYVTkl)

ik

X [G(Qz - Mik) —0(Q° — Mlk)] ) (A2)

(167)Q dm” = | |2Z|Ym| S M2 0@ — MA)), (A3)

where mi; = |u|* + m}, . We note that the RH-side of Eq.(A3) corresponds to the

contribution from wave function renormalization.

dm? .
(167%)Q—22 = ZM|Yu,z‘k|2€@’“MR,k[9(Q2 — M}, — 0(Q* — M},

d@
+ ZM ik Avikl0 Ml%k) +0(Q* — Ml2k)]
+ Z o mHlHQH(Qz — Mzzzk) (A4)
ik

The RGE for B}, is given as,

(16W2)QdBi2 4 |AT Y My + Mp,Y,) A
dQ - v,k v ki R,j Ritlyik4tvkj
+ 2(Y)Y)), (B2 +2(BYu (YY) ) - (A5)
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The RG equation for My can be found,for instance, in [4],

dMR,ij

(167%)Q a0

= 2(YY)), Mgy +2Mpa (YY), - (A6)

APPENDIX B: DIAGRAM CALCULATION

By summing the self-energies from both fermion and scalar loop diagrams, the one loop

contribution to the slepton mass squared is given by,

. i _ .
_Zzi,ij - = 1672 |:_(6 ! + 1)( I/’LkAV ki + Yl/ Y v,kj (mHg + mN kk)
* 2
+ Z YI/ zkY N kk’)
KAk
+ (A AT Y YT + Y Y )In Mis
vyik*tv,kj v, k]mH2 v, N kk QQ
2 2
. T o max (M ., MR,k/)
+ Z YkaMk,ij’kk/ In 02
kAk!
. ) 1
+ 2Y1/ Y Nkk ( l/Zk‘All k]B + AV YI/ ijkk)M—Rk
* * 1
+ Z(Yyﬂ.ky BB + ViV BE B T ]
k<k’ Rk
i . M2,
+ 167 QYVzkYVk]p [ + 1—In Q2 ] (B1>
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The contribution to the up type Higgs (Hy) mass squared is given by,

—i%h,

1

[_(gil + 1)( Z/ZkAV ki + Yl/* Yl/ kl(mL I + mN k’k)

1672
Z k’ mek/+Z Vk] L]z Vzk)
k#£k’ i#£]
Mg,
( VZkAVkZ+YV Y L]Z+YV Y Nk;k) In Qé
2 max(Mf%’k, M]%,k’)
Z Vi k/ O In 02
k#kK'
Z L’” log 2E L @ log L,u
ukg L i mk 2 o2
1#£j 7 mf/ Lii
1

ZY* Y AT A* B?

sz N kk ( v,ik l/k’L + l/k’L kk MR,k

* * 1
Z(Yu,iky Bkkz’Bk’k’ + Yu,zk’Y Bk’kBk’k’>M2
k<k’ R,k

. 2
? T MR,k

167 Qyuzk‘YVk:zp [ + 1 —1In QQ ]
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APPENDIX C: APPROXIMATE SOLUTIONS OF THE RENORMALIZATION
GROUP EQUATIONS FOR Mp AND B2.

As stated below Eq.(21), although the renormalization group running may induce the
large flavor off-diagonal contribution to ij (1 # j) at a lower mass scale, by switching
the basis of Majorana mass matrix Mg to the diagonal basis, we can keep ij in the basis
almost diagonal because off-diagonal elements ij(z # j) are doubly suppressed by a factor
of %8 and one loop suppressed factor. The effect of the small off-diagonal elements in ij
on slepton soft breaking term turns out to be smaller than the leading threshold corrections
given in Eq.(20).

