
HUPD0910, UT-10-07

Effects of Large Threshold Corrections in Supersymmetric Type-I

Seesaw Model

Sin Kyu Kang1, Takuya Morozumi2, and Norimi Yokozaki3

1 School of Liberal Arts, Seoul National University of Technology, Seoul 139-473, Korea.

2 Graduate School of Science, Hiroshima University,

Higashi-Hiroshima, 739-8526, Japan.

3 Department of Physics, University of Tokyo, Tokyo 113-0033, Japan.

Abstract

We investigate lepton flavor violating (LFV) radiative processes and the relic abundance of

neutralino dark matter in supersymmetric type-I seesaw model. We carefully derive threshold

corrections to the flavor off-diagonal elements of slepton mass matrix and up-type Higgs mass

squared and find that they can be large in the case of large B0
N . We examine how the branching

ratios of LFV radiative decays and the relic abundance of neutralino dark matter can be significantly

affected by the large threshold corrections. Soft scalar mass squared parameter of up-type Higgs

scalar is also affected by the threshold corrections. Since the higgsino mass depends on the mass

parameter for up-type Higgs, the LFV processes and the relic abundance of the neutralino dark

matter are correlated with each other. We show that there are parameter regions where the

predictions of the relic abundance of neutralino dark matter are consistent with WMAP observation

and the branching ratios of LFV radiative decays are predicted to be testable in future experiments.

We find that the masses of scalar supersymmetric particles are not necessarily small so that the

branching ratios of LFV decays can be testable in future experiment, which is distinctive feature

of this scenario.

PACS numbers: 11.30.Hv, 11.30.Pb, 12.60Jv, 13.35.Bv, 13.35.Dx, 14.80.Nb, 95.35.+d
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I. INTRODUCTION

Seesaw mechanism has been invented to explain the smallness of observed neutrino masses

relative to those of quarks and charged leptons. Among several varieties of seesaw models,

the simplest version is type-I seesaw model which requires the standard model gauge singlet

right-handed(RH) Majorana neutrinos and the existence of a huge mass scale which can

be near or similar to the scale of grand unification. Supersymmetric(SUSY) version of the

type-I seesaw model not only inherits this feature but also stabilizes the electroweak scale

without fine-tuning, and provides a natural candidate for a dark matter. The neutrino

Dirac type Yukawa couplings in SUSY type-I seesaw model are flavor off-diagonal, which

give rise to neutrino mixing observed by neutrino oscillation experiments. Thanks to those

Yukawa couplings flavor off-diagonal elements of the slepton mass matrix are induced by

radiative corrections even though we take slepton mass matrix to be diagonal at the high

energy scale. These flavor off-diagonal slepton masses can enhance branching ratios for

lepton flavor violating(LFV) decays such as τ → µγ, τ → eγ and µ → eγ compared to those

in non SUSY seesaw models [1–7].

In our previous work, we have observed that threshold corrections to Higgs bilinear terms

mediated by RH sneutrino can affect the minimization condition for the Higgs potential and

thus the fine-tuning may be reduced when the mass splitting of RH sneutrinos becomes

large[8]. We have shown that such a large mass splitting can be originated from large value

of the B-term for RH sneutrino, 1

L = −1

2
BNMRÑ∗2 + h.c..

In addition, we have also shown that those threshold corrections can significantly affect the

relic abundance of the neutralino dark matter in minimal supergravity scenario(mSUGRA).

Thus some of the parameter space excluded by WMAP data in SUSY seesaw model without

the threshold corrections can be consistent with WMAP data when we include the threshold

1 The large value of BN , (i.e. BN ≫ msoft ∼ B(∼ electorweak scale)) can be obtained from the term of
superpotential given by [9],

W =
∫

d2θλXN2,

with MR ≡ λ ⟨X⟩, BN ≡ ⟨FX⟩ / ⟨X⟩. In the case that ⟨X⟩ ∼ 1016 GeV and ⟨FX⟩ ∼ 1021 GeV2 which is
the same order of SUSY breaking F-term, BN ∼ 100TeV is obtained.
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corrections. However, we have not considered the flavor effects generated from the threshold

corrections.

In this paper, we show that the threshold corrections can give rise to sizable contributions

to lepton flavor violating phenomena, and extensively discuss how the branching ratios of

LFV radiative decays are correlated with the relic abundance of neutralino dark matter.

We believe that this observation is new although there are several literatures where the

contributions of B-parameter and threshold corrections to lepton flavor violating phenomena

have been studied [10, 11].

This paper is organized as follows. In section II, we derive the threshold corrections to

Higgs and slepton mass squared parameters by using RGEs for corresponding parameters.

We also calculate the finite terms which are not included in the approach using RGE method.

In section III, we investigate how the branching ratios of LFV decays and the relic abundance

of neutralino dark matter are affected by the threshold corrections and correlated with each

other. In section IV, we devote to the numerical calculation and present our results. The

concluding remarks will follow in section V. One-loop RGEs for slepton and Higgs masses

including threshold corrections are presented in appendix.

II. THE THRESHOLD CORRECTIONS

In SUSY type-I seesaw model, flavor off-diagonal elements of SU(2) slepton mass matrix

can arise from radiative corrections mediated by RH neutrinos and sneutrinos even though

the slepton mass matrix is taken to be flavor-diagonal at the high energy scale such as the

GUT scale. These corrections are evaluated with the help of RGEs given in Ref.[2] under the

assumption that soft scalar masses and scalar trilinear couplings are universal at the high

energy scale. When the mass splittings of RH sneutrinos are large, threshold corrections

arisen from integrating out heavy sectors should be taken into account. As we studied in

[8], large mass splitting of RH sneutrinos is originated from large value of B-terms for RH

sneutrinos. It turns out from our numerical estimation that those threshold corrections

can dominate over the other radiative corrections to the flavor off-diagonal elements of

SU(2) slepton mass matrix. It is also worthwhile to notice that both radiative corrections

and threshold corrections to the flavor off-diagonal elements of slepton mass matrix can

significantly contribute to Higgs mass squared parameters[8, 9].
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Now, let us derive the threshold corrections to slepton and Higgs masses by integrating

out one-loop RGEs in the case that the mass differences among three generations of RH

sneutrinos are large. The superpotential in SUSY type-I seesaw model is given as

W = Ye,ijH1 · LiĒj + Yν,ijLi · H2N̄j +
1

2
MR,ijN̄iN̄j − µH1 · H2, (1)

and soft SUSY breaking terms are written as

Lsoft = −m2
Ẽ,ij

Ẽ†
i Ẽj − m2

L̃,ij
L̃†

i L̃j − m2
Ñ,ij

Ñ †
i Ñj − m2

H1
H†

1H1 − m2
H2

H†
2H2

+
(
m2

H1H2
H1 · H2 + h.c

)
−

(
Aν,ijL̃i · H2Ñ

∗
j + h.c

)
−

(
Ae,ijH1 · L̃iẽ

∗
R,j + h.c

)
− 1

2

(
B2

ijÑ
∗
i Ñ∗

j + h.c
)

..(2)

Redefining the chiral superfields, N̄i, we can take MR,ij to be diagonal as

MR,ij = MR,iδij, (3)

where MR,i are real, positive and assumed to be hierarchical, i.e. MR,1 ≪ MR,2 ≪ MR,3.

Then, in the case of |B2
ij| ≪ |M2

R,i − M2
R,j|, the mass eigenvalues of RH sneutrinos are

approximately given as

M2
h,i = m2

Ñ,ii
+ M2

R,i + |B2
ii|,

M2
l,i = m2

Ñ,ii
+ M2

R,i − |B2
ii|, (4)

Here, the mass eigenstates, Ñh,i and Ñl,i are given by

Ñi =
1√
2
eiΦi/2(Ñh,i + iÑl,i),

Ñ∗
i =

1√
2
e−iΦi/2(Ñh,i − iÑl,i), (5)

where

Φi = arg(B2
ii). (6)

The hierarchical structure of RH neutrino and sneutrino masses is presented in Fig.1. The

flavor off-diagonal part of the mass terms for RH sneutrinos is given as

L = −1

2

∑
i̸=j

(
m2

h,ijÑh,iÑh,j + m2
l,ijÑl,iÑl,j + m2

hl,ijÑh,iÑl,j + m2
lh,ijÑl,iÑh,j

)
, (7)
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where

m2
h,ij = Re(m2

Ñ,ij
e−i(Φi−Φj)/2) + Re(B2

ije
−i(Φi+Φj)/2),

m2
l,ij = Re(m2

Ñ,ij
e−i(Φi−Φj)/2) − Re(B2

ije
−i(Φi+Φj)/2),

m2
hl,ij = −Im(m2

Ñ,ij
e−i(Φi−Φj)/2) + Im(B2

ije
−i(Φi+Φj)/2),

m2
lh,ij = Im(m2

Ñ,ij
e−i(Φi−Φj)/2) + Im(B2

ije
−i(Φi+Φj)/2),

= m2
hl,ji. (8)

FIG. 1: Mass hierarchies of RH neutrino and sneutrino masses. MR,i denote RH neutrino masses

whereas Mh,i and Ml,i are heavier and lighter sneutrino masses, respectively

Let us calculate radiative corrections and threshold corrections to the slepton and Higgs

mass squared parameters. We note that there exist two types of contributions, one is the

logarithmic contributions which can be obtained from the RGEs and the other is finite

contributions which are calculated in this paper by the diagrammatic approach.

A. Leading log contributions

The leading log contributions to slepton and Higgs mass squared parameters can be

obtained from RGEs. Let us first consider RGEs for slepton masses and up-type Higgs mass

without taking into account the mass threshold contributions of RH sneutrinos. The explicit
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expressions of the RGEs arisen from only the contributions due to the RH neutrinos and

sneutrinos are given by for slepton masses [1, 2]

(16π2)Q
dm2

L̃,ij

dQ
= 2(Y ∗

ν m2
Ñ

Y T
ν )ij + 2(A∗

νA
T
ν )ij + (m2

L̃
Y ∗

ν Y T
ν )ij + (Y ∗

ν Y T
ν m2

L̃
)ij

+ 2m2
H2

(Y ∗
ν Y T

ν )ij, (9)

and for up-type Higgs mass[3],

(16π2)Q
dm2

H2

dQ
= 2Tr(Y ∗

ν m2
Ñ

Y T
ν ) + 2Tr(Y T

ν m2
L̃
Y ∗

ν ) + 2m2
H2

Tr(Y ∗
ν Y T

ν )

+ 2Tr(A∗
νA

T
ν ). (10)

We assume that soft SUSY breaking parameters are universal at the GUT scale, so that the

following relations are valid,

m2
L̃,ij

= m2
Ñ,ij

= m2
0δij, m2

H2
= m2

0, Aν,ij = A0Yν,ij, B2
ij = B0

NMR,iδij. (11)

By integrating the above RGEs (9,10) between MR,k ≤ Q ≤ MGUT , we obtain flavor off-

diagonal slepton masses and the radiative corrections to up-type Higgs masses, and their

approximated expressions are given by

δm2
L̃,ij

≈ −
∑

k

Y ∗
ν,ikY

T
ν,kj

8π2

(
A2

0 + 3m2
0

)
ln

MGUT

MR,k

, (12)

and

δm2
H2

≈ −
∑
i,k

Y ∗
ν,ikY

T
ν,ki

8π2

(
A2

0 + 3m2
0

)
ln

MGUT

MR,k

. (13)

Here, we have used the fact that when Q2 < M2
R,k the chiral superfield N̄k decouples, and

thus Yν,ik is set to zero.

Next, let us derive the corrections to the above relations (12,13) originated from RH

sneutrino mass thresholds shown in Fig.1. We split a complex scalar Ñi to two real scalars

Ñh,i and Ñl,i as in Eq.(5) and then re-derive RGEs by using the method given in Ref.[12].

The complete results are presented in Appendix A. The terms of the RGEs which contribute
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to the derivation of the threshold corrections are written as

(16π2)Q
dm2

L̃,ij

dQ
∋ 2

∑
k

Y ∗
ν,ikY

T
ν,kjM

2
R,k

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k) − 2θ(Q2 − M2

R,k)
]

+
∑

k

[
Y ∗

ν,ikA
T
ν,kje

−iΦk + A∗
ν,ikY

T
ν,kje

iΦk
]
MR,k

×
[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
+

∑
k

[
Y ∗

ν,ik|B2
kk|Y T

ν,kj +
k−1∑
k′=1

(
Y ∗

ν,ik′B2
k′ke

−iΦkY T
ν,kj + Y ∗

ν,ikB
2∗
kk′eiΦkY T

ν,k′j

)]
×

[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
, (14)

and

(16π2)Q
dm2

H2

dQ
∋ 2

∑
i,k

Y ∗
ν,ikY

T
ν,kiM

2
R,k

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k) − 2θ(Q2 − M2

R,k)
]

+ 2
∑
i,k

Re(Y ∗
ν,ikA

T
ν,kie

−iΦk)MR,k

[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
+

∑
i,k

[
Y ∗

ν,ik|B2
kk|Y T

ν,ki + 2
k−1∑
j=1

Re
(
Y ∗

ν,ijB
2
jke

−iΦkY T
ν,ki

)]
×

[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
. (15)

Note that the terms of RGEs given in Eq.(14) and (15) have been derived in the diagonal

basis of Majorana mass matrix MR by following the method appeared in [13]. Integrating

the RGEs for the slepton masses given in Appendix A for the region of energy scale, M2
l,k ≤

Q2 ≤ M2
h,k, we obtain the threshold corrections as follows:

δk
thm

2
L̃,ij

≡ m2
L̃,ij

(M2
l,k) − m2

L̃,ij
(M2

h,k)

= δk
th1m

2
L̃,ij

+ δk
th2m

2
L̃,ij

, (16)

where

δk
th1m

2
L̃,ij

=
1

16π2

(
2Y ∗

ν,ikY
T
ν,kjm

2
Ñ,kk

+ Y ∗
ν,ikA

T
ν,kj

B2∗
kk

MR,k

+ A∗
ν,ikY

T
ν,kj

B2
kk

MR,k

)
, (17)

δk
th2m

2
L̃,ij

=
1

16π2

k−1∑
m=1

(
B2

mkB
2∗
kkY

∗
ν,imY T

ν,kj + B2∗
mkB

2
kkY

∗
ν,ikY

T
ν,mj

) 1

M2
R,k

. (18)

The terms which contain both Aν and B2 in Eq.(17) agree with Ref.[11] whereas disagree

with Ref.[10]. The authors of Ref.[11] derived the threshold corrections by using the method
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of analytic continuation into superspace[14–16] and the author of Ref.[10] derived the cor-

rections by diagrammatic calculation. In the derivation of the above equations, we have

used the following relations,

ln
M2

h,k

M2
R,k

=
|B2

kk|
M2

R,k

+
m2

Ñ,kk

M2
R,k

− 1

2

|B2
kk|2

M4
R,k

+ O(M−3
R,k), ln

M2
h,k

M2
l,k

= 2
|B2

kk|
M2

R,k

+ O(M−3
R,k). (19)

Imposing universal condition for the soft SUSY breaking parameters at the GUT scale,

δk
thm

2
L̃,ij

is approximately written as

δk
thm

2
L̃,ij

≈ 1

8π2
Y ∗

ν,ikY
T
ν,kj(m

2
0 + A0B

0
N). (20)

We note that since B2
ij(i ̸= j) are radiatively generated at one-loop level, δk

th2m
2
L̃,ij

are two-

loop contributions. To estimate how large it is, we solve RGE for B2
ij given in Eq.(A5), and

then obtain its value around at Q = MR,3,

B2
mk(MR3) = B0

NMR,k

[
δmk −

(Y T
ν Y ∗

ν )mk(1 + δmk)

8π2
ln

MGUT

MR,3

]
− A0MR,k

(Y T
ν Y ∗

ν )mk(1 + δmk)

4π2
ln

MGUT

MR,3

, (21)

where m ≤ k. We notice that the term proportional to B0
N in the RH side of Eq.(21) can

be diagonalized by changing the basis of MR into the diagonal basis at Q = MR,3, but the

term proportional to A0 can not be simultaneously diagonalized as proven in appendix C.

Then, the contributions to δ3
th2m

2
L̃,ij

are approximately given by

−B0
N

4π2

A0

16π2

[
2∑

m=1

(
Y ∗

ν,im(Y T
ν Y ∗

ν )m3Y
T
ν,3j + Y ∗

ν,i3(Y
T
ν Y ∗

ν )3mY T
ν,mj

)]
ln

MGUT

MR,3

, (22)

which turns out to be much smaller than δ3
th1m

2
L̃,ij

, so that we can neglect these contributions.