In this appendix, we first show that the large radiatively generated off-diagonal elements
of ij corresponding to the second term of Eq.(21) are indeed rotated away in the diagonal
basis for My. To show this, the renormalization group equations for B2 and Mp are solved in
perturbative way, i.e., we use the approximation so that in the RH side of the renormalization
group equations, all the couplings A, , Y, and mass Mg are scale independent constants
defined at GUT scale where the initial conditions for renormalization group equations are
imposed. We also show that off-diagonal elements of the third term of Eq.(21) remain even
after the rotation and are numerically small compared with the leading diagonal elements.

The solutions for Eq.(A5) and Eq.(A6) at Q = Mg with the boundary conditions in
Eq.(11), are given as,

Mpi;(Mp3) = Mpdiy; — 2(H;jMp ; + Hji Mg )t (C1)
B} (Mgs) = Bo[Mgibij — 2(HijMp; + HjiMp )t*] — 4Ag(HijMp ; + Hji Mp,;)t™
= (Bo + 240)Mr(Mgr3)ij — 2AoMg,idi;, (C2)

= log Mour and H = Y'Y Since the first term of B? in Eq.(C2) is pro-

R,3

where t% =
portional to the running mass matrix of the heavy Majorana neutrinos, it is also diagonal
in the diagonal basis for Mg. As for the second term proportional to Ay, it is changed

into the non-diagonal one. To derive the unitary matrix O diagonalizing Mgz(Q = Mg3)
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approximately, we first write the mass matrix at () = Mp 3 in the matrix form as,

Mg(Q = Mp3)
Mp1(Mg3) —2H5t% (Mpy + Mpp) —2H5t% (Mg + Mp3)
= | —2Ht"®(Mp + Mgy) Mpo(Mpg3) —2H,3t"(Mpa + Mgg3) | -
—2H3t%(Mpy + Mg3) —2H3t®(Mps + Mpg3) Mg3(Mrs)

(C3)
where we have used the property H;; = Hj; since CP is assumed to be invariant. The
diagonal elements at () = Mp 3 are given by

Mpi(Q = Mp3) = Mpi(1 — 4H;;t*). (C4)
One can find the matrix O with which the mass matrix Eq.(C3) is diagonalized as,
O(Mp3)Mg(Q = Mp3)O" (Mp3) = D(Q = Mg3s), (C5)

where D is the diagonal matrix. The rotation given above corresponds to changing the basis

NC

— OTN¢. In the new basis, B? is given by,

Blowi; = (OB*0");; = {(Bo + 2A0)Di(Q = Mp3) — 2A0Mp 3}0;
2
— 24 Z(Oikz(MR,k — Mp3)Oj). (Co6)
1

From Eq.(C6), the off diagonal elements of B2, are given as,

2
By = =240 Y Oi(Mpy — Mp3)Op, (i # ). (C7)

k=1
The diagonal elements are dominated by the term proportional to ByMpg;,

3
B2, ..; = BoDi(Mpgs) + 2A0(D; — ZOszRk (C8)

To write the off-diagonal elements of B2, explicitly, we introduce the parametrization for

W

the orthogonal matrix O as,

N N N N N

C13C12 C13512 513

T _ N _N N N N N N _N N N _N_N
0" = —893513C 9 — C93S19 —S523513512 T C33C12 C13523 | > (C9)

N _N N N N N N _N N _.N _N_ N
—C3513C1y T Sp3819 —Cp3513512 — $33C12 C13C23
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2

where 57 = sin 6} and ¢;j = cos#;]. One can write B (i # j) using the angles as

new,ij
Biewis = =240 {(Mpy — Mps)enysiy + (Mo — Mps)eos(che15575 — sp3512) ),
Biowos = —2A0{clysiosts(Mpy — My ) + ciyeap(sp3ets + 3513519) (MR — Mp3)},
Brwiz = ~2Ao{edosty(Mpa — Mro) = 513" (Ma — M)
+ s (sste (14 (s75)%) — sty cos 200) (Mpo — Mp3s)}. (C10)