Similarly, integrating Eq.(15) for the range of the scale, M2
l,k ≤ Q2 ≤ M2

h,k, we obtain the

threshold corrections to the Higgs mass m2
H2

given by,

δk
thm

2
H2

≈
∑

i

1

8π2
Y ∗

ν,ikY
T
ν,ki(m

2
0 + A0B

0
N). (23)

B. Scheme dependent finite terms

There are also finite terms which are renormalization scheme dependent. We obtain them

by calculating corresponding Feynman diagrams and estimate how large they are. We used
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MS (DR) scheme to subtract divergences. It turns out that these terms are small compared

to the logarithmic contributions. To derive the scheme dependent terms, we first consider

the divergent diagrams which arise from RH neutrino-sneutrino Yukawa interactions. The

Feynman diagrams relevant to our purpose are shown in Figs.2,3. If we insert more flavor

off-diagonal slepton masses into those diagrams, they can lead to only finite corrections

proportional to the mass parameters such as B2
ij, m2

L̃,ij
and m2

Ñ,ij
with i ̸= j, which are at

most at two-loop level because the mass parameters are radiatively generated at one-loop

level under the assumption that soft masses are universal at the GUT scale.

The one-loop corrections to m2
L̃,ij

are obtained by calculating the diagrams (a)-(c)(g)(h)

in Figs. 2,3. The corrections are composed of two contributions arisen from scalar loops

and fermion loops,

ΣL̃,ij = Σs
L̃,ij

+ Σf

L̃,ij
. (24)

The scalar loop contributions are given by

−iΣs
L̃,ij

=
1

2

(
A∗

ν,ikA
T
ν,kj + Y ∗

ν,ikY
T
ν,kjM

2
R,k

) [
I2(m

2
22, M

2
h,k) + I2(m

2
22,M

2
l,k)

]
+

1

2
(Y ∗

ν,ikA
T
ν,kje

−iΦk + A∗
ν,ikY

T
ν,kje

iΦk)MR,k

[
I2(m

2
22,M

2
h,k) − I2(m

2
22, M

2
l,k)

]
+

1

2
Y ∗

ν,ikY
T
ν,kj[2I1(m

2
22) + (1 + |µ|2/M2

h,k)I1(M
2
h,k) + (1 + |µ|2/M2

l,k)I1(M
2
l,k)]

+
1

2
Y ∗

ν,ikY
T
ν,k′je

i
2
(Φk−Φ′

k)
[
m2

h,kk′I2(M
2
h,k,M

2
h,k′) + m2

l,kk′I2(M
2
l,k,M

2
l,k′)

−im2
hl,kk′I2(M

2
h,k, M

2
l,k′) + im2

hl,k′kI2(M
2
h,k′ , M2

l,k)
]

+ i
p2

32π2
Y ∗

ν,ikY
T
ν,kj, (25)

where m2
22 = |µ|2 + m2

H2
. The last momentum dependent term of Eq.(25) is obtained by

expanding −iΣs
L̃,ij

with respect to external momenta p2

M2
R,k

and by keeping the term which

remains in the limit of large MR,k. The loop functions I1 and I2 are given as,

I1(m
2) = Q4−d

∫
ddk

(2π)d

1

k2 − m2

= i
m2

16π2

[
ϵ̄−1 + 1 − ln

m2

Q2

]
, (26)

I2(m
2
1,m

2
2) = Q4−d

∫
ddk

(2π)d

1

k2 − m2
1

1

k2 − m2
2

=
i

16π2

[
ϵ̄−1 + 1 +

m2
1

m2
2 − m2

1

ln
m2

1

Q2
− m2

2

m2
2 − m2

1

ln
m2

2

Q2

]
. (27)

The fermion loop contributions are calculated with the fermion loop diagrams by keeping

external momenta assumed to be small compared to MR,k so as to derive the contributions
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from wave function renormalization. The results are expressed as

−iΣf

L̃,ij
= −2

3∑
k=1

Y ∗
ν,ikY

T
ν,kj

(
1 +

|µ|2

M2
R,k

)
I1(M

2
R,k) − iΣp

L̃,ij
, (28)

where Σp

L̃,ij
is momentum dependent part given as

−iΣp

L̃,ij
=

3∑
k=1

i

16π2
Y ∗

ν,ikY
T
ν,kjp

2

(
ϵ̄−1 +

1

2
− ln

M2
R,k

Q2

)
+ O(M−1

R,k). (29)

The explicit form of −iΣL̃,ij is shown in Appendix B. Then, the quadratic parts of effective

Lagrangian for sleptons L̃i can be written in MS (DR) scheme as follows,

Lkmax
eff = z

(kmax)

L̃,ij
(Q2)∂µL̃

∗
i ∂

µL̃j

−
(
m

2(kmax)

L̃,ij
(Q2) + δm

2(kmax)

L̃,ij
(Q2) + δ

(kmax)
SD m2

L̃,ij + δ
(kmax)
SI m2

L̃,ij

)
L̃∗

i L̃j, (30)

where the contributions of the loop diagrams mediated by heavy neutrino superfields, N1 ∼

Nkmax are included and the parameters are given by

z
(kmax)

L̃,ij
(Q2) = δij −

kmax∑
k=1

1

16π2
Y ∗

ν,ikY
T
ν,kj(ln

M2
R,k

Q2
− 1), (31)

δm
2(kmax)

L̃,ij
(Q2) =

1

16π2

[kmax∑
k=1

(A∗
ν,ikA

T
ν,kj + Y ∗

ν,ikY
T
ν,kjm

2
H2

+ Y ∗
ν,ikY

T
ν,kjm

2
Ñ,kk

) ln
M2

R,k

Q2

+
kmax∑

k ̸=k′,1

Y ∗
ν,ikY

T
ν,k′jm

2
Ñ,kk′ ln

max(M2
R,k,M

2
R,k′)

Q2

]
, (32)

δ
(kmax)
SD m2

L̃,ij = − 1

16π2

kmax∑
k=1

(A∗
ν,ikA

T
ν,kj + Y ∗

ν,ikY
T
ν,kjm

2
H2

+
kmax∑
k′=1

Y ∗
ν,ikY

T
ν,k′jm

2
Ñ,kk′), (33)

δ
(kmax)
SI m2

L̃,ij =
1

16π2

kmax∑
k=1

[
2Y ∗

ν,ikY
T
ν,kjm

2
Ñ,kk

+ (Y ∗
ν,ikA

T
ν,kjB

2∗
kk + A∗

ν,ikY
T
ν,kjB

2
kk)

1

MR,k

]
.(34)

Note that δSDm2
L̃,ij

and δSIm
2
L̃,ij

are the scheme dependent and independent finite terms,

respectively. One can normalize the kinetic term in canonical form by replacing L̃i as,

√
zL̃

(kmax)
nj

L̃j → L̃n. (35)

With the replacement, the effective Lagrangian is written as,

Lkmax
eff = ∂µL̃

∗
i ∂

µL̃i

− (
1

√
zL̃

(kmax)
m

2(kmax)

L̃

1
√

zL̃
(kmax)

+ δm
2(kmax)

L̃
+ δ

(kmax)
SD m2

L̃
+ δ

(kmax)
SI m2

L̃
)ijL̃

∗
i L̃j. (36)
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Now let us apply the matching condition at the scale Q = MR,kmax to two effective theories,

one of which contains the superfields, N1 ∼ Nkmax , and the other contains only N1 ∼ Nkmax−1.

The effective Lagrangian with the kmax active superfields should be the same as the one with

the kmax − 1 active superfields at the matching scale;

L(kmax)
eff (Q = MR,kmax) = L(kmax−1)

eff (Q = MR,kmax). (37)

Then we can derive threshold corrections for the soft breaking mass for sleptons and for the

Higgs particle. Applying the matching condition at Q2 = M2
R,kmax

, we obtain the relation,

m
2(kmax−1)

L̃
(MR,kmax) =

√
zL̃

(kmax−1) 1
√

zL̃
(kmax)

m
2(kmax)

L̃
(MR,kmax)

1
√

zL̃
(kmax)

√
zL̃

(kmax−1)

+ δ
(kmax)
SD m2

L̃
− δ

(kmax−1)
SD m2

L̃

+ δ
(kmax)
SI m2

L̃
− δ

(kmax−1)
SI m2

L̃
. (38)

Here, we have used the relation,

δm
2(kmax)

L̃
(MR,kmax) = δm

2(kmax−1)

L̃
(MR,kmax). (39)

Inserting the wave function renormalizations given as,

√
zL̃

(kmax)
nj

= δnj −
kmax∑
k=1

1

32π2
Y ∗

ν,nkY
T
ν,kj(ln

M2
R,k

Q2
− 1), (40)

1
√

zL̃
(kmax)

∣∣∣∣∣
in

= δin +
kmax∑
k=1

1

32π2
Y ∗

ν,ikY
T
ν,kn(ln

M2
R,k

Q2
− 1), (41)

√
zL̃

(kmax) 1
√

zL̃
(kmax−1)

∣∣∣∣∣
ij

= δij +
1

32π2
Y ∗

ν,ikmax
Y T

ν,kmaxj(log
M2

R,kmax

Q2
− 1), (42)

into Eq.(38), we finally obtain

m
2(kmax−1)

L̃,ij
(MR,kmax) = m

2(kmax)

L̃,ij
(MR,kmax) −

1

32π2

[
Y ∗

ν,ikmax
Y T

ν,kmaxnm
2(kmax)

L̃,nj
(MR,kmax)

+ m
2(kmax)

L̃,in
(MR,kmax)Y

∗
ν,nkmax

Y T
ν,kmaxj

]
− 1

16π2

[
Y ∗

ν,ikmax
Y T

ν,kmaxjm
2
Ñ,kmaxkmax

+ A∗
ν,ikmax

AT
ν,kmaxj + Y ∗

ν,ikmax
Y T

ν,kmaxjm
2
H2

+ Y ∗
ν,ikmax

[
kmax−1∑

k′=1

Y T
ν,k′jm

2
Ñ,kmaxk′ ] + [

kmax−1∑
k=1

Y ∗
ν,ikm

2
Ñ,kkmax

]Y T
ν,kmaxj

]
+

1

16π2

[
2Y ∗

ν,ikmax
Y T

ν,kmaxjm
2
Ñ,kmaxkmax

+ (Y ∗
ν,ikmax

AT
ν,kmaxjB

2∗
kmaxkmax

+ A∗
ν,ikmax

Y T
ν,kmaxjB

2
kmaxkmax

)
1

MR,kmax

]
, (43)
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where we use B2
ij = B0MR,iδij and both scheme dependent and independent threshold

corrections are included. If B0 is larger than the other soft breaking parameters, i.e., B0 >

Aν ,mÑ , the scheme dependent terms in second bracket in Eq.(43) are smaller than the

scheme independent terms in third (final) bracket in Eq.(43). Therefore we can neglect the

scheme dependent terms for the numerical analysis. We notice that the scheme independent

terms are the same as those obtained from RG analysis given by Eq.(17).

Similarly, one can obtain the threshold corrections for bilinear part of the Higgs field H2.

Calculating the diagrams (d)(e)(f)(i) in Figs. 2,3, we get one-loop corrections to m2
H2

which

are divided by two contributions as follows. The scalar loop contributions are given by

−iΣs
H2

=
1

2

(
A∗

ν,ikA
T
ν,ki + Y ∗

ν,ikY
T
ν,kiM

2
R,k

) [
I2(m

2
L̃,ii

,M2
h,k) + I2(m

2
L̃,ii

,M2
l,k)

]
+

1

2
(Y ∗

ν,ikA
T
ν,kie

−iΦk + A∗
ν,ikY

T
ν,kie

iΦk)MR,k

[
I2(m

2
L̃,ii

,M2
h,k) − I2(m

2
L̃,ii

,M2
l,k)

]
+

1

2
Y ∗

ν,ikY
T
ν,ki[2I1(m

2
L̃,ii

) + I1(M
2
h,k) + I1(M

2
l,k)]

+
∑
i̸=j

Y ∗
ν,ikY

T
ν,kjm

2
L̃,ji

I2(m
2
L̃,ii

,m2
L̃,jj

)

+
1

2
Y ∗

ν,ikY
T
ν,k′ie

i
2
(Φk−Φk′ )

[
m2

h,kk′I2(M
2
h,k,M

2
h,k′) + m2

l,kk′I2(M
2
l,k,M

2
l,k′)

+ im2
hl,k′kI2(M

2
h,k′ ,M2

l,k) − im2
hl,kk′I2(M

2
h,k,M

2
l,k′)

]
+ i

p2

32π2
Y ∗

ν,ikY
T
ν,ki. (44)

The fermion loop contributions are given by

−iΣf
H2

= −2
3∑

k=1

Y ∗
ν,ikYν,ikI1(M

2
R,k) − iΣp

H2
, (45)

where

−iΣp
H2

=
3∑

k=1

i

16π2
Y ∗

ν,ikY
T
ν,kip

2

(
ϵ̄−1 +

1

2
− ln

M2
R,k

Q2

)
+ O(M−1

R,k). (46)

The explicit expression of the total contributions to m2
H2

is shown in Eq.(B2). Then the

effective Lagrangian for Higgs (H2) field is given as,

Lkmax
eff = zH2∂µH

∗
2∂

µH2

−
(
m

2(kmax)
H2

(Q2) + δm
2(kmax)
H2

(Q2) + δ
(kmax)
SD m2

H2
+ δ

(kmax)
SI m2

H2

)
H2

†H2. (47)
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where

zH2(Q
2) = 1 −

kmax∑
k=1

1

16π2
Y ∗

ν,ikY
T
ν,ki(ln

M2
R,k

Q2
− 1), (48)

δm
2(kmax)
H2

(Q2) =
1

16π2

[kmax∑
k=1

(A∗
ν,ikA

T
ν,ki + Y ∗

ν,ikY
T
ν,kjm

2
L̃,ji

+ Y ∗
ν,ikY

T
ν,kim

2
Ñ,kk

) ln
M2

R,k

Q2

+
kmax∑

k ̸=k′,1

Y ∗
ν,ikY

T
ν,k′im

2
Ñ,kk′ ln

max(M2
R,k,M

2
R,k′)

Q2

]
, (49)

δ
(kmax)
SD m2

H2
= − 1

16π2

kmax∑
k=1

(A∗
ν,ikA

T
ν,ki + Y ∗

ν,ikY
T
ν,kjm

2
L̃,ji

+
kmax∑
k′=1

Y ∗
ν,ikY

T
ν,k′im

2
Ñ,kk′), (50)

δ
(kmax)
SI m2

H2
=

1

16π2

kmax∑
k=1

[
2Y ∗

ν,ikY
T
ν,kim

2
Ñ,kk

+ (Y ∗
ν,ikA

T
ν,kiB

2∗
kk + A∗

ν,ikY
T
ν,kiB

2
kk)

1

MR,k

]

−
kmax∑
k=1

∑
i ̸=j

1

16π2
Y T

ν,kjm
2
L̃,ji

Y ∗
νik

m2
L̃,jj

log
M2

R,k

m2
L̃,jj

− m2
L̃,ii

log
M2

R,k

m2
L̃,ii

m2
L̃,jj

− m2
L̃,ii

 . (51)

Using Eq.(47), one can obtain the soft mass of up-type Higgs including scheme dependent

and independent threshold corrections as follows,

m
2(kmax−1)
H2

(MR,kmax) = m
2(kmax)
H2

(MR,kmax)

[
1 − 1

16π2
Y ∗

ν,ikmax
Y T

ν,kmaxi

]
+ δ

(kmax)
SD m2

H2
− δ

(kmax−1)
SD m2

H2
+ δ

(kmax)
SI m2

H2
− δ

(kmax−1)
SI m2

H2

= m
2(kmax)
H2

(MR,kmax)

[
1 − 1

16π2
Y ∗

ν,ikmax
Y T

ν,kmaxi

]
− 1

16π2

[
A∗

ν,ikmax
AT

ν,kmaxi + Y ∗
ν,ikmax

Y T
ν,kmaxjm

2
L̃,ji

+ Y ∗
ν,ikmax

kmax−1∑
k′=1

Y T
ν,k′im

2
Ñ,kmaxk′ +

kmax−1∑
k=1

Y ∗
ν,ikm

2
Ñ,kkmax

Y T
ν,kmaxi

+ Y ∗
ν,ikmax

Y T
ν,kmaxim

2
Ñ,kmaxkmax

]
+

1

16π2

[
2Y ∗

ν,ikmax
Y T

ν,kmaxim
2
Ñ,kmaxkmax

+ (Y ∗
ν,ikmax

AT
ν,kmaxiB

2∗
kmaxkmax

+ A∗
ν,ikmax

Y T
ν,kmaxiB

2
kmaxkmax

)
1

MR,kmax

]

−
∑
i̸=j

1

16π2
Y T

ν,kmaxjm
2
L̃,ji

Y ∗
ν,ikmax

m2
L̃,jj

log
M2

R,kmax

m2
L̃,jj

− m2
L̃,ii

log
M2

R,kmax

m2
L̃,ii

m2
L̃,jj

− m2
L̃,ii

.