The angles 95}[ can be determined by the diagonalization Eq.(C5). When Mg 3 > Mpgo, Mg 1,

one can determine s2}, s%, from the equation,
0 0 —2H13t03MR73 S{\g S{\g
0 0 —2Hp3tBMps | | sy | = Ds | eysdy | - (C11)
—2H13t03MR73 —2H23t03MR,3 MRg(MRg) C%Cé\; C%Cé\g

Then we find that D3 ~ Mg 3, and s0; and s3} are given as

oy o —2Hy3t™, (C12)

Mg ;

a1y5) (i =1,2). The determination of s

where we ignore the corrections of the order of O(
is more involved. It is determined by diagonalizing the following 2 x 2 matrix which can be

obtained after the largest eigenvalue state is decoupled from the 3 x 3 matrix in Eq.(C3).

N N 2 03 N N
Cia —S19 MR,l — MR73813 —2H12t MR,Q — MR73$13$23 Cio  S19
N N 03 2 N N
S12 €9 —2H12t MR,2 — M373813523 MR,Q — MR,3523 —S19 €2
Dy 0
~ . (C13)
0 D,
s?, is approximately given by,
M
N 03 R3 N _N
S19 &~ —2Hp9t™ — AL 18523 (C14)
R,2

where the following conditions are assumed to be satisfied,
MR,Q > (S%)ZMRQ,, (S%)2MR73. (015)

Using the formulae given in Eq.(C12), one can write the dominant terms for the first two

equations in Eq.(C10),

2 _ N N N N
Bnew,13 = 2AO]WR,S(C12313 — 512593);
2 _ N _N N _N
Bnew,23 = 2Ao Mg 3(ciy893 + 512513)- (C16)
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When s, < 1, they are simplified as,

B? = 2AoMp3sh,

new,m3

= —4A0MR’3Hm3t03, (m = 1, 2) (Cl?)

Eq.(C17) shows that in the diagonal basis of Mg, the off diagonal elements of B?, is given
by the third term of Eq.(21) and it is small compared with the large diagonal element
B? ~ BYMg3.

new33 ™’

Next we show that the variation of the threshold corrections Eq.(20) due to the change
of the basis is two loop effect and thus negligibly small. When we change the basis as,

(Nr)* — OTNg°, (C18)
Y, in Eq.(20) should be replaced by

Y, —Y,0(Mgy)". (C19)
Then the threshold correction is replaced by the following equation,

5k:

WM = 5 (V2 OT) OV )y (m3 + AgBY). (C20)

Now let us examine how large 6thm for the case k = 3 could be after changing the basis

as follows,
m + AO % " " "
5th LZ] : {YV 13Y1/T?>] + Y (YVTQ]S23 + YVTIJSIZ’)) + (Yl/ 12523 + Y ’Ll 13)YVT3J)}
(C21)
Since shg = —(V,/ V) )msgst™ , (m = 1,2), the variation 5thmi is the two loop order and

thus small correction.

For the completeness, we check whether the conditions Eq.(C15) and s, < 1 which
lead to Eq.(C17) are satisfied. For numerical estimation, We take Mgyr = 10'%(GeV),
Mps = 10"(GeV), Mps = 10"*(GeV),and Mp; = 10"°(GeV). For H,;, one may use the
parametrization Eq.(65).

Hij = (YY) =

3 \/ MRJMRJ(RTTLVRT)U. (022)

When R is a real orthogonal matrix,

X (|ml,3 — ml,1| + |m,j2 — ml,l\). (023)



Using tan = 5 and v = 246(GeV), we obtain

|Hip| < 1.0 x 1074,
|Hp5| < 1.0 x 1072,

|Hys| < 1.0 x 1072 (C24)
Since 2t ~ 0.06, we obtain
sh| <6 x 1074, NI <6 x107°. C25
23 13

Then Eq.(C15) is satisfied. We also note that s, is as small as

|s2] <6 x 1075 +3.6 x 107° ~ 1.0 x 107°. (C26)
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