(52)

Here, similar to the case of slepton masses, the scheme dependent terms are smaller than

the scheme independent terms.
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(a) Nh;k Nh;l
H2~Lj ~Li (b) (
)

~Lj ~LiNh;k Nl;k
(e) (f)

H2 H2Nh;k Nl;k ~Lk
~Lj ~LiNh;k Nl;k H2

(d) Nh;k; Nh;l
~LiH2 H2 H2 H2Nh;k Nl;k ~Lk

FIG. 2: Contributions from scalar degrees of freedom(g) Nk~H2~Lj ~Li (h) Nk~H1~Lj ~Li (i) NkLk0H2 H2~H2 ~H2
FIG. 3: Contributions from fermionic degrees of freedom

III. LEPTON FLAVOR VIOLATING DECAYS AND THE RELIC ABUNDANCE

OF NEUTRALINO DARK MATTER

As we have seen in the previous section, the threshold corrections to slepton and Higgs

masses can be so large that they dominate over the RGE running effects which are ap-

proximately expressed in Eq.(12) and (13). In this paper, for our numerical calculation,

we consider so called minimal supergravity scenario(mSUGRA) where gaugino masses, soft

scalar masses and scalar trilinear couplings are universal at the GUT scale. In particular, we

investigate the relic abundance of neutralino dark matter in the focus point region[17–19],

which is one of the regions where the relic density is consistent with WMAP observation.

In the region, the lightest supersymmetric particle (LSP) is a mixture state of bino and hig-

gsino and the annihilation cross section for LSP is enhanced due to the appropriate portion

of the higgsino component. In the seesaw model without threshold corrections, the focus

point region is significantly affected by the neutrino Yukawa sector and shift to the energy
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scale far from electroweak scale when the right-handed Majorana masses are sufficiently

large [20–22]. In SUSY type-I seesaw model based on mSUGRA, the radiative corrections

drive the up-type Higgs mass squared to be more negative than that in MSSM if we do not

include the threshold corrections. This feature is due to the presence of RH neutrino and

sneutrino sectors. In this case, the higgsino mass |µ| is larger than that in MSSM, too. This

in turn leads to larger relic abundance of neutralino dark matter compared to that in MSSM

for fixed values of the soft scalar masses due to the small portion of the higgsino components

in the LSP. However, if we include large threshold corrections mentioned above, the up-type

Higgs mass squared is driven to be less negative which leads to smaller |µ|. Therefore the

portion of higgsino in the lightest neutralino state becomes large, and the right amount

of relic abundance of neutralino dark matter consistent with WMAP observation can be

obtained even in the parameter space of MSSM excluded by WMAP data [8].

Since the threshold corrections mentioned above produce flavor off-diagonal slepton

masses, they are new additional source of lepton flavor violating phenomena. Since large

threshold corrections lead to large flavor off-diagonal slepton masses, we anticipate that the

amplitude of lepton flavor violating processes such as τ → µγ, τ → eγ and µ → eγ can

be enhanced due to the new source of lepton flavor violation. Therefore there exists a ten-

sion between the branching ratio of LFV decays and the relic abundance of neutralino dark

matter.

Higgsino mass parameter µ is determined by the minimization condition of the Higgs

potential given as,

1

2
m2

Z = −|µ|2 +
m2

H1
(m2

Z) − m2
H2

(m2
Z) tan2 β

tan2 β − 1
. (53)

In the limit of large tan β, this condition can be written as

1

2
m2

Z ≈ −|µ|2 − m2
H2

(m2
Z). (54)

The radiative corrections to m2
H2

are given as,

δm2
H2

≈
∑

k

Y ∗
ν,ikY

T
ν,ki

8π2

[
m2

0 + A0B
0
N −

(
A2

0 + 3m2
0

)
ln

MGUT

MR,k

]
, (55)

where the first two terms of RH side are the threshold corrections and the last term is the

RG running effect. We see from Eq.(55) that in the case of the large threshold corrections

to m2
H2

, the first two contributions to δm2
H2

dominate over the last one and thus Higgsino
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mass parameter |µ|2 becomes small. This lowers the abundance of neutralino dark matter

compared to that of MSSM. From the constraint from WMAP observation, we can obtain

the allowed parameter space.

Now, let us consider the radiative LFV decays and investigate how they are related with

the relic abundance of neutralino dark matter. Branching ratios of the radiative LFV decays

are approximately given by [3]

BR(li → ljγ) ∼ α3

G2
F

|m2
L̃,ij

|2

m8
s

tan2 β, (56)

where ms is average SUSY scalar mass. For numerical calculations, we have used the com-

plete formulas which are given by Eq.(51) in Ref.[2]. As we can see from Eq. (56), the

branching ratios of the LFV decays are proportional to |m2
L̃,ij

|2. Including the threshold

corrections, m2
L̃,ij

can be approximately written as

m2
L̃,ij

≈
∑

k

Y ∗
ν,ikY

T
ν,kj

8π2

[
m2

0 + A0B
0
N − (A2

0 + 3m2
0) ln

MGUT

MR,k

]
. (57)

Here, the first two terms of RH side are the threshold corrections given in Eq.(20). The

last term comes from the RG running effects which is obtained by integrating out RGEs for

m2
L̃,ij

. Because the relative sign is opposite, both contributions cancel each other when their

contributions are comparable. As the B0
N becomes large, the first two terms gets dominant

over the last term. It is worthwhile to notice that the size of B0
N is limited by the constraints

from the experiments.

IV. NUMERICAL CALCULATION

In this section, we present our numerical calculations of the relic abundance of the neu-

tralino dark matter and the branching ratio of the LFV decays. For our numerical calcula-

tions, we use the micrOMEGAs package[23, 24] for the relic abundance and the SuSpect[25]

for RGE running of soft SUSY breaking parameters with appropriate modification. Then

we compare our numerical results with the experimental ones. We use the following up-

per bound for the branching ratio of the LFV decays : BR(τ → µγ) < 4.4 × 10−8 [26],

BR(τ → eγ) < 3.3 × 10−8 [26] and BR(µ → eγ) < 1.2 × 10−11 [27].

The WMAP observation leads to the relic abundance of the cold dark matter, ΩCDMh2
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given by[28],

ΩCDMh2 = 0.111+0.011
−0.015 (2σ).

For numerical calculations, we need to parameterize the neutrino Dirac Yukawa couplings

in terms of light neutrino masses and mixing. From the superpotential, the Lagrangian for

the neutrino sector is given as,

L = −1

2
Y T

ν,kiN
k
Rli · H2 −

1

2
Yν,ikl

c
i · H2N

k
R

c − 1

2
Nk

RMR,kN
k
R

c
+ h.c.. (58)

After integrating out the heavy Majorana neutrinos, one obtains the dimension five operator.

Leff = +
1

2
(lcj · H2)Yν,jk

1

MR,k

Y T
ν,ki(li · H2), (59)

The mass terms for the left-handed light neutrinos are given by

L = −1

2
νc

LMννL + h.c. , (60)

where the left-handed light neutrinos ν are presented in the flavor eigenstate, νT =

(νe, νµ, ντ ), and Mν denotes the neutrino mass matrix written as

(Mν)ij = −Yν,ikM
−1
R,kY

T
ν,kj

⟨
H0

2

⟩2
. (61)

The neutrino mass matrix Mν can be diagonalized by the unitary matrix Uν as follows:

UT
ν MνUν = diag(mν1,mν2,mν3) ≡ MνD. (62)

The unitary matrix Uν can be identified to UMNS, defined by

UMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


×diag

(
eiα1/2, eiα2/2, 1

)
. (63)

where δ, α1, α2 are CP-violating phases, cij = cos(θij) and sij = sin(θij) with mixing angles

θij. The current experimental values and bounds for the mixing angles are

sin2(2θ12) = 0.87 ± 0.03, sin2(2θ23) > 0.92, sin2(2θ13) < 0.19. (64)
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Since we do not consider the CP-violation, the phases are set to zero. In our numerical

calculations, we take θ12 = 0.6, sin θ23 = cos θ23 = 1/
√

2 and sin θ13 = 0. It is well known

that the neutrino Dirac Yukawa matrix can be written in terms of UMNS and the diagonal

forms of the mass matrices as follows [3];

Y T
ν = (i)

1

⟨H0
2 ⟩

√
MRR

√
MνDU †

MNS, (65)

where R is a complex orthogonal matrix. We assume that R = 1 for the sake of simplicity

in our numerical calculations.

The combination (Y ∗
ν Y T

ν )ij can be written as

(Y ∗
ν Y T

ν )ij =
1

⟨H0
2 ⟩

2Uν,ikmνkMR,kU
†
ν,kj. (66)

Assuming that neutrino masses are subject to normal hierarchy, we can take

(mν1,mν2,mν3) = (0,
√

∆m2
21,

√
∆m2

21 + ∆m2
32), (67)

where ∆m2
21 and ∆m2

32 are mass difference of neutrinos, and their experimental results are

∆m2
21 = (7.57± 0.20)× 10−5eV2 and ∆m2

32 = (2.43± 0.13)× 10−3eV2. We also assume that

MR,1 ≪ MR,2 ≪ MR,3. In this case,

(Y ∗
ν Y T

ν )ij ∼
1

⟨H0
2 ⟩

2Uν,i3mν3MR,3U
†
ν,3j. (68)

Thanks to sin θ13 = 0, (Y ∗
ν Y T

ν )13 ≪ (Y ∗
ν Y T

ν )23. As we can see from eq.(??), this implies

that m2
L̃,13

≪ m2
L̃,23

. Therefore, we anticipate that BR(τ → eγ) ≪ BR(τ → µγ) despite the

current experimental bounds are of same order. So, we do not present BR(τ → eγ) in this

work.

Fig.4 shows how both the relic relic abundance and the branching ratios of the LFV decays

simultaneously depend on the parameter B0
N when light neutrino masses are hierarchical. We

take universal soft scalar mass m0 to be 1TeV. Here, note that lightest SUSY particle is the

lightest neutralino. We also take tanβ = 5(10) in the upper (lower) panels. The other input

values of the parameters we take are presented in the caption of Fig.4. The left(right) two

panels in Fig.4 BR(τ → µγ) (BR(µ → eγ)) vs. the relic abundance as a function of B0
N is

shown. In each panels, green solid and red dotted curves present the branching ratio of LFV

and the relic abundance of the lightest neutralino, respectively. The gray dotted (upper) and

blue solid (lower) horizontal lines show the current upper bound on the branching ratio from
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experiments and the relic abundance of the dark matter obtained from WMAP, respectively.

When B0
N is so large that the prediction of Ωχh2 fit to the observed abundance of the dark

matter, BR(τ → µγ) and BR(µ → eγ) are predicted to be quite large. In this case, the

prediction of BR(τ → µγ) almost reaches to the experimental bound. Although there will

be a chance to probe the LFV decays in the case of large value of B0
N in future experiments,

the size of B0
N is limited by constraint coming from the relic abundance of neutralino dark

matter. In Fig.5, we also show how the branching ratios of LFV depend on the universal

soft scalar mass m0. Here, there exist the valleys where the branching ratios are extremely

suppressed, which are occurred due to cancellation between RG running effects and the

threshold corrections. This is expected from Eq.(57), since the sign of the contribution from

RG running effect to the soft SUSY breaking terms for slepton is opposite to the threshold

correction. Therefore as m0 increases, the large threshold correction from B0
N is cancelled

and branching ratios for LFV become small. As can be seen from Fig. 5, the dotted (dashed)

line starts from the point corresponding to m0 = 700(1400) GeV below which electroweak

symmetry is not radiatively broken due to too large corrections to m2
H2

. In the case of large

B0
N such as 400 ∼ 600 TeV, the branching ratio for τ → µγ and µ → eγ become so sizable

that the LFV decay could be detected even when m0 is larger than 1TeV.

In the case of inverted hierarchy, three neutrino masses are given as

(mν3,mν1,mν2) = (mν3,
√

m2
ν3 + ∆m2

32 − ∆m2
21,

√
m2

ν3 + ∆m2
32), (69)

and mν3 < mν1 < mν2. The threshold corrections to δm2
H2

is proportional to Tr(Y ∗
ν Y T

ν ).

Tr(Y ∗
ν Y T

ν ) is approximately given as

Tr(Y ∗
ν Y T

ν ) ≈
[
(|Uν,12|2 + |Uν,22|2 + |Uν,32|2)mν2MR,2

+(|Uν,23|2 + |Uν,33|2)mν3MR,3

]
/
⟨
H0

2

⟩2
. (70)

In the case of mν3/mν2 ≪ MR,2/MR,3, the first term in Eq.(70) is dominant. The ratio of

Tr(Y ∗
ν Y T

ν ) in the inverted hierarchy to that in the normal hierarchy is

Tr(Y ∗
ν Y T

ν )/Tr(Y ∗
ν Y T

ν )NOR ∼ MR,2/MR,3. (71)

Therefore threshold corrections to m2
H2

are much smaller than in the normal hierarchy case.

This leads to rather larger abundance of the neutralino dark matter. On the other hand,

the term
(
Y ∗

ν Y T
ν

)
21

is written as(
Y ∗

ν Y T
ν

)
21

≈ Uν,22U
†
ν,21mν,2MR,2/

⟨
H0

2

⟩2
. (72)
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This term is obviously larger than that in the normal hierarchy. In particular, for mν3 ∼ 0,

(
Y ∗

ν Y T
ν

)
21

/
(
Y ∗

ν Y T
ν

)NOR

21
∼ 10. (73)

Therefore we naively expect that BR(µ → eγ) becomes larger by 2 order of magnitude than

that in the normal hierarchy for the same value of B0
N . As a result, it becomes difficult

to satisfy the constraint from the current bounds on BR(µ → eγ) and the relic abundance

simultaneously.

When the neutrino masses are almost degenerate, i.e. mν1 ∼ mν2 ∼ mν3, (Y ∗
ν Y T

ν )21

is larger than that in the normal hierarchy, which makes the prediction of BR(µ → eγ)

in this case substantially enhanced compared to the normal hierarchical case, and thus

the constraint of BR(µ → eγ) becomes more severe when we consider the constraint of

the relic abundance simultaneously. We present the branching ratios of the LFV decay

µ → eγ and the relic abundance of the lightest neutralino as functions of B0
N in Fig.6. The

different figures correspond to different values of tanβ. As tan β increases, larger value of

B0
N is preferred to accommodate both BR(µ → eγ) and the relic abundance of dark matter

candidate.

V. CONCLUSION

We have investigated the LFV radiative decays and the relic abundance of the neutralino

dark matter in the SUSY seesaw model. We have carefully derived the threshold corrections

to the flavor off-diagonal elements of slepton mass matrix and up-type Higgs mass squared

and found that they can be so large in the case of large B0
N that the branching ratios of the

LFV decays and the relic abundance of neutralino dark matter can be significantly affected.

Our numerical results show that there are parameter regions where the prediction of the

relic abundance of neutralino dark matter is consistent with WMAP observation and the

branching ratios of LFV radiative decays can be enhanced so as for them to be probed in

future experiments [29, 30]. Although the origin of such large B0
N is unclear, if such large

B-term exists, the branching ratios of LFV decays are significantly enhanced even when m0

is not small. Therefore, the masses of scalar supersymmetric particles are not necessarily

small so that the branching ratios of LFV decays can be testable in future experiment, which

is distinctive feature of this scenario.
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FIG. 4: The branching ratios of LFV decays and the relic abundance of the lightest neutralino are

shown as functions of B0
N with hierarchical neutrino mass case. Two left panels show BR(τ → µγ)

vs. the relic abundance and two right panels show BR(µ → eγ) vs. the relic abundance. In each

panel, green solid and red dotted curves represent the corresponding branching ratio and the relic

abundance of the lightest neutralino, respectively. The gray dotted (upper) and blue solid (lower)

straight lines represent the upper bound on the branching ratio given by experiments and the

abundance of the dark matter obtained from WMAP, respectively. We take (MR,1,MR,2,MR,3) =

(1010, 1012, 1014)GeV and tanβ = 5 for upper two panels and tanβ = 10 for lower two panels. We

also take m0 = 1TeV, A0 = 300GeV,m1/2 = 300GeV and µ > 0.
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branching fractions. Green solid, red dotted and blue broken lines are calculated with B0
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FIG. 6: Br(µ → eγ) vs. the relic abundance as function of B0
N for degenerate neutrino case.

The green solid and red dotted curves represent the branching ratio and the relic abundance of

the lightest neutralino, respectively. The gray dotted (upper) and blue solid (lower) straight lines

represent the upper bound on the branching ratio given by experiment. The parameters are the

same as those in Fig.4.
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APPENDIX A: RENORMALIZATION GROUP EQUATION

In this appendix, we present one-loop renormalization group equations for SU(2) slepton

masses and Higgs mass squared parameters including the threshold effects. The one-loop

RGE for the parameter B2
ij is also presented. Here, we have omitted the same contributions

as in MSSM. The RGEs for SU(2) slepton masses are given by

(16π2)Q
dm2

L̃,ij

dQ
=

∑
k

[
Y ∗

ν,ikm
2
Ñ,kk

Y T
ν,kj +

k−1∑
k′=1

(Y ∗
ν,ik′m2

Ñ,k′k
Y T

ν,kj + Y ∗
ν,ikm

2
Ñ,kk′Y

T
ν,k′j)

]
×

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k)

]
+

∑
k

[
A∗

ν,ikA
T
ν,kj + m2

22Y
∗
ν,ikY

T
ν,kj

] [
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k)

]
− 2|µ|2

∑
k

Y ∗
ν,ikY

T
ν,kjθ(Q

2 − M2
R,k)

+
∑
k,k′

[
Y ∗

ν,ikY
T
ν,kk′m2

L̃,k′j
+ m2

L̃,ik′Y
∗
ν,k′kY

T
ν,kj

]
θ(Q2 − M2

R,k)

+ 2
∑

k

Y ∗
ν,ikY

T
ν,kjM

2
R,k

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k) − 2θ(Q2 − M2

R,k)
]

+
∑

k

[
Y ∗

ν,ikA
T
ν,kje

−iΦk + A∗
ν,ikY

T
ν,kje

iΦk
]
MR,k

×
[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
+

∑
k

[
Y ∗

ν,ik|BN,k|MR,kY
T
ν,kj +

k−1∑
k′=1

(
Y ∗

ν,ik′B2
k′ke

−iΦkY T
ν,kj + Y ∗

ν,ikB
2∗
kk′eiΦkY T

ν,k′j

)]
×

[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
, (A1)
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where m2
22 = m2

H2
+ |µ|2. The RGEs for Higgs mass squared parameters are given by

(16π2)Q
dm2

H2

dQ
=

∑
i,k

[
Y ∗

ν,ikm
2
Ñ,kk

Y T
ν,ki +

k−1∑
j=1

(Y ∗
ν,ijm

2
Ñ,jk

Y T
ν,ki + Y ∗

ν,ikm
2
Ñ,kj

Y T
ν,ji)

]
×

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k)

]
+

∑
i,j,k

(Y T
ν,kim

2
L̃,ij

Y ∗
ν,jk)

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k)

]
+

∑
i,k

(A∗
ν,ikA

T
ν,ki)

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k)

]
+ 2m2

H2

∑
i,k

Y ∗
ν,ikY

T
ν,ki θ(Q

2 − M2
R,k)

+ 2
∑
i,k

Y ∗
ν,ikY

T
ν,kiM

2
R,k

[
θ(Q2 − M2

h,k) + θ(Q2 − M2
l,k) − 2θ(Q2 − M2

R,k)
]

+ 2
∑
i,k

Re(Y ∗
ν,ikA

T
ν,kie

−iΦk)MR,k

[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
+

∑
i,k

[
Y ∗

ν,ik|BN,k|MR,kY
T
ν,ki + 2

k−1∑
j=1

Re
(
Y ∗

ν,ijB
2
jke

−iΦkY T
ν,ki

)]
×

[
θ(Q2 − M2

h,k) − θ(Q2 − M2
l,k)

]
, (A2)

(16π2)Q
dm2

11

dQ
= |µ|2

∑
i,k

|Yν,ik|2[θ(Q2 − M2
h,k) + θ(Q2 − M2

l,k)], (A3)

where m2
11 ≡ |µ|2 + m2

H1
. We note that the RH-side of Eq.(A3) corresponds to the

contribution from wave function renormalization.

(16π2)Q
dm2

H1H2

dQ
=

∑
i,k

µ|Yν,ik|2eiΦkMR,k[θ(Q
2 − M2

h,k) − θ(Q2 − M2
l,k)]

+
∑
i,k

µY ∗
ν,ikAν,ik[θ(Q

2 − M2
h,k) + θ(Q2 − M2

l,k)]

+
∑
i,k

|Yν,ik|2m2
H1H2

θ(Q2 − M2
R,k). (A4)

The RGE for B2
ij is given as,

(16π2)Q
dB2

ij

dQ
= 4

[
AT

ν,ikY
∗
ν,kjMR,j + MR,iY

†
ν,ikAν,kj

]
+ 2

(
Y T

ν Y ∗
ν

)
ik

(B2)kj + 2(B2)ik

(
Y T

ν Y ∗
ν

)
jk

. (A5)
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The RG equation for MR can be found,for instance, in [4],

(16π2)Q
dMR,ij

dQ
= 2

(
Y T

ν Y ∗
ν

)
ik

MR,kj + 2MR,ik

(
Y T

ν Y ∗
ν

)
jk

. (A6)

APPENDIX B: DIAGRAM CALCULATION

By summing the self-energies from both fermion and scalar loop diagrams, the one loop

contribution to the slepton mass squared is given by,

−iΣL̃,ij = − i

16π2

[
−(ϵ̄−1 + 1)(A∗

ν,ikA
T
ν,kj + Y ∗

ν,ikY
T
ν,kj(m

2
H2

+ m2
Ñ,kk

)

+
∑
k ̸=k′

Y ∗
ν,ikY

T
ν,k′jm

2
Ñ,kk′)

+ (A∗
ν,ikA

T
ν,kj + Y ∗

ν,ikY
T
ν,kjm

2
H2

+ Y ∗
ν,ikY

T
ν,kjm

2
Ñ,kk

) ln
M2

R,k

Q2

+
∑
k ̸=k′

Y ∗
ν,ikY

T
ν,k′jm

2
Ñ,kk′ ln

max(M2
R,k,M

2
R,k′)

Q2

+ 2Y ∗
ν,ikY

T
ν,kjm

2
Ñ,kk

+ (Y ∗
ν,ikA

T
ν,kjB

2∗
kk + A∗

ν,ikY
T
ν,kjB

2
kk)

1

MR,k

+
∑
k<k′

(Y ∗
ν,ikY

T
ν,k′jB

2
kk′B2∗

k′k′ + Y ∗
ν,ik′Y T

ν,kjB
2∗
k′kB

2
k′k′)

1

M2
R,k′

]
+

i

16π2
Y ∗

ν,ikY
T
ν,kjp

2[ϵ̄−1 + 1 − ln
M2

R,k

Q2
]. (B1)
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The contribution to the up type Higgs (H2) mass squared is given by,

−iΣH2 = − i

16π2

[
−(ϵ̄−1 + 1)(A∗

ν,ikA
T
ν,ki + Y ∗

ν,ikY
T
ν,ki(m

2
L̃,ii

+ m2
Ñ,kk

)

+
∑
k ̸=k′

Y ∗
ν,ikY

T
ν,k′im

2
Ñ,kk′ +

∑
i ̸=j

Y T
ν,kjm

2
L̃,ji

Y ∗
ν,ik)

+ (A∗
ν,ikA

T
ν,ki + Y ∗

ν,ikY
T
ν,kjm

2
L̃,ji

+ Y ∗
ν,ikY

T
ν,kim

2
Ñ,kk

) ln
M2

R,k

Q2

+
∑
k ̸=k′

Y ∗
ν,ikY

T
ν,k′im

2
Ñ,kk′ ln

max(M2
R,k,M

2
R,k′)

Q2

−
∑
i ̸=j

Y T
ν,kjm

2
L̃,ji

Y ∗
νik

m2
L̃,jj

log
M2

R,k

m2
L̃,jj

− m2
L̃,ii

log
M2

R,k

m2
L̃,ii

m2
L̃,jj

− m2
L̃,ii

+ 2Y ∗
ν,ikY

T
ν,kim

2
Ñ,kk

+ (Y ∗
ν,ikA

T
ν,kiB

2∗
kk + A∗

ν,ikY
T
ν,kiB

2
kk)

1

MR,k

+
∑
k<k′

(Y ∗
ν,ikY

T
ν,k′iB

2
kk′B2∗

k′k′ + Y ∗
ν,ik′Y T

ν,kiB
2∗
k′kB

2
k′k′)

1

M2
R,k′

]
+

i

16π2
Y ∗

ν,ikY
T
ν,kip

2[ϵ̄−1 + 1 − ln
M2

R,k

Q2
]. (B2)
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APPENDIX C: APPROXIMATE SOLUTIONS OF THE RENORMALIZATION

GROUP EQUATIONS FOR MR AND B2.

As stated below Eq.(21), although the renormalization group running may induce the

large flavor off-diagonal contribution to B2
ij (i ̸= j) at a lower mass scale, by switching

the basis of Majorana mass matrix MR to the diagonal basis, we can keep B2
ij in the basis

almost diagonal because off-diagonal elements B2
ij(i ̸= j) are doubly suppressed by a factor

of A0

B0
and one loop suppressed factor. The effect of the small off-diagonal elements in B2

ij

on slepton soft breaking term turns out to be smaller than the leading threshold corrections

given in Eq.(20).

In this appendix, we first show that the large radiatively generated off-diagonal elements

of B2
ij corresponding to the second term of Eq.(21) are indeed rotated away in the diagonal

basis for MR. To show this, the renormalization group equations for B2 and MR are solved in

perturbative way, i.e., we use the approximation so that in the RH side of the renormalization

group equations, all the couplings Aν , Yν and mass MR are scale independent constants

defined at GUT scale where the initial conditions for renormalization group equations are

imposed. We also show that off-diagonal elements of the third term of Eq.(21) remain even

after the rotation and are numerically small compared with the leading diagonal elements.

The solutions for Eq.(A5) and Eq.(A6) at Q = MR,3 with the boundary conditions in

Eq.(11), are given as,

MRij(MR,3) = MR,iδij − 2(HijMR,j + HjiMR,i)t
03, (C1)

B2
ij(MR,3) = B0[MR,iδij − 2(HijMR,j + HjiMR,i)t

03] − 4A0(HijMR,j + HjiMR,i)t
03

= (B0 + 2A0)MR(MR,3)ij − 2A0MR,iδij, (C2)

where t03 = 1
16π2 log MGUT

MR,3
and H = Y T

ν Y ∗
ν . Since the first term of B2 in Eq.(C2) is pro-

portional to the running mass matrix of the heavy Majorana neutrinos, it is also diagonal

in the diagonal basis for MR. As for the second term proportional to A0, it is changed

into the non-diagonal one. To derive the unitary matrix O diagonalizing MR(Q = MR,3)
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approximately, we first write the mass matrix at Q = MR,3 in the matrix form as,

MR(Q = MR,3)

=


MR1(MR,3) −2H12t

03(MR,1 + MR,2) −2H13t
03(MR,1 + MR,3)

−2H12t
03(MR,1 + MR,2) MR2(MR,3) −2H23t

03(MR,2 + MR,3)

−2H13t
03(MR,1 + MR,3) −2H23t

03(MR,2 + MR,3) MR3(MR3)

 ,

(C3)

where we have used the property Hij = Hji since CP is assumed to be invariant. The

diagonal elements at Q = MR,3 are given by

MRi(Q = MR,3) = MR,i(1 − 4Hiit
03). (C4)

One can find the matrix O with which the mass matrix Eq.(C3) is diagonalized as,

O(MR,3)MR(Q = MR,3)O
T (MR,3) = D(Q = MR,3), (C5)

where D is the diagonal matrix. The rotation given above corresponds to changing the basis

N c → OT N c. In the new basis, B2 is given by,

B2
newij ≡ (OB2OT )ij = {(B0 + 2A0)Di(Q = MR,3) − 2A0MR,3}δij

− 2A0

2∑
k=1

(Oik(MR,k − MR,3)Ojk). (C6)

From Eq.(C6), the off diagonal elements of B2
new are given as,

B2
newij = −2A0

2∑
k=1

Oik(MR,k − MR,3)Ojk (i ̸= j). (C7)

The diagonal elements are dominated by the term proportional to B0MR,i,

B2
newii = B0Di(MR,3) + 2A0(Di −

3∑
k=1

O2
ikMR,k). (C8)

To write the off-diagonal elements of B2
new explicitly, we introduce the parametrization for

the orthogonal matrix OT as,

OT =


cN
13c

N
12 cN

13s
N
12 sN

13

−sN
23s

N
13c

N
12 − cN

23s
N
12 −sN

23s
N
13s

N
12 + cN

23c
N
12 cN

13s
N
23

−cN
23s

N
13c

N
12 + sN

23s
N
12 −cN

23s
N
13s

N
12 − sN

23c
N
12 cN

13c
N
23

 , (C9)
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where sN
ij = sin θN

ij and cN
ij = cos θN

ij . One can write B2
new,ij (i ̸= j) using the angles as

B2
new,13 = −2A0c

N
13{(MR,1 − MR,2)c

N
12s

N
13 + (MR,2 − MR,3)c

N
23(c

N
23c

N
12s

N
13 − sN

23s
N
12)},

B2
new,23 = −2A0{cN

13s
N
12s

N
13(MR,1 − MR,2) + cN

13c
N
23(s

N
23c

N
12 + cN

23s
N
13s

N
12)(MR,2 − MR,3)},

B2
new,12 = −2A0{cN

12s
N
12((MR,1 − MR,2) − sN

13

2
(MR,1 − MR,3))

+ sN
23(s

N
23s

N
12c

N
12(1 + (sN

13)
2) − cN

23s
N
13 cos 2θN

12)(MR,2 − MR,3)}. (C10)

The angles θN
ij can be determined by the diagonalization Eq.(C5). When MR,3 ≫ MR,2,MR,1,

one can determine sN
23, s

N
13 from the equation,

0 0 −2H13t
03MR,3

0 0 −2H23t
03MR,3

−2H13t
03MR,3 −2H23t

03MR,3 MR3(MR3)




sN
13

cN
13s

N
23

cN
13c

N
23

 = D3


sN
13

cN
13s

N
23

cN
13c

N
23

 . (C11)

Then we find that D3 ≃ MR,3, and sN
13 and sN

23 are given as

sN
13 ≃ −2H13t

03,

sN
23 ≃ −2H23t

03, (C12)

where we ignore the corrections of the order of O(
MR,i

MR,3
) (i = 1, 2). The determination of sN

12

is more involved. It is determined by diagonalizing the following 2× 2 matrix which can be

obtained after the largest eigenvalue state is decoupled from the 3 × 3 matrix in Eq.(C3).cN
12 −sN

12

sN
12 cN

12

 MR,1 − MR,3s
2
13 −2H12t

03MR,2 − MR,3s13s23

−2H12t
03MR,2 − MR,3s13s23 MR,2 − MR,3s

2
23

  cN
12 sN

12

−sN
12 cN

12


≃

D1 0

0 D2

 . (C13)

sN
12 is approximately given by,

sN
12 ≃ −2H12t

03 − MR,3

MR,2

sN
13s

N
23, (C14)

where the following conditions are assumed to be satisfied,

MR,2 > (sN
13)

2MR,3, (s
N
23)

2MR,3. (C15)

Using the formulae given in Eq.(C12), one can write the dominant terms for the first two

equations in Eq.(C10),

B2
new,13 = 2A0MR,3(c

N
12s

N
13 − sN

12s
N
23),

B2
new,23 = 2A0MR,3(c

N
12s

N
23 + sN

12s
N
13). (C16)
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When sN
12 ≪ 1, they are simplified as,

B2
new,m3 = 2A0MR,3s

N
m3

= −4A0MR,3Hm3t
03, (m = 1, 2). (C17)

Eq.(C17) shows that in the diagonal basis of MR, the off diagonal elements of B2
m3 is given

by the third term of Eq.(21) and it is small compared with the large diagonal element

B2
new33 ∼ B0

NMR,3.

Next we show that the variation of the threshold corrections Eq.(20) due to the change

of the basis is two loop effect and thus negligibly small. When we change the basis as,

(NR)c → OT NR
c, (C18)

Yν in Eq.(20) should be replaced by

Yν → YνO(MR,k)
T . (C19)

Then the threshold correction is replaced by the following equation,

δk
thm

2
L̃ij

=
1

8π2
(Y ∗

ν OT )ik(OY T
ν )kj(m

2
0 + A0B

0
N). (C20)

Now let us examine how large δk
thm

2
L̃ij

for the case k = 3 could be after changing the basis

as follows,

δ3
thm

2
L̃ij

≃ m2
0 + A0B

0
N

8π2
{Y ∗

ν,i3Y
T
ν,3j + Y ∗

ν,i3(Y
T
ν,2js

N
23 + Y T

ν,1js
N
13) + (Y ∗

ν,i2s
N
23 + Y ∗

ν,i1s
N
13)Y

T
ν,3j)}.

(C21)

Since sN
m3 = −(Y T

ν Y ∗
ν )m3

1
8π2 t

03 , (m = 1, 2), the variation δ3
thm

2
L̃ij

is the two loop order and

thus small correction.

For the completeness, we check whether the conditions Eq.(C15) and sN
12 ≪ 1 which

lead to Eq.(C17) are satisfied. For numerical estimation, We take MGUT = 1016(GeV),

MR,3 = 1014(GeV), MR,2 = 1012(GeV),and MR,1 = 1010(GeV). For Hij, one may use the

parametrization Eq.(65).

Hij = (Y T
ν Y ∗

ν )ij =
1

⟨H0
2 ⟩2

√
MR,iMR,j(RmνR

†)ij. (C22)

When R is a real orthogonal matrix,

|Hij| <

√
MR,iMR,j

v2 sin2 β
× (|mν3 − mν1| + |mν2 − mν1|). (C23)
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Using tan β = 5 and v = 246(GeV), we obtain

|H12| ≤ 1.0 × 10−4,

|H13| ≤ 1.0 × 10−3,

|H23| ≤ 1.0 × 10−2. (C24)

Since 2t03 ≃ 0.06, we obtain

|sN
23| ≤ 6 × 10−4, |sN

13| ≤ 6 × 10−5. (C25)

Then Eq.(C15) is satisfied. We also note that sN
12 is as small as

|sN
12| ≤ 6 × 10−6 + 3.6 × 10−6 ∼ 1.0 × 10−5. (C26)
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